WO2014162120A1 - Vacuum pumping and abatement system - Google Patents
Vacuum pumping and abatement system Download PDFInfo
- Publication number
- WO2014162120A1 WO2014162120A1 PCT/GB2014/051015 GB2014051015W WO2014162120A1 WO 2014162120 A1 WO2014162120 A1 WO 2014162120A1 GB 2014051015 W GB2014051015 W GB 2014051015W WO 2014162120 A1 WO2014162120 A1 WO 2014162120A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vacuum pumping
- compressed air
- pumping arrangement
- oxygen
- processing gas
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/68—Halogens or halogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/68—Halogens or halogen compounds
- B01D53/70—Organic halogen compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4412—Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G7/00—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
- F23G7/06—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/20—Halogens or halogen compounds
- B01D2257/202—Single element halogens
- B01D2257/2025—Chlorine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/20—Halogens or halogen compounds
- B01D2257/204—Inorganic halogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/20—Halogens or halogen compounds
- B01D2257/204—Inorganic halogen compounds
- B01D2257/2042—Hydrobromic acid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/20—Halogens or halogen compounds
- B01D2257/206—Organic halogen compounds
- B01D2257/2066—Fluorine
Definitions
- the present invention relates to a vacuum pumping and abatement system for evacuating processing gas from a process chamber and removing noxious substances from the processing gas.
- the present invention also relates to a method of purging a vacuum pumping arrangement.
- Vacuum pumping and abatement systems are known hereto for evacuating processing gas from a process chamber and removing noxious substances from the processing gas.
- Such a system comprises a vacuum pump for evacuating processing gas from a process chamber; and a burner for receiving processing gas from the vacuum pump and removing noxious substances therefrom by burning the processing gas in a fuel and oxygen mixture which is introduced to the burner downstream of the vacuum pump.
- processing gases evacuated by the vacuum pump may be corrosive, particularly in the presence of moisture. Corrosion of the pump must be avoided because otherwise it decreases the lifetime of the pump or results in pump failure.
- dry nitrogen is used to purge the pump and dilute the potentially corrosive gases. Nitrogen is used as it does not typically react with the corrosive gases.
- the present invention seeks to reduce the cost of ownership and operation and carbon footprint of such systems.
- the present invention provides a vacuum pumping and abatement system for evacuating processing gas from a process chamber and removing noxious substances from the processing gas, comprising: a vacuum pumping arrangement for evacuating processing gas from a process chamber; a source of compressed air for purging the vacuum pumping arrangement during evacuation; and a burner for receiving processing gas and compressed air from the vacuum pumping arrangement and removing noxious substances therefrom by burning the processing gas in oxygen wherein at least some of the oxygen that supports combustion is derived from the compressed air.
- the present invention also provides a method of purging a vacuum pumping arrangement of a vacuum pumping and abatement system, said system comprising a vacuum pumping arrangement for evacuating processing gas from a process chamber; and a burner for receiving processing gas from the vacuum pumping arrangement and removing noxious substances therefrom by burning the processing gas in oxygen and fuel, said method comprising: conveying into the vacuum pumping arrangement compressed air during evacuation of processing gas from the process chamber for purging the vacuum pumping arrangement and supplying oxygen to the burner for supporting burning.
- a vacuum pumping and abatement system 10 for evacuating processing gas from a process chamber 12 and removing noxious substances from the processing gas.
- the processing of products is performed in the process chamber 12 in the presence of a processing gas, for example, processing of silicon wafers, such as by dielectric etching or flat panel etching.
- a processing gas for example, processing of silicon wafers, such as by dielectric etching or flat panel etching.
- noxious substances are exhausted from the process chamber during or after processing, including PFCs, 02, HBr, Ch, S1F4, SiCU, or CF 4 .
- These noxious substances are toxic and/or environmentally harmful and must therefore be scrubbed, or removed, from the exhaust gas stream before their release into the atmosphere.
- pure oxygen is introduced to the burner downstream of the vacuum pump, because oxygen (and fuel) is required to burn the processing gases.
- gas conveyed from the vacuum arrangement comprises large amounts of nitrogen that has been used to purge the vacuum arrangement. This nitrogen reduces the effectiveness of the combustion of the noxious gases and to compensate additional pure oxygen (and additional fuel) must be injected into the burner. If air is used as a purge gas, then that portion of the air which is oxygen (approximately one fifth) replaces the nitrogen that is normally used to purge the vacuum pump. Accordingly, there is less nitrogen (total gas) in the gas conveyed from the vacuum arrangement to suppress combustion in of noxious gasses in the burner.
- the gas mixture conveyed from the vacuum pump to the burner already comprises oxygen for supporting combustion.
- This oxygen content may be sufficient for combustion to occur without addition of further pure oxygen or at least to reduce the amount of pure oxygen which must be injected into the burner.
- the system 10 comprises a vacuum pump 14 for evacuating processing gas from the process chamber 12.
- the vacuum pump shown is a dry vacuum pump which operates without lubrication, or oil, along the flow path through the pump which could otherwise react with the noxious substances in the pump.
- a single vacuum pump is shown in Figure 1 the vacuum pumping arrangement may comprise a plurality of vacuum pumps, for example a primary and secondary pump or a compression pump and a booster.
- a source 16 of compressed air supplies compressed air for purging the vacuum pump 14 during evacuation of processing gas from the process chamber 12.
- the source of compressed air is adapted to supply compressed air at a pressure greater than atmosphere and preferably at a pressure between 30 kPa and 100 kPa so that it is effective in purging the pump during evacuation.
- Means 18, 20 are provided for removing one or both of oil and moisture from the compressed gas prior to introduction to the vacuum pump.
- the compressed air is cleaned by a cleaning unit 18 for removing substances such as oil from the compressed air which may otherwise react with the noxious substances in the processing gas.
- the cleaning unit 18 may be an oil remover, such as a combustion catalytic bed or an absorber.
- the compressed air is also dried by a drying unit 20 to remove moisture, which otherwise may also react with the noxious substances.
- the drying unit 20 may comprise a drying tube producing dry air or may comprises a pair of dryers such that the second dryer of the pair can regenerate while the first is operating.
- the compressed air may be passed through a rough cleaning unit such as a screen filter to remove excessive oil or water mist.
- the source 16 of compressed air may generate compressed air in situ using a suitable compressor (not shown).
- compressed air can be generated remotely and supplied in a container or by a pipeline.
- the cleaning and drying process may be carried out in situ as shown in Figure 1 or alternatively it can be carried out remotely and clean dry compressed air supplied in a container or by pipeline.
- a compressor is used to compress air in-situ, the lubricant used to lubricate the compresssor may pass into the compressed gas flow and this lubricant should be removed as described above. If the compressor compresses ambient air then moisture should also be removed since ambient air contains a small portion of water vapour.
- the system 10 is suitable for removing noxious substances from processing gas if the processing gas does not contain noxious substances which would react with the normal constituents of air in the vacuum pump, that is nitrogen, oxygen and carbon dioxide.
- a burner 22 is for receiving processing gas and compressed air from the vacuum pump and removing noxious substances by burning the processing gas in a fuel and oxygen mixture. Since compressed air is used in the invention to purge the vacuum pump as opposed to nitrogen in the prior art, and compressed air comprises oxygen at 21% [by volume] oxygen is already present in the gas stream with the processing gas when the gas stream enters the burner. Accordingly, at least some, and typically all, of the oxygen required for burning is derived from the compressed gas. Therefore, the system 10 has a reduced requirement for oxygen from a separate oxygen source thereby reducing costs and carbon footprint.
- the burning process may be completed with no additional supply of oxygen, if the burning process requires a greater stoichiometric amount of oxygen by volume for complete reaction to occur additional oxygen may be required, but it should be noted that in any event the amount of oxygen supplied from a separate source is reduced compared to the prior art.
- Sensing means 24 is provided for sensing a characteristic of the compressed gas prior to introduction thereof into the pump for purging.
- the characteristic in this example is one or preferably both of an amount of oil or moisture in the compressed air.
- the sensing means may comprise a moisture sensor or an infrared cell for sensing CH or OH. As shown by broken lines in Figure 1, the sensing means 24 outputs a "not clean/dry" signal to a control unit 26 if the amount of oil and moisture exceed
- the control unit 26 is operably connected to the source 16 of compressed air and is configured to discontinue the supply of compressed air to the pump if a signal is received from the sensing means 24 so that if the compressed air contains moisture or oil reactions caused by reaction with noxious substances can be avoided.
- the control unit 26 is also operably connected to an additional source of oxygen 28 and is configured to activate the supply of oxygen from the additional source to the burner 22 when the supply of compressed air to the pump 14 is discontinued or if additional pure oxygen is required for burning over and above the oxygen already present in the gas stream. In this way, when the supply of compressed air is cut-off, oxygen required for burning the processing gas is introduced to the burner 22 from the additional source 28.
- the oxygen supplied by the source 28 should contain sufficient oxygen by volume to support combustion.
- compressed gas is conveyed into the vacuum pumping arrangement for purging.
- the control unit is operably connected to a source 30 of nitrogen to cause nitrogen to be conveyed into the vacuum pumping arrangement for purging.
- the processing chamber 12 may be used for multiple different process or cleaning steps.
- One process step may be performed in the presence of a noxious gas which is an oxidant or otherwise inert in the presence of oxygen in the compressed air conveyed into the vacuum pumping arrangement.
- Other processing or clean steps may however be conducted using a gas which is not an oxidant or does react with oxygen in the air.
- the system 10 has a first condition or state in which compressed air is conveyed into the vacuum pumping arrangement for purging and a second condition or state in which nitrogen is conveyed into the vacuum pumping arrangement for purging in place of compressed air. When nitrogen is used instead of compressed air, pure oxygen is conveyed into the burner from source 28 for supporting combustion.
- the control unit 26 is operatively connected to the source of oxygen 28 and the source of nitrogen 30 to control operation in the first condition or the second condition dependent on the process or clean steps performed in the process chamber.
- the control of the system condition may be manual and performed by an operative when the process tool changes from one step to another or alternatively the control 26 may communicate with the control of a process tool and change the system condition dependent on signals received from the control of the process tool.
- the air conveyed into the vacuum pumping arrangement may have a portion of its oxygen removed prior to its introduction or the purge mixture conveyed into the pump may comprise both air and pure nitrogen to reduce the stoichiometric amount of oxygen in the purge mixture.
- This modification may be useful where the process gas contains substances which are weakly reactive with oxygen in the vacuum pumping arrangement.
- the amount of oxygen removed or its dilution in the purge mixture is selected dependent on the reactivity of the substance with oxygen.
- the modification still provides a reduction in cost and carbon footprint because the removal of oxygen from air is simpler and consumes less energy that the production of pure oxygen and pure nitrogen.
- control unit 26 may be connected to a sensor (not shown) at an inlet of the burner for sensing the amount of oxygen and noxious substances in the gas stream.
- the control unit 26 controls the sources 28, 30 and supplies additional oxygen or nitrogen to the burner if it is required for burning.
- the burner 22 shown in Figure 1 may be any suitable combustion arrangement for combusting noxious substances in the presence of oxygen and typically also a fuel.
- a characteristic of the compressed gas is sensed prior to introduction thereof into the pump 14 for purging.
- the characteristic in this example is the amount of oil or moisture in the compressed air. If the sensed characteristic exceeds a predetermined limit the supply of compressed air to the pump is discontinued to avoid reaction with the noxious substances and in place of the compressed air nitrogen is conveyed into the vacuum pumping arrangement from source 30.. The supply of oxygen from the additional source 28 to the burner is activated when the supply of compressed air to the pump is discontinued. In order to reduce possible reaction in the pump, oil and moisture are removed from the compressed gas prior to introduction to the vacuum pump. When the processing gas is burnt noxious substances, including PFCs if present, are removed from the processing gas by the burner and the resultant gas can be released to atmosphere or otherwise disposed of without toxic or environmental risk.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Treating Waste Gases (AREA)
- Incineration Of Waste (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Air Supply (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/781,060 US10300433B2 (en) | 2013-04-04 | 2014-04-01 | Vacuum pumping and abatement system |
CN201480020157.9A CN105121698B (en) | 2013-04-04 | 2014-04-01 | Vacuum pumping and emission-reducing system |
EP14715103.9A EP2981635B1 (en) | 2013-04-04 | 2014-04-01 | Vacuum pumping and abatement system and method of purging the system |
KR1020157027160A KR102266283B1 (en) | 2013-04-04 | 2014-04-01 | Vacuum pumping and abatement system |
JP2016505886A JP6419776B2 (en) | 2013-04-04 | 2014-04-01 | Vacuum pumping and abatement system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1306060.3 | 2013-04-04 | ||
GB1306060.3A GB2513300B (en) | 2013-04-04 | 2013-04-04 | Vacuum pumping and abatement system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014162120A1 true WO2014162120A1 (en) | 2014-10-09 |
Family
ID=48483296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2014/051015 WO2014162120A1 (en) | 2013-04-04 | 2014-04-01 | Vacuum pumping and abatement system |
Country Status (8)
Country | Link |
---|---|
US (1) | US10300433B2 (en) |
EP (1) | EP2981635B1 (en) |
JP (1) | JP6419776B2 (en) |
KR (1) | KR102266283B1 (en) |
CN (1) | CN105121698B (en) |
GB (1) | GB2513300B (en) |
TW (1) | TWI628358B (en) |
WO (1) | WO2014162120A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0816310D0 (en) | 2008-09-05 | 2008-10-15 | Mtt Technologies Ltd | Filter assembly |
WO2016079494A2 (en) * | 2014-11-21 | 2016-05-26 | Renishaw Plc | Additive manufacturing apparatus and methods |
GB201718752D0 (en) | 2017-11-13 | 2017-12-27 | Edwards Ltd | Vacuum and abatement systems |
CN113621936A (en) * | 2021-10-12 | 2021-11-09 | 陛通半导体设备(苏州)有限公司 | Working method of vacuum pump system in vacuum coating and vacuum pump system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2308991A (en) * | 1996-01-12 | 1997-07-16 | Das Dunnschicht Anlagen System | Purification of waste gas |
US20020014205A1 (en) * | 2000-06-22 | 2002-02-07 | Ju-Cheol Shin | Chemical vapor deposition method for depositing silicide and apparatus for performing the same |
WO2007048995A1 (en) * | 2005-10-27 | 2007-05-03 | Edwards Limited | Method of treating gas |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1308226A (en) * | 1970-08-04 | 1973-02-21 | Castro Enterprises | Smoke abatement process |
JP2511363B2 (en) * | 1992-07-06 | 1996-06-26 | 株式会社荏原製作所 | Vacuum processing equipment |
JPH07286716A (en) * | 1994-04-18 | 1995-10-31 | Asahi Netsu Kiko:Kk | Method and apparatus for removing incinerated ash of stationary grate incinerating furnace |
GB9608061D0 (en) | 1996-04-16 | 1996-06-19 | Boc Group Plc | Removal of noxious substances from gas streams |
JPH11218318A (en) * | 1998-02-03 | 1999-08-10 | Air Liquide Japan Ltd | Exhaust gas treating facility |
US6090222A (en) * | 1998-11-16 | 2000-07-18 | Seh-America, Inc. | High pressure gas cleaning purge of a dry process vacuum pump |
FR2825295B1 (en) * | 2001-05-31 | 2004-05-28 | Air Liquide | APPLICATION OF DENSITY PLASMAS CREATED AT ATMOSPHERIC PRESSURE FOR THE TREATMENT OF GASEOUS EFFLUENTS |
JP4387190B2 (en) * | 2001-10-18 | 2009-12-16 | ビュン,チュル,スー | Chemical vapor deposition method and apparatus having functions of preventing contamination and increasing film growth rate |
JP2004349442A (en) * | 2003-05-22 | 2004-12-09 | Sony Corp | Method and apparatus for detoxifying exhaust gas |
JP2005140028A (en) * | 2003-11-07 | 2005-06-02 | Hitachi Industrial Equipment Systems Co Ltd | Compressed air supply system |
US7383745B2 (en) * | 2005-04-18 | 2008-06-10 | General Electric Company | Heated sampling hose assembly and related method |
JP4745779B2 (en) * | 2005-10-03 | 2011-08-10 | 神港精機株式会社 | Vacuum equipment |
US7766995B2 (en) * | 2006-05-01 | 2010-08-03 | Linde Llc | Ozone production processes and its use in industrial processes |
GB2439948B (en) * | 2006-07-12 | 2010-11-24 | Boc Group Plc | Gas supply apparatus |
JP4221425B2 (en) * | 2006-08-11 | 2009-02-12 | シーケーディ株式会社 | Purge gas unit and purge gas supply integrated unit |
GB0618016D0 (en) * | 2006-09-13 | 2006-10-18 | Boc Group Plc | Method of recycling hydrogen |
GB0702837D0 (en) * | 2007-02-14 | 2007-03-28 | Boc Group Plc | Method of treating a gas stream |
KR20100084676A (en) * | 2007-10-26 | 2010-07-27 | 어플라이드 머티어리얼스, 인코포레이티드 | Methods and apparatus for smart abatement using an improved fuel circuit |
KR101026457B1 (en) * | 2008-09-02 | 2011-03-31 | (주)트리플코어스코리아 | System for eliminating waste gases by making us of plasmas at low and high pressure |
GB0902234D0 (en) * | 2009-02-11 | 2009-03-25 | Edwards Ltd | Method of treating an exhaust gas stream |
CN102421509A (en) * | 2009-03-12 | 2012-04-18 | 吉坤日矿日石能源株式会社 | Exhaust gas processing apparatus and method for processing exhaust gas |
US20100281950A1 (en) * | 2009-05-07 | 2010-11-11 | Oleh Weres | Method and apparatus for analysis of mixed streams |
US8635899B2 (en) * | 2009-07-15 | 2014-01-28 | Rosemount Analytical Inc. | Flame safety system for in SITU process analyzer |
WO2012017972A1 (en) | 2010-08-05 | 2012-02-09 | Ebara Corporation | Exhaust system |
WO2013094680A1 (en) * | 2011-12-20 | 2013-06-27 | 株式会社日立国際電気 | Substrate processing device, method for manufacturing semiconductor device, and vaporizer |
CN202709138U (en) * | 2012-07-31 | 2013-01-30 | 苏州仕净环保设备有限公司 | Silane combustion tower |
KR102034763B1 (en) * | 2012-10-09 | 2019-10-22 | 삼성디스플레이 주식회사 | Lamination apparatus with air pressure and method for non-contact lamination using lamination apparatus |
JP6151945B2 (en) * | 2013-03-28 | 2017-06-21 | 株式会社荏原製作所 | Vacuum pump with abatement function |
US20150047564A1 (en) * | 2013-08-15 | 2015-02-19 | Samsung Sdi Co., Ltd. | Chemical vapor deposition device |
US9709172B2 (en) * | 2013-12-02 | 2017-07-18 | Farrel Corporation | Rotor shaft seal assembly |
-
2013
- 2013-04-04 GB GB1306060.3A patent/GB2513300B/en active Active
-
2014
- 2014-04-01 KR KR1020157027160A patent/KR102266283B1/en active IP Right Grant
- 2014-04-01 CN CN201480020157.9A patent/CN105121698B/en active Active
- 2014-04-01 WO PCT/GB2014/051015 patent/WO2014162120A1/en active Application Filing
- 2014-04-01 EP EP14715103.9A patent/EP2981635B1/en active Active
- 2014-04-01 US US14/781,060 patent/US10300433B2/en active Active
- 2014-04-01 JP JP2016505886A patent/JP6419776B2/en active Active
- 2014-04-03 TW TW103112608A patent/TWI628358B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2308991A (en) * | 1996-01-12 | 1997-07-16 | Das Dunnschicht Anlagen System | Purification of waste gas |
US20020014205A1 (en) * | 2000-06-22 | 2002-02-07 | Ju-Cheol Shin | Chemical vapor deposition method for depositing silicide and apparatus for performing the same |
WO2007048995A1 (en) * | 2005-10-27 | 2007-05-03 | Edwards Limited | Method of treating gas |
Also Published As
Publication number | Publication date |
---|---|
KR102266283B1 (en) | 2021-06-16 |
TWI628358B (en) | 2018-07-01 |
US20160045860A1 (en) | 2016-02-18 |
EP2981635A1 (en) | 2016-02-10 |
CN105121698B (en) | 2018-03-30 |
JP6419776B2 (en) | 2018-11-07 |
EP2981635B1 (en) | 2019-07-31 |
GB2513300B (en) | 2017-10-11 |
GB201306060D0 (en) | 2013-05-22 |
KR20150139514A (en) | 2015-12-11 |
GB2513300A (en) | 2014-10-29 |
TW201502374A (en) | 2015-01-16 |
US10300433B2 (en) | 2019-05-28 |
CN105121698A (en) | 2015-12-02 |
JP2016514825A (en) | 2016-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2981635B1 (en) | Vacuum pumping and abatement system and method of purging the system | |
KR100309963B1 (en) | Exhaust System and Exhaust Method | |
JP5033136B2 (en) | Combustible gas concentration system | |
CN107847858B (en) | Apparatus for evacuating corrosive effluent gas stream from a process chamber | |
US20060130649A1 (en) | Treatment of effluent gases | |
WO2007047095A2 (en) | Integrated chamber cleaning system | |
JP7198676B2 (en) | Rare gas recovery system and rare gas recovery method | |
US8394179B2 (en) | Method of treating a gas stream | |
WO2010103846A1 (en) | Apparatus for processing exhaust gas and method for processing exhaust gas | |
KR100648967B1 (en) | Nitrogen generator | |
TWI382872B (en) | Plasma processing method and device | |
CN105289194A (en) | Crude oil shipping oil and gas recycling method | |
CN210153813U (en) | Volume reduction device | |
TWM582430U (en) | Volume reducing apparatus | |
JP5019327B2 (en) | Exhaust gas treatment facility and exhaust gas treatment method | |
JPH05337287A (en) | Safe operation control method for dry cleaning machine using combustible solvent | |
WO2013090279A2 (en) | Devices and methods for reducing oxygen infiltration | |
KR100613982B1 (en) | PFC treatment apparatus using hydrogen gas | |
KR20210105667A (en) | System and method for gas capture | |
CN113895805A (en) | Oil storage tank top gas and wharf oil gas recovery system of combined station | |
WO2007006997A2 (en) | High thermal performance gas recycling system | |
CN116670421A (en) | Method and apparatus for supplying acetylene of desired purity to consumers | |
KR19980066363A (en) | Gas exhaust system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14715103 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14781060 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20157027160 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2016505886 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014715103 Country of ref document: EP |