WO2014163357A1 - Precursor for producing lithium-rich cathode active material, and lithium-rich cathode active material produced thereby - Google Patents

Precursor for producing lithium-rich cathode active material, and lithium-rich cathode active material produced thereby Download PDF

Info

Publication number
WO2014163357A1
WO2014163357A1 PCT/KR2014/002746 KR2014002746W WO2014163357A1 WO 2014163357 A1 WO2014163357 A1 WO 2014163357A1 KR 2014002746 W KR2014002746 W KR 2014002746W WO 2014163357 A1 WO2014163357 A1 WO 2014163357A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
lithium
positive electrode
cathode active
electrode active
Prior art date
Application number
PCT/KR2014/002746
Other languages
French (fr)
Korean (ko)
Inventor
홍영진
이재훈
이영재
송준호
김영준
김연희
이은아
Original Assignee
(주)오렌지파워
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130150314A external-priority patent/KR20140119620A/en
Application filed by (주)오렌지파워, 전자부품연구원 filed Critical (주)오렌지파워
Publication of WO2014163357A1 publication Critical patent/WO2014163357A1/en
Priority to US14/871,067 priority Critical patent/US20160308197A1/en
Priority to US15/662,017 priority patent/US20170324085A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a precursor for preparing a lithium excess positive electrode active material and a lithium excess positive electrode active material prepared thereby, and more particularly, to improve the problem of the conventional lithium excess positive electrode active material, a new lithium excess positive electrode greatly improved capacity characteristics and life characteristics
  • the present invention relates to a precursor for preparing an active material and a lithium excess cathode active material prepared thereby.
  • Lithium batteries are widely used in home appliances because of their relatively high energy density. Rechargeable batteries are also called secondary cells, and lithium ion secondary cells generally include a negative electrode material that introduces lithium.
  • the positive electrode active materials of lithium ion secondary batteries include lithium-containing cobalt oxides such as LiCoO 2 in a layered structure, lithium-containing nickel oxides such as LiNiO 2 in a layered structure, and LiMn 2 O 4 in a spinel crystal structure. Lithium-containing manganese oxides and the like are used, and graphite-based materials are mainly used as the negative electrode active material.
  • LiCoO 2 has been widely used because of its excellent physical properties such as excellent cycle characteristics, but it is low in safety, and has a limitation in using it as a power source in fields such as electric vehicles because it is expensive due to resource limitations of cobalt as a raw material. LiNiO 2 is difficult to apply to the actual production process at a reasonable cost, due to the characteristics of the manufacturing method.
  • lithium manganese oxides such as LiMnO 2 , LiMn 2 O 4 has the advantage of using a resource-rich and environmentally friendly manganese as a raw material, attracting a lot of attention as a cathode active material that can replace LiCoO 2 .
  • these lithium manganese oxides also have the disadvantage of poor cycle characteristics.
  • LiMnO 2 has a small initial capacity and has a disadvantage of requiring dozens of charge and discharge cycles to reach a constant capacity.
  • LiMn 2 O 4 has a disadvantage in that the capacity is severely degraded as the cycle continues, and particularly, the cycle characteristics are sharply degraded due to decomposition of the electrolyte and elution of manganese at a high temperature of 50 ° C. or higher.
  • Such a cathode active material has a characteristic of showing a flat section in a high voltage section of 4.3V to 4.6V during charging.
  • a flat section is known as a section in which lithium is inserted into the cathode while lithium (Li) and oxygen (O) are separated from the crystal structure of Li 2 MnO 3 .
  • Li 2 MnO 3 cannot be used as an insertion electrode in a lithium battery. This is because the insertion space of the four-sided structure facing the neighboring eight-sided structure is inefficiently desirable to accommodate additional lithium.
  • the cathode active material of the composite electrode structure is electrochemically active due to the desorption of lithium and oxygen in the high voltage section of 4.3V to 4.6V, and the capacity can be increased due to the existence of the flat section.
  • the oxygen gas generated inside the battery is highly likely to decompose and decompose the electrolyte at high voltages, and the crystal structure is physically and chemically deformed through repeated charging and discharging, thereby lowering the rate characteristic. There is a problem of deterioration.
  • the end section of the discharge voltage since the end section of the discharge voltage is lowered, it does not contribute to the capacity when used as a mobile phone, or when used in a vehicle, the power is low and becomes an unusable depth of charge (SOC) area, thereby increasing the power output in the actual battery. There is a problem that can not be achieved.
  • An object of the present invention is to improve the problems of the conventional lithium excess positive electrode active material as described above, to provide a precursor for producing a lithium excess positive electrode active material greatly improved capacity characteristics and life characteristics and a lithium excess positive electrode active material produced thereby.
  • the present invention provides a precursor for producing a lithium excess positive electrode active material represented by the following formula (1) to solve the above problems.
  • A is selected from the group consisting of Mg, Ti, and Zr, ⁇ is 0.05 to 0.4, ⁇ is 0.5 to 0.8, ⁇ is 0 to 0.4, ⁇ is 0.001 to 0.1, y Is 0.001 to 0.1)
  • Particle diameter of the precursor for producing a lithium excess positive electrode active material of the present invention is characterized in that 5 to 25 ⁇ m.
  • the present invention also provides a lithium excess cathode active material prepared from the precursor for preparing the lithium excess cathode active material and represented by the following Chemical Formula 2.
  • x is 0.2 to 0.7
  • A is selected from the group consisting of Mg, Ti, and Zr
  • is 0.05 to 0.4
  • is 0.5 to 0.8
  • is 0 to 0.4
  • y is 0.001 to 0.1
  • Lithium excess cathode active material according to the present invention is xLiMAl ⁇ O 2 ⁇ (1-x) Li 2 Mn 1 - y A y O 3 (0 ⁇ x ⁇ 1, M is a combination of Ni, Co, and Mn, A is Selected from the group consisting of Mg, Ti, and Zr, ⁇ is 0.05 to 0.4, ⁇ is 0.5 to 0.8, ⁇ is 0 to 0.4, ⁇ is 0.001 to 0.1, and y is 0.001 to 0.1). It is characterized by.
  • lithium overdose positive electrode active material according to the present invention is a layer-phase and the Li 2 Mn 1 represented by LiMAl ⁇ O 2 - is composed of a layer-phase represented by the y A y O 3, at layer-phase represented by LiMAl ⁇ O 2 As Al displaces M and the dissimilar metal A displaces Mn in the layered system represented by Li 2 Mn y O 3 , dissimilar metal A is involved in the electrochemical activation of Li 2 MnO 3 to improve the high voltage lifetime characteristics. In addition, it shows the effect of preventing the elution of Mn.
  • the substitution amount of Al is preferably 0.001 to 0.1, and as the dissimilar metal A, Substitution of Mn in excess leads to a decrease in capacity, so the substitution amount of dissimilar metal A is preferably 0.001 to 0.1, more preferably 0.02 to 0.05.
  • the following relational expression is satisfied between the content ⁇ of Al, the content x of Li, and the content y of dissimilar metal A in the general formula (2).
  • the lithium excess cathode active material according to the present invention is characterized in that it is in the form of a layered composite or solid solution.
  • Particle strength of the lithium excess positive electrode active material according to the invention is characterized in that more than 115 Mpa.
  • the lithium excess positive electrode active material precursor and the lithium excess positive electrode active material prepared according to the present invention can manufacture a battery having a high voltage capacity and improved lifespan characteristics by controlling the type and amount of metal added during the production of a carbonate precursor. have.
  • 1 and 2 show the results of measuring the SEM photograph and EDS of the precursor for preparing a lithium excess positive electrode active material prepared in one embodiment of the present invention.
  • 3 and 4 show the results of SEM and EDS measurement of the precursor for preparing a lithium excess cathode active material prepared in another embodiment of the present invention.
  • 5 and 6 show the results of SEM and EDS measurements of the lithium excess cathode active material prepared in one embodiment of the present invention.
  • 9 and 10 show the results of measuring the charge and discharge characteristics for the coin cell (Coin half cell) using the lithium excess positive electrode active material prepared in one embodiment of the present invention.
  • 11 and 12 show the results of measuring the life characteristics of a coin cell (Coin half cell) using the lithium excess positive electrode active material prepared in one embodiment of the present invention.
  • the mixed metal mixed solution was added to the coprecipitation reactor, and the coprecipitation reaction was carried out for 50 hours by continuously supplying the reactor with a pH of 8 to 10 using 28% ammonia water as a complexing agent and Na 2 CO 3 as a carbonate compound.
  • the slurry solution in the reactor was filtered and washed with distilled water of high purity, and dried in a vacuum oven at 110 ° C. for 12 hours to obtain a nickel cobalt manganese aluminum titanium metal composite carbonate compound.
  • the composition of the transition metal composite carbonate compound obtained was Ni 0.2 Co 0.07 Mn 0.67 Al 0.03 Ti 0.03 CO 3 .
  • Examples 2 to 4 and Comparative Examples 1 to 6 were synthesized in the same manner as described above, except that a metal mixed solution containing heterogeneous metals was prepared in the same composition ratio as in Table 1.
  • FIGS. 5 and 6 SEM pictures and EDS results of the lithium excess positive electrode active material prepared in the composition of Example 4 are shown in FIGS. 5 and 6.
  • the lithium excess positive electrode active material prepared in the compositions of Examples 1 to 4 and Comparative Examples 1 to 6 was mixed with carbon black and PVDF [Poly (vinylidene fluoride)] as a binder and NMP as an organic solvent in a weight ratio of 94: 3: 3. To prepare a slurry.
  • Coin half cell (CR2016) was assembled using a porous polyethylene film (Cell Guard 2502) as a metal lithium as a cathode and a separator as a cathode, and 1.1M LiPF 6 EC / EMC / DEC solution was used as an electrolyte. It was.
  • the lithium excess positive electrode active material precursor and the lithium excess positive electrode active material prepared according to the present invention can manufacture a battery having a high voltage capacity and improved lifespan characteristics by controlling the type and amount of metal added during the production of a carbonate precursor. have.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a precursor for producing lithium-rich cathode active material, and lithium-rich cathode active material produced by means of same, and more specifically, to a new precursor for producing lithium-rich cathode active material, and lithium-rich cathode active material produced by means of same, in which dissimilar metals Al and A are substituted, thereby mitigating the problems of conventional lithium-rich cathode active material to significantly improve capacity and life-span characteristics.

Description

리튬 과량 양극활물질 제조용 전구체 및 이에 의하여 제조된 리튬 과량 양극활물질Precursor for producing lithium excess positive electrode active material and lithium excess positive electrode active material produced thereby
본 발명은 리튬 과량 양극활물질 제조용 전구체 및 이에 의하여 제조된 리튬 과량 양극활물질에 관한 것으로서, 더욱 상세하게는 종래 리튬 과량 양극활물질의 문제점을 개선하여, 용량 특성 및 수명 특성이 크게 개선된 새로운 리튬 과량 양극활물질 제조용 전구체 및 이에 의하여 제조된 리튬 과량 양극활물질에 관한 것이다. The present invention relates to a precursor for preparing a lithium excess positive electrode active material and a lithium excess positive electrode active material prepared thereby, and more particularly, to improve the problem of the conventional lithium excess positive electrode active material, a new lithium excess positive electrode greatly improved capacity characteristics and life characteristics The present invention relates to a precursor for preparing an active material and a lithium excess cathode active material prepared thereby.
리튬 배터리는 비교적 높은 에너지 밀도로 인해 가전제품에 널리 이용되고 있다. 충전 가능한 배터리는 이차 전지로도 불리며, 리튬 이온 이차 전지는 일반적으로 리튬을 도입하는 음극 물질을 포함한다. Lithium batteries are widely used in home appliances because of their relatively high energy density. Rechargeable batteries are also called secondary cells, and lithium ion secondary cells generally include a negative electrode material that introduces lithium.
현재, 리튬 이온 이차전지의 양극활물질로는, 층상 구조(layered structure)의 LiCoO2와 같은 리튬-함유 코발트 산화물, 층상 구조의 LiNiO2와 같은 리튬-함유 니켈 산화물, 스피넬 결정구조의 LiMn2O4와 같은 리튬-함유 망간 산화물 등이 사용되고 있고, 음극 활물질로는, 흑연계 재료가 주로 사용되고 있다.Currently, the positive electrode active materials of lithium ion secondary batteries include lithium-containing cobalt oxides such as LiCoO 2 in a layered structure, lithium-containing nickel oxides such as LiNiO 2 in a layered structure, and LiMn 2 O 4 in a spinel crystal structure. Lithium-containing manganese oxides and the like are used, and graphite-based materials are mainly used as the negative electrode active material.
LiCoO2은 우수한 사이클 특성 등 제반 물성이 우수하여 현재 많이 사용되고 있지만, 안전성이 낮으며, 원료로서 코발트의 자원적 한계로 인해 고가이고 전기자동차 등과 같은 분야의 동력원으로 대량 사용하는 데에는 한계가 있다. LiNiO2은 제조방법에 따른 특성상, 합리적인 비용으로 실제 양산공정에 적용하기에 어려움이 있다.LiCoO 2 has been widely used because of its excellent physical properties such as excellent cycle characteristics, but it is low in safety, and has a limitation in using it as a power source in fields such as electric vehicles because it is expensive due to resource limitations of cobalt as a raw material. LiNiO 2 is difficult to apply to the actual production process at a reasonable cost, due to the characteristics of the manufacturing method.
반면에, LiMnO2, LiMn2O4 등의 리튬 망간 산화물은 원료로서 자원이 풍부하고 환경친화적인 망간을 사용한다는 장점을 가지고 있으므로, LiCoO2를 대체할 수 있는 양극활물질로서 많은 관심을 모으고 있다. 그러나, 이들 리튬 망간 산화물 역시 사이클 특성 등이 나쁘다는 단점을 가지고 있다. LiMnO2은 초기 용량이 작고, 일정한 용량에 이를 때까지 수십 회의 충방전 사이클이 필요하다는 단점이 있다.On the other hand, lithium manganese oxides such as LiMnO 2 , LiMn 2 O 4 has the advantage of using a resource-rich and environmentally friendly manganese as a raw material, attracting a lot of attention as a cathode active material that can replace LiCoO 2 . However, these lithium manganese oxides also have the disadvantage of poor cycle characteristics. LiMnO 2 has a small initial capacity and has a disadvantage of requiring dozens of charge and discharge cycles to reach a constant capacity.
또한, LiMn2O4은 사이클이 계속됨에 따라 용량 저하가 심각하고, 특히 50 ℃ 이상의 고온에서 전해액의 분해, 망간의 용출 등으로 인해 사이클 특성이 급격히 저하되는 단점이 있다.In addition, LiMn 2 O 4 has a disadvantage in that the capacity is severely degraded as the cycle continues, and particularly, the cycle characteristics are sharply degraded due to decomposition of the electrolyte and elution of manganese at a high temperature of 50 ° C. or higher.
근래에 Li2MnO3를 도입하여 층상계 양극활물질의 안정성을 높이면서 이론적 가용 용량을 증가시키고자 하는 제안이 있다. 이러한 양극활물질은 충전 시 4.3V 내지 4.6V의 고전압 구간에서 평탄구간을 나타내는 특성을 가진다. 이러한 평탄구간은 Li2MnO3의 결정구조로부터 리튬(Li)과 산소(O)가 탈리되면서 음극에 리튬이 삽입되는 구간으로 알려져 있다. Li2MnO3는 리튬 전지에서 삽입 전극(insertion electrode)으로서 사용될 수 없다. 왜냐하면 이웃하는 8면 구조와 맞대고 있는 4면 구조의 삽입 공간이 추가적인 리튬을 수용하기에는 비효율적으로 바람직하지 않기 때문이다. 망간 이온은 4가이며, 실제 퍼텐셜에서는 쉽게 산화되지 않기 때문에, 리튬 추출이 가능하지 않다. 그러나, Materials Research Bulletin(Volume 26, page 463 (1991))에서 Rossouw 외 다수에 의하면, Li2-xMnO3-x/2를 생산하기 위한 화학 처리에 의해 Li2MnO3 구조로부터 Li2O를 제거함으로써, Li2MnO3이 전기화학적으로 활성될 수 있으며, 이러한 프로세스는 약간의 H+ - Li+ 이온 교환을 동반한다. Journal of Power Sources(Volume 80, page 103 (1999))에서 Kalyani 외 다수에 의해, 그리고 Chemistry of Materials(Volume 15, page 1984, (2003))에서 Robertson 외 다수에 의해 보고된 바에 의하면, 리튬 전지에서 Li2O을 제거함으로써 Li2MnO3이 또한 전기화학적으로 활성될 수 있으나, 이러한 활성된 전극은 리튬 전지에서의 성능이 바람직하지 못하다. Recently, there is a proposal to increase the theoretical usable capacity by introducing Li 2 MnO 3 to increase the stability of the layered cathode active material. Such a cathode active material has a characteristic of showing a flat section in a high voltage section of 4.3V to 4.6V during charging. Such a flat section is known as a section in which lithium is inserted into the cathode while lithium (Li) and oxygen (O) are separated from the crystal structure of Li 2 MnO 3 . Li 2 MnO 3 cannot be used as an insertion electrode in a lithium battery. This is because the insertion space of the four-sided structure facing the neighboring eight-sided structure is inefficiently desirable to accommodate additional lithium. Manganese ions are tetravalent and are not easily oxidized at actual potential, so lithium extraction is not possible. However, according to Rossouw et al in the Materials Research Bulletin (Volume 26, page 463 (1991)), the Li 2 O from Li 2 MnO 3 structure by a chemical process for the production of Li 2-x MnO 3-x / 2 By elimination, Li 2 MnO 3 can be electrochemically active and this process is accompanied by some H + -Li + ion exchange. Lithium batteries have been reported by Kalyani et al. In the Journal of Power Sources (Volume 80, page 103 (1999)) and by Robertson et al. In the Chemistry of Materials (Volume 15, page 1984, (2003)). by removing the Li 2 O is Li 2 MnO 3, but also can be electrochemically active, these active electrodes is not desirable, the performance of the lithium battery.
이와 같이 Li2-xMnO3-x/2 전극이 홀로 사용될 경우, 리튬 전지의 사이클링 동안 용량을 손해 보는 경향이 있더라도, U.S. 특허 6,677,082와 6,680,143에서는 복합 전극, 예를 들면 Li2MnO3와 LiMO2 성분이 모두 층상 타입 구조를 갖는 xLi2MnO3·(l-x)LiMO2 (M=Mn, Ni, Co) 등의 두 가지 성분의 전극 시스템에서 사용될 때는 개선된 전기화학적 속성에서는 높은 효율성을 지닐 수 있다는 것이 나타나 있다. As such, when Li 2-x MnO 3-x / 2 electrodes are used alone, US Pat. Nos. 6,677,082 and 6,680,143 describe composite electrodes, such as Li 2 MnO 3 and LiMO 2 , although they tend to lose capacity during cycling of lithium batteries. When the components are used in two component electrode systems such as xLi 2 MnO 3 · (lx) LiMO 2 (M = Mn, Ni, Co), all of which have a layered structure, they can have high efficiency in improved electrochemical properties. Is shown.
그러나, 이와 같은 복합 전극 구조의 양극활물질의 경우에도 4.3V 내지 4.6V의 고전압 구간에서의 리튬과 산소의 탈리로 인해 전기화학적으로 활성을 갖고, 상기 평탄구간의 존재로 인하여 용량을 증가시킬 수는 있지만, 전지 내부에 발생한 산소 기체로 인해 고전압에서의 전해액의 분해 및 가스 발생 가능성이 높고, 반복된 충방전을 통해 결정구조가 물리적, 화학적으로 변형됨으로써 레이트 특성이 저하되므로, 결과적으로 전지의 성능을 저하시키는 문제점이 있다.However, the cathode active material of the composite electrode structure is electrochemically active due to the desorption of lithium and oxygen in the high voltage section of 4.3V to 4.6V, and the capacity can be increased due to the existence of the flat section. However, the oxygen gas generated inside the battery is highly likely to decompose and decompose the electrolyte at high voltages, and the crystal structure is physically and chemically deformed through repeated charging and discharging, thereby lowering the rate characteristic. There is a problem of deterioration.
또한, 방전전압의 말단구간이 낮아져, 휴대폰으로 사용될 경우 용량에 기여를 하지 못하거나, 자동차에 사용될 경우 출력(power)이 낮아 사용 불가능한 충전심도(SOC) 영역이 되기 때문에, 실제 전지에서 고출력화를 이룰 수 없다는 문제점을 가지고 있다.In addition, since the end section of the discharge voltage is lowered, it does not contribute to the capacity when used as a mobile phone, or when used in a vehicle, the power is low and becomes an unusable depth of charge (SOC) area, thereby increasing the power output in the actual battery. There is a problem that can not be achieved.
따라서, 이러한 문제점을 근본적으로 해결할 수 있는 기술에 대한 필요성이 높은 실정이다.Therefore, there is a high need for a technology that can fundamentally solve these problems.
본 발명은 상기와 같은 종래 리튬 과량 양극활물질의 문제점을 개선하여, 용량 특성 및 수명 특성이 크게 개선된 리튬 과량 양극활물질 제조용 전구체 및 이에 의하여 제조된 리튬 과량 양극활물질을 제공하는 것을 목적으로 한다. An object of the present invention is to improve the problems of the conventional lithium excess positive electrode active material as described above, to provide a precursor for producing a lithium excess positive electrode active material greatly improved capacity characteristics and life characteristics and a lithium excess positive electrode active material produced thereby.
본 발명은 상기와 같은 과제를 해결하기 위하여 하기 화학식 1로 표시되는 리튬 과량 양극활물질 제조용 전구체를 제공한다.The present invention provides a precursor for producing a lithium excess positive electrode active material represented by the following formula (1) to solve the above problems.
[화학식 1] NiαMnβ-yCoγ-δAlδAyCO3 Ni α Mn β-y Co γ-δ Al δ A y CO 3
(상기 화학식 1에서, A 는 Mg, Ti, 및 Zr 으로 이루어진 그룹에서 선택되고, α 는 0.05 내지 0.4 이고, β 는 0.5 내지 0.8 이고, γ 는 0 내지 0.4 이고, δ 는 0.001 내지 0.1 이고, y 는 0.001 내지 0.1 이다)(In Formula 1, A is selected from the group consisting of Mg, Ti, and Zr, α is 0.05 to 0.4, β is 0.5 to 0.8, γ is 0 to 0.4, δ is 0.001 to 0.1, y Is 0.001 to 0.1)
본 발명의 리튬 과량 양극활물질 제조용 전구체의 입경은 5 내지 25 μm 인 것을 특징으로 한다.Particle diameter of the precursor for producing a lithium excess positive electrode active material of the present invention is characterized in that 5 to 25 μm.
본 발명은 또한, 상기 리튬 과량 양극활물질 제조용 전구체로부터 제조되고, 하기 화학식 2로 표시되는 리튬 과량 양극활물질을 제공한다. The present invention also provides a lithium excess cathode active material prepared from the precursor for preparing the lithium excess cathode active material and represented by the following Chemical Formula 2.
[화학식 2] Li1+xNiαMnβ-yCoγ-δAlδAyO2 Li 1 + x Ni α Mn β-y Co γ-δ Al δ A y O 2
(상기 화학식 2에서, x 는 0.2 내지 0.7 이고, A 는 Mg, Ti, 및 Zr 으로 이루어진 그룹에서 선택되고, α 는 0.05 내지 0.4 이고, β 는 0.5 내지 0.8 이고, γ 는 0 내지 0.4 이고, δ 는 0.001 내지 0.1 이고, y 는 0.001 내지 0.1 이다)(In Formula 2, x is 0.2 to 0.7, A is selected from the group consisting of Mg, Ti, and Zr, α is 0.05 to 0.4, β is 0.5 to 0.8, γ is 0 to 0.4, δ Is 0.001 to 0.1 and y is 0.001 to 0.1)
본 발명에 의한 리튬 과량 양극활물질은 xLiMAlδO2·(1-x)Li2Mn1 - yAyO3 (0<x<1, M 은 Ni, Co, 및 Mn 의 조합이고, A 는 Mg, Ti, 및 Zr 으로 이루어진 그룹에서 선택되고, α 는 0.05 내지 0.4 이고, β 는 0.5 내지 0.8 이고, γ 는 0 내지 0.4 이고, δ 는 0.001 내지 0.1 이고, y 는 0.001 내지 0.1 이다)으로 표시되는 것을 특징으로 한다. 즉, 본 발명에 의한 리튬 과량 양극활물질은 LiMAlδO2 로 표시되는 층상계와 Li2Mn1 - yAyO3 로 표시되는 층상계로 구성되고, LiMAlδO2 로 표시되는 층상계에서 Al 이 M 을 치환하고, Li2MnyO3 로 표시되는 층상계에서 이종 금속 A 가 Mn 을 치환함에 따라 Li2MnO3 의 전기 화학적 활성화에 이종 금속 A 가 관여하여 고전압 수명 특성을 개선시키는 효과를 나타냄과 동시에 Mn 의 용출을 방지하는 효과를 나타낸다. Lithium excess cathode active material according to the present invention is xLiMAl δ O 2 · (1-x) Li 2 Mn 1 - y A y O 3 (0 <x <1, M is a combination of Ni, Co, and Mn, A is Selected from the group consisting of Mg, Ti, and Zr, α is 0.05 to 0.4, β is 0.5 to 0.8, γ is 0 to 0.4, δ is 0.001 to 0.1, and y is 0.001 to 0.1). It is characterized by. That is, lithium overdose positive electrode active material according to the present invention is a layer-phase and the Li 2 Mn 1 represented by LiMAl δ O 2 - is composed of a layer-phase represented by the y A y O 3, at layer-phase represented by LiMAl δ O 2 As Al displaces M and the dissimilar metal A displaces Mn in the layered system represented by Li 2 Mn y O 3 , dissimilar metal A is involved in the electrochemical activation of Li 2 MnO 3 to improve the high voltage lifetime characteristics. In addition, it shows the effect of preventing the elution of Mn.
상기 화학식 2에서 M 이 Co 인 경우, 이종 금속 A 가 Co 자리를 과량으로 치환하면 Co 함량 감소에 따른 출력 및 용량 저하가 나타날 수 있으므로, Al 의 치환량은 0.001 내지 0.1 이 바람직하고, 이종 금속 A로 Mn 을 과량으로 치환하는 경우 오히려 용량 감소를 야기하므로 이종 금속 A 의 치환량은 0.001 내지 0.1 이 바람직하며, 0.02 내지 0.05 인 것이 더욱 바람직하다. In the case of M in Formula 2, when the dissimilar metal A replaces the Co site in an excessive amount, output and capacity may decrease due to a decrease in the Co content, so that the substitution amount of Al is preferably 0.001 to 0.1, and as the dissimilar metal A, Substitution of Mn in excess leads to a decrease in capacity, so the substitution amount of dissimilar metal A is preferably 0.001 to 0.1, more preferably 0.02 to 0.05.
본 발명에 의한 리튬 과량 양극활물질에 있어서, 상기 화학식 2에서 Al 의 함유량 δ와 Li 의 함유량 x, 이종금속 A 의 함유량 y 사이에는 다음과 같은 관계식을 만족하는 것을 특징으로 한다. In the lithium excess positive electrode active material according to the present invention, the following relational expression is satisfied between the content δ of Al, the content x of Li, and the content y of dissimilar metal A in the general formula (2).
x ≥δx ≥δ
y ≥δy ≥δ
본 발명에 의한 리튬 과량 양극활물질은 층상구조의 복합체(composite) 또는 고용체(solid solution) 형태인 것을 특징으로 한다. The lithium excess cathode active material according to the present invention is characterized in that it is in the form of a layered composite or solid solution.
본 발명에 의한 리튬 과량 양극활물질의 입자 강도는 115 Mpa 이상인 것을 특징으로 한다. Particle strength of the lithium excess positive electrode active material according to the invention is characterized in that more than 115 Mpa.
본 발명에 의한 리튬 과량 양극활물질 제조용 전구체 및 이에 의하여 제조된 리튬 과량 양극활물질은 탄산염 전구체 제조시 첨가되는 금속의 종류 및 첨가량을 조절함으로써 고전압 용량이 향상됨과 동시에 수명 특성이 개선된 전지를 제조할 수 있다.The lithium excess positive electrode active material precursor and the lithium excess positive electrode active material prepared according to the present invention can manufacture a battery having a high voltage capacity and improved lifespan characteristics by controlling the type and amount of metal added during the production of a carbonate precursor. have.
도 1 및 도 2는 본 발명의 일 실시예에서 제조된 리튬 과량 양극활물질 제조용 전구체의 SEM 사진 및 EDS 를 측정한 결과를 나타낸다. 1 and 2 show the results of measuring the SEM photograph and EDS of the precursor for preparing a lithium excess positive electrode active material prepared in one embodiment of the present invention.
도 3 및 도 4는 본 발명의 다른 실시예에서 제조된 리튬 과량 양극활물질 제조용 전구체의 SEM 사진 및 EDS 를 측정한 결과를 나타낸다. 3 and 4 show the results of SEM and EDS measurement of the precursor for preparing a lithium excess cathode active material prepared in another embodiment of the present invention.
도 5 및 도 6은 본 발명의 일 실시예에서 제조된 리튬 과량 양극활물질의 SEM 사진 및 EDS 를 측정한 결과를 나타낸다. 5 and 6 show the results of SEM and EDS measurements of the lithium excess cathode active material prepared in one embodiment of the present invention.
도 7 및 도 8은 본 발명의 다른 실시예에서 제조된 리튬 과량 양극활물질의 의 SEM 사진 및 EDS 를 측정한 결과를 나타낸다. 7 and 8 show the results of SEM and EDS measurements of the lithium excess cathode active material prepared in another embodiment of the present invention.
도 9 및 도 10은 본 발명의 일 실시예에서 제조된 리튬 과량 양극활물질을 이용하는 코인셀(Coin half cell)에 대한 충방전 특성을 측정한 결과를 나타낸다. 9 and 10 show the results of measuring the charge and discharge characteristics for the coin cell (Coin half cell) using the lithium excess positive electrode active material prepared in one embodiment of the present invention.
도 11 및 도 12는 본 발명의 일 실시예에서 제조된 리튬 과량 양극활물질을 이용하는 코인셀(Coin half cell)에 대한 수명 특성을 측정한 결과를 나타낸다. 11 and 12 show the results of measuring the life characteristics of a coin cell (Coin half cell) using the lithium excess positive electrode active material prepared in one embodiment of the present invention.
이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited by the following examples.
<< 실시예Example > 리튬 과량 > Lithium Excess 양극활물질Cathode active material 제조용 전구체 합성 Precursor Synthesis for Manufacturing
황산니켈 6수화물(NiSO4·6H2O)과 황산코발트 7수화물(CoSO4·7H2O), 황산망간 수화물(MnSO4·7H2O), 알루미늄 화합물로서 황산알루미늄, 이종 금속으로서 TiO2 를 혼합한 금속 혼합용액을 공침 반응기에 투입하고, 착화제로서 28% 암모니아수 및 탄산염 화합물로서 Na2CO3 를 사용하여 pH 를 8 내지 10으로 조절하면서 반응기에 지속적으로 공급하여 50 시간 동안 공침반응을 실시하고, 반응기 내의 슬러리 용액을 여과 및 고순도의 증류수로 세척 후 110 ℃, 12 시간 진공 오븐에서 건조하여 니켈코발트망간알루미늄티탄 금속복합탄산염 화합물을 얻었다. 상기 얻어진 전이금속 복합 탄산염 화합물의 조성은 Ni0.2Co0.07Mn0.67Al0.03Ti0.03CO3 이었다.Nickel sulfate hexahydrate (NiSO 4 · 6H 2 O) and cobalt sulfate hexahydrate (CoSO 4 · 7H 2 O), manganese sulfate hydrate (MnSO 4 · 7H 2 O), aluminum sulfate as an aluminum compound, TiO 2 as a dissimilar metal The mixed metal mixed solution was added to the coprecipitation reactor, and the coprecipitation reaction was carried out for 50 hours by continuously supplying the reactor with a pH of 8 to 10 using 28% ammonia water as a complexing agent and Na 2 CO 3 as a carbonate compound. The slurry solution in the reactor was filtered and washed with distilled water of high purity, and dried in a vacuum oven at 110 ° C. for 12 hours to obtain a nickel cobalt manganese aluminum titanium metal composite carbonate compound. The composition of the transition metal composite carbonate compound obtained was Ni 0.2 Co 0.07 Mn 0.67 Al 0.03 Ti 0.03 CO 3 .
표 1
Ni Co Mn Al Ti Zr Mg
실시예 1 20 7 67 3 3 0 0
실시예 2 20 7 67 3 0 3 3
실시예 3 20 7 67 3 0 0 1
실시예 4 20 7 67 3 0 0 2
비교예 1 20 10 70 0 0 0 0
비교예 2 20 7 70 3 0 0 0
비교예 3 20 7 67 0 3 0 0
비교예 4 20 7 67 0 0 3 3
비교예 5 20 7 64 3 6 0 0
비교예 6 20 7 64 3 0 6 6
Table 1
Ni Co Mn Al Ti Zr Mg
Example 1 20 7 67 3 3 0 0
Example 2 20 7 67 3 0 3 3
Example 3 20 7 67 3 0 0 One
Example 4 20 7 67 3 0 0 2
Comparative Example 1 20 10 70 0 0 0 0
Comparative Example 2 20 7 70 3 0 0 0
Comparative Example 3 20 7 67 0 3 0 0
Comparative Example 4 20 7 67 0 0 3 3
Comparative Example 5 20 7 64 3 6 0 0
Comparative Example 6 20 7 64 3 0 6 6
상기 표 1에서와 같은 조성비로 이종 금속이 포함되는 금속 혼합 용액을 제조한 것을 제외하고는 상기와 동일하게 하여 실시예 2 내지 4 및 비교예 1 내지 6의 전구체를 합성하였다. The precursors of Examples 2 to 4 and Comparative Examples 1 to 6 were synthesized in the same manner as described above, except that a metal mixed solution containing heterogeneous metals was prepared in the same composition ratio as in Table 1.
<실험예> SEM 사진 및 EDS 측정<Experimental Example> SEM photograph and EDS measurement
상기 실시예 3의 조성으로 제조된 전구체의 SEM 사진 및 EDS 를 측정한 결과를 도 1 및 도 2에 나타내고, 상기 실시예 4의 조성으로 제조된 리튬 과량 양극활물질 제조용 전구체의 SEM 사진 및 EDS 를 측정한 결과를 도 3 및 도 4에 나타내었다. The results of measuring the SEM photograph and EDS of the precursor prepared in the composition of Example 3 are shown in Figures 1 and 2, the SEM photograph and EDS of the precursor for preparing a lithium excess positive electrode active material prepared in the composition of Example 4 One result is shown in FIGS. 3 and 4.
도 1 및 도 3의 SEM 측정 결과에서 표면에 코팅된 Al2O3 가 응집되는 것을 확인할 수 있고, 도 2 및 도 4의 EDS 측정 결과로부터 도핑된 Al 및 Mg 이 입자 전체에 고르게 도핑되는 것을 확인할 수 있다. In the SEM measurement results of FIGS. 1 and 3, it can be confirmed that the Al 2 O 3 coated on the surface is agglomerated, and the doped Al and Mg are uniformly doped throughout the particles from the EDS measurement results of FIGS. 2 and 4. Can be.
<< 실시예Example > 리튬 과량 > Lithium Excess 양극활물질Cathode active material 합성 synthesis
상기 실시예 1 내지 4 및 비교예에서 제조된 탄산염 전구체와 리튬 화합물로서 Li2CO3 를 당량비로 혼합하고, 900 ℃에서 열처리 후 분쇄하여 리튬 과량 양극활물질을 합성하였다. The Examples 1 to 4 and the positive electrode active material in lithium excess after the heat treatment and pulverization on the mixture, 900 ℃ the Li 2 CO 3 as an equivalent ratio of the carbonate precursor and a lithium compound prepared in Comparative Example was prepared.
<실험예> SEM 사진 및 EDS 측정<Experimental Example> SEM photograph and EDS measurement
상기 실시예 3의 조성으로 제조된 리튬 과량 양극활물질의 SEM 사진 및 EDS 를 측정한 결과를 도 5 및 도 6에 나타내고, 상기 실시예 4의 조성으로 제조된 리튬 과량 양극활물질의 SEM 사진 및 EDS 를 측정한 결과를 도 7 및 도 8에 나타내었다. SEM pictures and EDS results of the lithium excess positive electrode active material prepared in the composition of Example 3 are shown in FIGS. 5 and 6, SEM pictures and EDS of the lithium excess positive electrode active material prepared in the composition of Example 4 The measured results are shown in FIGS. 7 and 8.
<실험예> 전지특성 측정Experimental Example Measurement of Battery Characteristics
상기 실시예 1 내지 4 및 비교예 1 내지 6의 조성으로 제조된 리튬 과량 양극활물질을 카본블랙과 결착제인 PVDF[Poly(vinylidene fluoride)]와 94:3:3의 중량비로 유기용매인 NMP와 혼합하여 슬러리를 제조하였다. The lithium excess positive electrode active material prepared in the compositions of Examples 1 to 4 and Comparative Examples 1 to 6 was mixed with carbon black and PVDF [Poly (vinylidene fluoride)] as a binder and NMP as an organic solvent in a weight ratio of 94: 3: 3. To prepare a slurry.
상기 슬러리를 두께 20 ㎛ 의 Al foil에 도포한 후 건조하여 양극을 제조하였다. 상기 양극과 함께 음극으로 금속 리튬과 분리막으로 다공성 폴리에틸렌 필름(Cell Guard 2502)을 사용하여 CR2016 코인 반쪽셀(Coin half cell)을 조립하였고, 전해액으로는 1.1M LiPF6 EC/EMC/DEC 용액을 사용하였다. The slurry was coated on Al foil having a thickness of 20 μm and then dried to prepare a positive electrode. Coin half cell (CR2016) was assembled using a porous polyethylene film (Cell Guard 2502) as a metal lithium as a cathode and a separator as a cathode, and 1.1M LiPF 6 EC / EMC / DEC solution was used as an electrolyte. It was.
이와 같이 제조된 전지의 방전 용량 및 수명 특성을 측정하고 아래 표 2에 나타내었다. The discharge capacity and lifespan characteristics of the battery thus prepared were measured and shown in Table 2 below.
표 2
방전용량/ mAhg-1 50회 이후 상온수명 / %
실시예 1 249 95
실시예 2 250 96
비교예 1 261 87
비교예 2 259 93
비교예 3 254 92
비교예 4 253 93
비교예 5 240 92
비교예 6 239 93
TABLE 2
Discharge Capacity / mAhg-1 Room temperature lifespan after 50 times /%
Example 1 249 95
Example 2 250 96
Comparative Example 1 261 87
Comparative Example 2 259 93
Comparative Example 3 254 92
Comparative Example 4 253 93
Comparative Example 5 240 92
Comparative Example 6 239 93
표 2에서 보는 바와 같이 본 발명의 실시예에 의하여 제조된 리튬 과량 양극활물질의 경우 비교예에서보다 방전 용량 및 수명 특성이 개선되는 것을 알 수 있다. As shown in Table 2, in the case of the lithium excess positive electrode active material prepared according to the embodiment of the present invention, it can be seen that the discharge capacity and the life characteristics are improved than in the comparative example.
상기 실시예 3, 4의 조성으로 제조된 리튬 과량 양극활물질을 이용하는 CR2016 코인셀(Coin half cell)에 대한 충방전 특성을 측정한 결과는 도 9 내지 도 10에 나타내었다. The results of measuring charge and discharge characteristics of the CR2016 coin half cell using the lithium excess cathode active material prepared in the composition of Examples 3 and 4 are shown in FIGS. 9 to 10.
<< 실험예Experimental Example > 수명특성 측정> Life characteristics measurement
상기 실험예에서 제조된 실시예 3, 4의 조성으로 제조된 리튬 과량 양극활물질을 이용하는 CR2016 코인셀(Coin half cell)에 대해 수명 특성을 측정하고 그 결과를 도 11 및 도 12에 나타내었다. The lifespan characteristics of the CR2016 coin half cell using the lithium excess cathode active material prepared in the composition of Examples 3 and 4 prepared in the above experimental example were measured and the results are shown in FIGS. 11 and 12.
도 11 및 도 12에서 상기 본 발명의 실시예 3, 4의 조성으로 제조된 리튬 과량 양극활물질을 이용하는 CR2016 코인셀(Coin half cell)의 경우 40 사이클까지 용량이 유지되는 것을 확인할 수 있다. 11 and 12 in the case of CR2016 coin cell using a lithium excess cathode active material prepared in the composition of Examples 3 and 4 of the present invention, it can be seen that the capacity is maintained up to 40 cycles.
<실험예> 입자 강도 측정Experimental Example Particle Strength Measurement
상기 실시예 3 및 4의 조성으로 제조된 리튬 과량 양극활물질 및 비교예 1 및 2의 조성으로 제조된 리튬 과량 양극활물질에 대해 입자 강도를 측정하고 그 결과를 아래 표 3에 나타내었다. Particle strength was measured for the lithium excess positive electrode active material prepared in the compositions of Examples 3 and 4 and the lithium excess positive electrode active material prepared in the compositions of Comparative Examples 1 and 2 and the results are shown in Table 3 below.
표 3
ID Particle hardness
비교예 1 bare 101
비교예 2 Al 0.3 111
실시예 3 Al 0.3 Mg1 116
실시예 4 Al 0.3 Mg2 116
TABLE 3
ID Particle hardness
Comparative Example 1 bare 101
Comparative Example 2 Al 0.3 111
Example 3 Al 0.3 Mg1 116
Example 4 Al 0.3 Mg2 116
본 발명에 의한 리튬 과량 양극활물질 제조용 전구체 및 이에 의하여 제조된 리튬 과량 양극활물질은 탄산염 전구체 제조시 첨가되는 금속의 종류 및 첨가량을 조절함으로써 고전압 용량이 향상됨과 동시에 수명 특성이 개선된 전지를 제조할 수 있다.The lithium excess positive electrode active material precursor and the lithium excess positive electrode active material prepared according to the present invention can manufacture a battery having a high voltage capacity and improved lifespan characteristics by controlling the type and amount of metal added during the production of a carbonate precursor. have.

Claims (7)

  1. 하기 화학식 1로 표시되는 리튬 과량 양극활물질 제조용 전구체. A precursor for producing a lithium excess positive electrode active material represented by the following formula (1).
    [화학식 1] NiαMnβ-yCoγ-δAlδAyCO3 Ni α Mn β-y Co γ-δ Al δ A y CO 3
    (상기 화학식 1에서, A 는 Mg, Ti, 및 Zr 으로 이루어진 그룹에서 선택되고, α 는 0.05 내지 0.4 이고, β 는 0.5 내지 0.8 이고, γ 는 0 내지 0.4 이고, δ 는 0.001 내지 0.1 이고, y 는 0.001 내지 0.1 이다)(In Formula 1, A is selected from the group consisting of Mg, Ti, and Zr, α is 0.05 to 0.4, β is 0.5 to 0.8, γ is 0 to 0.4, δ is 0.001 to 0.1, y Is 0.001 to 0.1)
  2. 제 1 항에 있어서, The method of claim 1,
    상기 리튬 과량 양극활물질 제조용 전구체의 입경은 5 내지 25 ㎛ 인 것을 특징으로 하는 리튬 과량 양극활물질 제조용 전구체. Particle diameter of the precursor for producing the lithium excess positive electrode active material is a precursor for producing a lithium excess positive electrode active material, characterized in that 5 to 25 ㎛.
  3. 제 1 항 또는 제 2 항에 의한 리튬 과량 양극활물질 제조용 전구체로 제조되고, 하기 화학식 2로 표시되는 리튬 과량 양극활물질. A lithium excess cathode active material prepared by using the precursor for producing a lithium excess cathode active material according to claim 1 or 2, and represented by the following Chemical Formula 2.
    [화학식 2] Li1+xNiαMnβ-yCoγ-δAlδAyO2 Li 1 + x Ni α Mn β-y Co γ-δ Al δ A y O 2
    (상기 화학식 2에서, x 는 0.2 내지 0.7 이고, A 는 Mg, Ti, 및 Zr 으로 이루어진 그룹에서 선택되고, α 는 0.05 내지 0.4 이고, β 는 0.5 내지 0.8 이고, γ 는 0 내지 0.4 이고, δ 는 0.001 내지 0.1 이고, y 는 0.001 내지 0.1 이다)(In Formula 2, x is 0.2 to 0.7, A is selected from the group consisting of Mg, Ti, and Zr, α is 0.05 to 0.4, β is 0.5 to 0.8, γ is 0 to 0.4, δ Is 0.001 to 0.1 and y is 0.001 to 0.1)
  4. 제 3 항에 있어서, The method of claim 3, wherein
    상기 리튬 과량 양극활물질은 xLiMAlδO2·(1-x)Li2Mn1 - yAyO3 (0<x<1, M 은 Ni, Co, 및 Mn의 조합이고, A 는 Mg, Ti, 및 Zr 으로 이루어진 그룹에서 선택되는 금속이고, δ 는 0.001 내지 0.1 이고, y 는 0.001 내지 0.1 이다)으로 표시되는 것을 특징으로 하는 리튬 과량 양극활물질. The lithium excess positive electrode active material is xLiMAl δ O 2. (1-x) Li 2 Mn 1 - y A y O 3 (0 <x <1, M is a combination of Ni, Co, and Mn, A is Mg, Ti , And Zr, and a metal selected from the group consisting of δ is 0.001 to 0.1, and y is 0.001 to 0.1).
  5. 제 3 항에 있어서, The method of claim 3, wherein
    상기 리튬 과량 양극활물질은 층상구조의 복합체 또는 고용체 형태인 것을 특징으로 하는 리튬 과량 양극활물질.The lithium excess positive electrode active material is a lithium excess positive electrode active material, characterized in that the layered composite or solid solution form.
  6. 제 3 항에 있어서, The method of claim 3, wherein
    상기 Al 의 함유량 δ와 Li 의 함유량 x, 이종금속 A 의 함유량 y 사이에는 다음과 같은 관계식을 만족하는 것을 특징으로 하는 리튬 과량 양극활물질. Lithium excess cathode active material, characterized in that the following relational expression is satisfied between the content δ of Al, the content x of Li and the content y of dissimilar metal A.
    x ≥δx ≥δ
    y ≥δy ≥δ
  7. 제 3 항에 있어서, The method of claim 3, wherein
    상기 리튬 과량 양극활물질의 입자 강도가 115 Mpa 이상인 것을 특징으로 하는 리튬 과량 양극활물질.The lithium excess positive electrode active material, characterized in that the particle strength of the lithium excess positive electrode active material is 115 Mpa or more.
PCT/KR2014/002746 2013-03-30 2014-03-31 Precursor for producing lithium-rich cathode active material, and lithium-rich cathode active material produced thereby WO2014163357A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/871,067 US20160308197A1 (en) 2013-03-30 2015-09-30 Precursor for Producing Lithium-rich Cathode Active Material, and Lithium-rich Cathode Active Material Produced Thereby
US15/662,017 US20170324085A1 (en) 2013-03-30 2017-07-27 Precursor for Producing Lithium-rich Cathode Active Material, and Lithium-rich Cathode Active Material Produced Thereby

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130034929 2013-03-30
KR10-2013-0034929 2013-03-30
KR10-2013-0150314 2013-12-05
KR1020130150314A KR20140119620A (en) 2013-03-30 2013-12-05 Precusor for lithium rich active material and lithium rich active material made by the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002748 Continuation-In-Part WO2014163359A1 (en) 2013-03-30 2014-03-31 Precursor for producing lithium-rich cathode active material, and lithium-rich cathode active material produced thereby

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/871,067 Continuation-In-Part US20160308197A1 (en) 2013-03-30 2015-09-30 Precursor for Producing Lithium-rich Cathode Active Material, and Lithium-rich Cathode Active Material Produced Thereby

Publications (1)

Publication Number Publication Date
WO2014163357A1 true WO2014163357A1 (en) 2014-10-09

Family

ID=51658593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002746 WO2014163357A1 (en) 2013-03-30 2014-03-31 Precursor for producing lithium-rich cathode active material, and lithium-rich cathode active material produced thereby

Country Status (1)

Country Link
WO (1) WO2014163357A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108432002A (en) * 2016-01-06 2018-08-21 住友金属矿山株式会社 The manufacturing method of nonaqueous electrolytic active material for anode of secondary cell presoma, nonaqueous electrolytic active material for anode of secondary cell, the manufacturing method of nonaqueous electrolytic active material for anode of secondary cell presoma and nonaqueous electrolytic active material for anode of secondary cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070083550A (en) * 2004-09-03 2007-08-24 유시카고 아곤, 엘엘씨 Manganese oxide composite electrode for lithium batteries
KR20090013661A (en) * 2007-08-01 2009-02-05 주식회사 엘 앤 에프 New cathode active material
KR20090105883A (en) * 2008-04-03 2009-10-07 주식회사 엘지화학 Precursor for Preparation of Lithium Transition Metal Oxide
KR20110044375A (en) * 2009-10-23 2011-04-29 주식회사 휘닉스소재 Manufacturing method of lithium-nickel-cobalt-manganese complex oxide, lithium-nickel-cobalt-manganese complex oxide manufactured thereby and lithium secondary battery with the same
US20110168944A1 (en) * 2007-10-13 2011-07-14 Lg Chem, Ltd. Cathode active material for lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070083550A (en) * 2004-09-03 2007-08-24 유시카고 아곤, 엘엘씨 Manganese oxide composite electrode for lithium batteries
KR20090013661A (en) * 2007-08-01 2009-02-05 주식회사 엘 앤 에프 New cathode active material
US20110168944A1 (en) * 2007-10-13 2011-07-14 Lg Chem, Ltd. Cathode active material for lithium secondary battery
KR20090105883A (en) * 2008-04-03 2009-10-07 주식회사 엘지화학 Precursor for Preparation of Lithium Transition Metal Oxide
KR20110044375A (en) * 2009-10-23 2011-04-29 주식회사 휘닉스소재 Manufacturing method of lithium-nickel-cobalt-manganese complex oxide, lithium-nickel-cobalt-manganese complex oxide manufactured thereby and lithium secondary battery with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108432002A (en) * 2016-01-06 2018-08-21 住友金属矿山株式会社 The manufacturing method of nonaqueous electrolytic active material for anode of secondary cell presoma, nonaqueous electrolytic active material for anode of secondary cell, the manufacturing method of nonaqueous electrolytic active material for anode of secondary cell presoma and nonaqueous electrolytic active material for anode of secondary cell
CN108432002B (en) * 2016-01-06 2021-06-18 住友金属矿山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, precursor thereof, and method for producing same

Similar Documents

Publication Publication Date Title
WO2015065095A1 (en) Negative electrode active material for lithium secondary battery and method for preparing same
WO2014084502A1 (en) Silicon-based composite and method for manufacturing same
WO2013002457A1 (en) Positive electrode active material, electrode including the positive electrode active material, and lithium electrochemical battery
WO2011062422A2 (en) Cathode mixture for lithium secondary battery and lithium secondary battery using same
KR20140119621A (en) Precusor for lithium rich active material and lithium rich active material made by the same
WO2014010970A1 (en) High density anode active material and preparation method thereof
WO2014077662A1 (en) Method for producing anode active material precursor for sodium secondary battery by using coprecipitation technique and anode active material precursor for sodium secondary battery produced thereby
WO2015099243A1 (en) Electrode active material containing boron compound and electrochemical device using same
WO2019240496A1 (en) Anode active material for lithium secondary battery and lithium secondary battery comprising same
WO2014104811A1 (en) Method for producing cathode active material for lithium secondary battery, and cathode active material for lithium secondary battery produded thereby
WO2014116064A1 (en) Method of producing iron oxide nanoparticles
WO2020013667A1 (en) Lithium secondary battery comprising inorganic electrolyte solution
WO2014126312A1 (en) Method for producing anodic composite material for lithium secondary battery, method for producing electrode using same, and method for charging and discharging electrode
WO2014077663A1 (en) Anode active material for sodium secondary battery and method for producing same
WO2016108385A1 (en) Precursor of cathode active material for lithium secondary batteries, method of preparing same, cathode active material for lithium secondary batteries, method of preparing same, and lithium secondary battery comprising said cathode active material
WO2014061974A1 (en) Silicon oxide-carbon composite and method for preparing same
WO2014061973A1 (en) Method for preparing silicon oxide
KR101776896B1 (en) Cathode active material for lithium secondary battery and a method of making the same
WO2014081269A1 (en) Precursor of electrode active material coated with metal, and method for preparing same
KR100644915B1 (en) Cathode active material for a Lithium secondary battery and a Lithium secondary battery containing the same
WO2013002559A2 (en) Cathode active material, lithium secondary battery including cathode active material, and method for electrochemically activating lithium secondary battery
WO2013065918A1 (en) Method for manufacturing a cathode active material for a lithium secondary battery
WO2014163357A1 (en) Precursor for producing lithium-rich cathode active material, and lithium-rich cathode active material produced thereby
WO2022014858A1 (en) Positive electrode active material for lithium secondary battery
WO2011090235A1 (en) Positive active material for a lithium secondary battery, method for manufacturing same, and lithium secondary battery using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS (EPO FORM 1205A DATED 05-02-2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14779371

Country of ref document: EP

Kind code of ref document: A1