WO2014163357A1 - Précurseur de production d'un matériau actif de cathode riche en lithium, et matériau actif de cathode riche en lithium ainsi produit - Google Patents
Précurseur de production d'un matériau actif de cathode riche en lithium, et matériau actif de cathode riche en lithium ainsi produit Download PDFInfo
- Publication number
- WO2014163357A1 WO2014163357A1 PCT/KR2014/002746 KR2014002746W WO2014163357A1 WO 2014163357 A1 WO2014163357 A1 WO 2014163357A1 KR 2014002746 W KR2014002746 W KR 2014002746W WO 2014163357 A1 WO2014163357 A1 WO 2014163357A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- lithium
- positive electrode
- cathode active
- electrode active
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/006—Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a precursor for preparing a lithium excess positive electrode active material and a lithium excess positive electrode active material prepared thereby, and more particularly, to improve the problem of the conventional lithium excess positive electrode active material, a new lithium excess positive electrode greatly improved capacity characteristics and life characteristics
- the present invention relates to a precursor for preparing an active material and a lithium excess cathode active material prepared thereby.
- Lithium batteries are widely used in home appliances because of their relatively high energy density. Rechargeable batteries are also called secondary cells, and lithium ion secondary cells generally include a negative electrode material that introduces lithium.
- the positive electrode active materials of lithium ion secondary batteries include lithium-containing cobalt oxides such as LiCoO 2 in a layered structure, lithium-containing nickel oxides such as LiNiO 2 in a layered structure, and LiMn 2 O 4 in a spinel crystal structure. Lithium-containing manganese oxides and the like are used, and graphite-based materials are mainly used as the negative electrode active material.
- LiCoO 2 has been widely used because of its excellent physical properties such as excellent cycle characteristics, but it is low in safety, and has a limitation in using it as a power source in fields such as electric vehicles because it is expensive due to resource limitations of cobalt as a raw material. LiNiO 2 is difficult to apply to the actual production process at a reasonable cost, due to the characteristics of the manufacturing method.
- lithium manganese oxides such as LiMnO 2 , LiMn 2 O 4 has the advantage of using a resource-rich and environmentally friendly manganese as a raw material, attracting a lot of attention as a cathode active material that can replace LiCoO 2 .
- these lithium manganese oxides also have the disadvantage of poor cycle characteristics.
- LiMnO 2 has a small initial capacity and has a disadvantage of requiring dozens of charge and discharge cycles to reach a constant capacity.
- LiMn 2 O 4 has a disadvantage in that the capacity is severely degraded as the cycle continues, and particularly, the cycle characteristics are sharply degraded due to decomposition of the electrolyte and elution of manganese at a high temperature of 50 ° C. or higher.
- Such a cathode active material has a characteristic of showing a flat section in a high voltage section of 4.3V to 4.6V during charging.
- a flat section is known as a section in which lithium is inserted into the cathode while lithium (Li) and oxygen (O) are separated from the crystal structure of Li 2 MnO 3 .
- Li 2 MnO 3 cannot be used as an insertion electrode in a lithium battery. This is because the insertion space of the four-sided structure facing the neighboring eight-sided structure is inefficiently desirable to accommodate additional lithium.
- the cathode active material of the composite electrode structure is electrochemically active due to the desorption of lithium and oxygen in the high voltage section of 4.3V to 4.6V, and the capacity can be increased due to the existence of the flat section.
- the oxygen gas generated inside the battery is highly likely to decompose and decompose the electrolyte at high voltages, and the crystal structure is physically and chemically deformed through repeated charging and discharging, thereby lowering the rate characteristic. There is a problem of deterioration.
- the end section of the discharge voltage since the end section of the discharge voltage is lowered, it does not contribute to the capacity when used as a mobile phone, or when used in a vehicle, the power is low and becomes an unusable depth of charge (SOC) area, thereby increasing the power output in the actual battery. There is a problem that can not be achieved.
- An object of the present invention is to improve the problems of the conventional lithium excess positive electrode active material as described above, to provide a precursor for producing a lithium excess positive electrode active material greatly improved capacity characteristics and life characteristics and a lithium excess positive electrode active material produced thereby.
- the present invention provides a precursor for producing a lithium excess positive electrode active material represented by the following formula (1) to solve the above problems.
- A is selected from the group consisting of Mg, Ti, and Zr, ⁇ is 0.05 to 0.4, ⁇ is 0.5 to 0.8, ⁇ is 0 to 0.4, ⁇ is 0.001 to 0.1, y Is 0.001 to 0.1)
- Particle diameter of the precursor for producing a lithium excess positive electrode active material of the present invention is characterized in that 5 to 25 ⁇ m.
- the present invention also provides a lithium excess cathode active material prepared from the precursor for preparing the lithium excess cathode active material and represented by the following Chemical Formula 2.
- x is 0.2 to 0.7
- A is selected from the group consisting of Mg, Ti, and Zr
- ⁇ is 0.05 to 0.4
- ⁇ is 0.5 to 0.8
- ⁇ is 0 to 0.4
- y is 0.001 to 0.1
- Lithium excess cathode active material according to the present invention is xLiMAl ⁇ O 2 ⁇ (1-x) Li 2 Mn 1 - y A y O 3 (0 ⁇ x ⁇ 1, M is a combination of Ni, Co, and Mn, A is Selected from the group consisting of Mg, Ti, and Zr, ⁇ is 0.05 to 0.4, ⁇ is 0.5 to 0.8, ⁇ is 0 to 0.4, ⁇ is 0.001 to 0.1, and y is 0.001 to 0.1). It is characterized by.
- lithium overdose positive electrode active material according to the present invention is a layer-phase and the Li 2 Mn 1 represented by LiMAl ⁇ O 2 - is composed of a layer-phase represented by the y A y O 3, at layer-phase represented by LiMAl ⁇ O 2 As Al displaces M and the dissimilar metal A displaces Mn in the layered system represented by Li 2 Mn y O 3 , dissimilar metal A is involved in the electrochemical activation of Li 2 MnO 3 to improve the high voltage lifetime characteristics. In addition, it shows the effect of preventing the elution of Mn.
- the substitution amount of Al is preferably 0.001 to 0.1, and as the dissimilar metal A, Substitution of Mn in excess leads to a decrease in capacity, so the substitution amount of dissimilar metal A is preferably 0.001 to 0.1, more preferably 0.02 to 0.05.
- the following relational expression is satisfied between the content ⁇ of Al, the content x of Li, and the content y of dissimilar metal A in the general formula (2).
- the lithium excess cathode active material according to the present invention is characterized in that it is in the form of a layered composite or solid solution.
- Particle strength of the lithium excess positive electrode active material according to the invention is characterized in that more than 115 Mpa.
- the lithium excess positive electrode active material precursor and the lithium excess positive electrode active material prepared according to the present invention can manufacture a battery having a high voltage capacity and improved lifespan characteristics by controlling the type and amount of metal added during the production of a carbonate precursor. have.
- 1 and 2 show the results of measuring the SEM photograph and EDS of the precursor for preparing a lithium excess positive electrode active material prepared in one embodiment of the present invention.
- 3 and 4 show the results of SEM and EDS measurement of the precursor for preparing a lithium excess cathode active material prepared in another embodiment of the present invention.
- 5 and 6 show the results of SEM and EDS measurements of the lithium excess cathode active material prepared in one embodiment of the present invention.
- 9 and 10 show the results of measuring the charge and discharge characteristics for the coin cell (Coin half cell) using the lithium excess positive electrode active material prepared in one embodiment of the present invention.
- 11 and 12 show the results of measuring the life characteristics of a coin cell (Coin half cell) using the lithium excess positive electrode active material prepared in one embodiment of the present invention.
- the mixed metal mixed solution was added to the coprecipitation reactor, and the coprecipitation reaction was carried out for 50 hours by continuously supplying the reactor with a pH of 8 to 10 using 28% ammonia water as a complexing agent and Na 2 CO 3 as a carbonate compound.
- the slurry solution in the reactor was filtered and washed with distilled water of high purity, and dried in a vacuum oven at 110 ° C. for 12 hours to obtain a nickel cobalt manganese aluminum titanium metal composite carbonate compound.
- the composition of the transition metal composite carbonate compound obtained was Ni 0.2 Co 0.07 Mn 0.67 Al 0.03 Ti 0.03 CO 3 .
- Examples 2 to 4 and Comparative Examples 1 to 6 were synthesized in the same manner as described above, except that a metal mixed solution containing heterogeneous metals was prepared in the same composition ratio as in Table 1.
- FIGS. 5 and 6 SEM pictures and EDS results of the lithium excess positive electrode active material prepared in the composition of Example 4 are shown in FIGS. 5 and 6.
- the lithium excess positive electrode active material prepared in the compositions of Examples 1 to 4 and Comparative Examples 1 to 6 was mixed with carbon black and PVDF [Poly (vinylidene fluoride)] as a binder and NMP as an organic solvent in a weight ratio of 94: 3: 3. To prepare a slurry.
- Coin half cell (CR2016) was assembled using a porous polyethylene film (Cell Guard 2502) as a metal lithium as a cathode and a separator as a cathode, and 1.1M LiPF 6 EC / EMC / DEC solution was used as an electrolyte. It was.
- the lithium excess positive electrode active material precursor and the lithium excess positive electrode active material prepared according to the present invention can manufacture a battery having a high voltage capacity and improved lifespan characteristics by controlling the type and amount of metal added during the production of a carbonate precursor. have.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Cette invention concerne un précurseur de production d'un matériau actif de cathode riche en lithium, et un matériau actif de cathode riche en lithium ainsi produit, et plus spécifiquement, un nouveau précurseur de production d'un matériau actif de cathode riche en lithium, et matériau actif de cathode riche en lithium ainsi produit, dans lesquels les métaux Al et A dissimilaires sont substitués, pour atténuer ainsi les problèmes d'un matériau actif de cathode riche en lithium classique et améliorer significativement ses caractéristiques de capacité et de longévité.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/871,067 US20160308197A1 (en) | 2013-03-30 | 2015-09-30 | Precursor for Producing Lithium-rich Cathode Active Material, and Lithium-rich Cathode Active Material Produced Thereby |
US15/662,017 US20170324085A1 (en) | 2013-03-30 | 2017-07-27 | Precursor for Producing Lithium-rich Cathode Active Material, and Lithium-rich Cathode Active Material Produced Thereby |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2013-0034929 | 2013-03-30 | ||
KR20130034929 | 2013-03-30 | ||
KR1020130150314A KR20140119620A (ko) | 2013-03-30 | 2013-12-05 | 리튬 과량 양극활물질 제조용 전구체 및 이에 의하여 제조된 리튬 과량 양극활물질 |
KR10-2013-0150314 | 2013-12-05 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/002748 Continuation-In-Part WO2014163359A1 (fr) | 2013-03-30 | 2014-03-31 | Précurseur pour produire du matériau actif de cathode riche en lithium, et matériau actif de cathode riche en lithium produit avec celui-ci |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/871,067 Continuation-In-Part US20160308197A1 (en) | 2013-03-30 | 2015-09-30 | Precursor for Producing Lithium-rich Cathode Active Material, and Lithium-rich Cathode Active Material Produced Thereby |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014163357A1 true WO2014163357A1 (fr) | 2014-10-09 |
Family
ID=51658593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/002746 WO2014163357A1 (fr) | 2013-03-30 | 2014-03-31 | Précurseur de production d'un matériau actif de cathode riche en lithium, et matériau actif de cathode riche en lithium ainsi produit |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014163357A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108432002A (zh) * | 2016-01-06 | 2018-08-21 | 住友金属矿山株式会社 | 非水类电解质二次电池用正极活性物质前驱体、非水类电解质二次电池用正极活性物质、非水类电解质二次电池用正极活性物质前驱体的制造方法、及非水类电解质二次电池用正极活性物质的制造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070083550A (ko) * | 2004-09-03 | 2007-08-24 | 유시카고 아곤, 엘엘씨 | 리튬 배터리를 위한 망간 옥사이드 복합 전극 |
KR20090013661A (ko) * | 2007-08-01 | 2009-02-05 | 주식회사 엘 앤 에프 | 신규 양극 활물질 |
KR20090105883A (ko) * | 2008-04-03 | 2009-10-07 | 주식회사 엘지화학 | 리튬 전이금속 산화물 제조용 전구체 |
KR20110044375A (ko) * | 2009-10-23 | 2011-04-29 | 주식회사 휘닉스소재 | 리튬-니켈-코발트-망간계 복합 산화물의 제조 방법, 이에 의하여 제조된 리튬-니켈-코발트-망간계 복합 산화물 및 이를 포함하는 리튬 이차 전지 |
US20110168944A1 (en) * | 2007-10-13 | 2011-07-14 | Lg Chem, Ltd. | Cathode active material for lithium secondary battery |
-
2014
- 2014-03-31 WO PCT/KR2014/002746 patent/WO2014163357A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070083550A (ko) * | 2004-09-03 | 2007-08-24 | 유시카고 아곤, 엘엘씨 | 리튬 배터리를 위한 망간 옥사이드 복합 전극 |
KR20090013661A (ko) * | 2007-08-01 | 2009-02-05 | 주식회사 엘 앤 에프 | 신규 양극 활물질 |
US20110168944A1 (en) * | 2007-10-13 | 2011-07-14 | Lg Chem, Ltd. | Cathode active material for lithium secondary battery |
KR20090105883A (ko) * | 2008-04-03 | 2009-10-07 | 주식회사 엘지화학 | 리튬 전이금속 산화물 제조용 전구체 |
KR20110044375A (ko) * | 2009-10-23 | 2011-04-29 | 주식회사 휘닉스소재 | 리튬-니켈-코발트-망간계 복합 산화물의 제조 방법, 이에 의하여 제조된 리튬-니켈-코발트-망간계 복합 산화물 및 이를 포함하는 리튬 이차 전지 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108432002A (zh) * | 2016-01-06 | 2018-08-21 | 住友金属矿山株式会社 | 非水类电解质二次电池用正极活性物质前驱体、非水类电解质二次电池用正极活性物质、非水类电解质二次电池用正极活性物质前驱体的制造方法、及非水类电解质二次电池用正极活性物质的制造方法 |
CN108432002B (zh) * | 2016-01-06 | 2021-06-18 | 住友金属矿山株式会社 | 非水类电解质二次电池用正极活性物质及其前驱体、以及它们的制造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015065095A1 (fr) | Matériau actif d'électrode négative pour un accumulateur au lithium et son procédé de préparation | |
WO2014084502A1 (fr) | Composite à base de silicium et son procédé de fabrication | |
WO2013002457A1 (fr) | Matière active d'électrode positive, électrode incluant la matière active d'électrode positive et batterie électrochimique au lithium | |
WO2011062422A2 (fr) | Mélange cathodique pour batterie secondaire au lithium et batterie secondaire au lithium l'utilisant | |
WO2014010970A1 (fr) | Matière active d'anode à densité élevée et son procédé de préparation | |
KR20140119621A (ko) | 리튬 과량 양극활물질 제조용 전구체 및 이에 의하여 제조된 리튬 과량 양극활물질 | |
WO2014077662A1 (fr) | Procédé permettant de produire un précurseur de matière active d'anode pour batterie secondaire au sodium en utilisant une technique de coprécipitation et précurseur de matière active d'anode pour batterie secondaire au sodium produite ainsi | |
WO2015099243A1 (fr) | Matériau actif d'électrode contenant un composé de bore et dispositif électrochimique l'utilisant | |
WO2019240496A1 (fr) | Matériau actif d'anode pour batterie secondaire au lithium et batterie secondaire au lithium le comprenant | |
WO2014116064A1 (fr) | Procédé de production de nanoparticules d'oxyde de fer | |
WO2014104811A1 (fr) | Procédé de fabrication de matériau actif de cathode pour batterie secondaire au lithium, et matériau actif de cathode pour batterie secondaire au lithium produit ainsi | |
WO2020013667A1 (fr) | Batterie secondaire au lithium comprenant une solution d'électrolyte inorganique | |
WO2014126312A1 (fr) | Procédé de production d'un matériau composite d'anode pour batterie secondaire au lithium, procédé de fabrication d'une électrode utilisant celle-ci, et procédé de charge et de décharge d'électrode | |
WO2014077663A1 (fr) | Matériau actif d'anode pour pile secondaire au sodium et son procédé de fabrication | |
WO2016108385A1 (fr) | Précurseur de matériau actif de cathode pour des piles secondaires au lithium, procédé pour le préparer, matériau actif de cathode pour piles secondaires au lithium, procédé pour les préparer, et pile secondaire au lithium comprenant ledit matériau actif de cathode | |
WO2014061974A1 (fr) | Composite oxyde de silicium - carbone et procédé de préparation de celui-ci | |
WO2014061973A1 (fr) | Procédé de préparation d'oxyde de silicium | |
KR101776896B1 (ko) | 리튬 이차전지용 양극 활물질 및 그의 제조방법 | |
WO2014081269A1 (fr) | Précurseur de matériau actif d'électrode recouvert de métal, et son procédé de préparation | |
WO2013002559A2 (fr) | Matériau actif de cathode, batterie secondaire au lithium contenant le matériau actif de cathode et procédé d'activation électrochimique d'une batterie secondaire au lithium | |
WO2013065918A1 (fr) | Procédé de fabrication d'un matériau actif de cathode pour batterie secondaire au lithium | |
WO2014163357A1 (fr) | Précurseur de production d'un matériau actif de cathode riche en lithium, et matériau actif de cathode riche en lithium ainsi produit | |
WO2022014858A1 (fr) | Matériau actif d'électrode positive pour batterie secondaire au lithium | |
WO2011090235A1 (fr) | Matériau actif positif pour batterie secondaire au lithium, procédé de fabrication de celui-ci et batterie secondaire au lithium l'utilisant | |
WO2014163359A1 (fr) | Précurseur pour produire du matériau actif de cathode riche en lithium, et matériau actif de cathode riche en lithium produit avec celui-ci |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14779371 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS (EPO FORM 1205A DATED 05-02-2016) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14779371 Country of ref document: EP Kind code of ref document: A1 |