WO2014166209A1 - 一种光时域反射仪的调零方法及调零装置 - Google Patents

一种光时域反射仪的调零方法及调零装置 Download PDF

Info

Publication number
WO2014166209A1
WO2014166209A1 PCT/CN2013/083568 CN2013083568W WO2014166209A1 WO 2014166209 A1 WO2014166209 A1 WO 2014166209A1 CN 2013083568 W CN2013083568 W CN 2013083568W WO 2014166209 A1 WO2014166209 A1 WO 2014166209A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeroing
signal
zero adjustment
zero
time domain
Prior art date
Application number
PCT/CN2013/083568
Other languages
English (en)
French (fr)
Inventor
朱梅冬
徐晗
陈建章
陆建鑫
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/783,165 priority Critical patent/US9726574B2/en
Priority to EP13881634.3A priority patent/EP2985929B1/en
Publication of WO2014166209A1 publication Critical patent/WO2014166209A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]

Definitions

  • the present invention relates to the field of optical communication networks, and in particular, to a zeroing method and a zeroing device for an optical time domain reflectometer.
  • Optical fiber communication technology has become one of the main pillars of modern communication and plays a pivotal role in modern telecommunication networks.
  • optical fiber communication has developed rapidly in recent years and is widely used in the history of communication. It is also an important symbol of the world's new technological revolution and the main transmission tool for various information in the future information society.
  • the backbone network is an important architectural element for building an enterprise network. It provides a path for information exchange between different LANs or subnets. Typically, the capacity of the backbone network is greater than the capacity of the network to which it is connected.
  • the backbone network is a large transmission network used to connect small transmission networks and transmit data.
  • FTTB Fiber to The Building
  • FTTH Fiber To The Home
  • PON Passive Optical Network
  • xPON systems have been deployed in large numbers at home and abroad, and at the same time, the operation and maintenance technologies of PON networks have continued to grow.
  • the OTDR (Optical Time Domain Reflectometer) technology plays an important role in the maintenance of optical network faults.
  • the main indicators of OTDR technology are dynamic range, spatial resolution and dead zone. Among them, the dynamic range is related to the noise level of the actual circuit, the effective range of the ADC (analog-to-digital converter) and its resolution. In the receiving circuit, reducing the offset voltage of the receiving circuit and the zero drift of the operational amplifier is beneficial to improving the effective range of the ADC and improving the detection capability of the OTDR.
  • the link gain needs to be designed to be high, and the offset voltage of the front stage circuit includes the dark current effect of the optical device, The amplification of the latter circuit takes up a large dynamic range of the ADC, which affects the dynamic range achieved by the system.
  • the zero adjustment terminal of the operational amplifier is manually zeroed.
  • This method can do a good job of zeroing, but it is not smart, which increases the manual complexity of the test.
  • Another commonly used zeroing method is the automatic zeroing method. This zeroing method does not require software intervention, but it affects its DC component and low frequency component. The consequence is that the tested waveform is poor, affecting the OTDR. Identification of event points.
  • the technical problem to be solved by the present invention is to provide a zeroing method and a zeroing device for an OTDR, which overcomes the disadvantages of introducing a measurement waveform difference by the unintelligence of the manual zeroing method and the automatic zero adjustment method.
  • the present invention provides a method for zeroing an optical time domain reflectometer, including:
  • a zero adjustment signal is issued; and the zero adjustment process is performed according to the zero adjustment signal.
  • the performing zero adjustment processing according to the zero adjustment signal includes:
  • the zeroing signal When the zeroing signal is valid, the voltage difference of the low noise amplifier output signal is received, and the low noise amplifier is zeroed based on the voltage difference.
  • the above method also has the following features:
  • the optical time domain reflectometer is activated for testing.
  • the process of testing the optical time domain reflectometer further includes:
  • the above method also has the following features:
  • the zeroing signal is calculated based on the offset voltage collected by the ⁇ , or obtained by looking up the table,
  • the zeroing process according to the zeroing signal includes:
  • the zero-adjusting signal is converted to a zero-zero voltage and input to a low-noise amplifier for zeroing.
  • the present invention also provides a zero adjustment device for use in an optical time domain reflectometer, including:
  • the first module is set to: before the optical time domain reflectometer is activated, a zero adjustment signal is issued when the laser is turned off; and the second module is set to: perform zero adjustment processing according to the zero adjustment signal.
  • the second module includes:
  • the first unit is configured to: when the zeroing signal is valid, receive a voltage difference of the low noise amplifier output signal, and zero the low noise amplifier based on the voltage difference.
  • the above device also has the following features:
  • the first module is further configured to: when the first unit performs zero adjustment, if the zero adjustment signal is released, the optical time domain reflectometer is activated to perform testing.
  • the above device also has the following features:
  • the first module is further configured to: in the process of testing by the optical time domain reflectometer, before any time the laser sends a test pulse or sequence, issue a zero adjustment signal to trigger the second module to perform a zero adjustment process.
  • the above device also has the following features:
  • the first module is configured to: the zero-adjusting signal calculated according to the offset voltage collected by the chirp, or the zero-adjusting signal obtained by looking up the table,
  • the second module includes: a second unit, configured to: convert the zero adjustment signal to a zero voltage and input to a low noise amplifier for zero adjustment.
  • the present invention also provides an optical time domain reflectometer, including a laser, Low noise amplifier and zeroing device as described above.
  • an embodiment of the present invention provides a zeroing method and a zeroing device for an OTDR, which uses a idle time before or during a test to perform feedback zeroing on the receiving circuit to reduce the influence of the offset voltage, and also solve the zero of the operational amplifier.
  • the problem of drifting, improving the detection capability of OTDR overcomes the shortcomings of the artificial zeroing method and the introduction of the measurement waveform difference.
  • FIG. 1 is a schematic diagram of a zero adjustment device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a zeroing method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an optical time domain reflectometer according to Embodiment 1 of the present invention.
  • Figure 5 is a schematic view of an optical time domain reflectometer according to Embodiment 2 of the present invention.
  • FIG. 6 is a flow chart of a zeroing method according to Embodiment 2 of the present invention.
  • the zero adjustment device of this embodiment includes:
  • the first module is configured to emit a zero-setting signal when the laser is turned off before starting the optical time domain reflectometer
  • the second module is configured to perform zero adjustment processing according to the zero adjustment signal.
  • the second module may include:
  • a first unit configured to receive a voltage difference of the low noise amplifier output signal when the zeroing signal is valid, and zero the low noise amplifier based on the voltage difference.
  • the first module is further configured to start the optical time domain reflectometer to perform testing during the zeroing process of the first unit, if the zero adjustment signal is released.
  • the testing of the first module by the optical time domain reflectometer is further for issuing a zeroing signal to trigger the second module before the laser sends a test pulse or sequence. Perform zero adjustment processing.
  • the first module is the zeroing signal calculated according to the offset voltage collected by the chirp, or the zeroing signal obtained by looking up the table.
  • the second module includes:
  • the second unit is configured to convert the zero-adjusted signal into a zero-zero voltage and input it to a low-noise amplifier for zeroing.
  • the zero adjustment device of this embodiment can overcome the disadvantages of the measurement of the waveform difference by the unintelligence of the manual zero adjustment method and the automatic zero adjustment method.
  • FIG. 2 is a flowchart of a zeroing method according to an embodiment of the present invention. As shown in FIG. 2, the method in this embodiment includes:
  • the optical time domain reflectometer of the embodiment of the present invention includes the following components:
  • PD photodiode
  • TIA transimpedance amplifier
  • LNA low noise amplifier
  • FILTER low pass filter
  • ADC analog to analog converter
  • data processing transmit and receive control circuit
  • LD laser
  • LD laser
  • zeroing device of this embodiment is added to the circuit.
  • Sending and receiving control circuit (corresponding to the first module), before starting the optical time domain reflectometer, issuing a zeroing signal when the laser is off;
  • a zeroing circuit (corresponding to the first unit of the second module), configured to receive a voltage difference of the output signal of the low noise amplifier when the zeroing signal is valid, and the low noise is based on the voltage difference The amplifier is zeroed.
  • the transmitting and receiving control circuit is further configured to start the optical time domain reflectometer to perform testing during the zeroing process of the zeroing circuit, if the zeroing signal is released.
  • the transmitting and receiving control circuit is further configured to trigger the zeroing circuit to perform a zeroing process before the laser sends a test pulse or sequence.
  • a method of zeroing in the optical time domain reflectometer of this embodiment includes the following steps as shown in FIG. 4:
  • the zero adjustment circuit Before starting the OTDR test, first turn off the LD, trigger the zero adjustment circuit to perform zero adjustment processing; specifically, the zeroing signal pulse is given by the transmitting and receiving control circuit, and the zero adjustment control signal is valid (it may be specified that the high level is valid or When the active low is active, the zeroing circuit is triggered to perform zero adjustment processing.
  • the zeroing circuit performs zero adjustment processing
  • the operational amplifier will give a zeroing circuit according to the output voltage difference of the LNA differential, and the zeroing voltage uses this voltage difference as a basis for zeroing, providing a reference voltage for one end of the LNA, changing the reference.
  • the voltage can adjust the output of the LNA to bring the output voltage difference closer to zero, thus achieving the goal of zeroing.
  • the zero adjustment circuit maintains the originally adjusted voltage, and then starts the OTDR test.
  • the offset voltage of the receiving circuit may change during the test, which can also be adjusted.
  • the transmit and receive control circuits can issue a zero control signal to zero after any test pulse or sequence is sent by the LD. After zero adjustment is completed, the test can be continued.
  • This embodiment needs to pay attention to these aspects when performing zero adjustment: 1. During the zero adjustment period, ensure that the PD does not have any input light; 2. Perform zero adjustment before each or any test, and the zero adjustment time is generally several tens of uS; 3. During the test, the zero adjustment signal must be kept in the released state, so as not to affect the waveform after the test.
  • the method of this embodiment zeros the circuit before a complete OTDR test, or uses the idle time to zero during the test, ensures that the offset voltage of the system is minimized, increases the effective dynamic range of the system, and ensures the consistency of the test. Sex.
  • Example 2 The difference between Embodiment 2 and Embodiment 1 is that the offset voltage is collected by the ADC, and then a zero control code is given by the transmitting and receiving control circuit, and converted into an analog zero voltage by the DAC, and the zeroing circuit is given.
  • the OTDR of the present embodiment is as shown in FIG. 5.
  • the zeroing signal is a zeroing control code calculated by the transmitting and receiving control circuit according to the offset voltage collected by the ,, or The zero control code obtained by looking up the table.
  • the zeroing circuit of the embodiment (corresponding to the second unit of the second module) is configured to convert the zeroing control code into a zeroing voltage and input it to a low noise amplifier for zeroing.
  • the zeroing control code can be sent to the DAC for conversion to analog zero voltage, and then passed through the zeroing circuit and finally output to the input of the LNA as the reference level of the LNA. By changing this reference level, the zeroing function can be realized. .
  • the acquisition of the zeroing control code can use the method of repeated measurement by the ADC, that is, first give a value, after adjustment, then observe what the offset voltage of the ADC is, and then give another value, so that the offset voltage is lowered. , each time a small adjustment is made, and finally the offset voltage is within the allowable range.
  • This method has a long adjustment time and low efficiency, but the adjusted value is highly accurate and is not affected by temperature drift.
  • FIG. 6 is a flowchart of the zeroing method of the embodiment. As shown in FIG. 6, the method includes the following steps: S201: Before starting the OTDR test, first turn off the LD;
  • the front end analog voltage ie, offset voltage
  • ADC ADC
  • the transmitting and receiving control circuit determines whether the offset voltage is within an allowable range, if not in the allowable range, then proceeds to step S204, otherwise proceeds to step S207;
  • the transmitting and receiving control circuit provides a zeroing control code.
  • the zero adjustment circuit performs zero adjustment by using the analog zero adjustment voltage, and then returns to step S202; in step S207, the zero adjustment is ended, the zero adjustment code is kept unchanged, and the OTDR test is started.
  • the transmit and receive control circuits issue a zero control code to perform zero adjustment. After the zero adjustment is completed, the test can be continued.
  • the OTDR and the zeroing method according to the embodiment of the present invention enhance the flexibility of the zeroing method, ensure the quality of the test waveform, increase the effective dynamic range effect, and reduce the temperature. Drift and device offset voltage effects improve overall detection performance.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Communication System (AREA)
  • Amplifiers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种光时域反射仪OTDR的调零方法及调零装置,该调零方法包括:启动光时域反射仪前,在激光器关闭的状态下,发出调零信号;根据调零信号进行调零处理。本发明实施例可以利用测试前或测试期间的空闲时间对接收电路进行反馈调零,降低失调电压的影响,同时也能解决运放零漂的问题,提高OTDR的检测能力,克服了人工调零法的不智能及自动调零法引入测量波形差的缺点。

Description

一种光时域反射仪的调零方法及调零装置
技术领域
本发明涉及光通信网领域, 特别是涉及一种光时域反射仪的调零方法及 调零装置。
背景技术
光纤通信技术已成为现代通信的主要支柱之一, 在现代电信网中起着举 足轻重的作用。 光纤通信作为一门新兴技术, 其近年来发展速度之快、 应用 面之广是通信史上罕见的, 也是世界新技术革命的重要标志和未来信息社会 中各种信息的主要传送工具。
加上 "三网融合" 服务需求的不断推动, 大到省与省, 国家与国家之间 的主干网络, 小到普通的城市内部的主干网基本都是釆用光纤做主干线。 主 干网是构建企业网的一个重要的体系结构元素。 它为不同局域网或子网间的 信息交换提供了路径。 通常情况下, 主干网的容量要大于与之相连的网络的 容量。 主干网是一种大型的传输网路, 它用于连接小型传输网络, 并传送数 据。
FTTB ( Fiber to The Building, 光纤到楼 )、 FTTH ( (Fiber To The Home, 光纤到家)也已经成为解决接入网带宽瓶颈问题的最佳手段, 而无源光网络 技术以其高带宽、 远距离传输以及点到多点拓朴等优势备受青睐, 已经成为 各国部署 FTTH、 FTTB的主要应用架构。 PON ( Passive Optical Network, 无 源光纤网络)是一种釆用点到多点拓朴结构的无源光接入技术。 当前, xPON 系统已经在国内外大量部署商用, 与此同时, PON网络的运营维护技术也不 断发展壮大。
OTDR ( Optical Time Domain Reflectometer, 光时域反射仪 )技术在光网 络故障的维护上,有着非常重要的意义。OTDR技术主要的指标有动态范围、 空间分辨率和盲区等。 其中, 动态范围与实际电路的噪声水平、 ADC (模数 转换器) 的有效量程及其分辨率有关。 在接收电路中, 降低接收电路的失调 电压和运放的零漂,有利于提高 ADC的有效量程,提高 OTDR的检测能力。 在 OTDR接收电路中, 由于要检测的光信号的幅度变化大, 为了保证小信号 能检测到, 链路增益需要设计得较高, 前级电路的失调电压包括光器件的暗 电流影响, 会在后级电路的放大, 所带来的后果是占用了 ADC较大的动态 范围, 从而影响了系统达到的动态范围。
OTDR仪表的接收电路中有釆用人工调零方法, 在测量前, 人为对运放 调零端子进行调零。 这种方式可以很好的完成调零功能, 但不智能, 增加了 测试的人工复杂度。 还有一种常用的调零方法是自动调零方法, 这种调零方 法不需要软件来干预, 但会影响其直流分量及低频分量, 这样产生后果是所 测试到的波形较差, 影响对 OTDR事件点的识别。
发明内容
本发明要解决的技术问题是提供一种 OTDR的调零方法及调零装置, 以 克服人工调零法的不智能及自动调零法引入测量波形差的缺点。
为了解决上述技术问题, 本发明提供了一种光时域反射仪的调零方法, 包括:
启动光时域反射仪前, 在激光器关闭的状态下, 发出调零信号; 根据调零信号进行调零处理。
优选地, 上述方法还具有下面特点: 所述根据调零信号进行调零处理包 括:
在所述调零信号有效的情况下, 接收低噪声放大器输出信号的电压差, 以所述电压差为依据对所述低噪声放大器进行调零。
优选地, 上述方法还具有下面特点:
在所述进行调零的过程中, 如所述调零信号解除, 则启动所述光时域反 射仪进行测试。
优选地, 上述方法还具有下面特点: 在所述光时域反射仪进行测试的过 程, 还包括:
在任一次所述激光器发出一个测试脉冲或序列前, 发出调零信号进行调 零处理。 优选地, 上述方法还具有下面特点:
所述调零信号是根据釆集出的失调电压计算得到的 , 或者是通过查表得 到的,
所述根据调零信号进行调零处理包括:
将所述调零信号转换为调零电压后输入到低噪声放大器进行调零。 为了解决上述问题, 本发明还提供了一种调零装置, 应用于光时域反射 仪, 包括:
第一模块, 设置为: 启动光时域反射仪前, 在激光器关闭的状态下, 发 出调零信号; 第二模块, 设置为: 根据调零信号进行调零处理。
优选地, 上述装置还具有下面特点: 所述第二模块包括:
第一单元, 设置为: 在所述调零信号有效的情况下, 接收低噪声放大器 输出信号的电压差, 以所述电压差为依据对所述低噪声放大器进行调零。
优选地, 上述装置还具有下面特点:
所述第一模块, 还设置为: 在所述第一单元进行调零的过程中, 如所述 调零信号解除, 则启动所述光时域反射仪进行测试。 优选地, 上述装置还具有下面特点:
所述第一模块, 还设置为: 在光时域反射仪进行测试的过程, 在任一次 所述激光器发出一个测试脉冲或序列前, 发出调零信号, 触发所述第二模块 进行调零处理。
优选地, 上述装置还具有下面特点:
所述第一模块, 设置为: 是根据釆集出的失调电压计算得到的所述调零 信号, 或者是通过查表得到的所述调零信号,
所述第二模块包括: 第二单元, 设置为: 将所述调零信号转换为调零电压后输入到低噪声放 大器进行调零。
为了解决上述问题, 本发明还提供了一种光时域反射仪, 包括激光器、 低噪声放大器和上述的调零装置。
综上, 本发明实施例提供一种 OTDR的调零方法及调零装置, 利用测试 前或测试期间的空闲时间对接收电路进行反馈调零, 降低失调电压的影响, 同时也能解决运放零漂的问题, 提高 OTDR的检测能力, 克服了人工调零法 的不智能及自动调零法引入测量波形差的缺点。
附图概述
图 1为本发明实施例的调零装置的示意图;
图 2为本发明实施例的调零方法的流程图;
图 3为本发明实施例 1的光时域反射仪的示意图;
图 4为本发明实施例 1的调零方法的流程图;
图 5为本发明实施例 2的光时域反射仪的示意图;
图 6为本发明实施例 2的调零方法的流程图。
本发明的较佳实施方式
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
图 1为本发明实施例的调零装置的示意图, 如图 1所示, 本实施例的调 零装置包括:
第一模块, 用于启动光时域反射仪前, 在激光器关闭的状态下, 发出调 零信号;
第二模块, 用于根据调零信号进行调零处理。 其中, 所述第二模块可以包括:
第一单元, 用于在所述调零信号有效的情况下, 接收低噪声放大器输出 信号的电压差, 以所述电压差为依据对所述低噪声放大器进行调零。
其中, 所述第一模块还用于在所述第一单元进行调零的过程中, 如所述 调零信号解除, 则启动所述光时域反射仪进行测试。 在一优选实施例中, 所述第一模块在光时域反射仪进行测试的过程还用 于, 在任一次所述激光器发出一个测试脉冲或序列前, 发出调零信号, 触发 所述第二模块进行调零处理。
在一优选实施例中 , 所述第一模块是根据釆集出的失调电压计算得到的 所述调零信号, 或者是通过查表得到的所述调零信号,
所述第二模块包括:
第二单元, 用于将所述调零信号转换为调零电压后输入到低噪声放大器 进行调零。
本实施例的调零装置可以克服人工调零法的不智能及自动调零法引入测 量波形差的缺点。
图 2为本发明实施例的调零方法的流程图, 如图 2所示, 本实施例的方 法包括:
511、 启动光时域反射仪前, 在激光器关闭的状态下, 发出调零信号;
512、 根据调零信号进行调零处理。
实施例 1
如图 3所示, 本发明实施例的光时域反射仪中包括以下组成部分:
PD (光电二极管)、 TIA (跨阻放大器)、 LNA (低噪声放大器)、 FILTER (低通滤波器) 、 ADC (数模转换器) 、 数据处理、 发送及接收控制电路、 LD (激光器)驱动器、 LD及调零电路。 接收端 TIA及 LNA都会有失调电 压的问题,为了消除失调电压的影响,在电路中加入了本实施例的调零装置。
本实施例的调零装置包括:
发送及接收控制电路(相当于第一模块) , 用于启动光时域反射仪前, 在激光器关闭的状态下, 发出调零信号;
调零电路(相当于第二模块的第一单元) , 用于在所述调零信号有效的 情况下, 接收低噪声放大器输出信号的电压差, 以所述电压差为依据对所述 低噪声放大器进行调零。 其中, 发送及接收控制电路还用于在所述调零电路进行调零的过程中, 如所述调零信号解除, 则启动所述光时域反射仪进行测试。
其中, 发送及接收控制电路还用于在任一次所述激光器发出一个测试脉 冲或序列前, 触发所述调零电路进行调零处理。
本实施例的光时域反射仪中的一种调零方法如图 4所示包括如下步骤:
5101、在启动 OTDR测试前,先关闭 LD,触发调零电路进行调零处理; 具体地, 由发送及接收控制电路给出调零信号脉冲, 调零控制信号有效 (可以规定高电平有效或低电平有效) 时, 触发调零电路进行调零处理。
5102、 调零电路进行调零处理;
具体地, 调零控制信号有效时, 运放就会根据 LNA差分的输出电压差 给调零电路, 调零电压以这个电压差作为调零的依据, 为 LNA的一端输入 提供参考电压, 改变参考电压就能调整 LNA的输出, 使其输出电压差更接 近于 0, 从而达到调零的目标。
5103、 在调零电路进行调零的过程中, 如调零控制信号解除, 则启动 OTDR测试;
在调零控制信号解除, 即调零完成, 调零电路保持住原来调整的电压, 然后开始 OTDR测试。
接收电路在测试过程中失调电压可能会有变化,这种情况同样可以调整。 根据失调电压变化的程度, 可以在任一次 LD发出一个测试脉冲或序列前, 发送及接收控制电路发出一个调零控制信号, 进行调零, 完成调零之后就可 以继续测试。
本实施例进行调零时需要注意这几个方面: 一、 在调零期间保证 PD没 有任何输入光; 二、 在每次或任意次测试前进行调零, 调零时间一般为几十 uS;三、测试过程中调零信号必须保持在解除状态,以免影响测试后的波形。
本实施例的方法在一次完整的 OTDR测试前对电路进行调零,或测试过 程中利用空闲时间进行调零, 保证系统的失调电压最小, 增加系统的有效动 态范围, 同时也保证了测试的一致性。
实施例 2 实施例 2与实施例 1的不同点是, 由 ADC釆集出失调电压的大小, 然 后由发送及接收控制电路给出一个调零控制码, 由 DAC转换成模拟调零电 压, 给调零电路进行调零, 本实施例的 OTDR如图 5所示, 本实施例的调零 装置中 , 调零信号是发送及接收控制电路根据釆集出的失调电压计算得到的 调零控制码, 或者是通过查表得到的调零控制码。
本实施例的调零电路(相当于第二模块的第二单元) , 用于将所述调零 控制码转换为调零电压后输入到低噪声放大器进行调零。
调零控制码可以送到 DAC 中转换成模拟调零电压, 再经过调零电路, 最后输出到 LNA的输入端 ,作为 LNA的参考电平 ,通过改变这个参考电平, 可以实现调零的功能。
其中, 调零控制码的获取可以釆用通过 ADC反复测量的方法, 即先给 出一个值,调整后,再观察 ADC釆集到的失调电压是多少,再给另一个值, 使失调电压降低, 每次进行小幅度的调整, 最终使失调电压达到可容许的范 围内。 这种方法调整时间长, 效率低, 但调整后的值精度高, 不受温漂的影 响。
也可以事先建立一个失调电压及调零控制码关系的查找表, 由 ADC釆 集获取失调电压的值, 通过查表的方式, 得到调零控制码, 这样可以一次完 全调零, 调零时间短, 效率高, 但精度不高, 易受温漂的影响。
图 6为本实施例的调零方法的流程图, 如图 6所示, 包括以下步骤: S201、 在启动 OTDR测试前, 先关闭 LD;
5202、 由 ADC釆集前端模拟电压 (即失调电压) , 将失调电压输出给 发送及接收控制电路;
5203、 发送及接收控制电路判断失调电压是否在允许的范围内, 如不在 允许范围, 则转步骤 S204, 否则转步骤 S207;
S204、 发送及接收控制电路给出一个调零控制码;
5205、 由 DAC将调零控制码转换成模拟调零电压;
5206、 调零电路通过该模拟调零电压进行调零, 然后返回步骤 S202; 步骤 S207, 结束调零, 保持调零码不变, 开始 OTDR测试。 在 OTDR测试过程中, 可以在任一次 LD发出一个测试脉冲或序列前, 发送及接收控制电路发出调零控制码转, 进行调零, 完成调零之后就可以继 续测试。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上仅为本发明的优选实施例, 当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的情况下, 熟悉本领域的技术人员当可根据本 发明作出各种相应的改变和变形, 但这些相应的改变和变形都应属于本发明 所附的权利要求的保护范围。
工业实用性
釆用本发明实施例所述的 OTDR和调零方法, 与现有技术相比, 增强了 调零方法的灵活性, 同时保证了测试波形的质量, 增加了有效的动态范围的 效果, 减少温漂和器件失调电压带来的影响, 提升整体检测性能。

Claims

权 利 要 求 书
1、 一种光时域反射仪的调零方法, 包括:
启动光时域反射仪前, 在激光器关闭的状态下, 发出调零信号; 根据调零信号进行调零处理。
2、如权利要求 1所述的方法, 其中, 所述根据调零信号进行调零处理包 括:
在所述调零信号有效的情况下, 接收低噪声放大器输出信号的电压差, 以所述电压差为依据对所述低噪声放大器进行调零。
3、 如权利要求 2所述的方法, 其中,
在所述进行调零的过程中, 如所述调零信号解除, 则启动所述光时域反 射仪进行测试。
4、如权利要求 3所述的方法, 其中, 在所述光时域反射仪进行测试的过 程, 还包括:
在任一次所述激光器发出一个测试脉冲或序列前, 发出调零信号进行调 零处理。
5、 如权利要求 1所述的方法, 其中,
所述调零信号是根据釆集出的失调电压计算得到的 , 或者是通过查表得 到的,
所述根据调零信号进行调零处理包括:
将所述调零信号转换为调零电压后输入到低噪声放大器进行调零。
6、 一种调零装置, 应用于光时域反射仪, 包括:
第一模块, 设置为: 启动光时域反射仪前, 在激光器关闭的状态下, 发 出调零信号;
第二模块, 设置为: 根据调零信号进行调零处理。
7、 如权利要求 6所述的调零装置, 其中, 所述第二模块包括: 第一单元, 设置为: 在所述调零信号有效的情况下, 接收低噪声放大器 输出信号的电压差, 以所述电压差为依据对所述低噪声放大器进行调零。
8、 如权利要求 7所述的调零装置, 其中,
所述第一模块, 还设置为: 在所述第一单元进行调零的过程中, 如所述 调零信号解除, 则启动所述光时域反射仪进行测试。
9、 如权利要求 8所述的调零装置, 其中,
所述第一模块, 还设置为: 在光时域反射仪进行测试的过程, 在任一次 所述激光器发出一个测试脉冲或序列前, 发出调零信号, 触发所述第二模块 进行调零处理。
10、 如权利要求 6-9任一项所述的调零装置, 其中,
所述第一模块, 设置为: 是根据釆集出的失调电压计算得到的所述调零 信号, 或者是通过查表得到的所述调零信号,
所述第二模块包括:
第二单元, 设置为: 将所述调零信号转换为调零电压后输入到低噪声放 大器进行调零。
11、 一种光时域反射仪, 包括激光器、 低噪声放大器和如权利要求 6-10 任一项所述的调零装置。
PCT/CN2013/083568 2013-04-09 2013-09-16 一种光时域反射仪的调零方法及调零装置 WO2014166209A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/783,165 US9726574B2 (en) 2013-04-09 2013-09-16 Zeroing method and zeroing device for optical time-domain reflectometer
EP13881634.3A EP2985929B1 (en) 2013-04-09 2013-09-16 Zeroing method and zeroing device for optical-time domain reflectometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310120555.5A CN103248423B (zh) 2013-04-09 2013-04-09 一种光时域反射仪的调零方法及调零装置
CN201310120555.5 2013-04-09

Publications (1)

Publication Number Publication Date
WO2014166209A1 true WO2014166209A1 (zh) 2014-10-16

Family

ID=48927667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083568 WO2014166209A1 (zh) 2013-04-09 2013-09-16 一种光时域反射仪的调零方法及调零装置

Country Status (4)

Country Link
US (1) US9726574B2 (zh)
EP (1) EP2985929B1 (zh)
CN (1) CN103248423B (zh)
WO (1) WO2014166209A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103248423B (zh) 2013-04-09 2018-01-05 中兴通讯股份有限公司 一种光时域反射仪的调零方法及调零装置
CN110208153A (zh) * 2018-08-01 2019-09-06 华帝股份有限公司 用于油烟机的传感器电路及其油烟机
KR20220158917A (ko) * 2021-05-24 2022-12-02 삼성전자주식회사 실시간으로 전압 오프셋을 제거하는 수신기 및 그것의 동작 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599571A (en) * 1984-07-18 1986-07-08 Iwatsu Electric Co., Ltd. Level compensation circuit
US5020872A (en) * 1990-01-04 1991-06-04 Smiths Industries Aerospace & Defense Systems Incorporated Method of operating an electrooptic modulator
US5319266A (en) * 1993-02-24 1994-06-07 Antel Optronics Inc. Differential boxcar integrator with auto-zero function
CN103248423A (zh) * 2013-04-09 2013-08-14 中兴通讯股份有限公司 一种光时域反射仪的调零方法及调零装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062704A (en) * 1990-04-25 1991-11-05 Tektronix, Inc. Optical time domain reflectometer having pre and post front panel connector testing capabilities
US7603084B2 (en) * 2006-02-03 2009-10-13 Wionics Technologies, Inc. Method and apparatus for DC offset calibration
CN102025326A (zh) * 2010-12-24 2011-04-20 北京东方计量测试研究所 一种用于运算放大器的数字自校零电路
CN102969991A (zh) * 2012-11-22 2013-03-13 昆山北极光电子科技有限公司 一种低失调自动补偿电路
US9500519B2 (en) * 2012-12-03 2016-11-22 Yale University Superconducting single photon detector
CN105323001B (zh) * 2015-11-26 2019-07-02 武汉光迅科技股份有限公司 一种otdr光信号接收电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599571A (en) * 1984-07-18 1986-07-08 Iwatsu Electric Co., Ltd. Level compensation circuit
US5020872A (en) * 1990-01-04 1991-06-04 Smiths Industries Aerospace & Defense Systems Incorporated Method of operating an electrooptic modulator
US5319266A (en) * 1993-02-24 1994-06-07 Antel Optronics Inc. Differential boxcar integrator with auto-zero function
CN103248423A (zh) * 2013-04-09 2013-08-14 中兴通讯股份有限公司 一种光时域反射仪的调零方法及调零装置

Also Published As

Publication number Publication date
EP2985929A4 (en) 2016-04-13
CN103248423A (zh) 2013-08-14
EP2985929B1 (en) 2018-05-23
EP2985929A1 (en) 2016-02-17
CN103248423B (zh) 2018-01-05
US9726574B2 (en) 2017-08-08
US20160047713A1 (en) 2016-02-18

Similar Documents

Publication Publication Date Title
US10797798B2 (en) Optical power and gain detection apparatus and method for optical amplifier in burst mode
US9998214B2 (en) Optical time domain reflectometer implementation apparatus and system
US20080056714A1 (en) Method and Apparatus for Obtaining an Optical Power Level in a Pon Network
CN107517080B (zh) 一种光功率检测方法、装置、设备及光模块
US8170414B2 (en) Burst mode digital diagnostic and control for passive optical network receiving
CN101895350A (zh) 一种10g以太网无源网络单纤双向光模块
EP2833567B1 (en) Optical fiber testing method, apparatus and passive optical network system
JP4700094B2 (ja) 光アクセスシステム及び光回線装置
WO2006063510A1 (fr) Pon et procede de communication de donnees associe
WO2014166209A1 (zh) 一种光时域反射仪的调零方法及调零装置
JP2008003008A (ja) 光パルス試験器
CN101621332A (zh) 一种在线检测光网络单元光功率的方法和装置
US9705625B2 (en) Optical network terminal and a method therein for maintenance of the same
WO2011079656A1 (zh) 一种在线获取光网络单元光功率的装置和方法
JP2001160778A (ja) 光送受信器の干渉光抑圧システム及び方法
CN103297121B (zh) 一种rssi值曲线拟合方法和系统
WO2014121602A1 (zh) 设置otdr测试参数集的方法及装置
CN101436908A (zh) 一种光纤色散补偿放大方法及其装置
Ossieur et al. A 10 Gb/s burst-mode receiver with automatic reset generation and burst detection for extended reach PONs
Qiu et al. Evolution of burst mode receivers
JP2010283752A (ja) 光通信方法、局側装置および光通信システム
CN201937594U (zh) Epon光线路终端用光模块
Torrientes et al. RSOA-based 10.3 Gbit/s WDM-PON with pre-amplification and electronic equalization
Mauldin et al. Minimal Overhead Optical Time-Domain Reflectometer Via I/O Integrated Data Converter Enabled by Field Programmable Voltage Offset
CN102607818A (zh) 一种消光比测量装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881634

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14783165

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013881634

Country of ref document: EP