WO2014161389A1 - 数据信道的传输、接收处理方法及装置 - Google Patents

数据信道的传输、接收处理方法及装置 Download PDF

Info

Publication number
WO2014161389A1
WO2014161389A1 PCT/CN2014/072015 CN2014072015W WO2014161389A1 WO 2014161389 A1 WO2014161389 A1 WO 2014161389A1 CN 2014072015 W CN2014072015 W CN 2014072015W WO 2014161389 A1 WO2014161389 A1 WO 2014161389A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
subframes
pilot
channel
data channel
Prior art date
Application number
PCT/CN2014/072015
Other languages
English (en)
French (fr)
Inventor
李新彩
戴博
夏树强
石靖
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/781,238 priority Critical patent/US20160056934A1/en
Priority to EP14778716.2A priority patent/EP2983430A4/en
Publication of WO2014161389A1 publication Critical patent/WO2014161389A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present invention relates to the field of communications, and in particular, to a data channel transmission and reception processing method and apparatus.
  • MTC Machine Type Communication
  • MTC UE Machine to Machine
  • M2M Machine to Machine
  • Smart Metering is one of the most typical applications for MTC devices, and most smart meter reading MTC devices are fixed in low-coverage environments such as basements. In order to ensure that such MTC devices can maintain normal communication with the base station system, it is usually necessary to deploy additional sites, relays, etc., which will undoubtedly greatly increase the deployment cost of the operator. To this end, companies such as Vodafone proposed in the 3GPP RAN technical proposal RP-121282 to improve the coverage of smart meter reading MTC equipment without adding additional equipment. Smart meter reading MTC devices mainly send packet data, have low data rate requirements, and can tolerate large data transmission delays.
  • the location of the smart meter reading MTC device is quite fixed, the mobility is very low.
  • the coverage can be improved by repeatedly transmitting in the time domain.
  • the signal to interference and noise ratio is very low, so if the transmission mode of the uplink and downlink data channels existing in the original LTE/LTE_A is adopted: the data channel is usually transmitted only in one subframe, each The sub-frames are used for separate channel estimation through the scattered reference signals, and the channel estimation is inaccurate.
  • the channel coefficients, frequency offset information and some timing advance information are severely challenged, and the reliability of the coherent demodulation of the data at the receiving end is brought. influences.
  • an enhanced data channel transmission method must be designed to ensure the accuracy of the channel estimation in the case of low SNR, and the receiver can implement The correct coherent demodulation of the transmitted data enables coverage enhancement. Improve data transmission performance on the MTC device and network side in harsh environments.
  • an effective solution has not yet been proposed.
  • the present invention provides a method and a device for transmitting and receiving a data channel according to the related art, using the original uplink and downlink data transmission mode, the channel estimation accuracy is not strong, and the coverage performance is low. To at least solve the above problem.
  • a data channel transmission method is provided, which is applied to a base station, including: acquiring data to be transmitted; transmitting data to be transmitted carried by a data channel on a plurality of subframes, where the data channel includes at least Two parts, the first part contains more pilot symbols than the second part contains; and / or, the first part is used to transmit auxiliary demodulation data, and the second part is used to transmit target data.
  • the ratio of the resources occupied by the pilot and the data is not less than a preset threshold; in the second part, the proportion of the resources occupied by the pilot and the data is less than a preset threshold.
  • the ratio of the resources occupied by the pilot and the data included in the first part and/or the second part is determined by one of the following methods: a signaling configuration manner, a predefined manner, according to a physical random access channel (Physical Random Access Channel, Referred to as PRACH) format determination.
  • PRACH Physical Random Access Channel
  • the frequency domain position of the auxiliary demodulation data is indicated by signaling or determined according to the frequency domain position of the target data.
  • the pilot symbols of the data channel are transmitted in a time division multiplexed manner.
  • the pilot symbols of the data channel are transmitted in a time domain multiplexing manner according to one of the following ways: each OFDM symbol corresponds to one pilot sequence; each time slot corresponds to one pilot sequence; one or more children
  • the frame corresponds to a pilot sequence.
  • the auxiliary demodulation data is determined by the following means: The transmitting end and the receiving end agree to use the designated information as the auxiliary demodulated data.
  • the auxiliary demodulation data includes at least one of the following: an uplink and downlink pilot sequence, a System Information Block (SIB), a Main Iinformation Block (MIB), a synchronization signal, and a PRACH information. , scheduling request information, predefined information blocks.
  • the plurality of subframes for carrying the first portion each carry the same auxiliary demodulation data; or each of the plurality of subframes for carrying the first portion carries a portion of the auxiliary demodulation data.
  • the frequency domain location of the target data is indicated by signaling or based on the frequency domain location of the transmission assisted demodulated data.
  • the method before the data to be transmitted carried by the data channel is transmitted on the multiple subframes, the method includes: mapping the data to be transmitted carried by the data channel to consecutive or equally spaced subcarriers.
  • the frequency domain position of each of the plurality of subframes is determined by one of the following manners: a predefined manner, indicating a frequency hopping manner by signaling.
  • the frequency hopping mode corresponds to a frequency hopping frequency of K subframes, where 1 ⁇ /2, K is an integer, and N is the number of subframes used to carry the second part.
  • the number of subframes included in the first part and the number of subframes included in the second part are determined by one of the following methods: by signaling; determined according to a physical random access channel PRACH.
  • a method for receiving a data channel is provided, which is applied to a terminal, including: acquiring a configuration rule of a data channel, where the configuration rule includes: the data channel includes at least two parts, and the first part includes The number of pilot symbols is greater than the number of pilot symbols included in the second portion; and / or, the first portion is used to transmit auxiliary demodulated data, the second portion is used to transmit target data; and the data is received in multiple subframes according to configuration rules.
  • the ratio of the resources occupied by the pilot and the data is not less than a preset threshold; in the second part, the proportion of the resources occupied by the pilot and the data is less than a preset threshold.
  • the proportion of the pilot and data occupied by the first part and/or the second part is determined by one of the following methods: a signaling configuration manner, a predefined manner, a physical random access channel PRACH format.
  • the frequency domain position of the auxiliary demodulation data is indicated by signaling or determined according to the frequency domain position of the target data.
  • the pilot symbols of the data channel are transmitted in a time division multiplexed manner.
  • the pilot symbols of the data channel are transmitted in a time domain multiplexing manner according to one of the following ways: each OFDM symbol corresponds to one pilot sequence; each time slot corresponds to one pilot sequence; one or more children The frame corresponds to a pilot sequence.
  • the auxiliary demodulation data is determined by the following means: The transmitting end and the receiving end agree to use the designated information as the auxiliary demodulated data.
  • the auxiliary demodulation data comprises at least one of: an uplink and downlink pilot sequence, a system information block (SIB) / a master information block (MIB), a synchronization signal, PRACH information, scheduling request information, and a predefined information block.
  • SIB system information block
  • MIB master information block
  • the plurality of subframes for carrying the first portion each carry the same auxiliary demodulation data; or each of the plurality of subframes for carrying the first portion carries a portion of the auxiliary demodulation data.
  • the frequency domain location of the target data is indicated by signaling or based on the frequency domain location of the transmission assisted demodulated data.
  • the method before the data carried by the data channel is transmitted on the multiple subframes, the method includes: mapping data carried by the data channel to consecutive or equally spaced subcarriers.
  • the frequency domain position of each of the plurality of subframes is determined by one of the following manners: a predefined manner, indicating a frequency hopping manner by signaling.
  • the frequency hopping mode corresponds to a frequency hopping frequency of K subframes, where 1 ⁇ /2, K is an integer, and N is the number of subframes used to carry the second part.
  • the number of subframes included in the first part and the number of subframes included in the second part are determined by one of the following methods: by signaling; determined according to a physical random access channel (PRACH).
  • the data carried by the data channel includes: uplink data or downlink data.
  • a data channel transmission apparatus is provided, which is applied to a base station, and includes: an acquisition module configured to acquire data to be transmitted; and a transmission module configured to transmit on a data channel in multiple subframes Data to be transmitted, wherein the data channel includes at least two parts, the first part contains more pilot symbols than the second part contains; and/or the first part is used to transmit auxiliary demodulation data, The second part is used to transfer the target data.
  • a receiving processing apparatus for a data channel which is applied to a terminal, and includes: an obtaining module, configured to acquire a configuration rule of a data channel, where the configuration rule includes: the data channel includes at least two Part, the first part contains more pilot symbols than the second part contains pilot symbols; And / or, the first part is used to transmit the auxiliary demodulated data, the second part is used to transmit the target data, and the receiving module is configured to receive the data to be transmitted carried by the data channel in multiple subframes according to the configuration rule.
  • the data channel is divided into two parts, and the channel estimation information of the first part is compensated and calibrated according to the channel estimation information of the second part, or the data transmitted by the second part is performed according to the channel estimation information of the first part.
  • the technical means of demodulation solves the technical problems of the prior art, the channel estimation method of the original uplink and downlink data transmission method is not strong, and the coverage performance is low, thereby ensuring the coherent solution of the target data generated by the receiving end. The accuracy of the adjustment and the coverage of the data channel are improved.
  • FIG. 1 is a flowchart of a data channel transmission method according to Embodiment 1 of the present invention
  • FIG. 2 is a block diagram showing a structure of a data channel transmission apparatus according to Embodiment 1 of the present invention
  • FIG. 4 is a block diagram showing a structure of a receiving process of a data channel according to Embodiment 1 of the present invention
  • FIG. 1 is a flowchart of a data channel transmission method according to Embodiment 1 of the present invention
  • FIG. 2 is a block diagram showing a structure of a data channel transmission apparatus according to Embodiment 1 of the present invention
  • FIG. 4 is a block diagram showing a structure of a receiving process of a data channel according to Embodiment 1 of the present invention
  • FIG. 1 is a flowchart of a data channel transmission method according to Embodiment 1 of the present invention
  • FIG. 2 is a block diagram showing a structure of a data channel transmission apparatus according to Embodiment 1 of the present invention
  • FIG. 5 is a block diagram showing an FDD system according to Embodiment 2 of the present invention, each part of a PUSCH
  • FIG. 6 is a schematic diagram of a PUSCH pilot and data hook distribution according to a TDD system according to Embodiment 3 of the present invention
  • FIG. 7 is a PDSCH pilot and data distribution diagram according to Embodiment 4 of the present invention
  • FIG. 9 is a schematic diagram showing a frequency domain range of a plurality of subframes in which the auxiliary demodulated data coverage target data is located according to Embodiment 6 of the present invention
  • FIG. 10 is a schematic diagram of the auxiliary demodulated data without frequency hopping according to Embodiment 7 of the present invention, and the target data adopts a multi-subframe binding frequency hopping diagram
  • FIG. 11 is a schematic diagram of the hopping according to the present invention.
  • FIG. 12 is a schematic diagram of a three-carrier Normal Cyclic Prefix (CP) for a resource mapping in an uplink data channel transmission according to Embodiment 10 of the present invention
  • FIG. 13 is a downlink data according to Embodiment 11 of the present invention
  • FIG. CP Normal Cyclic Prefix
  • FIG. 14 is a schematic diagram showing a positional relationship between a first part and a second part according to an embodiment of the present invention
  • FIG. 15 is a first part of an embodiment of the present invention
  • the method includes: Step S102: Acquire data to be transmitted; Step S104, transmit data to be transmitted carried by a data channel in multiple subframes, where the data channel includes at least two In part, the first part contains more pilot symbols than the second part contains; and / or, the first part is used to transmit auxiliary demodulation data, and the second part is used to transmit target data.
  • the uplink and downlink data channels are transmitted in multiple subframes, which compensates for the penetration loss and improves the coverage performance of the traffic channel; on the other hand, the accurate channel information and the second part provided by the first part
  • the re-supplement of the self-pilot channel estimation ensures the channel estimation accuracy under the Signal to Interference plus Noise Ratio (SINR), and realizes the correct data interaction transmission between the transmitting end and the receiving end. It is suitable for the transmission of data channels when the terminal has low moving speed, that is, the channel state information is relatively stable.
  • the first part and the second part may be applied by using: the second estimation information obtained by using the second partial pilot for channel estimation is used for performing compensation calibration on the first estimation information, and the first estimation information is utilized by using A part of the plurality of pilot symbols or the auxiliary demodulated data is obtained by channel estimation; and/or, the first estimated information obtained by performing channel estimation according to the first part performs coherent demodulation on the target data transmitted by the second part.
  • the first part described above is only used to transmit the auxiliary demodulated data
  • the second part is only used to transmit the target data.
  • the first portion and the second portion include one or more subframes. Generally, the first portion includes more subframes than the second portion.
  • the specific number is determined based on the PRACH information or determined by signaling.
  • the specific implementation process is as follows: First, the base station sends configuration information of the uplink or downlink data channel transmission to the terminal, where the information includes at least one of the following information: Information 1: Number of subframes included in each part of the data channel; Preferably, the base station It can be configured according to the harsh environment of each user and the required coverage enhancement. When the number of subframes included in each part of the data channel is determined according to the PRACH information, the base station is not required to transmit the above configuration information.
  • the ratio of resources occupied by pilots and data is greater than or equal to a preset threshold L; the second part of the pilot is a low-density distribution, and the proportion of resources occupied by pilots and data is less than a preset threshold L; that is, in the first part
  • the proportion of resources occupied by pilots and data is greater than the proportion of resources occupied by pilots and data in the second part.
  • the above threshold L may be one of 1, 1/2, 1/3, 1/4, 1/5.
  • the ratio of the resources occupied by the pilot and the data included in the first part and/or the second part may be determined by using one of the following methods: a signaling configuration mode, a predefined mode, and a PRACH format, which may be adopted when the PRACH format is used.
  • the pilot symbols of the data channel are multiplexed in a time domain manner, where each OFDM symbol corresponds to one pilot sequence, or one time slot corresponds to one pilot sequence, or one or more subframes correspond to one pilot sequence.
  • Information 3 Auxiliary demodulation data; The transmitting end and the receiving end can agree to use the specified information as the auxiliary demodulation data.
  • the information that the auxiliary demodulation data can be known to the receiving end includes: an existing pilot (uplink and downlink pilot sequence), or data known by the receiving end and the receiving end.
  • the auxiliary demodulation data is at least one of the following: PRACH information (for example, a preamble sequence used for random access), a synchronization signal (for example, a sequence used by a synchronization channel, and a Demodulation Reference Signal (referred to as a Demodulation Reference Signal).
  • PRACH information for example, a preamble sequence used for random access
  • a synchronization signal for example, a sequence used by a synchronization channel
  • a Demodulation Reference Signal referred to as a Demodulation Reference Signal
  • the length of the auxiliary demodulation data is determined by signaling or according to a frequency domain resource size of the second part of the target data.
  • the plurality of subframes for carrying the first portion each carry the same auxiliary demodulation data; or each of the plurality of subframes for carrying the first portion carries a portion of the auxiliary demodulation data.
  • the frequency domain position of the auxiliary demodulation data is indicated by signaling or according to the frequency domain position of the target data (i.e., the data of the second part). Accordingly, the frequency domain position of the above target data is indicated by signaling or determined according to the frequency domain position of the above-mentioned auxiliary demodulated data.
  • the auxiliary demodulation data used is orthogonal.
  • Information 4 Uplink (UL)/Downlink (DL) grants some data scheduling information.
  • the second part of each sub-frame has a frequency domain location, a frequency domain resource size, a Modulation and Coding Scheme (MCS) level, and the like.
  • MCS Modulation and Coding Scheme
  • each subframe of the second part carries the same data packet; optionally, the size of each data packet is a fixed value; preferably, the frequency information of each subframe of the second part is the same; or Defining or signaling indicates a frequency hopping mode.
  • the frequency hopping mode is multi-subframe binding frequency hopping.
  • the data carried by the data channel may be mapped to consecutive or equally spaced subcarriers: the pilot, the auxiliary demodulated data, and the transmission.
  • the target data is mapped to consecutive subcarriers, or equally spaced subcarriers; preferably, the equally spaced sizes are 2, 3, 4, 6.
  • the information base station is sent to the terminal through physical control signaling or through RRC signaling. Then, the terminal performs transmission of the uplink data channel or reception of the downlink data channel according to the relevant configuration of the received data channel transmission and the scheduling information.
  • the data channel can also perform resource mapping and transmission in a predefined manner.
  • the receiving end After receiving the data channel, the receiving end first performs channel estimation on the channel condition of one subframe of the data channel according to the pilot information or the auxiliary demodulated data included in the first part (if the first part includes two or more subframes, then Joint channel estimation), then use this estimation information to coherently demodulate each subframe of the transmission target data, and the same data packet is accumulated. If the second part contains pilots and then performs channel estimation based on the pilot information, the estimation information can compensate the estimation result of the first part, so that the accuracy of channel estimation of each subframe can be more ensured.
  • the frequency domain position of each of the plurality of subframes is determined by one of the following manners: a predetermined manner, indicating a frequency hopping manner by signaling.
  • the hopping frequency corresponding to the frequency hopping mode is a K subframe bound hopping frequency, where 1 ⁇ K ⁇ 2/N, where N is the number of subframes used to carry the second part.
  • a data channel transmission device is also provided, and the device is applied to a base station, and is used to implement the foregoing embodiments and preferred embodiments. The module is explained.
  • FIG. 2 is a block diagram showing the structure of a data processing device for a data channel according to Embodiment 1 of the present invention. As shown in FIG.
  • the device includes: an obtaining module 20, connected to the transmitting module 22, configured to acquire data to be transmitted; and a transmitting module 22 configured to transmit the data to be transmitted carried by the data channel on multiple subframes,
  • the data channel includes at least two parts, the first part includes more pilot symbols than the second part, and/or the first part is used to transmit auxiliary demodulation data, and the second part is used to transmit auxiliary demodulation data. Transfer target data.
  • the functions implemented by the foregoing modules may be implemented by corresponding processors, for example, a processor, including: an obtaining module 20 and a transmitting module 22, or a device, including: an acquiring module 20, located at In the first processor, the transmission module 22 is located in the second processor.
  • the apparatus in this embodiment may be applied to the transmission of uplink data and downlink data.
  • the foregoing apparatus may include the following two parts: a sending apparatus, and a transmission method according to the foregoing data channel. And transmitting the uplink and downlink service data; and receiving means, configured to receive the uplink and downlink service data according to the transmission method of the data channel.
  • FIG. 3 is a flow chart showing a method of receiving a data channel according to Embodiment 1 of the present invention. As shown in FIG.
  • Step S302 Obtain a configuration rule of a data channel, where the configuration rule includes: the data channel includes at least two parts, and the first part includes more pilot symbols than the second a part of the number of pilot symbols included; and / or, the first part is used to transmit the auxiliary demodulated data, and the second part is used to transmit the target data; Step S304, receiving the data channel to be transmitted in the plurality of sub-frames according to the configuration rule data.
  • the ratio of resources occupied by pilots and data is not less than a preset threshold; in the second part, the proportion of resources occupied by pilots and data is less than a preset threshold.
  • the proportion of the pilot and data resources included in the first part and/or the second part is determined by one of the following methods: Signaling configuration mode, predefined mode, physical random access channel PRACH format.
  • the frequency domain position of the above auxiliary demodulated data is indicated by signaling or determined according to the frequency domain position of the target data.
  • the pilot symbols of the data channel are transmitted in a time division multiplexed manner.
  • the pilot symbols of the data channel are transmitted in a time domain multiplexing manner according to one of the following ways: each OFDM symbol corresponds to one pilot sequence; each time slot corresponds to one pilot sequence; one or more Each subframe corresponds to a pilot sequence.
  • the auxiliary demodulation data is determined by the following means: The transmitting end and the receiving end agree to use the specified information as the auxiliary demodulating data.
  • the above auxiliary demodulation data includes at least one of the following: an uplink and downlink pilot sequence, a system information block SIB/main information block ⁇ , a synchronization signal, PRACH information, scheduling request information, and a predefined information block.
  • a plurality of subframes for carrying the first portion each carry the same auxiliary demodulation data; or each of the plurality of subframes for carrying the first portion carries a portion of the auxiliary demodulation data.
  • the frequency domain position of the target data is indicated by signaling or based on the frequency domain position of the transmission assisted demodulated data.
  • the data carried by the data channel is mapped onto consecutive or equally spaced subcarriers before the data carried by the data channel is transmitted over multiple subframes.
  • the frequency domain position of each of the plurality of subframes is determined by one of the following methods: A predefined manner, indicating a frequency hopping manner by a signaling.
  • the hopping frequency corresponding to the frequency hopping mode is ⁇ subframe-bound hopping, where 1 ⁇ /2, ⁇ is an integer, and ⁇ is the number of subframes used to carry the second part.
  • the number of subframes included in the first part and the number of subframes included in the second part are determined by one of the following methods: by signaling; determined according to the physical random access channel PRACH.
  • the data carried by the data channel includes: uplink data or downlink data.
  • Figure 4 is a block diagram showing the structure of a receiving processing apparatus for a data channel according to Embodiment 1 of the present invention.
  • the device is applied to the terminal, including: an obtaining module 40, connected to the receiving module 42, configured to acquire a configuration rule of the data channel, where the configuration rule includes: the data channel includes at least two parts, and the first part includes more pilot symbols than The second part contains the number of pilot symbols; and / or, the first part is used to transmit the auxiliary demodulated data, the second part is used to transmit the target data; the receiving module 42 is arranged to receive the data channel in the plurality of sub-frames according to the configuration rule.
  • the data to be transmitted carried.
  • the distribution of pilot and data in a plurality of subframes included in the data channel according to the present invention will be described in detail in a Frequency Division Duplexing (FDD) system.
  • the channel estimate still uses the original pilot.
  • the first part of the pilot occupies more OFDM symbols than the second part of the OFDM symbols.
  • the first part is a high-density pilot, that is, the pilot occupies far more OFDM symbols or resource units than the data
  • the second part is a low-density pilot, that is, an OFDM symbol or resource occupied by the pilot.
  • the number of units is much smaller than the data.
  • the base station can notify the OFDM symbol or resource unit occupied by the first part of data, and the symbol or resource unit occupied by the second part of the pilot, which can save signaling overhead. Further, the proportion of resources of each part of the pilot and the data can be given by a predefined manner or by a signaling configuration, and then the pilot and the data are all sorted. For example, for the uplink data channel, the ratio of the second part of the pilot and the OFDM symbol occupied by the data is 1:6, 1:12 or less. The ratio of the first part is 4:3 or higher. And the data and pilot symbols are interleaved.
  • the second part includes the number of pilot-bearing OFDM symbols being 0, or N subframes include a total of 1, 2, 3, ...
  • the subframes still include 2 OFDM symbols carrying pilots.
  • the index of the OFDM symbol occupied by the pilot symbol is known to the receiving end.
  • Uplink data channel-Physical Uplink Share Channel (PUSCH) The physical resources of the entire user or the distribution of pilot and data of an RB (Resource Block) can be as shown in Figure 5.
  • the subframe is Normal CP, that is, each subframe contains 14 OFDM symbols.
  • the first part includes two subframes.
  • the data in each subframe only occupies the 4th, 8th, 10th, and 12th OFDM symbols, and the second part also includes two subframes.
  • each subframe still adopts the original structure, and each subframe includes 2 subframes. Pilots carrying OFDM symbols. Moreover, the pilot adopts a time division multiplexing mode, and each OFDM symbol corresponds to one pilot sequence, and each pilot sequence is cyclically shifted by the same or different root sequences, and the root sequence is a Zadoff-Chu sequence, or a CAZAC sequence.
  • the base station After receiving the PUSCH including four consecutive subframes, the base station first performs joint channel estimation according to the pilots of the previous two subframes, and estimates the channel coefficients of one subframe, and the pilot of each subsequent subframe performs channel estimation on the subframe.
  • the demodulation of the target data then refers to the results of the two partial channel estimates.
  • Example 2 the distribution of pilot and target data of the uplink data channel (PUCSH) provided by the present invention is described in detail in a Time Division Duplexing (TDD) system.
  • the uplink may use the transmission method provided by the present invention for uplink data transmission on multiple consecutive or discontinuous subframes.
  • the entire user bandwidth pilot and data can be transmitted using the structure shown in FIG. 6.
  • the first part of the uplink data channel includes a number of subframes, that is, is mapped to the subframe 2 of the radio frame, and the ratio of the pilot to the data is 7:1, and the two data OFDM symbols are equally spaced.
  • the second part includes a number of subframes of 3, that is, mapped to subframes 3, 4, and 7 of the radio frame.
  • the data channel can also be mapped to contiguous or discontinuous across multiple radio frames.
  • the pilot adopts a time division multiplexing mode, and each OFDM symbol corresponds to one pilot sequence, and each pilot sequence is cyclically shifted by the same or different root sequences, and the root sequence is a Zadoff-Chu sequence, or a CAZAC sequence.
  • the base station After receiving the PUSCH of the four subframes, the base station estimates the channel coefficients of one subframe according to the actual data received in the first subframe and the known pilot.
  • Embodiment 3 This embodiment still describes a specific manner in which the downlink data channel is transmitted by the method provided by the present invention under the FDD system.
  • the Physical Downlink Shared Channel (PDSCH) uses the transmission method as shown in Figure ⁇ .
  • the PDSCH is transmitted on four subframes, wherein the control information occupies an OFDM symbol of 0, and the frequency domain positions of the four subframes are the same.
  • the downlink data channel is divided into two parts:
  • the first part includes a subframe, and all data symbols of the subframe transmit pilot DMRS or CRS (cell-specific reference signal), and each OFDM symbol corresponds to one sequence, or each time slot corresponds to A sequence, or the same sequence that is transmitted throughout the entire subframe.
  • the time domain length of a sequence can be varied, but the length of the sequence is determined by the allocated bandwidth. For example, if the allocated frequency domain resource size is 6 RBs and the original contiguous subcarrier mapping is still used, the sequence length should be 72.
  • the second part includes 3 subframes, mainly transmitting target data, and the intermediate OFDM symbols of each subframe transmit pilots, and the remaining symbols are used to transmit target data, and each subframe of the three subframes carries the same data. package.
  • the base station Before transmitting the downlink data channel, the base station first sends some transmission configuration information of the channel through physical signaling or higher layer signaling. The terminal performs reception of the downlink data channel based on this information. The terminal performs channel estimation according to the actual data of the received first subframe, and then the estimation result is used to assist demodulation of the following three subframe target data, and the pilot symbols included in each subframe of the following three subframes may be used for The compensation calibration of the previous estimation results makes the estimation result of this frame more accurate.
  • the data obtained by separately demodulating the three sub-frames is accumulated to achieve the gain of the time domain repetition, and the coverage performance of the data channel is improved.
  • Embodiment 4 In the TDD system, in the data channel transmission method provided by the present invention, the first part of the uplink data channel transmits auxiliary demodulation data (receiving end known data, class pilot), and the second part transmits target data. The situation is described in detail.
  • the first part of the transmitted auxiliary demodulated data is a known sequence or a series of information bits agreed by the transmitting end and the receiving end.
  • the length of the auxiliary demodulated data is implicitly determined by the size of the resource allocated by the transmission target data. For example, the number of PRBs allocated to the UE is two, and the contiguous subcarrier mapping is used. The length of the sequence is 24. If the interval is subcarrier mapping and the number of intervals is k, the length of the sequence should be 24/k.
  • the specific frequency domain position is implicitly determined according to the frequency domain position of each subframe of the second part, and at least includes the frequency domain range occupied by the target data.
  • the end position is max(Fl, F2, F3... Fn), where F1, F2, F3, ... Fn are the frequency domain end positions of the target data of each subframe in the second part, respectively.
  • the time domain duration of the auxiliary demodulation data is one or more subframes, the number being indicated by signaling.
  • Mode 1 The length of the auxiliary demodulation sequence is 1 subframe, and each subsequent subframe repeats the first subframe directly;
  • Mode 2 A secondary demodulation
  • the time domain length of the sequence is the length of the given multiple subframes, that is, the multiple subframes share one CP.
  • the second part only transmits the target data, and can also transmit a small number of DMRS symbols.
  • the frequency domain location of the target data is the same for multiple subframes, or by means of frequency hopping. The specific frequency domain location and location are given in the UL grant. The following is a detailed description of the case where the data position is fixed.
  • the specific transmission mode of the data channel is as follows: The first part distributes the auxiliary demodulation sequence of the M subframes, and then the second part continuously transmits the target data of the K subframes.
  • the transmission mode is triggered by signaling to transmit data.
  • the first partial auxiliary demodulation data included in the uplink data channel PUSCH repeatedly transmits two subframes, that is, the first two subframes transmit the same auxiliary demodulation data, and the auxiliary demodulation data used is a RACH preamble sequence.
  • the second part sends the target data of three subframes, and each of the three subframes carries the same data packet, and the frequency domain position of the target data of each subframe is the same.
  • the length of the RACH sequence used in the first part is determined according to the resource size and location allocated by the second part of the transmission target data, and is consistent with the second part. For example, the number of RBs allocated to the user by the uplink grant (UL grant) is two, that is, the number of RBs in the three sub-frames of the second part is 2, and the specific frequency domain location is also given. Then, the length of the RACH sequence used in the first subframe should be 24 (assuming that continuous subcarrier mapping is still used here), and the frequency domain position of the subframe is consistent with the subsequent subframe.
  • the time domain length of the sequence may be one subframe, the second subframe repeats the first subframe, or the time domain length of the sequence is 2 subframes, that is, two subframes use one CP.
  • the receiving end estimates the channel according to the received real preamble sequence and the known preamble sequence, and then, according to the characteristics of the channel change slowly, according to the estimated information of the corresponding frequency domain position of the channel, the received second part of the third part
  • the target data of the frame is coherently demodulated, and then the demodulated data is accumulated to achieve the purpose of improving coverage.
  • the first part of the downlink data channel PDSCH is the auxiliary demodulated data
  • the second part is the transmission target data
  • the inter-subframe frequency hopping mode is used.
  • the structure and transmission mode of the downlink data channel are as shown in FIG.
  • the first part contains a sub-frame that assists the demodulation of the data using the SIB/MIB message that has been detected before the terminal, ie, the information known to the terminal.
  • the first part contains only one subframe, does not use frequency hopping mode
  • the second part contains 4 subframes, and uses inter-frame frequency hopping, that is, the frequency domain position of each subframe changes.
  • the inter-subframe frequency hopping mode is a predefined mode, or signaling.
  • the frequency domain position of the SIB/MIB is implicitly determined according to the frequency domain range of the following four subframes. At least the frequency domain range of all subframes of the target data is covered, as shown in Figure 9. The length of the data is then determined based on the frequency domain range.
  • the terminal After receiving the downlink data channel, the terminal performs channel estimation based on the previously detected correct SIB or MIB message and the currently received first part of the data, and estimates the channel coefficients of all subsequent subframe frequency domain positions. Then demodulate the data for each subsequent sub-frame. This omits the process of channel estimation for each previous subframe.
  • the first part of the downlink data channel is the auxiliary demodulation data
  • the second part of the target data is the frequency hopping mode.
  • the frequency hopping granularity is increased to a plurality of subframes, that is, multi-subframe-bound frequency hopping
  • the subframe occupied by the auxiliary demodulated data may also be a plurality of subframes.
  • the first part of the auxiliary demodulated data is a predefined information block, that is, information known at the receiving end.
  • the information block repeatedly transmits two subframes, that is, the information carried by each subframe is the same, and the frequency domain position of the auxiliary demodulated data covers the frequency domain range of all subframes of the subsequent target data.
  • the second part contains six subframes, each of which carries the same data packet, and the frequency domain positions of each successive two subframes are the same, and the third subframe and the fifth subframe are frequency hopped.
  • the terminal After receiving the downlink data channel, the terminal first performs channel estimation based on the currently received first part of the data and the previously known information block, and estimates the channel coefficients of all subsequent subframe frequency domain positions. Then demodulate the data for each subsequent subframe. This allows both channel estimation gain and diversity gain to be obtained.
  • the first part of the uplink data channel is the auxiliary demodulation data
  • the second part of the target data is the frequency hopping mode.
  • the target data uses frequency hopping in the time slot.
  • the auxiliary demodulation data of the first part also uses frequency hopping in the time slot, and the frequency hopping mode is consistent with the frequency hopping mode of the second part of data.
  • the auxiliary demodulated data is an SR (scheduling request) sequence.
  • the second part contains 20 subframes, and each subframe carries the same data packet.
  • the hopping pattern can be performed in a predefined manner or by signaling a specific frequency domain location.
  • the transmission mode may be cyclically repeated and sent once every other time, as shown in FIG.
  • the base station After receiving the uplink data channel, the base station first performs channel estimation according to the received first part of the data and the previously known scheduling request information, and estimates the channel coefficient of the corresponding frequency domain position. Then, the data is demodulated for the next 20 subframes, and the demodulated result is accumulated and decoded.
  • Embodiment 8 This embodiment describes a specific notification manner in which a base station configures a terminal to transmit a sequence or training data for assisting demodulation data, and some information about the number of subframes included in each part. The base station informs the terminal of the relevant configuration information and scheduling information of the data channel transmission of the present invention in one of the following ways.
  • Manner 1 Notification by physical signaling
  • a new DCI format, format OX may be defined to indicate the transmission information of the multiple subframes
  • Method 2 Notification by higher layer signaling
  • Three Determine the number of subframes included in each section and the sequence used based on the PRACH information.
  • the uplink directly uses the root sequence for PRACH as the auxiliary demodulation data, but the length of the sequence is determined according to the frequency domain resources.
  • signaling gives the frequency domain resource location of the first part, and the second part of each subsequent subframe is implicitly determined according to the resources of the first part.
  • Embodiment 9 This embodiment describes a method of mapping a transmitted pilot, an auxiliary demodulated data, and a target carrier.
  • the mapping mode can be one of the following modes: Mode 1: Map to consecutive subcarriers. Manner 2: Mapping to equally spaced subcarriers, the subcarrier spacing is determined by pre-defined or signaling. The size of the interval is preferably a divisor of 12, for example, 1, 2, 3, 4, 6.
  • the resource mapping structure of one subframe of the uplink data channel is as shown in FIG. 12: The subframe is Normal CP,
  • the number of RBs allocated by the UE is two consecutive, and the signaling subcarrier spacing is three, and the UE can only send data on the subcarriers 0, 3, 6, 9, 12, 15, 18, 21 (equivalent to the sub-carrier)
  • the carrier spacing is 45 kHz).
  • Embodiment 10 This embodiment describes a resource mapping situation of one subframe of a downlink data channel. As shown in FIG. 13, this example shows one subframe of the extended CP, and the subcarrier spacing of each subframe pilot and data mapping of the downlink data channel is 6, which is equivalent to a subcarrier spacing of 90 kHz. That is, the pilot and data map one modulation symbol every 6 subcarriers. Also, two adjacent symbols in the time domain are staggered.
  • the mapping is also mapped to the corresponding subcarriers according to the method of using the first frequency domain mapping and the backward time domain mapping. It is worth noting that with non-contiguous subcarrier mapping, the length of the corresponding pilot and auxiliary demodulation data is determined according to the mapping method. For example, if there is only one PRB allocated to a UE, the subcarrier mapping interval is assumed to be 2. If the pilot sequence is used for channel estimation, the pilot sequence length is 6, and there is no pilot with a pilot length of 6 in the existing standard. . Solution: Redesign the pilot sequence of the corresponding length or use the auxiliary demodulation data with flexible length configuration.
  • Embodiment 11 This embodiment describes the periodicity of a data channel transmission method.
  • the transmission mode of the data channel may be automatically repeated according to a predefined period.
  • the number of subframes included in each part of each period and the configuration of pilot and data are predefined, and the transmission configuration parameters of the data packet are also fixed. of.
  • the transmission interval of the transmission mode can be defined according to the service period. For example, the reported service period is 5s, and each time there are 20 consecutive or non-contiguous subframes, each of which is one cycle.
  • the first part contains 2 subframes, that is, the second.
  • the number of subframes occupied by part of the transmission target data is 8.
  • the transmission mode may also be semi-statically configured, and each time a signaling trigger is received, the data channel is transmitted by using a predefined number of subframes and a structure. Or, it is dynamically scheduled, and each time the data channel is transmitted through physical or higher layer signaling, so that the configuration and structure of each subframe can be different. For example, for the MTC non-periodic, burst reporting service, each base station can be flexibly configured through signaling.
  • the following embodiments have achieved the following beneficial effects: the pilot and the auxiliary demodulated data sent by the first part and the pilot of the second partial target data subframe are used for joint channel estimation, and the service is solved.
  • the problem of channel estimation is inaccurate in the case of low SINR.
  • by repeatedly transmitting the target data over a plurality of consecutive unit frames the coverage of the relatively stationary MTC terminal data channel is improved, and normal communication with the network is ensured.
  • the above embodiment only describes the first part before the second part, but does not exclude other positional relationships. There may be multiple possibilities for the first part and the second part of the positional relationship, such as: The second part is located in the first part.
  • FIG. 14 and FIG. 15 each give an example, specific There are many forms of application, including those not limited to the examples illustrated in Figures 14 and 15.
  • software is also provided for performing the technical solutions described in the above embodiments and preferred embodiments.
  • a storage medium is provided, the software being stored, including but not limited to: an optical disk, a floppy disk, a hard disk, a rewritable memory, and the like.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above are only the preferred embodiments of the present invention, and are not intended to limit the present invention, and various modifications and changes can be made to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种数据信道的传输、接收处理方法及装置,其中,上述传输方法应用于基站,包括:获取待传输数据;在多个子帧上传输数据信道所承载的待传输数据,其中,数据信道至少包含两个部分,第一部分包含的导频符号数量多于第二部分包含的导频符号数量;和\或,第一部分用于传输辅助解调数据,第二部分用于传输目标数据。采用本发明提供的上述技术方案,解决了相关技术中,采用原有的上下行数据传输方式信道估计准确性不强,以及覆盖性能较低等技术问题,从而确保了接收端对发生的目标数据的相干解调的准确性以及提升了数据信道的覆盖性能。

Description

数据信道的传输、 接收处理方法及装置
技术领域 本发明涉及通信领域, 尤其是涉及一种数据信道的传输、 接收处理方法及装置。 背景技术 机器类型通信(Machine Type Communication,简称为 MTC)用户终端(MTC User
Equipment,简称 MTC UE), 又称机器到机器 (Machine to Machine, 简称 M2M) 用户 通信设备, 是现阶段物联网的主要应用形式。 智能抄表 (Smart Metering) 是 MTC设 备最典型的应用之一, 并且大多数智能抄表类 MTC 设备都固定安装在地下室等低覆 盖性能环境下。 为了保证此类 MTC 设备能和基站系统保持正常的通讯, 通常需要部 署额外的站点、 中继器(Relay)等设备, 这无疑会大大增加运营商的部署成本。 为此, Vodafone等公司在 3GPP RAN的技术提案 RP-121282中提出了不增加额外设备部署的 前提下, 改善智能抄表类 MTC设备覆盖的需求。 智能抄表类 MTC 设备主要发送小包数据, 对数据速率的要求低, 能够容忍较大 的数据传输时延。 由于智能抄表类 MTC 设备位置相当固定, 移动性非常低, 对于数 据信道而言, 可以通过时域上多次重复发送的方式来提升覆盖。 但是, 由于 MTC 设 备所处的环境恶劣, 信干噪比非常非常低,所以如果采用原来 LTE/LTE_A中已有的上 下行数据信道的传输方式: 数据信道通常仅在一个子帧上传输, 每个子帧通过零散的 参考信号做单独的信道估计, 信道估计就会不准确, 包括信道系数, 频偏信息以及一 些定时提前信息就受到严峻挑战, 给接收端数据的相干解调的可靠性带来影响。 因此, 针对上述由于导频性能下降导致业务信道解调性能出现瓶颈的问题, 必须 设计一种增强的数据信道的传输方法, 既能确保低信噪比情况下信道估计的准确性, 接收端实现传输数据正确的相干解调, 又能实现覆盖增强。 提升环境恶劣的 MTC 设 备和网络侧的数据传输性能。 针对相关技术中的上述问题, 目前尚未提出有效的解决方案。 发明内容 针对相关技术中, 采用原有的上下行数据传输方式信道估计准确性不强, 以及覆 盖性能较低等技术问题, 本发明实施例提供了一种数据信道的传输、 接收处理方法及 装置, 以至少解决上述问题。 根据本发明的一个实施例, 提供了一种数据信道的传输方法, 应用于基站, 包括: 获取待传输数据; 在多个子帧上传输数据信道所承载的待传输数据, 其中, 数据信道 至少包含两个部分,第一部分包含的导频符号数量多于第二部分包含的导频符号数量; 和\或, 第一部分用于传输辅助解调数据, 第二部分用于传输目标数据。 优选地, 第一部分中, 导频和数据所占资源的比例不小于预设阈值; 第二部分中, 导频和数据所占的资源比例小于预设阈值。 优选地, 第一部分和 /或第二部分包括的导频和数据所占资源的比例采用以下之一 方式确定:信令配置方式、预定义方式,根据物理随机接入信道 (Physical Random Access Channel, 简称为 PRACH) 格式确定。 优选地,辅助解调数据的频域位置由信令指示或者根据目标数据的频域位置确定。 优选地, 第二个部分包括的承载导频的正交频分复用 (Orthogonal Frequency Division Multiplexing,简称为 OFDM)符号数量为 0;或者, N个子帧包括 k (0<k<=N) 个承载导频的 OFDM符号, 其中, N为用于承载第二部分的子帧的数量; 或者, N个 子帧中的每个子帧包括 2个承载导频的 OFDM符号; 或者, N个子帧中的每个子帧包 括 4个承载导频的 OFDM符号。 优选地, 数据信道的导频符号采用时分复用的方式来进行传输。 优选地, 按照以下方式之一对数据信道的导频符号采用时域复用的方式来进行传 输: 每个 OFDM符号对应一个导频序列; 每一个时隙对应一个导频序列; 一个或多个 子帧对应一个导频序列。 优选地, 辅助解调数据通过以下方式确定: 发送端和接收端约定采用指定信息作 为辅助解调数据。 优选地, 辅助解调数据包括以下至少之一: 上下行导频序列、 系统信息块 (System Iinformation Block, 简称为 SIB)/主信息块 (Main Iinformation Block, 简称为 MIB)、 同 步信号、 PRACH信息、 调度请求信息、 预定义的信息块。 优选地, 用于承载第一部分的多个子帧均承载相同的辅助解调数据; 或用于承载 第一部分的多个子帧中的每个子帧承载辅助解调数据的一部分。 优选地, 目标数据的频域位置由信令指示或者根据传输辅助解调数据的频域位置 确定。 优选地, 在多个子帧上传输数据信道所承载的待传输数据之前, 包括: 将数据信 道承载的待传输数据映射到连续或等间隔的子载波上。 优选地, 多个子帧中的每个子帧的频域位置通过以下之一方式确定: 预定义方式、 通过信令指示跳频方式。 优选地, 跳频方式所对应的跳频为 K个子帧绑定跳频, 其中, 1<Κ<Ν/2, K为整 数, N为用于承载第二部分的子帧的数量。 优选地, 第一部分包含的子帧数量和第二部分包含的子帧数量均通过以下之一方 式确定: 通过信令通知; 根据物理随机接入信道 PRACH确定。 根据本发明的另一个实施例,提供了一种数据信道的接收处理方法,应用于终端, 包括: 获取数据信道的配置规则, 其中, 配置规则包括: 数据信道至少包含两个部分, 第一部分包含的导频符号数量多于第二部分包含的导频符号数量; 和\或, 第一部分用 于传输辅助解调数据, 第二部分用于传输目标数据; 按照配置规则在多个子帧上接收 数据信道所承载的待传输数据。 优选地, 第一部分中, 导频和数据所占资源的比例不小于预设阈值; 第二部分中, 导频和数据所占的资源比例小于预设阈值。 优选地, 第一部分和 /或第二部分包括的导频和数据所占资源的比例采用以下之一 方式确定: 信令配置方式、 预定义方式, 物理随机接入信道 PRACH格式。 优选地,辅助解调数据的频域位置由信令指示或者根据目标数据的频域位置确定。 优选地, 第二个部分包括的承载导频的 OFDM符号数量为 0; 或者, N个子帧包 括 k (0<k<=N)个承载导频的 OFDM符号, 其中, N为用于承载第二部分的子帧的数 量; 或者, N个子帧中的每个子帧包括 2个承载导频的 OFDM符号; 或者, N个子帧 中的每个子帧包括 4个承载导频的 OFDM符号。 优选地, 数据信道的导频符号采用时分复用的方式来进行传输。 优选地, 按照以下方式之一对数据信道的导频符号采用时域复用的方式来进行传 输: 每个 OFDM符号对应一个导频序列; 每一个时隙对应一个导频序列; 一个或多个 子帧对应一个导频序列。 优选地, 辅助解调数据通过以下方式确定: 发送端和接收端约定采用指定信息作 为辅助解调数据。 优选地, 辅助解调数据包括以下至少之一: 上下行导频序列, 系统信息块 (SIB) /主信息块 (MIB), 同步信号, PRACH信息, 调度请求信息和预定义的信息块。 优选地, 用于承载第一部分的多个子帧均承载相同的辅助解调数据; 或用于承载 第一部分的多个子帧中的每个子帧承载辅助解调数据的一部分。 优选地, 目标数据的频域位置由信令指示或者根据传输辅助解调数据的频域位置 确定。 优选地, 在多个子帧上传输数据信道所承载的数据之前, 包括: 将数据信道承载 的数据映射到连续或等间隔的子载波上。 优选地, 多个子帧中的每个子帧的频域位置通过以下之一方式确定: 预定义方式、 通过信令指示跳频方式。 优选地, 跳频方式所对应的跳频为 K个子帧绑定跳频, 其中, 1<Κ<Ν/2, K为整 数, N为用于承载第二部分的子帧的数量。 优选地, 第一部分包含的子帧数量和第二部分包含的子帧数量均通过以下之一方 式确定: 通过信令通知; 根据物理随机接入信道 (PRACH) 确定。 优选地, 数据信道所承载的数据包括: 上行数据或下行数据。 根据本发明的再一个实施例, 提供了一种数据信道的传输装置, 应用于基站, 包 括: 获取模块, 设置为获取待传输数据; 传输模块, 设置为在多个子帧上传输数据信 道所承载的待传输数据, 其中, 数据信道至少包含两个部分, 第一部分包含的导频符 号数量多于第二部分包含的导频符号数量; 和\或, 第一部分用于传输辅助解调数据, 第二部分用于传输目标数据。 根据本发明的又一个实施例,提供了一种数据信道的接收处理装置,应用于终端, 包括: 获取模块, 设置为获取数据信道的配置规则, 其中, 配置规则包括: 数据信道 至少包含两个部分,第一部分包含的导频符号数量多于第二部分包含的导频符号数量; 和\或, 第一部分用于传输辅助解调数据, 第二部分用于传输目标数据; 接收模块, 设 置为按照配置规则在多个子帧上接收数据信道所承载的待传输数据。 通过本发明实施例, 采用将数据信道划分为两部分, 并根据第二部分的信道估计 信息对第一部分的信道估计信息进行补偿校准或根据第一部分的信道估计信息对第二 部分传输的数据进行解调的技术手段, 解决了相关技术中, 采用原有的上下行数据传 输方式信道估计准确性不强, 以及覆盖性能较低等技术问题, 从而确保了接收端对发 生的目标数据的相干解调的准确性以及提升了数据信道的覆盖性能。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中- 图 1为根据本发明实施例 1的数据信道的传输方法的流程图; 图 2为根据本发明实施例 1的数据信道的传输装置的结构框图; 图 3为根据本发明实施例 1的数据信道的接收处理方法的流程图; 图 4为根据本发明实施例 1的数据信道的接收处理装置的结构框图; 图 5为根据本发明实施例 2的 FDD系统, PUSCH各个部分导频和数据分布示意 图; 图 6为根据本发明实施例 3的 TDD系统, PUSCH导频和数据均勾分布示意图; 图 7为根据本发明实施例 4的 PDSCH导频和数据分布图; 图 8为根据本发明实施例 5的辅助解调数据和目标数据频域位置相同时的示意图; 图 9为根据本发明实施例 6的辅助解调数据覆盖目标数据所在多个子帧的频域范 围示意图; 图 10为根据本发明实施例 7辅助解调数据没有跳频,目标数据采用多子帧绑定跳 频示意图; 图 11为根据本发明实施例 8的辅助解调数据和目标数据采用一致的时隙内跳频示 意图; 图 12根据本发明实施例 10的上行数据信道传输时的资源映射等间隔 3个子载波 Normal循环前缀 (Cyclic Prefix, 简称为 CP) —个子帧示意图; 图 13为根据本发明实施例 11的下行数据信道传输时的资源映射等间隔 6个子载 波 Extended CP一个子帧示意图; 图 14为根据本发明实施例的第一部分和第二部分的位置关系示意图; 以及 图 15为根据本发明实施例的第一部分和第二部分的又一位置关系示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 实施例 1 图 1为根据本发明实施例的数据信道的传输处理方法的流程图。 该方法应用于基 站, 如图 1所示, 该方法包括: 步骤 S102, 获取待传输数据; 步骤 S104, 在多个子帧上传输数据信道所承载的待传输数据, 其中, 数据信道至 少包含两个部分, 第一部分包含的导频符号数量多于第二部分包含的导频符号数量; 和\或, 第一部分用于传输辅助解调数据, 第二部分用于传输目标数据。 通过上述各个处理步骤, 一方面通过上下行数据信道在多个子帧上传输, 弥补了 穿透损耗, 提升了业务信道的覆盖性能; 另一方面, 通过第一部分提供的准确信道信 息及第二部分自身导频信道估计的再补充, 确保了低信号与干扰加噪声比 (Signal to Interference plus Noise Ratio简称为, SINR)下信道估计准确性, 实现了发送端和接收 端正确的数据交互传输, 可以适用于终端移动速度低, 即信道状态信息比较稳定的情 况下的数据信道的传输。 步骤 S104中,第一部分和第二部分可以通过以下过程应用:利用第二部分导频进 行信道估计得到的第二估计信息用于对第一估计信息进行补偿校准, 且第一估计信息 通过利用第一部分的多个导频符号或者辅助解调数据进行信道估计得到; 和\或, 根据 第一部分进行信道估计后得到的第一估计信息对第二部分传输的目标数据进行相干解 调。 此时, 上述第一部分仅用于传输辅助解调数据, 第二部分仅用于传输目标数据。 在本实施例中, 第一部分和第二部分包括的子帧数目为一个或多个, 通常, 第一 部分包含的子帧数目多于第二部分。 具体数目根据 PRACH信息确定, 或者通过信令 确定。 具体实现过程如下: 首先, 基站给终端发送上行或下行数据信道传输的配置信息, 此信息至少包括所 述下面信息之一: 信息 1 : 数据信道每个部分包含的子帧数目; 优选的, 基站可以根据每个用户所处的环境恶劣情况以及需要的覆盖增强大小进 行配置。 当数据信道每个部分包含的子帧数目根据 PRACH信息确定时, 不需要基站发送 上述配置信息。 信息 2: 每个部分导频和数据所占据的 OFDM符号的数目及具体位置; 优选的, 第一部分包含的导频符号的数目多于第二部分包含的导频符号的数目, 第一部分导频为高密度分布, 导频和数据所占资源的比例大于等于预设阈值 L; 第二部分导频为低密度分布, 导频和数据所占的资源比例小于预设阈值 L; 即第一部 分中导频和数据所占资源的比例大于第二部分中导频和数据所占资源的比例。 上述阈 值 L可以为 1,1/2,1/3,1/4,1/5中的一个。其中,第一部分和 /或第二部分包括的导频和数 据所占资源的比例可以采用以下之一方式确定: 信令配置方式、 预定义方式、 PRACH 格式, 在采用 PRACH格式确定时, 可以采用以下方式: 预先设置 PRACH格式与上 述比例的对应关系, 根据该对应关系确定上述比例。 优选的, 数据信道的导频符号采用时域方式复用, 其中, 每个 OFDM符号对应一 个导频序列, 或者一个时隙对应一个导频序列, 或者, 一个或多个子帧对应一个导频 序列; 优选的, 所述导频为 Zadoff-Chu序列, 或者 CAZAC序列; 优选的, 所述第二个部分包括的承载导频的 OFDM符号数量为 0, 或者, 用于承 载第二部分的多个子帧 (此处用 N表示), 即 N个子帧包括 k (0<k<=N) 个承载导频 的 OFDM符号, 或者, N个子帧中的每个子帧包括 2个承载导频的 OFDM符号 (上 行), 或者, N个子帧中的每个子帧包括 4个承载导频的 OFDM符号 (下行); 信息 3 : 辅助解调数据; 发送端和接收端可以约定采用指定信息作为辅助解调数 据。 优选的, 辅助解调数据可以为接收端已知的信息包括: 已有的导频 (上下行导频 序列), 或者发送端和接收端双方约定的接收端已知的数据。 优选的, 所述辅助解调数据为以下至少之一: PRACH信息(例如, 随机接入采用 的前导序列), 同步信号 (例如, 同步信道采用的序列、 解调参考信息 (Demodulation Reference Signal, 简称为 DMRS)、 探测参考信息(Sounding Reference Signal, 简称为 SRS ) 等), 调度请求信息 (调度请求采用的序列), SIB/MIB, 预定义的信息块。 优选的, 所述辅助解调数据的长度由信令指示或者根据第二部分目标数据的频域 资源大小确定。 优选的, 用于承载第一部分的多个子帧均承载相同的辅助解调数据; 或用于承载 第一部分的多个子帧中的每个子帧承载辅助解调数据的一部分。 优选的, 辅助解调数据的频域位置由信令指示或者根据目标数据 (即第二部分的 数据) 的频域位置确定。 相应地, 上述目标数据的频域位置由信令指示或者根据上述辅助解调数据的频域 位置确定。 可选的, 不同用户占用相同的数据传输资源时, 采用的辅助解调数据是正交的。 信息 4: 上行 (Uplink, 简称为 UL) /下行 (Downlink, 简称为 DL) grant授权的 一些数据调度信息。 比如, 第二部分每个子帧的频域位置,频域资源大小,调制与编码策略(Modulation and Coding Scheme, 简称为 MCS ) 等级等。 优选的, 第二部分的每个子帧承载相同的数据包; 可选的, 每个数据包的大小为固定值; 优选的, 所述第二部分每个子帧的频域位置相同; 或者采用预定义或信令指示跳频方式; 优选的, 所述跳频方式为多子帧绑定跳频。 优选的, 在根据配置规则在多个子帧上传输数据信道所承载的数据之前, 可以将 数据信道承载的数据映射到连续或等间隔的子载波上: 将上述导频, 辅助解调数据以 及传输的目标数据映射到连续的子载波上, 或者, 等间隔的子载波上; 优选的, 等间隔的大小为 2,3,4,6。 上述信息基站通过物理控制信令或者通过 RRC信令发送给终端。 然后, 终端按照接收到的数据信道传输的相关配置以及调度信息进行上行数据信 道的发送或下行数据信道的接收。 此外, 所述数据信道还可以按照预定义方式进行资源映射及传输。 也就是, 每个 部分包含的子帧数目以及导频和数据的比例都是固定的, 不需要配置。 接收端接收到数据信道后, 先根据第一部分包含的导频信息或者辅助解调数据对 数据信道一个子帧的信道状况做信道估计 (如果第一部分包含两个或两个以上子帧, 则进行联合信道估计),然后用此估计信息对传输目标数据的每个子帧做相干解调,相 同数据包做累加。 如果第二部分包含导频, 再根据此导频信息作信道估计, 此估计信 息可以对第一部分的估计结果进行补偿,这样能更加确保每个子帧信道估计的准确性。 从而能缩小实际中信道估计不准导致的时域重复带来的覆盖增益与理论值的差距, 使 业务信道的覆盖性能达到要求。 在本实施例中, 多个子帧中的每个子帧的频域位置通过以下之一方式确定: 预定 义方式、 通过信令指示跳频方式。 其中, 该跳频方式所对应的跳频为 K个子帧绑定跳 频, 其中, 1<K<2/N, N为用于承载第二部分的子帧的数量。 在本实施例中还提供了一种数据信道的传输装置, 该装置应用于基站, 用于实现 上述实施例及优选实施方式, 已经进行过说明的不再赘述, 下面对该装置中涉及到的 模块进行说明。 如以下所使用的, 术语"模块"可以实现预定功能的软件和 /或硬件的组 合。 尽管以下实施例所描述的装置较佳地以软件来实现, 但是硬件, 或者软件和硬件 的组合的实现也是可能并被构想的。 图 2为根据本发明实施例 1的数据信道的传输处 理装置的结构框图。 如图 2所示, 该装置包括: 获取模块 20, 连接至传输模块 22, 设置为获取待传输数据; 传输模块 22,设置为在多个子帧上传输数据信道所承载的所述待传输数据,其中, 所述数据信道至少包含两个部分, 第一部分包含的导频符号数量多于第二部分包含的 导频符号数量;和\或,第一部分用于传输辅助解调数据,第二部分用于传输目标数据。 通过上述各个模块实现的功能, 同样可以提升业务信道的覆盖性能,确保低 SINR 下信道估计准确性。 需要说明的是, 上述各个模块所实现的功能可以通过相应地处理器实现, 例如, 一种处理器, 包括: 获取模块 20和传输模块 22, 或者, 一种装置, 包括: 获取模块 20, 位于第一处理器中; 传输模块 22, 位于第二处理器中。 需要说明的是, 本实施例中的装置可以应用于对上行数据和下行数据的传输, 在 此种情况下, 上述装置可以包括以下两个部分: 发送装置, 用来根据上述数据信道的传输方法进行上下行业务数据的发送; 接收 装置, 用来根据上述数据信道的传输方法进行上下行业务数据的接收。 并且, 根据第 一部分传输的数据对信道做信道估计及目标数据的相干解调。 本实施例还从终端侧进行了说明。 图 3为根据本发明实施例 1的数据信道的接收处理方法的流程图。 如图 3所示, 该方法用于终端, 包括: 步骤 S302, 获取数据信道的配置规则, 其中, 配置规则包括: 数据信道至少包含 两个部分, 第一部分包含的导频符号数量多于第二部分包含的导频符号数量; 和\或, 第一部分用于传输辅助解调数据, 第二部分用于传输目标数据; 步骤 S304, 按照配置规则在多个子帧上接收数据信道所承载的待传输数据。 在第一部分中, 导频和数据所占资源的比例不小于预设阈值; 第二部分中, 导频 和数据所占的资源比例小于预设阈值。 第一部分和 /或第二部分包括的导频和数据所占资源的比例采用以下之一方式确 定: 信令配置方式、 预定义方式, 物理随机接入信道 PRACH格式。 上述辅助解调数据的频域位置由信令指示或者根据目标数据的频域位置确定。 第二个部分包括的承载导频的 OFDM 符号数量为 0; 或者, N 个子帧包括 k (0<k<=N)个承载导频的 OFDM符号, 其中, N为用于承载第二部分的子帧的数量; 或者, N个子帧中的每个子帧包括 2个承载导频的 OFDM符号; 或者, N个子帧中的 每个子帧包括 4个承载导频的 OFDM符号。 数据信道的导频符号采用时分复用的方式来进行传输。 可选地, 按照以下方式之 一对数据信道的导频符号采用时域复用的方式来进行传输:每个 OFDM符号对应一个 导频序列; 每一个时隙对应一个导频序列; 一个或多个子帧对应一个导频序列。 辅助解调数据通过以下方式确定: 发送端和接收端约定采用指定信息作为辅助解 调数据。 上述辅助解调数据包括以下至少之一: 上下行导频序列, 系统信息块 SIB/主信息 块 ΜΙΒ, 同步信号, PRACH信息, 调度请求信息和预定义的信息块。 用于承载第一部分的多个子帧均承载相同的辅助解调数据; 或用于承载第一部分 的多个子帧中的每个子帧承载辅助解调数据的一部分。 目标数据的频域位置由信令指示或者根据传输辅助解调数据的频域位置确定。 在多个子帧上传输数据信道所承载的数据之前, 将数据信道承载的数据映射到连 续或等间隔的子载波上。 多个子帧中的每个子帧的频域位置通过以下之一方式确定: 预定义方式、 通过信 令指示跳频方式。 跳频方式所对应的跳频为 Κ个子帧绑定跳频, 其中, 1<Κ<Ν/2, Κ为整数, Ν为 用于承载第二部分的子帧的数量。 第一部分包含的子帧数量和第二部分包含的子帧数量均通过以下之一方式确定: 通过信令通知; 根据物理随机接入信道 PRACH确定。 数据信道所承载的数据包括: 上行数据或下行数据。 图 4为根据本发明实施例 1的数据信道的接收处理装置的结构框图。 该装置应用 于终端包括: 获取模块 40, 连接至接收模块 42, 设置为获取数据信道的配置规则, 其中, 配置 规则包括: 数据信道至少包含两个部分, 第一部分包含的导频符号数量多于第二部分 包含的导频符号数量; 和\或, 第一部分用于传输辅助解调数据, 第二部分用于传输目 标数据; 接收模块 42, 设置为按照配置规则在多个子帧上接收数据信道所承载的待传输数 据。 为了更好地理解上述实施例 1, 以下结合实施例 2-10和相关附图详细说明。 本实施例对频分双工 (Frequency Division Duplexing, 简称为 FDD) 系统下, 本 发明所述的数据信道包含的多个子帧的导频和数据的分布情况进行详细说明。 信道估 计仍然用原来的导频。 第一部分导频所占的 OFDM符号的数量多于第二个部分导频所占的 OFDM符号 的数量。 并且, 第一部分为高密度导频, 也就是导频所占的 OFDM符号或者资源单元 的数目远远多于数据, 第二部分为低密度导频, 也就是导频所占的 OFDM符号或者资 源单元的数目远远少于数据。 基站可以通知第一部分数据所占的 OFDM符号或者资源单元, 以及第二部分导频 所占的符号或者资源单元, 这样可以节省信令开销。 更进一步的, 每个部分导频和数 据的资源比例可以通过预定义方式或者信令配置的方式给出, 然后导频和数据均勾分 布。 比如对于上行数据信道, 第二部分导频和数据所占的 OFDM符号的比例为 1:6, 1:12或者更小。 第一部分的比例为 4:3或者更高。 且数据和导频符号是交错放置的。 第二个部分包括的承载导频的 OFDM 符号数量为 0, 或者, N 个子帧一共包括 1,2,3, ......个承载导频的 OFDM符号, 或者, N个子帧的每个子帧仍然包括 2个承载 导频的 OFDM符号。 该导频符号所占据的 OFDM符号的索引是接收端已知的。 如- 等间隔的位置 (如图 6), 或者, 不同间隔的位置 (如图 5 )。 上行数据信道 -物理上行共享信道 (Physical Uplink Share Channel, 简称 PUSCH) 整个用户的物理资源或者一个 RB (Resource Block, 资源块) 的导频和数据的分布情 况可以采用如图 5所示的方式, 子帧为 Normal CP, 即每个子帧包含 14个 OFDM符 号。 第一部分包括两个子帧, 每个子帧中数据仅占了第 4,8,10,12个 OFDM符号, 第 二部分也包括两个子帧, 每个子帧仍然采用原来的结构, 每个子帧包括 2个承载导频 的 OFDM符号。 并且, 导频采用时分复用方式, 每个 OFDM符号对应一个导频序列, 每个导频序列通过相同或不同的根序列循环移位得到, 根序列为 Zadoff-Chu序列, 或 者 CAZAC序列。 基站在收到包含连续 4个子帧的 PUSCH后, 先根据前面两个子帧的导频做联合 信道估计, 估计出一个子帧的信道系数, 后面每个子帧的导频对本子帧做信道估计, 然后目标数据的解调参考这两部分信道估计的结果。 实施例 2 本实施例对时分双工(Time Division Duplexing, 简称为 TDD)系统下, 本发明提 供的上行数据信道 (PUCSH)的导频和目标数据的分布情况进行详细说明。 对于 TDD系统的上下行子帧配置 0-7, 上行可以在多个连续或者不连续的子帧上 采用本发明提供的传输方法进行上行数据传输。 比如, 对上下行子帧配置 0, 整个用户带宽导频和数据可以用如图 6所示的结构 进行传输。上行数据信道第一部分包括的子帧数目为 1,也就是映射到无线帧的子帧 2 上, 且导频和数据的比例为 7: 1, 且两个数据 OFDM符号是等间隔均勾分布的; 第二 部分包括的子帧数目为 3, 也就是映射到无线帧的子帧 3,4,7上面。 且仅有一个导频, 此导频位于子帧 4的中间位置。 当然数据信道还可以映射到连续的或者不连续的跨多 个无线帧上面。 并且, 导频采用时分复用方式, 每个 OFDM符号对应一个导频序列, 每个导频序列通过相同或不同的根序列循环移位得到, 根序列为 Zadoff-Chu序列, 或 者 CAZAC序列。 基站在收到 4个子帧的 PUSCH后, 根据第一个子帧接收到实际数 据及已知的导频估计出一个子帧的信道系数。 然后将该信道系数用于每个子帧目标数 据的相干解调。 实施例 3 本实施例仍然对 FDD系统下,下行数据信道采用本发明提供的方法进行传输的具 体方式进行说明。 物理下行共享信道 (Physical Downlink Shared Channel, 简称为 PDSCH) 采用如 图 Ί所示的传输方式。该 PDSCH在四个子帧上面传输,其中控制信息所占据的 OFDM 符号为 0, 这四个子帧的频域位置都是相同的。 该下行数据信道分为两部分: 第一部 分包括一个子帧, 这个子帧全部的数据符号传输导频 DMRS或者 CRS (小区专用参考 信号), 每个 OFDM符号对应一个序列, 或者每个时隙对应一条序列, 或者整个子帧 都传输的同一条序列。 序列的时域长度可以多种, 但序列的长度要根据分配的带宽大 小进行确定。比如分配的频域资源大小为 6个 RB,且仍然采用原有的连续子载波映射 的话, 则序列的长度应该为 72。 第二部分包括 3个子帧, 主要传输目标数据, 并且每 个子帧的中间 OFDM符号传输导频, 剩余的符号都用来传输目标数据, 并且, 这三个 子帧的每个子帧都承载相同的数据包。 基站在发送下行数据信道之前, 通过物理信令或者高层信令先发送该信道的一些 传输配置信息。 终端根据此信息进行下行数据信道的接收。 终端根据接收到的第一个子帧的实际数据做信道估计, 然后将此估计结果辅助后 面三个子帧目标数据的解调, 后面三个子帧上每个子帧包含的导频符号, 可用于对之 前估计结果的补偿校准, 使本帧的估计结果更加准确。 然后将三个子帧单独解调得到 的数据做累加, 达到时域重复的增益, 提升数据信道的覆盖性能。 实施例 4 本实施例对 TDD系统下,本发明所提供的数据信道的传输方法中上行数据信道第 一部分传输辅助解调数据(接收端已知数据, 类导频), 第二部分传输目标数据的情况 进行详细说明。 第一部分传输的辅助解调数据为发送端和接收端约定好的一个已知序列或一串信 息比特。 比如, PRACH前导序列, DMRS, SRS所用的 Zadoff-Chu序列, 或者 SR所 用的 CAZAC序列, 或者预定义的信息块。 辅助解调数据的长度通过传输目标数据所分配的资源大小来隐含确定。 比如, 分 配给 UE的 PRB数目为 2个, 采用连续子载波映射, 序列的长度就为 24, 如果采用间 隔子载波映射, 间隔数目为 k, 则序列的长度应该为 24/k。 具体的频域位置根据第二部分每个子帧的频域位置来隐含确定, 至少包含目标数 据所占据的频域范围。 为节省资源, 频域的起始位置为 min(fl,£2,fi ...... fn), 其中 fl,f2,0...... fn 分别为第二部分每个子帧目标数据的频域起始位置。 结束位置为 max(Fl,F2,F3...... Fn),其中 F1,F2,F3...... Fn分别为第二部分每个子帧目标数据的频域 结束位置。 辅助解调数据的时域持续长度为一个或多个子帧, 数目由信令指示。 对于时域长 度为多个子帧又有两种方式: 方式一: 辅助解调序列的长度就为 1个子帧, 后面每个子帧直接对第一个子帧进 行重复; 方式二: 一个辅助解调序列的时域长度就为给出的多个子帧的长度, 即这多个子 帧共用一个 CP。 第二部分仅传输目标数据, 也可以传输少量的 DMRS符号。 目标数据的频域位置 多个子帧相同, 或者采用跳频的方式。 具体的频域资源大小及位置在 UL grant里面给 出。 下面对数据位置固定的情况进行详细说明。 数据信道具体的传输方式为: 第一部 分发 M个子帧的辅助解调序列, 然后第二部分连续发 K个子帧的目标数据。 该传输 方式由信令触发进行数据的传输。 如图 8所示, 上行数据信道 PUSCH包括的第一部分辅助解调数据重复发两个子 帧,即前两个子帧传输相同的辅助解调数据,且用的辅助解调数据为 RACH前导序列。 第二部分发三个子帧的目标数据, 并且这三个子帧的每个子帧承载相同的数据包, 每 个子帧的目标数据的频域位置都是相同的。 其中, 第一部分所用的 RACH序列的长度根据第二部分传输目标数据分配的资源 大小及位置进行确定, 且与第二部分的一致。 比如, 上行授权 (UL grant) 分配给用 户的 RB数目为 2个, 即第二部分三个子帧的 RB数目均为 2, 且具体频域位置也给出 了。那么, 第一个子帧所用的 RACH序列的长度就应该为 24 (假设这里仍然采用连续 子载波映射的方式), 且子帧的频域位置与后面子帧一致。序列的时域长度为可以为一 个子帧, 第二个子帧重复第一个子帧, 或者序列的时域长度就为 2个子帧, 即两个子 帧用一个 CP。 接收端根据收到的真实前导序列以及已知的前导序列对信道进行估计, 然后基于 信道变化缓慢的特点, 再根据估计出的信道相应频域位置的信息, 对接收到的第二部 分三个子帧的目标数据进行相干解调, 然后将解调得到的数据累加, 达到提升覆盖的 目的。 实施例 5 本实施例对 TDD系统, 下行数据信道 PDSCH第一部分为辅助解调数据, 第二部 分传输目标数据, 且采用子帧间跳频方式的情况进行说明。 该情况下, 下行数据信道的结构和传输方式采用如图 9所示的方式。 第一部分包含一个子帧, 辅助解调数据采用的终端之前已经检测到的 SIB/MIB消 息, 即, 终端已知的信息。 第一部分仅包含一个子帧, 不采用跳频方式, 第二部分包 含 4个子帧, 且采用子帧间跳频, 即每个子帧的频域位置都是变化的。 这里的子帧间 跳频方式为预定义方式, 或者信令通知。 其中, SIB/MIB的频域位置根据后面四个子帧的频域范围大小隐含确定。 至少覆 盖目标数据所有子帧的频域范围, 如图 9所示。 然后数据的长度根据频域范围确定。 终端在接收到该下行数据信道后,先根据之前检测到的正确的 SIB或者 MIB消息 与当前接收到的第一部分的数据做一次信道估计, 估计出后面所有子帧频域位置的信 道系数。 然后再对后面每个子帧做数据解调。 这样省略了之前每个子帧都做信道估计 的过程。 实施例 6 本实施例对 FDD系统, 下行数据信道第一部分为辅助解调数据,第二部分目标数 据采用跳频方式的情况进行说明。 这里, 跳频粒度增大到多个子帧, 即多子帧绑定跳频, 并且辅助解调数据所占据 的子帧也可以为多个子帧。 如图 10所示: 第一部分辅助解调数据为预定义的信息块, 也就是接收端已知的 信息。 并且, 该信息块重复发送两个子帧, 即每个子帧承载的信息相同, 并且该辅助 解调数据的频域位置覆盖后面目标数据所有子帧的频域范围。第二部分包含六个子帧, 每个子帧承载的数据包相同, 且每连续两个子帧的频域位置是相同的, 在第三个子帧 和第五个子帧进行跳频。 终端在接收到该下行数据信道后, 先根据当前接收到的第一部分的数据与之前已 知的信息块做一次信道估计, 估计出后面所有子帧频域位置的信道系数。 然后再对后 面每个子帧做数据解调。 这样可以同时获得信道估计增益和分集增益。 实施例 7 本实施例对 FDD系统, 上行数据信道第一部分为辅助解调数据,第二部分目标数 据采用跳频方式的情况进行说明。 如图 11所示, 这里, 目标数据采用时隙内跳频, 此时第一部分的辅助解调数据也 采用时隙内跳频, 且跳频方式与第二部分数据的跳频方式一致。 辅助解调数据为 SR (调度请求) 序列。 第二部分包含 20个子帧, 且每个子帧承载相同的数据包。 跳频图样可以采用预定义方式或者信令通知具体频域位置方式进行。 该传输方式可以是周期重复的, 每隔一段时间发送一次, 如图 11所示。 基站在接收到该上行数据信道后, 先根据接收到的第一部分的数据与之前已知的 调度请求信息做一次信道估计, 估计出相应频域位置的信道系数。 然后再对后面 20 个子帧做数据解调, 并将解调后的结果做累加译码。 实施例 8 该实施例对基站给终端配置下发辅助解调数据所用的序列或者训练数据, 以及各 个部分包含的子帧数目一些信息的具体通知方式进行说明。 基站通过以下方式之一通知终端本发明数据信道传输的相关配置信息及调度信 息。 方式一: 通过物理信令通知; 对本发明的数据信道的传输方式, 可以定义一种新的 DCI格式, formatOX, 来指 示这种多个子帧的传输信息; 方式二: 通过高层信令通知; 方式三: 根据 PRACH信息来确定每个部分包含的子帧数目以及所用的序列。 比如, 上行直接采用 PRACH用的根序列作为辅助解调数据, 但序列的长度要根 据频域资源确定。 或者信令给出第一部分的频域资源位置, 后面第二部分每个子帧根 据第一部分的资源来隐含确定。 实施例 9 该实施例对传输的导频, 辅助解调数据及目标数据的子载波映射方式进行说明。 映射方式可以采用下面所述方式之一: 方式一: 映射到连续的子载波上。 方式二: 映射到等间隔的子载波上, 子载波间隔通过预定义或者信令通知的方式 确定。 间隔的大小最好为 12的约数, 比如, 1,2,3,4,6。 例如, 上行数据信道一个子帧的资源映射结构如图 12所示: 子帧为 Normal CP,
UE分配的 RB数目为连续的 2个, 并且信令通知子载波间隔为 3, 则 UE只能在子载 波 0,3,6,9, 12,15,18, 21上发送数据 (相当于子载波间隔为 45kHz)。 该图虽然仅给出一个子帧的映射示例, 但实施例 1~8所给出的数据信道包含的所 有子帧结构,比如导频及辅助解调数据和传输的目标数据都可以采用图 12的方式进行 间隔的子载波映射。 映射的时候采用先频域映射, 后时域映射的方式, 映射到相应的子载波上面。 使用间隔子载波映射的方式, 可以增强对频偏影响的抑制能力, 并且, 接收机的 定时误差要求可以大幅放松, 并且可以频分复用更多的用户。 实施例 10 本实施例对下行数据信道一个子帧的资源映射情况进行说明。 如图 13所示, 该示例给出的是 extended CP的一个子帧, 下行数据信道每个子帧 导频和数据映射的子载波间隔为 6, 相当于子载波间隔为 90kHz。 即导频和数据每隔 6 个子载波映射一个调制符号。 并且, 时域上相邻两个符号是错开的。 映射的时候也是 按照采用先频域映射, 后时域映射的方式, 映射到相应的子载波上面。 值得注意的是, 采用非连续子载波映射, 相应的导频及辅助解调数据的长度要按 照映射方式进行确定。 比如分配给某 UE只有 1个 PRB, 假设子载波映射间隔为 2, 如果采用导频序列做信道估计, 则导频序列长度为 6, 而现有标准中并没有导频长度 为 6的导频。 解决方法: 重新设计相应长度的导频序列或者采用长度可灵活配置的辅 助解调数据。如果非用导频, 可以规定最小分配的 PRB数目大于等于子载波间隔所包 含的子载波数目。 实施例 11 本实施例对数据信道的传输方法的周期性进行说明。 该数据信道的传输方式可以是按照预定义好的周期自动重复进行的, 每个周期各 个部分包含的子帧数目及导频和数据的配置是预定义好的, 数据包的传输配置参数也 是固定的。 针对 MTC 周期上报的业务, 可以根据业务周期定义该传输方式的传输间 隔。 比如, 上报的业务周期为 5s, 每次可以连续或者非连续的 20个子帧, 每 10个子 帧为一个周期, 在每 10个子帧中, 第一部分包含的子帧数目为 2, 即后面第二部分传 输目标数据所占据的子帧数目为 8。 此外, 该传输方式还可以是半静态配置的, 每次收到信令触发后, 采用预定义子 帧数目和结构进行数据信道的传输。 或者, 是动态调度的, 每次都是通过物理或者高层信令触发来进行数据信道的传 输, 这样每次子帧的配置和结构就可以不相同。 比如, 针对 MTC 非周期, 突发的上 报业务, 每次基站都可以通过信令来进行灵活的配置。 从上述实施例可以看出, 本发明实施例实现了以下有益效果: 通过第一部分发送 的导频及辅助解调数据及第二部分目标数据子帧自身的导频做联合信道估计, 解决了 业务信道在低 SINR的情况下, 信道估计不准确的问题。 并且, 通过在连续多个单位 帧上重复传输目标数据, 提高了相对静止的 MTC 终端数据信道的覆盖, 保证和网络 正常的通信。 为了描述简便, 上述实施例仅以第一部分位于第二部分前面说明, 但不排除其他 位置关系, 所述第一部分和第二部分关系位置关系可以存在多种可能, 如: 第二部分 位于第一部分前面, 或者, 第二部分位于第一部分中间, 或者, 第一部分和第二部分 是交叉存在的, 可以等间隔交叉, 也可以不等间隔交叉; 图 14和图 15各给出一种举 例, 具体应用存在着多种形式, 包括不限于图 14和图 15举例的情况。 在另外一个实施例中, 还提供了一种软件, 该软件用于执行上述实施例及优选实 施方式中描述的技术方案。 在另外一个实施例中, 还提供了一种存储介质, 该存储介质中存储有上述软件, 该存储介质包括但不限于: 光盘、 软盘、 硬盘、 可擦写存储器等。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人 员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何 修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。 工业实用性 本发明提供的上述技术方案, 可以应用于数据信道的传输以及接收过程中, 采用 将数据信道划分为两部分, 并根据第二部分的信道估计信息对第一部分的信道估计信 息进行补偿校准或根据第一部分的信道估计信息对第二部分传输的数据进行解调的技 术手段, 解决了相关技术中, 采用原有的上下行数据传输方式信道估计准确性不强, 以及覆盖性能较低等技术问题, 从而确保了接收端对发生的目标数据的相干解调的准 确性以及提升了数据信道的覆盖性能。

Claims

权 利 要 求 书 一种数据信道的传输方法, 应用于基站, 包括:
获取待传输数据;
在多个子帧上传输数据信道所承载的所述待传输数据, 其中, 所述数据信 道至少包含两个部分, 第一部分包含的导频符号数量多于第二部分包含的导频 符号数量; 和\或, 第一部分用于传输辅助解调数据, 第二部分用于传输目标数 据。 根据权利要求 1所述的方法, 其中, 所述第一部分中, 导频和数据所占资源的 比例不小于预设阈值; 所述第二部分中, 导频和数据所占的资源比例小于所述 预设阈值。 根据权利要求 2所述的方法, 其中, 所述第一部分和 /或第二部分包括的导频和 数据所占资源的比例采用以下之一方式确定:
信令配置方式、 预定义方式, 根据物理随机接入信道 PRACH格式确定。 根据权利要求 1所述的方法, 其中, 所述辅助解调数据的频域位置由信令指示 或者根据所述目标数据的频域位置确定。 根据权利要求 1所述的方法, 其中,
所述第二个部分包括的承载导频的正交频分复用 OFDM符号数量为 0; 或 者,
N个子帧包括 k (0<k<=N)个承载导频的 OFDM符号, 其中, N为用于承 载所述第二部分的子帧的数量; 或者,
N个子帧中的每个子帧包括 2个承载导频的 OFDM符号; 或者,
N个子帧中的每个子帧包括 4个承载导频的 OFDM符号。 根据权利要求 1所述的方法, 其中, 所述数据信道的导频符号采用时分复用的 方式来进行传输。 根据权利要求 6所述的方法, 其中, 按照以下方式之一对所述数据信道的导频 符号采用时域复用的方式来进行传输: 每个 OFDM符号对应一个导频序列; 每一个时隙对应一个导频序列; 一个 或多个子帧对应一个导频序列。
8. 根据权利要求 1所述的方法, 其中, 所述辅助解调数据通过以下方式确定: 发送端和接收端约定采用指定信息作为所述辅助解调数据。
9. 根据权利要求 8所述的方法, 其中, 所述辅助解调数据包括以下至少之一: 上下行导频序列、 系统信息块 SIB/主信息块 MIB、 同步信号、 PRACH信 息、 调度请求信息、 预定义的信息块。
10. 根据权利要求 1所述的方法, 其中, 用于承载所述第一部分的多个子帧均承载 相同的辅助解调数据; 或用于承载所述第一部分的多个子帧中的每个子帧承载 所述辅助解调数据的一部分。
11. 根据权利要求 1所述的方法, 其中, 所述目标数据的频域位置由信令指示或者 根据所述传输辅助解调数据的频域位置确定。
12. 根据权利要求 1所述的方法, 其中, 在多个子帧上传输数据信道所承载的所述 待传输数据之前, 包括:
将所述数据信道承载的所述待传输数据映射到连续或等间隔的子载波上。
13. 根据权利要求 1所述的方法, 其中, 所述多个子帧中的每个子帧的频域位置通 过以下之一方式确定:
预定义方式、 通过信令指示跳频方式。
14. 根据权利要求 13所述的方法, 其中, 所述跳频方式所对应的跳频为 K个子帧 绑定跳频, 其中, 1<Κ<Ν/2, K为整数, N为用于承载所述第二部分的子帧的 数量。
15. 根据权利要求 1所述的方法, 其中, 所述第一部分包含的子帧数量和第二部分 包含的子帧数量均通过以下之一方式确定:
通过信令通知; 根据物理随机接入信道 PRACH确定。
16. 一种数据信道的接收处理方法, 应用于终端, 包括: 获取数据信道的配置规则, 其中, 所述配置规则包括: 数据信道至少包含 两个部分, 第一部分包含的导频符号数量多于第二部分包含的导频符号数量; 和\或, 第一部分用于传输辅助解调数据, 第二部分用于传输目标数据;
按照所述配置规则在多个子帧上接收数据信道所承载的待传输数据。
17. 根据权利要求 16所述的方法, 其中, 所述第一部分中, 导频和数据所占资源的 比例不小于预设阈值; 所述第二部分中, 导频和数据所占的资源比例小于所述 预设阈值。
18. 根据权利要求 17所述的方法, 其中, 所述第一部分和 /或第二部分包括的导频 和数据所占资源的比例采用以下之一方式确定:
信令配置方式、 预定义方式, 物理随机接入信道 PRACH格式。
19. 根据权利要求 16所述的方法,其中,所述辅助解调数据的频域位置由信令指示 或者根据所述目标数据的频域位置确定。
20. 根据权利要求 16所述的方法, 其中,
所述第二个部分包括的承载导频的 OFDM符号数量为 0; 或者,
N个子帧包括 k (0<k<=N)个承载导频的 OFDM符号, 其中, N为用于承 载所述第二部分的子帧的数量; 或者,
N个子帧中的每个子帧包括 2个承载导频的 OFDM符号; 或者,
N个子帧中的每个子帧包括 4个承载导频的 OFDM符号。
21. 根据权利要求 16所述的方法,其中,所述数据信道的导频符号采用时分复用的 方式来进行传输。
22. 根据权利要求 21所述的方法,其中,按照以下方式之一对所述数据信道的导频 符号采用时域复用的方式来进行传输:
每个 OFDM符号对应一个导频序列; 每一个时隙对应一个导频序列; 一个 或多个子帧对应一个导频序列。
23. 根据权利要求 16所述的方法, 其中, 所述辅助解调数据通过以下方式确定: 发送端和接收端约定采用指定信息作为所述辅助解调数据。
24. 根据权利要求 23所述的方法, 其中, 所述辅助解调数据包括以下至少之一: 上下行导频序列, 系统信息块 SIB/主信息块 MIB, 同步信号, PRACH信 息, 调度请求信息和预定义的信息块。
25. 根据权利要求 16所述的方法,其中,用于承载所述第一部分的多个子帧均承载 相同的辅助解调数据; 或用于承载所述第一部分的多个子帧中的每个子帧承载 所述辅助解调数据的一部分。
26. 根据权利要求 16所述的方法,其中,所述目标数据的频域位置由信令指示或者 根据所述传输辅助解调数据的频域位置确定。
27. 根据权利要求 16所述的方法,其中,在多个子帧上传输所述数据信道所承载的 数据之前, 包括:
将所述数据信道承载的数据映射到连续或等间隔的子载波上。
28. 根据权利要求 16所述的方法,其中,所述多个子帧中的每个子帧的频域位置通 过以下之一方式确定:
预定义方式、 通过信令指示跳频方式。
29. 根据权利要求 28所述的方法, 其中, 所述跳频方式所对应的跳频为 K个子帧 绑定跳频, 其中, 1<Κ<Ν/2, K为整数, N为用于承载所述第二部分的子帧的 数量。
30. 根据权利要求 16所述的方法,其中,所述第一部分包含的子帧数量和第二部分 包含的子帧数量均通过以下之一方式确定:
通过信令通知; 根据物理随机接入信道 PRACH确定。
31. 根据权利要求 16至 30任一项所述的方法, 其中, 所述数据信道所承载的数据 包括: 上行数据或下行数据。
32. 一种数据信道的传输装置, 应用于基站, 包括:
获取模块, 用于获取待传输数据;
传输模块, 用于在多个子帧上传输数据信道所承载的所述待传输数据, 其 中, 所述数据信道至少包含两个部分, 第一部分包含的导频符号数量多于第二 部分包含的导频符号数量; 和\或, 第一部分用于传输辅助解调数据, 第二部分 用于传输目标数据。 一种数据信道的接收处理装置, 应用于终端, 包括:
获取模块, 用于获取数据信道的配置规则, 其中, 所述配置规则包括: 数 据信道至少包含两个部分, 第一部分包含的导频符号数量多于第二部分包含的 导频符号数量; 和\或, 第一部分用于传输辅助解调数据, 第二部分用于传输目 标数据;
接收模块, 用于按照所述配置规则在多个子帧上接收数据信道所承载的待 传输数据。
PCT/CN2014/072015 2013-04-03 2014-02-13 数据信道的传输、接收处理方法及装置 WO2014161389A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/781,238 US20160056934A1 (en) 2013-04-03 2014-02-13 Transmitting or Receiving Processing Method and Apparatus for Data Channel
EP14778716.2A EP2983430A4 (en) 2013-04-03 2014-02-13 METHOD AND DEVICE FOR TRANSMITTING AND RECEIVING DATA CHANNELS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310116112.9A CN104105138B (zh) 2013-04-03 2013-04-03 数据信道的传输、接收处理方法及装置
CN201310116112.9 2013-04-03

Publications (1)

Publication Number Publication Date
WO2014161389A1 true WO2014161389A1 (zh) 2014-10-09

Family

ID=51657555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072015 WO2014161389A1 (zh) 2013-04-03 2014-02-13 数据信道的传输、接收处理方法及装置

Country Status (4)

Country Link
US (1) US20160056934A1 (zh)
EP (1) EP2983430A4 (zh)
CN (1) CN104105138B (zh)
WO (1) WO2014161389A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110636622A (zh) * 2016-06-06 2019-12-31 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
US20220053525A1 (en) * 2018-08-08 2022-02-17 Sharp Kabushiki Kaisha Terminal device, base-station device, and communication method
CN114866379A (zh) * 2022-07-06 2022-08-05 湖北大学 高频谱效率频分复用光通信系统信道估计导频的产生方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219927A (ja) * 2015-05-15 2016-12-22 株式会社Nttドコモ 基地局、ユーザ装置及び報知情報送受信方法
US10911281B2 (en) * 2015-10-20 2021-02-02 Huawei Technologies Co., Ltd. System and method for pilot signal transmission
US10285174B2 (en) 2016-01-11 2019-05-07 Qualcomm Incorporated Uplink data channel design for narrowband devices
CN108886811B (zh) * 2016-03-31 2020-10-09 华为技术有限公司 发送物理随机接入信道prach的方法、设备及系统
EP3836631B1 (en) * 2016-04-12 2023-11-22 Telefonaktiebolaget LM Ericsson (publ) Transmission and reception of system information in parts
WO2017195654A1 (ja) * 2016-05-12 2017-11-16 シャープ株式会社 送信装置、受信装置および通信方法
CN107547094B (zh) * 2016-06-29 2023-08-22 华为技术有限公司 一种信号传输方法及装置
KR102124050B1 (ko) 2016-07-22 2020-06-17 에스케이텔레콤 주식회사 참조신호 전송 장치 및 참조신호 전송 방법
CN107889238B (zh) * 2016-09-30 2021-04-20 华为技术有限公司 资源配置的方法、网络设备和终端设备
CN107889263B (zh) * 2016-09-30 2022-09-13 中兴通讯股份有限公司 数据的发送方法、接收方法、装置、设备和存储介质
US10499371B2 (en) 2016-11-03 2019-12-03 Samsung Electronics Co., Ltd. Method and apparatus of flexible data transmissions and receptions in next generation cellular networks
US10834759B2 (en) 2017-03-20 2020-11-10 Motorola Mobility Llc Feedback for a system information request
KR102602335B1 (ko) 2017-03-23 2023-11-17 삼성전자 주식회사 통신 시스템에서 상향링크 제어 채널의 전송 방법 및 장치
US10405305B2 (en) 2017-03-24 2019-09-03 Qualcomm Incorporated Single slot short PUCCH with support for intra slot frequency hopping
US10680866B2 (en) * 2017-03-24 2020-06-09 Huawei Technologies Co., Ltd. Sounding reference signal design
BR112019019690A2 (pt) * 2017-05-03 2020-04-14 Motorola Mobility Llc retorno para uma solicitação de informação de sistema
US10743257B2 (en) * 2017-09-15 2020-08-11 Qualcomm Incorporated Techniques and apparatuses for wakeup signal transmission
CN110831238B (zh) * 2018-08-09 2022-12-30 中兴通讯股份有限公司 数据的发送、资源的获取方法及装置
CN112514483B (zh) * 2019-06-29 2023-11-17 华为技术有限公司 一种通信方法及装置
CN112578692B (zh) * 2019-09-27 2022-04-15 北京东土科技股份有限公司 工业总线通信方法、装置、计算机设备及存储介质
CN117098179A (zh) * 2022-05-09 2023-11-21 华为技术有限公司 通信方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773976A (zh) * 2004-11-08 2006-05-17 中兴通讯股份有限公司 Ofdm系统中自适应导频插入的方法
CN1852069A (zh) * 2005-10-10 2006-10-25 华为技术有限公司 一种无线通信系统中导频的实现方法
CN102685890A (zh) * 2011-03-08 2012-09-19 中兴通讯股份有限公司 一种导频的发送方法及系统
CN102916920A (zh) * 2011-08-05 2013-02-06 华为技术有限公司 一种导频信号发送方法和设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102035777B (zh) * 2009-09-24 2014-03-12 中兴通讯股份有限公司 解调导频的处理方法和系统、配置方法、基站、用户设备
CN102739382A (zh) * 2011-03-25 2012-10-17 北京新岸线无线技术有限公司 无线通信系统中解调导频的调整方法及系统
CN108282324B (zh) * 2012-08-10 2022-01-14 华为技术有限公司 无线通信系统中的方法和节点

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773976A (zh) * 2004-11-08 2006-05-17 中兴通讯股份有限公司 Ofdm系统中自适应导频插入的方法
CN1852069A (zh) * 2005-10-10 2006-10-25 华为技术有限公司 一种无线通信系统中导频的实现方法
CN102685890A (zh) * 2011-03-08 2012-09-19 中兴通讯股份有限公司 一种导频的发送方法及系统
CN102916920A (zh) * 2011-08-05 2013-02-06 华为技术有限公司 一种导频信号发送方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2983430A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110636622A (zh) * 2016-06-06 2019-12-31 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN110636622B (zh) * 2016-06-06 2022-12-27 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
US12003448B2 (en) 2016-06-06 2024-06-04 Shanghai Langbo Communication Technology Company Limited Method and device for wireless communication
US20220053525A1 (en) * 2018-08-08 2022-02-17 Sharp Kabushiki Kaisha Terminal device, base-station device, and communication method
CN114866379A (zh) * 2022-07-06 2022-08-05 湖北大学 高频谱效率频分复用光通信系统信道估计导频的产生方法

Also Published As

Publication number Publication date
US20160056934A1 (en) 2016-02-25
EP2983430A4 (en) 2016-04-06
CN104105138A (zh) 2014-10-15
EP2983430A1 (en) 2016-02-10
CN104105138B (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
WO2014161389A1 (zh) 数据信道的传输、接收处理方法及装置
KR102233034B1 (ko) 무선 통신 시스템에서 선점 지시의 사이즈 결정을 위한 방법 및 장치
US10420135B2 (en) Physical random access channel design in eLAA
JP5698401B2 (ja) Sc−fdma通信システムにおける制御信号及びデータ信号の送信のための周波数リソースの分割
US11489709B2 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
US20210337597A1 (en) Terminal apparatus, base station apparatus, and communication method
TWI772312B (zh) 基於無線網絡的通信方法、終端設備和網絡設備
US20200008102A1 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
US20190013982A1 (en) Methods for enb, ue uplink transmission and reception
KR20180081450A (ko) 상향링크 제어정보 전송 방법 및 장치
EP3681224A1 (en) Terminal device and communication method
JP2019504543A (ja) 未ライセンスキャリアのためのアップリンク制御チャネル構成
EP2540025A1 (en) Methods and arrangements for dynamically triggering the transmission of sounding reference signal in a telecommunication system
JPWO2018123468A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
JP2019179984A (ja) 基地局装置、端末装置、通信方法、および、集積回路
CN108476127B (zh) 根据dmrs分配隐式推导频率同步
WO2020031701A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020066852A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
JP2019179983A (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020031700A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020066853A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
JP2019179981A (ja) 基地局装置、端末装置、通信方法、および、集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778716

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014778716

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14781238

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE