WO2014163176A1 - Ny-eso-1タンパク質の製造方法 - Google Patents

Ny-eso-1タンパク質の製造方法 Download PDF

Info

Publication number
WO2014163176A1
WO2014163176A1 PCT/JP2014/059928 JP2014059928W WO2014163176A1 WO 2014163176 A1 WO2014163176 A1 WO 2014163176A1 JP 2014059928 W JP2014059928 W JP 2014059928W WO 2014163176 A1 WO2014163176 A1 WO 2014163176A1
Authority
WO
WIPO (PCT)
Prior art keywords
eso
protein
coli
gatz
gene
Prior art date
Application number
PCT/JP2014/059928
Other languages
English (en)
French (fr)
Inventor
忠士 菱田
一博 長池
Original Assignee
株式会社イミュノフロンティア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イミュノフロンティア filed Critical 株式会社イミュノフロンティア
Priority to RU2015147306A priority Critical patent/RU2015147306A/ru
Priority to JP2015510151A priority patent/JPWO2014163176A1/ja
Publication of WO2014163176A1 publication Critical patent/WO2014163176A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4748Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)

Definitions

  • the present invention relates to a recombinant Escherichia coli used for production of NY-ESO-1 protein, and a method for producing NY-ESO-1 protein using the strain.
  • the recombinant Escherichia coli of the present invention is useful for the production of hydrophobic proteins that tend to form inclusion bodies such as NY-ESO-1 protein.
  • Hosts that produce proteins from different organisms include prokaryotic cells such as bacteria (eg, E. coli, Bacillus subtilis), and eukaryotic cells such as fungi (eg, filamentous fungi, yeast), insects, and animal and plant cells.
  • prokaryotic cells such as bacteria (eg, E. coli, Bacillus subtilis), and eukaryotic cells such as fungi (eg, filamentous fungi, yeast), insects, and animal and plant cells.
  • bacteria eg, Escherichia coli have many advantages such as a high growth rate, a large amount of growth on an inexpensive medium, and progress in genetic research and the use of various vectors according to the purpose.
  • eukaryotic proteins are heterologously expressed in a prokaryotic bacterium, some expressed proteins cannot take the correct three-dimensional structure even if they are synthesized in the microbial cells, and are insoluble and physiologically insoluble. It is a problem that it accumulates in the fungus body as an
  • NY-ESO-1 protein which is a cancer / testis antigen
  • NY-ESO-1 protein is a useful protein that is specific to cancer, is expressed in a wide range, has high immunity induction ability, and has been confirmed to be clinically effective as a cancer vaccine.
  • Its amino acid sequence (SEQ ID NO: 4) Is registered as Genbank accession number CAA05908 and NCBI reference sequence NP_001318 (see also Non-Patent Document 1).
  • SEQ ID NO: 4 amino acid sequence
  • NY-ESO-1 protein is highly hydrophobic, in order to purify the protein from E. coli, inclusion bodies from E.
  • Non-Patent Documents 2 to 4 Even after such many steps, it still contains a lot of impurities, and it was difficult to obtain NY-ESO-1 protein with high purity.
  • An object of the present invention is to provide a method for producing NY-ESO-1 protein with high purity, and a strain system useful for carrying out the method.
  • the present invention is a system for producing NY-ESO-1 protein, which is difficult to mass-produce with high purity, using an Escherichia coli strain excellent in growth rate, protein production amount, etc. It is an object to establish a system with few impurities in a product.
  • the present inventors have used (NY-ESO-1) in a purified product from a cell disruption by using E. coli in which the gatZ gene has been deleted or inactivated. It has been found that the amount of E. coli-derived impurities (other than proteins) is significantly reduced, and the present invention has been completed. Specifically, when a gene encoding the NY-ESO-1 protein is introduced into E. coli in which the gatZ gene has been deleted or inactivated, the cell disruption product is compared with that before deletion or inactivation. It was found that the amount of contaminating E. coli-derived protein was significantly reduced without reducing the amount of NY-ESO-1 protein in the purified product.
  • E. coli in which the gatZ gene has been deleted or inactivated and the NY-ESO-1 gene has been introduced.
  • a method for producing NY-ESO-1 protein comprising the step of extracting NY-ESO-1 protein from E. coli according to [1].
  • An E. coli host for producing NY-ESO-1 protein in which the gatZ gene is deleted or inactivated.
  • the present invention further relates to the following inventions.
  • Escherichia coli obtained by a step of deleting or inactivating the gatZ gene in the genome of E. coli and a step of introducing a gene encoding NY-ESO-1 protein into the E. coli.
  • the NY-ESO-1 protein can be obtained with high purity by using the recombinant Escherichia coli of the present invention.
  • FIG. 1A shows the result of staining the protein in the separated gel
  • FIG. 1B shows the result of Western blotting with an anti-NY-ESO-1 antibody.
  • the recombinant Escherichia coli of the present invention is characterized in that the gatZ gene is deleted or inactivated, and is useful for producing NY-ESO-1 protein with high purity. Therefore, the present invention provides a novel use of a recombinant Escherichia coli in which the gatZ gene is deleted or inactivated as an E. coli host for producing NY-ESO-1 protein.
  • the recombinant E. coli for obtaining NY-ESO-1 protein with high purity means recombinant E. coli modified so that the amount of impurities in the purified NY-ESO-1 protein is reduced. .
  • high purity means that the concentration of a host-derived protein other than NY-ESO-1 protein in the purified NY-ESO-1 protein is less than 50 ng / mg, preferably 40 ng at most. means less than / mg, more preferably less than 30 ng / mg, most preferably less than 20 ng / mg.
  • Methods for measuring the concentration of host-derived protein are known in the art, and E. coli Host Cell Protein ELISA Kit (Cygnus Technologies, product code F410) for measuring E. coli-derived protein concentration is known. ) And other immunoassay kits are commercially available.
  • the E. coli gatZ gene is a gene encoding an enzyme gatZ (also known as tagatose-6-phosphate kinase) that phosphorylates tagatose-6-phosphate to form tagatose-6-diphosphate.
  • gatZ also known as tagatose-6-phosphate kinase
  • the nucleotide sequence (SEQ ID NO: 5) and amino acid sequence (SEQ ID NO: 6) of the Escherichia coli gatZ gene are registered with GenBank under accession number X79837, and Jeong H et al. Genome sequences of Escherichia coli B strain REL606 and BL21 (DE3 ). J Mol Biol, 2009 (4): 644-52.
  • the “gatZ gene” refers to a protein consisting of the amino acid sequence of SEQ ID NO: 6, or 70% or more, preferably 80% or more, more preferably 90% or more, and still more preferably 95%. As mentioned above, it means a polynucleotide that encodes a protein having an amino acid sequence identity of 98% or more and having an activity to phosphorylate tagatose-6-phosphate.
  • a method for evaluating the phosphorylation activity of a protein or polypeptide is known in the art. For example, tagatose-6-phosphate is incubated under conditions suitable for phosphorylation of tagatose-6-phosphate. By detecting the amount of tagatose-6-diphosphate, the activity to phosphorylate tagatose-6-phosphate can be determined.
  • the gene (gatZ gene) to be deleted or inactivated from the E. coli host for the production of NY-ESO-1 protein more specifically, DNA comprising the sequence described in SEQ ID NO: 5, or A polynucleotide encoding a polypeptide comprising the amino acid sequence of SEQ ID NO: 6 is exemplified.
  • a person skilled in the art can know the latest sequence information from a public database or the like as appropriate based on the gene name.
  • the biological activity is “an equivalent polypeptide” as compared to the biological activity of the comparison target, preferably 30% or more, preferably It means a polypeptide having a biological activity of 50% or more, more preferably 70% or more, still more preferably 80% or more, even more preferably 90% or more, particularly preferably 95% or more.
  • the gatZ gene can be inactivated by a method such as inserting another DNA fragment into the gatZ gene or giving a mutation to the transcription or translation initiation region of the gatZ gene. It is more desirable to physically delete the gatZ gene.
  • a method by homologous recombination may be used. That is, a circular recombinant plasmid obtained by cloning a DNA fragment containing a part of the gatZ gene into an appropriate plasmid vector is incorporated into the parent strain, and the parent E. coli genome is homologously recombined in a part of the gatZ gene. It is possible to disrupt and inactivate the above gatZ gene.
  • E. coli Type of host E. coli
  • E. coli C41 strain, C43 strain, BL21 Strains, B834 strains, and HMS174 strains can be used as the recombinant Escherichia coli of the present invention. It is not limited.
  • the protein produced using the recombinant Escherichia coli of the present invention is preferably NY-ESO-1 protein, which is a hydrophobic protein that is difficult to produce with high purity in a normal E. coli host.
  • the highly purified NY-ESO-1 protein purified product produced by the production method of the present invention is particularly useful in medical applications such as cancer vaccines. Therefore, the NY-ESO-1 protein produced using the recombinant Escherichia coli of the present invention may be a peptide fragment (for example, 80 amino acids or more) having immunogenicity equivalent to a protein having a full-length amino acid sequence, A fusion protein to which a known tag peptide is added may be used as necessary. Note that methods for evaluating the immunogenicity of a protein or polypeptide are known in the art.
  • NY-ESO-1 protein refers to a protein consisting of the amino acid sequence of SEQ ID NO: 4, or 70% or more, preferably 80% or more, more preferably 90% or more, and still more preferably the protein. It means a protein having amino acid sequence identity of 95% or more, particularly preferably 98% or more, or a peptide fragment having equivalent immunogenicity, and expressed as a cancer / testis antigen having such an amino acid sequence. You can also.
  • “NY-ESO-1 protein” (I) a polypeptide comprising the amino acid sequence of SEQ ID NO: 4; (Ii) a polypeptide comprising an amino acid sequence having 80% or more amino acid sequence identity to the amino acid sequence of SEQ ID NO: 4, and having an immunogenicity equivalent to that of the polypeptide comprising the amino acid sequence of SEQ ID NO: 4 A polypeptide having; (Iii) a polypeptide comprising the amino acid sequence of SEQ ID NO: 4 in which several (eg, a maximum of 10) amino acids are substituted, deleted, or added, and is equivalent to the polypeptide consisting of the amino acid sequence of SEQ ID NO: 4 A polypeptide having the immunogenicity of (Iv) a polynucleotide that hybridizes under stringent conditions to a polynucleotide encoding a polypeptide consisting of the amino acid sequence of SEQ ID NO: 4, and has the same immunity as the polypeptide consisting of the amino acid
  • stringent (hybridization) conditions refers to conditions in which a nucleic acid molecule hybridizes to its target sequence in a nucleic acid mixture, but does not hybridize to other sequences to a detectable extent. (That is, conditions for specifically hybridizing with the target sequence). Stringent conditions depend on the sequence, but generally longer sequences specifically hybridize at higher temperatures, and appropriate hybridization conditions can be routinely selected by those skilled in the art.
  • Exemplary stringent hybridization conditions include: 50% formamide, 5 ⁇ SSC, and 1% SDS, 42 ° C. incubation, or 5 ⁇ SSC, 1% SDS, 65 ° C. And 0.2 ⁇ SSC and 0.1% SDS, wash at 50 ° C.
  • Suitable hybridization conditions include “rapid-hyb buffer” (GE Healthcare) for 30 minutes or longer at 68 ° C., addition of labeled probe, and 1 hour at 68 ° C. Further warming can also be included.
  • the washing step can be performed, for example, under low stringency conditions.
  • exemplary low stringency conditions include, for example, 42 ° C., 2 ⁇ SSC, 0.1% SDS, or preferably 50 ° C., 2 ⁇ SSC, 0.1% SDS.
  • exemplary high stringency conditions include, for example, 2 ⁇ SSC at room temperature, 3 washes for 20 minutes in 0.01% SDS, followed by 1 ⁇ SSC at 37 ° C. in 0.1% SDS 3 washings for 20 minutes at 2 and 2 washings for 20 minutes in 1 ⁇ SSC, 0.1% SDS at 50 ° C. are included.
  • temperature and salt concentration can affect the stringency of hybridization, one skilled in the art can appropriately select these factors to obtain the required stringency.
  • the gene encoding NY-ESO-1 protein is upstream of the regulatory region involved in transcription and translation of the gene, that is, the transcription initiation regulatory region including the promoter and transcription initiation site, and / or the ribosome binding site and initiation codon. It is desirable to be functionally linked to a translation initiation region containing
  • a gene encoding the NY-ESO-1 protein into E. coli is carried out by incorporating a recombinant plasmid in which a DNA fragment containing the gene and an appropriate plasmid vector are combined into a host E. coli cell by a general transformation method. Can be implemented.
  • the recombinant E. coli of the present invention can also be obtained by using a DNA fragment obtained by binding an appropriate homologous region to the host E. coli genome to the DNA fragment and directly integrating it into the host E. coli genome.
  • the production of NY-ESO-1 protein using the recombinant Escherichia coli of the present invention is performed by inoculating the strain into a medium containing an assimilable carbon source, nitrogen source and other essential components, and cultivating by a normal E. coli culture method. Then, after completion of the culture, the produced NY-ESO-1 protein may be recovered and purified.
  • the produced NY-ESO-1 protein is preferably produced in a host cell. Therefore, in the production method of the present invention, NY-ESO-1 protein is recovered by crushing or dissolving E. coli that produces NY-ESO-1 protein, and recovering NY-ESO-1 protein from the disrupted product or lysate. .
  • NY-ESO-1 protein is highly hydrophobic, so it is easily included in inclusion bodies when synthesized in a host cell. Therefore, in order to purify the NY-ESO-1 protein, it is preferable to purify the inclusion body from the crushed host E. coli and solubilize it. Methods for purifying and dissolving inclusion bodies are known in the art, and for example, inclusion bodies recovered by centrifugation or the like can be dissolved with urea or the like.
  • the column to be used is not particularly limited as long as it is useful in the purification, and one or more types of columns can be used.
  • NY-ESO-1 protein is expressed as a fusion protein with a tag peptide that is widely used for purification of recombinant proteins in this technical field, use an affinity column that utilizes the affinity with the tag peptide. Is preferred.
  • a His tag (a tag peptide comprising about 6 consecutive histidine (His) residues) and a metal ion (such as nickel) immobilization column, a biotin tag and an avidin immobilization Columns, GST (glutathione-S-transferase) tags and glutathione-immobilized columns are well known and can be used as appropriate in the production method of the present invention.
  • GST glutathione-S-transferase tags and glutathione-immobilized columns
  • glutathione-immobilized columns are well known and can be used as appropriate in the production method of the present invention.
  • the NY-ESO-1 protein contains a highly hydrophobic region, it is preferable to use a column utilizing hydrophobic interaction.
  • a column using a resin such as phenyl sepharose or butyl sepharose can be used.
  • Example 1 Preparation of NY-ESO-1-producing Escherichia coli strain (conventional type) pET9a vector (Novagen, catalog # 69431-3) pET-9a24a vector lacking the repressor binding site and lacI gene A cDNA expressing the His-NY-ESO-1 protein shown in Fig. 1 was incorporated to prepare a His-NY-ESO-1 expression vector.
  • This expression vector and pRARE vector (Novagen) are introduced into Escherichia coli competent cell C41 (DE3) (COSMO BIO INC., Catalog # 60341), and the Escherichia coli strain His-NY-ESO is expressed.
  • -1 / C41 (DE3) was produced. After culturing the obtained strain in LB medium, the cells were collected, the medium was replaced with LB medium without antibiotics, glycerol was added to a final concentration of 40%, and Master Cell Bank (Master Cell Bank: MCB).
  • Example 2 Preparation of NY-ESO-1-producing Escherichia coli strain (gatZ deletion type) Preparation of gatZ gene-deficient E. coli GatZ gene-deficient E. coli C41 (DE3) ⁇ gatZ was prepared using the Red / ET homologous recombination method (Patent No. 4139561). Specifically, for the C41 (DE3) E. coli strain, the gatZ region shown in SEQ ID NO: 2 is replaced with the gene sequence shown in SEQ ID NO: 3, whereby the E. coli strain C41 (DE3) ⁇ gatZ lacking the gatZ gene. Was made.
  • Example 3 Production and purification of NY-ESO-1 protein Culturing
  • 60 mL of the culture solution was added and cultured at 37 ° C. and 250 rpm.
  • OD600 reached about 50
  • IPTG was added to a final concentration of 0.5 mM to induce protein expression, and the culture was terminated about 12 hours after the start of induction.
  • Extraction The following extraction operation is performed at 20 ° C or lower.
  • the collected culture solution is centrifuged (about 15,000 g, 30 minutes), and the precipitated cells are 200 mL of homogenate buffer (50 mM Tris-HCl, 0.1 M NaCl, 1 mM MgSO 4 , 5 mM DTT, pH 8.0) Then, 5 L of a homogenate buffer was added and suspended again.
  • a homogenate solution was prepared by crushing the cells at about 1,000 Bar using a high-pressure homogenizer. The homogenate solution was centrifuged (about 15,000 g, 30 minutes) to precipitate inclusion bodies containing NY-ESO-1 protein.
  • washing buffer 1 50 mM Tris-HCl, 0.1 M NaCl, 1 mM EDTA, 5 mM DTT, pH 8.0.
  • the suspension was centrifuged again (about 15,000 g, 30 minutes), and the resulting precipitate was suspended in 5 L of homogenate buffer 2 (100 mM sodium phosphate, 0.5 M NaCl, 5 mM DTT, pH 7.5).
  • the suspension is centrifuged again (about 15,000 g, 30 minutes), and the resulting precipitate is suspended in 10 L of solubilization buffer (100 mM sodium phosphate, 7.5 M urea, 5 mM DTT, pH 7.5).
  • the solubilization treatment was performed by leaving for about 4 hours.
  • the lysate is then pre-filtered with Opticap XLT20 Milligard 1.2 / 0.5 ⁇ m (Millipore), then filtered through a MaxiCap filter, 0.45 / 0.2 ⁇ m (Sartorius), and His-NY-ESO -1 protein extract was obtained.
  • the obtained extract was stored in a refrigerator.
  • the eluate was concentrated using Sartocon (registered trademark) PESU Cassette (Sartorius) and then replaced with AEC equilibration buffer (20 mM phosphate, 7.5 M urea, 5 mM DTT, pH 7.5).
  • Example 4 SDS-PAGE ( Figure 1A) The purified His-NY-ESO-1 protein obtained in Example 3 for the NY-ESO-1-producing E. coli strain (conventional type) was subjected to SDS-PAGE on a 4-12% precast gradient gel (Invitrogen). did. The gel was then stained with SYPRO® Ruby Protein Stain (Molecular Probes) to visualize the signal. As a result, bands with various molecular weights were detected, including bands corresponding to NY-ESO-1 monomer and gatZ.
  • Example 5 SDS-PAGE, Western blot (FIG. 1B) After performing SDS-PAGE as in Example 4, the gel was immersed in a transfer buffer (Invitrogen) and transferred to a nitrocellulose membrane using a blotting apparatus. After immersing the transferred nitrocellulose membrane in water, anti-NY-ESO-1 monoclonal antibody (clone E978) (Santa Cruz) as the primary antibody and HRP-labeled anti-mouse IgG antibody (GE Healthcare) as the secondary antibody The reaction was allowed to visualize the signal using Western blot detection reagent (GE Healthcare).
  • a transfer buffer Invitrogen
  • anti-NY-ESO-1 monoclonal antibody (clone E978) (Santa Cruz) as the primary antibody
  • HRP-labeled anti-mouse IgG antibody GE Healthcare
  • Example 6 Two-dimensional electrophoresis (FIG. 2) The purified His-NY-ESO-1 protein obtained in Example 3 for the NY-ESO-1 producing E. coli strain (conventional type) and the NY-ESO-1 producing E. coli strain (gatZ deletion type) was obtained using Immobiline DryStrip ( It was subjected to the first-dimensional electrophoresis using GE Health Science. Next, second-dimensional electrophoresis was performed using 7.5% SDS-PAGE gel. The gel was then stained with SYPRO® Ruby Protein Stain (Molecular Probes) to visualize the signal (FIG. 2). As a result, the E.
  • Example 7 Measurement of host-derived impurities His-NY-ESO- obtained in Example 3 for NY-ESO-1-producing E. coli strains (conventional type) and NY-ESO-1 producing E. coli strains (gatZ deletion type) 1 Host protein concentration in the purified protein was measured using E. coli Host Cell Protein ELISA Kit (Cygnus Technologies, product code F410). As a result, the concentration of the host-derived residual protein was 50.5 ng / mg in the wild type, whereas it was 18.7 ng / mg in the gatZ deletion type.
  • Example 8 Two-dimensional electrophoresis and Western blot using anti-NY-ESO-1 antibody (FIG. 3)
  • the IPG First-dimensional electrophoresis was performed using ReadyStrip gel (17 cm, pH 3-10NL, BIO-RAD). After equilibrating the IPG gel, it was set on a 10/16% gradient gel (19 ⁇ 17 cm) and subjected to second-dimensional electrophoresis (SDS-PAGE).
  • the obtained gel was stained with SYPRO Ruby Protein Stain (Molecular Probes) or blotted onto a PVDF membrane at 400 mA per gel for 2 hours.
  • NY-ESO-1 protein was detected from the PVDF membrane after transfer using an anti-NY-ESO-1 antibody (clone E978, Santa Cruz Biotechnology, Inc.) and Western Breeze kit (Invitrogen).
  • Anti-NY-ESO-1 antibody reactive spots were observed in both the NY-ESO-1-producing E. coli strain (conventional type, Fig. 3A) and the NY-ESO-1 producing E. coli strain (gatZ deletion type, Fig. 3B) (Inside the dotted box) these were considered to be His-NY-ESO-1.
  • coli strains ( gatZ deletion type) is recognized in a narrow range of pH7 to pH10, and the purity of His-NY-ESO-1 as a molecular species may be improved in NY-ESO-1 producing E. coli strains (gatZ deletion type) Sex was also suggested.
  • deletion of gatZ in the E. coli strain that expresses the NY-ESO-1 protein significantly reduces the amount of host-derived impurities in the resulting purified NY-ESO-1 protein. Became clear.
  • the present invention provides a method for producing NY-ESO-1, which is a hydrophobic protein that is difficult to produce recombinantly, with high purity, and a recombinant Escherichia coli useful for the method.
  • Such production method and NY-ESO-1 protein produced by recombinant Escherichia coli are particularly useful in applications such as medical use where production with high purity is desirable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

gatZ遺伝子が欠失または不活性化された大腸菌を用いることによって、得られるNY-ESO-1タンパク質の量が低減されることなく大腸菌由来不純物の量が著しく低減されることを見出した。

Description

NY-ESO-1タンパク質の製造方法
 本発明は、NY-ESO-1タンパク質の生産に用いる組換え大腸菌、および当該菌株を用いてNY-ESO-1タンパク質を生産する方法に関する。本発明の組換え大腸菌は、NY-ESO-1タンパク質のような封入体を形成しやすい疎水性タンパク質の生産に有用である。
 異種生物に由来するタンパク質を生産する宿主としては、細菌(例えば大腸菌、枯草菌)などの原核生物細胞や、菌類(例えば糸状菌、酵母)、昆虫、および動植物の細胞などの真核生物細胞が知られている。中でも大腸菌などの細菌は、増殖速度が速いこと、安価な培地で大量に増殖できること、遺伝学的研究が進んでおり目的に応じた様々なベクターを利用できることなどの有利な点が多い。しかし、原核生物である細菌に真核生物由来のタンパク質を異種発現させた場合、発現させたタンパク質によっては菌体内で合成されても正しい立体構造をとることができず、不溶性かつ生理学的に不活性な状態で封入体(inclusion body)として菌体内に蓄積されることが問題となっている。
 この問題に対して、培養温度を低温にすることでタンパク質の折りたたみを緩やかに進行させる方法、目的タンパク質と分子シャペロンを共発現させることで異種タンパク質の正しい立体構造への折りたたみを促進させる方法、ストレス応答を誘導する薬剤を培地に添加することで分子シャペロンの発現を誘導する方法などが開発されている。しかし、目的タンパク質が疎水性タンパク質の場合、疎水性相互作用による凝集が起こりやすいため、上記の方法を用いてもなお封入体として発現されやすい。そのため、そのようなタンパク質を得る方法として、大腸菌破砕物から封入体を精製して可溶化する方法が用いられている。
 疎水性の高い有用タンパク質の例として、がん・精巣抗原であるNY-ESO-1タンパク質が知られている。NY-ESO-1タンパク質は、がんに特異的かつ広範囲に発現しかつ免疫誘導能が高く、がんワクチンとしての臨床効果が確認されている有用タンパク質であり、そのアミノ酸配列(配列番号4)はGenbankアクセッション番号CAA05908およびNCBI参照配列NP_001318として登録されている(非特許文献1も参照のこと)。しかし、NY-ESO-1タンパク質は疎水性が高いため、当該タンパク質を大腸菌から精製するためには、大腸菌破砕物からの封入体の精製および可溶化、ならびに3段階のクロマトグラフィー精製(アフィニティー、イオン交換、および疎水性相互作用クロマトグラフィー)を必要とすることが知られている(非特許文献2~4)。しかし、このような多くの工程を経てもなお不純物を多く含み、NY-ESO-1タンパク質を高純度で得ることは困難であった。
 これまでに、組換え生産が困難なタンパク質の生産方法を改良することを目的として、宿主細胞における目的タンパク質の生産性の向上、封入体形成の低減、目的タンパク質の細胞外への分泌向上などに主眼をおいた研究がなされてきた。しかし、宿主細胞における正常な発現が困難な細胞内タンパク質を高純度で得る技術については、開発がほとんど進展していない。
Int. J. Cancer 76 (6), 903-908 (1998) Murphy R et al. Prep Biochem Biotechnol. 2005: 35(2) 119-134 Chen RH et al. Protein Expr Purif. 2009: 64(1) 76-81 Lowe AJ et al. Biotechnol Prog. 2011: 27(2) 435-441
 本発明の課題は、NY-ESO-1タンパク質を高純度で生産する方法、および当該方法の実施のために有用な菌株系を提供することである。本発明は特に、高純度での大量生産が困難なNY-ESO-1タンパク質を、増殖速度やタンパク質産生量等に優れた大腸菌株を用いて生産する系であって、菌株破砕物からの精製物における不純物が少ない系を確立することを課題とする。
 本発明者らは、前記課題を解決するために鋭意研究した結果、gatZ遺伝子が欠失または不活性化された大腸菌を用いることによって、菌体破砕物からの精製物における(NY-ESO-1タンパク質以外の)大腸菌由来不純物の量が著しく低減されることを見出し、本発明を完成させるに至った。具体的には、gatZ遺伝子が欠失または不活性化された大腸菌にNY-ESO-1タンパク質をコードする遺伝子を導入した場合、欠失または不活性化前と比較して、菌体破砕物からの精製物におけるNY-ESO-1タンパク質の量が低減されることなく、混入する大腸菌由来タンパク質の量が著しく低減されることを見出した。
 以下に、本発明の基本的な諸特徴および種々の態様を列挙する。
〔1〕gatZ遺伝子が欠失または不活性化されており、かつNY-ESO-1遺伝子を導入した大腸菌。
〔2〕〔1〕の大腸菌からNY-ESO-1タンパク質を抽出する工程を含む、NY-ESO-1タンパク質の生産方法。
〔3〕gatZ遺伝子が欠失または不活性化されている、NY-ESO-1タンパク質生産用大腸菌宿主。
 本発明は、さらに、以下の発明に関する。
〔4〕NY-ESO-1タンパク質の生産において用いるための、gatZ遺伝子が欠失または不活性化されている大腸菌。
〔5〕大腸菌ゲノム中のgatZ遺伝子を欠失または不活性化させる工程、および該大腸菌にNY-ESO-1タンパク質をコードする遺伝子を導入する工程によって得られる、大腸菌。
 本発明の組換え大腸菌を用いることにより、NY-ESO-1タンパク質を高純度で得ることができる。
NY-ESO-1産生大腸菌株(従来型)から得られたHis-NY-ESO-1タンパク質精製物をSDS-PAGEにて分離した結果を示す写真である。図1Aは分離したゲル中のタンパク質を染色した結果を示し、図1Bは抗NY-ESO-1抗体にてウェスタンブロットを行った結果を示す。 (A)NY-ESO-1産生大腸菌株(従来型)および(B)NY-ESO-1産生大腸菌株(gatZ欠失型)から得られたHis-NY-ESO-1タンパク質精製物をそれぞれ2次元電気泳動にて分離したゲル中のタンパク質を染色した写真である。 (A)NY-ESO-1産生大腸菌株(従来型)および(B)NY-ESO-1産生大腸菌株(gatZ欠失型)から得られたHis-NY-ESO-1タンパク質精製物をそれぞれ2次元電気泳動にて分離した結果を示す写真である。左側の写真は分離したゲル中のタンパク質を染色した結果を示し、右側の写真は抗NY-ESO-1抗体にてウェスタンブロットを行った結果を示す。
 本発明の組換え大腸菌は、gatZ遺伝子が欠失または不活性化されていることを特徴とし、NY-ESO-1タンパク質を高純度で生産するのに有用である。したがって本発明は、gatZ遺伝子が欠失または不活性化されている組換え大腸菌について、NY-ESO-1タンパク質生産用大腸菌宿主としての新規な用途を提供するものである。本明細書において、NY-ESO-1タンパク質を高純度で得るための組換え大腸菌とは、NY-ESO-1タンパク質精製物における不純物の量が低減されるよう改変された組換え大腸菌を意味する。
 本明細書において、「高純度」とは、NY-ESO-1タンパク質精製物における、NY-ESO-1タンパク質以外の宿主由来タンパク質の濃度が、多くても50 ng/mg未満、好ましくは40 ng/mg未満、より好ましくは30 ng/mg未満、最も好ましくは20 ng/mg未満であることを意味する。宿主由来タンパク質の濃度を測定する方法(例えば免疫学的測定法)は当技術分野において公知であり、大腸菌由来タンパク質濃度を測定するためのE. coli Host Cell Protein ELISA Kit(シグナステクノロジーズ、商品コードF410)などの様々な免疫学的測定キットが市販されている。
(gatZ遺伝子)
 大腸菌gatZ遺伝子は、タガトース-6-リン酸をリン酸化してタガトース-6-二リン酸を形成する酵素gatZ(別名:タガトース-6-リン酸キナーゼ)をコードする遺伝子である。大腸菌gatZ遺伝子のヌクレオチド配列(配列番号5)およびアミノ酸配列(配列番号6)は、GenBankにアクセッション番号X79837で登録されており、Jeong H et al. Genome sequences of Escherichia coli B strain REL606 and BL21(DE3). J Mol Biol, 2009 (4):644-52にも記載されている。
 したがって、本明細書において、「gatZ遺伝子」とは、配列番号6のアミノ酸配列からなるタンパク質、または当該タンパク質と70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは98%以上のアミノ酸配列同一性を有するタンパク質であって、タガトース-6-リン酸をリン酸化する活性を有するタンパク質をコードするポリヌクレオチドを意味する。なお、タンパク質またはポリペプチドが有するリン酸化活性を評価する方法は当技術分野において公知であり、例えば、タガトース-6-リン酸のリン酸化に適した条件下でタガトース-6-リン酸をインキュベートし、タガトース-6-二リン酸の量を検出することによって、タガトース-6-リン酸をリン酸化する活性を決定することができる。
 本明細書において、NY-ESO-1タンパク質生産用に大腸菌宿主から欠失または不活性化させる遺伝子(gatZ遺伝子)は、より具体的には、配列番号5に記載の配列からなるDNA、または、配列番号6のアミノ酸配列を含むポリペプチドをコードするポリヌクレオチドが挙げられる。当業者であれば、遺伝子名に基づいて、公共のデータベース等から適宜、その最新の配列情報を知ることが可能である。
 本明細書において、生物活性(NY-ESO-1に対する抗体の産生を誘導する免疫原性)が「同等のポリペプチド」とは、比較対象の生物活性と比較して、30%以上、好ましくは50%以上、より好ましくは70%以上、さらに好ましくは80%以上、さらにより好ましくは90%以上、特に好ましくは95%以上の生物活性を有するポリペプチドを意味する。
(gatZ遺伝子を欠失または不活性化する方法)
 本発明は、gatZ遺伝子中に他のDNA断片を挿入する、または、gatZ遺伝子の転写もしくは翻訳開始領域に変異を与える等の方法によってgatZ遺伝子を不活性化することができるが、好適には、gatZ遺伝子を物理的に欠失させることがより望ましい。gatZ遺伝子を欠失または不活性化するには、例えば相同組換えによる方法を用いればよい。すなわち、gatZ遺伝子の一部を含むDNA断片を適当なプラスミドベクターにクローニングして得られる環状の組換えプラスミドを親菌株内に取り込ませ、gatZ遺伝子の一部の領域における相同組換えによって親大腸菌ゲノム上のgatZ遺伝子を分断して不活性化することが可能である。
(宿主大腸菌の種類)
 本発明の組換え大腸菌を構築するための親菌株としては、目的タンパク質を組換え生産するのに利用可能な大腸菌宿主として多くの菌株が知られており、例えば、大腸菌C41株、C43株、BL21株、B834株、およびHMS174株、ならびにそれらのDE3溶原菌(Lucigen社、コスモバイオ社、フィルジェン社、フナコシなどで購入可能)が本発明の組換え大腸菌として利用可能であるが、これらに限定されるものではない。
(NY-ESO-1タンパク質)
 本発明の組換え大腸菌を用いて生産させるタンパク質としては、通常の大腸菌宿主では高純度で生産することが困難な疎水性タンパク質であるNY-ESO-1タンパク質が好ましい。本発明の生産方法により生産される高純度のNY-ESO-1タンパク質精製物は、がんワクチンなどの医療用途において特に有用である。したがって、本発明の組換え大腸菌を用いて生産させるNY-ESO-1タンパク質は、全長アミノ酸配列を有するタンパク質と同等の免疫原性を有するペプチド断片(例えば、80アミノ酸以上)であってもよく、必要に応じて公知のタグペプチドを付加した融合タンパク質とすることもできる。なお、タンパク質またはポリペプチドの免疫原性を評価する方法は、当技術分野において公知である。
 本明細書において、「NY-ESO-1タンパク質」とは、配列番号4のアミノ酸配列からなるタンパク質、もしくは当該タンパク質と70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは98%以上のアミノ酸配列同一性を有するタンパク質、またはそれらと同等の免疫原性を有するペプチド断片を意味し、そのようなアミノ酸配列を有するがん・精巣抗原と表現することもできる。
 あるいは、本明細書において、「NY-ESO-1タンパク質」とは、
(i)配列番号4のアミノ酸配列を含むポリペプチド;
(ii)配列番号:4のアミノ酸配列に対して80%以上のアミノ酸配列同一性を有するアミノ酸配列を含むポリペプチドであって、配列番号4のアミノ酸配列からなるポリペプチドと同等の免疫原性を有するポリペプチド;
(iii)数個(例えば、最大10個)のアミノ酸が置換、欠失、または付加された配列番号4のアミノ酸配列を含むポリペプチドであって、配列番号4のアミノ酸配列からなるポリペプチドと同等の免疫原性を有するポリペプチド;
(iv)配列番号4のアミノ酸配列からなるポリペプチドをコードするポリヌクレオチドに対してストリンジェントな条件下でハイブリダイズするポリヌクレオチドであって、配列番号4のアミノ酸配列からなるポリペプチドと同等の免疫原性を有するポリペプチドをコードするポリヌクレオチド;
からなる群より選択されるポリペプチド、またはそれらと同等の免疫原性を有するペプチド断片である。
 本明細書において、「ストリンジェントな(ハイブリダイゼーション)条件」とは、核酸混合物中で、核酸分子がその標的配列とはハイブリダイズするが、その他の配列とは検出可能な程度にハイブリダイズしない条件(すなわち、標的配列と特異的にハイブリダイズする条件)を意味する。ストリンジェントな条件は配列に依存するが、一般的に配列が長いほど、より高い温度で特異的にハイブリダイズし、適切なハイブリダイゼーション条件は当業者によって慣行的に選択され得る。
 例示的なストリンジェントなハイブリダイゼーション条件には、以下のものが含まれる:50%ホルムアミド、5×SSC、および1% SDS、42℃でのインキュベーション、または5×SSC、1% SDS、65℃でのインキュベーション、ならびに0.2×SSCおよび0.1% SDS、50℃での洗浄。適切なハイブリダイゼーション条件には、「Rapid-hyb緩衝液」(GEヘルスケア)を使用する68℃での30分間またはそれ以上のプレハイブリダイゼーション、標識プローブの添加、および68℃での1時間またはそれ以上の加温もまた含まれ得る。
 洗浄段階は、例えば低ストリンジェンシー条件下で行うことができる。したがって、例示的な低ストリンジェンシー条件には、例えば、42℃、2×SSC、0.1% SDS、または好ましくは50℃、2×SSC、0.1% SDSが含まれる。また、例示的な高ストリンジェンシー条件には、例えば、室温における2×SSC、0.01% SDS中での20分間の洗浄3回、その後の37℃における1×SSC、0.1% SDS中での20分間の洗浄3回、および50℃における1×SSC、0.1% SDS中での20分間の洗浄2回が含まれる。しかし、温度および塩濃度などのいくつかの要因はハイブリダイゼーションのストリンジェンシーに影響を及ぼし得るため、当業者は必要なストリンジェンシーを得るためにこれらの要因を適切に選択することができる。
(大腸菌に導入する遺伝子の構成)
 NY-ESO-1タンパク質をコードする遺伝子は、その上流において、当該遺伝子の転写や翻訳に関わる制御領域、すなわち、プロモーターおよび転写開始点を含む転写開始制御領域、ならびに/またはリボソーム結合部位および開始コドンを含む翻訳開始領域と機能的に連結されていることが望ましい。
(大腸菌への遺伝子導入)
 NY-ESO-1タンパク質をコードする遺伝子の大腸菌への導入は、当該遺伝子を含むDNA断片と適当なプラスミドベクターを結合させた組換えプラスミドを、一般的な形質転換法によって宿主大腸菌細胞に取り込ませることによって実施することができる。また、当該DNA断片に宿主大腸菌ゲノムとの適当な相同領域を結合したDNA断片を用い、宿主大腸菌ゲノムに直接組み込むことによっても、本発明の組換え大腸菌を得ることができる。
(大腸菌の培養および回収)
 本発明の組換え大腸菌を用いたNY-ESO-1タンパク質の生産は、当該菌株を同化性の炭素源、窒素源、その他の必須成分を含む培地に接種し、通常の大腸菌培養法にて培養し、培養終了後、産生されたNY-ESO-1タンパク質を回収・精製することにより行えばよい。
 本発明の生産方法において、生産するNY-ESO-1タンパク質は、好ましくは宿主細胞内に産生される。したがって、本発明の生産方法におけるNY-ESO-1タンパク質の回収は、NY-ESO-1タンパク質を産生する大腸菌を破砕または溶解し、当該破砕物または溶解物からNY-ESO-1タンパク質を回収する。
(封入体の精製)
 NY-ESO-1タンパク質は疎水性が高いため、宿主細胞内で合成されると封入体に包含されやすい。そのため、NY-ESO-1タンパク質を精製するためには、宿主大腸菌の破砕物から封入体を精製し、それを可溶化することが好ましい。封入体の精製・溶解方法は当技術分野において公知であり、例えば遠心分離などにより回収した封入体を尿素などによって溶解することができる。
(組換えタンパク質の精製)
 大腸菌破砕物または封入体可溶化物からNY-ESO-1タンパク質を精製するには、硫酸アンモニウムまたはエタノール沈殿、酸抽出、逆相カラムクロマトグラフィー、陽イオン交換クロマトグラフィー、陰イオン交換クロマトグラフィー、ホスホセルロースクロマトグラフィー、疎水性相互作用クロマトグラフィー、アフィニティクロマトグラフィー、等電点クロマトグラフィー、サイズ排除クロマトグラフィー、ヒドロキシルアパタイトクロマトグラフィーおよびレクチンクロマトグラフィーを含めた公知の方法が好適に用いられ得る。
(精製用カラムの好ましい態様)
 クロマトグラフィーによりNY-ESO-1タンパク質を精製する場合、用いるカラムは当該精製において有用なものであれば特に限定されるものではなく、1種類または複数種類のカラムを用いることができる。
 例えば、NY-ESO-1タンパク質が、当技術分野において組換えタンパク質の精製に汎用されているタグペプチドとの融合タンパク質として発現する場合、当該タグペプチドとの親和性を利用したアフィニティーカラムを用いることが好ましい。このようなタグペプチドとアフィニティーカラムとの組み合わせとしては、Hisタグ(6個程度の連続するヒスチジン(His)残基からなるタグペプチド)と金属イオン(ニッケルなど)固定化カラム、ビオチンタグとアビジン固定化カラム、およびGST(グルタチオン-S-トランスフェラーゼ)タグとグルタチオン固定化カラムなどがよく知られており、本発明の生産方法において適宜用いることができる。
 また、NY-ESO-1タンパク質は疎水性が高い領域を含有するため、疎水性相互作用を利用したカラムを用いることが好ましい。このようなカラムとしては、フェニルセファロースやブチルセファロースなどの樹脂を用いたカラムが利用可能である。
 以下に、好適な例として、gatZ遺伝子を欠失させた組換え大腸菌株の構築および当該菌株を用いたNY-ESO-1タンパク質の生産方法の実施例を記載するが、これらは特許請求の範囲によって特定される本発明の範囲を限定することを意図したものではない。なお、本明細書において引用された全ての先行技術文献は、参照として本明細書に組み入れられる。
実施例1:NY-ESO-1産生大腸菌株(従来型)の作製
 pET9aベクター(Novagen、カタログ# 69431-3)のリプレッサー結合部位及びlacI遺伝子を欠失させたpET-9a24aベクターに、配列番号1で示すHis-NY-ESO-1タンパク質を発現するcDNAを組み込んで、His-NY-ESO-1発現ベクターを作製した。この発現ベクターおよびpRAREベクター(Novagen)を大腸菌コンピテントセルC41(DE3)(コスモバイオ株式会社、カタログ#60341)に導入し、His-NY-ESO-1タンパク質を発現する大腸菌株His-NY-ESO-1/C41(DE3)を作製した。得られた菌株をLB培地で培養した後、菌体を集めて培地を抗生物質不含LB培地に交換し、終濃度が40%になるようにグリセロールを添加してマスターセルバンク(Master Cell Bank:MCB)とした。
実施例2:NY-ESO-1産生大腸菌株(gatZ欠失型)の作製
1.gatZ遺伝子欠失型大腸菌の作製
 Red/ET相同組換え法(特許第4139561号)を用いてgatZ遺伝子欠失型大腸菌C41(DE3)ΔgatZを作製した。具体的には、C41(DE3)大腸菌株に対して、配列番号2に示すgatZ領域を、配列番号3に示す遺伝子配列に置換することにより、gatZ遺伝子を欠失した大腸菌株C41(DE3)ΔgatZを作製した。
2.His-NY-ESO-1遺伝子の導入
 作製したC41(DE3)ΔgatZに、実施例1で作製したHis-NY-ESO-1タンパク質のcDNAを含む発現ベクターを導入し、NY-ESO-1産生・gatZ欠失型大腸菌His-NY-ESO-1/C41(DE3)ΔgatZを作製した。
実施例3:NY-ESO-1タンパク質の生産・精製
1.培養
 実施例1及び2で作製したNY-ESO-1産生大腸菌株のMCB溶液0.1mLをLB培地100mLに添加し、37℃、250rpmで約12時間前培養を行い、LB培地12Lに対して前培養液を60mL添加して37℃、250rpmで培養を行った。OD600が約50になったところでIPTGを終濃度0.5mMになるよう添加してタンパク質の発現を誘導し、誘導開始から約12時間後に培養を終了した。
2.抽出
 以下の抽出操作は20℃以下で行う。回収した培養液を遠心操作(約15,000g、30分)にかけ、沈殿させた菌体を200mLのホモジネートバッファー(50 mM Tris-HCl, 0.1 M NaCl, 1 mM MgSO4, 5 mM DTT, pH 8.0)に懸濁した後、5Lのホモジネートバッファーを添加して再度懸濁した。高圧ホモジナイザーを用いて約1,000 Bar にて菌体を破砕してホモジネート液を調製した。ホモジネート液を遠心操作(約15,000g、30分)にかけてNY-ESO-1タンパク質を含む封入体を沈殿させた。遠心操作の後、上清を除き、沈殿を5Lの洗浄バッファー1(50 mM Tris-HCl, 0.1 M NaCl, 1 mM EDTA, 5 mM DTT, pH 8.0)に懸濁した。懸濁液を再度遠心操作(約15,000g、30分)にかけ、得られた沈殿物を5Lのホモジネートバッファー2 (100 mM リン酸ナトリウム, 0.5 M NaCl, 5 mM DTT, pH 7.5)に懸濁した。懸濁液を再度遠心操作(約15,000g、30分)にかけ、得られた沈殿物を10Lの可溶化バッファー(100 mM リン酸ナトリウム, 7.5 M 尿素, 5 mM DTT, pH 7.5)に懸濁し、約4時間放置して可溶化処理を行った。その後、可溶化液をオプティキャップ(Opticap) XLT20 ミリガード(Milligard) 1.2/0.5 μm(Millipore)で前ろ過を行った後、MaxiCapフィルター, 0.45 / 0.2 μm(Sartorius)でろ過し、His-NY-ESO-1タンパク質抽出液を得た。得られた抽出液は冷蔵にて保管した。
3.精製
(1)アフィニティークロマトグラフィーによる精製
 得られた抽出液は、まずNickel Sepharose 6FF樹脂(GEヘルスケア)を用いて精製した。カラムをIMAC平衡化バッファー (100 mM リン酸ナトリウム, 7.5 M 尿素, 5 mM DTT, pH 7.5) で平衡化した後、抽出液を添加し、75mMのイミダゾールを含むIMAC平衡化バッファーで洗浄した後、イミダゾール濃度を75mMから500mMまで漸増してHis-NY-ESO-1タンパク質を溶出させた。溶出液はSartocon(登録商標)PESU Cassette (Sartorius) を用いて濃縮した後、AEC平衡化バッファー(20 mM リン酸塩, 7.5 M 尿素, 5 mM DTT, pH 7.5) に置換した。
(2)イオン交換クロマトグラフィーによる精製
 次に、Q Sepharose XL樹脂(GEヘルスケア)を用いて精製した。カラムをAEC平衡化バッファー (20 mM リン酸塩, 7.5 M 尿素, 5 mM DTT, pH 7.5) で平衡化した後、前記アフィニティーカラムの溶出液を添加し、AEC平衡化バッファーで洗浄して、His-NY-ESO-1タンパク質を含むフロースルーを回収した。
(3)疎水性相互作用クロマトグラフィーによる精製)
 続いて、Phenyl Sepharose HP樹脂(GEヘルスケア)を用いて精製を行った。カラムをHIC平衡化バッファー(100 mM リン酸ナトリウム, 7.5 M 尿素, 1 M 硫酸アンモニウム, 5 mM DTT, pH 7.5)で平衡化した後、前記イオン交換カラムで回収したフロースルー液に等量のHIC調整バッファー(180 mM リン酸ナトリウム, 7.5 M 尿素, 2 M 硫酸アンモニウム, 5 mM DTT, pH 7.5)を添加した溶液を添加し、HIC平衡化バッファーで洗浄した後、硫酸アンモニウム濃度を0.9Mから0.1Mまで漸減してHis-NY-ESO-1タンパク質を溶出させた。溶出液はSartocon(登録商標)PESU Cassette (Sartorius) を用いて濃縮した後、最終バッファー(100 mM リン酸ナトリウム, 145 mM 塩化ナトリウム, 4 M 尿素, 50 mM グリシン, pH 6.5) に置換し、His-NY-ESO-1タンパク質精製物とした。
実施例4:SDS-PAGE(図1A)
 NY-ESO-1産生大腸菌株(従来型)について実施例3で得られたHis-NY-ESO-1タンパク質精製物を4-12%のプレキャストグラジェントゲル(Invitrogen)でのSDS-PAGEに供した。その後、ゲルをSYPRO(登録商標)Ruby Protein Stain(Molecular Probes)で染色してシグナルを可視化した。その結果、NY-ESO-1モノマーやgatZに相当するバンドをはじめとして様々な分子量のバンドが検出された。
実施例5:SDS-PAGE、ウェスタンブロット(図1B)
 実施例4と同様にSDS-PAGEを行った後、ゲルを転写用緩衝液(Invitrogen)に浸漬し、ブロッティング装置を用いてニトロセルロース膜に転写した。転写後のニトロセルロース膜を水に浸漬した後、1次抗体として抗NY-ESO-1モノクローナル抗体(クローンE978)(Santa Cruz)、2次抗体としてHRP標識抗マウスIgG抗体(GEヘルスケア)と反応させ、ウェスタンブロット検出試薬(GEヘルスケア)を用いてシグナルを可視化した。
実施例6:2次元電気泳動(図2)
 NY-ESO-1産生大腸菌株(従来型)およびNY-ESO-1産生大腸菌株(gatZ欠失型)について実施例3で得られたHis-NY-ESO-1タンパク質精製物を、Immobiline DryStrip(GEヘルスサイエンス)を用いた一次元目の電気泳動に供した。次いで、7.5%のSDS-PAGEゲルを用いて2次元目の電気泳動を行った。その後、ゲルをSYPRO(登録商標)Ruby Protein Stain(Molecular Probes)で染色してシグナルを可視化した(図2)。その結果、従来型の菌株から得られた精製サンプルでは観察された大腸菌由来タンパク質が、gatZ欠失型の菌株から得られた精製サンプルでは、ほとんど観察されなかった。さらに、従来型の菌株から得られた精製サンプルに含まれていた大腸菌由来のタンパク質のシグナルのいくつかが明らかに消失していることが確認された。
実施例7:宿主由来不純物の測定
 NY-ESO-1産生大腸菌株(従来型)およびNY-ESO-1産生大腸菌株(gatZ欠失型)について実施例3で得られたHis-NY-ESO-1タンパク質精製物における宿主タンパク質の濃度を、E. coli Host Cell Protein ELISA Kit(シグナステクノロジーズ、商品コードF410)を用いて測定した。その結果、宿主由来の残存タンパク質の濃度が、野生型では50.5 ng/mgであったのに対し、gatZ欠失型では18.7 ng/mgであった。
実施例8:2次元電気泳動および抗NY-ESO-1抗体を用いたウェスタンブロット(図3)
 NY-ESO-1産生大腸菌株(従来型)およびNY-ESO-1産生大腸菌株(gatZ欠失型)について実施例3で得られたHis-NY-ESO-1タンパク質精製物を使用し、IPG ReadyStrip ゲル (17 cm, pH3-10NL, BIO-RAD) を用いて一次元目の泳動 (等電点電気泳動) を行った。IPG ゲルを平衡化した後、10/16% グラジエントゲル (19 × 17 cm) にセットし、二次元目の泳動 (SDS-PAGE) を行った。得られたゲルについて、SYPRO Ruby Protein Stain(Molecular Probes)で染色するか、もしくはゲル1枚あたり400mAで2時間の条件でPVDF膜へのブロッティングを実施した。転写後のPVDF膜に対し、抗NY-ESO-1抗体(クローンE978,Santa Cruz Biotechnology, Inc.)とWesternBreeze kit(Invitrogen)を用いてNY-ESO-1タンパク質の検出を行った。NY-ESO-1産生大腸菌株(従来型,図3A)およびNY-ESO-1産生大腸菌株(gatZ欠失型,図3B)の双方で抗NY-ESO-1抗体に反応性のスポットが認められ(点線のボックス内)、これらはHis-NY-ESO-1であると考えられた。抗NY-ESO-1抗体には反応しないが、SYPRO Ruby染色で検出できるスポットも認められ、これらは宿主由来不純物と考えられた。宿主由来不純物のスポットは、NY-ESO-1産生大腸菌株(従来型)に比べてNY-ESO-1産生大腸菌株(gatZ欠失型)で大幅に減少している傾向が確認された。また、抗NY-ESO-1抗体反応性スポットがNY-ESO-1産生大腸菌株(従来型)ではpH5.5~pH10の広い範囲で認められるのに対し、NY-ESO-1産生大腸菌株(gatZ欠失型)ではpH7~pH10の狭い範囲で認められ、NY-ESO-1産生大腸菌株(gatZ欠失型)ではHis-NY-ESO-1の分子種としての純度も向上している可能性も示唆された。
 以上の結果より、NY-ESO-1タンパク質を発現させる大腸菌株においてgatZを欠失させることにより、得られるNY-ESO-1タンパク質精製物に含まれる宿主由来不純物の量が大幅に低減されることが明らかとなった。
 本発明により、組換え生産が困難な疎水性タンパク質であるNY-ESO-1を高純度で生産する方法および当該方法にとって有用な組換え大腸菌が提供された。このような生産方法および組換え大腸菌によって生産されるNY-ESO-1タンパク質は、高純度での生産が望ましい医療用などの用途において特に有用である。

Claims (3)

  1.  gatZ遺伝子が欠失または不活性化されており、かつNY-ESO-1遺伝子を導入した大腸菌。
  2.  請求項1記載の大腸菌からNY-ESO-1タンパク質を抽出する工程を含む、NY-ESO-1タンパク質の生産方法。
  3.  gatZ遺伝子が欠失または不活性化されている、NY-ESO-1タンパク質生産用大腸菌宿主。
PCT/JP2014/059928 2013-04-05 2014-04-04 Ny-eso-1タンパク質の製造方法 WO2014163176A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2015147306A RU2015147306A (ru) 2013-04-05 2014-04-04 Способ получения белка ny-eso-1
JP2015510151A JPWO2014163176A1 (ja) 2013-04-05 2014-04-04 Ny−eso−1タンパク質の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013079269 2013-04-05
JP2013-079269 2013-04-05

Publications (1)

Publication Number Publication Date
WO2014163176A1 true WO2014163176A1 (ja) 2014-10-09

Family

ID=51658464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059928 WO2014163176A1 (ja) 2013-04-05 2014-04-04 Ny-eso-1タンパク質の製造方法

Country Status (3)

Country Link
JP (1) JPWO2014163176A1 (ja)
RU (1) RU2015147306A (ja)
WO (1) WO2014163176A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116751801A (zh) * 2023-07-21 2023-09-15 中国人民解放军海军军医大学 以pGEX6P1作为载体制备肿瘤相关抗原NY-ESO-1的方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312794A (ja) * 2001-05-29 2007-12-06 Kyowa Hakko Kogyo Co Ltd 工業的生産に有用な微生物
WO2009116566A1 (ja) * 2008-03-18 2009-09-24 協和発酵キリン株式会社 工業的に有用な微生物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312794A (ja) * 2001-05-29 2007-12-06 Kyowa Hakko Kogyo Co Ltd 工業的生産に有用な微生物
WO2009116566A1 (ja) * 2008-03-18 2009-09-24 協和発酵キリン株式会社 工業的に有用な微生物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LOWE, A, J. ET AL.: "Expression and purification of cGMP grade NY -ESO-1 for clinical trials", BIOTECHNOLOGY PROGRESS, vol. 27, no. 2, March 2011 (2011-03-01), pages 435 - 441 *
PIATESI, A. ET AL.: "Directed evolution for improved secretion of cancer-testis antigen NY ESO-1 from yeast", PROTEIN EXPRESSION AND PURIFICATION, vol. 48, 2006, pages 232 - 242 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116751801A (zh) * 2023-07-21 2023-09-15 中国人民解放军海军军医大学 以pGEX6P1作为载体制备肿瘤相关抗原NY-ESO-1的方法及应用

Also Published As

Publication number Publication date
JPWO2014163176A1 (ja) 2017-02-16
RU2015147306A (ru) 2017-05-19

Similar Documents

Publication Publication Date Title
Zupan et al. VirB1* promotes T-pilus formation in the vir-Type IV secretion system of Agrobacterium tumefaciens
Ghasemi et al. Immune reactivity of Brucella melitensis–vaccinated rabbit serum with recombinant Omp31 and DnaK proteins
Thomas et al. Characterization of flagellum gene families of methanogenic archaea and localization of novel flagellum accessory proteins
JP2011517931A (ja) アリサイクロバチルス・アシドカルダリウスおよび関連生物体からの好熱性および好熱好酸性グリコシル化遺伝子および酵素、方法
US8431361B2 (en) Bacterial cells, optimized nucleotide sequences and methods for improved expression of recombinant Clostridium difficile toxin B
Fodor et al. Modular broad-host-range expression vectors for single-protein and protein complex purification
Kawakita et al. Structural study of MPN387, an essential protein for gliding motility of a human-pathogenic bacterium, Mycoplasma pneumoniae
CN116987166B (zh) 橡胶树HbSTRAP2基因及其应用
WO2014163176A1 (ja) Ny-eso-1タンパク質の製造方法
Mehra et al. Expression and characterization of human malaria parasite Plasmodium falciparum origin recognition complex subunit 1
Kumar Megta et al. SpaB, an atypically adhesive basal pilin from the lactobacillar SpaCBA pilus: crystallization and X-ray diffraction analysis
Saidijam et al. Active membrane transport and receptor proteins from bacteria
Kumari et al. Biochemical characterization of the Helicobacter pylori Cag‐type IV secretion system unique component CagU
CN114214351A (zh) 一种志贺氏菌多糖表达质粒及其用途
CN116240188A (zh) 一种热稳定性提高的二氢蝶酸合成酶突变体的制备方法
KR101673195B1 (ko) 구멍장이 버섯 유래의 시알산 결합 특이적인 재조합 렉틴
Gopal et al. Molecular characterization and polyclonal antibody generation against core component CagX protein of Helicobacter pylori type IV secretion system
RU2486243C1 (ru) ПОЛИНУКЛЕОТИД, КОДИРУЮЩИЙ МУТАНТНУЮ РЕКОМБИНАНТНУЮ IgA1 ПРОТЕАЗУ Neisseria meningitidis СЕРОГРУППЫ В, РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК, СОДЕРЖАЩАЯ УКАЗАННЫЙ ПОЛИНУКЛЕОТИД, КЛЕТКА-ХОЗЯИН, СОДЕРЖАЩАЯ УКАЗАННУЮ ПЛАЗМИДНУЮ ДНК, РЕКОМБИНАНТНАЯ IgA1 ПРОТЕАЗА Neisseria memingitidis СЕРОГРУППЫ В, СПОСОБ ПОЛУЧЕНИЯ ЗРЕЛОЙ ФОРМЫ IgA1 ПРОТЕАЗЫ
KR101998477B1 (ko) 클로스트리디움 스터코라리움 유래 엘-람노스 이성화효소 변이체 및 이를 이용한 알룰로스로부터 알로스의 생산 방법
Yang et al. HicAB toxin–antitoxin complex from Escherichia coli: Expression and crystallization
JPWO2020045472A5 (ja)
Gorbunov et al. Vaccine building ‘kit’: Combining peptide bricks to elicit a desired immune response without adding an adjuvant
RU2636346C1 (ru) Способ получения рекомбинантного экзопротеина А Pseudomonas aeruginosa
RU2634385C1 (ru) Способ получения рекомбинантного пептидогликан-ассоциированного липопротеина (PAL) Legionella pneumophila
KR20170006828A (ko) 융합 단백질 및 이를 이용한 표적항원 검출방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015510151

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015147306

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14779439

Country of ref document: EP

Kind code of ref document: A1