WO2014163359A1 - Précurseur pour produire du matériau actif de cathode riche en lithium, et matériau actif de cathode riche en lithium produit avec celui-ci - Google Patents

Précurseur pour produire du matériau actif de cathode riche en lithium, et matériau actif de cathode riche en lithium produit avec celui-ci Download PDF

Info

Publication number
WO2014163359A1
WO2014163359A1 PCT/KR2014/002748 KR2014002748W WO2014163359A1 WO 2014163359 A1 WO2014163359 A1 WO 2014163359A1 KR 2014002748 W KR2014002748 W KR 2014002748W WO 2014163359 A1 WO2014163359 A1 WO 2014163359A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
lithium
positive electrode
precursor
electrode active
Prior art date
Application number
PCT/KR2014/002748
Other languages
English (en)
Korean (ko)
Inventor
홍영진
이재훈
이영재
송준호
김영준
김연희
이은아
Original Assignee
(주)오렌지파워
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130150316A external-priority patent/KR20140119621A/ko
Application filed by (주)오렌지파워, 전자부품연구원 filed Critical (주)오렌지파워
Publication of WO2014163359A1 publication Critical patent/WO2014163359A1/fr
Priority to US14/871,067 priority Critical patent/US20160308197A1/en
Priority to US15/662,017 priority patent/US20170324085A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/06Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a precursor for preparing a lithium excess positive electrode active material and a lithium excess positive electrode active material prepared thereby, and more particularly, to improve the problem of the conventional lithium excess positive electrode active material, a new lithium excess positive electrode greatly improved capacity characteristics and life characteristics
  • the present invention relates to a precursor for preparing an active material and a lithium excess cathode active material prepared thereby.
  • Lithium batteries are widely used in home appliances because of their relatively high energy density. Rechargeable batteries are also called secondary cells, and lithium ion secondary cells generally include a negative electrode material that introduces lithium.
  • the positive electrode active materials of lithium ion secondary batteries include lithium-containing cobalt oxides such as LiCoO 2 in a layered structure, lithium-containing nickel oxides such as LiNiO 2 in a layered structure, and LiMn 2 O 4 in a spinel crystal structure. Lithium-containing manganese oxides and the like are used, and graphite-based materials are mainly used as the negative electrode active material.
  • LiCoO 2 has been widely used because of its excellent physical properties such as excellent cycle characteristics, but it is low in safety, and has a limitation in using it as a power source in fields such as electric vehicles because it is expensive due to resource limitations of cobalt as a raw material. LiNiO 2 is difficult to apply to the actual production process at a reasonable cost, due to the characteristics of the manufacturing method.
  • lithium manganese oxides such as LiMnO 2 , LiMn 2 O 4 has the advantage of using a resource-rich and environmentally friendly manganese as a raw material, attracting a lot of attention as a cathode active material that can replace LiCoO 2 .
  • these lithium manganese oxides also have the disadvantage of poor cycle characteristics.
  • LiMnO 2 has a small initial capacity and has a disadvantage of requiring dozens of charge and discharge cycles to reach a constant capacity.
  • LiMn 2 O 4 has a disadvantage in that the capacity deterioration is serious as the cycle continues, and particularly, the cycle characteristics are rapidly deteriorated due to decomposition of the electrolyte, elution of manganese, and the like at a high temperature of 50 ° C. or higher.
  • Such a cathode active material has a characteristic of showing a flat section in a high voltage section of 4.3V to 4.6V during charging.
  • a flat section is known as a section in which lithium is inserted into the cathode while lithium (Li) and oxygen (O) are separated from the crystal structure of Li 2 MnO 3 .
  • Li 2 MnO 3 cannot be used as an insertion electrode in a lithium battery. This is because the insertion space of the four-sided structure facing the neighboring eight-sided structure is inefficiently desirable to accommodate additional lithium.
  • the cathode active material of the composite electrode structure is electrochemically active due to the desorption of lithium and oxygen in the high voltage section of 4.3V to 4.6V, and the capacity can be increased due to the existence of the flat section.
  • the oxygen gas generated inside the battery is highly likely to decompose and decompose the electrolyte at high voltages, and the crystal structure is physically and chemically deformed through repeated charging and discharging, thereby lowering the rate characteristic. There is a problem of deterioration.
  • the end section of the discharge voltage since the end section of the discharge voltage is lowered, it does not contribute to the capacity when used as a mobile phone, or when used in a vehicle, the power is low and becomes an unusable depth of charge (SOC) area, thereby increasing the power output in the actual battery. There is a problem that can not be achieved.
  • An object of the present invention is to improve the problems of the conventional lithium excess positive electrode active material as described above, to provide a precursor for producing a lithium excess positive electrode active material greatly improved capacity characteristics and life characteristics and a lithium excess positive electrode active material produced thereby.
  • the present invention provides a precursor for producing a lithium excess positive electrode active material represented by the following formula (1) to solve the above problems.
  • A is one or two or more selected from the group consisting of B, Al, Ga, Ti and In, ⁇ is 0.05 to 0.4, ⁇ is 0.5 to 0.8, ⁇ is 0 to 0.4 and , ⁇ is 0.001 to 0.1.
  • Particle diameter of the precursor for producing a lithium excess positive electrode active material of the present invention is characterized in that 5 to 25 ⁇ m.
  • A is characterized in that Al.
  • the present invention also provides a lithium excess cathode active material prepared from the precursor for preparing the lithium excess cathode active material and represented by the following formula (2).
  • x is 0.4 to 0.7
  • A is one or two or more selected from the group consisting of B, Al, Ga, Ti and In
  • is 0.05 to 0.4
  • is 0.5 to 0.8 and
  • is 0 to 0.4
  • is 0.001 to 0.1.
  • Lithium excess cathode active material according to the present invention is xLiNi ⁇ Mn ⁇ Co ⁇ - ⁇ A ⁇ O 2 ⁇ (1-x) Li 2 MO 3 (0 ⁇ x ⁇ 1, M is a combination of Ni, Co, and Mn, A is one or two or more selected from the group consisting of B, Al, Ga, Ti, and In).
  • A is characterized in that Al.
  • lithium overdose positive electrode active material according to the present invention is composed of a layer-phase represented by the layer-phase and Li 2 MO 3 represented by LiNi ⁇ Mn ⁇ Co ⁇ - ⁇ A ⁇ O 2, LiNi ⁇ Mn ⁇ Co ⁇ - ⁇ as the in-phase layer represented by a 2 O ⁇ substituting a different metal Co a exhibits an effect of improving the high voltage life characteristics of the layer offset is represented by LiNi ⁇ Mn ⁇ Co ⁇ - ⁇ a ⁇ O 2.
  • metal ions such as A are stabilized in the hexagonal structure as they move or disperse between layers during charging and discharging, and the Ni +2 ions are prevented from oxidizing to +3 or +4.
  • the substitution amount of the dissimilar metal A is preferably 0.001 to 0.1.
  • the lithium excess cathode active material according to the present invention is characterized in that it is in the form of a layered composite or solid solution.
  • the following relational expression is satisfied between the content ⁇ of A, the content of Li, the content of Mn, the content of Ni, the content of Ni, and the content of Co ⁇ - ⁇ . do.
  • the lithium excess positive electrode active material precursor and the lithium excess positive electrode active material prepared according to the present invention are characterized by adjusting the type and composition of the metal to be substituted in the precursor, and by adjusting the type and amount of the metal added to improve the high voltage capacity and at the same time life characteristics This improved battery can be produced.
  • Figure 1 shows the results of measuring the SEM photograph of the precursor particles for producing a lithium excess positive electrode active material prepared according to an embodiment of the present invention.
  • Figure 2 shows the results of the EDS analysis for the cross section of the precursor particles for producing a lithium excess positive electrode active material prepared according to an embodiment of the present invention.
  • Figure 3 shows the results of measuring the SEM photograph of the precursor particles for producing a lithium excess positive electrode active material prepared according to an embodiment of the present invention.
  • Figure 4 shows the results of the EDS analysis of the cross section of the precursor particles for producing a lithium excess positive electrode active material prepared according to an embodiment of the present invention
  • Figure 5 shows the results of the XRD analysis for the lithium excess positive electrode active material particles prepared according to an embodiment of the present invention.
  • Figure 6 shows the results of the particle size analysis for the lithium excess positive electrode active material particles prepared according to an embodiment of the present invention.
  • Figure 16 shows the results of measuring the life characteristics of a battery containing a lithium excess positive electrode active material prepared in an embodiment of the present invention.
  • Figure 17 shows the results of the XRD analysis for the lithium excess positive electrode active material particles prepared according to an embodiment of the present invention.
  • Figure 18 shows the results of the particle size analysis for the lithium excess positive electrode active material particles prepared according to an embodiment of the present invention.
  • 19 to 21 show the results of measuring the charge and discharge characteristics of a battery including a lithium excess positive electrode active material prepared in the embodiment of the present invention.
  • FIG. 22 shows the results of measuring the life characteristics of a battery including a lithium excess positive electrode active material prepared in an embodiment of the present invention.
  • a metal mixed solution containing nickel sulfate hexahydrate (NiSO 4 ⁇ 6H 2 O), cobalt sulfate hexahydrate (CoSO 4 ⁇ 7H 2 O), manganese sulfate hydrate (MnSO 4 ⁇ 7H 2 O), and aluminum sulfate as an aluminum compound It was fed to the coprecipitation reactor, and continuously fed into the reactor while adjusting the pH to 8 to 10 using 28% ammonia water as a complexing agent and Na 2 CO 3 as a carbonate compound to perform a coprecipitation reaction for 50 hours, and a slurry solution in the reactor.
  • nickel cobalt aluminum metal complex carbonate compound After filtration and washing with distilled water of high purity, dried in a vacuum oven at 110 °C, 12 hours to obtain a nickel cobalt aluminum metal complex carbonate compound.
  • the composition of the obtained nickel cobalt aluminum metal complex carbonate compound was Ni 0.2 Co 0.07 Mn 0.7 Al 0.03 CO 3 .
  • the carbonate precursor containing 3 mol% Al prepared in Example 1-1 and Li 2 CO 3 as a lithium compound are mixed in an equivalent ratio such that the ratio of the transition metal to the ratio shown in Table 2 below, and heat-treated at 900 °C After grinding, a lithium excess cathode active material was synthesized.
  • the particle size of the lithium excess positive electrode active material particles prepared in Examples 2-1 to 2-3 was analyzed, and the results are shown in FIG. 6.
  • the D50 of the lithium excess positive electrode active material prepared in the embodiment of the present invention is 17 to 22 ⁇ m.
  • the lithium excess cathode active material particles are secondary particles in which primary particles are aggregated, and a spherical shape having a size of 5 to 25 ⁇ m can be confirmed.
  • the lithium excess positive electrode active material prepared in Examples 2-1 to 2-3 was mixed with carbon black and PVDF [Poly (vinylidene fluoride)] as a binder with NMP as an organic solvent in a weight ratio of 94: 3: 3 to slurry Was prepared.
  • the slurry was coated on Al foil having a thickness of 20 um and dried to prepare a positive electrode.
  • Coin half cell (CR2016) was assembled using a porous polyethylene film (CellGard 2502) as a cathode and a metal lithium as a cathode together with a cathode, and 1.1M LiPF 6 EC / EMC / DEC solution was used as an electrolyte. .
  • the carbonate precursor containing 6 mol% Al prepared in Example 1-2 and Li 2 CO 3 as a lithium compound are mixed in an equivalent ratio such that the ratio of the transition metal to the ratio shown in Table 3 below, and heat treatment at 900 °C After grinding, a lithium excess cathode active material was synthesized.
  • the particle size of the lithium excess positive electrode active material particles prepared in Examples 3-1 to 3-3 was analyzed and the results are shown in FIG. 18.
  • the D50 of the lithium excess positive electrode active material including 6 mol% Al prepared in Examples 3-1 to 3-3 of the present invention is 23 to 25 ⁇ m.
  • the lithium excess positive electrode active material prepared in Examples 3-1 to 3-3 was mixed with carbon black and PVDF [Poly (vinylidene fluoride)] as a binder and organic solvent NMP in a weight ratio of 94: 3: 3 to slurry was prepared.
  • the slurry was coated on Al foil having a thickness of 20 um and dried to prepare a positive electrode.
  • Coin half cell (CR2016) was assembled using a porous polyethylene film (CellGard 2502) as a cathode and a metal lithium as a cathode together with a cathode, and 1.1M LiPF 6 EC / EMC / DEC solution was used as an electrolyte. .
  • the lithium excess positive electrode active material precursor and the lithium excess positive electrode active material prepared according to the present invention are characterized by adjusting the type and composition of the metal to be substituted in the precursor, and by adjusting the type and amount of the metal added to improve the high voltage capacity and at the same time life characteristics This improved battery can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

La présente invention concerne un précurseur pour produire du matériau actif de cathode riche en lithium, et un matériau actif de cathode riche en lithium produit au moyen de celui-ci, et plus spécifiquement, un nouveau précurseur pour produire du matériau actif de cathode riche en lithium, et un matériau actif de cathode riche en lithium produit au moyen de celui-ci, les problèmes liés au matériau actif de cathode riche en lithium étant atténués pour améliorer significativement les caractéristiques de capacité et de durée de vie.
PCT/KR2014/002748 2013-03-30 2014-03-31 Précurseur pour produire du matériau actif de cathode riche en lithium, et matériau actif de cathode riche en lithium produit avec celui-ci WO2014163359A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/871,067 US20160308197A1 (en) 2013-03-30 2015-09-30 Precursor for Producing Lithium-rich Cathode Active Material, and Lithium-rich Cathode Active Material Produced Thereby
US15/662,017 US20170324085A1 (en) 2013-03-30 2017-07-27 Precursor for Producing Lithium-rich Cathode Active Material, and Lithium-rich Cathode Active Material Produced Thereby

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130034930 2013-03-30
KR10-2013-0034930 2013-03-30
KR1020130150316A KR20140119621A (ko) 2013-03-30 2013-12-05 리튬 과량 양극활물질 제조용 전구체 및 이에 의하여 제조된 리튬 과량 양극활물질
KR10-2013-0150316 2013-12-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002746 Continuation-In-Part WO2014163357A1 (fr) 2013-03-30 2014-03-31 Précurseur de production d'un matériau actif de cathode riche en lithium, et matériau actif de cathode riche en lithium ainsi produit

Publications (1)

Publication Number Publication Date
WO2014163359A1 true WO2014163359A1 (fr) 2014-10-09

Family

ID=51658594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002748 WO2014163359A1 (fr) 2013-03-30 2014-03-31 Précurseur pour produire du matériau actif de cathode riche en lithium, et matériau actif de cathode riche en lithium produit avec celui-ci

Country Status (1)

Country Link
WO (1) WO2014163359A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021129130A1 (fr) * 2019-12-27 2021-07-01 蜂巢能源科技有限公司 Précurseur revêtu d'aluminium, son procédé de préparation et son utilisation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070083550A (ko) * 2004-09-03 2007-08-24 유시카고 아곤, 엘엘씨 리튬 배터리를 위한 망간 옥사이드 복합 전극
KR20090013661A (ko) * 2007-08-01 2009-02-05 주식회사 엘 앤 에프 신규 양극 활물질
KR20090105883A (ko) * 2008-04-03 2009-10-07 주식회사 엘지화학 리튬 전이금속 산화물 제조용 전구체
KR20110044375A (ko) * 2009-10-23 2011-04-29 주식회사 휘닉스소재 리튬-니켈-코발트-망간계 복합 산화물의 제조 방법, 이에 의하여 제조된 리튬-니켈-코발트-망간계 복합 산화물 및 이를 포함하는 리튬 이차 전지
US20110168944A1 (en) * 2007-10-13 2011-07-14 Lg Chem, Ltd. Cathode active material for lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070083550A (ko) * 2004-09-03 2007-08-24 유시카고 아곤, 엘엘씨 리튬 배터리를 위한 망간 옥사이드 복합 전극
KR20090013661A (ko) * 2007-08-01 2009-02-05 주식회사 엘 앤 에프 신규 양극 활물질
US20110168944A1 (en) * 2007-10-13 2011-07-14 Lg Chem, Ltd. Cathode active material for lithium secondary battery
KR20090105883A (ko) * 2008-04-03 2009-10-07 주식회사 엘지화학 리튬 전이금속 산화물 제조용 전구체
KR20110044375A (ko) * 2009-10-23 2011-04-29 주식회사 휘닉스소재 리튬-니켈-코발트-망간계 복합 산화물의 제조 방법, 이에 의하여 제조된 리튬-니켈-코발트-망간계 복합 산화물 및 이를 포함하는 리튬 이차 전지

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021129130A1 (fr) * 2019-12-27 2021-07-01 蜂巢能源科技有限公司 Précurseur revêtu d'aluminium, son procédé de préparation et son utilisation

Similar Documents

Publication Publication Date Title
WO2013002457A1 (fr) Matière active d'électrode positive, électrode incluant la matière active d'électrode positive et batterie électrochimique au lithium
WO2014104759A1 (fr) Matériau actif de cathode pour batteries secondaires au lithium
WO2012115411A2 (fr) Matière active d'électrode positive ayant des caractéristiques de puissance fournie améliorées, et accumulateur au lithium la comprenant
WO2014010970A1 (fr) Matière active d'anode à densité élevée et son procédé de préparation
WO2013048112A2 (fr) Matériau actif d'électrode positive présentant des caractéristiques améliorées de sécurité et de durée de vie, et batterie secondaire au lithium le comprenant
KR20140119621A (ko) 리튬 과량 양극활물질 제조용 전구체 및 이에 의하여 제조된 리튬 과량 양극활물질
WO2015099243A1 (fr) Matériau actif d'électrode contenant un composé de bore et dispositif électrochimique l'utilisant
WO2014077662A1 (fr) Procédé permettant de produire un précurseur de matière active d'anode pour batterie secondaire au sodium en utilisant une technique de coprécipitation et précurseur de matière active d'anode pour batterie secondaire au sodium produite ainsi
WO2015133692A1 (fr) Matériau actif de cathode, batterie secondaire au lithium le comprenant et son procédé de préparation
WO2012064053A2 (fr) Oxyde composite de lithium et de manganèse et procédé pour sa préparation
WO2019074306A2 (fr) Matériau actif d'électrode positive, son procédé de préparation et batterie rechargeable au lithium le comprenant
WO2014077663A1 (fr) Matériau actif d'anode pour pile secondaire au sodium et son procédé de fabrication
WO2019240496A1 (fr) Matériau actif d'anode pour batterie secondaire au lithium et batterie secondaire au lithium le comprenant
WO2013109038A1 (fr) Matière active de cathode, batterie rechargeable au lithium permettant de contrôler les impuretés ou le gonflement contenant celles-ci et procédé de préparation de matière active de cathode doté d'une productivité améliorée
WO2012108702A2 (fr) Matériau actif d'électrode positive mixte avec des caractéristiques de puissance améliorées et batterie au lithium secondaire le comprenant
WO2016175426A1 (fr) Procédé de traitement de surface pour le dioxyde de cobalt et de lithium et batterie rechargeable au lithium comprenant ce dernier
WO2018194345A1 (fr) Anode pour batterie secondaire au lithium, batterie secondaire au lithium la comprenant et son procédé de fabrication
WO2022139380A1 (fr) Matériau actif d'anode pour batterie secondaire au lithium, son procédé de préparation et batterie secondaire au lithium le comprenant
WO2013002559A2 (fr) Matériau actif de cathode, batterie secondaire au lithium contenant le matériau actif de cathode et procédé d'activation électrochimique d'une batterie secondaire au lithium
WO2022014858A1 (fr) Matériau actif d'électrode positive pour batterie secondaire au lithium
WO2014163359A1 (fr) Précurseur pour produire du matériau actif de cathode riche en lithium, et matériau actif de cathode riche en lithium produit avec celui-ci
WO2013065918A1 (fr) Procédé de fabrication d'un matériau actif de cathode pour batterie secondaire au lithium
WO2011090235A1 (fr) Matériau actif positif pour batterie secondaire au lithium, procédé de fabrication de celui-ci et batterie secondaire au lithium l'utilisant
WO2015137728A1 (fr) Materiau d'electrode active contenant de l'oxyde de titane reduit et dispositif electrochimique utilisant un tel materiau
WO2014163357A1 (fr) Précurseur de production d'un matériau actif de cathode riche en lithium, et matériau actif de cathode riche en lithium ainsi produit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14780074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14780074

Country of ref document: EP

Kind code of ref document: A1