WO2014166128A1 - 一种动压悬浮式双流动泵 - Google Patents

一种动压悬浮式双流动泵 Download PDF

Info

Publication number
WO2014166128A1
WO2014166128A1 PCT/CN2013/074517 CN2013074517W WO2014166128A1 WO 2014166128 A1 WO2014166128 A1 WO 2014166128A1 CN 2013074517 W CN2013074517 W CN 2013074517W WO 2014166128 A1 WO2014166128 A1 WO 2014166128A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
pump
rotor
flow
strut
Prior art date
Application number
PCT/CN2013/074517
Other languages
English (en)
French (fr)
Inventor
纪晶晶
罗先武
于安
刘树红
季斌
吴清玉
张明奎
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2014166128A1 publication Critical patent/WO2014166128A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/12Combinations of two or more pumps
    • F04D13/14Combinations of two or more pumps the pumps being all of centrifugal type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/81Pump housings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/419Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being permanent magnetic, e.g. from a rotating magnetic coupling between driving and driven magnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/824Hydrodynamic or fluid film bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0413Axial thrust balancing hydrostatic; hydrodynamic thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/047Bearings hydrostatic; hydrodynamic
    • F04D29/0473Bearings hydrostatic; hydrodynamic for radial pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/422Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps

Definitions

  • the invention relates to a dynamic pressure suspension double flow pump, in particular to a blade type ultra-small pump suitable for external contactless mechanical shaft, fluid and pump without contact, suitable for extracorporeal blood circulation device, artificial heart, aerospace Fluid delivery or thermal control devices in the fields of fine chemicals and biopharmaceuticals.
  • the blade type ultra-small pumps currently used mainly include the form of an external mechanical shaft and the form of magnetic suspension according to the support structure of the impeller.
  • the fluid in the pump cannot be completely isolated from the outside of the pump, and fluid leakage or fluid contact with the outside of the pump cannot be effectively prevented.
  • the blade type ultra-small pump using magnetic levitation although the problem of fluid leakage and fluid contact with the outside of the pump can be solved, the control is complicated, and a stagnant zone is easily formed on the back cover side of the pump impeller.
  • the ultra-small pump 8 adopts a double suction structure, which can eliminate the stagnant zone in the flow channel and automatically ensure the axial force balance.
  • the axial size of the ultra-small pump is too large; the pump has two inlets, which is not convenient for use in applications such as extracorporeal blood circulation devices; the gap flow between the double suction rotor and the pump casing Longer, when used as a blood pump or artificial heart, blood cells are subject to large shear stress, which is likely to cause hemolysis. Therefore, the application of the ultra-small pump with double suction structure in many fields is limited.
  • the object of the present invention is to provide a dynamic pressure suspension type double flow pump, which not only can effectively meet the requirements of the blade type ultra-small pump without leakage, no stagnant area, no contact between the pump fluid and the outside, but also needs to be satisfied. Dual flow requirements.
  • a dynamic pressure suspension double flow pump comprising a pump casing, a stator, a rotor, a permanent magnet, a first inlet, a first impeller, a first pressurized water chamber, a first outlet, and a first pump cover and a first impeller front cover
  • the dynamic pressure suspension dual flow pump further includes a second inlet, a second impeller, a second pressurized water chamber, a second outlet, a second pump cover, and a second impeller front cover,
  • the first impeller and the second impeller are respectively installed at two ends of the rotor; the first inlet and the second inlet are located on the same axis and are collinear with the rotor axis; the first inlet, the first impeller, and the first pressurized water chamber And the first outlet constitutes a first flow passage; the second inlet, the second impeller, the second pressurized water chamber and the second outlet constitute a second flow passage;
  • the permanent magnet is embedded on the outer circumference of the rotor, and
  • Another technical feature of the present invention is: a radial gap of 0.03 ⁇ 0.3mm exists between the outer surface of the rotor and the inner surface of the pump casing; between the first impeller front cover and the first pump cover, and There is an axial gap of 0.015 ⁇ 0.2mm between the two impeller front cover and the second pump cover.
  • Another technical feature of the present invention is: providing a first fixed pillar and a first guiding rib in the first inlet near the first impeller, and a first impeller strut in a central portion of the first impeller
  • the first fixed struts are connected to the first pump cover via the first flow guiding ribs; the first fixed struts and the first impeller struts are arranged opposite to each other in the axial direction;
  • the second fixed struts are provided with the second fixed struts and the second guiding flow a rib plate, and a second impeller strut is disposed at a central portion of the second impeller;
  • the second fixed strut is coupled to the second pump cover via the second rib;
  • the second fixed strut and the second impeller strut are axially oppositely disposed;
  • the top ends of the first impeller strut and the second impeller strut are semi-circular or conical.
  • the technical feature of the present invention is also that a liquid film groove is provided on the outer surface of the rotor.
  • the geometric parameters of the first impeller are different or the same as the geometric parameters of the second impeller.
  • the present invention has the following advantages and technical effects: 1 Since the first flow channel and the second flow channel are structurally independent of each other, two fluids of different flow rates and different pressures can be simultaneously supplied, that is, one can be used.
  • the pump realizes the functions of the two pumps and meets the requirements of the two sets of flow parameters.
  • the stator and the permanent magnets respectively embedded in the pump casing and the rotor constitute a motor structure that drives the rotation of the first impeller and the second impeller, which is conducive to the formation of a simple
  • the compact pump unit has an overall construction.
  • the dual flow pump of the present invention has a radial gap between the inner surface of the pump casing and the outer surface of the rotor, which acts to seal the fluid so that the flow in the two flow passages is relatively isolated. Moreover, due to a certain pressure difference between the first pressurized water chamber and the second pressurized water chamber, the fluid in the radial gap flows from the high pressure side to the low pressure side, thereby eliminating flow stagnation and also dissipating heat in the gap. The role. When the pump is used as a blood pump, better physiological compatibility is obtained.
  • Such a bearing with hydrodynamic suspension has better self-regulating performance than a general magnetic suspension bearing, thereby making the operation of the pump safer and more reliable.
  • the outer surface of the rotor 5 is provided with a liquid film groove.
  • a liquid film (like the "oil film” of the rolling bearing) is formed between the inner wall of the pump casing and the outer side of the rotor to ensure the effect of dynamic pressure suspension support. 6 Since the top end of the impeller strut is semi-circular or conical, it can reduce the contact area of the rotor with the pump casing and the pump cover during the starting phase, which is beneficial to the start of the pump unit.
  • the dynamic pressure suspension double flow pump designed by the invention can effectively meet the no leakage of the blade type ultra-small pump, no stagnant zone, no contact between the fluid in the pump and the outside, and a gap flow between the rotor and the pump casing.
  • it mainly meets the special use requirements of dual flow, and also helps to improve the efficiency of the ultra-small pump, and improves the fluency of the flow and the reliability of the pump operation as a whole.
  • FIG. 1 is a cross-sectional view of a dynamic pressure suspension dual flow pump provided by the present invention.
  • Figure 2 is a partial enlarged view of A of Figure 1.
  • Figure 3 is a partial enlarged view of B of Figure 1.
  • Figure 4 is a plan development view of the outer surface of the rotor.
  • Figure 5 is a left side view of Figure 1.
  • 1 first inlet; 2 - first pump cover; 3 - first pressurized water chamber; 4 - first outlet; 5 - pump casing; 6 - stator; 7 - permanent magnet; 9; a second impeller front cover; 10 - a second pump cover; 11 a second inlet; 12 - a second fixed strut; 13 - a second impeller strut; 14 a second impeller; 16—rotor cavity; 17—rotor; 18—first impeller; 19—first impeller strut; 20—first fixed strut; 21—first impeller front cover; 22—axial clearance; 23—radial clearance 24 - liquid film groove; 25 - first flow guiding rib; 26 - second flow guiding rib.
  • the pump includes a first inlet 1, a first pump cover 2, a first pressurized water chamber 3, a first outlet 4, a pump casing 5, a stator 6, a permanent magnet 7, a first impeller 18, a first impeller front cover 21, a second pressurized water chamber 8, a second inlet 11, a second impeller 14, a second outlet 15, a rotor 17, a second pump cover 10 and a second impeller front cover 9, wherein the first impeller and the second impeller are respectively mounted on Both ends of the rotor; the first inlet and the second inlet are located on the same axis and are collinear with the rotor axis; the first outlet 1 and the second inlet 11 are mounted on the pump casing 5.
  • the first inlet 1, the first impeller 18, the first pressurized water chamber 3 and the first outlet 4 constitute a first flow passage.
  • the second inlet 11, the second impeller 14, the second pressurized water chamber 8 and the second outlet 15 constitute a second flow passage.
  • the two flow passages of the hydrodynamic suspension dual flow pump are isolated by a radial gap 23 formed between the intermediate inner surface 26 of the pump casing and the outer surface 27 of the rotor such that the flows in the two flow passages are relatively independent of each other, satisfying
  • the two flow channels respectively carry the requirements of different flow parameter fluids.
  • the permanent magnets are mounted on the outer circumference of the rotor 17, and the stator 6 and its controller are embedded in the pump casing 5, which are arranged diametrically opposite to each other to form a motor structure for driving the rotor.
  • a radial gap 23 exists between the inner surface of the pump casing and the outer surface of the rotor, and a liquid film groove 24 is provided on the outer surface of the rotor to form a hydrodynamic support that constrains the radial movement of the rotor 17 during normal operation of the pump.
  • the radial clearance 23 is adjusted according to the size and mass of the rotor, and is generally 0.03 to 0.3 mm.
  • An axial gap 22 exists between the first pump cover 2 and the first impeller front cover 21, and between the second pump cover 10 and the second impeller front cover 9, and the axial direction of the restraining rotor 17 can be formed during normal operation of the pump. Dynamic fluid dynamic support. The axial clearance should also be adjusted according to the size and mass of the rotor, typically 0.015 ⁇ 0.2mm.
  • a first fixed strut 20 and a first guiding rib 25 are disposed in the first pump cover 2, and a first impeller strut 19 is disposed at a central portion of the first impeller 18; the first fixed strut is via the first guiding rib Connected to the first pump cover, the first fixed strut 20 and the first impeller strut 19 are arranged opposite each other in the axial direction.
  • the second fixed strut 12 and the second impeller strut 13 are also arranged in the axial direction.
  • the first impeller strut 19 is semicircular or conical near the top end of the first fixed strut 20, and the second impeller strut 13 is semicircular or conical near the top end of the second fixed strut 12.
  • the position of the impeller strut relative to the axially outer surface of the impeller front cover should be slightly convex.
  • the first flow guiding rib 25 is composed of at least two sheets which are arranged axially symmetrically with respect to the center line of the first pump cover 2, so that the liquid flow into the impeller is more uniform.
  • the number of the first impellers 18 is at least 2 and is relatively prime to the number of sheets of the first flow guiding ribs.
  • the second flow guiding rib 25 is composed of at least two sheets which are arranged axially symmetrically with respect to the center line of the second pump cover 10, so that the liquid flow into the impeller is more uniform.
  • the number of the first impellers 14 is at least 2 and is relatively prime to the number of the second flow guiding ribs.
  • the rotor cavity 16 is such that the mass of the rotor can be greatly reduced.
  • the invention ensures the isolation of the fluid in the pump from the outside from the structure, and realizes efficient, safe and reliable transportation without leakage and pollution.
  • the working process of the pump is as follows:
  • the fluid After the fluid is pressurized by the action of the vanes in the impeller, it gradually collects from the impeller outlet into the first pressurized water chamber 3, and exits the pump through the first outlet 4; for the flow of the second flow passage, from the second inlet 11
  • the fluid enters the second impeller 14 via the second pump cover 10. After the fluid is pressurized, it gradually collects from the impeller outlet into the second pressurized water chamber 8 and exits the pump via the second outlet 15.
  • the gap value of the radial gap 23 between the inner surface of the pump casing 5 and the outer surface of the rotor 17 is small (according to the size and mass of the rotor, the value is 0.03 to 0.3 mm), the gap is in the two passages.
  • the flow acts as a relative isolation, allowing the pump to achieve the purpose of two-parameter fluid delivery.
  • the geometric parameters of their respective impellers and pressure chambers shall be calculated and determined separately according to the required flow rate and head. Taking the design shown in Fig. 1 as an example, the outer diameter of the impeller of the first impeller 18 is larger than the outer diameter of the second impeller 14. Accordingly, the cross-sectional size of the first pressurized water chamber 3 is also larger than the corresponding size of the second pressurized water chamber 8.
  • the radial gap 23 When the pump is running normally, the radial gap 23 will be filled with pressurized fluid, which acts as an "oil film", thus forming a radial hydrodynamic bearing. Since the outer diameter of the impeller of the first impeller 18 is larger than the outer diameter of the second impeller 14, the liquid in the radial gap 23 will slowly move from the first pressurized water chamber toward the second pressurized water chamber to function as a heat sink.
  • a liquid film groove 24 is provided on the outer surface of the rotor.
  • the movement of the rotor 17 is supported by the fluid dynamic pressure of the radial and bearing bearings, respectively, in a suspended state surrounded by the pump casing 5 and the pump cover.

Abstract

一种动压悬浮式双流动泵,包含两个彼此相对隔离的流动通道,每个流动通道分别由进口(1,11),叶轮(18,14),压水室(3,8)和出口(4,15)构成,且流动通道的几何参数不同或相同。泵的定子(6)镶嵌于泵壳(5)之内、永磁体(7)镶嵌于转子(17)之内,它们沿径向相对布置。泵壳(5)的内表面和转子(17)的外表面之间存在径向间隙(23),在泵正常运转时可形成约束转子(17)径向运动的液体动压支撑。每个叶轮(18,14)的前盖板(21,9)与对应的泵盖(2,10)之间存在轴向间隙,在泵正常运转时形成约束转子(17)轴向运动的液体动压支撑。这样,可使得转子在正常运转时悬浮于泵腔内。该双流动泵涉及一种无外接机械轴、磁驱动的叶片式超小型泵,可满足不同流量与压力的双流动使用要求,有利于在泵壳内腔中有效地形成良好的流动条件,且能提高泵的运行可靠性。

Description

一种动压悬浮式双流动泵
技术领域
本发明涉及一种动压悬浮式双流动泵, 特别涉及一种适合于无外接机械轴、 流体与泵的 外界无接触的叶片式超小型泵, 适用于体外血液循环装置、 人工心脏、 航空航天、 精细化工 和生物制药等领域的流体输送或热控制装置。
背景技术
目前使用的叶片式超小型泵按照叶轮的支承结构主要有: 外接机械轴的形式, 以及磁悬 浮的形式。 对有外接机械轴的叶片式超说小型泵, 由于采用机械密封或其它轴封装置, 泵内的 流体与泵的外部不能完全隔离, 不能有效防止流体的渗漏或泵内流体与外界的接触; 对使用 磁悬浮的叶片式超小型泵, 虽然可解决流体渗漏、 泵内流体与外界接触的问题, 但控制复杂, 且容易在泵叶轮的后盖板侧形成滞流区。 为此, ZL2书00710062857. 6与 ZL200910084273. 8采 用了双吸式的结构, 可消除流道中的滞流区, 并自动保证轴向力平衡。 但由于采用了双吸式 的结构, 致使超小型泵轴向尺寸偏大; 泵有两个进口, 在诸如体外血液循环装置等场合使用 时不够便利; 双吸转子与泵壳之间的间隙流道较长, 当作为血液泵或人工心脏使用时, 血细 胞会受到较大的剪切应力, 容易造成溶血等。 因此, 双吸式结构的超小型泵在许多领域的应 用会受到一定的限制。 而且, 对于类似于全人工心脏等使用场合, 通常需要采用两台泵来提 供两种不同的流动, 导致机械系统过于复杂, 体积庞大。 这样, 就需要设计一种可同时输出 两种不同流量与扬程的双流动泵来满足实际工程的需求。 因此, 非常有必要进一步发展超小 型泵技术, 实现双流动或多流动的流体供给, 拓展超小型泵的工程应用。
发明内容
本发明的目的是提出一种动压悬浮式双流动泵, 该结构除了能有效满足叶片式超小型泵 无渗漏、 无滞流区、 泵内流体与外界无接触的要求外, 还需要满足双流动的要求。
本发明的技术方案如下:
一种动压悬浮式双流动泵, 含有泵壳、 定子、 转子、 永磁体、 第一进口、 第一叶轮、 第 一压水室、 第一出口和第一泵盖和第一叶轮前盖板, 其特征在于: 所述的动压悬浮式双流动 泵还包括第二进口、 第二叶轮、 第二压水室、 第二出口、 第二泵盖和第二叶轮前盖板, 所述 的第一叶轮和第二叶轮分别安装在转子的两端; 第一进口和第二进口位于同一轴线上, 且与 转子轴线共线; 所述的第一进口、 第一叶轮、 第一压水室和第一出口构成第一流动通道; 第 二进口、 第二叶轮、 第二压水室和第二出口构成第二流动通道; 所述的永磁体镶嵌在转子的 外周上 , 所述的定子固定在泵壳的内表面, 永磁体与定子沿径向相对布置。
本发明的另一技术特征是: 所述的转子的外表面与泵壳的内表面之间存在 0.03〜0.3mm 的径向间隙; 第一叶轮前盖板与第一泵盖之间, 以及第二叶轮前盖板与第二泵盖之间存在 0.015〜0.2mm的轴向间隙。 本发明的又一技术特征是: 在所述的第一进口内靠近第一叶轮处设有第一固定支柱和第 一导流肋板, 并在第一叶轮的中心部位设有第一叶轮支柱; 第一固定支柱经由第一导流肋板 与第一泵盖连接; 第一固定支柱和第一叶轮支柱沿轴向相对布置; 第二泵盖内设有第二固定 支柱和第二导流肋板, 并在第二叶轮的中心部位设有第二叶轮支柱; 第二固定支柱经由第二 肋板与第二泵盖连接; 第二固定支柱和第二叶轮支柱沿轴向相对布置; 所述的第一叶轮支柱 和第二叶轮支柱的顶端为半圆形或者圆锥形。
本发明的技术特征还在于: 在转子的外表面设有液膜槽。 所述的第一叶轮的几何参数与 第二叶轮几何参数不同或相同。
本发明与现有技术相比, 具有以下优点及技术效果: ①由于第一流动通道与第二流动通 道在结构上彼此相对独立, 可以同时供给两种不同流量、 不同压力的流体, 即可用一台泵实 现两台泵的功能, 同时满足两组流动参数的要求; ②分别镶嵌于泵壳、 转子内的定子和永磁 体组成驱动第一叶轮和第二叶轮旋转的电机结构, 有利于形成简洁而紧凑的泵组整体构造。 ③在结构设计上, 本发明的双流动泵在泵壳的内表面和转子的外表面之间设有径向间隙, 可 以起到密封流体的作用, 使得两个流动通道中的流动相对隔离。 而且由于第一压水室与第二 压水室中存在一定的压力差, 使得径向间隙中的流体从高压侧朝低压侧流动, 一方面消除了 流动滞止, 也起到间隙中流体散热的作用。 当该泵作为血液泵使用时, 可获得较好的生理相 容性。④泵壳的内表面和转子的外表面之间存在径向间隙; 第一叶轮前盖板与第一泵盖之间、 第二叶轮前盖板与第二泵盖之间存在轴向间隙。 当泵正常运行时, 上述间隙分别形成支撑转 子的径向液体动压轴承和轴向液体动压轴承, 起到限制转子在泵壳内位置的作用。 这些液体 动压轴承既可单独使用, 也可以与电机定子和转子内的永磁体组成的磁性轴承联合使用, 实 现转子的悬浮支承。 这种具有液体动压悬浮的轴承比一般的磁悬浮轴承的自调节性能更好, 从而可使泵的运转更加安全、 可靠。 ⑤转子的外表面设有液膜槽。 当泵正常运转时, 泵壳内 壁与转子外侧之间会形成液体膜 (类似滚动轴承的 "油膜"), 保证动压悬浮支撑的效果。 ⑥ 由于叶轮支柱的顶端为半圆形或者圆锥形, 可以减小转子在启动阶段与泵壳和泵盖的接触面 积, 有利于泵机组的启动。
总体上, 本发明设计的动压悬浮式双流动泵除了能有效满足叶片式超小型泵无渗漏、 无 滞流区、 泵内流体与外界无接触, 以及转子与泵壳之间的间隙流道中的流动顺畅等要求外, 主要是满足了双流动的特殊使用要求, 也有利于提高超小型泵的效率, 并从整体上改善流动 的通畅性和泵运行的可靠性。
附图说明
图 1为本发明提供的一种动压悬浮式双流动泵的剖视图。
图 2为图 1的 A局部放大图。
图 3为图 1的 B局部放大图。
图 4为转子外表面的平面展开图。
图 5为图 1的左视图。 图中: 1一第一进口; 2—第一泵盖; 3—第一压水室; 4一第一出口; 5—泵壳; 6—定子; 7—永磁体; 8—第二压水室; 9一第二叶轮前盖板; 10—第二泵盖; 11一第二进口; 12—第二 固定支柱; 13—第二叶轮支柱; 14一第二叶轮; 15—第二出口; 16—转子空腔; 17—转子; 18—第一叶轮; 19一第一叶轮支柱; 20—第一固定支柱; 21—第一叶轮前盖板; 22—轴向间 隙; 23—径向间隙; 24—液膜槽; 25—第一导流肋板; 26—第二导流肋板。
具体实施方式
下面结合附图对本发明的原理、 结构局具体实施方式作进一步的说明。
图 1为本发明提供的一种动压悬浮式双流动泵的剖视图。 该泵包括第一进口 1、 第一泵 盖 2、 第一压水室 3、 第一出口 4、 泵壳 5、 定子 6、 永磁体 7、 第一叶轮 18、 第一叶轮前盖 板 21、 第二压水室 8、 第二进口 11、 第二叶轮 14、 第二出口 15、 转子 17、 第二泵盖 10和第 二叶轮前盖板 9, 其中第一叶轮和第二叶轮分别安装在转子两端; 第一进口和第二进口位于 同一轴线上, 且与转子轴线共线; 第一出口 1和第二进口 11安装在泵壳 5上。
第一进口 1、第一叶轮 18、第一压水室 3和第一出口 4构成第一流动通道。第二进口 11、 第二叶轮 14、 第二压水室 8和第二出口 15构成第二流动通道。 动压悬浮式双流动泵的两个 流动通道被泵壳的中间内表面 26与转子的外表面 27之间形成的径向间隙 23隔离,使得这两 个流动通道中的流动彼此相对独立, 满足两个流动通道分别输送不同流动参数流体的要求。
永磁体 Ί镶嵌在转子 17的外周上, 定子 6及其控制器镶嵌于泵壳 5内, 它们沿径向相对 布置, 共同形成驱动转子的电机结构。
泵壳的内表面和转子的外表面之间存在径向间隙 23, 且在转子的外表面设有液膜槽 24, 在泵正常运转时可形成约束转子 17径向运动的液体动压支撑。 径向间隙 23根据转子的尺寸 与质量调整, 一般为 0.03〜0.3mm。
第一泵盖 2与第一叶轮前盖板 21之间, 以及第二泵盖 10与第二叶轮前盖板 9之间存在 轴向间隙 22, 在泵正常运转时可形成约束转子 17轴向运动的液体动压支撑。 轴向间隙亦应 根据转子的尺寸与质量调整, 一般为 0.015〜0.2mm。
第一泵盖 2内设有第一固定支柱 20和第一导流肋板 25, 并在第一叶轮 18的中心部位设 有第一叶轮支柱 19; 第一固定支柱经由第一导流肋板与第一泵盖连接, 第一固定支柱 20和 第一叶轮支柱 19沿轴向相对布置。 如图 1, 第二固定支柱 12和第二叶轮支柱 13亦沿轴向相 对布置。 当泵受到突然的轴向扰动时, 转子在轴向的位置由两个叶轮支柱约束, 避免转子与 泵内壁的大面积摩擦。
所述的第一叶轮支柱 19靠近第一固定支柱 20的顶端为半圆形或者圆锥形, 所述的第二 叶轮支柱 13靠近第二固定支柱 12的顶端为半圆形或者圆锥形。 叶轮支柱相对于叶轮前盖板 的轴向外表面的位置应略微凸出。
第一导流肋板 25由至少 2片、 且相对于第一泵盖 2的中心线呈轴对称布置的薄板组成, 这样使得进入叶轮的液体流动更加均匀。 第一叶轮 18的枚数至少为 2, 且与第一导流肋板的 片数互质。 第二导流肋板 25由至少 2片、且相对于第二泵盖 10的中心线呈轴对称布置的薄板组成, 这样使得进入叶轮的液体流动更加均匀。 第一叶轮 14的枚数至少为 2, 且与第二导流肋板的 片数互质。 在转子 17的中心位置为转子空腔 16, 这样可以大幅度地减小转子的质量。
本发明从结构上保证了泵内流体与外部的隔离, 实现无渗漏、 无污染的高效、 安全、 可 靠的输送。
泵的工作过程如下:
流体分别从第一进口 1和第二进口 11进入泵内。对于第一流动通道的流动, 流体经由第 一泵盖 2进入第一叶轮 18。 流体在叶轮内受到叶片的作用而加压后, 从叶轮出口逐渐汇集到 第一压水室 3中, 并经由第一出口 4排出泵外; 对于第二流动通道的流动, 来自第二进口 11 的流体经由第二泵盖 10进入第二叶轮 14。 流体被加压后, 从叶轮出口逐渐汇集到第二压水 室 8中, 并经由第二出口 15排出泵外。 由于泵壳 5的内表面与转子 17的外表面之间的径向 间隙 23的间隙值很小 (依据转子的尺寸与质量, 取值为 0.03〜0.3mm), 所以该间隙对两个 通道中的流动起到相对隔离的作用, 使得泵达到双参数流体输送的目的。
对于第一流动通道或第二流动通道, 根据使用要求的流量与扬程, 它们各自的叶轮及压 水室的几何参数须分别计算确定。 以图 1所示的设计为例, 第一叶轮 18的叶轮外径大于第二 叶轮 14的外径。 相应地, 第一压水室 3的断面尺寸亦大于第二压水室 8的对应尺寸。
当泵正常运转时, 径向间隙 23内将充满有压流体, 起到 "油膜"的作用, 这样形成了径 向的液体动压轴承。 由于第一叶轮 18的叶轮外径大于第二叶轮 14的外径, 径向间隙 23中的 液体将从第一压水室朝第二压水室缓慢运动, 起到散热的作用。
由图 1、 图 2可知, 第一叶轮前盖板 21与第一泵盖 2之间, 以及第二叶轮前盖板 9与第 二泵盖 10之间存在径向间隙 23。 根据转子 17的瞬时位置, 轴向间隙会自动调整, 直至达到 动态平衡状态。一旦泵受到突然的轴向扰动时, 转子在轴向的位置由第一叶轮支柱 19或第二 叶轮支柱 13约束, 避免转子与泵内壁的大面积摩擦。
为了更好地强化径向间隙 23的液体动压支撑效果, 在转子的外表面设有液膜槽 24。 在 泵正常运转中, 转子 17的运动分别受到径向与轴承的液体动压支撑, 在泵壳 5与泵盖围成的 内腔中处于悬浮状态。

Claims

权 利 要 求 书
1、 一种动压悬浮式双流动泵, 含有泵壳 (5)、 定子 (6)、 转子 (17)、 永磁体 (7)、 第 一进口 (1)、 第一叶轮 (18)、 第一压水室 (3)、 第一出口 (4) 和第一泵盖 (2)和第一叶轮 前盖板(21),其特征在于:所述的动压悬浮式双流动泵还包括第二进口(11)、第二叶轮(14)、 第二压水室 (8)、 第二出口 (15)、 第二泵盖 (10)和第二叶轮前盖板 (9), 所述的第一叶轮
(18)和第二叶轮 (14) 分别安装在转子 (17) 的两端; 第一进口 (1) 和第二进口 (11)位 于同一轴线上, 且与转子轴线共线; 所述的第一进口 (1)、 第一叶轮(18)、 第一压水室 (3) 和第一出口 (4) 构成第一流动通道; 第二进口 (11)、 第二叶轮 (14)、 第二压水室 (8) 和 第二出口 (15) 构成第二流动通道; 所述的永磁体 (7) 镶嵌在转子 (17) 的外周上 , 所述 的定子 (6) 固定在泵壳 (5) 的内表面, 永磁体与定子沿径向相对布置。
2、按照权利要求 1所述的一种动压悬浮式双流动泵,其特征在于:所述的第一叶轮(18) 的几何参数与第二叶轮 (14) 几何参数不同或相同。
3、 按照权利要求 1所述的一种动压悬浮式双流动泵, 其特征在于: 所述的转子的外表面 与泵壳的内表面之间存在 0.03〜0.3mm的径向间隙(23); 第一叶轮前盖板(21)与第一泵盖
(2)之间, 以及第二叶轮前盖板(9)与第二泵盖 (10)之间存在 0.015〜0.2隱的轴向间隙 (22)。
4、 按照权利要求 1所述的一种动压悬浮式双流动泵, 其特征在于: 在所述的第一进口内 靠近第一叶轮处设有第一固定支柱(20)和第一导流肋板(25), 并在第一叶轮的中心部位设 有第一叶轮支柱 (19); 第一固定支柱 (20) 经由第一导流肋板 (25)与第一泵盖 (2)连接; 第一固定支柱 (20) 和第一叶轮支柱 (19) 沿轴向相对布置; 第二泵盖 (10) 内设有第二固 定支柱 (12) 和第二导流肋板 (26), 并在第二叶轮的中心部位设有第二叶轮支柱 (13); 第 二固定支柱 (12) 经由第二肋板与第二泵盖 (10) 连接; 第二固定支柱 (12) 和第二叶轮支 柱 (13) 沿轴向相对布置。
5、 按照权利要求 4所述的一种动压悬浮式双流动泵, 其特征在于: 所述的第一叶轮支柱
(19) 靠近第一固定支柱 (20) 的顶端为半圆形或者圆锥形; 所述的第二叶轮支柱 (13) 靠 近第二固定支柱 (12) 的顶端为半圆形或者圆锥形。
6、 按照权利要求 1 〜5任一权利要求所述的一种动压悬浮式双流动泵, 其特征在于: 在 转子 (17) 的外表面设有液膜槽 (24)。
PCT/CN2013/074517 2013-04-07 2013-04-22 一种动压悬浮式双流动泵 WO2014166128A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310117219.5 2013-04-07
CN2013101172195A CN103216453A (zh) 2013-04-07 2013-04-07 一种动压悬浮式双流动泵

Publications (1)

Publication Number Publication Date
WO2014166128A1 true WO2014166128A1 (zh) 2014-10-16

Family

ID=48814526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074517 WO2014166128A1 (zh) 2013-04-07 2013-04-22 一种动压悬浮式双流动泵

Country Status (2)

Country Link
CN (1) CN103216453A (zh)
WO (1) WO2014166128A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111420144A (zh) * 2020-04-10 2020-07-17 华侨大学 一种用于人工心脏的非叶轮转子无阀泵
US10722631B2 (en) 2018-02-01 2020-07-28 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US11185677B2 (en) 2017-06-07 2021-11-30 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
CN114099940A (zh) * 2021-11-25 2022-03-01 山东大学 一种混流式血泵以及体外循环辅助系统
CN114159694A (zh) * 2021-12-08 2022-03-11 北京联合大学 一种磁悬浮脉动轴流式心脏泵
US11511103B2 (en) 2017-11-13 2022-11-29 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
US11724089B2 (en) 2019-09-25 2023-08-15 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof
US11964145B2 (en) 2019-07-12 2024-04-23 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10030664B2 (en) * 2014-06-17 2018-07-24 Ch Biomedical (Usa) Inc. Centrifugal blood pump impeller and flow path
CN105240279B (zh) * 2015-09-21 2016-08-17 山东双轮股份有限公司 反渗透海水淡化增压泵
CN105343950B (zh) * 2015-09-25 2017-09-22 济南大学 一种采用液力悬浮轴承的人工血泵
CN107469168B (zh) * 2017-09-30 2024-04-02 北京安生生物技术有限责任公司 一种减少血栓发生的单自由度磁悬浮离心式叶轮
CN109985285A (zh) * 2019-04-03 2019-07-09 李庆国 心室辅助用离心泵
CN112747910B (zh) * 2020-12-11 2022-03-18 清华大学 一种无泄漏泵动压悬浮转子性能检测装置
CN116255298B (zh) * 2023-05-15 2023-07-28 兰州理工大学 一种双进口容积式透平增压泵

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4221548A (en) * 1978-03-20 1980-09-09 Child Frank W Dual action solenoid pump
US6220832B1 (en) * 1997-09-25 2001-04-24 Sulzer Electronics Ag Centrifugal pump and centrifugal pump system
US6861778B2 (en) * 2003-02-28 2005-03-01 Valentin M. Izraelev System for passive and stable suspension of a rotor in rotor/stator assemblies
CN101244296A (zh) * 2008-03-21 2008-08-20 北京工业大学 磁力与流体动压混合悬浮的人工心脏血液泵
CN101581307A (zh) * 2009-05-20 2009-11-18 清华大学 一种液体动压悬浮的叶片式微小型泵
CN102705246A (zh) * 2012-05-08 2012-10-03 清华大学 一种叶轮悬浮的超小型泵

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4221548A (en) * 1978-03-20 1980-09-09 Child Frank W Dual action solenoid pump
US6220832B1 (en) * 1997-09-25 2001-04-24 Sulzer Electronics Ag Centrifugal pump and centrifugal pump system
US6861778B2 (en) * 2003-02-28 2005-03-01 Valentin M. Izraelev System for passive and stable suspension of a rotor in rotor/stator assemblies
CN101244296A (zh) * 2008-03-21 2008-08-20 北京工业大学 磁力与流体动压混合悬浮的人工心脏血液泵
CN101581307A (zh) * 2009-05-20 2009-11-18 清华大学 一种液体动压悬浮的叶片式微小型泵
CN102705246A (zh) * 2012-05-08 2012-10-03 清华大学 一种叶轮悬浮的超小型泵

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11185677B2 (en) 2017-06-07 2021-11-30 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11717670B2 (en) 2017-06-07 2023-08-08 Shifamed Holdings, LLP Intravascular fluid movement devices, systems, and methods of use
US11511103B2 (en) 2017-11-13 2022-11-29 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11229784B2 (en) 2018-02-01 2022-01-25 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US10722631B2 (en) 2018-02-01 2020-07-28 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US11964145B2 (en) 2019-07-12 2024-04-23 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
US11724089B2 (en) 2019-09-25 2023-08-15 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof
CN111420144A (zh) * 2020-04-10 2020-07-17 华侨大学 一种用于人工心脏的非叶轮转子无阀泵
CN114099940A (zh) * 2021-11-25 2022-03-01 山东大学 一种混流式血泵以及体外循环辅助系统
CN114099940B (zh) * 2021-11-25 2023-05-02 山东大学 一种混流式血泵以及体外循环辅助系统
CN114159694A (zh) * 2021-12-08 2022-03-11 北京联合大学 一种磁悬浮脉动轴流式心脏泵
CN114159694B (zh) * 2021-12-08 2023-11-24 北京联合大学 一种磁悬浮脉动轴流式心脏泵

Also Published As

Publication number Publication date
CN103216453A (zh) 2013-07-24

Similar Documents

Publication Publication Date Title
WO2014166128A1 (zh) 一种动压悬浮式双流动泵
CN101581307B (zh) 一种液体动压悬浮的叶片式微小型泵
KR101099832B1 (ko) 터보식 혈액 펌프
CN100439717C (zh) 一种双吸无轴驱动的超小型叶片泵
JP2006528304A (ja) 遠心ポンプ
JPH08504490A (ja) 無シールロトダイナミックポンプ
CN205225763U (zh) 一种无轴泵
CN105688298A (zh) 新式内叶轮轴流式血泵
CN106246559B (zh) 一种双泵体双吸式屏蔽泵
WO2022141782A1 (zh) 一种微型磁液悬浮离心式血泵
CN102705246B (zh) 一种叶轮悬浮的超小型泵
CN202236531U (zh) 一种由电机经轴驱动转动体的血泵
WO2023226916A1 (zh) 一种磁悬浮型离心泵一种磁悬浮型离心泵
CN205055004U (zh) 一种采用液力悬浮轴承的人工血泵
RU146402U1 (ru) Электронасос прямоточный лопастной с полым валом ротора
CN106762675A (zh) 多级泵
CN205055005U (zh) 一种磁液耦合式被动悬浮轴流血泵
WO2021143526A1 (zh) 微型泵
CN105343950A (zh) 一种采用液力悬浮轴承的人工血泵
CN100410541C (zh) 液冷式泵
CN114001036B (zh) 一种微型水力悬浮机械泵及其装配方法
JP5298854B2 (ja) 血液用らせん流ポンプ
CN111963475B (zh) 轴向力自平衡的叶片泵机组
CN205744480U (zh) 磁力透平泵
RU72733U1 (ru) Направляющий аппарат многоступенчатого центробежного насоса

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881547

Country of ref document: EP

Kind code of ref document: A1