WO2011079656A1 - 一种在线获取光网络单元光功率的装置和方法 - Google Patents

一种在线获取光网络单元光功率的装置和方法 Download PDF

Info

Publication number
WO2011079656A1
WO2011079656A1 PCT/CN2010/078725 CN2010078725W WO2011079656A1 WO 2011079656 A1 WO2011079656 A1 WO 2011079656A1 CN 2010078725 W CN2010078725 W CN 2010078725W WO 2011079656 A1 WO2011079656 A1 WO 2011079656A1
Authority
WO
WIPO (PCT)
Prior art keywords
olt
onu
optical
optical power
signal
Prior art date
Application number
PCT/CN2010/078725
Other languages
English (en)
French (fr)
Inventor
冯景
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP10840445.0A priority Critical patent/EP2521287B1/en
Priority to BR112012015811A priority patent/BR112012015811A2/pt
Publication of WO2011079656A1 publication Critical patent/WO2011079656A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power

Definitions

  • the present invention relates to an optical power detection technology in an Ethernet Passive Optical Networks (EPON) system, and more particularly to an apparatus and method for acquiring optical power of an Optical Network Unit (ONU) online.
  • EPON Ethernet Passive Optical Networks
  • ONU Optical Network Unit
  • the schematic diagram of the structure of the existing EPON system is shown in Figure 1.
  • the system is a single-fiber bidirectional system, which consists of an Optical Line Terminal (OLT) on the central side, an ON U on the user side, and an Optical Distribution Network (Optical Distribution Network). , ODN ) composition.
  • OLT Optical Line Terminal
  • ODN Optical Distribution Network
  • the signals sent by the OLT reach the ONUs through the ODN.
  • the signals sent by the ONUs can only reach the OLT through the ODN, but cannot reach other ONUs.
  • the EPON system uses a passive optical splitter from a single-point to multi-point architecture without any active equipment. Therefore, the installation, management and maintenance costs of the optical network are greatly reduced, making the EPON system widely used.
  • FTTH fiber to the home
  • FTTB fiber to the building
  • FTTP fiber to the premises
  • the ODN is composed of a passive optical device such as an optical fiber and one or more passive optical splitters, and provides an optical channel for data transmission between the OLT and the ONU.
  • each ONU can only emit optical signals in a specified time slot, that is, an optical signal can be transmitted only in the time slot allocated by the OLT for each ONU, and the next time slot is sent by another ONU.
  • the time slot is specifically allocated by an OLT MAC control module in the OLT.
  • a serial and serial-parallel conversion (SerDes) interface signal line and a two-wire serial bus (I 2 C) interface signal line are generally connected, or There is only a SerDes interface signal line between the two modules.
  • SerDes interface signal line is used for EPON
  • the communication data is transmitted between the OLT MAC control module and the OLT-side optical module.
  • the upstream optical signal is in burst mode, which is different from the ordinary continuous optical signal.
  • the traditional method of obtaining optical power is to measure the average optical power in the sampling period, and because the model of the optical module used by the ONU is affected.
  • the main object of the present invention is to provide an apparatus and method for acquiring ONU optical power on-line, which can measure the accurate optical power of any ONU in an EPON system online, and is convenient for diagnosis and maintenance of the optical network.
  • the present invention provides an apparatus for acquiring an optical power of an ONU of an optical network unit, and the apparatus includes: an OLT MAC control module and an OLT side optical module, and a control signal line is disposed between the OLT MAC control module and the OLT side optical module; among them,
  • the OLT MAC control module is configured to trigger the OLT side optical module to detect the ONU optical power by using a control signal line during operation of the Ethernet passive optical network EPON system;
  • the OLT side optical module is configured to measure the optical power of the ONU in a time slot allocated by the OLT to each ONU under the trigger of the OLT MAC control module during the operation of the EPON system.
  • the OLT-side optical module includes: a photodetector, a preamplifier, a signal shaping circuit, an AD conversion circuit, and an E 2 PROM;
  • the photodetector is configured to detect and receive an optical signal from the optical fiber link, and convert the received optical signal into a photocurrent signal and send the signal to the preamplifier;
  • the preamplifier is configured to convert the photocurrent signal generated by the photodetector into an analog voltage signal, and output the signal to the signal shaping circuit;
  • the signal shaping circuit is configured to perform shaping filtering on the analog voltage signal sent by the preamplifier, and send the analog voltage signal for removing the clutter to the AD conversion circuit;
  • the AD conversion circuit is configured to convert an analog voltage signal sent by the signal shaping circuit into a digital signal under the control of the OLT MAC control module, and then convert the digital signal into an optical power value, and store the optical power value in the E 2 PROM;
  • the E 2 PROM is configured to store an optical power value converted by the AD conversion circuit.
  • a parallel serial and serial parallel conversion SerDes interface signal line and a two-wire serial bus I 2 C interface signal line are further connected between the OLT MAC control module and the OLT side optical module.
  • the OLT MAC control module is further configured to: after the AD conversion circuit obtains the optical power value, determine whether the ONU has finished transmitting the optical signal, and if the determination is not completed, read the E 2 PROM through the I 2 C interface signal line. Optical power value;
  • the AD conversion circuit is further configured to notify the OLT MAC control module after obtaining the ONU optical power value.
  • the invention also provides a method for obtaining the ONU optical power on the line, and setting a control signal line between the OLT MAC control module and the OLT side optical module:
  • the method further includes:
  • the OLT MAC control module controls the OLT side optical module to measure the optical power of the ONU in the time slot allocated by the OLT to each ONU through the control signal line.
  • the process of measuring the optical power of the ONU is specifically as follows:
  • the OLT side optical module first converts the optical signal sent by the ONU into a photocurrent signal; then converts the photocurrent signal into an analog voltage signal, and performs shaping filtering on the analog voltage signal to remove the clutter and then send it to the AD conversion circuit; AD conversion After the circuit is triggered by the OLT MAC control module, it begins to convert the analog voltage signal into a digital signal; then converts the digital signal into an optical power value and stores the optical power value in the E 2 PROM.
  • a SerDes interface signal line and an I 2 C interface signal line are further connected between the OLT MAC control module and the OLT side optical module.
  • the method also includes:
  • the OLT determines whether the ONU has finished transmitting the optical signal. When it is determined that the optical signal is not stopped, the OLT MAC control module reads the optical power value in the E 2 PROM through the I 2 C interface signal line.
  • the device and method for obtaining ONU optical power on-line are provided, and a control signal line is set between the OLT MAC control module and the OLT-side optical module.
  • the OLT MAC control module controls the OLT-side optical module through the control signal line.
  • the optical power of the ONU is measured in a time slot allocated by the OLT to each ONU.
  • the invention completes the optical power detection in the time slot allocated by the OLT to the ONU, can achieve the purpose of online detection, does not affect the normal communication between the OLT and the ONU, and the OLT can measure the corresponding ONU in the time slot allocated by each ONU.
  • the optical power allows the OLT to measure its corresponding ONU online.
  • the invention only needs to add a control signal line between the OLT MAC control module and the OLT side optical module, and the design is simple; and the idle pin on the OLT side optical module of the original SFP package can be used as the interface of the control signal. In the actual application process, whether the idle pin is selected or not can be selected according to actual needs, without redesigning the OLT side hardware circuit, and the design cost is low.
  • FIG. 2 is a schematic structural diagram of an apparatus for acquiring ONU optical power on-line according to the present invention
  • Figure 3 is a schematic diagram showing the internal structure of an optical module on the OLT side
  • FIG. 4 is a schematic flowchart of a method for realizing online acquisition of ONU optical power according to the present invention
  • FIG. 5 is a schematic diagram of an implementation process according to an embodiment of the present invention. detailed description
  • a control signal line is set between the OLT MAC control module and the OLT-side optical module.
  • the OLT MAC control module controls the OLT-side optical module to be assigned to each ONU by the OLT through the control signal line. In the time slot, the optical power of the ONU is measured.
  • the apparatus includes: an OLT MAC control module and an OLT-side optical module, and a SerDes interface is connected between the OLT MAC control module and the OLT-side optical module.
  • a SerDes interface is connected between the OLT MAC control module and the OLT-side optical module.
  • the OLT MAC control module is configured to trigger an OLT side optical module to detect optical power by using a control signal line during operation of the EPON system;
  • the OLT side optical module is configured to measure the optical power of the corresponding ONU in a time slot allocated by the OLT to each ONU under the trigger of the OLT MAC control module during the operation of the EPON system.
  • the OLT-side optical module includes: a photodetector, a preamplifier, a signal shaping circuit, an AD conversion circuit, and an E 2 PROM;
  • the photodetector is configured to detect and receive an optical signal from the optical fiber link, and convert the received optical signal into a photocurrent signal and send the signal to the preamplifier;
  • the preamplifier is configured to convert the photocurrent signal generated by the photodetector into an analog voltage signal, and output the signal to the signal shaping circuit;
  • the signal shaping circuit is configured to shape an analog voltage signal sent by the preamplifier Filtering, sending the analog voltage signal for removing the clutter to the AD conversion circuit;
  • the AD conversion circuit is configured to convert an analog voltage signal sent by the signal shaping circuit into a digital signal under the control of the OLT MAC control module, and then convert the digital signal into an optical power value, and store the optical power value in the E 2 PROM;
  • the E 2 PROM is configured to store an optical power value converted by the AD conversion circuit.
  • the OLT MAC control module is further configured to: after the AD conversion circuit obtains the optical power value, determine whether the ONU has finished transmitting the optical signal, and when the determination is not completed, read the optical power in the E 2 PROM through the I 2 C interface signal line. Value; correspondingly,
  • the AD conversion circuit is further configured to notify the OLT MAC control module after obtaining the ONU optical power value.
  • FIG. 4 is a schematic flowchart of a method for obtaining an ONU optical power on-line according to the present invention. As shown in FIG. 4, the implementation steps of the process are as follows:
  • Step 401 Set a control signal line between the OLT MAC control module and the OLT side optical module.
  • connection lines of the SerDes interface signal line and the I 2 C interface signal line between the OLT MAC control module and the OLT side optical module.
  • the present invention sets a control signal line between the OLT MAC control module and the OLT side optical module. .
  • the pin definitions conform to the SFP Multi-Source Agreement (MSA) specification, where the 7th pin defines the rate selection, but the existing OLT side light The module does not need to use this pin. Therefore, in the present invention, this idle pin 7 can be utilized as an interface for the control signal. In this way, if the ONU optical power is not required to be obtained online, the 7th pin in the OLT-side optical module of the SFP package is not used; if the ONU optical power needs to be obtained online, the SFP is encapsulated in the OLT-side optical module. The 7th pin is used as the interface of the control signal, and the control signal line is added.
  • MSA SFP Multi-Source Agreement
  • the pins in the OLT side optical module can also be used, and the pins in the OLT side optical module can be redefined, the 7th number Pin-based
  • the OLT-side optical module is not SFP-packaged.
  • the OLT-side optical module is SFP-encapsulated.
  • the OLT-side optical module that supports the ONU optical power of the present invention can be triggered only by adding an OLT-side optical module that does not support online ONU optical power.
  • whether or not to use the 7th pin can be determined according to actual needs, without redesigning the OLT side hardware circuit, it can be seen that the implementation method of the invention is simple and the cost is low.
  • Step 402 During the operation of the EPON system, the OLT MAC control module controls the OLT-side optical module to measure the optical power of the corresponding ONU in the time slot allocated by the OLT to each ONU through the control signal line;
  • the OLT MAC control module controls the AD conversion circuit inside the OLT-side optical module through the control signal line, and measures the optical power of the ONU in the time slot allocated by the OLT to each ONU.
  • the measurement process of the whole optical power is as follows:
  • the optical module of the OLT side first converts the optical signal sent by the ONU into a photocurrent signal; then converts the optical current signal into an analog voltage signal, and performs shaping filtering on the analog voltage signal to remove the clutter. It is sent to the AD conversion circuit; after the AD conversion circuit is triggered by the OLT MAC control module, the analog voltage signal is converted into a digital signal, and then the digital signal is converted into an optical power value, and the optical power value is stored in the E 2 PROM.
  • the optical power value stored in the E 2 PROM is the optical power value of the corresponding ONU currently obtained by the OLT, that is, when the acquired optical power value is stored in the E 2 PROM, the last E will be overwritten. 2 The optical power value stored in the PROM.
  • the AD conversion circuit starts measuring the ONU optical power under the trigger of the OLT MAC control module, that is, the start time of the AD conversion is controlled by the OLT MAC control module, so that the OLT MAC control module knows the measured light.
  • the power is the optical power of the ONU illuminating signal
  • the time required for AD conversion is T c , which can also be called the sampling time of the AD conversion circuit.
  • the T c is determined before the OLT side optical module is shipped from the factory, and can be stored in the E 2 PROM inside the OLT side optical module.
  • the detection of the optical power must be completed in the time slot allocated by the OLT to the ONU. If the time slot is exceeded, the obtained detection result is inaccurate, because if the time slot allocated to an ONU is exceeded, the OLT is sent to another A time slot allocated by an ONU. Wherein the OLT to the ONU is allocated a time slot represented by T then, it must be less than T C and T due to round trip delay (RTT), and therefore must be less than T C T nu - RTT, i.e. T c ⁇ T nu - RTT, in this way, can ensure that the ONU optical power detected by the OLT is accurate.
  • TTT round trip delay
  • the OLT determines whether the ONU has finished transmitting the optical signal, and determines that the optical signal is not stopped, and the optical power detection is successful, and the OLT MAC control module can pass the I 2 C interface.
  • the signal line reads the optical power value in the E 2 PROM; when it is determined that the optical signal has been stopped, that is, T nu - RTT ⁇ T C , then the result of the optical power detection is incorrect.
  • the invention completes the optical power detection in the time slot allocated by the OLT to the ONU, achieves the purpose of online detection, does not affect the normal communication between the OLT and the ONU, and the OLT can measure in the time slot allocated by each ONU.
  • the optical power of the corresponding ONU enables the OLT to measure its corresponding ONU online
  • FIG. 5 is a schematic diagram of the implementation process of the embodiment. As shown in FIG. 5, the process is implemented as follows:
  • Step 501 After the OLT initiates a Discovery GATE frame, the ONU sends a registration request to the OLT.
  • the OLT sends a Discovery GATE frame to each ONU, and the unregistered ONU responds to the Discovery GATE frame, and returns the registration request frame REGISTER_REQ to the OLT.
  • Step 502 After receiving the registration request frame, the OLT sends the normal GATE frame to the OLT.
  • ONU Specifically, after receiving the registration request frame REGISTER_REQ sent by the ONU, the OLT sends the normal GATE frame to the ONU that requests the registration, and the ordinary GATE frame includes the time slot allocated by the OLT to the ONU and the unique allocation to the ONU.
  • the logical link identifier (LLID) after receiving the normal GATE frame, the ONU returns the registration response frame REGISTER_ACK to the OLT, and confirms to the OLT that the registration on the ONU side has succeeded.
  • LLID logical link identifier
  • the OLT not only allocates time slots to the ONU by sending a normal GATE frame during the ONU registration process.
  • a normal GATE frame is also sent to the ONU to allocate time slots.
  • Each time slot allocated may be the same or different, and the length of the time slot is controlled by the OLT MAC control module; the OLT may be registered in the ONU.
  • the ONU optical power is measured in any subsequent time slot.
  • the communication process after the OLT determines that the response frame returned by the ONU has ended, it proves that the communication between the OL T and the ONU in the current time slot ends, that is, the ONU will no longer transmit the optical signal in the time slot.
  • Step 503 After receiving the registration response frame, the OLT triggers the AD conversion circuit to start working in the time slot allocated by the ONU;
  • the OLT MAC control module in the OLT triggers the OLT side light through the control signal line connected to the OLT side optical module in the time slot allocated by the OLT to the ONU.
  • the AD conversion circuit inside the module starts to work.
  • the OLT starts to trigger the AD conversion circuit to start working after receiving the registration response frame REGISTER_ACK returned by the ONU, until the registration response frame REGISTER_ACK returned by the ONU ends; that is, the OLT side optical module should be in the ONU.
  • the optical power of the ONU is measured.
  • the OLT is performed in a time slot authorized by the ordinary GATE frame sent by the OLT in the normal communication process after the ONU registration is completed; in addition, the OLT may also be authorized by the normal GATE frame during the ONU registration process.
  • the optical power of the ONU is measured in the gap.
  • Step 504 storing the converted optical power after the AD conversion ends
  • the obtained result is stored in the E 2 PROM in the OLT side optical module.
  • Step 505 The OLT determines whether the response frame returned in the current time slot of the ONU has ended. If not, step 506 is performed; if yes, step 507 is performed;
  • the OLT MAC control module in the OLT determines whether the response frame REGI STER_ACK returned by the ONU has ended. If the determination is not completed, step 506 is performed; if the determination is completed, the process returns to step 507.
  • the time slot T allocated by the OL T to the ONU is proved.
  • Nu - RTT is less than T c , so the measured optical power value is not accurate.
  • Step 506 Read the optical power value, and then perform step 508;
  • the OLT MAC control module reads the optical power value of the ONU stored in the E 2 PROM through a control signal line connected to the OLT-side optical module, and then performs step 508.
  • Step 507 The OLT waits for the next time slot allocated to the current ONU, and returns to step 5
  • next time slot is a time slot allocated by the OLT to the ONU in the subsequent normal communication process, and the OLT continues to measure the optical power of the ONU after the next time slot.
  • Step 508 The optical power measurement process ends.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

本发明公开了一种在线获取光网络单元(ONU)光功率的装置,还同时公开了一种在线获取ONU光功率的方法,包括:在OLTMAC控制模块与OLT侧光模块之间设置控制信号线:还包括:EPON系统运行过程中,OLTMAC控制模块通过控制信号线控制OLT侧光模块在OLT给各ONU分配的时隙内,测量对应ONU的光功率。运用该装置和方法可在线测量EPON系统中任一ONU准确的光功率,便于光网络的诊断和维护。

Description

一种在线获取光网络单元光功率的装置和方法 技术领域
本发明涉及以太网无源光网络 ( Ethernet Passive Optical Networks , EPON ) 系统中的光功率检测技术, 尤其涉及一种在线获取光网络单元 ( Optical Network Unit, ONU )光功率的装置和方法。 背景技术
现有 EPON系统的组成结构示意图如图 1所示, 该系统为单纤双向系 统, 由局侧的光缆局端设备 ( Optical Line Terminal, OLT )、 用户侧的 ON U和光分配网络(Optical Distribution Network, ODN )组成。 在下行方向, OLT所发的信号通过 ODN到达各个 ONU; 在上行方向,各个 ONU所发的 信号只能通过 ODN到达 OLT, 而不能到达其它 ONU。 EPON系统这种从 单点到多点的组成架构中使用无源光分路器, 而不需要任何有源设备, 因 此, 大大降低了光网络的安装、 管理和维护成本, 使得 EPON 系统广泛应 用于光纤到户 (FTTH )、 光纤到楼(FTTB )以及光纤到驻地(FTTP )等领 域。
现有 EPON系统中, ODN由光纤和一个或多个无源光分路器等无源光 器件组成, 为 OLT和 ONU间的数据传输提供光通道。 EPON系统中各个 ONU只能在规定的时隙内发出光信号, 即: 只能在 OLT为每个 ONU分配 的时隙内发出光信号, 下一个时隙就由另一个 ONU发送光信号。 其中, 所 述时隙具体是由 OLT内的 OLT MAC控制模块分配的。 现有 OLT内部的 OLT MAC控制模块与 OLT侧光模块之间, 一般连接有并串行与串并行转 换(SerDes )接口信号线和两线式串行总线 ( I2C )接口信号线, 或两模块 之间只有 SerDes接口信号线。 其中, 所述 SerDes接口信号线用于 EPON 系统运行时, OLT MAC控制模块与 OLT侧光模块之间通信数据的传输。 在 EPON 系统中, 上行光信号是突发模式的, 不同于普通的连续光信 号, 而传统的获取光功率的方法是测量釆样周期内的平均光功率, 又由于 ONU所用光模块的型号受 ONU与 OLT间的光路距离等因素的影响, 使得 现有的测量平均光功率的方法不能测得 EPON系统中任一 ONU正确的光功 率, 也就是说, 现有的光功率测量方法所测得的平均光功率不能真实反映 每个 ONU的实际光功率, 给光网络的诊断和维护带来很大困难。 发明内容
有鉴于此,本发明的主要目的在于提供一种在线获取 ONU光功率的装 置和方法, 可在线测量 EPON系统中任一 ONU准确的光功率,便于光网络 的诊断和维护。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供了一种在线获取光网络单元 ONU光功率的装置,该装置包 括: 光缆局端 OLT MAC控制模块和 OLT侧光模块, OLT MAC控制模块与 OLT侧光模块之间设置控制信号线; 其中,
所述 OLT MAC控制模块, 用于在以太网无源光网络 EPON系统运行 过程中, 通过控制信号线触发 OLT侧光模块检测 ONU光功率;
所述 OLT侧光模块, 用于在 EPON系统运行过程中, 在 OLT MAC控 制模块的触发下,在 OLT给各 ONU分配的时隙内,测量该 ONU的光功率。
其中, 所述 OLT侧光模块包括: 光探测器、 前置放大器、 信号整形电 路、 AD转换电路和 E2PROM; 其中,
所述光探测器, 用于从光纤链路中探测并接收光信号, 将接收的光信 号转换为光电流信号输送到前置放大器;
所述前置放大器, 用于将光探测器产生的光电流信号转换成模拟电压 信号, 并输出至信号整形电路; 所述信号整形电路, 用于对前置放大器所发的模拟电压信号进行整形 滤波, 将去除杂波的模拟电压信号发送到 AD转换电路;
所述 AD转换电路,用于在 OLT MAC控制模块的控制下,将信号整形 电路所发的模拟电压信号转换成数字信号, 再将数字信号转换成光功率值, 将光功率值存入 E2PROM;
所述 E2PROM, 用于存储 AD转换电路转换所得的光功率值。
其中, 所述 OLT MAC控制模块与 OLT侧光模块之间还连接有并串行 与串并行转换 SerDes接口信号线和两线式串行总线 I2C接口信号线。
其中, 所述 OLT MAC控制模块,进一步用于 AD转换电路得到光功率 值后, 判断 ONU是否已结束光信号的发送, 确定未结束时, 通过 I2C接口 信号线读取 E2PROM中的光功率值;
相应的, 所述 AD转换电路, 进一步用于得到 ONU光功率值后通知 OLT MAC控制模块。
本发明还提供了一种在线获取 ONU光功率的方法, 在 OLT MAC控制 模块与 OLT侧光模块之间设置控制信号线: 该方法还包括:
EPON系统运行过程中, OLT MAC控制模块通过控制信号线控制 OLT 侧光模块在 OLT给各 ONU分配的时隙内, 测量该 ONU的光功率。
其中, 所述测量 ONU的光功率的过程, 具体为:
OLT侧光模块首先将 ONU所发的光信号转换成光电流信号;再将光电 流信号转换成模拟电压信号, 对该模拟电压信号进行整形滤波, 去除杂波 后发送给 AD转换电路; AD转换电路被 OLT MAC控制模块触发后, 开始 将模拟电压信号转换成数字信号; 之后将数字信号转换成光功率值, 并将 光功率值存入 E2PROM。
其中,所述 OLT给 ONU分配的时隙长度需大于 AD转换电路进行 AD 转换所需的时间。 其中, 所述 OLT MAC控制模块与 OLT侧光模块之间还连接有 SerDes 接口信号线和 I2C接口信号线。
该方法还包括:
ONU光功率检测完毕后, OLT判断 ONU是否已结束光信号的发送, 确定未停止发送光信号时, OLT MAC控制模块通过 I2C接口信号线读取 E2PROM中的光功率值。
本发明提供的在线获取 ONU光功率的装置和方法, 在 OLT MAC控制 模块与 OLT侧光模块之间设置控制信号线, EPON系统运行过程中, OLT MAC控制模块通过控制信号线控制 OLT侧光模块, 在 OLT给各 ONU分 配的时隙内, 测量该 ONU的光功率。 本发明在 OLT给 ONU分配的时隙内 完成光功率检测, 可达到在线检测的目的, 不影响 OLT和 ONU之间的正 常通信, 且 OLT在各 ONU被分配的时隙内均可测量相应 ONU的光功率, 使 OLT可在线测量其对应的每个 ONU。
本发明只需在 OLT MAC控制模块和 OLT侧光模块之间增设控制信号 线即可实现, 设计简单; 且可利用原有 SFP封装的 OLT侧光模块上空闲的 引脚作为控制信号的接口, 实际应用过程中, 可根据实际需求确定是否选 择使用所述空闲的引脚, 而不需重新设计 OLT侧硬件电路,设计成本低廉。 附图说明
图 1为现有 EPON系统的组成结构示意图;
图 2为本发明在线获取 ONU光功率的装置结构示意图;
图 3为 OLT侧光模块的内部结构示意图;
图 4为本发明在线获取 ONU光功率的方法实现流程示意图;
图 5为本发明一实施例的实现流程示意图。 具体实施方式
本发明的基本思想是: 在 OLT MAC控制模块与 OLT侧光模块之间设 置控制信号线, EPON系统运行过程中, OLT MAC控制模块通过控制信号 线控制 OLT侧光模块在 OLT给各 ONU分配的时隙内, 测量该 ONU的光 功率。
本发明中, 假设 OLT MAC控制模块与 OLT侧光模块之间已有 SerDes 接口信号线和 I2C接口信号线。
下面结合附图及具体实施例对本发明作进一步详细说明。
图 2为本发明在线获取 ONU光功率的装置结构示意图, 如图 2所示, 该装置包括: OLT MAC控制模块和 OLT侧光模块, OLT MAC控制模块和 OLT侧光模块之间连接有 SerDes接口信号线、 I2C接口信号线和控制信号 线三条连接线; 其中,
所述 OLT MAC控制模块, 用于在 EPON系统运行过程中, 通过控制 信号线触发 OLT侧光模块检测光功率;
所述 OLT侧光模块, 用于在 EPON系统运行过程中, 在 OLT MAC控 制模块的触发下, 在 OLT给各 ONU分配的时隙内, 测量对应 ONU的光功 率。
图 3为所述 OLT侧光模块的内部结构示意图, 如图 3所示, OLT侧光 模块包括:光探测器、前置放大器、信号整形电路、 AD转换电路和 E2PROM; 其中,
所述光探测器, 用于从光纤链路中探测并接收光信号, 将接收的光信 号转换为光电流信号输送到前置放大器;
所述前置放大器, 用于将光探测器产生的光电流信号转换成模拟电压 信号, 并输出至信号整形电路;
所述信号整形电路, 用于对前置放大器所发的模拟电压信号进行整形 滤波, 将去除杂波的模拟电压信号发送到 AD转换电路;
所述 AD转换电路,用于在 OLT MAC控制模块的控制下,将信号整形 电路所发的模拟电压信号转换成数字信号, 再将数字信号转换成光功率值, 将光功率值存入 E2PROM;
所述 E2PROM, 用于存储 AD转换电路转换所得的光功率值。
所述 OLT MAC控制模块, 进一步用于 AD转换电路得到光功率值后, 判断 ONU是否已结束光信号的发送, 确定未结束时, 通过 I2C接口信号线 读取 E2PROM中的光功率值; 相应的,
所述 AD转换电路, 进一步用于得到 ONU光功率值后通知 OLT MAC 控制模块。
图 4为本发明在线获取 ONU光功率的方法实现流程示意图,如图 4所 示, 该流程的实现步骤如下:
步骤 401 : 在 OLT MAC控制模块与 OLT侧光模块之间设置控制信号 线;
其中,在 OLT MAC控制模块与 OLT侧光模块之间已有 SerDes接口信 号线和 I2C接口信号线两条连接线, 本发明在 OLT MAC控制模块与 OLT 侧光模块之间设置控制信号线。
这里, 对于小型可插拔(SFP )封装的 OLT侧光模块, 其引脚定义符 合 SFP多源协议(MSA )规范, 其中的 7号引脚定义的是速率选择, 但现 有的 OLT侧光模块不需要使用这个引脚, 因此, 本发明中, 可利用这个空 闲的 7号引脚作为控制信号的接口。这样,如果不需在线获取 ONU光功率, 则 SFP封装的 OLT侧光模块中的 7号引脚不被使用; 如果需要在线获取 ONU光功率, 则将所述 SFP封装的 OLT侧光模块中的 7号引脚作为控制 信号的接口, 增设控制信号线, 这里, 也可釆用 OLT侧光模块中其它的空 闲引脚, OLT侧光模块中的引脚是可以重新定义的, 所述 7号引脚为本发 明的最佳应用方案; 另外, 所述 OLT侧光模块甚至可不用 SFP封装, 一般 情况下, OLT侧光模块是 SFP封装的。
本发明所述支持在线获取 ONU光功率的 OLT侧光模块只需在现有不 支持在线获取 ONU光功率的 OLT侧光模块的基础上, 增设控制线号线即 可被触发测量。 在实际应用过程中, 可根据实际需求确定是否选择使用 7 号引脚, 而不需重新设计 OLT侧硬件电路, 可见本发明的实现方法简单, 成本低廉。
步骤 402: EPON系统运行过程中, OLT MAC控制模块通过控制信号 线控制 OLT侧光模块在 OLT给各 ONU分配的时隙内测量对应 ONU的光 功率;
具体为: EPON系统运行过程中, OLT MAC控制模块通过控制信号线 控制 OLT侧光模块内部的 AD转换电路, 在 OLT给各 ONU分配的时隙内 测量该 ONU的光功率。
整个光功率的测量过程为: OLT侧光模块先将 ONU所发的光信号转换 成光电流信号; 再将光电流信号转换成模拟电压信号, 对该模拟电压信号 进行整形滤波,去除杂波后发送给 AD转换电路; AD转换电路被 OLT MAC 控制模块触发后开始将模拟电压信号转换成数字信号, 之后将数字信号转 换成光功率值, 并将光功率值存入 E2PROM。
这里, 所述 E2PROM 中所存储的光功率值为 OLT 当前所获得的对应 ONU的光功率值, 也就是说, 将所获取的光功率值存入 E2PROM时, 将覆 盖上次 E2PROM中存储的光功率值。
其中, AD转换电路是在 OLT MAC控制模块的触发下开始测量 ONU 光功率的,也就是说, AD转换的开始时间是由 OLT MAC控制模块控制的, 以便 OLT MAC控制模块了解所测得的光功率是哪个 ONU所发光信号的光 功率, 而 AD转换所需的时间为 Tc, 也可称为 AD转换电路的釆样时间, 所述 Tc在 OLT 侧光模块出厂前已定, 可存储于 OLT 侧光模块内部的 E2PROM中。
这里, 所述光功率的检测须在 OLT给 ONU分配的时隙内完成, 如果 超出该时隙, 则所得的检测结果不准确, 因为如果超出给某 ONU分配的时 隙, 则进入 OLT给另一 ONU分配的时隙。 其中, 所述 OLT给 ONU分配 的时隙表示为 T 那么, Tc需小于 T 又由于环路时延(RTT )的存在, 因此 Tc需小于 T nu - RTT , 即 Tc < T nu - RTT , 这样, 才能保证 OLT检测到 的 ONU光功率准确。
进一步地, ONU光功率检测完毕后, OLT判断 ONU此时是否已结束 光信号的发送, 确定未停止发送光信号时, 则证明此次光功率检测成功, OLT MAC控制模块可通过 I2C接口信号线读取 E2PROM中的光功率值;确 定已停止发送光信号时, 也就是 T nu - RTT < TC, 那么, 此次光功率检测所 得的结果不正确。
本发明是在 OLT给 ONU分配的时隙内完成光功率检测的, 达到了在 线检测的目的, 不影响 OLT和 ONU之间的正常通信, 且 OLT在各 ONU 被分配的时隙内均可测量相应 ONU的光功率, 使 OLT可在线测量其对应 的每个 ONU
下面结合一具体实施例对本发明进行详细描述。
在 OLT MAC控制模块与 OLT侧光模块之间设置控制信号线, 图 5为 本实施例的实现流程示意图, 如图 5所示, 该流程实现步骤如下:
步骤 501 : ONU在 OLT发起发现授权(Discovery GATE ) 帧后, 向 OLT发送注册请求;
具体为: OLT向各 ONU发送 Discovery GATE帧, 未注册的 ONU将响 应该 Discovery GATE帧, 即将注册请求帧 REGISTER— REQ返回给 OLT 步骤 502: OLT收到注册请求帧后, 将普通 GATE帧发送给 ONU; 具体为: OLT收到 ONU所发的注册请求帧 REGISTER— REQ后, 将普 通 GATE帧下发给请求注册的 ONU,所述普通 GATE帧中包括 OLT给 ONU 分配的时隙和给 ONU分配的唯一逻辑链路标识 (LLID ), ONU收到普通 GATE帧后,将注册应答帧 REGISTER— ACK返回给 OLT,向 OLT确认 ONU 侧的注册已成功。
这里, OLT不仅在 ONU注册过程中, 通过发送普通 GATE帧给 ONU 分配时隙。在正常的通信过程中,也会发送普通 GATE帧给 ONU分配时隙, 每次分配的时隙可相同, 也可能不同, 时隙的长短是由 OLT MAC控制模 块控制的; OLT可在 ONU注册后的任何一个时隙内测量 ONU光功率。 通 信过程中, OLT确定 ONU返回的应答帧已结束后, 则证明当前时隙内 OL T与 ONU间的通信结束, 也就是说, 该时隙内 ONU将不再发送光信号。
步骤 503: OLT收到注册应答帧后, 在 ONU被分配的时隙内触发 AD 转换电路开始工作;
具体为: OLT收到 ONU返回的注册应答帧 REGISTER— ACK后 , OLT 内部的 OLT MAC控制模块在 OLT给 ONU被分配的时隙内, 通过与 OLT 侧光模块连接的控制信号线触发 OLT侧光模块内部的 AD转换电路开始工 作。其中, OLT是从收到 ONU返回的注册应答帧 REGISTER— ACK的时刻 , 开始触发 AD 转换电路开始工作, 直到 ONU 返回的注册应答帧 REGISTER— ACK结束; 也就是说, OLT侧光模块应在 ONU返回的注册应 答帧 REGISTER— ACK的过程中, 测量 ONU的光功率。
这里, OLT是在 ONU注册完成后的正常通信过程中, OLT所发的普通 GATE帧所授权的时隙中进行的; 此外, OLT也可在 ONU注册过程中, 在 普通 GATE帧所授权的时隙中测量 ONU的光功率。
步骤 504: AD转换结束后存储转换所得的光功率;
具体为: OLT侧光模块内的 AD转换电路所进行的 AD转换结束后, 将所得结果存储于 OLT侧光模块内的 E2PROM中。
步骤 505: OLT判断 ONU当前时隙内返回的应答帧是否已结束, 若未 结束, 则执行步骤 506; 若已结束, 则执行步骤 507;
具体为: OLT内的 OLT MAC控制模块判断 ONU返回的应答帧 REGI STER— ACK是否已结束, 确定未结束时, 则执行步骤 506; 确定已结束时, 则返回步骤 507。
这里, 如果 ONU返回的应答帧 REGISTER— ACK已结束, 则证明 OL T给 ONU分配的时隙 T。nu - RTT小于 Tc, 因此测得的光功率值不准确。
步骤 506: 读取光功率值, 之后执行步骤 508;
具体为: OLT MAC控制模块通过与 OLT侧光模块连接的控制信号线, 读取 E2PROM中存储的 ONU的光功率值, 之后执行步骤 508。
步骤 507: OLT等待给当前 ONU分配的下一个时隙, 并返回到步骤 5
03;
这里, 所述下一个时隙是在后续正常的通信过程中, OLT重新给 ONU 分配的时隙, 到下一时隙后 OLT继续测量该 ONU的光功率。
步骤 508: 光功率测量过程结束。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种在线获取光网络单元 ONU光功率的装置, 其特征在于, 该装 置包括: 光缆局端 OLT MAC控制模块和 OLT侧光模块, OLT MAC控制模 块与 OLT侧光模块之间设置控制信号线; 其中,
所述 OLT MAC控制模块, 用于在以太网无源光网络 EPON系统运行 过程中, 通过控制信号线触发 OLT侧光模块检测 ONU的光功率;
所述 OLT侧光模块, 用于在 EPON系统运行过程中, 在 OLT MAC控 制模块的触发下, 在 OLT给各 ONU分配的时隙内, 测量对应 ONU的光功 率。
2、根据权利要求 1所述的在线获取 ONU光功率的装置, 其特征在于, 所述 OLT侧光模块包括: 光探测器、 前置放大器、 信号整形电路、 AD转 换电路和 E2PROM; 其中,
所述光探测器, 用于从光纤链路中探测并接收光信号, 将接收的光信 号转换为光电流信号输送到前置放大器;
所述前置放大器, 用于将光探测器产生的光电流信号转换成模拟电压 信号, 并输出至信号整形电路;
所述信号整形电路, 用于对前置放大器所发的模拟电压信号进行整形 滤波, 将去除杂波的模拟电压信号发送到 AD转换电路;
所述 AD转换电路,用于在 OLT MAC控制模块的控制下,将信号整形 电路所发的模拟电压信号转换成数字信号, 再将数字信号转换成光功率值, 将光功率值存入 E2PROM;
所述 E2PROM, 用于存储 AD转换电路转换所得的光功率值。
3、 根据权利要求 1或 2所述的在线获取 ONU光功率的装置, 其特征 在于, 所述 OLT MAC控制模块与 OLT侧光模块之间, 还设有并串行与串 并行转换 SerDes接口信号线和两线式串行总线 I2C接口信号线。
4、根据权利要求 3所述的在线获取 ONU光功率的装置, 其特征在于, 所述 OLT MAC控制模块,进一步用于 AD转换电路得到光功率值后,判断 ONU是否已结束光信号的发送, 确定未结束时, 通过 I2C接口信号线读取 E2PROM中的光功率值;
相应的,所述 AD转换电路,进一步用于得到光功率值后通知 OLT MAC 控制模块。
5、 一种在线获取 ONU光功率的方法, 其特征在于, 在 OLT MAC控 制模块与 OLT侧光模块之间设置控制信号线: 该方法还包括:
EPON系统运行过程中, OLT MAC控制模块通过控制信号线控制 OLT 侧光模块在 OLT给各 ONU分配的时隙内, 测量对应 ONU的光功率。
6、根据权利要求 5所述的在线获取 ONU光功率的方法, 其特征在于, 所述测量 ONU的光功率, 为:
OLT侧光模块先将 ONU所发的光信号转换成光电流信号,再将光电流 信号转换成模拟电压信号, 对该模拟电压信号进行整形滤波, 去除杂波后 发送给 AD转换电路; AD转换电路被 OLT MAC控制模块触发后, 将模拟 电压信号转换成数字信号; 将数字信号转换成光功率值, 并将光功率值存 入 E2PROM。
7、根据权利要求 6所述的在线获取 ONU光功率的方法,其特征在于, 所述 OLT给 ONU分配的时隙长度需大于 AD转换电路进行 AD转换所需 的时间。
8、 根据权利要求 5至 7任一项所述的在线获取 ONU光功率的方法, 其特征在于, 所述 OLT MAC控制模块与 OLT侧光模块之间还设有 SerDes 接口信号线和 I2C接口信号线。
9、根据权利要求 8所述的在线获取 ONU光功率的方法, 其特征在于, 该方法还包括: ONU光功率检测完毕后, OLT判断 ONU是否已结束光信号的发送, 确定未停止发送光信号时, OLT MAC控制模块通过 I2C接口信号线读取 E2PROM中的光功率值。
PCT/CN2010/078725 2009-12-30 2010-11-15 一种在线获取光网络单元光功率的装置和方法 WO2011079656A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10840445.0A EP2521287B1 (en) 2009-12-30 2010-11-15 Device and method for obtaining optical power of optical network unit (onu) in online manner
BR112012015811A BR112012015811A2 (pt) 2009-12-30 2010-11-15 aparelho e método para obter energia óptica de uma unidade de rede óptica em um modo online

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910244545A CN101789824A (zh) 2009-12-30 2009-12-30 一种在线获取光网络单元光功率的装置和方法
CN200910244545.6 2009-12-30

Publications (1)

Publication Number Publication Date
WO2011079656A1 true WO2011079656A1 (zh) 2011-07-07

Family

ID=42532898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078725 WO2011079656A1 (zh) 2009-12-30 2010-11-15 一种在线获取光网络单元光功率的装置和方法

Country Status (4)

Country Link
EP (1) EP2521287B1 (zh)
CN (1) CN101789824A (zh)
BR (1) BR112012015811A2 (zh)
WO (1) WO2011079656A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574532A (zh) * 2017-03-13 2018-09-25 中兴通讯股份有限公司 光信号的功率控制方法、装置及光线路终端
EP3534549A4 (en) * 2016-10-27 2020-07-15 Accelink Technologies Co., Ltd. DEVICE AND METHOD FOR DETECTING OPTICAL PERFORMANCE AND AMPLIFICATION FOR OPTICAL AMPLIFIERS IN BURST MODE
CN113347510A (zh) * 2020-02-18 2021-09-03 华为技术有限公司 通信设备、mac芯片、光模块

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789824A (zh) * 2009-12-30 2010-07-28 中兴通讯股份有限公司 一种在线获取光网络单元光功率的装置和方法
CN102324969B (zh) * 2011-07-18 2015-02-18 国电南京自动化股份有限公司 一种接收端光功率在线检测装置及其实现方法
WO2014005259A1 (zh) * 2012-07-02 2014-01-09 华为技术有限公司 光线路终端、光收发模块、系统以及光纤检测方法
CN113395614B (zh) * 2021-06-03 2022-08-30 博为科技有限公司 一种无源光网络系统及数据传输方法

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050005602A (ko) * 2003-07-05 2005-01-14 삼성전자주식회사 기가비트 수동 광 가입자망에서 광 신호 파워 레벨 측정장치 및 이를 포함하는 olt
CN1794613A (zh) * 2004-12-21 2006-06-28 阿尔卡特公司 无源光网络监控方法和无源光网络
CN101013919A (zh) * 2007-01-23 2007-08-08 中兴通讯股份有限公司 以太网无源光网络终端常发光故障检测和定位方法
CN101023606A (zh) * 2004-06-30 2007-08-22 西门子公司 在pon中获得光功率电平的方法和装置
JP2007221517A (ja) * 2006-02-17 2007-08-30 Mitsubishi Electric Corp Ponシステム
CN101047442A (zh) * 2006-04-02 2007-10-03 华为技术有限公司 一种无源光网络的维护方法及其系统
US20080002973A1 (en) * 2006-06-30 2008-01-03 Fujitsu Limited Optical power monitor for PON telecommunication
CN101127567A (zh) * 2007-09-20 2008-02-20 中兴通讯股份有限公司 一种光线路终端侧检测光网络单元光功率的方法和装置
CN101217310A (zh) * 2007-12-26 2008-07-09 华为技术有限公司 光功率测量装置及方法
CN101291176A (zh) * 2007-04-18 2008-10-22 华为技术有限公司 一种光分布网络的故障检测方法、系统及装置
CN101296039A (zh) * 2007-04-28 2008-10-29 英保达股份有限公司 被动式光纤网络的光纤链路监测系统及方法
CN101431372A (zh) * 2007-11-07 2009-05-13 华为技术有限公司 获取光功率的方法、装置和光线路终端
US20090175619A1 (en) * 2008-01-03 2009-07-09 Futurewei Technologies, Inc. Burst Power Measurements Using Averaged Power Measurement
CN101494497A (zh) * 2008-01-25 2009-07-29 华为技术有限公司 一种线路管理的方法、系统和装置
CN101594557A (zh) * 2009-07-01 2009-12-02 北京邮电大学 无源光网络系统中定位恶意用户的方法及光纤线路终端
CN101621332A (zh) * 2009-07-07 2010-01-06 中兴通讯股份有限公司 一种在线检测光网络单元光功率的方法和装置
CN101753207A (zh) * 2008-12-16 2010-06-23 华为技术有限公司 光纤链路故障识别方法、装置及系统
CN101789824A (zh) * 2009-12-30 2010-07-28 中兴通讯股份有限公司 一种在线获取光网络单元光功率的装置和方法
CN101795158A (zh) * 2010-03-23 2010-08-04 中兴通讯股份有限公司 一种测量光网络单元接收光功率的方法及装置
CN101808253A (zh) * 2009-02-12 2010-08-18 普然通讯技术(上海)有限公司 以太网无源光网络中改进监控能力的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7646990B2 (en) * 2006-09-05 2010-01-12 Broadlight Ltd. Circuit for detecting optical failures in a passive optical network
US8582966B2 (en) * 2007-09-10 2013-11-12 Cortina Systems, Inc. Method and apparatus for protection switching in passive optical network
CN101179332A (zh) * 2007-11-24 2008-05-14 华为技术有限公司 一种测量光功率的方法和装置

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050005602A (ko) * 2003-07-05 2005-01-14 삼성전자주식회사 기가비트 수동 광 가입자망에서 광 신호 파워 레벨 측정장치 및 이를 포함하는 olt
CN101023606A (zh) * 2004-06-30 2007-08-22 西门子公司 在pon中获得光功率电平的方法和装置
CN1794613A (zh) * 2004-12-21 2006-06-28 阿尔卡特公司 无源光网络监控方法和无源光网络
JP2007221517A (ja) * 2006-02-17 2007-08-30 Mitsubishi Electric Corp Ponシステム
CN101047442A (zh) * 2006-04-02 2007-10-03 华为技术有限公司 一种无源光网络的维护方法及其系统
US20080002973A1 (en) * 2006-06-30 2008-01-03 Fujitsu Limited Optical power monitor for PON telecommunication
CN101013919A (zh) * 2007-01-23 2007-08-08 中兴通讯股份有限公司 以太网无源光网络终端常发光故障检测和定位方法
CN101291176A (zh) * 2007-04-18 2008-10-22 华为技术有限公司 一种光分布网络的故障检测方法、系统及装置
CN101296039A (zh) * 2007-04-28 2008-10-29 英保达股份有限公司 被动式光纤网络的光纤链路监测系统及方法
CN101127567A (zh) * 2007-09-20 2008-02-20 中兴通讯股份有限公司 一种光线路终端侧检测光网络单元光功率的方法和装置
CN101431372A (zh) * 2007-11-07 2009-05-13 华为技术有限公司 获取光功率的方法、装置和光线路终端
CN101217310A (zh) * 2007-12-26 2008-07-09 华为技术有限公司 光功率测量装置及方法
US20090175619A1 (en) * 2008-01-03 2009-07-09 Futurewei Technologies, Inc. Burst Power Measurements Using Averaged Power Measurement
CN101494497A (zh) * 2008-01-25 2009-07-29 华为技术有限公司 一种线路管理的方法、系统和装置
CN101753207A (zh) * 2008-12-16 2010-06-23 华为技术有限公司 光纤链路故障识别方法、装置及系统
CN101808253A (zh) * 2009-02-12 2010-08-18 普然通讯技术(上海)有限公司 以太网无源光网络中改进监控能力的方法
CN101594557A (zh) * 2009-07-01 2009-12-02 北京邮电大学 无源光网络系统中定位恶意用户的方法及光纤线路终端
CN101621332A (zh) * 2009-07-07 2010-01-06 中兴通讯股份有限公司 一种在线检测光网络单元光功率的方法和装置
CN101789824A (zh) * 2009-12-30 2010-07-28 中兴通讯股份有限公司 一种在线获取光网络单元光功率的装置和方法
CN101795158A (zh) * 2010-03-23 2010-08-04 中兴通讯股份有限公司 一种测量光网络单元接收光功率的方法及装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3534549A4 (en) * 2016-10-27 2020-07-15 Accelink Technologies Co., Ltd. DEVICE AND METHOD FOR DETECTING OPTICAL PERFORMANCE AND AMPLIFICATION FOR OPTICAL AMPLIFIERS IN BURST MODE
US10797798B2 (en) 2016-10-27 2020-10-06 Accelink Technologies Co., Ltd. Optical power and gain detection apparatus and method for optical amplifier in burst mode
CN108574532A (zh) * 2017-03-13 2018-09-25 中兴通讯股份有限公司 光信号的功率控制方法、装置及光线路终端
CN108574532B (zh) * 2017-03-13 2022-11-08 中兴通讯股份有限公司 光信号的功率控制方法、装置及光线路终端
CN113347510A (zh) * 2020-02-18 2021-09-03 华为技术有限公司 通信设备、mac芯片、光模块
CN113347510B (zh) * 2020-02-18 2023-09-29 华为技术有限公司 通信设备、mac芯片、光模块

Also Published As

Publication number Publication date
CN101789824A (zh) 2010-07-28
BR112012015811A2 (pt) 2016-06-07
EP2521287A4 (en) 2016-06-22
EP2521287A1 (en) 2012-11-07
EP2521287B1 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
WO2011079656A1 (zh) 一种在线获取光网络单元光功率的装置和方法
EP2413518B1 (en) Optical power measurement method, optical line terminal and optical network unit
US10432626B2 (en) Optical network unit ONU registration method, apparatus, and system
JP4096017B2 (ja) 光信号送信タイミング調整方法
WO2021098330A1 (zh) 识别光网络单元连接端口的方法、相关装置及系统
US9118982B2 (en) Optical line terminal (OLT) optical module adapted to perform optical unit network (ONU) functionality
WO2008092397A1 (fr) Procédé de repérage de point d&#39;événement de fibre, et réseau optique et équipement de réseau associés
CN101621332A (zh) 一种在线检测光网络单元光功率的方法和装置
WO2006063510A1 (fr) Pon et procede de communication de donnees associe
JP5556921B1 (ja) 加入者側装置登録方法及び光ネットワークシステム
JP4700094B2 (ja) 光アクセスシステム及び光回線装置
CN103457658A (zh) 无源光纤设备分析
WO2017197978A1 (zh) 一种测距方法、光线路终端和光网络单元
WO2009155830A1 (zh) 一种光接入系统的倒换方法、装置和系统
CN101431372B (zh) 获取光功率的方法、装置和光线路终端
JP6205847B2 (ja) 通信制御装置及びプログラム
WO2010045860A1 (zh) 一种无源光网络系统中消除干扰的方法、装置及系统
WO2012019458A1 (zh) 一种无源光网络中的测距方法及系统
Horvath et al. Timing measurement and simulation of the activation process in gigabit passive optical networks
WO2013082771A1 (zh) 光纤链路检测方法、光线路终端和无源光网络系统
WO2022111045A1 (zh) 确定无源光网络传输时延的方法
JP5761415B1 (ja) 加入者側装置登録方法
JP2011035738A (ja) 障害onu特定方法及び装置
CN114337806A (zh) 一种光功率检测方法、装置及光网络终端
JP2014013967A (ja) 通信監視装置および通信監視方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840445

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010840445

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012015811

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012015811

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120626