WO2014163268A1 - 반사형 프로젝터용 스크린 - Google Patents

반사형 프로젝터용 스크린 Download PDF

Info

Publication number
WO2014163268A1
WO2014163268A1 PCT/KR2013/010006 KR2013010006W WO2014163268A1 WO 2014163268 A1 WO2014163268 A1 WO 2014163268A1 KR 2013010006 W KR2013010006 W KR 2013010006W WO 2014163268 A1 WO2014163268 A1 WO 2014163268A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
projector
screen
base diffusion
diffusion layer
Prior art date
Application number
PCT/KR2013/010006
Other languages
English (en)
French (fr)
Inventor
김성태
이승규
김영성
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/761,207 priority Critical patent/US9354500B2/en
Priority to EP13880853.0A priority patent/EP2930561B1/en
Publication of WO2014163268A1 publication Critical patent/WO2014163268A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/602Lenticular screens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0257Diffusing elements; Afocal elements characterised by the diffusing properties creating an anisotropic diffusion characteristic, i.e. distributing output differently in two perpendicular axes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0284Diffusing elements; Afocal elements characterized by the use used in reflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/123Optical louvre elements, e.g. for directional light blocking

Definitions

  • the present invention relates to a screen for a reflective projector.
  • the projector emits an image on the screen and the user sees the light reflected on the screen. Since the incident angle and the reflection angle appear symmetrically, when using a projector of a long distance as in the prior art, the image emitted from the projector may be reflected on the screen and transmitted to the user.
  • An object of the present invention is to provide a screen for a projector that can be viewed even in a bright room and can also be used for a 3D projector.
  • a projector screen for displaying an image incident from a projector comprising: an anisotropic base diffusion layer having a fine pattern formed thereon; A lens layer formed on a rear surface of the anisotropic base diffusion layer; A reflective layer deposited on a rear surface of the lens layer; And it provides a screen for the projector comprising a surface protective layer coupled to the front surface of the anisotropic base diffusion layer.
  • the anisotropic base diffusion layer may use a small change in retardation according to the incident angle of the image incident from the projector.
  • the anisotropic base diffusion layer has a difference in retardation when the incident angle of the image incident from the projector is 50 ° or less when the retardation is 10 nm or less, or when the incident angle of the image incident from the projector is 0 ° and 50 °. Is less than or equal to 5 nm.
  • the anisotropic base diffusion layer may use a polymethyl methacrylate (PMMA) film.
  • PMMA polymethyl methacrylate
  • Polymethyl methacrylate film can be produced by the solution cast method.
  • the anisotropic base diffusion layer may include a plurality of unit layers in which parallel patterns having a predetermined pitch are formed, and the micropattern formed in one unit layer may intersect the micropattern formed in at least one other unit layer.
  • the anisotropic base diffusion layer may be composed of two unit layers.
  • the lens layer or the surface protection layer may include a black material.
  • Carbon black may be used as the black material.
  • the surface protection layer may include an anisotropic base diffusion layer for the surface protection layer and a surface protection coating layer formed on the front surface thereof.
  • the anisotropic base diffusion layer and the surface protective layer may be attached with an adhesive, and black primer may be used as the adhesive.
  • the lens layer may use a Fresnel lens divided into a plurality of surfaces on the rear side.
  • the back surface of the anisotropic base diffusion layer may be formed of a thermosetting resin or an ultraviolet curing resin.
  • the reflective layer may include black pearl.
  • the projector screen of the present invention can watch a short focus projector in a bright room, and can secure a viewing angle while the brightness distribution in the screen is uniform.
  • the crosstalk value is small and can be used as a screen for passive type 3D projectors.
  • FIG. 1 is a state diagram of use of the screen for a projector of the present invention.
  • FIG. 2 is a cross-sectional view of a screen for a projector according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view of a screen for a projector according to an embodiment of the present invention.
  • FIG. 4 is a conceptual diagram showing a measurement angle for retardation measurement of a screen for a projector.
  • FIG. 5 is an exploded perspective view illustrating a layer structure of an anisotropic base diffusion layer of a screen for a projector according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a screen for a conventional projector.
  • the short-focus projector 20 emits an image at a short distance from the screen 10.
  • the short focus projector 20 and the screen 10 are illustrated as separate independent objects in the drawing, a display type in which the projector 20 is fixed to the bottom of the screen 10 is also possible.
  • the difference between the incidence angles of the upper and lower portions is large as shown in the drawing.
  • the image incident on the screen 10 is reflected and enters the user's eye.
  • the difference between the angles of incidence between the top and the bottom is large, the light reaches the user's eye because the light reflection path is directed toward the ceiling instead of the user's eye. There is a problem that the amount of.
  • the short-focus projector screen 10 may be reflected to the front only when the reflective surface faces downward so that light may be moved to the eyes of the user instead of the ceiling. While tilting the entire screen 10 in the front direction, the light emitted from the projector 20 may be reflected from the reflective surface to reach the eyes of the front user, but the reflection of the screen 10 may be tilted downward to install the screen 10.
  • FIG. 2 which is a cross-sectional view of a screen for a projector according to an embodiment of the present invention, a Fresnel lens 13 divided into a plurality of surfaces may be used.
  • FIG. 3 illustrates a reflection path when the lens layer 13 is formed of the Fresnel lens 13.
  • the Fresnel lens 13 includes a plurality of reflective surfaces in which an image emitted from the bottom is inclined toward the front lower side. Can be reflected to the viewer's eyes.
  • Fresnel lens 13 is a lens that can reduce the thickness of the curved lens, characterized in that the curved lens surface is divided into a flat configuration.
  • the cross section of the Fresnel lens 13 has a sawtooth shape as shown in FIG.
  • the Fresnel lens may have a circular shape around a concentric circle.
  • a linear Fresnel lens 13 having a plurality of surfaces facing downward may be used.
  • FIG. 6 is a cross-sectional view illustrating a conventional screen 5 for a projector.
  • a back coating layer 1-1 a reflective layer 1-2, a lens layer 1-3, and a base layer 1-4 are shown.
  • Adhesive 2-1 Adhesive 2-1
  • diffusion layer 3 Adhesive 2-1
  • adhesive 2-2 Adhesive 2-1
  • base layer 4-1 base layer 4-1
  • black layer 4-2 front coating layer 4-3.
  • the conventional projector screen (5) forms a lens layer (1-3) on the base layer (1-4), applies a reflective layer (1-2) on it, and protects the reflective layer with a back coating layer (1-1)
  • Form the first layer attach the diffusion layer 3 to the base layer (1-4) located in front of the first layer with an adhesive (2-1), protect the front surface of the projector screen (5),
  • the surface protective layers 4-1, 4-2, and 4-3 including the black layer 4-2 are attached to the screen using the adhesive 2-2.
  • This conventional structure is a structure in which several layers are stacked, and the more layers are stacked, the more the angle of refraction according to the angle of incidence causes a problem of severe distortion in the image reflected from the screen.
  • the angle difference between the incident angle of the light incident on the upper part of the screen from the projector 20 and the incident angle of the light incident on the lower part is large as in the present invention, the distortion becomes more severe, and thus, it is necessary to simplify the complicated layer structure as in the prior art. .
  • FIG. 2 is a cross-sectional view of a screen for a projector according to an embodiment of the present invention, wherein the screen of the present invention has a plurality of layered structures. It has a layered structure of the back coating layer 11, the reflection layer 12, the lens layer 13, the anisotropic base diffusion layer 14, the adhesive 15, the surface protective layer 16.
  • the adhesive can be further reduced, and the layer structure is omitted by omitting the black layer 4-2 from the conventional surface protection layers 4-1, 4-2, and 4-3. Simplified.
  • the lens layer 13 is formed on the anisotropic base diffusion layer 14. Since the lens layer 13 is formed of a resin such as an ultraviolet curable resin or a thermosetting resin, a base layer is required. As shown in FIG. 2, the anisotropic base diffusion layer 14 of the present invention, which serves as a base when forming the lens layer 13, is located in front of the lens layer 13, thereby being incident and reflected onto the screen 10. Affect the path of light
  • the degree of distortion of light incident or reflected on the lens layer 13 is determined by the retardation value of the base layer 14 according to the refraction of light.
  • Retardation is a speed difference between light in the air because light changes speed in a specific medium, which may appear differently depending on the angle of incidence. The larger the angle of incidence, the greater the resistance due to the medium, and thus the larger the retardation value.
  • the retardation value is measured and compared at (a) 0 ° and (b) 50 °. Even when the incident angle is changed, a material having a small retardation value and little change can be used to obtain a clear image. (See Figure 4)
  • Table 1 summarizes the retardation values according to the thickness of the polycarbonate which is a representative thermosetting resin and the angle of incident light.
  • the retardation value is 4 nm, but when the light is incident at 50 °, 38 nm is shown, and the difference in value is large. The difference is more pronounced as the thickness becomes thicker.
  • the retardation value is 5 nm, but when the light is incident at 50 °, 50 nm is emitted and the difference is larger.
  • Polycarbonate is not a problem as a base layer of the screen for projectors projected from a long distance, but is not suitable as a base layer of the short-focus projector screen 10 having a large variation in incident angle.
  • the anisotropic base diffusion layer 14 is formed using a material having a small difference in retardation value according to the angle of incident light.
  • Polymethyl methacrylate (PMMA) is an example of a material having a small difference in retardation value depending on the angle of incident light.
  • the retardation value may be reduced as the stress is minimized.
  • the anisotropic base diffusion layer is formed by using a method of producing a film without applying stress, such as a solution cast method of applying a solution to form a film, the retardation value can be further lowered.
  • Table 2 summarizes the retardation values according to the thickness of the polymethyl methacrylate and the angle of incident light.
  • the polymethyl methacrylate does not have a large difference in the incident light at 0 ° or 50 ° when the thickness is 40 ⁇ m. However, if the thickness is thick, there is a problem that appears depending on the incident angle.
  • the anisotropic base diffusion layer 14 of the present invention uses a material having a small retardation value according to the angle of incident light. However, when the thickness becomes thick, the retardation value increases when the incident angle is large. Therefore, it is necessary to reduce the thickness of the screen 10. have.
  • the diffusion layer 3 is conventionally attached to the front surface of the lens layer 1-3.
  • the diffusion layer 3 is for securing a viewing angle, which means that an image emitted to the screen 10 can be seen even when the user looks at the screen 10 at an oblique position without looking at the front.
  • the wider the viewing angle the better the screen.
  • the retardation value is increased to increase the viewing angle. There is a problem that is difficult to use as a dragon screen.
  • the image incident on the left eye and the right eye should not be mixed with each other. Since the diffusion layer 3 used in the conventional screen 5 scatters light, the image for the left eye is incident on the right eye. Phenomenon (hereinafter referred to as 'cross talk') occurs.
  • the diffusion layer 3 may be omitted to minimize the crosstalk phenomenon, and instead, a fine pattern may be formed in the anisotropic base diffusion layer 14 to secure a viewing angle.
  • the fine pattern diffuses light to secure a viewing angle, but diffuses only in a specific direction to prevent crosstalk. In other words, it is possible to secure the viewing angle while minimizing the crosstalk phenomenon by diffusing light incident only in the direction for securing the viewing angle, rather than spreading in all directions.
  • FIG. 5 is an exploded perspective view of the layered structure of the anisotropic base diffusion layer 14, wherein the anisotropic base diffusion layer 14 is formed by stacking a plurality of unit layers 14a and 14b.
  • Each of the unit layers 14a and 14b is provided with fine patterns 14a 'and 14b' which are spaced apart at predetermined intervals and arranged in parallel.
  • the fine patterns 14a 'and 14b' diffuse light only in a specific direction, thereby minimizing crosstalk while securing a viewing angle.
  • the directions of the fine patterns 14a 'and 14b' formed in each of the unit layers 14a and 14b are different, one for the horizontal and the other for the vertical, and the horizontal unit layer 14a and the vertical unit layer 14b.
  • the patterns cross.
  • the horizontal micropattern 14a ' is not necessarily arranged in the horizontal direction and the vertical micropattern 14b' is not arranged vertically, but may be arranged to be inclined in an oblique direction.
  • the degree of diffusion can be controlled by adjusting the pitch of the fine patterns 14a 'and 14b' and the width of the pattern.
  • the widths of the fine patterns 14a 'and 14b' can be formed in the range of 200 nm or more and 1000 nm or less, and the pitch can be formed at intervals of about 5 m or more and 50 m or less. Widths and pitches of the fine patterns 14a 'and 14b' may be adjusted differently according to physical properties such as thickness and retardation values of other members.
  • the unit layers 14a and 14b are illustrated as two layers in the drawing, since the horizontal layer and the vertical layer are stacked in a set, the unit layers 14a and 14b may be configured as even unit layers 14a and 14b such as four or six. However, when the unit layers 14a and 14b increase, the thickness of the anisotropic base diffusion layer 14 increases, so that the retardation value increases as described above. Thus, the unit layers 14a and 14b minimize the retardation value. Only two sheets of?) Can be laminated to form the anisotropic base diffusion layer 14.
  • the lens layer 13 formed on the anisotropic base diffusion layer 14 may include a black material such as carbon black. Since the background of the image must be black to achieve a clear screen with a high contrast ratio, an independent black layer 4-2 is stacked as shown in FIG. 6. However, since the layered structure is increased and causes retardation to increase, the conventional black layer 4-2 is omitted, and a black material is included in the manufacturing of the lens layer 13. You can merge the functions.
  • the lens layer 13 is formed with a plurality of faces divided on the rear surface, and forms a reflective layer on the rear surface to reflect light.
  • a mirror film may be used as the reflective layer, and may contain black pearl to increase the contrast ratio along with the reflection performance.
  • the rear coating layer 11 may be further formed on the rear surface of the reflective layer to prevent the reflective layer from being damaged.
  • the surface protection layer 16 is further laminated on the front surface of the anisotropic base diffusion layer 14 to prevent the pattern formed on the anisotropic base diffusion layer 14 from being damaged. Formation of the surface protection layer 16 can be used in both a coating method and a method of laminating a film. However, since the retardation value can be reduced by forming as thin as possible, it is possible to form a thinner surface protection layer 16 using a film compared to the coating method.
  • the surface protection layer 16 should also have a small difference in retardation value according to the incident angle, a material used for the anisotropic base diffusion layer 14 such as polymethylmethacrylate may be used.
  • the surface protection layer 16 may be formed by applying a surface protection layer base layer made of the same material as the material used for the anisotropic base diffusion layer 14 and a surface protection coating layer thereon.
  • An adhesive 15 may be used to laminate the surface protective layer 16 to the anisotropic base diffusion layer 14.
  • the adhesive 15 may be blackened by using a member having a low retardation value and low retardation value depending on the incident angle while being as thin as the black primer layer. .
  • the projector screen of the present invention can watch a short focus projector in a bright room, and can secure a viewing angle while the brightness distribution in the screen is uniform.
  • the crosstalk value is small and can be used as a screen for passive type 3D projectors.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

프로젝터로부터 입사된 영상을 표시하는 프로젝터용 스크린에 있어서, 미세패턴이 형성된 이방성 기저 확산층; 상기 이방성 기저 확산층의 배면에 형성되는 렌즈층; 상기 렌즈층의 배면에 증착된 반사층; 및 상기 이방성 기저 확산층의 전면에 결합되는 표면보호층을 포함하는 프로젝터용 스크린은 단초점 프로젝터를 밝은 실내에서 시청할 수 있고, 스크린 내의 밝기 분포가 균일하면서도 시야각을 확보할 수 있다.

Description

반사형 프로젝터용 스크린
본 발명은 반사형 프로젝터용 스크린에 관한 것이다.
프로젝터는 스크린에 영상을 사출하고 사용자는 스크린에 반사된 빛을 보게되는 것이다. 입사각과 반사각은 대칭적으로 나타나므로, 종래와 같이 먼 거리에서 사출하는 방식의 프로젝터를 이용할 때에는 프로젝터에서 사출된 영상이 스크린에 반사되어 사용자에게 전달 될 수 있다.
그러나 최근 근거리에서 사출하는 단초점 프로젝터의 경우 스크린에 가까운 거리에서 입사하기 때문에 입사각이 종래의 프로젝터 방식에 비해 크다. 입사각이 크면 반사각도 커서 대부분의 빛이 사용자의 눈으로 빛이 반사되는 것이 아니라 천장 쪽으로 반사되어 매우 어두운 영상을 시청하게 되고, 3D영상의 경우 영상의 반사각도가 입체안경의 위치를 벗어나게 되어 3D영상의 시청 자체가 불가능하게 되는 문제가 있다.
특히 종래의 스크린을 단초점 프로젝터에 사용하는 경우 밝은 실내에서 콘트라스트의 저하, 전면 밝기 분포의 불균일 문제 및 광시야각 확보가 어려운 문제가 있어 상용의 한계가 있다.
본 발명은 밝은 실내에서도 시청 가능하며, 3D 프로젝터에도 이용 가능한 프로젝터용 스크린을 제공하는 것을 목적으로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
프로젝터로부터 입사된 영상을 표시하는 프로젝터용 스크린에 있어서, 미세패턴이 형성된 이방성 기저 확산층; 상기 이방성 기저 확산층의 배면에 형성되는 렌즈층; 상기 렌즈층의 배면에 증착된 반사층; 및 상기 이방성 기저 확산층의 전면에 결합되는 표면보호층을 포함하는 프로젝터용 스크린을 제공한다.
상기 이방성 기저 확산층은 상기 프로젝터로부터 입사된 영상의 입사각에 따라 리타데이션(retardation)의 변화가 작은 것을 이용할 수 있다.
상기 이방성 기저 확산층은 상기 프로젝터로부터 입사된 영상의 입사각이 50°인 경우 리타데이션(retardation)이 10nm이하이거나, 상기 프로젝터로부터 입사된 영상의 입사각이 0°인 경우와 50°인 경우 리타데이션의 차이가 5nm이하인 것을 이용할 수 있다.
상기 이방성 기저 확산층은 폴리메틸메타아크릴레이트(PMMA:Poly Methyl methaacrylate) 필름을 이용할 수 있다.
폴리메틸메타아크릴레이트 필름은 용액캐스트법으로 제조될 수 있다.
상기 이방성 기저 확산층은 소정 피치의 평행한 패턴이 형성되어 있는 복수 개의 단위층으로 이루어져 있고, 상기 하나의 단위층에 형성된 미세패턴은 적어도 다른 하나의 단위층에 형성된 미세패턴과 교차될 수 있다.
상기 이방성 기저 확산층은 2개의 단위층으로 이루어질 수 있다.
상기 렌즈층 또는 표면보호층은 블랙 물질을 포함할 수 있다.
상기 블랙 물질으로 카본 블랙을 이용할 수 있다.
상기 표면보호층은 표면보호층용 이방성 기저 확산층과 그 전면에 형성된 표면보호코팅층을 포함할 수 있다.
상기 이방성 기저 확산층과 상기 표면보호층은 접착제로 부착되고 상기 접착제로 블랙 프라이머를 이용할 수 있다.
상기 렌즈층은 배면쪽에 복수 개의 면으로 분할된 프레넬 렌즈을 이용할 수 있다.
상기 이방성 기저 확산층의 배면에 열경화 수지 또는 자외선 경화 수지로 형성될 수 있다.
상기 반사층은 블랙 펄을 포함할 수 있다.
본 발명의 프로젝터용 스크린은 단초점 프로젝터를 밝은 실내에서 시청할 수 있고, 스크린 내의 밝기 분포가 균일하면서도 시야각을 확보할 수 있다.
또한, 확산시트를 생략함으로써 크로스 토크 값이 작아 패시브 타입 3D스프로젝터용 스크린으로 이용할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 프로젝터용 스크린의 사용 상태도이다.
도 2는 본 발명의 일 실시예에 따른 프로젝터용 스크린의 단면도이다.
도 3은 본 발명의 일 실시예에 따른 프로젝터용 스크린의 단면도이다.
도 4는 프로젝터용 스크린의 리타데이션 측정을 위한 측정각을 표시한 개념도이다.
도 5는 본 발명의 일 실시예에 따른 프로젝터용 스크린의 이방성 기저 확산층의 층상 구조를 분해한 사시도이다.
도 6은 종래의 프로젝터용 스크린의 단면도이다.
이하, 본 발명과 관련된 이동 단말기에 대하여 도면을 참조하여 보다 상세하게 설명한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 프로젝터용 스크린(10)의 사용상태를 나타낸 도면으로서, 단초점 프로젝터(20)는 스크린(10)으로부터 근거리에서 영상을 사출한다. 도면 상으로는 단초점 프로젝터(20)와 스크린(10)은 분리된 독립 개체로 도시되어 있으나, 스크린(10)의 하단에 프로젝터(20)가 고정된 디스플레이 타입도 가능하다.
단초점 프로젝터(20)와 같이 근거리에서 영상을 사출하는 경우 도면에 도시된 바와 같이 상부와 하부의 입사각의 차이가 크게 된다. 스크린(10)에 입사되는 영상은 반사되어 사용자의 눈에 들어오는 데, 상부와 하부의 입사각의 차이가 크게 되면 빛의 반사 경로가 사용자의 눈이 아닌 천장을 향하기 때문에 사용자의 눈에 도달하게 되는 빛의 양이 적어지는 문제가 있다.
이에, 단초점 프로젝터용 스크린(10)은 반사면이 하측을 향하고 있어야 정면으로 반사되어 천장이 아닌 사용자의 눈으로 빛이 이동될 수 있다. 스크린(10) 전체를 전면 방향으로 기울여, 프로젝터(20)에서 사출된 빛이 반사면에서 반사되어 전면의 사용자에 눈에 도달하게 할 수 있으나, 반사이 하측을 향하도록 기울여서 스크린(10)의 설치가 어려운바, 본 발명의 일 실시예에 따른 프로젝터용 스크린의 단면도인 도 2에 도시된 바와 같이, 복수개의 면으로 분할된 프레넬 렌즈(13)를 이용할 수 있다.
도 3은 렌즈층(13)을 프레넬 렌즈(13)로 형성한 경우 반사 경로를 표시한 것으로 하부에서 사출된 영상이 전면 하측 방향으로 기울어진 복수의 반사면을 구비한 프레넬 렌즈(13)에 반사되어 시청자의 눈으로 입사될 수 있다.
프레넬 렌즈(13)는 굴곡진 렌즈의 두께를 줄일 수 있는 렌즈로서, 굴곡진 렌즈 면을 분할하여 평면으로 구성한 것이 특징이다. 프레넬 렌즈(13)의 단면은 도 2에 도시된 바와 같이 톱니 형상으로 이루어진다. 프레넬 렌즈는 동심원을 중심으로 원형을 이루고 있는 경우도 있으나, 본 실시예에서는 하측 방향을 향하는 복수개의 면이 평행하게 형성된 리니어 타입의 프레넬 렌즈(13)를 이용할 수 있다.
도 6은 종래의 프로젝터용 스크린(5)을 도시한 단면도로서, 도 6을 참조하면 후면코팅층(1-1), 반사층(1-2), 렌즈층(1-3), 기저층(1-4), 접착제(2-1), 확산층(3), 접착제(2-2), 기저층(4-1), 블랙층(4-2) 및 전면코팅층(4-3)의 층상구조를 갖는다.
종래의 프로젝터용 스크린(5)은 기저층(1-4)에 렌즈층(1-3)을 형성하고 그 위에 반사층(1-2)을 도포하고, 후면 코팅층(1-1)으로 반사층을 보호하는 제1 층을 형성하고, 제1 층의 전면에 위치하는 기저층(1-4)에 확산층(3)을 접착제(2-1)로 부착하고, 프로젝터용 스크린(5)의 전면을 보호하고, 선명한 화면을 위해 블랙층(4-2)을 포함하는 표면 보호층(4-1, 4-2, 4-3)을 접착제(2-2)를 이용하여 부착한다.
이러한 종래의 구조는 여러층이 적층된 구조로서, 적층된 층이 많을 수록 입사각에 따른 굴절각이 달라 스크린에서 반사되는 영상에 왜곡이 심해지는 문제가 있다. 본원 발명과 같이 프로젝터(20)로 부터 스크린의 상부에 입사되는 빛의 입사각과 하부에 입사되는 빛의 입사각의 각도차가 큰 경우에는 왜곡이 더욱 심해지므로, 종래와 같은 복잡한 층상구조를 간략화 필요가 있다.
도 2는 본 발명의 일 실시예에 따른 프로젝터용 스크린의 단면도로서, 본 발명의 스크린은 복수개의 층상구조로 이루어진다. 후면코팅층(11), 반사층(12), 렌즈층(13), 이방성 기저 확산층(14), 접착제(15), 표면보호층(16)의 층상구조를 갖는다. 종래의 확산층(3)을 생략함으로써, 접착제도 한층으로 줄일 수 있고, 종래의 표면 보호층(4-1, 4-2, 4-3)에서 블랙층(4-2)을 생략하여 층상구조를 간략화 하였다.
이하에서는 도 2를 참조하여 본원 발명의 구성에 대해 보다 구체적으로 살펴보도록 한다.
렌즈층(13)은 이방성 기저 확산층(14) 위에 형성된다. 렌즈층(13)은 자외선 경화수지 또는 열경화 수지 등의 수지로 형성되기 때문에 기저층이 필요하다. 다마, 도 2에 도시된 바와 같이 렌즈층(13) 형성시 베이스 역할을 하는 본원 발명의 이방성 기저 확산층(14)은 렌즈층(13)의 전면에 위치하기 때문에 스크린(10)으로 입사되고 반사되는 빛의 경로에 영향을 미친다.
렌즈층(13)으로 입사 또는 반사되는 빛의 왜곡 정도는 빛의 굴절 현상에 따른 기저층(14)의 리타데이션(retardation) 값에 의해 결정된다. 리타데이션이란 빛이 특정 매질에서 속도가 달라지기 때문에 공기중에서의 빛과 속도차가 생기는 데, 입사각에 따라 다르게 나타날 수 있다. 입사각이 클수록 매질에 의한 저항이 커지므로 리타데이션 값이 커진다.
이격되어 사출하는 프로젝터용 스크린의 경우에는 입사각이 스크린의 위치에 관계없이 거의 비슷하므로, 0°에서의 리타데이션만 측정하여 0°에서의 리타데이션이 작은 소재를 이용하였다.
그러나, 본원 발명의 스크린과 같은 단초점 프로젝터용 스크린(10)의 경우 도 1에서 본 바와 같이 입사각이 상부와 하부가 차이가 크다. 이에, 리타데이션 값을 (a) 0°와 (b) 50°에서 측정하여 비교하여, 입사각이 변화해도 리타데이션 값이 작고 변화가 적은 물질을 이용해야 선명한 화질의 영상을 얻을 수 있다. (도 4 참조)
[표1]은 대표적인 열경화 수지인 폴리카보네이트의 두께 및 입사광의 각도에 따른 리타데이션 값을 정리한 표이다.
표 1
필름 종류 두께(㎛) 0°임사광 시 리타데이션 값(nm) 50°임사광 시 리타데이션 값(nm)
폴리카보네이트 80 4 38
150 5 50
폴리카보네이트의 경우 80㎛의 두께에서 0°로 빛을 입사하면, 리타데이션 값이 4nm가 나오나, 50°로 빛을 입사하면 38nm가 나와 값의 차이가 크게 나타난다. 상기 차이는 두께가 두꺼워지면 더 나타난다.
150㎛의 두께에서 0°로 빛을 입사하면, 리타데이션 값이 5nm가 나오나, 50°로 빛을 입사하면 50nm가 나와 값의 차이가 더 크게 나타난다. 폴리카보네이트는 원거리에서 사출하는 프로젝터용 스크린의 기저층으로는 문제 없으나, 입사각의 편차가 심한 단초점 프로젝터용 스크린(10)의 기저층으로는 적합하지 않다.
따라서, 본 발명에서는 입사광의 각도에 따라 리타데이션 값의 차가 적은 물질을 이용하여 이방성 기저 확산층(14)을 형성한다. 입사광의 각도에 따라 리타데이션 값의 차가 적은 물질의 예로 폴리메틸메타아크릴레이트(PMMA:Poly Methyl methaacrylate)를 들 수 있다.
폴리메틸메타아크릴레이트를 필름형태로 제조시 스트레스를 최소화 할 수 록 리타데이션 값이 적어질 수 있다. 용액을 도포하여 필름을 형성하는 용액캐스트법과 같이 응력을 가하지 않고 제조하는 방법을 이용하여 이방성 기저 확산층을 형성하면, 리타데이션 값을 더 낮출 수 있다.
[표2]는 폴리메틸메타아크릴레이트의 두께 및 입사광의 각도에 따른 리타데이션 값을 정리한 표이다.
표 2
필름 종류 두께(㎛) 0°입사광 시 리타데이션 값(nm) 50°임사광 시 리타데이션 값(nm)
폴리메틸메타아크릴레이트 40 4.3 4.7
400 2 38
[표 2]를 참조하면, 폴리메틸메타아크릴레이트는 두께가 40㎛에서는 입사광이 0°이든 50°이든 큰 차이가 없다. 다만, 두께가 두꺼워지면 입사각에 따라 차이가 나타나는 문제가 있다.
본원 발명의 이방성 기저 확산층(14)은 입사광의 각도에 따라 리타데이션 값이 작은 물질을 이용하나, 두께가 두꺼워지면 입사각이 큰 경우 리타데이션 값이 증가하기 때문에 스크린(10)의 두께를 줄일 필요가 있다.
도 6에 도시된 바와 같이 종래에는 확산층(3)을 렌즈층(1-3)의 전면에 부착하였다. 확산층(3)은 시야각을 확보하기 위한 것으로 사용자가 정면에서 바라보지 않고 비스듬한 위치에서 스크린(10)을 바라보는 경우에도 스크린(10)에 사출된 영상을 볼 수 있는 것을 의미한다.
따라서 스크린은 시야각이 넓을수록 좋으나 시야각을 넓히기 위해 도 6에 도시된 종래의 스크린(5)과 같이 확산층(3)을 렌즈층(1-3)의 전면에 적층하면 리타데이션 값이 증가하여 3D 프로젝터용 스크린으로 이용하기 어려운 문제가 있다.
특히, 3D프로젝터(20)의 경우 왼쪽눈과 오른쪽 눈에 입사되는 영상이 서로 섞이면 안되는데, 종래의 스크린(5)에 이용된 확산층(3)이 빛을 산란시키므로 왼쪽눈용 영상이 오른쪽 눈에 입사되는 현상(이하 이를 '크로스토크(cross talk) 현상'이라고 한다.)이 발생한다.
본 발명은 크로스토크 현상을 최소화하기 위해 확산층(3)을 생략하고 대신에 시야각 확보를 위해 미세패턴을 이방성 기저 확산층(14)에 형성할 수 있다. 미세패턴이 빛을 확산시켜 시야각을 확보하나, 특정 방향으로만 확산시켜 크로스토크 현상이 나타나는 것을 방지한다. 즉 모든 방향으로의 확산시키는 것이 아니라 시야각을 확보하기 위한 방향으로만 입사된 빛을 확산시켜 크로스토크 현상을 최소화 하면서 시야각을 확보할 수 있다.
도 5는 이방성 기저 확산층(14)의 층상 구조를 분해한 사시도로서, 이방성 기저 확산층(14)은 복수개의 단위층(14a, 14b)이 적층되어 이루어진다. 각 단위층(14a, 14b)에는 소정 간격으로 이격되어 평행하게 배치된 미세패턴(14a', 14b')이 형성되어 있다. 이러한 미세패턴(14a', 14b')은 특정 방향으로 만 빛을 확산시켜 시야각은 확보하면서 크로스토크의 발생을 최소화 할 수 있다.
각 단위층(14a, 14b)에 형성된 미세패턴(14a', 14b')의 방향은 상이하고 하나는 수평용 다른 하나는 수직용이 되며, 수평용 단위층(14a)과 수직용 단위층(14b)을 적층하면 패턴이 교차하게 된다. 이때 수평용 미세패턴(14a')이 반드시 수평방향으로 배열되고 수직용 미세패턴(14b')이 수직으로 배열되는 것은 아니며, 비스듬한 방향으로 기울어지도록 배치될 수 있다.
미세패턴(14a', 14b')의 피치와 패턴의 폭을 조정하여 확산정도를 제어할 수 있다. 미세패턴(14a', 14b')의 폭은 200nm이상 1000nm이하의 범위에서 형성할 수 있고, 피치는 약 5㎛이상 50㎛이하의 간격으로 형성할 수 있다. 미세패턴(14a', 14b')의 폭과 피치는 다른 부재들의 두께와 리타데이션 값과 같은 물성에 따라 다르게 조정될 수 있다.
상기 패터닝은 단위층(14a, 14b)을 형성할 때 금형에 미세패턴(14a', 14b')에 대응되는 무늬를 넣어 미세패턴(14a', 14b')을 형성하거나, 레이저로 상기 미세패턴(14a', 14b')을 그리는 방식 또는 단위층(14a, 14b) 자체에 루버 구조를 삽입하는 등의 방법으로 형성할 수 있다.
도면 상으로는 상기 단위층(14a, 14b)이 2층으로 도시되어 있으나, 수평층과 수직층이 세트를 이루며 적층되기 때문에 4개 6개 등 짝수개의 단위층(14a, 14b)으로 구성될 수 있다. 다만, 단위층(14a, 14b)이 많아지면 이방성 기저 확산층(14)의 두께가 두꺼워져 상술한 바와 같이 리타데이션 값이 커지는 문제가 있는 바, 리타데이션 값을 최소화 하기위해 단위층(14a, 14b)을 2장만 적층하여 이방성 기저 확산층(14)을 형성할 수 있다.
이방성 기저 확산층(14) 위에 형성되는 렌즈층(13)은 카본 블랙과 같은 블랙 물질을 포함할 수 있다. 영상의 배경이 검은색이어야 명암비가 높아 선명한 화면을 구현할 수 있기 때문이에 종래에는 도 6에 도시된 바와 같이 독립된 블랙층(4-2)을 적층하였다. 그러나 층상구조가 증가되어 리타데이션의 증가 원인이 되므로 종래의 블랙층(4-2)를 생략하고, 렌즈층(13)의 제조시에 블랙 물질을 포함시켜 종래의 블랙층(4-2)의 기능을 병합할 수 있다.
렌즈층(13)은 배면 쪽에 분할된 복수개의 면이 형성되고, 배면에 반사층을 형성하여 빛을 반사시킨다. 반사층으로 미러 필름을 이용할 수 있으며, 반사성능과 함께 명암비를 높이기 위해 블랙 펄을 함유할 수 있다. 반사층의 배면에는 반사층이 훼손되는 것을 방지하기 위해 후면 코팅층(11)을 더 형성할 수 있다.
이방성 기저 확산층(14)의 전면에 표면보호층(16)을 더 적층하여 이방성 기저 확산층(14)에 형성된 패턴이 훼손되는 것을 방지한다. 표면보호층(16)의 형성은 코팅방식 또는 필름을 적층하는 방식 모두 이용가능하다. 다만, 가능한 얇게 형성해야 리타데이션 값을 줄일 수 있으므로, 코팅 방식에 비해 필름을 이용하는 것이 더 얇은 표면보호층(16)을 형성할 수 있다.
표면보호층(16)도 입사각에 따른 리타데이션 값의 차가 적어야 하므로, 폴리메틸메타아크릴레이트와 같은 이방성 기저 확산층(14)에 이용된 소재를 이용할 수 있다. 예를 들면 이방성 기저 확산층(14)에 이용된 소재와 동일한 소재로 이루어진 표면보호층용 기저층과, 그 위에 표면보호코팅층을 도포하여 표면보호층(16)을 구성할 수 있다.
표면보호층(16)을 이방성 기저 확산층(14)에 적층하기 위해 접착제(15)을 이용할 수 있다. 렌즈층(13)에 블랙 물질을 포함시키지 않는 경우, 상기 접착제(15)를 블랙 프라이머층과 같이 얇으면서 입사각에 따라 리타데이션 값의 변화가 적고 리타데이션 값이 낮은 부재를 이용하여 블랙화가 가능하다.
이상에서 살펴본 바와 같이 본 발명의 프로젝터용 스크린은 단초점 프로젝터를 밝은 실내에서 시청할 수 있고, 스크린 내의 밝기 분포가 균일하면서도 시야각을 확보할 수 있다.
또한, 확산시트를 생략함으로써 크로스 토크 값이 작아 패시브 타입 3D스프로젝터용 스크린으로 이용할 수 있다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다.
따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.

Claims (14)

  1. 프로젝터로부터 입사된 영상을 표시하는 프로젝터용 스크린에 있어서,
    미세패턴이 형성된 이방성 기저 확산층;
    상기 이방성 기저 확산층의 배면에 형성되는 렌즈층;
    상기 렌즈층의 배면에 증착된 반사층; 및
    상기 이방성 기저 확산층의 전면에 결합되는 표면보호층을 포함하는 것을 특징으로 하는 프로젝터용 스크린.
  2. 제1항에 있어서,
    상기 이방성 기저 확산층은
    상기 프로젝터로부터 입사된 영상의 입사각에 따라 리타데이션(retardation)의 변화가 작은 것을 특징으로 하는 프로젝터용 스크린.
  3. 제1항에 있어서,
    상기 이방성 기저 확산층은
    상기 프로젝터로부터 입사된 영상의 입사각이 50°인 경우 리타데이션(retardation)이 10nm이하이거나,
    상기 프로젝터로부터 입사된 영상의 입사각이 0°인 경우와 50°인 경우 리타데이션의 차이가 5nm이하인 것을 특징으로 하는 프로젝터용 스크린.
  4. 제1항에 있어서,
    상기 이방성 기저 확산층은
    폴리메틸메타아크릴레이트(PMMA:Poly Methyl methaacrylate) 필름인 것을 특징으로 하는 프로젝터용 스크린.
  5. 제4항에 있어서,
    폴리메틸메타아크릴레이트 필름은 용액캐스트법으로 제조된 것을 특징으로 하는 프로젝터용 스크린.
  6. 제1항에 있어서,
    상기 이방성 기저 확산층은 소정 피치의 평행한 패턴이 형성되어 있는 복수 개의 단위층으로 이루어져 있고,
    상기 하나의 단위층에 형성된 미세패턴은 적어도 다른 하나의 단위층에 형성된 미세패턴과 교차하는 것을 특징으로 하는 프로젝터용 스크린.
  7. 제6항에 있어서,
    상기 이방성 기저 확산층은 2개의 단위층으로 이루어져 있는 것을 특징으로 하는 프로젝터용 스크린.
  8. 제1항에 있어서,
    상기 렌즈층 또는 표면보호층은 블랙 물질을 포함하는 것을 특징으로 하는 프로젝터용 스크린.
  9. 제8항에 있어서,
    상기 블랙 물질은 카본 블랙인 것을 특징으로하는 프로젝터용 스크린.
  10. 제1항에 있어서,
    상기 표면보호층은
    표면보호층용 이방성 기저 확산층과 그 전면에 형성된 표면보호코팅층을 포함하는 것을 특징으로 하는 프로젝터용 스크린.
  11. 제1항에 있어서,
    상기 이방성 기저 확산층과 상기 표면보호층은 접착제로 부착되고
    상기 접착제는 블랙 프라이머인 것을 특징으로 하는 프로젝터용 스크린.
  12. 제1항에 있어서,
    상기 렌즈층은
    배면쪽에 복수 개의 면으로 분할된 프레넬 렌즈인 것을 특징으로 하는 프로젝터용 스크린.
  13. 제1항에 있어서,
    상기 이방성 기저 확산층의 배면에 열경화 수지 또는 자외선 경화 수지로 형성된 것을 특징으로 하는 프로젝터용 스크린.
  14. 제1항에 있어서,
    상기 반사층은 블랙 펄을 포함하는 것을 특징으로 하는 프로젝터용 스크린.
PCT/KR2013/010006 2013-04-01 2013-11-06 반사형 프로젝터용 스크린 WO2014163268A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/761,207 US9354500B2 (en) 2013-04-01 2013-11-06 Screen for reflective projector
EP13880853.0A EP2930561B1 (en) 2013-04-01 2013-11-06 Screen for reflective projector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0035218 2013-04-01
KR1020130035218A KR102091601B1 (ko) 2013-04-01 2013-04-01 반사형 프로젝터용 스크린

Publications (1)

Publication Number Publication Date
WO2014163268A1 true WO2014163268A1 (ko) 2014-10-09

Family

ID=51658528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010006 WO2014163268A1 (ko) 2013-04-01 2013-11-06 반사형 프로젝터용 스크린

Country Status (4)

Country Link
US (1) US9354500B2 (ko)
EP (1) EP2930561B1 (ko)
KR (1) KR102091601B1 (ko)
WO (1) WO2014163268A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109240034A (zh) * 2018-10-30 2019-01-18 深圳暴风统帅科技有限公司 投影幕布

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10197905B2 (en) * 2014-01-15 2019-02-05 Lg Electronics Inc. Reflective screen, display having the same and method for manufacturing reflective screen
KR102372851B1 (ko) * 2014-12-26 2022-03-10 엘지전자 주식회사 반사형 스크린 및 그 제조방법
WO2017094929A1 (ko) * 2015-11-30 2017-06-08 전자부품연구원 시간 다중화를 통해 방향 시차를 갖는 라이트필드 3차원 디스플레이 시스템
CN106125492B (zh) * 2016-08-31 2018-07-20 海信集团有限公司 投影屏幕和具有该投影屏幕的超短焦投影系统
TWI686661B (zh) * 2018-04-20 2020-03-01 億立材料有限公司 可多角度投影成像之投影幕
CN113325660A (zh) * 2020-02-28 2021-08-31 深圳光峰科技股份有限公司 透明投影屏幕及其制造方法
CN111538204A (zh) * 2020-06-22 2020-08-14 成都菲斯特科技有限公司 一种反射型投影屏幕及投影系统
CN112731681B (zh) * 2021-04-06 2021-07-06 成都工业学院 一种桌面立体显示装置
KR20220155874A (ko) * 2021-05-17 2022-11-24 삼성전자주식회사 프로젝터용 스크린 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030061690A (ko) * 2002-01-14 2003-07-22 (주)오픈티비넷 투과형 스크린
JP2006215063A (ja) * 2005-02-01 2006-08-17 Toppan Printing Co Ltd レンチキュラーレンズアレイシート、透過型スクリーン及び背面投写型ディスプレイ装置
JP2008181046A (ja) * 2007-01-26 2008-08-07 Toppan Printing Co Ltd 反射型スクリーン
JP2010128447A (ja) * 2008-12-01 2010-06-10 Oji Paper Co Ltd 光学シート、光学シートの製造方法、照明装置、投影装置、看板および画像表示装置
KR100985733B1 (ko) * 2008-06-09 2010-10-06 주식회사 엘엠에스 광학소자, 이를 구비하는 백라이트 유닛 및 액정표시장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1491918A3 (en) * 2003-06-24 2005-01-26 Lg Electronics Inc. Microlens array sheet of projection screen, and method for manufacturing the same
JP2005031502A (ja) * 2003-07-09 2005-02-03 Sony Corp スクリーン
JP4238782B2 (ja) * 2004-06-08 2009-03-18 ソニー株式会社 光拡散フィルム及びその製造方法、並びにスクリーン
TW200734755A (en) * 2006-03-06 2007-09-16 Exploit Technology Co Ltd Light scattering film for direct-in and embedded backlight module, method of making the film, and backlight module and display device using the film
JP2009271263A (ja) * 2008-05-02 2009-11-19 Tohoku Univ 片側鏡面鋸歯状反射板を用いたフロントプロジェクション用スクリーンとそれを用いたフロントプロジェクション型表示装置と情報処理装置
JP5979624B2 (ja) * 2011-04-22 2016-08-24 国立大学法人東北大学 反射型フロントスクリーン
KR101816580B1 (ko) * 2011-04-29 2018-01-09 엘지전자 주식회사 영상 표시 시스템의 디스플레이 스크린 및 그 제조 방법
US9030736B2 (en) * 2012-09-28 2015-05-12 Dai Nippon Printing Co., Ltd. Reflection screen and image display system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030061690A (ko) * 2002-01-14 2003-07-22 (주)오픈티비넷 투과형 스크린
JP2006215063A (ja) * 2005-02-01 2006-08-17 Toppan Printing Co Ltd レンチキュラーレンズアレイシート、透過型スクリーン及び背面投写型ディスプレイ装置
JP2008181046A (ja) * 2007-01-26 2008-08-07 Toppan Printing Co Ltd 反射型スクリーン
KR100985733B1 (ko) * 2008-06-09 2010-10-06 주식회사 엘엠에스 광학소자, 이를 구비하는 백라이트 유닛 및 액정표시장치
JP2010128447A (ja) * 2008-12-01 2010-06-10 Oji Paper Co Ltd 光学シート、光学シートの製造方法、照明装置、投影装置、看板および画像表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109240034A (zh) * 2018-10-30 2019-01-18 深圳暴风统帅科技有限公司 投影幕布

Also Published As

Publication number Publication date
KR102091601B1 (ko) 2020-03-20
EP2930561A4 (en) 2016-08-31
US20150370156A1 (en) 2015-12-24
KR20140119986A (ko) 2014-10-13
EP2930561A1 (en) 2015-10-14
US9354500B2 (en) 2016-05-31
EP2930561B1 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
WO2014163268A1 (ko) 반사형 프로젝터용 스크린
CN107451518A (zh) 一种显示屏
US6535333B1 (en) Optical system with reduced color shift
KR101200232B1 (ko) 프로젝션 스크린
JPS59176734A (ja) 投射スクリ−ン及びその製造方法
CA2375417A1 (en) Projection screen with lenticular lenses of different optical power
JP3653924B2 (ja) プロジェクションスクリーン用光拡散層
WO2014035111A1 (ko) 광각 재귀반사시트
WO2013032286A1 (en) Optical sheet
KR100517427B1 (ko) 가장자리 대 중심부간 변화 특성을 갖는 홀로그래픽 스크린이 구비된 투사형 텔레비전
WO2020222358A1 (ko) 광 경로 제어 기능을 갖는 확산판 및 백라이트 장치
CN111208705B (zh) 投影屏幕和投影系统
JPS62249134A (ja) 背面投影スクリ−ン
WO2021168090A1 (en) Illumination and display apparatus
WO2013066048A1 (en) Optical sheet and lighting device including the same
CN203349049U (zh) 光源模块及具有光源模块的键盘
WO2019117615A1 (ko) 광고립 소자
JP7380991B2 (ja) 透明スクリーン並びにこの透明スクリーンを用いたプロジェクションシステム又はその応用機器
JPH09211729A (ja) 反射型スクリーン
CN100565334C (zh) 对比度提高片及具备它的背面投射型屏幕
WO2019078695A1 (ko) 광고립 소자
KR100966137B1 (ko) 광구조체를 가진 확산판 일체형 집광시트 및 그를 구비한 액정표시장치
KR100213601B1 (ko) 투과형스크린 및 그 제조방법
EP1784688A1 (en) Rear projection screen
WO2022097993A1 (ko) 명암비 개선 광학 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880853

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013880853

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14761207

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE