WO2014163229A1 - 바이오 화학물질 또는 바이오연료 생산을 위한 목질계 가수분해산물의 전기화학적 제독방법 및 제독된 목질계 가수분해산물 - Google Patents

바이오 화학물질 또는 바이오연료 생산을 위한 목질계 가수분해산물의 전기화학적 제독방법 및 제독된 목질계 가수분해산물 Download PDF

Info

Publication number
WO2014163229A1
WO2014163229A1 PCT/KR2013/003749 KR2013003749W WO2014163229A1 WO 2014163229 A1 WO2014163229 A1 WO 2014163229A1 KR 2013003749 W KR2013003749 W KR 2013003749W WO 2014163229 A1 WO2014163229 A1 WO 2014163229A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
wood
acid
electrochemical treatment
reduced
Prior art date
Application number
PCT/KR2013/003749
Other languages
English (en)
French (fr)
Inventor
엄영순
김연제
서동진
이경민
하정명
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Publication of WO2014163229A1 publication Critical patent/WO2014163229A1/ko
Priority to US14/874,040 priority Critical patent/US9657318B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/52Propionic acid; Butyric acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/16Butanols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2203/00Fermentation products obtained from optionally pretreated or hydrolyzed cellulosic or lignocellulosic material as the carbon source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a wood-based hydrolyzate with reduced toxicity, a method for producing the same, and a method for producing a biochemical or a biofuel using the same.
  • Lignocellulosic is a composite polymer consisting of lignin, cellulose and hemicellulose. However, most microorganisms producing bioenergy and useful chemicals do not have immediate access to lignocellulosic and require pretreatment.
  • sugars such as glucose or xylose, which can be used by microorganisms, are generated, but fermentation inhibitors that affect the growth of microorganisms are also generated.
  • Fermentation inhibitors can be largely divided into phenolic compounds and non-phenolic compounds. These toxic substances inhibit the growth and fermentation of microorganisms, and thus there is a problem in that the production efficiency of biochemicals and alcohols are lowered.
  • Detoxification methods for removing inhibitors from woody biomass degradation products can be divided into physicochemical and biological methods. These methods do not have high removal efficiency of fermentation inhibitors and show different removal efficiencies depending on the type of fermentation inhibitors.
  • an object of the present invention is to minimize or eliminate the toxicity of fermentation inhibitors that inhibit the growth and fermentation of microorganisms in the saccharified solution used for microbial fermentation.
  • a method for preparing wood-based biomass saccharified solution with reduced or eliminated toxicity is a method for preparing saccharified liquid used for microbial fermentation, and the method includes chemically pretreating wood-based biomass. Pretreatment step; And a saccharification step of hydrolyzing the pretreated biomass, further comprising an electrochemical treatment step of electrochemically treating the pretreated biomass or the saccharified biomass to reduce or eliminate the toxicity of the saccharified solution. It features.
  • the saccharified solution includes a phenol-based or furan-based compound.
  • the phenolic compound ferulic acid (ferulic acid), coumaric acid (coumaric acid), benzoic acid (benzoic acid), syringic acid (syringic acid), vanilic acid (vanillic acid), valin (valilin) , 4-hydroxybenzoic acid (4-hydroxybenzoic acid), 4-hydroxybenzaldehyde (4-hydroxybenzaldehyde) and one or more selected from the group consisting of syringaldehyde (syringaldehyde).
  • the furan-based compound is one or more selected from the group consisting of furfural and 5-hydroxymethoxy furfural (5-HMF).
  • the electrochemical treatment is to reduce the toxicity of the toxic compound through the electrical reaction of the toxic compound contained in the pretreatment or saccharified solution.
  • the electrochemical treatment may be to reduce the toxicity of the toxic substances by using a device that artificially flows the current.
  • the electrochemical treatment may be applying 0.1 to 2 volts of electricity.
  • the electrochemical treatment may be using an electrode.
  • the method further comprises determining a voltage that is optimal for oxidation of the toxic compound contained in the saccharified solution before the electrochemical treatment, wherein the electrochemical treatment may be to apply electricity at the determined voltage. have.
  • a method for preparing a biochemical or biofuel may include fermenting a wood-based biomass saccharified solution prepared by the method for producing a wood-based biomass saccharified solution in which the toxicity is reduced or eliminated. It may include.
  • the fermentation may be to culture by adding microorganisms to the saccharified solution.
  • microorganisms may include all microorganisms using sugars regardless of their types.
  • the microorganism may include all irrespective of the type of microorganism that can perform the fermentation using sugar and as a result biochemical or biofuel can be produced.
  • the microorganism may be one or more selected from the group consisting of yeast, lactic acid bacteria, Clostridium, Escherichia coli and Bacillus.
  • the microorganism may be a genetically engineered microorganism. Specifically, it may be a microorganism having a gene engineered through genetic recombination to produce a hydrocarbon compound similar to the existing fossil fuel such as gasoline or diesel.
  • the biochemical may be any one or more of fatty acids, diols, dienes and organic acids.
  • the biofuel may be an alcohol such as ethanol or butanol, or a hydrocarbon compound similar in composition to a conventional petroleum fuel.
  • Fermentation in the present invention may include inoculating all microorganisms capable of producing E. coli, yeast, Clostridium and other biofuel in the saccharification solution subjected to the electrochemical treatment, the type of biofuel produced during fermentation is inoculated It depends on the type of microorganism that is being used.
  • Wood-based biomass saccharification liquid according to an embodiment of the present invention, a saccharification liquid used for microbial fermentation, the saccharification liquid is a saccharification liquid derived from wood-based biomass, the phenolic compound is based on the total volume of the saccharification liquid It may be included in an amount of 0.5g / L or less, the furan-based compound may be included in an amount of 0.1g / L or less based on the total volume of the saccharified solution.
  • the wood-based biomass saccharification liquid may be one in which p-coumaric acid is included in an amount of 0.3 g / L or less based on the total volume of the saccharification liquid.
  • the wood-based biomass saccharification liquid may be one in which p-coumaric acid is included in an amount of 0.1 g or less based on the total volume of the saccharification liquid.
  • the detoxification method according to the present invention can efficiently remove the toxicity of compounds that inhibit the growth and fermentation of microorganisms generated during the pretreatment. In addition, production efficiency can be increased by minimizing additional costs during the detoxification process. Therefore, there is an advantage that can be produced more efficiently biochemicals or biofuels using wood-based biomass.
  • 1 is a graph showing cyclic voltammetry results according to the types of phenolic compounds.
  • 2 and 3 are graphs showing cell growth and butyric acid production concentrations of Clostridium tyrobutyricum before and after electrochemical treatment in a medium containing 0.5 g / L of each phenolic compound.
  • 4 and 5 are graphs showing cell growth and butanol production concentrations of Clostridium beersinki before and after electrochemical treatment in a medium containing 0.5 g / L of each phenolic compound.
  • 6 and 7 are graphs showing cell growth, butyric acid, and butanol production concentrations of Clostridium tyrobutyricum and Clostridium Beeringin using the saccharified solution before and after electrochemical treatment.
  • biochemical refers to all chemicals that can be obtained through microbial fermentation.
  • the biochemical means all chemicals obtained through microbial fermentation from woody biomass.
  • fatty acids, diols or dienes may be mentioned.
  • Biochemicals may also include organic acids such as lactic acid, acetic acid, butyric acid, or hexanoic acid.
  • biochemicals or biofuels used as alternative energy are produced by fermenting saccharified liquids using wood-based biomass.
  • Wood-based biomass differs in the composition and content of chemical components that make up wood according to conifers, hardwoods, species, and age, but is generally a ligature that is composed of cellulose, hemicellulose, and lignin. It is composed of nocellulose.
  • the cellulose is a polysaccharide in which glucose is mainly linked to ⁇ -1,4 bonds, and unlike amylose, which is a starch of a spiral structure stabilized by glucose being connected to a-1,4 bonds, the cellulose has a stable form in a straight structure rather than a spiral structure. Because of this, it is naturally more physically and chemically stronger than starch, which is composed of glucose.
  • Hemicellulose is a polysaccharide that has a lower degree of polymerization than cellulose. It is composed mainly of a polymer of xylose, a pentose sugar. It is composed of polymers such as galactose and glucose. The hemicellulose has a lower polymerization degree and lower regularity than the cellulose, so that the hemicellulose is relatively easily decomposed by biomass pretreatment.
  • the lignin contains a large amount of aromatic compounds due to polymerization of methoxylated coumaryl alcohol (p-coumaryl alcoho), coniferyl alcohol, cinnaphyl alcohol, and the like. In addition, it is a polymer having a complex structure of a large molecular weight which is hydrophobic. The lignin is considered to be the most difficult to decompose among the natural compounds present in nature because of its strong durability naturally and chemically.
  • the lignin is covalently bonded to hemicellulose and the hemicellulose is connected to the cellulose through hydrogen bonds. Is attached by wrapping it through hydrogen bonds, and the hemicellulose has a form in which lignin is again surrounded by a covalent bond.
  • the wood-based biomass includes 33 to 51% by weight of cellulose, 19 to 34% by weight of hemicellulose, 21 to 32% by weight of lignin, 0 to 2% by weight of ash, and other components.
  • the cellulose and hemicellulose components in the glycosylation process are pentose or hexasaccharide, including glucose, galactose, mannose, rhamnose, xylose and arabinose. It is decomposed.
  • non-phenolic compounds such as furan, hydroxymethylfurfural (HMF), furfural and weak acids are produced during pretreatment and / or saccharification.
  • the lignin component is ferulic acid (ferulic acid), coumaric acid (coumaric acid), benzoic acid (benzoic acid), syringic acid (syringic acid), vanilic acid (vanilic acid), valelin (valilin), 4-hydroxy Phenolic compounds such as benzoic acid (4-hydroxybenzoic acid), 4-hydroxybenzaldehyde, and syringaldehyde are produced.
  • the pretreatment step of pretreatment of the wood-based biomass may be performed to soften the hard wood-based biomass to facilitate the hydrolysis before hydrolyzing the polymeric sugars in the wood-based biomass into low molecular sugars available to the microorganisms ( softening) process.
  • the pretreatment includes, but is not limited to, a chemical treatment for treating an acid or a base, a physical treatment for applying high temperature or high pressure, a biological treatment for adding an enzyme or a microorganism, or at least one of the above three methods.
  • phenol-based or furan-based compounds which inhibit fermentation, serve to reduce microbial growth and yield of biochemicals or biofuels using microorganisms.
  • Lignin-derived fermentation inhibitors in woody biomass pretreatment or saccharified liquor contents lose the function of microorganisms and destroy the electrochemical balance of the cell membranes, thereby reducing the growth of microorganisms and the productivity of biochemicals or bioalcohols. It has a significant effect on the fermentation of biochemicals or biofuels using microorganisms.
  • Electrochemical treatments can be used as long as they oxidize toxic compounds to form radicals.
  • the oxidation / reduction reaction is a transfer reaction of electrons, so that any material loses electrons, and oxidation is obtained.
  • the purpose of this study is to oxidize and remove toxic substances, so the reaction takes place mainly at the anode where the oxidation occurs.
  • potentiostats can be used to oxidize toxic compounds.
  • a carbon electrode and a metal electrode may be used, and may be a surface electrode, a wire electrode, a needle electrode, or the like.
  • the electrochemical treatment may be to apply electricity of at least 0.01 volts, at least 0.05 volts, at least 0.1 volts, or at least 0.5 volts.
  • 50 volts or less, 20 volts or less, 10 volts or less, 5 volts or less, or 2 volts or less may be applied.
  • it may be to apply electricity of 0.1 to 2 volts.
  • the treatment time of the electrochemical treatment can be added at 0.1 to 24 hours, 1 to 12 hours or 2 to 8 hours. Within this range most of the various phenol or furan compounds can be oxidized to a good degree.
  • Each fermentation inhibitor has different optimum oxidation conditions, so an optimal voltage should be applied to the oxidation of toxic compounds.
  • various fermentation inhibitors can be simultaneously removed by the action of the oxidized toxic substance.
  • the optimal voltage for each toxic compound can be determined using cyclic voltammetry. For example, it can be seen that coumaric acid exhibits the greatest toxicity, but at the optimal voltage obtained through cyclic voltammetry, nearly 100% toxicity is reduced upon electrochemical treatment.
  • the present invention provides a method for producing a biochemical or biofuel, comprising the step of fermenting wood-based biomass saccharified solution of which toxicity is reduced by the detoxification method.
  • the saccharified solution contains sugars that can be fermented by microorganisms.
  • the fermentation is possible through biological treatment using microorganisms in saccharified liquid. That is, the fermentation of the saccharified liquid may be made by the microorganism that is put into the saccharified liquid.
  • the microorganisms used in fermentation of the saccharified solution are considered in consideration of carboxylic acid productivity and resistance to carboxylic acid, resistance to fermentation inhibitors that may remain in the saccharified liquid, and fermentation ability against pentose and hexasaccharide. You can choose.
  • the microorganism is not particularly limited, and for example, the strains may be used alone or in combination of two or more of the strain group including yeast, lactic acid bacteria, Clostridium, Escherichia coli, Bacillus, etc. Can be.
  • the strains may be naturally produced carboxylic acid, or endowed with the ability to produce carboxylic acid through strain improvement, or the carboxylic acid production capacity may be enhanced through strain improvement.
  • the microorganisms include, genus Anaeromyxobacter sp. , Genus Alcaligenes sp. , Genus Bacteroides sp. , Genus Bacillus sp. , Genus Clostridium ( Clostridium sp. ), Escherichia sp. , Lactobacillus sp. , Lactococcus sp. , Pichia sp. , Pseudomonas sp. , Ralstonia sp. , Rhodococcus sp. , Saccharomyces sp. , Streptomyces sp. , Thermus sp. It may be one or more selected from the group consisting of: Accelerator ( Thermotoga sp. ), Thermoanaerobacter sp. And Zymomonas sp .
  • the microorganisms are Clostridium beijerinckii , Clostridium acetobutyricum , Clostridium butyricum , Clostridium cellulolyticum , Clostridium cellulolyticum Clostridium thermocellum , Clostridium perfingens , Clostridium sprorogenes, Clostridium thermohydrosulfuricum, Clostridium kluyveri ), Clostridium aciditolerans , Clostridium pasteurianum , Clostridium ljungdahlii , Clostridium autoethanogenum , Clostridium autoethanogenum Clostridium formicoacticum, Los tree Stadium written together Shetty glutamicum (Clostridium thermoaceticum), Clostridium Oh Shetty glutamicum (Clostridium aceticum) and Cloth may be at least one selected from the group consisting of butyric rikum (Clostridium tyr
  • the type of biochemical or biofuel produced may vary depending on the type of microorganism.
  • the biochemicals include, but are not limited to, organic acids such as lactic acid, acetic acid, butyric acid, or hexanoic acid, and include fatty acids and dies. It may be a diol or a diene.
  • the biofuel may include, but is not limited to, ethanol or butanol. The biofuel may be produced using the produced organic acid.
  • the present invention reduces the toxicity of phenolic compounds, which are the major inhibitors in biofuel fermentation, to woody biomass pretreatment or saccharification solution by electrochemical treatment. This can overcome the complexity of the process and the loss of sugar, which are disadvantages of the known physicochemical and biological detoxification methods.
  • the pretreated saccharified solution treated by the present invention can be applied to fermentation using all microorganisms capable of producing bioalcohol, such as yeast, clostridium and E. coli, thereby producing biochemicals or biofuels.
  • bioalcohol such as yeast, clostridium and E. coli
  • the wood-based biomass saccharification liquid is a saccharification liquid used for microbial fermentation
  • the saccharification liquid is a saccharification liquid derived from wood-based biomass
  • the phenolic compound is 50% by weight of the phenolic compound weight before electrochemical treatment. It may be reduced by more than%, the furan-based compound may be reduced by more than 90% by weight relative to the weight of the furan-based compound before the electrochemical treatment.
  • the saccharified solution may be a phenolic compound is reduced by at least 50% by weight, at least 51% by weight or at least 52% by weight relative to the weight of the phenolic compound before the electrochemical treatment.
  • the saccharified solution may be a phenolic compound is reduced by at least 70% by weight, at least 75% by weight, at least 80% by weight or 82% by weight relative to the weight of the phenolic compound before the electrochemical treatment.
  • the saccharified solution may be one in which the furan-based compound is reduced by 92% by weight, 94% by weight, 96% by weight, 98% by weight, or 99% by weight or more by weight of the furan-based compound before the electrochemical treatment.
  • the wood-based biomass saccharification liquid is a saccharification liquid used for microbial fermentation
  • the saccharification liquid is a saccharification liquid derived from wood-based biomass
  • p-coumaric acid is compared to the weight of p-coumaric acid before electrochemical treatment. It may be reduced by at least 45% by weight.
  • the saccharified solution may be one in which p-coumaric acid is reduced by at least 46% by weight, at least 47% by weight, at least 48% by weight, at least 49% by weight or at least 50% by weight relative to the weight of p-coumaric acid before electrochemical treatment.
  • the saccharified solution may be reduced p-coumaric acid at least 60% by weight, at least 65% by weight, at least 70% by weight, at least 75% by weight or at least 78% by weight, relative to the weight of p-coumaric acid before the electrochemical treatment. .
  • the wood-based biomass saccharification liquid is a saccharification liquid used for microbial fermentation
  • the saccharification liquid is a saccharification liquid derived from wood-based biomass
  • ferulic acid is 25% by weight or more relative to the weight of ferulic acid before electrochemical treatment. May be reduced.
  • the saccharified solution may be one in which ferulic acid is reduced by at least 26% by weight, at least 27% by weight, at least 28% by weight, at least 29% by weight, or at least 30% by weight relative to the weight of ferulic acid before electrochemical treatment.
  • the saccharified solution may be a ferulic acid is reduced by at least 60% by weight, at least 65% by weight, at least 70% by weight, at least 75% by weight, or at least 76% by weight relative to the weight of ferulic acid before the electrochemical treatment.
  • the wood-based biomass saccharification liquid is a saccharification liquid used for microbial fermentation, wherein the saccharification liquid is a saccharifying liquid derived from wood-based biomass, and vanillin is reduced by at least 45% by weight of vanillin before electrochemical treatment. It may have been.
  • the saccharified solution may be one in which vanillin is reduced by 42% by weight, 44% by weight, 46% by weight, 48% by weight, or 49% by weight or more with respect to the weight of vanillin before the electrochemical treatment.
  • the saccharified solution may be reduced by at least 70% by weight, at least 75% by weight, at least 80% by weight, or at least 82% by weight relative to the weight of vanillin before vanillin electrochemical treatment.
  • the wood-based biomass saccharification liquid is a saccharification liquid used for microbial fermentation
  • the saccharification liquid is a saccharification liquid derived from wood-based biomass
  • the cyringaldehyde is 70% by weight to the weight of the cyringaldehyde before electrochemical treatment. May be reduced.
  • the saccharified solution may be reduced by at least 72% by weight, at least 74% by weight, at least 76% by weight, or at least 78% by weight of the ring ring aldehyde prior to electrochemical treatment.
  • the saccharification liquid may be one in which the ring aldehyde is reduced by at least 80%, at least 85%, at least 90%, or at least 94% by weight relative to the weight of the ring ring prior to electrochemical treatment.
  • the saccharified solution may be a furfural (furfural) and 5-hydroxymethoxy furfural (5-HMF) may be reduced by more than 90% by weight relative to each weight before the electrochemical treatment.
  • furfural furfural
  • 5-hydroxymethoxy furfural 5-hydroxymethoxy furfural
  • the wood-based biomass saccharification liquid is a saccharification liquid used for microbial fermentation
  • the saccharification liquid is a saccharification liquid derived from wood biomass
  • the phenolic compound is 0.5 g / g based on the total volume of the saccharification liquid. It may be included in an amount of L or less, and the furan-based compound may be included in an amount of 0.1g / L or less based on the total volume of the saccharified solution.
  • the phenolic compound is 0.4g / L or less, 0.3g / L or less based on the total volume of the saccharified solution. It may be 0.2 g / L or less or 0.1 g / L or less.
  • the furan-based compound is 0.05g / L or less, 0.01g / L or less based on the total volume of the saccharified solution. It may be less than or equal to 0.005 g / L or less than or equal to 0.001 g / L.
  • the wood-based biomass saccharification liquid is 0.3 g / L or less, 0.25 g / L or less, 0.2 g / L or less, 0.15 g / L or less, based on the total volume of the glycosylated p-coumaric acid, It may be included in an amount of 0.14g / L or less, 0.13g / L or less, 0.12g / L or less or 0.11g / L or less.
  • the wood-based biomass saccharified solution contains ferulic acid in an amount of 0.4 g / L or less based on the total volume of saccharified liquid, and vanillin is 0.3 g / L based on the total volume of saccharified liquid. It is included in the following amount, the ring ring aldehyde may be included in an amount of 0.2g / L or less based on the total volume of the saccharified solution.
  • the wood-based biomass saccharified solution has a ferulic acid content of 0.4 g / L or less, 0.35 g / L or less, 0.3 g / L or less, 0.25 g / L or less, 0.2 g based on the total volume of the saccharified solution. / L or less, 0.15g / L or less, 0.12g / L or less, or 0.11g / L or less.
  • the wood-based biomass saccharification liquid has a vanillin content of 0.3 g / L or less, 0.25 g / L or less, 0.2 g / L or less, 0.15 g / L or less, 0.1 g based on the total volume of the saccharification solution. It may be included in an amount of less than / L or less than 0.09g / L.
  • the wood-based biomass saccharification liquid has a ringing aldehyde content of 0.2 g / L or less, 0.15 g / L or less, 0.1 g / L or less, 0.05 g / L or less, 0.04, based on the total volume of the saccharification solution. It may be included in an amount of less than or equal to g / L or less than 0.03g / L.
  • the wood-based biomass saccharified solution may be substantially free of furfural and 5-hydroxymethoxy furfural (5-HMF).
  • substantially free means a concentration of 0.001 g / L or less, 0.0001 g / L or less, 0.00001 g / L or less, or 0.000001 g / L or less, at a concentration not detected by conventional detection methods, It means no content at all.
  • each phenolic compound was added to the medium, followed by electrochemical treatment or no treatment, and then the growth of each strain and the resulting butyric acid and butanol production were measured.
  • electrochemical treatments were carried out. Toxicity and the effects of toxicity reduction after electrochemical treatment on each strain with each phenolic compound were measured. It was.
  • each phenolic compound shows a peak oxidized at a unique voltage and shows that the peak gradually decreases. This means that each phenolic compound is oxidized and removed at its own voltage.
  • phenolic and furan compounds In order to measure the removal rate of phenolic and furan compounds, p-coumaric acid, ferulic acid, syringaldehyde and vanilin were selected as phenolic compounds, and furan As the system compound, furfural and 5-hydroxymethylfurfural were selected. 0.5 g / L of each of the six selected inhibitors was added to the medium, and the current was passed at the optimum oxidation voltage, and then the removal rate was confirmed.
  • Potentiostat (WonA Tech, WMPG 1000) was used for the electrochemical treatment of the medium, and the graphite felt was used as an electrode. Specifically, the electrochemical treatment is carried out to determine the voltage of the oxidation peak in which each fermentation inhibitor is visible (800 mV for kumaric acid and ferulic acid, 2 V for cyringaldehyde and vanillin, for furfural and 5-hydroxyfurfural). 1.8 V) was reacted for 5 hours to remove the electrochemicals, and then fermentation inhibitors were removed using methods such as gravity sedimentation, centrifugation, and membrane separation. The results are shown in the table below. Removal rate refers to weight percent.
  • the table shows the removal rate through the electrochemical method of each phenolic and furan-based compound.
  • kumaric acid, ferulic acid, vanillin, cyringaldehyde, furfural, and 5-hydroxyfurfural showed removal rates of 50.0, 30.5, 49.8, 78.2, 100, and 100%, respectively.
  • the removal rates of coaric acid, ferulic acid, vanillin, cyringaldehyde, furfural, and 5-hydroxyfurfural were 78.0, 76.9, 82.2, 94.7, 100, and 100%, respectively.
  • the furan-based compound there was no significant inhibition on the growth of Clostridium used in the present invention, which was excluded from the culture results. All culture experiments were conducted using a primary electrochemically treated medium.
  • the butyric acid fermentation medium comprises 20 g of glucose, 5 g of yeast extract, 0.2 g of magnesium sulfate, 0.01 g of manganese sulfate, 0.01 g of iron sulfate, 0.01 g of sodium chloride, 0.5 g of first per liter of the total volume of the medium.
  • a medium containing potassium phosphate (KH 2 PO 4 ), 0.5 g of dibasic potassium phosphate (K 2 HPO 4 ), and 2 g of ammonium acetate was used.
  • Butanol fermentation broth includes 20 g of glucose, 1 g of yeast extract, 0.2 g of magnesium sulfate, 0.01 g of manganese sulfate, 0.01 g of iron sulfate, 0.01 g of sodium chloride, 0.5 g of primary phosphoric acid per liter of total volume of medium.
  • a medium containing potassium (KH 2 PO 4 ), 0.5 g dibasic potassium phosphate (K 2 HPO 4 ), and 2 g ammonium acetate was used. Each medium was used for the experiment after sterilization for 15 minutes at 121 degrees Celsius after gas replacement using argon gas.
  • Microorganisms were inoculated and cultured in each of the first electrochemical treated medium and the non-electrochemical treated medium.
  • the initial pH of the medium was adjusted to 6.5 with 4 N potassium hydroxide (KOH).
  • KOH potassium hydroxide
  • Clostridium tyrobutyricum American Type Culture Collection, ATCC 25755
  • Clostridium beijerinckii The National Collection of Industrial, Food and Marine Bacteria, NCIMB 8052. Both microorganisms were subjected to secondary passaged samples for the experiment.
  • Concentrations of phenol and furan compounds, sugars and acetic acid were measured for each culture in which the culture was completed. The concentration was analyzed by Agilent model 1200 liquid chromatograph. Phenolic compounds were analyzed with a diode array detector and Zorbax eclipse XDB-C18 column (150 ⁇ 4.6 mm, 3.5 ⁇ m) was used. Sugars and acetic acid were analyzed with a refractive index detector and an Aminex HPX-87H column (300 ⁇ 7.8 mm) was used. Microbial growth was measured at 600 nm with a spectrophotometer (UVmini-1240, SHIMAZU).
  • Butyric acid and butanol concentrations were analyzed by gas chromatography equipped with a flame ionized detector (Agilent technology 6890N Network GC system), and HP-INNOWax column (30m ⁇ 250 ⁇ m ⁇ 0.25 ⁇ m, Agilent Technologies) was used. . The results are shown in FIGS. 2, 3 and 4, 5.
  • FIG. 2 and 3 show the results of fermentation using Clostridium tyrobutyricum (American Type Culture Collection, ATCC 25755).
  • Figure 2 shows the result of measuring the amount of the microbial cells by absorbance using a spectrophotometer after inoculating and incubating Clostridium tyrobutyricum.
  • FIG. 2 it can be seen that phenolic compounds interfered with microbial growth, and that inhibition of microbial growth by phenolic compounds was reduced by electrochemical treatment.
  • Figure 3 it can be seen that the butyric acid production by Clostridium tyrobutyricum inhibited the growth inhibitory effect of the phenolic compound by the electrochemical treatment.
  • coumaric acid is a strong fermentation inhibitor that inhibits the growth of microorganisms to nearly 100% as shown in Figure 2, such toxicity was found to be resolved to almost 100% by electrochemical treatment as shown in FIG. .
  • Figure 4 and Figure 5 is a microorganism for butanol fermentation using Clostridium beijerinckii (The National Collection of Industrial, Food and Marine Bacteria, NCIMB 8052) The result of the fermentation is shown.
  • Figure 4 shows the result of measuring the amount of the microbial cells by absorbance using a spectrophotometer after inoculating and incubating Clostridium Bayerinki. As shown in FIG. 4, it can be seen that phenolic compounds interfered with microbial growth, and that inhibition of microbial growth by phenolic compounds was significantly reduced by electrochemical treatment.
  • the component of the wood-based biomass saccharification liquid used in the present invention contains 20 g / L of glucose, 5 g / L of xylose and mannose, and are produced during the pretreatment process. 1.03 g / L of total phenolic compound, which is a lignin-derived fermentation inhibitor, is included.
  • the saccharified solution was treated with 2 V for 5 hours and then filtered to 0.45 ⁇ m.
  • the filtered saccharified solution was sterilized after addition of the contents of the fermentation medium and used for butyric acid and butanol fermentation.
  • FIGS. 6 and 7 The results are shown in FIGS. 6 and 7. As can be seen in Figures 6 and 7, Clostridium Tyrobutyricum and Clostridium Bayerky do not grow at all in the saccharified solution, but in the sample subjected to electrochemical treatment, the strain growth and the production of butyric acid and butanol are significantly increased. Can be observed.

Abstract

목질계 바이오매스를 가수분해 전처리한 당화액을 준비하는 단계 및 상기 당화액에 전기화학적 제독 방법을 이용하여 독성을 감소시키는 단계를 포함하는, 독성이 감소 또는 제거된 목질계 바이오매스 당화액의 제조방법이 제공된다. 상기 방법은 전처리 과정 중에 생성되는 미생물 생장 및 발효를 저해하는 화합물들의 독성을 효율적으로 제거할 수 있다. 또한 독성 제거 과정 중에 당의 손실과 부가적인 비용을 최소화함으로써 생산효율을 높일 수 있다.

Description

바이오 화학물질 또는 바이오연료 생산을 위한 목질계 가수분해산물의 전기화학적 제독방법 및 제독된 목질계 가수분해산물
본 발명은 독성이 저감된 목질계 가수분해산물 및 그의 제조방법, 및 이를 이용한 바이오 화학물질 또는 바이오 연료의 제조방법에 관한 것이다.
미래 사회가 자원 순환형 사회로 발전하게 될 것으로 전망되며, 바이오매스를 이용한 에너지화의 실현이 필수적이다. 화석연료 고갈, 전지구적 지구온난화 등에 대응하기 위한 자원개발 및 환경기술개발에 적극 노력이 필요하며 바이오매스 등 폐환경자원의 에너지화를 위한 기술개발을 강화하고 있다. 지구상에 가장 풍부한 바이오매스는 리그노셀룰로스이다. 리그노셀룰로스는 리그닌, 셀룰로스, 헤미셀룰로스로 이루어진 복합고분자이다. 하지만, 바이오에너지 및 유용한 화학원료를 생산하는 대부분의 미생물들은 리그노셀룰로스를 바로 이용할 수 없으므로 전처리가 필요하다.
전처리 과정을 거친 후에는 미생물이 이용할 수 있는 글루코스나 자일로스 등의 당이 발생하지만, 이와 함께 미생물의 성장에 영향을 미치는 발효저해산물도 함께 발생한다. 발효저해산물은 크게 페놀계 화합물과 비페놀계 화합물로 나눌 수 있다. 이들 독성물질은 미생물의 생장 및 발효를 저해하며, 이로 인하여 바이오 화학물질 및 알코올 등의 생산 효율이 떨어지는 문제점이 있다.
그러므로, 높은 수율의 제품을 얻기 위하여 발효 전에 가수분해물의 제독이 필요하다. 목질계 바이오매스 분해산물 중 저해물질(inhibitor)을 제거하는 제독 방법은 크게 물리화학적 방법과 생물학적 방법으로 나눌 수 있다. 이러한 방법들은 발효 저해물질의 제거 효율이 높지 않으며 발효 저해물질의 종류에 따라 서로 다른 제거 효율을 나타낸다.
미생물을 이용하여 바이오 에너지 및 화학원료를 생산하기 위해서는 경제적이고 효율이 높은 제독과정의 개발이 필요하다.
본 발명은 상기와 같은 문제점을 해결하기 위해, 미생물 발효에 사용되는 당화액에서 미생물 생장 및 발효를 저해하는 발효 저해물질들의 독성을 제거 또는 감소함과 동시에 처리비용을 최소화함을 목적으로 한다.
본 발명의 일실시예에 따른 독성이 감소 또는 제거된 목질계 바이오매스 당화액의 제조방법은 미생물 발효에 사용되는 당화액을 제조하는 방법으로서, 상기 방법은, 목질계 바이오매스를 화학적으로 전처리하는 전처리 단계; 및 전처리된 바이오매스를 가수분해하는 당화 단계를 포함하며, 상기 전처리된 바이오매스 또는 상기 당화된 바이오매스에 전기화학적 처리를 하여 당화액의 독성을 감소 또는 제거시키는 전기화학적 처리 단계를 더 포함하는 것을 특징으로 한다.
일실시예에서, 상기 당화액은 페놀계 또는 퓨란계 화합물을 포함한다.
일실시예에서, 상기 페놀계 화합물은, 페룰산(ferulic acid), 쿠마르산(coumaric acid), 벤조산(benzoic acid), 시링산(syringic acid), 바닐산(vanilic acid), 바릴린(valilin), 4-하이드록시벤조산(4-hydroxybenzoic acid), 4-하이드록시벤즈알데하이드(4-hydroxybenzaldehyde) 및 시링알데하이드(syringaldehyde)으로 이루어진 군에서 선택된 하나 이상이다.
일실시예에서, 상기 퓨란계 화합물은, 푸르푸랄(furfural) 및 5-하이드록시메톡시 푸르푸랄(5-HMF)으로 이루어진 군에서 선택된 하나 이상이다.
일실시예에서, 상기 전기화학적 처리는 전처리액 또는 당화액 내에 포함된 독성 화합물을 전기적 반응을 통해 독성 화합물의 독성을 감소시키는 것이다.
일실시예에서, 상기 전기화학적 처리는 인위적으로 전류를 흘려주는 장치를 이용하여 독성물질의 독성을 감소시키는 것일 수 있다.
일실시예에서, 상기 전기화학적 처리는 0.1 내지 2 볼트의 전기를 가하는 것일 수 있다.
일실시예에서, 상기 전기화학적 처리는 전극을 이용하는 것일 수 있다.
일실시예에서, 상기 방법은, 전기화학적 처리 전에 상기 당화액에 포함된 독성 화합물의 산화에 최적인 전압을 결정하는 단계를 더 포함하며, 상기 전기화학적 처리는 상기 결정된 전압의 전기를 가하는 것일 수 있다.
본 발명의 일실시예에서 따른 바이오 화학물질 또는 바이오 연료의 제조방법은, 상기 독성이 감소 또는 제거된 목질계 바이오매스 당화액의 제조방법에 의해 제조된 목질계 바이오매스 당화액을 발효시키는 단계를 포함할 수 있다.
일 실시예에서, 상기 발효는 당화액에 미생물을 투입하여 배양하는 것일 수 있다.
본 명세서에서 미생물은 그 종류에 상관없이 당을 이용하는 미생물은 모두 포함할 수 있다.
일 실시예에서, 상기 미생물은 당을 이용하여 발효를 수행할 수 있고 그 결과 바이오 화학물질 또는 바이오 연료를 생산할 수 있는 미생물이라면 그 종류와 무관하게 모두 포함할 수 있다.
일 실시예에서, 미생물은 효모, 유산균, 클로스트리디움(Clostridium), 대장균 및 바실러스(Bacillus)로 이루어진 군으로부터 선택된 하나 이상일 수 있다.
일 실시예에서, 미생물은 유전자 조작된 미생물일 수 있다. 구체적으로, 가솔린 또는 디젤 등과 같은 기존의 화석 연료와 유사한 탄화수소화합물(hydrocarbon compound)을 생산할 수 있도록 유전자 재조합을 통해 조작된 유전자를 갖는 미생물일 수 있다.
일 실시예에서, 상기 바이오 화학물질은 지방산(fatty acid), 다이올(diol), 다이엔(diene) 및 유기산 중 어느 하나 이상일 수 있다.
일 실시예에서, 상기 바이오 연료는 에탄올(ethanol) 또는 부탄올(butanol)과 같은 알코올, 또는 기존 석유연료와 성분이 유사한 탄화수소화합물(hydrocarbon compound) 일 수 있다.
본 발명에서 발효는 대장균, 효모, 클로스트리디움 및 기타 바이오 연료를 생산할 수 있는 모든 미생물을 상기 전기화학적 처리를 한 당화액에 접종하는 것을 포함할 수 있으며, 발효 시 생산되는 바이오 연료의 종류는 접종되는 구체적인 미생물의 종류에 따라 달라지게 된다.
본 발명의 일실시예에 따른 목질계 바이오매스 당화액은, 미생물 발효에 사용되는 당화액으로서, 상기 당화액은 목질계 바이오매스 유래의 당화액이며, 페놀계 화합물이 당화액의 전체 부피를 기준으로 0.5g/L 이하의 양으로 포함되어 있고, 퓨란계 화합물이 당화액의 전체 부피를 기준으로 0.1g/L 이하의 양으로 포함되어 있는 것일 수 있다.
또 다른 일실시예에서, 목질계 바이오매스 당화액은 p-쿠마르산이 당화액의 전체 부피를 기준으로 0.3g/L 이하의 양으로 포함되어 있는 것일 수 있다.
또 다른 일실시예에서, 목질계 바이오매스 당화액은 p-쿠마르산이 당화액의 전체 부피를 기준으로 0. 15g/L 이하의 양으로 포함되어 있는 것일 수 있다.
본 발명에 의한 무독화 방법은 전처리 과정 중에 생성되는 미생물 생장 및 발효를 저해하는 화합물들의 독성을 효율적으로 제거할 수 있다. 또한 독성 제거 과정 중에 부가적인 비용을 최소화함으로써 생산효율을 높일 수 있다. 따라서, 목질계 바이오매스를 이용하여 보다 효율적으로 바이오 화학물질 또는 바이오 연료를 제조할 수 있는 장점이 있다.
도 1은 각 페놀계 화합물의 종류에 따른 사이클릭 볼타메트리 결과를 보여주는 그래프이다.
도 2 및 도 3은 각 페놀계 화합물이 0.5 g/L 포함된 배지에서 전기화학적 처리 전, 후의 클로스트리디움 타이로부티리쿰의 세포성장과 부티르산의 생성 농도를 나타내는 그래프이다.
도 4 및 도 5는 각 페놀계 화합물이 0.5 g/L 포함된 배지에서 전기화학적 처리 전, 후의 클로스트리디움 베이져링키의 세포성장과 부탄올의 생성 농도를 나타내는 그래프이다.
도 6 및 도 7은 전기화학적 처리 전, 후의 당화액을 이용하여 클로스트리디움 타이로부티리쿰과 클로스트리디움 베이져링키의 세포성장과 부티르산 및 부탄올 생성 농도를 나타내는 그래프이다.
이하, 본 발명을 상세히 설명한다.
본 명세서에서 "바이오 화학물질(biochemical)"이라 함은 미생물 발효를 통해 얻을 수 있는 모든 화학물질을 의미한다. 일실시예에서 바이오 화학물질이라 함은 목질계 바이오매스로부터 미생물 발효를 통해 얻을 수 있는 모든 화학물질을 의미한다. 예컨대, 지방산(fatty acid), 다이올(diol) 또는 다이엔(diene)을 들 수 있다. 또한, 바이오 화학물질은 젖산(lactic acid), 아세트산(acetic acid), 부티르산(butyric acid) 또는 핵사노익산(hexanoic acid)과 같은 유기산을 포함할 수도 있다.
석유자원 고갈 및 지구온난화 문제로 인해 대체 에너지로 사용되는 바이오 화학물질 또는 바이오 연료는 목질계 바이오매스를 이용한 당화액을 발효시켜 제조된다.
목질계 바이오매스는 침엽수와 활엽수, 수종, 수령 등에 따라서 목재를 구성하는 화학성분의 조성과 함량이 다르지만, 일반적으로는 셀룰로오스(cellulose), 헤미셀룰로오스(hemicellulose), 리그닌(lignin) 등으로 구성된 복합체인 리그노셀룰로스(lignocellulose)로 이루어져 있다.
상기 셀룰로오스는 포도당이 β-1,4 결합으로 주로 연결된 다당류로서 포도당이 a-1,4 결합으로 연결되어 안정화된 나선형 구조의 녹말인 아밀로오스(amylose)와는 달리 나선형 구조가 아닌 직선 구조가 안정된 형태를 이루기 때문에 똑같이 포도당으로 구성된 녹말보다는 자연적으로 훨씬 물리적, 화학적으로 튼튼한 구조를 이루고 있다.
헤미셀룰로오스는 셀룰로오스보다 당의 중합도(degree of polymerization)가 낮은 다당체로서 주로 5탄당인 자일로오스(xylose)의 중합체로 구성되고, 그 외에도 5탄당인 아리비노오스(arabinose)와 6탄당인 만노오스(mannose), 갈락토오스(galactose), 포도당 등의 중합체로 구성되어 있다. 상기 헤미셀룰로오스는 상기 셀룰로오스에 비해서 중합도가 낮고 구조의 규칙성이 낮아서 바이오매스의 전처리에 의해 분해가 비교적 쉽게 이루어지는 특징이 있다.
상기 리그닌(lignin)은 메톡실화(methoxylation)된 쿠마릴 알코올(p-coumaryl alcoho), 코니퍼릴 알코올(coniferyl alcohol), 시나필 알코올(sinapyl alcohol) 등이 중합되어 있어서 다량의 방향족 화합물을 포함함과 아울러 소수성을 띠고 있는 거대한 분자량의 복잡한 구조를 지닌 중합체이다. 상기 리그닌은 자연적으로나 화학적으로 강한 내구성을 가지고 있어 자연계에 존재하는 천연 화합물 중의 가장 분해가 어려운 물질로 간주되고 있다.
상기 리그닌은 헤미셀룰로오스와 공유결합을 통해 결합되고 상기 헤미셀룰로오스는 상기 셀룰로오스와 수소결합을 통해 연결되어 있어서, 상기 리그노셀룰로오스는 전체적으로 보면 직선의 곧은 형태로 이루어진 셀룰로오스 마이크로파이브릴(microfibril)을 가운데 두고, 헤미셀룰로오스가 수소결합을 통해 감싸는 모습으로 붙어 있고, 이러한 헤미셀룰로오스를 리그닌이 다시 공유결합을 통한 연결로 둘러싼 형태를 갖는다.
실제로 목질계 바이오매스를 원료로 한 바이오연료 제조의 기술적, 경제적 어려움은 전분계 및 당질계에 비해 상대적으로 높은 리그닌 함량에 기인한다.
상기 목질계 바이오매스는 셀룰로오스가 33 내지 51중량%, 헤미셀룰로오스가 19 내지 34 중량%, 리그닌이 21 내지 32 중량%, 재가 0 내지 2 중량%, 기타 성분이 나머지로 포함된다. 당화 과정에서 셀룰로오스 및 헤미셀룰로오스 성분은 글루코오스(glucose), 갈락토오스(galactose), 만노스(mannose), 램노스(rhamnose), 자일로스(xylose) 및 아라비노스(arabinose)를 포함하는 5탄당 또는 6탄당으로 가수분해 된다.
셀룰로오스 및 헤미셀룰로오스 성분으로부터는 전처리 과정 및/또는 당화 과정에서 푸란(furan), 하이드록시메틸푸르푸랄(HMF), 푸르푸랄(furfural), 약산 등의 비페놀계 화합물들이 생성된다. 또한, 리그닌 성분으로부터는 페룰산(ferulic acid), 쿠마르산(coumaric acid), 벤조산(benzoic acid), 시링산(syringic acid), 바닐산(vanilic acid), 바릴린(valilin), 4-하이드록시벤조산(4-hydroxybenzoic acid), 4-하이드록시벤즈알데하이드(4-hydroxybenzaldehyde), 시링알데하이드(syringaldehyde) 등의 페놀계 화합물들이 생성된다.
목질계 바이오매스를 전처리하는 전처리 단계는, 목질계 바이오매스 내의 고분자 당을 미생물이 이용가능한 저분자 당으로 가수분해하기 전에, 상기 가수분해를 용이하게 하도록 하기 위해 단단한 목질계 바이오매스를 연하게 만드는 (softening) 과정을 포함할 수 있다. 상기 전처리는 산이나 염기 등을 처리하는 화학적 처리, 고온이나 고압 등을 가하는 물리적 처리, 효소나 미생물 등을 가하는 생물학적 처리, 또는 위 세가지 방법 중 적어도 하나를 포함하나, 이에 제한되는 것은 아니다.
상기 목질계 바이오매스의 전처리 또는 가수분해로 생성된 화합물들 중 발효 저해물질인 페놀계 또는 퓨란계 화합물들은 미생물 생장 및 미생물을 이용한 바이오 화학물질 또는 바이오 연료의 제조 수율을 떨어뜨리는 작용을 한다.
목질계 바이오매스 당화액을 효율적으로 이용하기 위해서는 페놀계 화합물의 독성을 반드시 낮춰야 한다. 본 발명자들은 목질계 바이오매스의 전처리액 또는 가수분해한 당화액에 전기화학적 처리를 하여 그 독성을 감소 또는 제거 할 수 있다. 종래에는 목질계 가수분해물에서 발견되는 리그닌 유래 발효저해물질의 무독화 방법에 대해 전기화학적 방법을 사용한 전례가 없다.
목질계 바이오매스 전처리액 또는 당화액 내용물 중 리그닌 유래 발효 저해물질은 미생물의 세포막 기능을 상실하게 하거나 세포막의 전기화학적 균형을 파괴하여 미생물의 성장과 바이오 화학물질 또는 바이오 알코올 생산성을 떨어뜨리는 작용을 하며 미생물을 이용하는 바이오 화학물질 또는 바이오연료의 발효에 상당한 영향을 준다.
전기화학적 처리는 독성 화합물을 산화시켜 라디칼을 형성시키는 것이라면 어떤 것이든 사용될 수 있다. 일반적으로 산화/환원반응은 전자의 이동 반응이므로, 어느 물질이 전자를 잃는 것을 산화, 전자를 얻는 것을 환원이라 한다. 본 연구에서는 독성물질을 산화시켜 제거하는 것을 목적으로 하므로 산화반응이 일어나는 산화전극에서 주로 반응이 일어난다. 예컨대, 포텐시오스탯을 사용하여 독성 화합물을 산화시킬 수 있다. 또한, 탄소 전극(carbon)과 금속 전극을 이용할 수 있고 그 형태로는 표면전극 (surface electrode) 또는 가는 선 전극 (wire electrode) 그리고 바늘 전극 (needle electrode)등이 될 수 있다. 한편, 전기화학적 처리는 0.01볼트 이상, 0.05볼트 이상, 0.1볼트 이상 또는 0.5볼트 이상의 전기를 가하는 것일 수 있다. 또는, 50볼트 이하, 20볼트 이하, 10볼트 이하, 5볼트 이하 또는 2볼트 이하의 전기를 가하는 것일 수 있다. 예컨대, 0.1 내지 2볼트의 전기를 가하는 것일 수 있다. 전기화학적 처리의 처리 시간은 0.1 내지 24시간, 1 내지 12시간 또는 2 내지 8시간 가할 수 있다. 상기 범위 내에서는 다양한 페놀 또는 퓨란 화합물들 대부분이 양호한 정도로 산화될 수 있다. 각각의 발효저해 물질은 서로 다른 최적 산화 조건을 갖고 있으므로 독성 화합물들의 산화에 최적인 전압을 가해야 한다. 하지만 2종 이상의 발효저해 물질이 복합적으로 존재하는 경우에도 하나의 독성물질이 산화되면 산화된 그 독성물질의 작용에 의해 여러 가지 발효저해 물질의 동시 제거가 가능하다. 각 독성 화합물에 대한 최적 전압은 사이클릭 볼타메트리(cyclic voltammetry)를 이용하여 결정될 수 있다. 그 예로, 쿠마르산이 가장 큰 독성을 나타내면서도 사이클릭 볼타메트리를 통해 얻은 최적 전압으로 전기화학적 처리시 거의 100%에 가까운 독성이 감소되는 성질을 갖는 것을 볼 수 있다.
본 발명은 상기 무독화 방법에 의해 독성이 감소된 목질계 바이오매스 당화액을 발효시키는 단계를 포함하는 것을 특징으로 하는 바이오 화학물질 또는 바이오 연료의 제조방법을 제공한다.
상기 당화액에는 미생물이 이용하여 발효할 수 있는 당이 포함되어 있다.
상기 발효는 당화액에 미생물을 이용하는 생물학적인 처리를 통해 가능하다. 즉, 상기 당화액의 발효는 상기 당화액에 투입되는 미생물에 의해 이루어질 수 있다. 상기 당화액의 발효시 이용되는 미생물은 카르복실산 생산성 및 카르복실산에 대한 내성, 당화액에 잔류할 수 있는 발효 저해 물질에 대한 내성, 및 5탄당 및 6탄당에 대한 발효능 등을 고려하여 선택할 수 있다.
상기 미생물로는 특별히 한정되지 않으나, 예를 들어, 효모, 유산균, 클로스트리디움(Clostridium), 대장균, 바실러스(Bacillus) 등을 포함하는 균주군 중에서 상기 균주들을 단독으로 또는 2종 이상을 조합하여 사용할 수 있다. 상기 균주들은 자연적으로 카르복실산을 생산하거나, 또는 균주 개량을 통해 카르복실산 생산 능력을 부여받거나, 또는 균주 개량을 통해 카르복실산 생산 능력이 강화될 수 있다.
상기 미생물은, 아나에로믹소박터 속(Anaeromyxobacter sp.), 알칼리게네스 속(Alcaligenes sp.), 박테로이데스 속(Bacteroides sp.), 바실러스 속(Bacillus sp.), 클로스트리디움 속(Clostridium sp.), 에스케리키아 속(Escherichia sp.), 락토바실러스 속(Lactobacillus sp.), 락토코커스 속(Lactococcus sp.), 피키아 속(Pichia sp.), 슈도모나스 속(Pseudomonas sp.), 랄스토니아 속(Ralstonia sp.), 로도코커스 속(Rhodococcus sp.), 사카로마이세스 속(Saccharomyces sp.), 스트렙토마이세스 속(Streptomyces sp.), 써머스 속(Thermus sp.), 써머토가 속(Thermotoga sp.), 써모아나에로박터 속(Thermoanaerobacter sp.) 및 자이모모나스 속(Zymomonas sp.)으로 이루어진 군으로부터 선택된 하나 이상일 수 있다.
상기 미생물은 클로스트리디움 베이어린키(Clostridium beijerinckii), 클로스트리디움 아세토부티리쿰(Clostridium acetobutyricum), 클로스트리디움 부티리쿰(Clostridium butyricum), 클로스트리디움 셀룰로리티쿰(Clostridium cellulolyticum), 클로스트리디움 써모셀럼(Clostridium thermocellum), 클로스트리디움 퍼프린젠스(Clostridium perfingens), 클로스트리디움 스포로제네스(Clostridium sprorogenes), 클로스트리디움 써모하이드로써퓨리쿰(Clostridium thermohydrosulfuricum), 클로스트리디움 클루이베리(Clostridium kluyveri), 클로스트리디움 애시디톨러런스(Clostridium aciditolerans), 클로스트리디움 파스테우리아눔(Clostridium pasteurianum), 클로스트리디움 융다히(Clostridium ljungdahlii), 클로스트리디움 오토에타노제눔(Clostridium autoethanogenum), 클로스트리디움 포미코아세티쿰(Clostridium formicoacticum), 클로스트리디움 써모아세티쿰(Clostridium thermoaceticum), 클로스트리디움 아세티쿰(Clostridium aceticum) 및 클로스트리디움 타이로부티리쿰(Clostridium tyrobutyricum)으로 이루어진 군으로부터 선택된 하나 이상일 수 있다.
생산되는 바이오 화학물질 또는 바이오 연료의 종류는 미생물의 종류에 따라 달라질 수 있다. 상기 바이오 화학물질은 비제한적인 예로, 젖산(lactic acid), 아세트산(acetic acid), 부티르산(butyric acid) 또는 핵사노익산(hexanoic acid)과 같은 유기산을 들 수 있고, 지방산(fatty acid), 다이올(diol) 또는 다이엔(diene)일 수도 있다. 상기 바이오 연료는 비제한적인 예로, 에탄올(ethanol) 또는 부탄올(butanol)을 들 수 있다. 상기 바이오 연료는 생산된 유기산을 이용하여 생산할 수 있다.
본 발명은 목질계 바이오매스 전처리액 또는 당화액에 바이오 연료 발효시 주요 저해물질인 페놀계 화합물들의 독성을 전기화학적 처리를 함으로써 감소시켰다. 이는 기존에 밝혀진 물리 화학적 및 생물학적 제독방법이 가지고 있는 단점인 과정의 복잡성과 당 손실을 극복할 수 있다.
본 발명에 의해 처리된 전처리 당화액은 효모, 클로스트리디움, 대장균 등 바이오 알코올을 생산할 수 있는 모든 미생물을 이용한 발효에 적용할 수 있으며 이를 통해 바이오 화학물질 또는 바이오 연료를 제조할 수 있다.
일실시예에서 목질계 바이오매스 당화액은, 미생물 발효에 사용되는 당화액으로서, 상기 당화액은 목질계 바이오매스 유래의 당화액이며, 페놀계 화합물이 전기화학적 처리 전 페놀계 화합물 중량 대비 50중량% 이상 감소된 것이고, 퓨란계 화합물이 전기화학적 처리 전 퓨란계 화합물 중량 대비 90중량% 이상 감소된 것일 수 있다. 상기 당화액은 페놀계 화합물이 전기화학적 처리 전 페놀계 화합물 중량 대비 50중량% 이상, 51중량% 이상 또는 52중량% 이상 감소된 것일 수 있다. 또한, 상기 당화액은 페놀계 화합물이 전기화학적 처리 전 페놀계 화합물 중량 대비 70중량% 이상, 75중량% 이상, 80중량% 이상 또는 82중량% 이상 감소된 것일 수 있다. 상기 당화액은 퓨란계 화합물이 전기화학적 처리 전 퓨란계 화합물 중량 대비 92중량% 이상, 94중량% 이상, 96중량% 이상, 98중량% 이상, 또는 99중량% 이상 감소된 것일 수 있다.
다른 실시예에서, 목질계 바이오매스 당화액은, 미생물 발효에 사용되는 당화액으로서, 상기 당화액은 목질계 바이오매스 유래의 당화액이며, p-쿠마르산이 전기화학적 처리 전 p-쿠마르산 중량 대비 45중량% 이상 감소된 것일 수 있다. 상기 당화액은 p-쿠마르산이 전기화학적 처리 전 p-쿠마르산 중량 대비 46중량% 이상, 47중량% 이상, 48중량% 이상, 49중량% 이상 또는 50중량% 이상 감소된 것일 수 있다. 또한, 상기 당화액은 p-쿠마르산이 전기화학적 처리 전 p-쿠마르산 중량 대비 60중량% 이상, 65중량% 이상, 70중량% 이상, 75중량% 이상 또는 78중량% 이상, 감소된 것일 수 있다.
다른 실시예에서, 목질계 바이오매스 당화액은, 미생물 발효에 사용되는 당화액으로서, 상기 당화액은 목질계 바이오매스 유래의 당화액이며, 페룰산이 전기화학적 처리 전 페룰산 중량 대비 25중량% 이상 감소된 것일 수 있다. 상기 당화액은 페룰산이 전기화학적 처리 전 페룰산 중량 대비 26중량% 이상, 27중량% 이상, 28중량% 이상, 29중량% 이상, 또는 30중량% 이상 감소된 것일 수 있다. 다른 실시예에서, 상기 당화액은 페룰산이 전기화학적 처리 전 페룰산 중량 대비 60중량% 이상, 65중량% 이상, 70중량% 이상, 75중량% 이상, 또는 76중량% 이상 감소된 것일 수 있다.
다른 실시예에서, 목질계 바이오매스 당화액은, 미생물 발효에 사용되는 당화액으로서, 상기 당화액은 목질계 바이오매스 유래의 당화액이며, 바닐린이 전기화학적 처리 전 바닐린 중량 대비 45중량% 이상 감소된 것일 수 있다. 상기 당화액은 바닐린이 전기화학적 처리 전 바닐린 중량 대비 42중량% 이상, 44중량% 이상, 46중량% 이상, 48중량% 이상, 또는 49중량% 이상 감소된 것일 수 있다. 다른 실시예에서, 상기 당화액은 바닐린 전기화학적 처리 전 바닐린 중량 대비 70중량% 이상, 75중량% 이상, 80중량% 이상, 또는 82중량% 이상 감소된 것일 수 있다.
다른 실시예에서, 목질계 바이오매스 당화액은, 미생물 발효에 사용되는 당화액으로서, 상기 당화액은 목질계 바이오매스 유래의 당화액이며, 시링알데히드가 전기화학적 처리 전 시링알데히드 중량 대비 70중량% 이상 감소된 것일 수 있다. 상기 당화액은 시링알데히드가 전기화학적 처리 전 시링알데히드 중량 대비 72중량% 이상, 74중량% 이상, 76중량% 이상, 또는 78중량% 이상 감소된 것일 수 있다.
다른 실시예에서, 상기 당화액은 시링알데히드가 전기화학적 처리 전 시링알데히드 중량 대비 80중량% 이상, 85중량% 이상, 90중량% 이상, 또는 94중량% 이상 감소된 것일 수 있다.
일 실시예에서, 상기 당화액은 푸르푸랄(furfural) 및 5-하이드록시메톡시 푸르푸랄(5-HMF)이 전기화학적 처리 전 각 중량 대비 90중량% 이상 감소된 것일 수 있다.
일실시예에서 목질계 바이오매스 당화액은, 미생물 발효에 사용되는 당화액으로서, 상기 당화액은 목질계 바이오매스 유래의 당화액이며, 페놀계 화합물이 당화액의 전체 부피를 기준으로 0.5g/L 이하의 양으로 포함되어 있고, 퓨란계 화합물이 당화액의 전체 부피를 기준으로 0.1g/L 이하의 양으로 포함되어 있는 것일 수 있다. 상기 페놀계 화합물은 당화액의 전체 부피를 기준으로 0.4g/L 이하, 0.3g/L 이하. 0.2g/L 이하 또는 0.1g/L이하일 수 있다. 상기 퓨란계 화합물은 당화액의 전체 부피를 기준으로 0.05g/L 이하, 0.01g/L 이하. 0.005g/L 이하 또는 0.001g/L이하일 수 있다.
또 다른 일실시예에서, 목질계 바이오매스 당화액은 p-쿠마르산이 당화액의 전체 부피를 기준으로 0.3g/L이하, 0.25g/L이하, 0.2g/L 이하, 0.15g/L 이하, 0.14g/L 이하, 0.13g/L이하, 0.12g/L 이하 또는 0.11g/L이하의 양으로 포함되어 있는 것일 수 있다.
또 다른 일실시예에서, 목질계 바이오매스 당화액은 페룰산이 당화액의 전체 부피를 기준으로 0.4g/L 이하의 양으로 포함되어 있고, 바닐린이 당화액의 전체 부피를 기준으로 0.3g/L 이하의 양으로 포함되어 있으며, 시링알데히드가 당화액의 전체 부피를 기준으로 0.2g/L 이하의 양으로 포함되어 있는 것일 수 있다.
또 다른 일실시예에서, 목질계 바이오매스 당화액은 페룰산이 당화액의 전체 부피를 기준으로 0.4g/L이하, 0.35g/L이하, 0.3g/L 이하, 0.25g/L 이하, 0.2g/L 이하, 0.15g/L이하, 0.12g/L 이하 또는 0.11g/L이하의 양으로 포함되어 있는 것일 수 있다.
또 다른 일실시예에서, 목질계 바이오매스 당화액은 바닐린이 당화액의 전체 부피를 기준으로 0.3g/L이하, 0.25g/L이하, 0.2g/L 이하, 0.15g/L 이하, 0.1g/L 이하 또는 0.09g/L이하의 양으로 포함되어 있는 것일 수 있다.
또 다른 일실시예에서, 목질계 바이오매스 당화액은 시링알데히드가 당화액의 전체 부피를 기준으로 0.2g/L이하, 0.15g/L이하, 0.1g/L 이하, 0.05g/L 이하, 0.04g/L 이하 또는 0.03g/L이하의 양으로 포함되어 있는 것일 수 있다.
또 다른 일실시예에서, 목질계 바이오매스 당화액은 푸르푸랄(furfural) 및 5-하이드록시메톡시 푸르푸랄(5-HMF)을 실질적으로 함유하지 않는 것일 수 있다.
"실질적으로 함유하지 않는"의 뜻은 0.001g/L이하, 0.0001g/L이하, 0.00001g/L이하 또는 0.000001g/L이하의 농도로 통상적인 검출 방법으로는 검출되지 않는 농도로 함유되거나, 전혀 함유되지 않음을 의미한다.
이하, 본 발명의 실시예를 참조하여 본 발명을 상세히 설명한다. 이들은 오로지 본 발명을 보다 구체적으로 설명하기 위해 예시적으로 제시한 것일 뿐, 본 발명의 범위가 이 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가지는 자에 있어서 자명할 것이다.
[실시예 1] 페놀계 화합물의 종류에 따른 미생물의 생장 결과 및 부탄올 또는 부티르산 생성 농도 측정
본 실시예는 배지에 각 페놀계 화합물들을 각각 첨가한 후 전기화학적인 처리를 하거나 처리를 하지 않은 다음, 각 균주의 생장과 그에 따른 부티르산 및 부탄올 생산량을 측정하였다. 목질계 가수분해물에서 발견되는 페놀계 화합물들의 발효저해 작용을 감소시키기 위해 전기화학적인 처리를 하였고, 각 페놀계 화합물을 이용하여 각 균주에 미치는 독성 및 전기화학적인 처리를 한 후의 독성 감소 효과를 측정하였다.
먼저, 각각의 페놀계 화합물의 전기화학적 방법을 통한 제거를 위해 필요한 최적 전압을 사이클릭 볼타메트리(cyclic voltammetry)를 이용하여 결정하였다. 그 결과는 도 1에 나타나 있다. 도 1은 각각의 페놀계 화합물의 사이클릭 볼타메트리를 나타낸 것이다. 도 1에서 가로축은 전압 (Voltage)를 나타내며, 세로축은 암페어 (ampere)를 나타낸다. 결과적으로 보았을 때 각각의 페놀계 화합물은 고유한 전압에서 산화되는 피크를 보이며 피크가 서서히 감소되는 것을 나타낸다. 이는 각각의 페놀계 화합물은 고유의 전압에서 산화되어 제거되는 것을 의미한다.
페놀계 및 퓨란계 화합물들의 제거율을 측정하기 위해, 페놀계 화합물로서, 파라 쿠마르산(p-coumaric acid), 페룰산(ferulic acid), 시링알데히드(Syringaldehyde) 및 바닐린(vanilin)을 선정하였고, 퓨란계 화합물로서, 푸르푸랄(furfural)과 5-하이드록시메틸푸르푸랄(5-hydroxymethylfurfural)을 선정하였다. 상기 선정된 6종의 저해물질을 배지에 각각 0.5 g/L씩 첨가한 후, 각각의 최적 산화 전압으로 전류를 흘려준 후, 그 제거율을 확인하였다.
상기 배지의 전기화학적 처리를 위해 포텐시오스텟(WonA Tech, WMPG 1000)사용하였고 전극은 흑연 펠트 (Graphite felt)를 이용하였다. 구체적으로, 상기 전기화학적 처리는 각각의 발효 저해물질이 보이는 산화 피크의 전압을 (쿠마르산과 페룰산의 경우 800 mV, 시링알데히드와 바닐린의 경우 2 V, 푸르푸랄과 5-하이드록시푸르푸랄의 경우 1.8 V) 이용하여 5시간 반응시켜 전기화학적 제거 후, 중력 침강, 원심분리, 막분리 등의 방법을 이용하여 발효 저해물질을 제거하였다. 그 결과는 하기 표에 나타나 있다. 제거율은 중량%를 의미한다.
표 1
p-coumaric acid Ferulic acid Vanillin Syringaldehyde furfural HMF
1차 처리 처리 후 농도(g/l) 제거율(%) 처리 후 농도(g/l) 제거율(%) 처리 후 농도(g/l) 제거율(%) 처리 후 농도(g/l) 제거율(%) 처리 후 농도(g/l) 제거율(%) 처리 후 농도(g/l) 제거율(%)
0.25 50.0 0.3475 30.5 0.251 49.8 0.109 78.2 0 100 0 100
2차 처리 처리 후 농도(g/l) 제거율(%) 처리 후 농도(g/l) 제거율(%) 처리 후 농도(g/l) 제거율(%) 처리 후 농도(g/l) 제거율(%) 처리 후 농도(g/l) 제거율(%) 처리 후 농도(g/l) 제거율(%)
0.11 78.0 0.1155 76.9 0.089 82.2 0.0265 94.7 0 100 0 100
상기 표는 각 페놀계 및 퓨란계 화합물의 전기화학적 방법을 통한 제거율을 나타낸다. 1차 전기화학적 처리 결과, 쿠마르산, 페룰산, 바닐린, 시링알데히드, 푸르푸랄, 그리고 5-하이드록시푸르푸랄은 각각 50.0, 30.5, 49.8, 78.2, 100, 그리고 100%의 제거율을 보였고, 2차 전기화학적 처리 결과, 쿠마르산, 페룰산, 바닐린, 시링알데히드, 푸르푸랄, 그리고 5-하이드록시푸르푸랄은 각각 78.0, 76.9, 82.2, 94.7, 100, 그리고 100%의 제거율을 보였다. 퓨란계 화합물의 경우 본 발명에 사용된 클로스트리디움의 생육에 큰 저해가 없으므로 배양 결과엔 제외하였고, 모든 배양실험은 1차 전기화학적 처리한 배지를 이용하여 진행하였다.
부티르산 발효 배지로는 배지의 총 부피 1리터당 20 g의 글루코스, 5 g의 효모 추출물, 0.2 g의 황산마그네슘, 0.01 g의 황산망간, 0.01 g의 황산철, 0.01 g의 염화나트륨, 0.5 g의 제1 인산칼륨(KH2PO4), 0.5 g의 제2 인산칼륨(K2HPO4), 2g의 아세트산암모늄(ammonium acetate)를 포함하는 배지를 사용하였다. 부탄올 발효배지로는 배지 총 부피 1리터당 20 g의 글루코스, 1 g의 효모 추출물, 0.2 g의 황산마그네슘, 0.01 g의 황산망간, 0.01 g의 황산철, 0.01 g의 염화나트륨, 0.5 g의 제1 인산칼륨(KH2PO4), 0.5 g의 제2 인산칼륨(K2HPO4), 2g의 아세트산암모늄(ammonium acetate)를 포함하는 배지를 사용하였다. 상기 각 배지는 아르곤 가스를 이용하여 기체치환 후 섭씨 121도에서 15분 멸균 후 실험에 사용하였다.
상기 1차 전기화학처리가 된 배지와 전기화학처리가 되지 아니한 배지 각각에 미생물을 접종하여 배양하였다. 배지의 초기 pH는 4 N 수산화칼륨(KOH)으로 6.5으로 조정되었다. 회분식 배양(batch culture)의 경우, 60 mL의 시료병(serum bottle)에 20 mL의 배지를 넣고 페놀계 화합물과 미생물을 접종한 후 진탕 배양기에서 섭씨 37℃의 온도 및 150 rpm의 회전 속도로 24시간 배양하였다.
부티르산 발효를 위한 미생물로는 클로스트리디움 타이로부티리쿰(Clostridium tyrobutyricum, 미국 미생물 보존센터(American Type Culture Collection), ATCC 25755)를 사용하였고 부탄올 발효를 위한 미생물로는 클로스트리디움 베이어린키(Clostridium beijerinckii, 영국 국립 산업 및 해양 박테리아 은행(The National Collection of Industrial, food and Marine Bacteria), NCIMB 8052)를 이용하였다. 두 미생물 모두 2차 계대 배양한 시료를 실험에 이용하였다.
배양이 완료된 각 배양물에 대해 각각 페놀계 및 퓨란계 화합물, 및 당, 아세트산의 농도를 측정하였다. 상기 농도는 액체크로마토그래프 (Agilent model 1200 liquid chromatograph)로 분석하였다. 페놀계 화합물은 다이오드어레이 검출기로 분석하였고, Zorbax eclipse XDB-C18 컬럼 (150×4.6 mm, 3.5㎛)을 사용하였다. 당과 아세트산은 굴절률 검출기로 분석하였고, Aminex HPX-87H 컬럼 (300×7.8 mm)을 사용하였다. 미생물 생장은 분광광도계(UVmini-1240, SHIMAZU)로 600 nm에서의 흡광도를 측정하였다. 부티르산 및 부탄올의 농도는 불꽃 이온화 검출기(flame ionized detector)가 설치된 가스 크로마토그래피(Agilent technology 6890N Network GC system)로 분석하였으며, HP-INNOWax column(30m×250㎛×0.25㎛, Agilent Technologies)을 사용하였다. 그 결과는 도 2, 3 및 도 4, 5에 나타나 있다.
도 2 및 3은 클로스트리디움 타이로부티리쿰(Clostridium tyrobutyricum, 미국 미생물 보존센터(American Type Culture Collection), ATCC 25755)을 이용한 발효의 결과를 나타낸다. 구체적으로 도 2는 클로스트리디움 타이로부티리쿰을 접종하고 배양한 후 상기 미생물 균체의 량을 분광광도계를 이용하여 흡광도로 측정한 결과를 나타낸다. 도 2에 나타난 바와 같이, 페놀계 화합물들은 미생물 생장을 방해하였다는 것과, 페놀계 화합물에 의한 미생물 생장의 저해는 전기화학적 처리에 의해 감소되었음을 알 수 있다. 또한 도 3에 나타난 바와 같이, 클로스트리디움 타이로부티리쿰에 의한 부티르산 생성은 전기화학적 처리에 의해 페놀계 화합물의 생장 저해 작용이 억제되었음을 알 수 있다. 특히, 쿠마르산의 경우 도 2에서와 같이 미생물 생장을 100%에 가까운 정도로 저해하는 강력한 발효 저해물질이지만 이러한 독성은 도 3에서와 같이 전기화학적 처리에 의해 거의 100%에 가까운 정도로 해소되었음을 알 수 있었다.
한편, 도 4 및 도 5는 부탄올 발효를 위한 미생물로는 클로스트리디움 베이어린키(Clostridium beijerinckii, 영국 국립 산업 및 해양 박테리아 은행(The National Collection of Industrial, food and Marine Bacteria), NCIMB 8052)를 이용한 발효의 결과를 나타낸다. 구체적으로 도 4는 클로스트리디움 베이어린키를 접종하고 배양한 후 상기 미생물 균체의 량을 분광광도계를 이용하여 흡광도로 측정한 결과를 나타낸다. 도 4에 나타난 바와 같이, 페놀계 화합물들은 미생물 생장을 방해하였다는 것과, 페놀계 화합물에 의한 미생물 생장의 저해는 전기화학적 처리에 의해 현저히 감소되었음을 알 수 있다. 또한 도 5에 나타난 바와 같이, 클로스트리디움 베이어린키에 의한 부탄올 생성은 전기화학적 처리에 의해 부탄올 생성량이 현저히 상승한 것으로 보아, 페놀계 화합물에 의한 독성이 현저히 감소되었음을 알 수 있다. 특히, 쿠마르산의 경우 그 독성에 따른 부탄올 생성량 감소가 도 3에서와 같이 전기화학적 처리에 의해 거의 100%에 가까운 정도로 해소되었음을 알 수 있었다.
[실시예 2] 전기화학적 제독 방법을 통한 리그노셀룰로스 가수분해산물의 독성물질 제거를 통한 미생물의 생장 결과 및 부티르산 또는 부탄올의 생성농도 확인
본 발명에서 사용한 상기 목질계 바이오매스 당화액의 구성 성분에는 글루코스(glucose)가 20 g/L, 자일로스(xylose)와 만노스(mannose)가 5 g/L가 포함되어있고, 전처리 과정 중 생성된 리그닌 유래 발효 저해물질인 총 페놀계 화합물이 1.03 g/L 포함되어 있다.
상기 당화액을 2 V로 5시간 처리한 후 0.45 ㎛로 필터링 하였다. 필터링한 당화액은 상기 발효 배지의 내용물을 첨가한 후 멸균하여 부티르산 및 부탄올 발효에 이용하였다.
기타 실험 조건들은 상기 실시예 1과 동일하였다.
그 결과는 도 6 및 도 7에 나타나 있다. 도 6 및 도 7에서 볼 수 있듯이, 클로스트리디움 타이로부티리쿰과 클로스트리디움 베이어링키는 당화액에서 전혀 성장하지 않지만, 전기화학적 처리를 한 시료에서는 균주 성장과 부티르산과 부탄올의 생산이 상당량 증가하는 것을 관찰할 수 있다.

Claims (17)

  1. 미생물 발효에 사용되는 당화액을 제조하는 방법으로서,
    상기 방법은,
    목질계 바이오매스를 연화(softening)시키기 위해 전처리하는 전처리 단계; 및
    전처리된 바이오매스를 가수분해하는 당화 단계를 포함하며,
    상기 전처리된 바이오매스 또는 상기 당화된 바이오매스에 전기화학적 처리를 하여 당화액의 독성을 감소 또는 제거시키는 전기화학적 처리 단계를 더 포함하는 것을 특징으로 하는 독성이 감소 또는 제거된 목질계 바이오매스 당화액의 제조방법.
  2. 제1항에 있어서, 상기 당화액은 페놀계 또는 퓨란계 화합물을 포함하는, 독성이 감소 또는 제거된 목질계 바이오매스 당화액의 제조방법.
  3. 제2항에 있어서, 상기 페놀계 화합물은, 페룰산(ferulic acid), 쿠마르산(coumaric acid), 벤조산(benzoic acid), 시링산(syringic acid), 바닐산(vanilic acid), 바릴린(valilin), 4-하이드록시벤조산(4-hydroxybenzoic acid), 4-하이드록시벤즈알데하이드(4-hydroxybenzaldehyde) 및 시링알데하이드(syringaldehyde)으로 이루어진 군에서 선택된 하나 이상인, 독성이 감소 또는 제거된 목질계 바이오매스 당화액의 제조방법.
  4. 제2항에 있어서, 상기 퓨란계 화합물은, 푸르푸랄(furfural) 및 5-하이드록시메틸 푸르푸랄(5-HMF)으로 이루어진 군에서 선택된 하나 이상인, 독성이 감소 또는 제거된 목질계 바이오매스 당화액의 제조방법.
  5. 제1항에 있어서, 상기 전기화학적 처리는 인위적으로 전류를 흘릴 수 있는 장비를 사용하는 것인, 독성이 감소 또는 제거된 목질계 바이오매스 당화액의 제조방법.
  6. 제1항에 있어서, 상기 전기화학적 처리는 0.01 내지 50볼트의 전기를 가하는 것인, 독성이 감소 또는 제거된 목질계 바이오매스 당화액의 제조방법.
  7. 제1항에 있어서, 상기 방법은,
    전기화학적 처리 전에 상기 당화액에 포함된 독성 화합물의 산화에 최적인 전압을 결정하는 단계를 더 포함하며,
    상기 전기화학적 처리는 상기 결정된 전압의 전기를 가하는 것인, 독성이 감소 또는 제거된 목질계 바이오매스 당화액의 제조방법.
  8. 제1항 내지 제7항 중 어느 한 항의 제조방법에 의해 제조된 목질계 바이오매스 당화액을 발효시키는 단계를 포함하는 것을 특징으로 하는 바이오 화학물질 또는 바이오 연료의 제조방법.
  9. 제8항에 있어서,
    상기 발효는 당화액에 미생물을 투입하여 배양하는 것을 특징으로 하는 바이오 화학물질 또는 바이오 연료의 제조방법.
  10. 제9항에 있어서,
    상기 미생물은 효모, 유산균, 클로스트리디움(Clostridium), 대장균 및 바실러스(Bacillus)로 이루어진 군으로부터 선택된 하나 이상인 것을 특징으로 하는 바이오 화학물질 또는 바이오 연료의 제조방법.
  11. 제8항에 있어서,
    상기 바이오 화학물질은, 지방산(fatty acid), 다이올(diol), 다이엔(diene) 및 유기산 중 하나 이상인 것을 특징으로 하는 바이오 화학물질 또는 바이오 연료의 제조방법.
  12. 제8항에 있어서,
    상기 바이오 연료는 에탄올(ethanol) 또는 부탄올(butanol) 인 것을 특징으로 하는 바이오 화학물질 또는 바이오 연료의 제조방법.
  13. 미생물 발효에 사용되는 당화액으로서,
    상기 당화액은 목질계 바이오매스 유래의 당화액이며,
    페놀계 화합물이 전기화학적 처리 전 페놀계 화합물 중량 대비 50중량% 이상 감소된 것이고,
    퓨란계 화합물이 전기화학적 처리 전 퓨란계 화합물 중량 대비 90중량% 이상 감소된 것인, 목질계 바이오매스 당화액.
  14. 제13항에 있어서
    상기 당화액은
    p-쿠마르산이 전기화학적 처리 전 p-쿠마르산 중량 대비 45중량% 이상 감소된 것인, 목질계 바이오매스 당화액.
  15. 제13항에 있어서,
    상기 당화액은
    p-쿠마르산이 전기화학적 처리 전 p-쿠마르산 중량 대비 70중량% 이상 감소된 것인, 목질계 바이오매스 당화액.
  16. 제13항 내지 제15항 중 어느 한 항에 있어서, 상기 당화액은
    페룰산이 전기화학적 처리 전 페룰산 중량 대비 25중량% 이상 감소된 것이고, 바닐린이 전기화학적 처리 전 바닐린 중량 대비 45중량% 이상 감소된 것이며, 시링알데히드가 전기화학적 처리 전 시링알데히드 중량 대비 70중량% 이상 감소된 것인, 목질계 바이오매스 당화액.
  17. 제16항에 있어서, 상기 당화액은 푸르푸랄(furfural) 및 5-하이드록시메톡시 푸르푸랄(5-HMF)이 전기화학적 처리 전 각 중량 대비 90중량% 이상 감소된 것인 목질계 바이오매스 당화액.
PCT/KR2013/003749 2013-04-04 2013-04-30 바이오 화학물질 또는 바이오연료 생산을 위한 목질계 가수분해산물의 전기화학적 제독방법 및 제독된 목질계 가수분해산물 WO2014163229A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/874,040 US9657318B2 (en) 2013-04-04 2015-10-02 Electrochemical detoxification method of wood-based hydrolysate for producing biochemicals or biofuels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130036735A KR101458981B1 (ko) 2013-04-04 2013-04-04 바이오 화학물질 또는 바이오연료 생산을 위한 목질계 가수분해산물의 전기화학적 제독방법 및 제독된 목질계 가수분해산물
KR10-2013-0036735 2013-04-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/874,040 Continuation US9657318B2 (en) 2013-04-04 2015-10-02 Electrochemical detoxification method of wood-based hydrolysate for producing biochemicals or biofuels

Publications (1)

Publication Number Publication Date
WO2014163229A1 true WO2014163229A1 (ko) 2014-10-09

Family

ID=51658511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003749 WO2014163229A1 (ko) 2013-04-04 2013-04-30 바이오 화학물질 또는 바이오연료 생산을 위한 목질계 가수분해산물의 전기화학적 제독방법 및 제독된 목질계 가수분해산물

Country Status (3)

Country Link
US (1) US9657318B2 (ko)
KR (1) KR101458981B1 (ko)
WO (1) WO2014163229A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105567603A (zh) * 2016-02-03 2016-05-11 广州甘蔗糖业研究所 一种提高拜氏梭菌对4-羟基肉桂酸抗逆性的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102073113B1 (ko) * 2018-06-15 2020-02-04 대한민국 전기응집 처리를 이용한 당화액 내 페놀성 화합물 및 퓨란계 화합물 제거 방법
KR102468426B1 (ko) * 2019-11-21 2022-11-18 건국대학교 산학협력단 생물전기화학적 무독화 방법을 이용한 독성이 감소 또는 제거된 리그노셀룰로오스계 바이오매스의 가수분해 전처리방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090056889A1 (en) * 2007-09-03 2009-03-05 Novozymes A/S Detoxifying and Recylcing of Washing Solution Used In Pretreatment Of Lignocellulose-Containing Materials
WO2009137804A1 (en) * 2008-05-09 2009-11-12 University Of Georgia Research Foundation, Inc. Yeast cells and mehtods for increasing ethanol production
US20100129883A1 (en) * 2007-04-09 2010-05-27 Eiteman Mark A Substrate-selective co-fermentation process
US20110096395A1 (en) * 2008-03-05 2011-04-28 Gregory L Bluem Color shifting multilayer polymer fibers and security articles containing color shifting multilayer polymer fibers
US20120309060A1 (en) * 2006-10-26 2012-12-06 Xyleco, Inc. Processing Biomass

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100318755B1 (ko) 1999-12-24 2001-12-28 손재익 저온멸균법을 이용한 목질계 당화액으로부터 고농도에탄올 제조 방법
KR100879317B1 (ko) 2007-07-06 2009-01-19 한국과학기술연구원 부티르산의 화학 촉매 반응에 의한 부탄올 제조방법
KR20090003967A (ko) 2007-07-06 2009-01-12 한국과학기술연구원 이온성 액체를 이용한 바이오부탄올 분리방법
KR100994594B1 (ko) 2008-04-21 2010-11-15 지에스칼텍스 주식회사 목질계 바이오매스 전처리 방법 및 이를 이용한 바이오연료의 제조 방법
KR101122452B1 (ko) 2008-07-09 2012-02-29 지에스칼텍스 주식회사 바이오 연료의 제조 방법
KR101121672B1 (ko) 2008-10-06 2012-02-28 지에스칼텍스 주식회사 바이오연료의 제조 방법
EP2295534A1 (en) 2009-09-02 2011-03-16 Shell Internationale Research Maatschappij B.V. Novel microorganism and its use in lignocellulose detoxification
WO2013122917A1 (en) * 2012-02-13 2013-08-22 Bp Corporation North America, Inc. Methods for detoxifying a lignocellulosic hydrolysate
EP2964402A4 (en) * 2013-03-05 2016-11-30 Hyrax Energy Inc BIOMASS PROCESSING USING IONIC LIQUIDS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120309060A1 (en) * 2006-10-26 2012-12-06 Xyleco, Inc. Processing Biomass
US20100129883A1 (en) * 2007-04-09 2010-05-27 Eiteman Mark A Substrate-selective co-fermentation process
US20090056889A1 (en) * 2007-09-03 2009-03-05 Novozymes A/S Detoxifying and Recylcing of Washing Solution Used In Pretreatment Of Lignocellulose-Containing Materials
US20110096395A1 (en) * 2008-03-05 2011-04-28 Gregory L Bluem Color shifting multilayer polymer fibers and security articles containing color shifting multilayer polymer fibers
WO2009137804A1 (en) * 2008-05-09 2009-11-12 University Of Georgia Research Foundation, Inc. Yeast cells and mehtods for increasing ethanol production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105567603A (zh) * 2016-02-03 2016-05-11 广州甘蔗糖业研究所 一种提高拜氏梭菌对4-羟基肉桂酸抗逆性的方法
CN105567603B (zh) * 2016-02-03 2019-08-09 广东省生物工程研究所(广州甘蔗糖业研究所) 一种提高拜氏梭菌对4-羟基肉桂酸抗逆性的方法

Also Published As

Publication number Publication date
KR20140121012A (ko) 2014-10-15
KR101458981B1 (ko) 2014-11-10
US9657318B2 (en) 2017-05-23
US20160024535A1 (en) 2016-01-28

Similar Documents

Publication Publication Date Title
Chen et al. Hydrolysates of lignocellulosic materials for biohydrogen production
Yu et al. Pretreatments of cellulose pyrolysate for ethanol production by Saccharomyces cerevisiae, Pichia sp. YZ-1 and Zymomonas mobilis
US20090258404A1 (en) Production of fermentation products in biofilm reactors using microorganisms immobilised on sterilised granular sludge
Yu et al. WITHDRAWN: Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae
Ramprakash et al. Comparative study on the production of biohydrogen from rice mill wastewater
Su et al. A biorefining process: Sequential, combinational lignocellulose pretreatment procedure for improving biobutanol production from sugarcane bagasse
Nichols et al. Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates
WO2009131304A2 (ko) 목질계 바이오매스 전처리 방법 및 이를 이용한 바이오 연료의 제조 방법
JP2010521155A (ja) バイオマス前処理
Danmaliki et al. Bioethanol production from banana peels
US10686205B2 (en) Biofuel and electricity producing fuel cells and systems and methods related to same
Torry‐Smith et al. Purification of bioethanol effluent in an UASB reactor system with simultaneous biogas formation
WO2018072472A1 (zh) 一种降低木质纤维素碱法预处理液中副产物抑制效应的方法及基于此方法制备纤维素乙醇
Kucharska et al. Influence of alkaline and oxidative pre-treatment of waste corn cobs on biohydrogen generation efficiency via dark fermentation
Ezeji et al. Butanol production from lignocellulosic biomass
Zhang et al. A cathodic electro-fermentation system for enhancing butyric acid production from rice straw with a mixed culture
WO2014163229A1 (ko) 바이오 화학물질 또는 바이오연료 생산을 위한 목질계 가수분해산물의 전기화학적 제독방법 및 제독된 목질계 가수분해산물
CN104797714A (zh) 用于获得糖衍生物的方法
WO2014009273A1 (en) Methods and microbial cultures for improved conversion of lignocellulosic biomass
WO2013042856A1 (ko) 독성이 감소 또는 제거된 목질계 바이오매스 당화액의 제조방법 및 이를 이용한 유기산 또는 바이오 연료의 제조방법
Shrivastava et al. Conversion of lignocellulosic biomass: Production of bioethanol and bioelectricity using wheat straw hydrolysate in electrochemical bioreactor
Grassi et al. New contributions for industrial n-butanol fermentation: An optimized Clostridium strain and the use of xylooligosaccharides as a fermentation additive
CN111154664B (zh) 一种耐受阿魏酸的酿酒酵母菌株及其应用
Dutta et al. Potential use of thermophilic bacteria for second-generation bioethanol production using lignocellulosic feedstocks: a review
Das et al. Concise Review on Lignocellulolytic Microbial Consortia for Lignocellulosic Waste Biomass Utilization: A Way Forward?

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880722

Country of ref document: EP

Kind code of ref document: A1