WO2014163245A1 - 비어홀이 구비된 3 차원 모션 센서 - Google Patents

비어홀이 구비된 3 차원 모션 센서 Download PDF

Info

Publication number
WO2014163245A1
WO2014163245A1 PCT/KR2013/006855 KR2013006855W WO2014163245A1 WO 2014163245 A1 WO2014163245 A1 WO 2014163245A1 KR 2013006855 W KR2013006855 W KR 2013006855W WO 2014163245 A1 WO2014163245 A1 WO 2014163245A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
motion
dimensional motion
electrode pattern
ionic liquid
Prior art date
Application number
PCT/KR2013/006855
Other languages
English (en)
French (fr)
Inventor
서찬열
심현구
박원용
김동호
김시환
Original Assignee
(주) 유원컴텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20130037333A external-priority patent/KR20140121103A/ko
Priority claimed from KR20130037332A external-priority patent/KR20140121102A/ko
Priority claimed from KR1020130038775A external-priority patent/KR20140122102A/ko
Priority claimed from KR1020130052221A external-priority patent/KR20140132904A/ko
Priority claimed from KR1020130061765A external-priority patent/KR20140140848A/ko
Application filed by (주) 유원컴텍 filed Critical (주) 유원컴텍
Publication of WO2014163245A1 publication Critical patent/WO2014163245A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/18Measuring inclination, e.g. by clinometers, by levels by using liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/42Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using fluid means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/18Measuring inclination, e.g. by clinometers, by levels by using liquids
    • G01C2009/182Measuring inclination, e.g. by clinometers, by levels by using liquids conductive

Definitions

  • the present invention relates to a three-dimensional motion (motion) sensor, and more particularly, to a three-dimensional motion sensor technology using a posture measuring device capable of measuring a moving and rotating direction, a moving and a rotating speed of an object.
  • Conventional position change measuring apparatus is a computer mouse commonly used in two dimensions.
  • Conventional computer mouse measures the rolling of the ball and the number of rolls per unit time to extract the relative movement of the object or to measure the relative position change of the object using an optical sensor.
  • the conventional position change measuring apparatus includes a touch pad or a touch pen used in a notebook or a PDA.
  • These conventional position change measuring devices have a problem that the movement is not free because the movement is limited to two-dimensional space, and there is a problem that the coordinates obtained from them are also only two-dimensional coordinates.
  • the sheet beam generation unit for irradiating a predetermined sheet beam to the object to obtain the three-dimensional image data in order to provide a three-dimensional image acquisition sensor that supports to obtain the three-dimensional image data at high speed;
  • An image processing unit including a 2D image sensor which receives the reflected light of the sheet beam irradiated to the object and generates 2D image data regarding a cross-sectional shape of the object;
  • a signal processor which receives the generated 2D image data from the image processor and calculates 3D image data of the object;
  • a technique for acquiring three-dimensional image data including control means for designating an operation region of the two-dimensional image sensor according to the object (Korean Patent Registration No. 10-0422987), but substantially three-dimensional movement is achieved. Exactly real-time sensor detection is insufficient.
  • the present invention is to solve the above-described problems, by detecting the change in the three-dimensional attitude (moving direction, rotation direction, rotation angle, etc.) of the object, by using a simple structure to accurately and easily the direction of the motion ((Motion))
  • the purpose is to provide a three-dimensional motion sensor that can be measured easily.
  • the object is a three-dimensional motion sensor in which an electrode pattern is formed on the sensor wall and the sensor wall in which the ionic liquid is injected, and the electrode detects the movement of the ionic liquid, and outputs a sensor.
  • the via hole is formed in the electrode pattern.
  • the via hole is formed at a portion inserted into the sensor wall or a portion that meets the ionic liquid when the substrate is inserted into the sensor wall, and a conductor is formed around the via hole.
  • two or more via holes may be continuously formed.
  • the present invention is to solve the above-described problems, by detecting the change in the three-dimensional attitude (moving direction, rotation direction, rotation angle, etc.) of the object, by using a simple structure to accurately and easily the direction of the motion ((Motion))
  • the simple structure makes it easy to measure accurately and easily.
  • FIG. 1 is a view showing the principle of a three-dimensional motion sensor having a spherical shape according to an embodiment of the present invention.
  • FIGS. 2 and 3 are diagrams of an embodiment of a three-dimensional mossen sensor comprising an ionic liquid
  • FIG. 4 is a diagram of an embodiment showing a PCB substrate inserted into a sensor.
  • FIG. 5 is a diagram of an embodiment illustrating a method of forming an electrode pattern.
  • 6 and 7 are views of another embodiment to widen the error range of the electrode pattern.
  • FIG. 8 is a diagram illustrating an example of a cross-sectional structure of an electrode pattern in which a via is formed.
  • FIG. 9 is a view showing another embodiment of the three-dimensional Mossen sensor of the present invention.
  • FIG 10 and 11 are views of another embodiment in which the sensor separator is coupled.
  • 15 is a view of another embodiment of the present invention with different PCB shapes.
  • 16 to 18 are diagrams of embodiments in which means for preventing run-up of an electrolyte (ion liquid) are provided.
  • 19 is a view of an embodiment showing the position and size of the disc and the rotary weight of the present invention.
  • 20 is a view of an embodiment in which the rotary additional rotating inside the sensor.
  • 21 is a view showing an embodiment of the principle that the electrode detects a rotary weight or a rotating disc.
  • 22 is a diagram illustrating an example of detecting a change in tilt with an image sensor.
  • 23 is a diagram illustrating an image screen of an image sensor.
  • 24 is a diagram of an embodiment showing the shape of a weight for image sensing.
  • 25 is a wireless motion remote controller having a tilt sensor according to an embodiment of the present invention.
  • 26 is a diagram of an embodiment showing a block diagram of a wireless motion remote controller of the present invention.
  • FIG. 27 is a diagram of an embodiment showing a control flowchart of the present invention.
  • 28 and 29 are diagrams of yet another embodiment of a motion motion remote controller.
  • FIG. 30 is a view of an embodiment showing a configuration of a sensor unit.
  • 31 and 32 are diagrams of embodiments in which a tilt sensor or the like is provided in the form of a reconcon that controls an electronic controller.
  • An electrode pattern is formed on the sensor wall and the sensor wall in which the ionic liquid of the present invention is injected, and the electrode detects the movement of the ionic liquid and outputs a sensor, wherein the substrate is inserted into the sensor wall.
  • a three-dimensional sensor having a structure in which an electrode pattern is formed on the substrate.
  • FIG. 1 is a view showing the principle of a three-dimensional motion sensor having a spherical shape according to an embodiment of the present invention.
  • an ionic liquid 20 is injected into the sensor 10 having a spherical shape, and an electrode pattern 11 is formed in the sensor wall having a spherical shape. Then, the electrode rod 21 is inserted into the spherical sensor 10 to be locked to the ionic liquid 20.
  • the electrode 21 has a rod shape made of metal, and a positive electrode is connected to the positive electrode 21.
  • all the electrode patterns 11 are connected to the MCU.
  • one having a grid shape is an electrode pattern, and one graduation is one electrode pattern 11. And all of the electrode patterns 11 are connected to the MCU.
  • the MCU is able to detect the situation in which the ionic liquid 20 is connected to the electrode pattern 11 through the intermediate medium.
  • the inclination of the sensor is changed, and the position of the ionic liquid 20 in the sensor 10 is also changed.
  • the position of the ionic liquid 20 changes from the position of the ionic liquid 20 shown in FIG. 1 to the right.
  • the position of the ionic liquid 20 is not changed in the direction of the earth's gravity, but the position of the ionic liquid 20 is changed in the sensor 10.
  • the boundary of the ionic liquid 20 is between the 14th and 15th of the electrode pattern 11, but on the right side of FIG. 1, the boundary of the ionic liquid 20 is the electrode pattern 11. It will change between 7th and 8th of.
  • the position change of the electrode pattern 11 may be detected by the MCU by an electrical signal.
  • FIGS. 2 and 3 are diagrams of an embodiment of a three-dimensional mossen sensor including an ionic liquid.
  • the present invention uses a method of forming the electrode pattern 11 by inserting the PCB 30 (PCB) into the sensor 10. That is, as shown in the drawing, the sensor of the present invention has a structure that inserts three (or two or more) the PCB 30, the electrode pattern 11 is formed in the spherical sensor 10 at intervals of 120 degrees.
  • the PC 30 is provided with an MCU 31 (or a CPU), and further includes a connection electrode 33 and a connector 32.
  • the wires 34 are connected between the PCs 30 through the connection electrodes 33.
  • the connector 32 is connected to the main body of the other sensor circuit.
  • the spherical sensor 10 of the present invention is made through an injection process using a material such as plastic resin. That is, injection is performed in the state which inserted the PCB 30a in which the electrode pattern was formed at the time of spherical sensor 10 injection. In doing so, the electrode pattern 11 is formed on the wall of the sensor 10.
  • the first sensor unit 10-1 is made by being ejected with the PCB 30a having the electrode pattern formed therein, and the second sensor unit 10-2 is similarly formed, and the third sensor unit ( In the drawings, the drawings are omitted for convenience.)
  • FIG. 4 is a diagram of an embodiment showing a PCB substrate inserted into a sensor.
  • the PCB 30a on which the electrode pattern 11 is formed is separated from the PCB 30 on which the MCU and the like are formed, but the two PCBs may be integrated.
  • the electrode pattern 11 is connected to the MCU 31 and the connection wiring 11a, respectively.
  • Each electrode pattern 11 is formed by forming a via, the drawing of which is shown in (B), that is, a conductor material is coated around the via (11c), and the conductive material is an electrode pattern. It is connected with (11).
  • a via hole is formed in the electrode pattern, and the via hole is inserted into the sensor wall. It is formed at the part inserted into the sensor wall or at the part where it meets the ionic liquid. Of course, two or more via holes may be formed in succession.
  • FIG. 5 is a diagram of an embodiment illustrating a method of forming an electrode pattern.
  • the first PCB to be produced is as shown in Fig. 5A, and a small via 1b is formed in each electrode pattern 11 in a semicircle shape according to a predetermined size and position.
  • Fig. 5A becomes the form of Fig. 4A
  • Fig. 5B becomes the form of Fig. 4B.
  • 6 and 7 are views of another embodiment to widen the error range of the electrode pattern.
  • a plurality of vias 11b are formed to form first vias 11-1, second vias 11b-2, and 11b-c. Then, three conductive coatings 11c on the main surface of the via are also made, such as the first 11c-1, the second 11c-1, and the third 11c-1.
  • making three means only one embodiment of the present invention, it means that two or more can be made. Then, the cutting is performed based on the cutting line C as in the embodiment of FIG. 5.
  • FIG. 7 is a diagram illustrating an example in which the PCB substrate illustrated in FIG. 6 is cut.
  • the conductive coating on the main surface of the via serves to widen the effective area to which the pattern electrode 11 is connected.
  • FIG. 8 is a diagram illustrating an example of a cross-sectional structure of an electrode pattern in which a via is formed.
  • a typical PCB substrate uses a multilayer PCB substrate. That is, as shown in the drawing, the first PCS substrate 30a-1, the second PCS substrate 30a-2, the third PCS substrate 30a-3 and the fourth PCS substrate 30a-4 on which the electrode patterns are formed are mutually connected. It can be in close contact and can form a multilayer PCB substrate.
  • the first electrode pattern 11-1 is formed on the first PCB 30a-1
  • the second electrode pattern 11-2 is formed on the second PCB 30a-2
  • the third The third electrode pattern 11-3 is formed on the PCB 30a-3
  • the fourth electrode pattern 11-4 is formed on the fourth PCB 30a-4.
  • Each electrode pattern is formed at regular intervals.
  • the distance between the electrode pattern and the electrode pattern becomes a.
  • the distance between the electrode pattern and the electrode pattern is b. do. In other words, by making the distance between the electrode patterns closer, it is possible to manufacture a sensor that can measure the angle more precisely.
  • FIG. 9 is a view showing another embodiment of the three-dimensional Mossen sensor of the present invention.
  • the spherical sensor has a form in which several coupling parts are combined, and an adhesive or the like may be used, but a screw or the like may be used.
  • the first coupling part 13 and the second coupling part 14 are provided in the sensor separation part 10a of the motion sensor.
  • the spherical sensor 10 of the present invention is provided with an ionic liquid, and thus, the first coupling unit 13 and the second coupling unit 14 are provided in the spherical sensor. It becomes.
  • the protrusion structure protruding from the spherical sensor so as to be firmly assembled by a screw, such as a coupling means is called a coupling part.
  • first coupling part 13 and the second coupling part 14 are provided in the shape of a protrusion in the spherical sensor, and the screw groove is formed in the first coupling part 13 and the second coupling part 14. . And the screw groove to be coupled to the screw 15,
  • a protrusion (first coupling part 13 and second coupling part 14) is made to strengthen the coupling force. By screwing the protrusions, the result is to be a firm coupling.
  • FIG 10 and 11 are views of another embodiment in which the sensor separator is coupled.
  • FIG. 10 is a view showing the shape of the cross section 10b of the sensor separation unit 10a, and an elongated groove 10c is formed in the cross section.
  • the elongated groove is mounted with the O-ring 16 shown in the drawing in FIG.
  • the sensor separation unit 10a is coupled to have a sealing effect by the O-ring 16 when the spherical sensor 10 is made.
  • the O-ring is integrally formed as shown in FIG. 6.
  • the O-ring uses an elastic body made of rubber or elastic resin, and its hardness is suitably 50 to 70, so that the O-ring uses a material that is more powerful than the material of the spherical sensor. When combined, it has a definite sealing effect.
  • FIGS. 12 and 13 are views of another embodiment in which the spherical sensor is screwed together.
  • the first and second coupling portions 13a and 13b have a structure in which the first and second coupling portions 13a and 13b form a mutual step and then engage with each other to make the first and second coupling directions horizontal.
  • screw grooves are formed in the first and second coupling parts, respectively, so that the first and second coupling parts 13a and 13b are firmly coupled through the screws 15.
  • FIG. 13 has a space in the second coupling portion 14 and the sensor body portion, and the screw 15 is more firmly applied by using a nut in the space.
  • the screw body portion is formed longer than the portion to which the first and second coupling portions are coupled,
  • the body part has a structure that protrudes outward. And, it is to have a structure that firmly tighten the protruding screw body portion with a nut.
  • the end of the screw body (the opposite of the screw head is described as the end portion) is firmly fixed with a nut.
  • the coupling between the first coupling portion 13 and the second coupling portion 14 can be much more robust.
  • FIG. 2 is the drawing of the embodiment provided with three sets of electrode patterns 11. That is, three sets of electrode patterns 11 each of which are numbered from the first to the nth can be provided.
  • Three sets of electrode patterns 11 may be provided on the wall of the spherical sensor 10 at intervals of 120 degrees, so that the movement of the electrolyte solution 10 can be detected in each direction, and as a result, The value of changing the inclination of the sensor 10 in the direction of will be able to numerically detect.
  • 15 is a view of another embodiment of the present invention with different PCB shapes.
  • the PCB 30a on which the electrode pattern 11 is formed is distinguished from the PC 30 on which the MCU is formed. That is, the PCB 30a having the electrode pattern is provided at right angles to the normal direction of the sensor 10 as in the embodiment of FIG. 4, and the PCB 30 having the MCU is provided parallel to the normal direction of the sensor 10. .
  • the present invention is not necessarily limited to the right angle and the parallel, that is, the PCB 30a having the electrode pattern and the PCB 30 having the MCU 31 are separated from each other and provided to the sensor 10. It is considered that the present invention is included in the embodiment of Fig. 6.
  • 16 to 18 are diagrams of embodiments in which means for preventing run-up of an electrolyte (ion liquid) are provided.
  • the anti-slip means includes a rotating disc 40 having a plurality of holes 43, a rotating weight 41, and a connecting rod 42 connecting the rotating weight and the rotating disk.
  • the rotation disk 40 is provided with a curved anti-skid plate 45 facing the center.
  • the anti-skid plate 45 is connected to each other by a connecting portion (45a).
  • the anti-skid plate 45 has a circular arc shape facing the center and has a plate-shaped shape with a constant height, so that the shake of the electrolyte 20 generated by the rotation of the sensor 10 of the present invention is effectively performed. Will be prevented. That is, due to the rotation of the sensor, the electrolyte is also moved and the electrolyte is liquid, so that the oscillation occurs. This is because the anti-rolling plate 45 is formed vertically.
  • the anti-skid plate 45 is connected to the rotary weight 41 through the connecting rod, the rotary weight is provided with a heavy material. That is, the rotary weight is made of a material that is heavier than the material having the disc 40. Therefore, the disc is preferably a plastic material, the rotation weight is a metal or alloy material is appropriate.
  • FIG. 17 is a diagram of an embodiment showing that the disc 43 also moves along with the electrolyte 20 as the sensor 10 rotates. That is, although the sensor 10 rotates, the electrolyte 20 and the rotary weight 41 are moved by gravity, and thus the electrolyte and the rotary weight are positioned below the sensor 10 even when the sensor rotates. To have.
  • (A) is the shape of the first sensor
  • (B) is the shape of the sensor rotated a certain angle, in both cases by the gravity is the electrolyte and the rotary weight is located below the sensor 10.
  • the circular plate has a structure in which the hole 43 is formed in the shape of a circle facing the center. And when the sensor is rotated through the hole, the electrolyte is moved, it is possible to prevent the movement of the irregular electrolyte due to the exhalation.
  • 19 is a view of an embodiment showing the position and size of the disc and the rotary weight of the present invention.
  • the size a of the radius of the disc 40 shown in the embodiment diagram of FIG. 19 is equal to or slightly smaller than the size of the radius of the sensor. At this time, the small degree is within 5%.
  • the reason why the value of a is smaller than the radius of the sensor is to smooth the movement influenced by gravity in the sensor when the sensor rotates.
  • the original plate 40 of the present invention is shown in the form of a cross section in Fig. 10, the actual shape is a circular plate. That is, since the sensor of this invention has a spherical shape, the shape of the disk 40 of this invention is also determined by the circle shape which is the cross section of the sphere of the sensor of this invention.
  • the disc may have a thinner edge than the center portion. Therefore, the height of the anti-skid plate 45 formed vertically also has a smaller edge than the center of the disc.
  • the rotary weight uses a heavier material than the disc, and is made of a material having a weight such as metal.
  • Fig. 6 is an embodiment showing a method without an ionic liquid.
  • 20 is a view of an embodiment in which the rotary additional rotating inside the sensor.
  • the rotary weight 17 has the same structure as that of the rotary weight but is not provided with the ionic liquid. therefore. If the scale is engraved on the inner wall of the sensor. The scale value indicated by the rotary weight 41 or the rotating disc 40 is changed by the rotation of the sensor 10. In addition, the three coordinates are recognized by each of the changed scale values, so that the rotation direction and the rotation angle can be recognized, and the rotation speed can be detected by connecting time to the rotation angle.
  • (A) and (B) are views showing the rotation state mutually.
  • 21 is a view showing an embodiment of the principle that the electrode detects a rotary weight or a rotating disc.
  • an electrode 11 is formed on the inner wall of the sensor 10 as described in the previous embodiment of the present invention. At this time, the rotating disk is rotated in the sensor.
  • the part of the rotating disc which is in contact with the electrode formed on the inner wall of the sensor, is coated with a metal component (the rotating disc is made of plastic or resin to lighten the weight than the rotating weight) and the end of the rotating disc.
  • the distance of the part is at least greater than the distance of two sensors, but smaller than the distance of three, so in most cases the end of the rotating disc will contact the two sensors.
  • all the electrodes are connected to the MCU in a circuit, so that any two sensor electrodes 11 coming into contact with the rotating disc are electrically closed and electricity flows, and the MCU detects this. That is, the MCU recognizes that the nth and nth-1 (or n + 1th) flow electricity.
  • the position of the rotating disc is sensed in the sensor, and also the position of the rotating disc is detected, as a result, the speed at which the position of the rotating disc changes.
  • three electrodes become one set, and thus the position of the rotating disc is sensed, so that the direction in which the rotating disc is rotated is sensed.
  • 22 is a diagram illustrating an example of detecting a change in tilt with an image sensor.
  • the image sensor 47 is provided around the sensor 10 provided with the rotating disc 40 and the rotary weight 41 as shown in the drawing.
  • the wall of the sensor 10 is made transparent so that the image sensor 47 can detect the shape of the rotating disc 40 and the rotating weight 41 rotating in the sensor 10.
  • the rotation disc 40 or the rotary weight 41 rotates with respect to the sensor as the sensor 10 rotates
  • the image sensor 47 existing around the sensor is rotated by the rotary disc 40 or the rotary weight ( The degree to which the 41 is rotated can be detected as an image.
  • the image sensor 47 provided around the sensor also rotates.
  • the rotating disk 40 or the rotary weight 41 existing inside the sensor is not rotated because of the influence of gravity.
  • the image sensor 47 images the rotary weight or the rotating disk
  • the rotary weight or the rotating disk obtains an image image that is rotated at an angle. This is because the image sensor and the sensor rotate together.
  • three image sensors may be provided at a 120 degree angle around the sensor sphere. In doing so, the rotation direction in addition to the rotation angle can be detected by calculating the coordinate value.
  • 23 is a diagram illustrating an image screen of an image sensor.
  • (A) is a control unit for controlling the image sensor 47 (in the present invention, since the control unit for controlling the image sensor uses a conventional method, description thereof is omitted) can be divided into angles from 1 to n at regular intervals.
  • (B) is a figure which shows the cross section in which a rotating disc and a rotating weight are located in a sensor.
  • 24 is a diagram of an embodiment showing the shape of a weight for image sensing.
  • the wireless motion remote controller 100 of the present invention is characterized in that the position sensor and the tilt sensor unit 50 is further provided in the remote control device. At this time, it may have a conventional mouse shape, and thus, a tilt sensor and a position sensor are further provided in a form basically including a mouse function. At this time, the tilt sensor unit is a three-dimensional sensor of the present invention.
  • 26 is a diagram of an embodiment showing a block diagram of a wireless motion remote controller of the present invention.
  • the wireless motion remote controller 100 of the present invention is also provided with a conventional remote control component unit 51 to perform a normal remote control function.
  • a memory 93 is provided to store the program algorithm and various information data of the present invention.
  • a local area communication unit (R / F unit) 92 is also provided to exchange information with a computer or a peripheral device through a local area network.
  • the distance sensor for determining the separation state with the ground, and the position sensor 80, such as a sensor that is responsible for the acceleration movement is further provided
  • the inclination sensor 10 for determining the inclination degree of the wireless motion remote control of the present invention further. It is provided. Then, the controller 90 controls each function of the wireless motion remote controller of the present invention and controls each component provided according to a predetermined algorithm.
  • FIG. 27 is a diagram of an embodiment showing a control flowchart of the present invention.
  • Wireless motion remote control 100 of the present invention is characterized in that it includes a function for detecting a change in the tilt as necessary while performing a normal remote control function.
  • the distance sensor provided in the position sensor 80 of the present invention detects whether the wireless motion remote controller 100 is spaced apart from the ground. That is, the control unit 90 detects a detection signal of the distance sensor (not shown separately in the present invention, but refers to a general distance sensor used in a mobile phone or a smartphone.) And the wireless motion remote controller 100. ) Is to determine whether it is separated from the ground.
  • the remote controller performs a normal remote control function through a function of a remote controller component and a control unit. (S 112)
  • the operation of the technology sensor means that the controller detects and determines the detection signal of the technology sensor.
  • the tilt sensor detects the tilt signal and transmits the signal to a peripheral device (computer or electronic device) through the R / F module unit. (S 110)
  • This function is performed by a predetermined algorithm and a predetermined method, and the algorithm and method are stored in a memory unit.
  • the tilt sensor may be predetermined as a signal related to voice control of the electronic device.
  • the memory unit of the present invention also stores information about control signals of controllable electronic devices.
  • the controller of the present invention detects the inclination change and the inclination change direction of the inclination sensor and detects the change amount and the change amount in the direction.
  • the amount of change and the amount of change in the change direction are any control method of any device.
  • the controller converts the change amount of the tilt sensor into a control signal of a device to be controlled, and transmits a control signal of the electronic device through the R / F module.
  • Table 1 shows an embodiment of an information storage method for performing a control method of an electronic device.
  • the above storage information is stored in the memory unit.
  • the information on the electronic devices that can be controlled by the wireless motion remote controller 100 of the present invention there is also a control signal of each electronic device.
  • the change value of the inclination sensor corresponding to the control signal of each electronic device is also corresponding.
  • the controller determines which control signal of the electronic device corresponds to the control signal, and outputs the control signal of the corresponding electronic device.
  • output means transmitting a wireless signal to the electronic device.
  • the above process is performed by the controller 90 outputs a predetermined signal.
  • a control signal is output through the R / F unit 92.
  • an infrared signal or the like can be used. That is, the present invention does not limit the radio control signal to one method.
  • the computer receiving the signal from the wireless motion remote controller displays a list of control commands on the display screen.
  • a computer-controllable command list is displayed on the computer display screen.
  • One of the control command lists displayed on the computer display screen is selected (S 130). For example, the T.V. of content driving can be selected from the control command list. This selection may be made through the left and right up and down movement and selection buttons, and since such movement and selection may be performed using a conventional method, a separate description thereof will be omitted.
  • a control command is performed by the motion remote control sensor of the present invention, a button is selected and input, and a new control command is stored.
  • the motion sensor detects the T-shaped movement and the tilt sensor of the present invention detects the T-shaped movement and outputs it to the controller.
  • the controller of the present invention senses a T-shaped movement, stores movement information of the inclination sensor in a memory unit, and stores the movement information corresponding to the selected (T.V selection) control command list.
  • the control command of the T.V of the computer outputs a signal.
  • 28 and 29 are diagrams of yet another embodiment of a motion motion remote controller.
  • the wireless motion remote controller and the sensor unit 50 are provided with a wireless energy transmitter 83 to supply the remaining source to the rotatable sensor unit 50.
  • the component part 91 of the wireless motion remote controller includes a basic component for controlling a conventional remote controller (wheel operated remote controller), a battery, and a related component for supplying power wirelessly.
  • the wireless motion remote control is operated by the power supply when the power is supplied, and the power is supplied by the battery when the power is not supplied.
  • the power source or the battery power source is converted into power energy capable of supplying power wirelessly, and then transferred to the wireless energy transmitter (wireless energy transfer antenna) 83.
  • the wireless power energy transmitted by the wireless energy transmission device 83 is transmitted to the rotatable sensor unit 50 to operate the sensor.
  • the sensor unit 50 of the present invention is rotatable, the user of the present invention can rotate the sensor unit 50 to execute a desired control command.
  • the wireless motion remote control is placed on a flat table or the like, and the remote control control command is executed by the normal remote control operation method, and then another desired control command can be executed by rotating the sensor unit 50.
  • the lower portion (based on the direction shown in the figure) of the sensor portion 50 is made heavier. Therefore, even if the user issues a rotation command to the sensor unit 50, the user returns to the original position after the command is executed. And, when it comes back, it is fixed by the locking groove 53 provided.
  • the wireless motion remote controller 100 is provided with a locking projection 81, and by pulling the locking button, the locking projection 81 is separated from the locking groove 53 to enable the rotation of the sensor unit.
  • the external button is controlled by the locking button 81b.
  • a wireless power receiver (wireless power receiving antenna) 52 is provided to receive the wireless power energy transmitted by the wireless power transmitter.
  • the component part 51 of the sensor is provided with a component for controlling a wireless motion remote controller such as a controller, an R / F unit, a memory unit, as well as a live part to convert the wireless power reception energy to be used as a power source.
  • the wireless motion remote control of the present invention does not necessarily need to operate by fixing on the table. That is, the wireless motion remote controller of the present invention can be rotated in the air to execute a control command through the sensor unit 50. That is, as in the description of the embodiment of the present invention, the sensor unit 50 of the present invention is fixed to the wireless motion remote control 100 through the engaging portion 53. Therefore, in some cases, even when the wireless motion remote control 100 is rotated in the air, it is possible to perform the same control command through the rotational movement.
  • FIG. 30 is a view of an embodiment showing a configuration of a sensor unit.
  • a tilt sensor 10 for detecting a change in inclination
  • a wireless energy receiver (wireless energy receiving antenna coil) 52 and a component unit 51 are provided inside the sensor unit 50.
  • the component unit is provided with a component for controlling a wireless motion remote controller such as a controller, an R / F unit, a memory unit, as well as a component that can be used as a power source by converting wireless power reception energy.
  • the locking groove 53 is provided may serve to prevent the rotational movement in the remote control (100). Therefore, in order to rotate the sensor unit can unwind the engaging groove 53 and proceed to the rotational movement,
  • 31 and 32 are diagrams of embodiments in which a tilt sensor or the like is provided in the form of a reconcon that controls an electronic controller.
  • an input unit 95 in the form of a button is provided to enable a control command of the electronic device.
  • the inclination sensor 50 and the position sensor 80 are further provided to perform the functions of the motion sensor of the present invention. That is, FIG. 10 is an external view, and therefore, the structures of FIGS. 8 and 9 of the present invention can be applied to the embodiment of FIG. 10 as it is.
  • Figure 32 (A) is a view of an embodiment showing a state in which the three-dimensional motion remote control in the form of a remote control moving in a circular motion. That is, even in the circular motion as shown in Fig. A, the sensor provided in the remote controller of the present invention detects the rotation direction, acceleration, and the like, and outputs a control signal of the electronic device corresponding to the result.
  • Figure (B) is a view of an embodiment for the rotational movement. Even when the rotary motion is shown in FIG. (B), the wireless motion remote controller of the present invention detects the rotary motion and outputs a control signal corresponding to the rotary motion.
  • An ionic liquid is included inside a motion sensor that detects a change in an object's three-dimensional attitude (movement direction, rotation direction, rotation angle, etc.), and in particular, to widen an error range of an electrode pattern formed on a substrate provided in the sensor. This allows for more accurate tinting change measurements.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Input By Displaying (AREA)

Abstract

본 발명은 이온액체가 주입된 센서와 상기 센서 벽에 전극 패턴이 형성되고, 상기 전극이 이온액체의 움직임을 감지하여, 센서 출력을 하는 3차원 모션 센서에 있어서, 상기 센서 벽에, 기판이 삽입되어 구비되고, 상기 기판에 전극 패턴이 형성되는 구조를 가질 때, 상기 전극 패턴에 비어 홀이 형성되므로서, 물체의 3차원 자세(이동방향, 회전방향, 회전각도 등)변화를 감지하는 모션 센서 내부에 이온액체를 포함하고 있으며, 특히 센서에 구비되는 기판에 형성되는 전극 패턴의 오차 범위를 넓히도록 하여, 더 정밀한 귀울기 변화 측정이 가능하도록 한다.

Description

비어홀이 구비된 3 차원 모션 센서
본 발명은 3차원 모션(Motion)(움직임) 센서에 관한 것으로서, 특히 물체의 이동 및 회전 방향, 이동 및 회전속도 등을 측정할 수 있는 자세 측정 장치를 적용한 3 차원 모션센서 기술이다.
종래의 통상적인 위치변화 측정장치는 2차원 상에서 흔히 사용되는 컴퓨터용 마우스가 있다. 종래의 컴퓨터용 마우스는 볼의 구름을 측정하고 단위 시간마다 구른 횟수를 측정하여 상대적인 물체의 이동을 추출하거나 광센서를 이용하여 물체의 상대적인 위치 변화를 측정한다.
또한, 종래의 위치변화 측정장치에는 노트북이나 PDA 등에서 사용되는 터치패드 또는 터치 펜 등이 있다. 이러한 종래의 통상적인 위치변화 측정장치들은 그 움직임이 2차원 공간으로 제한되어 있어서 움직임이 자유롭지 못하다는 문제점이 있으며, 이들로부터 얻을 수 있는 좌표도 2차원 좌표에 불과하다는 문제점이 있다.
한편 3차원 위치변화 즉 3차원 자세측정을 하기 위한 장치가 개발되고 있으나, 그 구조가 복잡하다는 단점이 있다.
또한, 3차원 영상 데이터를 고속으로 획득할 수 있도록 지원하는 3차원 영상 획득 센서를 제공하기 위해, 3차원 영상 데이터를 획득하고자 하는 대상체에 소정의 쉬트빔을 조사하는 쉬트빔 발생부; 상기 대상체에 조사된 쉬트빔의 반사광을 입력받아 상기 대상체의 단면 형상에 관한 2차원 영상 데이터를 생성하는 2차원 이미지 센서를 포함하는 영상 처리부; 생성된 상기 2차원 영상 데이터를 상기 영상 처리부로부터 전송받아 상기 대상체에 대한 3차원 영상 데이터를 산출하는 신호처리부; 및 상기 대상체에 따라 상기 2차원 이미지 센서의 동작 영역을 지정하는 제어수단을 포함하는 3차원 영상 데이터를 획득하는 기술(대한민국 특허 등록 번호 : 10-0422987)은 존재하지만, 실질적으로 3 차원의 움직임을 정확히 실시간으로 감지하는 센서는 부족한 실정이다.
본 발명은 전술한 문제점을 해결하기 위한 것으로써, 물체의 3차원 자세(이동방향, 회전방향, 회전각도 등)변화를 감지하므로서, 모션((Motion)의 방향을 간단한 구조를 이용하여 정확하고 용이하게 측정할 수 있는 3차원 모션 센서를 제공하는데 그 목적이 있다.
상기 목적은, 이온액체가 주입된 센서와 상기 센서 벽에 전극 패턴이 형성되고, 상기 전극이 이온액체의 움직임을 감지하여, 센서 출력을 하는 3차원 모션 센서에 있어서, 상기 센서 벽에, 기판이 삽입되어 구비되고, 상기 기판에 전극 패턴이 형성되는 구조를 가질 때, 상기 전극 패턴에 비어 홀이 형성되므로서 해걀된다.
또한, 상기 비어 홀은 상기 기판이 센서벽에 삽입될 때, 센서 벽에 삽입되는 부분 혹은 이온액체와 만나는 부분에 형성되고, 상기 비어 홀 주변에 도전체가 형성된다.
한편, 상기 비어홀이 연속해서 2 개 이상 형성될 수도 있다.
본 발명은 전술한 문제점을 해결하기 위한 것으로써, 물체의 3차원 자세(이동방향, 회전방향, 회전각도 등)변화를 감지하므로서, 모션((Motion)의 방향을 간단한 구조를 이용하여 정확하고 용이하게 측정할 수 있는 3차원 모션 센서를 제공하는데 그 목적이 있다. 이상에서 설명한 바와 같은 본 발명의 3차원 자세 측정장치에 따르면, 물체의 3차원 자세(이동방향, 회전방향, 회전각도 등)를 간단한 구조를 이용하여 정 확하고 용이하게 측정할 수 있다.
도 1은 본 발명의 실시 예에 따른 구형 형상을 가진 3 차원 모션 센서의 원리를 나타낸 도면이다.
도 2와 도 3은 이온액체를 포함한 3 차원 모센 센서의 실시예의 도면이다,
도 4 는 센서에 삽입되는 피씨비 기판을 나타내는 실시예의 도면이다.
도 5는 전극 패턴을 형성하는 방법을 나타낸 실시예의 도면이다.
도 6과 도 7은 전극 패턴의 오차 범위를 넓히기 위한 또 다른 실시예의 도면이다.
도 8은 비어가 형성된 전극 패턴의 단면 구조를 나타낸 실시예의 도면이다.
도 9는 본 발명의 3 차원 모센 센서의 또 다른 실시예를 나타낸 도면이다.
도 10과 도 11은 센서 분리부가 결합되는 또 다른 실시예의 도면이다.
도 12와 도 13은 구형 센서를 나사로 결합하게 되는 또 다른 실시예의 도면이다,
도 14는 본 발명의 좌표를 나타낸 실시예의 도면이다.
도 15는 PCB 형태를 달리한 본 발명의 또 다른 실시예의 도면이다.
도 16내지 도 18는 전해질(이온액체)의 출렁임 방지를 위한 수단이 구비된 실시예의 도면이다.
도 19는 본 발명의 원판과 회전추의 위치와 크기를 나타낸 실시예의 도면이다.
도 20은 회전추가 센서 내부에 장착되어 회전하는 실시예의 도면이다.
도 21은 회전추 혹은 회전 원판을 전극이 감지하게 되는 원리를 나타낸 실시예의 도면이다.
도 22는 이미지 센서로 기울기 변화를 감지하는 실시예를 나타낸 도면이다.
도 23은 이미지 센서의 이미지 화면을 나타낸 도면이다.
도 24는 이미지 감지를 위한 추의 형태를 나타낸 실시예의 도면이다.
도 25는 본 발명의 실시 예에 따른 기울기 센서를 내장한 무선 모션 리모컨이다.
도 26은 본 발명의 무선 모션 리모컨의 블록도를 나타낸 실시예의 도면이다.
도 27은 본 발명의 제어 흐름도를 나타낸 실시예의 도면이다.
도 28과 도 29는 무션 모션 리모컨에 대한 또 다른 실시예의 도면이다.
도 30은 센서부의 구성을 나타낸 실시예의 도면이다.
도 31과 도 32는 전자 제어기기를 제어하는 리코콘 형태에서 기울기 센서 등이 구비된 실시예의 도면이다.
이하, 본 발명의 실시예에 따른 3 차원 모션 센서에 대해 상세히 설명한다.
본 발명의 이온액체가 주입된 센서와 상기 센서 벽에 전극 패턴이 형성되고, 상기 전극이 이온액체의 움직임을 감지하여, 센서 출력을 하는 3차원 모션 센서에 있어서, 상기 센서 벽에, 기판이 삽입되어 구비되고, 상기 기판에 전극 패턴이 형성되는 구조를 가지는 3 차원 센서를 제공한다.
그리고 구체적인 방법은 본 발멸의 실시예에 따라 설명한다.
- 실시예 1 -
도 1은 본 발명의 실시 예에 따른 구형 형상을 가진 3 차원 모션 센서의 원리를 나타낸 도면이다.
도면에서처럼, 구형 형상을 가진 센서(10) 내부에는 이온액체(20)이 주입되고, 구형 형상을 가진 센서 벽에는 전극 패턴(11)이 형성된다. 그리고, 전극봉(21)이 구형 센서(10) 내부로 삽입되어 이온액체(20)에 잠겨져 있는 상태가 된다.
그리고, 상기 전극봉(21)은 금속 재질의 막대 형상을 가지며, 플러스(+, Plus) 전극이 연결되게 된다. 또한, 상기 모든 전극 패턴(11)은 MCU 와 연결되어 있다.
즉, 도면에서 볼 때, 눈금 형상을 가진 것이 전극 패턴이며, 하나의 눈금은 하나의 전극 패턴(11)이 된다. 그리고 상기 각각의 모든 전극 패턴(11)이 MCU와 연결이 된다는 것이다.
따라서, 전극봉(21)에 플러스 전극이 연결되면 이온액체(20)을 중간 매개로 하여 전극 패턴(11)과 연결되고 연결된 상황은 MCU가 감지할 수 있게 된다.
현편, 본 발명의 센서(10)가 각도 α 만큼 오른쪽으로 이동하게 되면, 센서의 기울기가 변하게 되고, 센서(10) 내에 이온액체(20)의 위치도 바뀌게 된다.(도1 왼쪽 도면에서 도시된 이온액체(20)의 위치에서 도 1 오른쪽에 도시된 이온액체(20)의 위치로 바뀐다.)
결과적으로 지구 중력 방향에서 볼 때 이온액체(20)의 위치는 바뀌지 않았지만, 센서(10) 내에서는 이온액체(20)의 위치가 바뀐 것이 된다. 그림에서 보면, 도1의 왼쪽 도면에서는 이온액체(20)의 경계가 전극 패턴(11)의 14번째와 15번째 사이이지만, 도 1의 오른쪽에서는 이온액체(20)의 경계가 전극 패턴(11)의 7번째와 8번째 사이로 바뀌게 된다.
그리고, 상기 전극 패턴(11)의 위치 변화는 전기 신호에 의해 MCU가 감지할 수 있게 된다.
도 2와 도 3은 이온액체를 포함한 3 차원 모센 센서의 실시예의 도면이다.
도 2는 이온액체 내에서 전극봉의 움직임을 나타낸 실시예의 도면이다. 도 3에서처럼, 본 발명에서는 센서(10)에 피시비(30)(PCB)를 삽입하므로서, 전극 패턴(11)을 형성하는 방법을 사용한다. 즉 도면에서 보는 바와 같이, 본 발명의 센서는 구형 센서(10)에 120도 간격으로 전극 패턴(11)이 형성된 피씨비(30)를 3개(혹은 2 개 이상) 삽입하는 구조를 가진다.
그리고, 상기 피씨비(30)에는 MCU(31)(혹은 CPU)가 구비되며, 연결 전극(33)과 커넥터(32)도 더 구비된다. 상기 연결 전극(33)을 통해 각 피씨비(30)간에 배선(34)이 연결되게 된다. 또한, 상기 커넥터(32)를 통해 또 다른 센서부의 본체와 회로적으로 연결되게 된다.
본 발명의 구형 센서(10)는 플라스틱 수지 등의 재질을 사용하여 사출 공정을 통하여 만들어 진다. 즉, 구형 센서(10) 사출시에 전극 패턴이 형성된 피씨비(30a)를 삽입한 상태로 사출이 이루어지는 것이다. 그렇게 하므로서, 센서(10) 벽에 전극 패턴(11)이 형성되게 된다.
그리고, 제 1 센서부(10-1)가 전극 패턴이 형성된 피씨비(30a)가 삽입된 상태로 사출되어 만들어 지고, 마찬가지로 제2 센서부(10-2)가 만들어 지고, 또한 제 3 센서부(도면에서는 편의상 도시 생략되었다.) 만들어 지게 된다.
- 실시예 2 -
도 4 는 센서에 삽입되는 피씨비 기판을 나타내는 실시예의 도면이다.
(A)도에서처럼 전극 패턴(11)이 형성된 피시비(30a) 기판과 MCU 등이 형성된 피시비(30)로 분리가 되는 구조를 가지지만, 상기 두 개의 피씨비가 일체로 되어 있을 수도 있음은 물론이다.
그리고, 상기 전극 패턴(11)은 MCU(31)와 연결 배선(11a)를 통해 각각 연결되게 된다.
이때. 각각의 전극 패턴(11)에 비어를 형성하여 만드는데, 이에 대한 도면은 (B)도에 도시되어 있다, 즉 비어 주변(11c))에 도전체 물질이 코팅되어 있고, 상기 도전제 물질이 전극 패턴(11)과 연결 되는 것이다.
즉, 상기 센서 벽에, 기판이 삽입되어 구비되고, 상기 기판에 전극 패턴이 형성되는 구조를 가질 때, 상기 전극 패턴에 비어 홀이 형성되고, 상기 비어 홀은 상기 기판이 센서벽에 삽입될 때, 센서 벽에 삽입되는 부분 혹은 이온액체와 만나는 부분에 형성되는 것이다. 물론, 상기 비어홀이 연속해서 2 개 이상 형성될 수도 있다.
도 5는 전극 패턴을 형성하는 방법을 나타낸 실시예의 도면이다.
최초로 만들어지는 피씨비 기판은 도 5의 (A)에 도시된 바와 같다, 그리고 미리 정해진 크기와 위치에 따라 반원 형태로 작은 비어(1b)를 각각의 전극 패턴(11)에 형성한다,
그런 다음 반원 형태의 커팅선(도면에서 C로 표시)을 경계로 절단하게 된다. 그러면 절단 영역(30c)가 피씨비 기판에서 분리되게 된다,
즉, 상기 절단후에 도5의 (A)도는 도 4의 (A)도의 형태로 되고, 도 5의(B)도는 도4의 (B)도 형태로 되게 된다.
도 6과 도 7은 전극 패턴의 오차 범위를 넓히기 위한 또 다른 실시예의 도면이다.
도 6에서처럼 비어(11b)를 복수개 만들어 제 1 비어(11-1), 제2 비어(11b-2) 및 (11b-c)를 형성한다. 그러면 비어 주면의 도전체 코팅부(11c)도 제 1(11c-1), 제 2(11c-1) 및 제 3(11c-1)처럼 3 개가 만들어지게 된다.
이때, 3 개를 만드는 것은 본 발명의 일 실시예 일 뿐이며, 2 개 이상을 만들 수 있다는 것을 의미한다. 그리고 도 5의 실시예에서처럼 커팅선(C)을 기준으로 절단을 실시하게 된다.
도 7는 도 6에 도시된 피씨비 기판을 절단한 실시예의 도면이다.
결과적으로 비어 주면에 도전체 코팅부가 패턴 전극(11)가 연결되는 유효 면적을 더 넓히는 기능을 하게 된다.
즉, 비어가 1 개 일 경우에는 커팅선(C)을 통하여 절단될 때, 절단 오차에 의하여 비어의 중간 부분에 절단이 되지 않은 경우가 존재하게 된다, 즉 각각의 전극(11)에 형성된 여러개의 비어 중에서 일부는 비어의 중간 부분에 절단이 되지 않은 경우가 발생하게 된다.
이 경우에는 전극 패턴으로서의 역할을 하지 못하게 되는 경우가 발생되며, 이러한 문제점을 해결하기 위하여. 비어를 복수개 형성하게 되는 것이며 결과적으로 오차 범위를 넓혀서 전극 패턴의 불량률이 감소되게 된다.
도 8은 비어가 형성된 전극 패턴의 단면 구조를 나타낸 실시예의 도면이다.
통상의 피씨지 기판은 다층 피씨비 기판을 사용하게 된다. 즉, 도면에서처럼 전극 패턴이 형성된 제 1 피씨비 기판(30a-1), 제 2 피씨비 기판(30a-2), 제 3 피씨비 기판(30a-3) 그리고, 제 4 피씨비 기판(30a-4)이 상호 밀착되어 다층 피씨비 기판을 형성할 수가 있다.
그리고, 제 1 피씨비 기판(30a-1)에는 제 1 전극 패턴(11-1)이 형성되고, 제 2 피씨비 기판(30a-2)에는 제 2 전극 패턴(11-2)이 형성되고, 제 3 피씨비 기판(30a-3)에는 제 3 전극 패턴(11-3)이 형성되고 그리고, 제 4 피씨비 기판(30a-4)에는 제 4 전극 패턴(11-4)이 형성된다. 그리고 상기 각각의 전극 패턴은 일정한 간격으로 형성된다.
따라서, 하나의 피씨비 기판에 만 전극 패턴이 형성될 때에는 전극 패턴과 전극 패턴 사이의 간격이 a 가 되지만, 네 개의 피씨비 기판에 모두 전극 패턴이 형성될 때에는 전극 패턴과 전극 패턴 사이의 간격은 b 가 된다. 즉 전극 패턴 사이의 거리를 더 가깝게 하므로서 더 정밀한 각도 측정이 가능한 센서를 제작할 수가 있는 것이다.
- 실시예 3 -
도 9는 본 발명의 3 차원 모센 센서의 또 다른 실시예를 나타낸 도면이다.
본 발명에서 구형 센서는 몇 개의 결합부가 결합된 형태를 가지며, 접착재 등을 사용할 수도 있지만, 나사등을 사용할 수가 있다.
도면에서 보는 바와 같이, 제1 결합부(13)와 제2 결합부(14)가 모션 센서의 센서 분리부(10a)에 구비하도록 한다. 또한 상기 센서 분리부(10a)가 결합되면, 이온 액체가 구비된 본 발명의 구형 센서(10)가 되므로, 결국 상기 제1 결합부(13)와 제2 결합부(14)는 구형 센서에 구비되는 것이 된다. 결합 수단인 나사 같은 것으로 견고히 조립될 수 있도록 구형 센서에서 돌출된 돌기 구조를 형성한 것을 본 발명에서는 결합부라고 명칭하였다.
그리고, 상기 제1 결합부(13)와 제2 결합부(14)는 구형 센서에 돌기 형태로 구비되고, 상기 제1 결합부(13)와 제2 결합부(14)에 나사홈이 형성된다. 그리고 상기 나사홈에는 나사(15)로 결합이 가능하도록 한다,
즉, 3개 정도의 분리된 센서 분리부(10a)가 결합되어 구형 센서(10)를 만들 때, 결합력을 강화하도록 돌기부(제1 결합부(13)와 제2 결합부(14))를 만들고, 상기 돌기부를 나사로 결합하므로서, 결과적으로 견고한 결합이 되도록 하는 것이다.
한편, 나사 이외에 홈과 돌기 못 등을 사용하여서도 결합이 가능하다.
도 10과 도 11은 센서 분리부가 결합되는 또 다른 실시예의 도면이다.
도 10은 센서 분리부(10a)의 단면(10b) 모양을 나타낸 도면으로, 상기 단면에 기다란 홈(10c)이 형성된다. 그리고, 상기 기다란 홈에는 도 11의 도면에 도면에 도시된 오링(16)이 장착된다.
즉, 센서 분리부(10a)가 결합되어, 구형 센서(10)를 만들 때 상기 오링(16)에 의하여 밀봉 효과를 가지게 된다, 이때 도 6에서처럼 상기 오링은 일체로 만들어 지는 것을 특징으로 한다.
그리고, 상기 오링은 고무나 탄력성 있는 수지로 만들어진 탄성체를 사용한다, 그리고 그 경도는 50에서 70 정도가 적당하다, 결국 상기 오링은 구형 센서의 재료보다 더 탁력적인 소재를 사용하므로서, 상기 구형 센서가 결합될 때 확실한 밀봉 효과를 가지도록 하는 것이다.
도 12와 도 13은 구형 센서를 나사로 결합하게 되는 또 다른 실시예의 도면이다.
도면에서 보는 바와 같이 제 1,2 결합 방향을 가로 방향으로 하기 위하여 도면에서처럼, 제 1, 2 결합부(13a)(13b)가 상호 단차를 형성한 다음 맞물리는 구조를 가지게 된다. 또한, 상기 제 1,2 결합부에는 각각 나사홈이 형성되어 나사(15)를 통하여 상기 제 1, 2 결합부(13a)(13b)가 견고하게 결합되도록 한다.
도 13은 제2 결합부(14)와 센서 본체 부분에 공간(Space)를 구비하고, 상기 공간에 너트를 사용하여 나사(15)가 더 견고하게 작용되도록 하게 된다.
즉, 제 1 결합부(13)와 제 2 결합부(14)를 상기 나사(15)가 결합할 때, 나사 몸체 부분이 제 1,2 결합부가 결합되는 부분보더 더 길게 형성되도록 하여, 나사의 몸체 부분이 밖으로 돌출 되는 구조를 가지게 된다. 그리고, 상기 돌출되는 나사 몸체 부분을 너트로 견고하게 조이는 구조를 갖도록 하는 것이다.
상기와 같이 제 1 결합부(13)와 제 2 결합부(14)를 나사로 결합할 때, 나사 몸체의 끝 부분(나사 머리와 반대 부분을 끝 부분으로 설명하였다.)을 너트로 견고히 고정하도록 하므로서, 제 1 결합부(13)와 제 2 결합부(14)의 결합이 훨씬 더 견고해 질 수 있게 된다.
- 실시예 4 -
도 14는 본 발명의 좌표를 나타낸 실시예의 도면이다.
제 1번부터 제 n번까지 하나의 전극 패턴(11) 세트가 구비된 실시예의 도면이지만, 도 2는 전극 패턴(11)이 3 세트 구비된 실시예의 도면이다. 즉 각각 제 1 번부터 제 n번 까지 번호가 부여된 전극 패턴(11)을 3 세트 구비할 수 있게 된다.
구형 모양의 센서(10) 벽에 3 세트(Set) 전극 패턴(11)이 120도 간격으로 구비되도록 할 수 있으며, 따라서 각각의 방향에서 전해액(10)의 움직임을 감지할 수가 있고, 결과적으로 각각의 방향에서 센서(10)의 기울기가 변하는 값을 수치적으로 감지할 수 있게 되는 것이다.
도 15는 PCB 형태를 달리한 본 발명의 또 다른 실시예의 도면이다.
전극 패턴(11)이 형성된 피씨비(30a)와 MCU가 형성된 피씨비(30)를 구별하여 제작한 형태이다. 즉, 전극 패턴이 형성된 피씨비(30a)는 도 4의 실시예처럼 센서(10)의 법선 방향과 직각으로 구비되고, MCU가 형성된 피씨비(30)는 센서(10)의 법선 방향과 평행하게 구비된다.
물론 도 15에 도시된 것처럼, 반드시 직각과 평행으로 한정된 것은 아니다, 즉 전극 패턴이 형성된 피씨비(30a)와 MCU(31)가 형성된 피씨비(30)가 상호 분리되어 센서(10)에 구비된다면 본 발명의 실시예에 포함된다고 볼 수 있다.도 6 은 센서의 구성과 제조 방법을 나타내는 실시예의 도면이다.
- 실시예 5 -
도 16내지 도 18는 전해질(이온액체)의 출렁임 방지를 위한 수단이 구비된 실시예의 도면이다.
출렁임 방지 수단은 도 16에서와 같이 다수의 홀(43)이 구비된 회전 원판(40)과 회전추(41) 및 회전추와 회전 원판을 연결해 주는 연결봉(42) 등으로 구성된다. 이때 회전 원판(40)에는 중심을 바라보는 곡선 모양의 출렁임 방지판(45)이 구비된다. 그리고 상기 출렁임 방지판(45)은 연결부(45a)에 의하여 상호 연결된다.
그리고, 상기 출렁임 방지판(45)은 중심을 바라보는 형태의 원호 모양을 구비하고 일정한 높이를 가진 판상 형태이므로, 본 발명의 센서(10)가 회전함에 따라 발생하는 전해질(20)의 출렁임을 효과적으로 방지하게 된다. 즉, 센서의 회전에 의하여 전해질도 움직이고 전해질은 액상이므로 출렁임이 발생하게 된다, 이때, 출렁임 방지판(45)이 전해질의 출렁임을 효과적으로 방지하게 된다. 출렁임 방지판(45)은 수직으로 형성되었기 때문이다.
또한, 출렁임 방지판(45)은 연결봉을 통하여 회전추(41)와 연결될 때, 상기 회전추는 무거운 소재로 구비된다. 즉 원판(40)을 구비하는 재료보다 더 무거운 재료로 회전추를 제조하게 된다. 따라서, 원판은 플라스틱 소재가 적당하며, 회전추는 금속 혹은 합금의 소재가 적당하다.
도 17은 센서(10)가 회전함에 따라 전해질(20)과 함께 원판(43)도 이동함을 보이는 실시예의 도면이다. 즉, 센서(10)가 회전하지만, 전해질(20)과 회전추(41)는 중력에 의하여 이동하게 되고, 따라서, 센서가 회전함에도 전해질과 회전추는 센서(10)의 아래쪽에 위치하게 되는 구조를 가지게 된다.
도(A)은 최초의 센서의 모양고, 도(B)는 일정 각도를 회전한 센서의 모양이며, 중력에 의하여 두 경우 모두 전해질과 회전추는 센서(10)의 아래쪽에 위치하게 된다.
도 18은 원판(40)의 또 다른 실시예의 구조를 나타낸 도면이다. 즉, 원형 모양의 판에, 중심을 바라보는 원의 모양으로 홀(43)이 형성되는 구조를 가진다. 그리고 상기 홀을 통하여 센서가 회전 될 때, 전해질이 이동하므로 출럼임에 의한 불규칙한 전해질의 움직임을 방지할 수가 있게 된다.
도 19는 본 발명의 원판과 회전추의 위치와 크기를 나타낸 실시예의 도면이다.
도 19의 실시예 도면에서 도시된 원판(40)의 반지름의 크기 a 는 센서의 반지름의 크기와 동일하거나 약간 작게 된다. 이때, 작은 정도는 5 % 이내가 된다. 이때 상기 a의 값이 센서의 반지름 보다 작은 이유는 센서가 회전할 때, 센서 내에서 중력에 영향을 받은 움직임이 원활하도록 하기 위함이다.
한편, 본 발명의 원판(40)을 도 10에서는 단면의 형태로 도시하였지만, 실재의 형상은 원모양의 판이다. 즉, 본 발명의 센서가 구 모양을 가지므로 본 발명의 센서의 구의 단면인 원 모양에 의하여, 본 발명의 원판(40)의 모양도 정해지는 것이다.
그리고, 원판도 중심부 보다 가장자리가 더 얇게 형성될 수 있다. 따라서, 수직으로 형성된 출렁임 방지판(45)의 높이도 원판의 중심부 보다 가장자리가 더 작게 된다.
또한, 회전추는 원판 보다 무거운 재질을 사용하며, 금속 같은 무게가 있는 물질로 재조하게 된다.
- 실시예 6 -
도 6의 실시예는 이온액체를 구비하는 않는 방법을 제시하는 실시예이다.
도 20은 회전추가 센서 내부에 장착되어 회전하는 실시예의 도면이다.
도 17의 실시예와 회전추의 구조는 같지만 이온액체가 구비되지 않은 형태이다. 따라서. 센서 내부 벽에 눈금이 새겨져 있다면. 회전추(41) 혹은 회전 원판(40)이 지시하는 눈금 값은 센서(10)의 회전에 의하여 변하게 된다. 그리고 상기 변하게 되는 눈금 값을 각각 3 개의 좌표가 인식하므로서 회전 방향과 회전 각도를 인식할 수가 있으며, 회전하는 각도에 시간을 연결하므로서 회전 속도를 감지할 수가 있게 되는 것이다.
도(A)와 도(B)는 회전 상태를 상호 나타낸 도면이다.
도 21은 회전추 혹은 회전 원판을 전극이 감지하게 되는 원리를 나타낸 실시예의 도면이다.
도면에서처럼 센서(10)의 내벽에는 본 발명의 앞의 실시예에서 설명된 바와 같이 전극(11)이 형성된다. 이때 센서 내부에서는 회전 원판이 회전 이동을 하게 된다.
이때, 회전 원판에서 센서 내벽에 형성된 전극에 맞 닿은 부분은 금속 성분이 증착 코팅되어 있다.(회전 원판은 회전추 보다 무게를 가볍게 하기 위하여, 플라스틱 혹은 수지류로 만들어 졌다.) 그리고 회전 원판의 끝 부분의 거리는 적어도 센서 2 개의 거리보다 더 크지만, 3 개의 거리보다는 작게 된다, 그래서 대부분의 경우에는 회전 원판의 끝 부분이 센서 2 개와 맞 닿게 된다.
그리고, 상기 모든 전극은 MCU와 회로적으로 연결되어 있으며, 따라서 회전 원판과 맞 닿게 되는 임의의 센서 전극(11) 2 개는 전기적으로 폐회로가 되어 전기가 흐르게 되고, MCU는 이를 감지하게 된다. 즉, 제 n 번째와 제 n-1 (혹은 n+1 번째) 가 전기가 흐르게 됨을 MCU는 파악하게 된다.
그리고, 이러한 원리에 의하여 센서 내에서 회전 원판의 위치가 감지되고 또한, 회전 원판의 위치가 변하게 되는 것도 감지되며, 결과적으로 회전 원판의 위치가 변하게 되는 속도도 감지되게 된다. 결과적으로 3 개의 전극이 하나의 세트가 되어, 회전원판의 위치를 감지하게 되므로, 회전원판의 회전하게 되는 방향이 감지되는 것이다.
도 22는 이미지 센서로 기울기 변화를 감지하는 실시예를 나타낸 도면이다.
즉, 도면에서와 같이 회전원판(40)과 회전추(41)가 구비된 센서(10) 주변에 이미지 센서(47)를 구비하였다. 그리고 센서(10) 벽을 투명하게 하여, 센서(10) 내에 회전 원판(40)과 회전추(41)가 회전하는 형상을 이미지 센서(47)가 감지할 수 있도록 하였다.
따라서, 센서(10)가 회전함에 따라 센서에 대하서 회전 원판(40) 혹은 회전추(41)가 회전하게 되면, 센서 주변에 존재하는 이미지 센서(47)는 회전 원판(40)이나 회전추(41)가 회전하게 되는 정도를 이미지로 감지할 수가 있게 된다.
예를들어, 센서(10)가 회전하게 되면, 센서 주변에 구비된 이미지 센서(47)도 함께 회전하게 된다. 그러나 센서 내부에 존재하는 회전 원판(40) 이나 회전추(41)는 중력의 영향을 받으므로 회전하지 않게 된다. 그리고, 이미지 센서(47)가 회전추 혹은 회전 원판을 이미지화 하게 되면, 회전추 혹은 회전 원판은 일정 각도로 회전하게 된 이미지 영상을 얻게 된다. 이미지 센서와 센서가 함께 회전하기 때문이다.
이때, 이미지 센서는 센서구 주변에 120 도 각도로 3 개 정도 구비할 수가 있게 된다. 그렇게 하므로서 회전 각도 이외에 회전 방향을 좌표값 계산을 통하여 감지할 수 있게 된다.
도 23은 이미지 센서의 이미지 화면을 나타낸 도면이다.
(A)도는 이미지 센서(47)를 제어하는 제어부(본 발명에서는 이미지 센서를 제어하는 제어부는 통상의 방법을 사용하므로 그 설명을 생략하였다.)는 1부터 n까지 일정 간격으로 각도를 구분하 수 있는 각도 형태의 좌표를 형성함을 보이는 도면이다.
(B)도는 센서 내에 회전 원판과 회전추가 위치한 단면을 나타낸 도면이다.
이때. 센서가 회전하게 되면, 회전추 혹은 회전 원판이 이미지 센서에 감지되는 각도가 변하게 된다.
도 24는 이미지 감지를 위한 추의 형태를 나타낸 실시예의 도면이다.
각도를 정밀하게 이미지 감지하기 위해서는 회전추(41) 끝단을 예리하게 할 수 있다는 것을 보이는 실시예의 도면인 것이다.
- 제 7 실시예 -
도 25는 본 발명의 실시 예에 따른 기울기 센서를 내장한 무선 모션 리모컨이다,
도면에서 보는 바와 같이, 본 발명의 무선 모션 리모컨(100)는 리모컨 제어 기기에 위치 센서와 기울기 센서부(50)가 더 구비된 것을 특징으로 한다. 이때, 통상의 마우스 형상을 가질 수도 있으며, 따라서 마우스 기능을 기본적으로 포함한 형태에서 기울기 센서와 위치 센서가 더 구비되는 것이다. 이때, 기울기 센서부는 본 발명의 3 차원 센서이다.
도 26은 본 발명의 무선 모션 리모컨의 블록도를 나타낸 실시예의 도면이다.
본 발명의 무선 모션 리모컨(100)에도 통상의 리모컨 부품부(51)가 구비되어, 통상의 리모컨 기능을 수행한다. 그리고, 메모리부(93)가 구비되어 본 발명의 프로그램 알고리즘과 각종 정보 데이터를 저장한다. 또한, 근거리 통신부(R/F부)(92)가 구비되어, 컴퓨터나 주변 기기와 근거리 통신망을 통하여 정보를 교환한다.
한편, 지면과의 이격 상태를 판단하는 거리 센서와, 가속도 이동을 담당하는 센서등 위치 센서(80)가 더 구비되며, 본 발명의 무선 모션 리모컨의 기울기 정도를 판단하는 기울기 센서(10)가 더 구비된다. 그리고, 제어부(90)는 본 발명의 무선 모션 리모컨의 각각의 기능을 제어하고 구비된 각각의 부품을 정해진 알고리즘에 따라 제어한다.
도 27은 본 발명의 제어 흐름도를 나타낸 실시예의 도면이다.
본 발명의 무선 모션 리모컨(100)는 통상의 리모컨 기능을 수행하면서 필요에 따라 기울기 변화를 감지하는 기능을 포함하는 것을 특징으로 한다.
무선 모션 리모컨(100) 작동이 시작되면 리모컨이 작동이 된다. (S 100- S 102), 이때, 본 발명의 위치 센서(80)에 구비된 거리 센서는 상기 무선 모션 리모컨(100)가 지면과 이격 상태인가를 감지하게 된다. (S 104) 즉, 상기 거리 센서(본발명에서 별도로 도시되지 않았지만, 휴대폰이나 스마트폰에 사용되는 통상의 거리 센서를 의미한다.)의 감지 신호를 제어부(90)가 감지하여 무선 모션 리모컨(100)가 지면과 이격 상태인가를 판단하는 것이다.
지면과 본 발명의 리모컨이 이격된 상태가 아니라면, 리모컨 부품부의 기능과 제어부의 제어를 통하여 통상의 리모컨 기능을 수행한다. (S 112)
지면과 리모컨의 거리가 이격된 상태하면, 기울기 센서가 작동 하고 기울기 변화를 판단한다. (S 106 - S108 )
기술기 센서가 작동된다는 것은 기술기 센서의 감지 신호를 제어부가 감지하고 판단한다는 것을 의미한다.
기울기 센서 감지된 신호를 제어부가 변환하여 R/F 모듈부를 통하여 주변 기기(컴퓨터나 전자기기)에 전송한다. (S 110)
이러한 기능은 미리 정해진 알고리즘과 정해진 방법에 의하여 수행되고, 상기 알고리즘과 방법은 메모리부에 저장된다.
즉, 기울기 센서가 "V" 자 모양으로 기울기 이동을 하여 이동하였으면, 전자 기기의 음성 제어에 관한 신호라고 미리 정해질 수 있다는 것이다,
그리고, 본 발명의 메모리부에는 제어 가능한 주변의 전자기기의 제어 신호에 대한 정보도 저장된다.
따라서, 기울기 센서가 작동되면, 본 발명의 제어부는 기울기 센서의 기울기 변화와 기울기 변화 방향을 감지하고, 변화량과 방향의 변화량을 감지하게.
그리고, 상기 변화량과 변화 방향의 변화량이 어떠한 기기의 어떠한 제어 방법임을 판단하여야 한다.
그리고, 제어부는 기울기 센서의 변화량을 제어하고자 하는 기기의 제어 신호로 변환하고, R/F 모듈부를 통하여 전자 기기의 제어 신호를 전송하게 된다.
표 1
기기 제어 신호 기울기 센서 변화량 기울기 센서 변화 모형
컴퓨터 000-01 30 도 이상 C
T.V. 000-02 30 도 이상 T
오디오 000-03 30 도 이상 A
홈 오토메에션 000-04 30 도 이상 H
상기 표 1 은 전자 기기의 제어 방법을 수행하기 위한 정보 저장 방법을 나타낸 실시예이다. 상기의 저장 정보는 메모리부에 저장된다.
본즉, 발명의 무선 모션 리모컨(100)가 제어 할 수 있는 전자 기기에 대한 정보가 존재하며, 각각의 전자 기기의 제어 신호도 존재한다. 그리고, 각각의 전자 기기의 제어 신호에 대응되는 기울기 센서의 변화 값도 대응된다.
따라서, 기울기 센서의 감지 값이 전자기기의 어떠한 제어 신호에 대응되는 가를 제어부가 판단하여, 대응되는 전자기기의 제어 신호를 출력하는 것이다. 이때, 출력한다는 것은 무선 신호를 해당 전자기기에 송신한다는 것을 의미한다.
한편, 상기의 과정은 제어부(90)가 미리 정해진 신호를 출력하므로서 이루어진다. 이때, R/F부(92)를 통하여 제어 신호가 출력된다. 물론 적외선 신호 등을 사용할 수가 있다. 즉, 본 발명에서는 무선 제어 신호를 한가지 방법에 한정하지는 않는다.
무선 모션 리모컨의 신호를 받은 컴퓨터는 디스플레이 화면에 제어 명령 리스트를 표시 한다. 표2 의 실시예에서처럼 컴퓨터가 제어 가능한 명령 리스트가 컴퓨터 디스플레이 화면에 표시되는 것이다. 이를 위해서는, 컴퓨터의 프로그램에 단축 버튼 신호를 수신 받으면, 컴퓨터 디스플레이 화면에 제어 가능한 명형 리스트가 표시되도록 하는 제어 방법이 미리 저장되어야 한다.
표 2
화면 제어 소리 제어 인터넷 선택 콘텐츠 구동
밝게 함 크게 함 00버 T,V.
어둡게 함 작게 함 00글 오디오
해상도 크게 함 검색어 입력 CCD 카메라
해상도 작게 함
컴퓨터 디스플레이 화면에 표시된 제어 명령 리스트 중에서 하나를 선택한다.(S 130) 예를 들어 상기 제어 명령 리스트 중에서 콘텐츠 구동의 T.V.를 선택할 수가 있다는 것이다. 이러한 선택은 좌우 상하 이동 및 선택 버튼을 통하여 이루어 질 수 있으며, 이러한 이동과 선택은 통상의 방법을 사용할 수 있으므로, 본 발명에서 별도 설명은 생략한다.
상기 제어 명령 리스트에서 하나를 선택한 다음 본 발명의 모션 리모컨 센서로 제어 명령을 수행하고, 버튼을 선택하여 입력하고, 새로운 제어 명령을 저장한다.
예를들어 모션 리모컨 센서를 통하여, T 자 형태로 이동하고 상기 T 자 형태의 이동을 본 발명의 기울기 센서가 감지하여 제어부에 출력하게 된다.
본 발명의 제어부는 T자 형태의 이동을 감지하고, 상기 기울기 센서의 이동 정보를 메모리부에 저장하고, 상기 선택(T.V 선택)된 제어 명령 리스트에 대응하여 저장한다.
상기의 수행에 의하여, 새로운 명령에 대한 제어 명령이 저장되게 되는 것이다.
즉, 상기 제어 명령 저장 과정을 수행한 후에, 본 발명의 모션 마으스 센서를 통하여 T자 모양으로 기울기 변화를 시키게 되면, 컴퓨터의 T.V의 제어 명령이 신호가 출력되게 되는 것이다.
도 28과 도 29는 무션 모션 리모컨에 대한 또 다른 실시예의 도면이다.
무선 모션 리모컨과 센서부(50)는 무선 에너지 전송장치(83)가 구비되어, 회전 가능한 센서부(50)에 잔원을 공급하게 된다.
즉, 본 발명의 제 2 실시예에 따르는 무선 모션 리모컨(100)의 작동 원리는 다음과 같다. 무선모션 리모컨의 부품부(91)에는 통상의 리모컨(휠 방식으로 작동 되는 리모컨)를 제어하는 기본 부품과 밧테리 및 무선으로 전력을 공급하기 위한 관련 부품 등이 구비된다.
따라서, 전원을 공급할 때에는 전원에 의하여 무선 모션 리모컨이 작동되고, 전원을 공급하지 않을 때에는 밧테리에 의하여 전원이 공급된다. 상기 전원 혹은 밧테리 전원은 무선으로 전력을 공급할 수 있는 전력 에너지로 변환되어 무선 에너지 전송 장치(무선 에너지 전달 안테나)(83)에 전달되게 된다.
그리고, 무선 에너지 전송 장치(83)에 의하여 전송된 무선 전력 에너지는 회전 가능한 센서부(50)에 전달되어 센서의 작동이 이루어지게 되는 것이다. 이때, 본 발명의 센서부(50)는 회전 가능하기 때문에, 본 발명의 사용자는 상기 센서부(50)를 회전시켜 원하는 제어 명령을 실시할 수가 있는 것이다.
즉, 무선 모션 리모컨을 평편한 테이블 등에 위치시키고 통상의 리모컨 작동 방식으로 리모컨 제어 명령을 실시하다가, 센서부를(50)를 회전시키므로서 원하는 또 다른 제어명령을 실시할 수가 있다.
상기 센서부(50)의 아래 부분(도면에서 도시된 방향을 기준으로 해서)이 더 무겁게 만들어져 있다. 따라서, 사용자가 상기 센서부(50)로 회전 명령을 실시하여도, 명령 실시후 원래의 위치로 되돌아오게 된다. 그리고, 되돌아오게 되면 구비된 걸림홈(53)에 의하여 고정되게 된다.
이때, 무선 모션 리모컨(100)에는 걸림돌기(81)이 구비되고, 상기 걸림 버튼을 당김으로서, 걸림 돌기(81)를 걸림홈(53)에 이탈시키므로서 센서부의 회전이 가능하도록 하는 것이다. 걸림 버튼(81b)으로 외부의 사용자가 제어하는 것이다.
그리고, 무선 전력 수신부(무선 전력 수신 안테나)(52)가 구비되어 무선 전력 송신부가 전송해 주는 무선 전력 에너지를 수신 받게 된다. 또한, 상기 센서의 부품부(51)에는 무선 전력 수신 에너지를 변환하여 전원으로 사용될 수 있도록 사는 부품은 물론, 제어부, R/F부, 메모리부등 무선 모션 리모컨을 제어하는 부품이 구비되게 된다.
아울러, 본 발명의 무선 모션 리모컨은 반드시 테이블 위에 고정 시켜 작동할 필요는 없다. 즉, 본 발명의 무선 모션 리모컨을 허공에서 회전 시켜 상기 센서부(50)를 통한 제어 명령을 실시할 수가 있다. 즉, 본 발명의 실시예의 설명에서와 같이, 본 발명의 센서부(50)는 걸림부(53)를 통하여 무선 모션 리모컨(100)에 고정되게 된다. 그러므로, 경우에 따라서는 무선 모션 리모컨(100)를 허공에서 회전 시키게 되어도 회전 움직임을 통한 제어 명령을 동일하게 실시할 수가 있는 것이다.
도 30은 센서부의 구성을 나타낸 실시예의 도면이다.
센서부(50) 내부에는 기울기 변화를 감지하는 기울기 센서(10)가 존재하며, 무선 에너지 수신장치(무선 에너지 수신 안테나 코일)(52), 부품부(51)가 구비된다. 그리고,상기 부품부에는 무선 전력 수신 에너지를 변환하여 전원으로 사용될 수 있도록 사는 부품은 물론, 제어부, R/F부, 메모리부등 무선 모션 리모컨을 제어하는 부품이 구비되게 된다. 한편, 걸림홈(53)이 구비되어 리모컨(100)에서 회전 운동을 방지하는 역할을 할 수 있다. 따라서 센서부의 회전을 위해서는 상기 걸림홈(53)의 장김을 풀고 회전 운동을 진행할 수가 있다,
- 제 8 실시예 -
도 31과 도 32는 전자 제어기기를 제어하는 리코콘 형태에서 기울기 센서 등이 구비된 실시예의 도면이다.
도면에서처럼 버튼 형태의 입력부(95)가 구비되어, 전자기기의 제어 명령이 가능하다. 하지만, 본 발명의 앞의 실시예에서 설명된 바와 같이 기울기 센서(50)와 위치 센서(80)를 더 구비하여,본 발명이 가진 모션 센서의 기능을 수행할 수 있다. 즉, 도 10은 외관도이며, 따라서, 본 발명의 도 8과 도 9의 구조는 상기 도 10의 실시예에 그대로 적용될 수 있음은 당연하다.
한편, 도 32의(A)도는 리모컨 형태의 3 차원 모션 리모컨이 원운동을 하면서 움직이는 모양을 나타낸 실시예의 도면이다. 즉 도(A)에서처럼 둥그렇게 원운동을 하여도 본 발명의 리모컨에 구비된 센서에 의하여 회전 방향, 가속도 등을 감지하고 그 가지 결과에 대응하는 전자 기기의 제어 신호를 출력하게 된다. 또한, 도(B)는 회전운동을 하는 실시예의 도면이다. 도 (B)에 도시된 형태로 회전운동이 되어도, 본발명의 무선 모션 리모콘은 상기 회전운동을 감지하여, 상기 회전운동에 대응되는 제어 신호를 출력하게 된다.
물체의 3차원 자세(이동방향, 회전방향, 회전각도 등)변화를 감지하는 모션 센서 내부에 이온액체를 포함하고 있으며, 특히 센서에 구비되는 기판에 형성되는 전극 패턴의 오차 범위를 넓히도록 하여, 더 정밀한 귀울기 변화 측정이 가능하도록 한다.

Claims (18)

  1. 이온액체가 주입된 센서와 상기 센서 벽에 전극 패턴이 형성되고, 상기 전극이 이온액체의 움직임을 감지하여, 센서 출력을 하는 3차원 모션 센서에 있어서,
    상기 센서 벽에, 기판이 삽입되어 구비되고, 상기 기판에 전극 패턴이 형성되는 구조를 가질 때, 상기 전극 패턴에 비어 홀이 형성되는 것을 특징으로 하는 비어홀이 구비된 3 차원 모션 센서.
  2. 제 1항에 있어서, 상기 비어 홀은 상기 기판이 센서벽에 삽입될 때, 센서 벽에 삽입되는 부분 혹은 이온액체와 만나는 부분에 형성되는 것을 특징으로 하는 비어홀이 구비된 3 차원 모션 센서.
  3. 제 2항에 있어서, 상기 비어 홀 주변에 도전체가 형성된 것을 특징으로 하는 비어홀이 구비된 3 차원 모션 센서.
  4. 상기 비어홀이 연속해서 2 개 이상 형성된 것을 특징으로 하는 비어홀이 구비된 3 차원 모션 센서.
  5. 이온액체가 주입된 센서와 상기 센서 벽에 전극 패턴이 형성된 3차원 모션 센서에 있어서,
    상기 센서는 센서 분리부로 분리되고, 상기 센서 분리부가 결합되어 상기 센서를 형성할 때,
    상기 센서 분리부에 돌기가 형성되고, 상기 돌기는 결합 수단에 의하여 결합되는 것을 특징으로 하는 3 차원 모션 센서.
  6. 제 1항에 있어서, 상기 돌기에 나사 홈이 형성되고 상기 나사홈에 나사를 장착하여 산기 센서 분리부가 결합되는 결합 수단인 것을 특징으로 하는 3 차원 모션 센서.
  7. 제 1항에 있어서, 상기 결합 수단은 바 형상인 것을 특징으로 하는 3 차원 모션 센서.
  8. 제 3항에 있어서, 상기 결합 수단은 상기 센서 분리부에 형성된 홈과 돌기이고, 상기 센ㅅ 분리부가 결합될 때 상기 홈과 돌기의 결합에 의하여 결합되는 것을 특징으로 하는 3 차원 모션 센서.
  9. 제 1 항에 있어서, 상기 센서 분리부 단면에 기다란 형상의 홈이 더 형성되고 상기 기다린 형상의 홈에 탄성체가 장착되는 것을 특징으로 하는 3 차원 모션 센서.
  10. 구형 형상을 가진 센서와, 상기 센서 내부에 원판과 회전추가 구비되고, 상기 원판과 회전추는 연결봉으로 연결되며, 상기 센서가 회전하여도 상시 센서 내에 있는 원판과 회전추는 중력의 영향으로 위치를 유지하고,
    상기 센서에는 건극이 형성되어, 상기 전극으로 원판 혹은 회전추의 위치를 감지할 수 있는 것을 특징으로 하는 회전추를 사용한 3 차원 모션 센서.
  11. 제 10항에 있어서, 상기 원판은 원 모양으로 형성되고, 상기 회전추는 원판보다 무게가 더 무거운 것으로 형성된 것을 특징으로 하는 회전추를 사용한 3 차원 모션 센서.
  12. 구형 형상을 가진 센서와, 상기 센서 내부에 회전 원판과 회전추가 구비되고,
    상기 원판과 회전추는 연결봉으로 연결되며, 상기 센서가 회전하여도 상시 센서 내에 있는 원판과 회전추는 중력의 영향으로 위치를 유지하고,
    상기 센서에는 주변에는 이미지 센서가 더 구비되어 상기 이미지 센서로 회전 원판과 회전추의 위치를 감지하는 것을 특징으로 하는 회전추를 사용한 3 차원 모션 센서.
  13. 제 12항에 있어서, 상기 센서 외부 주변에 이미지 센서가 3 개 구비되고, 상기 센서가 회전할 때 이미지 센서도 함께 회전하는 것을 특징으로 하는 회전추를 사용한 3 차원 모션 센서.
  14. 컴퓨터를 제어하는 리모컨 부품부, 거리 센서 및 기울기 센서가 구비된 무선 모션 리모컨에서,
    상기 거리 센서가 지면가과의 이격 상태를 판단하고 지면과의 이격 상태가 되면, 기울기 센서의 출력 신호를 제어부가 판단하고 기울기 센서의 출력 신호에 대응되는 전자 기기의 제어 신호를 출력하는 것을 특징으로 하는 무선 모션 리모컨.
  15. 제 14항에 있어서, 메모리부가 더 구비되어 상기 메모리부에는 전자 기기의 제어 신호와 상기 제어 신호에 대응되는 기울기 센서의 변화량이 저장되고, 제어부는 기울기 센서의 변화량에 대응되는 전자 기기의 제어 신호를 R/F 모듈부를 통하여 출력하는 것을 특징으로 하는 무선 모션 리모컨.
  16. 제 14항에 있어서, 상기 기울기 센서는 기울기 변화량을 감지하는 센서로서, 상기 센서 내에 이온 액체를 구비하고 상기 이온액체의 기울기가 변화되는 변화량을 감지하는 것을 특징으로 하는 무선 모션 리모컨.
  17. 제 14항에 있어서, 제어 명령을 선택하고, 모션 리모컨 센서에 기울기 변화를 통한 제어 신호가 만들어 지면, 상기 선택된 제어 명령을 제어하는 새로운 제어 명령이 저장되는 것을 특징으로 하는 무선 모션 리모컨.
  18. 제 14 항에 있어서, 지면과 이격된 상태가 아지면 리모컨 부품부의 작동으로 리모컨 기능이 수행되는 것을 특징으로 하는 무선 모션 리모컨.
PCT/KR2013/006855 2013-04-05 2013-07-31 비어홀이 구비된 3 차원 모션 센서 WO2014163245A1 (ko)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR10-2013-0037332 2013-04-05
KR20130037333A KR20140121103A (ko) 2013-04-05 2013-04-05 비어홀이 구비된 3 차원 모션 센서
KR10-2013-0037333 2013-04-05
KR20130037332A KR20140121102A (ko) 2013-04-05 2013-04-05 3 차원 모션 센서
KR10-2013-0038775 2013-04-09
KR1020130038775A KR20140122102A (ko) 2013-04-09 2013-04-09 무선 모션 리모컨
KR1020130052221A KR20140132904A (ko) 2013-05-09 2013-05-09 회전추가 구비된 3 차원 모션 센서
KR10-2013-0052221 2013-05-09
KR1020130061765A KR20140140848A (ko) 2013-05-30 2013-05-30 회전추를 사용한 3 차원 모션 센서
KR10-2013-0061765 2013-05-30

Publications (1)

Publication Number Publication Date
WO2014163245A1 true WO2014163245A1 (ko) 2014-10-09

Family

ID=51658514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006855 WO2014163245A1 (ko) 2013-04-05 2013-07-31 비어홀이 구비된 3 차원 모션 센서

Country Status (1)

Country Link
WO (1) WO2014163245A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160097641A1 (en) * 2014-10-03 2016-04-07 Lenore L. Dai Sensors Including Ionic Liquids and Methods of Making and Using the Same
CN110207662A (zh) * 2019-06-20 2019-09-06 国网天津市电力公司电力科学研究院 一种用于电气设备高电位部件的水平度测量装置及其方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030093080A (ko) * 2002-05-31 2003-12-06 정원철 카메라를 통한 3차원 위치변화 데이터 생성장치
JP2005010071A (ja) * 2003-06-20 2005-01-13 Citizen Watch Co Ltd 移動体の傾斜角度・加速度検出装置
KR20070044615A (ko) * 2005-10-25 2007-04-30 (주)케이티에프테크놀로지스 모션 센서
KR100956252B1 (ko) * 2008-11-17 2010-05-06 주식회사 실트론 프로파일러
KR20100130464A (ko) * 2009-06-03 2010-12-13 (주)레이딕스텍 비접촉 방식의 포인팅 정보를 입력하기 위한 전자 시스템 및 그의 처리 방법
KR20120098248A (ko) * 2011-02-28 2012-09-05 (주) 유원컴텍 3차원 자세측정장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030093080A (ko) * 2002-05-31 2003-12-06 정원철 카메라를 통한 3차원 위치변화 데이터 생성장치
JP2005010071A (ja) * 2003-06-20 2005-01-13 Citizen Watch Co Ltd 移動体の傾斜角度・加速度検出装置
KR20070044615A (ko) * 2005-10-25 2007-04-30 (주)케이티에프테크놀로지스 모션 센서
KR100956252B1 (ko) * 2008-11-17 2010-05-06 주식회사 실트론 프로파일러
KR20100130464A (ko) * 2009-06-03 2010-12-13 (주)레이딕스텍 비접촉 방식의 포인팅 정보를 입력하기 위한 전자 시스템 및 그의 처리 방법
KR20120098248A (ko) * 2011-02-28 2012-09-05 (주) 유원컴텍 3차원 자세측정장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160097641A1 (en) * 2014-10-03 2016-04-07 Lenore L. Dai Sensors Including Ionic Liquids and Methods of Making and Using the Same
CN110207662A (zh) * 2019-06-20 2019-09-06 国网天津市电力公司电力科学研究院 一种用于电气设备高电位部件的水平度测量装置及其方法

Similar Documents

Publication Publication Date Title
WO2014073926A1 (ko) 원격 제어 장치, 디스플레이 장치 및 그 제어 방법
WO2013118941A1 (en) Portable device and method for controlling the same
WO2010056024A2 (en) Method and device for inputting force intensity and rotation intensity based on motion sensing
WO2015167217A1 (en) Display apparatus and controlling method thereof
EP2948829A1 (en) Portable device and control method thereof
WO2020256168A1 (ko) 이동 단말기
WO2016204357A1 (ko) 이동 단말기 및 그 제어 방법
WO2020246804A1 (en) Flexible electronic device and method for operating same
WO2020171563A1 (en) Electronic device and method for controlling operation of display in same
WO2016204338A1 (ko) 전자디바이스
WO2019168299A1 (ko) 감지 회로를 이용한 벤딩 정보에 기반하여 동작 모드를 변경하기 위한 방법, 전자 장치 및 저장 매체
WO2021020851A1 (en) Electronic device identifying gesture with stylus pen and method for operating the same
WO2019245283A1 (ko) 안테나 구조물을 포함하는 전자 장치
EP3632119A1 (en) Display apparatus and server, and control methods thereof
EP3814879A1 (en) Electronic device including pen input device and method of operating the same
WO2014163245A1 (ko) 비어홀이 구비된 3 차원 모션 센서
WO2020222428A1 (ko) 전자 장치 및 그 영상을 출력하는 방법
WO2020085844A1 (en) Electronic device and method of operating the same
WO2020171339A1 (ko) 프로젝터를 포함하는 전자 장치
WO2022124565A1 (ko) 폴딩 상태 변경에 따른 표시 방향 제어 방법 및 장치
WO2021162366A1 (ko) Ar 객체를 배치하는 방법 및 전자 장치
WO2017082448A1 (ko) 디바이스 및 이의 동작방법
WO2023022567A1 (ko) 폴더블 전자 장치 및 디지털 홀 센서를 이용한 폴더블 전자 장치의 제어 방법
WO2016122153A1 (en) Display apparatus and control method thereof
WO2019143122A1 (ko) 디스플레이 장치, 디스플레이 시스템 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881085

Country of ref document: EP

Kind code of ref document: A1