WO2014161276A1 - 一种三维空间坐标的检测方法、三维输入方法及相应装置 - Google Patents

一种三维空间坐标的检测方法、三维输入方法及相应装置 Download PDF

Info

Publication number
WO2014161276A1
WO2014161276A1 PCT/CN2013/083535 CN2013083535W WO2014161276A1 WO 2014161276 A1 WO2014161276 A1 WO 2014161276A1 CN 2013083535 W CN2013083535 W CN 2013083535W WO 2014161276 A1 WO2014161276 A1 WO 2014161276A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
ultrasonic
finger
target
point
Prior art date
Application number
PCT/CN2013/083535
Other languages
English (en)
French (fr)
Inventor
李小建
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014161276A1 publication Critical patent/WO2014161276A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/043Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/041012.5D-digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface and also measures the distance of the input means within a short range in the Z direction, possibly with a separate measurement setup

Definitions

  • the present invention relates to an input device for a mobile terminal, and more particularly to a method for detecting three-dimensional space coordinates, a three-dimensional input method, and a corresponding device.
  • Mobile terminal As a personal portable electronic device for modern people, the mobile terminal has many functions and outstanding performance, and is a good tool for work and entertainment.
  • Mobile terminals broadly include: mobile phones, notebooks, tablets, POS (Point Of Sale) machines, and even on-board computers, but in most cases are mobile phones or smartphones with multiple application functions and tablets.
  • the input function is an essential function of the mobile terminal and has a great influence on the user experience.
  • Three-dimensional input electronic devices on the market such as remote control, writing pen or finger cot, can input various information in three-dimensional space.
  • the corresponding auxiliary electronic device must be held for inputting information, which is relatively inconvenient to use.
  • the technical problem to be solved by the present invention is to provide a method for detecting three-dimensional space coordinates, a three-dimensional input method and a corresponding device, so that when the user uses the mobile terminal, the mobile terminal itself can be freed without holding an additional auxiliary electronic device. Act in three dimensions.
  • the present invention provides a method for detecting three-dimensional space coordinates, including: The near-point distance and the far-distance distance of the target finger object are respectively measured by three or more ultrasonic ranging devices disposed on the same line around the mobile terminal, and the obtained three or more near-point distances and far distances are used. The point distance, combined with the spatial coordinates of the corresponding ultrasonic distance measuring device, calculates the calculation center point coordinates of the finger target.
  • the measuring the near point distance and the far point distance of the finger target include:
  • the ultrasonic wave is transmitted and the timing is started; the time point T1 of the first reflected wave received within the effective measurement duration and the time point of the last reflected wave received within the effective measurement duration are recorded. T2; wherein, the value of the effective measurement duration is equal to 2 times the quotient of the maximum measured effective distance of the ultrasonic distance measuring device and the ultrasonic wave velocity;
  • the value of the time point T2 is set to the sum of TO and the effective measurement duration.
  • Each of the ultrasonic distance measuring devices measures the near point distance and the far point distance of the finger target in turn in a certain order under the control of the mobile terminal.
  • the three or more ultrasonic ranging devices disposed on the same line around the mobile terminal respectively measure the near point distance and the far point distance of the finger target using different wave frequencies.
  • the three or more ultrasonic ranging devices disposed on the same line around the mobile terminal respectively measure the near point distance and the far point distance of the finger target using different wave frequencies.
  • the method further includes: determining whether the measured ultrasonic distance measuring device of the near point distance and the far point distance obtained by each group is a front end point;
  • the coordinates of the center point of the finger target including:
  • the calculation center point coordinates of the finger target are calculated.
  • the invention also provides a three-dimensional input method, comprising:
  • three-dimensional spatial coordinates of the target finger target are tracked and measured by three or more ultrasonic ranging devices disposed on the same line around the mobile terminal, correspondingly displayed to the movement In the terminal.
  • the detecting that the preset trigger action is triggered includes any one of the following methods:
  • the finger target is detected to draw a preset graphic on the front side of the mobile terminal.
  • the measuring three-dimensional spatial coordinates of the finger target includes:
  • the three or more sets of ultrasonic distance measuring devices respectively measure the near point distance and the far point distance of the finger target, and use the obtained three sets of near point distance and far point distance. And calculating the coordinates of the calculation center point of the target finger object according to the spatial coordinates of the corresponding ultrasonic distance measuring device.
  • the measuring the near point distance and the far point distance of the finger target include:
  • the ultrasonic wave is transmitted and the timing is started; the time point T1 of the first reflected wave received within the effective measurement duration and the time point of the last reflected wave received within the effective measurement duration are recorded. T2; wherein, the value of the effective measurement duration is equal to 2 times the quotient of the maximum measured effective distance of the ultrasonic distance measuring device and the ultrasonic wave velocity;
  • the value of the time point T2 is set to the sum of TO and the effective measurement duration.
  • Each of the ultrasonic distance measuring devices alternately measures the near point distance and the far point distance of the finger target under the control of the mobile terminal.
  • the ultrasonic ranging devices disposed on the same line around the mobile terminal and using the different transmitting wave frequencies respectively measure the near point distance and the far point distance of the finger target.
  • the method further includes: determining whether the measurement side ultrasonic distance measuring device of each group of the near point distance and the far point distance is a front end point;
  • Calculating the calculated center point coordinates of the finger target including:
  • the present invention also provides a three-dimensional space coordinate detecting device, comprising: an ultrasonic positioning module and a control and processing module;
  • the ultrasonic positioning module is configured to: include three or more ultrasonic ranging devices disposed on the same line around the mobile terminal, and each group of ultrasonic ranging devices is configured to: respectively measure a near point distance of the target of the finger And a distance from the far point, and sent to the control and processing module; the control and processing module is configured to: use three or more sets of near-point distance and far-distance distance, and combine the spatial coordinates of the corresponding ultrasonic distance measuring device Calculating the coordinates of the calculation center point of the finger target.
  • the ultrasonic distance measuring device is configured to: measure a near point distance and a far point distance of the finger target, including:
  • the ultrasonic distance measuring device emits ultrasonic waves and starts timing; recording a time point T1 of the first reflected wave received within the effective measuring time period and a time point T2 of the last reflected wave received within the effective measuring time period; Wherein, the value of the effective measurement duration is equal to 2 times the quotient of the maximum measured effective distance of the ultrasonic distance measuring device and the ultrasonic wave velocity;
  • the near point distance of the finger target is equal to T1 and TO
  • the far-point distance of the pseudo-finger target is equal to the product of the difference between T2 and TO and half of the ultrasonic wave velocity.
  • the ultrasonic distance measuring device is further configured to: if only one reflected wave is received within the effective measurement duration, set the value of the time point T2 to the sum of TO and the effective measurement duration.
  • Each set of ultrasonic ranging devices is configured to: respectively measure a near point distance and a far point distance of the finger target, including: The ultrasonic distance measuring devices of the groups respectively measure the near point distance and the far point distance of the finger target in turn in a certain order under the control of the control and processing module.
  • Each set of ultrasonic ranging devices is configured to: respectively measure a near point distance and a far point distance of the finger target, including:
  • the sets of ultrasonic ranging devices respectively measure the near point distance and the far point distance of the finger target using different transmitted wave frequencies.
  • the control and processing module is further configured to: before calculating the coordinates of the calculated center point of the finger target, determine whether the measured ultrasonic distance measuring device of the near point distance and the far point distance obtained by each group is the front end point;
  • the control and processing module is configured to: calculate a calculation center point coordinate of the finger target, including:
  • the control and processing module calculates the calculated center point coordinates of the target finger object by using the near point distance and the far point distance measured by the front end point and combining the spatial coordinates of the corresponding ultrasonic distance measuring device.
  • the present invention also provides a three-dimensional input device, including:
  • the control and processing module is configured to: when it is learned that the preset trigger action is triggered, control three or more groups of ultrasonic ranging devices that are not on the same line around the mobile terminal to start tracking and measuring the three-dimensional space coordinates of the target position of the finger Receiving measurement results sent by each group of ultrasonic ranging devices, performing corresponding calculations, and transmitting to the mobile terminal side;
  • Each group of ultrasonic ranging devices is configured to: under the control of the control and processing module, track the three-dimensional spatial coordinates of the target position of the finger, and send the measurement results to the control and processing module.
  • the control and processing module learns that the preset trigger action is triggered, including any one of the following the way:
  • the control and processing module learns that the finger target clicks a start icon of the three-dimensional input application displayed on the display touch screen on the front side of the mobile terminal; or
  • the control and processing module learns that the finger-finger target clicks a button that is set to activate a three-dimensional input application on the front side of the mobile terminal; or
  • the control and processing module learns that the finger target is hovering over the front position of the mobile terminal for a period of time; or
  • the control and processing module learns that the finger-like object draws a preset graphic on the front side of the mobile terminal.
  • Each set of ultrasonic ranging devices is configured to: measure three-dimensional spatial coordinates of the target finger, including:
  • the ultrasonic distance measuring device of each group respectively measures the near point distance and the far point distance of the finger target in each measurement process, and gives the control and processing module as the measurement result;
  • the control and processing module is further configured to: receive measurement results sent by each group of ultrasonic ranging devices, and perform corresponding calculations, including:
  • the control and processing module uses the obtained three or more sets of near-point distance and far-distance distance, and calculates the calculation center point coordinates of the target finger object in combination with the spatial coordinates of the corresponding ultrasonic distance measuring device.
  • Each set of ultrasonic ranging devices is configured to: measure a near point distance and a far distance of the target of the finger, including:
  • Each of the sets of ultrasonic ranging devices transmits ultrasonic waves and starts timing; records a time point T1 of the first reflected wave received within the effective measurement duration and a time point of the last reflected wave received within the effective measurement duration T2; wherein, the value of the effective measurement duration is equal to 2 times the quotient of the maximum measured effective distance of the ultrasonic distance measuring device and the ultrasonic wave velocity; and the calculated time is calculated according to the T1, ⁇ 2 and the time point TO at the start of timing
  • the near point distance and the far point distance of the finger target The near-point distance of the pseudo-finger target is equal to the product of the difference between T1 and TO and half of the ultrasonic wave velocity; the far-point distance of the pseudo-finger target is equal to the product of the difference between T2 and TO and half of the ultrasonic wave velocity.
  • the sets of ultrasonic ranging devices are further configured to: if only one reflected wave is received within the effective measurement duration, set the value of the time point T2 to the sum of TO and the effective measurement duration.
  • Each set of ultrasonic ranging devices is configured to: respectively measure a near point distance and a far point distance of the finger target, including:
  • the sets of ultrasonic ranging devices alternately measure the near point distance and the far point distance of the target finger object under the control of the control and processing module.
  • Each set of ultrasonic ranging devices is configured to: respectively measure a near point distance and a far point distance of the finger target, including:
  • the sets of ultrasonic ranging devices respectively measure the near point distance and the far point distance of the finger target using different transmitted wave frequencies.
  • the control and processing module is further configured to: before calculating the coordinates of the center point of the target of the finger target, determine whether the measuring ultrasonic distance measuring device of each group of the near point distance and the far point distance is the front end point;
  • the control and processing module is configured to: calculate a calculation center point coordinate of the finger target, including:
  • the control and processing module calculates the calculated center point coordinates of the target finger object by using the near point distance and the far point distance measured by the front end point and combining the spatial coordinates of the corresponding ultrasonic distance measuring device.
  • the embodiment of the invention does not require the user to use an additional remote control device, a writing pen or a finger sleeve and other additional auxiliary electronic devices, and the input operation can be completed by hand, and the operation is more free and convenient.
  • FIG. 1 is a schematic structural view of a three-dimensional input device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an ultrasonic ranging device for transmitting and receiving ultrasonic waves according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a spatial hemisphere according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a plurality of spatial hemispheres formed by data respectively measured by a plurality of sets of ultrasonic ranging devices according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a start time of a trajectory tracking operation according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an instantaneous measurement polyhedron activated by a trajectory tracking operation according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a finger when a finger moves according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of moving a center of a preset measurement sphere and a preset space sphere according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing results of moving a center of a preset measurement sphere and a preset space sphere according to an embodiment of the present invention.
  • FIG. 10 is a schematic view showing a mounting position of six ultrasonic transducers in an embodiment of the present invention.
  • Figure 11 is a schematic view showing the mounting manner and the angle of the ultrasonic transducer on the front side of the tablet computer in the embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a start-up input process of a user clicking a three-dimensional input application by a finger according to an embodiment of the present invention
  • FIG. 13 is a schematic diagram showing the position of a front end point according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram showing a possible angle of a user's finger in an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of effective measurement data of each group in the embodiment of the present invention. Preferred embodiment of the invention
  • a method for detecting three-dimensional space coordinates includes: The near-point distance and the far-distance distance of the target finger object are respectively measured by three or more ultrasonic ranging devices disposed on the same line around the mobile terminal, and the obtained three or more near-point distances and far distances are used. The point distance, combined with the spatial coordinates of the corresponding ultrasonic distance measuring device, calculates the calculation center point coordinates of the finger target.
  • the measuring the near point distance and the far point distance of the finger target include:
  • the ultrasonic wave is transmitted and the timing is started; the time point T1 of the first reflected wave received within the effective measurement duration and the time point of the last reflected wave received within the effective measurement duration are recorded. T2; wherein, the value of the effective measurement duration is equal to 2 times the quotient of the maximum measured effective distance of the ultrasonic distance measuring device and the ultrasonic wave velocity;
  • the value of the time point T2 is set to the sum of TO and the effective measurement duration.
  • Each of the ultrasonic distance measuring devices measures the near point distance and the far point distance of the finger target in turn in a certain order under the control of the mobile terminal.
  • the three or more ultrasonic ranging devices disposed on the same line around the mobile terminal respectively measure the near point distance and the far point distance of the finger target using different wave frequencies.
  • the three or more ultrasonic ranging devices disposed on the same line around the mobile terminal respectively measure the near point distance and the far point distance of the finger target using different wave frequencies.
  • the method further includes: determining whether the measured ultrasonic distance measuring device of the near point distance and the far point distance obtained by each group is a front end point;
  • the calculation center point coordinates of the finger target include: using the near point distance and the far point distance measured by the front end point, and calculating the calculation center point coordinates of the target finger object by combining the spatial coordinates of the corresponding ultrasonic distance measuring device .
  • the invention also provides a three-dimensional input method, comprising:
  • three-dimensional spatial coordinates of the target finger target are tracked and measured by three or more ultrasonic ranging devices disposed on the same line around the mobile terminal, correspondingly displayed to the movement In the terminal.
  • the detecting that the preset trigger action is triggered includes any one of the following methods:
  • the finger target is detected to draw a preset graphic on the front side of the mobile terminal.
  • the measuring the three-dimensional space coordinates of the finger target includes:
  • the three or more sets of ultrasonic distance measuring devices respectively measure the near point distance and the far point distance of the finger target, and use the obtained three sets of near point distance and far point distance. And calculating the coordinates of the calculation center point of the target finger object according to the spatial coordinates of the corresponding ultrasonic distance measuring device.
  • the measuring the near point distance and the far point distance of the finger target include: For each ultrasonic ranging device, the ultrasonic wave is transmitted and the timing is started; the time point T1 of the first reflected wave received within the effective measurement duration and the time point of the last reflected wave received within the effective measurement duration are recorded. T2; wherein, the value of the effective measurement duration is equal to 2 times the quotient of the maximum measured effective distance of the ultrasonic distance measuring device and the ultrasonic wave velocity;
  • the value of the time point T2 is set to the sum of TO and the effective measurement duration.
  • Each of the ultrasonic distance measuring devices alternately measures the near point distance and the far point distance of the finger target under the control of the mobile terminal.
  • the ultrasonic ranging devices disposed on the same line around the mobile terminal and using the different transmitting wave frequencies respectively measure the near point distance and the far point distance of the finger target.
  • the method further includes: determining whether the measurement side ultrasonic distance measuring device of each group of the near point distance and the far point distance is a front end point;
  • a three-dimensional input device includes an ultrasonic positioning module and a control and processing module.
  • the ultrasonic positioning module is configured to measure distance information between each ultrasonic distance measuring device and the object to be measured, and transmit the information to the control and processing module; the control and processing module is configured to control the ultrasonic positioning module to perform ranging operation and receive corresponding data. Information, calculate the three-dimensional coordinates of the object being measured.
  • the ultrasonic positioning module includes three or more ultrasonic ranging devices disposed on the same line around the mobile terminal.
  • the three-dimensional space coordinates of each group of ultrasonic ranging devices are known, and the normal line of the ultrasonic wave transmitting port and the vertical line of the mounting plane of each group of ultrasonic distance measuring devices intersect and the intersection point is located on the same side of the mounting plane (the intersection point is opposite to the mounting plane) One side is subsequently referred to as the front of the mobile terminal).
  • the angle between the normal line of the ultrasonic wave emitting port and the mounting plane in each set of ultrasonic distance measuring device is equal to the half angle of the angle of the effective measuring range of the ultrasonic distance measuring device.
  • the control and processing module includes: a control device that controls the microprocessor chip, the ultrasonic positioning module, and a connection device of the computer host.
  • the various algorithms required to process the data information can be stored either inside the control microprocessor chip or on the host side of the computer.
  • the object to be tested is limited to an object having a finger motion function (hereinafter referred to as a finger target), including but not limited to: a user's finger, a robot that can perform a finger motion, or a finger motion. Other mechanical objects that function.
  • the finger-like target is located within the intersection of the effective measurement ranges of the at least three sets of ultrasonic ranging devices described above.
  • a method for obtaining spatial polyhedral data information by performing three-dimensional spatial positioning on a reflective surface of a finger target object, and calculating a three-dimensional space coordinate of a spatial polyhedron calculation center point (hereinafter referred to as a three-dimensional space coordinate detection method) As described below:
  • the ultrasonic distance measuring device transmits ultrasonic waves, and the ultrasonic measuring device emits ultrasonic waves with a frequency of K, and the preset maximum measuring effective distance is L (measurement information larger than the distance is ignored, the object is too far, and does not wait for the reflected waves. Return).
  • the timing is set to TO), and the reflected wave is returned.
  • the ultrasonic distance measuring device uses the first reflected wave received within the effective measurement duration as the near-point reflected wave, and records the time point T1 (hereinafter referred to as the near-point reflection time point T1) that receives the near-point reflected wave, which will be effective.
  • the last reflected wave received within the measurement duration is used as the far-point reflected wave, and the time point T2 at which the far-point reflected wave is received is recorded (hereinafter referred to as far-point reflection) Interpoint T2).
  • the time points T1 and ⁇ 2 are converted into the near point distance S1 and the far point distance S2 of the target finger target, respectively, with S1 as the inner diameter and S2 as the outer diameter, and ultrasonic waves in the ultrasonic distance measuring device, respectively.
  • This hollow hemisphere is the area where the pseudo-finger target is present in the three-dimensional space by the measurement of the ultrasonic distance measuring device.
  • the measurement result of the ultrasonic finger distance measuring device on the finger target only includes the reflecting surface information of the finger target, and does not indicate the position information of the whole finger target.
  • a marker point capable of representing three-dimensional motion information of a finger target is referred to as a target effective point.
  • the target effective point is included, it is called effective measurement data, and if the target effective point is not included, it is called non-effective measurement data.
  • the algorithm can be used to judge whether the obtained measurement result is valid measurement data, and the measurement result for the effective measurement data is retained, and the measurement result of the non-effective measurement data is discarded. Hollow hemispheres formed from effective measurement data are referred to as effective hollow hemispheres.
  • FIG. 4 there are three or more sets of ultrasonic distance measuring devices which are not on the same straight line and whose positions are fixed and the spatial three-dimensional coordinates are known, and are labeled as a, b, c, ..., respectively.
  • the three-dimensional spatial coordinates of the center position of the ultrasonic wave emitting port in the three sets of ultrasonic distance measuring devices are respectively labeled as (Xa, Ya, Za), (Xb, Yb, Zb), (Xc, Yc, Zc), ...
  • the measurement result is retained if it is valid measurement data, if it is not valid measurement data, it is discarded, and then each group has
  • the effective measurement data near-point reflection time point T1 and far-point reflection time point T2 are converted into an effective hollow hemisphere-a, an effective hollow hemisphere-b, and an effective hollow hemisphere-c.
  • a spatial polyhedron-abc can be obtained.
  • the spatial area where the spatial polyhedron-abc is located must contain the effective point of the target. The more the number of ultrasonic distance measuring devices, the more effective hollow hemispheres are formed, and the more the surface polyhedrons are obtained by intersecting each other, and the shape of the spatial polyhedron is closer to the shape of the real finger-like object.
  • this embodiment is embodied by the positional change of the calculation center point (X, y, z) of the spatial polyhedron -abc. Since the spatial polyhedron-abc is obtained by the intersection of a plurality of effective hollow hemispheres, each surface of the spatial polyhedron-abc belongs to a part of the inner surface or the outer surface of an effective hollow hemisphere, and thus the surface distance of the spatial polyhedron-abc The distance of the respective effective hollow hemisphere sphere is known, that is: when one surface of the space polyhedron-abc is part of the outer surface of the corresponding effective space hemisphere, the surface is away from the center of the corresponding effective hollow hemisphere The distance is equal to the outer diameter of the corresponding effective hollow hemisphere; when a surface of the space polyhedron-abc is a part of the inner surface of the corresponding effective space hemisphere
  • the distance from the spatial polyhedron -abc to the center of each effective hollow hemisphere can be obtained, and then the three-dimensional space coordinates of the calculated center point can be calculated.
  • the coordinates of the point are in a half of the space area with the plane of the three points as the interface. Uniquely determined (there will be another symmetry point in the other half of the space).
  • a method for tracking the motion trajectory of the target finger object and extracting the change of the three-dimensional space coordinate based on the above-described three-dimensional space coordinate detection method is further provided (subsequent Called the 3D input method).
  • the description of the method is as follows:
  • Known premise There are three or more sets of ultrasonic ranging devices that are not on the same straight line, are fixed in position to each other, and have known spatial three-dimensional coordinates, respectively labeled as a, b, c ... ...
  • the three-dimensional spatial coordinates of the ultrasonic launching ports in the three or more ultrasonic ranging devices are marked as (Xa, Ya, Za), (Xb, Yb, Zb), (Xc, Yc, Zc), ... ..., set the ultrasonic frequency of the emission to be Ka,
  • Kb, Kc ... (excluding mutual acoustic interference), set the maximum measured effective distance L (this setting is common to all ultrasonic ranging devices).
  • multiple sets of ultrasonic ranging devices measure the same finger target in turn according to a certain order (such as Index) (multiple sets of ultrasonic ranging devices are measured by Index rotation, which can avoid the maximum possible Mutual interference between each group of ultrasonic ranging devices in the round measurement).
  • the first step of the three-dimensional input method after detecting that the preset trigger action is triggered, starts the tracking operation of the motion track of the target finger object, sets the preset space sphere, sets the preset measurement sphere, and completes the initialization preparation.
  • the preset triggering action refers to a specified action preset by the user on the mobile terminal.
  • the association starts to perform a tracking operation of the action track of the finger target.
  • the finger target is limited to a preset known three-dimensional space region, and the coordinates of the three-dimensional space region are known (hereinafter referred to as initial three-dimensional space coordinates, as to how to obtain the initial three-dimensional space) Coordinates, methods can be varied, this input method does not care how to get the initial 3D space coordinates, only concerned with the start of the trajectory tracking operation, the initial 3D space coordinates are known).
  • the preset triggering action includes, but is not limited to, including: a finger-like target clicks a start icon of the three-dimensional input application displayed on the display touch screen on the front side of the mobile terminal (in this case, the spatial coordinate of the start icon is the initial three-dimensional space coordinate ), or a finger target click on the front of the mobile terminal to set the button to activate the 3D input application (in this case, the spatial coordinates of the button is the initial 3D space coordinates), or the finger target hovering over the mobile
  • the specified position on the front of the terminal continues for a period of time (in this case, the coordinates of the three-dimensional space where the fingertip is hovering is the initial three-dimensional space coordinate), or the finger target draws a preset graphic on the front of the mobile terminal (eg A circle or a figure of eight) (In this case, the coordinates of the position of the three-dimensional space where the tip of the finger is located at the moment of stopping the motion is the initial three-dimensional space coordinates).
  • the initial three-dimensional space coordinates are known, and the initial three-dimensional space coordinates are the center of the sphere (the space is marked as (preset X, preset y, preset z), Subsequently referred to as the preset sphere center, respectively, with preset preset radius (preset R) and measurement radius (measurement R) (the value can be set according to actual needs, see the requirements of the algorithm, there is no hard specified value)
  • a radius two spatial spheres with the same center of the sphere (hereinafter referred to as a preset space sphere and a preset measurement sphere, respectively) can be obtained.
  • the near-point distance and the far-point distance of the preset space sphere and the preset measurement sphere distance from each group of ultrasonic ranging devices can be obtained, and can be converted into related near-point reflection time points and far-point reflection time points:
  • the tip of the finger target ie, the part of the finger target that is used to trigger the preset trigger action
  • the point on the tip is the effective point of the target, and the preset measurement sphere must contain the effective point of the target.
  • the multi-faceted object is measured by a plurality of sets of ultrasonic ranging devices to obtain a spatial polyhedron, and the three-dimensional space region obtained by intersecting the spatial polyhedron with the preset measuring sphere is called a measuring polyhedron.
  • the three-dimensional spatial coordinate changes of the pseudo-finger target are extracted by tracking and measuring the motion trajectory of the polyhedron in the preset space sphere.
  • the second step of the three-dimensional input method after detecting the movement of the target finger object, re-determine the new spatial polyhedron and preset measurement obtained by each ultrasonic distance measuring device by measuring the target object. A new measured polyhedron obtained by the intersection of spheres.
  • the center of the preset measuring sphere (the coordinate position is recorded as (preset X, preset y, preset z)) has not changed.
  • Each group of ultrasonic distance measuring devices obtains three or more effective hollow hemispheres by measuring the target objects, respectively (the effective hollow hemisphere is composed of effective measurement data, and the measurement result must be selected by fl() first, and the discarded is invalid. Data), these effective hollow hemispheres intersect to give a new spatial polyhedron.
  • the new spatial polyhedron intersects with the preset measuring sphere to form a new measuring polyhedron.
  • the calculation center point of the new measurement polyhedron is separated from the center of the preset measurement sphere, and the coordinates of the calculation center point of the newly measured polyhedron are recorded (measure X, measurement y, measurement z).
  • the coordinate calculation method of the calculation center point of the new measurement polyhedron is as follows.
  • the center of the preset measurement sphere and the preset space sphere is moved toward the calculation center point of the new measurement polyhedron.
  • the center of the preset measurement sphere and the preset space sphere (the coordinate position is recorded as (preset X, preset y, preset z)) to the calculation center point of the newly measured polyhedron (coordinate position record) Move in the direction of (new X, new y, new z).
  • the center of the new preset measurement sphere and the new preset measurement sphere can be obtained (the coordinate position is recorded as (new preset X, new preset y, new preset z)), as shown in Fig. 9. Show.
  • the new preset measurement sphere intersects with the new spatial polyhedron to obtain a new measurement polyhedron.
  • the fourth step of the three-dimensional input method transmits the spherical coordinates (preset X, preset y, preset z) of the current preset measurement sphere and the preset space sphere to the host computer, waiting for the next target movement of the target finger .
  • the second step, the third step and the fourth step of sequentially performing the three-dimensional input method are performed to perform an action trajectory tracking operation on the target object.
  • the center of the preset measurement sphere and the preset space sphere coincides with the calculation center point of the finger target, and the measurement multi-faceted body must contain the target object. Effective point.
  • the continuous loop does not stop, and the three-dimensional coordinate information of the motion trajectory of the finger target can be continuously tracked, and the three-dimensional space coordinates of the motion trajectory are reported to the computer host.
  • the fifth step of the three-dimensional input method process error handling.
  • the ultrasonic distance measuring device extracts the effective measurement data by measuring the measurement result obtained by the finger target. If the effective measurement data is less than three groups, the spatial polyhedron of the target finger target cannot be converted, and the calculation center point cannot be obtained.
  • the motion preset measurement sphere and the center of the preset space sphere are not available until the effective measurement range of the ultrasonic distance measuring device is moved.
  • the ultrasonic distance measuring device In the measurement process, if the ultrasonic distance measuring device is blocked by other objects, the measurement data is not correct and the target object of the finger can not be faithfully reflected, and the effective measurement data cannot be obtained.
  • the action track tracking operation of the target finger object fails, and the preset error three-dimensional space coordinates are transmitted to the computer host, and the current action track tracking operation flow is closed, indicating that the three-dimensional input operation fails, waiting for the next time.
  • the wheel 3D input restarts, ie waits for the preset trigger action and re-initializes.
  • Preset error 3D space coordinates refer to a specified 3D space coordinate preset by the mobile terminal, including not limited to (-1, -1, -1)).
  • the three-dimensional input device and method will be described in detail below by way of examples.
  • the mobile terminal selects a tablet.
  • the ultrasonic distance measuring device uses ultrasonic transducers, and the number is six.
  • the installation position of the ultrasonic transducer is as follows:
  • the six ultrasonic transducers are mounted as shown. Marked as a, b, c, d, e, f, respectively, the three-dimensional space coordinates of each ultrasonic transducer are known, respectively (Xa, Ya, Za), (Xb, Yb, Zb), (Xc, Yc, Zc), (Xd, Yd, Zd), (Xe, Ye, Ze) and (Xf, Yf, Zf), set the ultrasonic frequencies to be transmitted at 40 kHz, 45 kHz, 50 kHz, 55 kHz, 60 kHz, and 65 kHz, respectively.
  • the effective distance L is measured to be 50 cm, and the effective measurement time is (1/340) seconds (this setting is common to all ultrasonic transducers).
  • the control and processing module multiple sets of ultrasonic transducers alternately measure the same finger target in the order of a->b->c->d->e->f (multiple sets of rotation measurements) , it is possible to avoid the interference of each group of devices in this round of measurement to the greatest extent possible).
  • the installation and angle of the ultrasonic transducer on the front of the tablet are described.
  • the wide-angle ultrasonic transducer is used, and the effective measurement angle is 150 degrees.
  • the normal line of the effective measurement angle of each ultrasonic transducer intersects with the mid-perpendicular line of the tablet display plane and the intersection point is on the same side of the display plane (the intersection point is located at the intersection)
  • the tablet shows the side of the front).
  • the normal angle of each set of ultrasonic transducers and the plane of the tablet display plane is equal to 75 degrees, and the effective angle of the three-dimensional input of the tablet is 120 degrees.
  • control microprocessor chip in the control and processing module is mounted on the tablet motherboard and the algorithm is stored on the tablet side.
  • the three-dimensional input method is used to track the spatial motion of the target finger object, and the three-dimensional space coordinates of the motion track are transmitted to the operating system of the tablet computer.
  • the finger target is the user's finger and the target effective point is at the tip of the user's finger.
  • the motion trajectory of the user's finger is reflected by tracking the three-dimensional coordinate changes of the user's finger tip.
  • the user's finger tip is called an effective tracking target, and the other part is called a non-effective tracking target.
  • the first step of the three-dimensional input method is to start the tracking operation of the motion track of the target finger object by preset trigger action, set the preset space sphere, set the preset measurement sphere, and complete the initialization preparation.
  • the user's finger is selected to click the start icon of the three-dimensional input application as the preset trigger action
  • the three-dimensional space coordinate of the icon is known to be (xO, yO, ⁇ )
  • the initial three-dimensional space coordinate is ( xO , yO , ⁇ )
  • set the preset sphere center ( xO , yO , ⁇ ⁇ )
  • set (preset R ) 2cm
  • set (measure R ) lcm
  • Root number ( ( x, y, z ) , ( ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ ) ) ⁇ 2cm;
  • the algorithms f4 ( ) and f5 ( ) calculate the near-point of the preset sphere and the preset measuring sphere to each group of ultrasonic transducers by presetting the sphere center, presetting the sphere radius and the three-dimensional space coordinates of the ultrasonic transducer.
  • the distance between the distance and the far point are as follows:
  • the near point distance of the preset space sphere to the ultrasonic transducer is the distance between the coordinates of the ultrasonic transducer and the coordinates of the center of the sphere of the preset space sphere.
  • Subtracting the radius of the preset space sphere, the distance from the preset space sphere to the ultrasonic transducer is the distance between the coordinates of the ultrasonic transducer and the coordinates of the center of the sphere of the preset space sphere plus
  • the radius of the preset space sphere, the distance between the preset measuring sphere and the ultrasonic transducer is the distance between the coordinates of the ultrasonic transducer and the coordinates of the center of the preset measuring sphere minus the preset measuring sphere
  • the radius of the preset measuring sphere to the ultrasonic transducer is the distance between the coordinates of the ultrasonic transducer and the coordinates of the center of the preset measuring sphere plus the radius of the prese
  • the preset measurement sphere must contain an effective tracking target and must contain the target effective point.
  • Each ultrasonic transducer measures the user's finger and saves the measurement data.
  • the newly measured spatial polyhedron and the preset measurement sphere intersect to obtain a new measurement polyhedron.
  • Each ultrasonic transducer, b, c, d, e, and f respectively measure the user's finger, and obtain the near-point reflection point time and the far-point reflection point time of each group, which are respectively recorded as (Tla, T2a), (Tib, T2b). , ( Tic, T2c) , (Tld, T2d) , (Tie, T2e ) , (Tlf, T2f).
  • Each ultrasonic transducer uses the fl ( ) algorithm to select the measured measurements during the measurement process, selects valid measurement data containing the effective points of the target, and discards the non-effective measurement data.
  • the selection method of the algorithm fl ( ) is as follows:
  • Description 1 Effective measuring distance of the user's finger and ultrasonic transducer.
  • Ultrasonic transducers have a dead zone during the measurement process and have a minimum measured effective distance.
  • Super When the sound wave propagates in the air, the signal is attenuated. To ensure the accuracy and accuracy of the measurement, the attenuation signal and noise are filtered, and there is also a maximum measured effective distance.
  • the minimum measurement effective distance and the maximum measured effective distance are the effective measurement range of the ultrasonic transducer.
  • the user's finger After the user's finger moves, it may exceed the effective measurement range of the ultrasonic transducer. It is necessary to determine the position of the center of the preset sphere before the user's finger moves. If the position of the preset sphere center has reached the edge of the effective measurement range, the movement is performed. After the valid measurement range may be exceeded, the current measurement result is marked as non-effective measurement data.
  • the ultrasonic transducer is in the measurement result, the near-point reflection point is in the preset measurement sphere, and the far-point reflection point is outside the preset measurement sphere, the ultrasonic transducer is called For the front end point.
  • the effective measurement data must be the measurement result of the front end point in addition to the effective point of the target. Measurement results that are not front-end points are all marked as non-effective measurement data. The effective measurement data mentioned later refers to the measurement result of the front end point.
  • the measurement result after the user's finger movement must meet the following conditions:
  • the preset measurement sphere must contain the effective tracking target, and must contain the target effective point.
  • the measurement result must contain more than three sets of valid measurement data.
  • the average angle is 60 degrees
  • the angle between the adjacent three ultrasonic transducers is about 120 degrees
  • the angle of reflection of the user's fingers is less than 90 degrees.
  • the extended endpoints of the three consecutive front-end points are not the front endpoints, but are referred to as the left outer endpoint and the right outer endpoint, respectively.
  • the second step of the three-dimensional input method fails after the user's finger moves, and the fifth step is transferred to the three-dimensional input method. , error process processing.
  • the data indicating the current measurement result is not within the effective measurement range, and is marked as non-effective measurement data
  • the range of (preset space T1, preset space ⁇ 2) is within (valid threshold T1, effective threshold ⁇ 2). If the boundary is exceeded, it means that the user's finger position is too far or too close, and the effective tracking target position is at It may exceed the valid measurement range after moving. The data of this measurement result is marked as non-effective measurement data;
  • the effective tracking target After the user's finger moves, the effective tracking target must still exist in the preset space sphere.
  • the measurement results of all the near-point reflection points outside the preset space T1 and the preset space T2 are unlikely to be the measurement results of the front-end point. This measurement result data is marked as non-effective measurement data.
  • finding the near-point reflection point is a measurement result of effectively reflecting the reflection of the target, which is the front end point of the search, and the measurement result is marked as effective measurement data.
  • the measurement time of one round of ultrasonic transducer is 20ms, and the upper limit of the user's finger movement angle is 36 degrees in each measurement time, that is, the angular velocity of the user's finger is 1800 degrees per second (5 circles). Since the six ultrasonic transducers are mounted around the tablet for one week, the average angle is 60 degrees, and the angular change in the horizontal direction of the user's finger is shifted by at most one ultrasonic transducer. There are at least three consecutive front-end points in the measurement result before the user's finger moves. Among them, the middle-end point is still the front-end point in the horizontal direction after the user's finger moves, and the near-point reflection point is the reflection of the effective tracking target.
  • the left front point and the right front point depend on the angle of the user's finger. (A change in the angle of the user's finger in the vertical direction will result in the measurement of all the front endpoints, and the near-point reflection point will change from the reflection of the effective tracking target to the reflection of the non-effective tracking target.)
  • the measurement results of the ultrasonic transducers of each group can be obtained. If the value of the near-point reflection point becomes smaller, it means that the user's finger is close; if the near-point reflection point value becomes larger, Indicates that the user's finger is far away; if the near-point reflection point value does not change, it means that the user's finger is panned.
  • the near-point reflection point in the ultrasonic transducer measurement result is the overall reflection of the user's finger, not necessarily the reflection of the effective tracking target, or the reflection of the non-effective tracking target. As the user's finger moves, it is possible to change from the reflection of the effective tracking target to the reflection of the non-effective tracking target. Since there are at least three consecutive front-end points in the last round measurement result, the near-point reflection point is a reflection of the effective tracking target. The distance between the effective tracking target and each group of ultrasonic transducers is known, and the spatial area of the effective tracking target can be determined.
  • the angle change of the user's finger in the horizontal direction is considered, the left outer end point, the left front end point,
  • the front end points are the first group, the left front end point, the middle front end point, the right front end point is the second group, the middle front end point, the right front end point, and the right outer end point is the third group.
  • the near-point reflection points of the three sets of measurement data are known, and the spatial area of the reflection surface of the user's finger of the three sets of data can be calculated.
  • the comparison between the three groups of data shows that the reflection area of the reflection surface is the smallest, that is, the reflection surface of the user's finger in the horizontal direction is the reflection of the effective tracking target. (If there is a near-point reflection point obtained by the front-end point, the reflection from the effective tracking target changes to the reflection of the non-effective tracking target, and the calculated spatial area of the reflection surface becomes larger.)
  • the front end point in the current measurement result is found and marked as valid measurement data. If the number of valid measurement data is less than three groups, it means that the measurement data cannot meet the required standard, and jump to the fifth step of the three-dimensional input method, and the error flow processing.
  • Three sets of effective measurement data are selected by the algorithm fl ( ) to form effective hollow hemispheres, which intersect each other to form a spatial polyhedron -abcdef.
  • the spatial polyhedron -abcdef must contain a valid tracking target and must contain the target effective point.
  • the spatial polyhedron -abcdef intersects with the preset measurement sphere to obtain the measurement polyhedron -abcdef.
  • the algorithm ( ) , ⁇ ( ) uses the effective measurement data to calculate the three-dimensional space coordinates of the measurement polyhedron -abcdef calculation center point. In this example, choose a simple algorithm to measure the distance from the computational center point of the polyhedron -abcdef to each ultrasonic transducer:
  • the coordinates of the point are in a half of the space area with the plane of the three points as the interface. Uniquely determined (there will be another symmetry point in the other half of the space).
  • the three-dimensional coordinates of the transducer are known as (Xa, Ya, Za), (Xb, Yb, Zb), (Xc, Yc, Zc), (Xd, Yd, Zd), (Xe, Ye, Ze) , ( Xf , Yf, Zf) . It is known that there are more than three sets of measuring polyhedron-abcdef calculation center points to the distance of each ultrasonic transducer.
  • three or more sets of distances from the calculation center points of the above-mentioned three or more measurement polyhedron-abcdef to the ultrasonic transducers may be selected, and the three-dimensional space coordinates of the calculation center point of the measurement polyhedron-abcdef are calculated.
  • the center of the preset sphere is moved to move toward the center of the new measurement polyhedron calculation.
  • the center of the calculation of the polyhedron -abcdef is measured as the center of the new preset sphere after the movement.
  • the preset sphere center Due to the preset sphere center, the preset space sphere, the preset measurement sphere reset, the new preset measurement sphere and the spatial polyhedron -abcdef intersect each other, the new measurement polyhedron -abcdef is obtained, and the new calculation center point is calculated.
  • the algorithm used is the same as the ( ) , ⁇ ( ), f4 ( ), and f 5 ( ) algorithms used above.
  • the center of the current preset measurement sphere and the prefabricated space sphere (measurement X, measurement y, measurement z) is transmitted to the operating system of the tablet, waiting for the next user's finger movement.
  • the second step, the third step, the fourth step completes the action track tracking operation of the user's finger.
  • the preset spherical center and the user's finger calculate the center point coincident.
  • the measuring multi-faceted body must contain the effective tracking target, and must contain the target effective point. There are more than three tip points in the measurement results.
  • the trajectory tracking operation of the user's finger, continuous cycle can continuously track the three-dimensional coordinate information of the user's finger motion trajectory, and report the three-dimensional space coordinates of the motion trajectory to the operating system of the tablet computer. In the motion trajectory tracking operation flow, if there is a problem, jump to the fifth step of the three-dimensional input method.
  • the fifth step of the three-dimensional input method error handling in the process.
  • an error occurs in the process step of the method, it will jump to the fifth step and perform error handling. Clear all system parameters and upload the preset error 3D space coordinates ( ( -1 ) , ( -1 ) , ( -1 ) ) to the tablet's operating system. After receiving the error 3D space coordinates, the tablet operating system displays the screen prompt "3D input operation failed", closes the current 3D input operation, and waits for the next round of 3D input to restart.
  • the embodiment of the invention does not require the user to use an additional remote control device, a writing pen or a finger sleeve and other additional auxiliary electronic devices, and the input operation can be completed by hand, and the operation is more free and convenient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种三维空间坐标的检测方法、三维输入方法及相应装置,所述检测方法包括:由设置在移动终端四周的、三组以上的不在同一直线上的超声波测距装置分别测量出拟手指目标物的近点距离和远点距离,并使用得到的三组以上的近点距离和远点距离,结合对应的超声波测距装置的空间坐标,计算得到所述拟手指目标物的计算中心点坐标。所述三维输入方法包括:当检测到预置触发动作被触发时,由设置在移动终端四周的、三组以上的不在同一直线上的超声波测距装置启动跟踪测量拟手指目标位的三维空间坐标,对应显示到所述移动终端中。本发明实施例不需要用户使用额外的遥控器、书写笔或指套等其他额外辅助电子装置,徒手即可完成输入操作,操作更为自由,便捷。

Description

一种三维空间坐标的检测方法、 三维输入方法及相应装置
技术领域
本发明涉及一种移动终端的输入装置, 尤其涉及一种三维空间坐标的检 测方法、 三维输入方法及相应装置。
背景技术
移动终端作为现代人的个人随身电子设备, 功能繁多、 性能出众, 无论 是用于工作还是娱乐都是很好的工具。 移动终端从广义上讲包括: 手机、 笔 记本、 平板电脑、 POS ( Point Of Sale, 销售终端)机甚至车载电脑, 但是大 部分情况下是指手机或者具有多种应用功能的智能手机以及平板电脑。 输入 功能作为移动终端的一个必不可少的功能, 对于用户体验有很大的影响。
现在市面上的移动终端, 其输入方式大部分都釆用平面输入。 无论是通 过按键来移动光标再进行按键输入信息的输入方式、 还是通过触摸屏定位进 行点击输入信息的输入方式,本质上都是在一个输入平面上先进行坐标定位, 再进行信息输入,属于二维平面的输入方式。釆用这种二维平面的输入方式, 用户的输入有效区域都局限于一个有限大小平面, 其输入方式受到了很大的 限制, 自由性较小。
市面上的三维输入电子设备, 比如遥控器、 书写笔或指套等辅助电子装 置, 可以在三维空间内进行各种信息的输入。 但对用户来说, 要釆用这些输 入方法必须手持相应辅助电子装置来进行信息的输入操作, 相对来说使用不 够便捷。
发明内容
本发明所要解决的技术问题在于提供一种三维空间坐标的检测方法、 三 维输入方法及相应装置 ,使得用户在使用移动终端的时候,除移动终端本身, 无需手持额外辅助电子装置, 即可实现徒手在三维空间动作。
为解决上述问题, 本发明提供了一种三维空间坐标的检测方法, 包括: 由设置在移动终端四周的、 三组以上的不在同一直线上的超声波测距装 置分别测量出拟手指目标物的近点距离和远点距离, 并使用得到的三组以上 的近点距离和远点距离, 结合对应的超声波测距装置的空间坐标, 计算得到 所述拟手指目标物的计算中心点坐标。
优选地 ,
所述测量出拟手指目标物的近点距离和远点距离, 包括:
针对每一超声波测距装置, 发射超声波并开始计时; 记录在有效测量时 长内收到的第一个反射波的时间点 T1 及在所述有效测量时长内接收到的最 后一个反射波的时间点 T2; 其中, 所述有效测量时长的值等于 2倍的超声波 测距装置的最大测量有效距离与超声波波速的商;
根据所述 Tl、 Τ2及开始计时时的时间点 TO, 计算得到所述拟手指目标 物的近点距离和远点距离; 其中, 所述拟手指目标物的近点距离等于 T1 与 TO的差与超声波波速的一半的乘积; 所述拟手指目标物的远点距离等于 T2 与 TO的差与超声波波速的一半的乘积。
优选地,
若所述超声波测距装置在有效测量时长内仅接收到一个反射波, 则将时 间点 T2的值置为 TO与所述有效测量时长的和。
优选地 ,
所述由设置在移动终端四周的、 三组以上的不在同一直线上的超声波测 距装置分别测量出拟手指目标物的近点距离和远点距离, 包括:
各超声波测距装置在所述移动终端的控制下, 按照一定次序轮流测量出 拟手指目标物的近点距离和远点距离。
优选地 ,
所述由设置在移动终端四周的、 三组以上的不在同一直线上的超声波测 距装置分别测量出拟手指目标物的近点距离和远点距离, 包括:
所述设置在移动终端四周的、 三组以上的不在同一直线上的超声波测距 装置分别使用不同的发射波频率测量出拟手指目标物的近点距离和远点距离。 优选地 ,
在计算得到所述拟手指目标物的计算中心点坐标之前, 还包括: 分别判 断各组得到的近点距离和远点距离的测量超声波测距装置是否为前端点; 所述计算得到所述拟手指目标物的计算中心点坐标, 包括:
使用前端点测量出的近点距离和远点距离, 结合对应的超声波测距装置 的空间坐标, 计算得到所述拟手指目标物的计算中心点坐标。
本发明还提供了一种三维输入方法, 包括:
当检测到预置触发动作被触发时, 由设置在移动终端四周的、 三组以上 的不在同一直线上的超声波测距装置启动跟踪测量拟手指目标位的三维空间 坐标, 对应显示到所述移动终端中。
优选地 ,
所述检测到预置触发动作被触发, 包括以下任意一种方式:
检测到所述拟手指目标物点击在所述移动终端正面的显示触摸屏上显示 的三维输入应用的开始图标; 或者,
检测到所述拟手指目标物点击在所述移动终端正面上设定为启动三维输 入应用的按键; 或者,
检测到所述拟手指目标物悬停于所述移动终端正面指定位置持续一段时 间; 或者,
检测到所述拟手指目标物在所述移动终端正面画出一个预置图形。
优选地 ,
所述测量拟手指目标物的三维空间坐标, 包括:
在每一次测量过程中, 所述三组以上的超声波测距装置分别测量出所述 拟手指目标物的近点距离和远点距离, 并使用得到的三组以上的近点距离和 远点距离, 结合对应的超声波测距装置的空间坐标, 计算得到所述拟手指目 标物的计算中心点坐标。
优选地 , 所述测量出拟手指目标物的近点距离和远点距离, 包括:
针对每一超声波测距装置, 发射超声波并开始计时; 记录在有效测量时 长内收到的第一个反射波的时间点 T1 及在所述有效测量时长内接收到的最 后一个反射波的时间点 T2; 其中, 所述有效测量时长的值等于 2倍的超声波 测距装置的最大测量有效距离与超声波波速的商;
根据所述 Tl、 Τ2及开始计时时的时间点 TO, 计算得到所述拟手指目标 物的近点距离和远点距离; 其中, 所述拟手指目标物的近点距离等于 T1 与 TO的差与超声波波速的一半的乘积; 所述拟手指目标物的远点距离等于 T2 与 TO的差与超声波波速的一半的乘积。
优选地,
若所述超声波测距装置在有效测量时长内仅接收到一个反射波, 则将时 间点 T2的值置为 TO与所述有效测量时长的和。
优选地 ,
所述由设置在移动终端四周的、 三组以上的不在同一直线上的超声波测 距装置分别测量出拟手指目标物的近点距离和远点距离, 具体包括:
各超声波测距装置在所述移动终端的控制下轮流测量出拟手指目标物的 近点距离和远点距离。
优选地 ,
所述由设置在移动终端四周的、 三组以上的不在同一直线上的超声波测 距装置分别测量出拟手指目标物的近点距离和远点距离, 具体包括:
所述设置在移动终端四周的、 三组以上的不在同一直线上的超声波测距 装置分别使用不同的发射波频率测量出拟手指目标物的近点距离和远点距离。
优选地 ,
在计算得到所述拟手指目标物的计算中心点坐标之前, 还包括: 分别判 断各组近点距离和远点距离的测量方超声波测距装置是否为前端点;
所述计算得到所述拟手指目标物的计算中心点坐标, 包括:
使用前端点测量出的近点距离和远点距离, 结合对应的超声波测距装置 的空间坐标, 计算得到所述拟手指目标物的计算中心点坐标。
相应地, 本发明还提供了一种三维空间坐标的检测装置, 包括: 超声波 定位模块及控制和处理模块;
所述超声波定位模块设置为: 包含设置在移动终端四周的、 三组以上的 不在同一直线上的超声波测距装置, 各组超声波测距装置设置为: 分别测量 出拟手指目标物的近点距离和远点距离, 并发送给所述控制和处理模块; 所述控制和处理模块设置为: 使用接到的三组以上的近点距离和远点距 离, 结合对应的超声波测距装置的空间坐标, 计算得到所述拟手指目标物的 计算中心点坐标。
优选地 ,
所述超声波测距装置设置为: 测量出拟手指目标物的近点距离和远点距 离, 包括:
所述超声波测距装置发射超声波并开始计时; 记录在有效测量时长内收 到的第一个反射波的时间点 T1 及在所述有效测量时长内接收到的最后一个 反射波的时间点 T2; 其中, 所述有效测量时长的值等于 2倍的超声波测距装 置的最大测量有效距离与超声波波速的商;
还根据所述 Tl、 Τ2及开始计时时的时间点 TO, 计算得到所述拟手指目 标物的近点距离和远点距离; 其中, 所述拟手指目标物的近点距离等于 T1 与 TO 的差与超声波波速的一半的乘积; 所述拟手指目标物的远点距离等于 T2与 TO的差与超声波波速的一半的乘积。
优选地 ,
所述超声波测距装置还设置为: 若在有效测量时长内仅接收到一个反射 波, 则将时间点 T2的值置为 TO与所述有效测量时长的和。
优选地,
所述各组超声波测距装置设置为: 分别测量出拟手指目标物的近点距离 和远点距离, 包括: 所述各组超声波测距装置在所述控制和处理模块的控制下, 按照一定次 序轮流测量出拟手指目标物的近点距离和远点距离。
优选地 ,
所述各组超声波测距装置设置为: 分别测量出拟手指目标物的近点距离 和远点距离, 包括:
所述各组超声波测距装置分别使用不同的发射波频率测量出拟手指目标 物的近点距离和远点距离。
优选地 ,
所述控制和处理模块还设置为: 在计算得到所述拟手指目标物的计算中 心点坐标之前, 分别判断各组得到的近点距离和远点距离的测量超声波测距 装置是否为前端点;
所述控制和处理模块设置为: 计算得到所述拟手指目标物的计算中心点 坐标, 包括:
所述控制和处理模块使用前端点测量出的近点距离和远点距离, 结合对 应的超声波测距装置的空间坐标, 计算得到所述拟手指目标物的计算中心点 坐标。
相应地, 本发明还提供了一种三维输入装置, 包括:
控制和处理模块, 设置为: 在获知预置触发动作被触发时, 控制设置在 移动终端四周的、 三组以上的不在同一直线上的超声波测距装置启动跟踪测 量拟手指目标位的三维空间坐标;接收各组超声波测距装置发来的测量结果, 进行相应计算后发送到所述移动终端侧;
各组超声波测距装置, 设置为: 在所述控制和处理模块的控制下, 跟踪 测量拟手指目标位的三维空间坐标, 并将测量结果发送到所述控制和处理模 块。
优选地 ,
所述控制和处理模块获知所述预置触发动作被触发, 包括以下任意一种 方式:
所述控制和处理模块获知所述拟手指目标物点击在所述移动终端正面的 显示触摸屏上显示的三维输入应用的开始图标; 或者,
所述控制和处理模块获知所述拟手指目标物点击在所述移动终端正面上 设定为启动三维输入应用的按键; 或者,
所述控制和处理模块获知所述拟手指目标物悬停于所述移动终端正面指 定位置持续一段时间; 或者,
所述控制和处理模块获知所述拟手指目标物在所述移动终端正面画出一 个预置图形。
优选地,
所述各组超声波测距装置设置为: 测量拟手指目标物的三维空间坐标, 包括:
所述各组超声波测距装置在每一次测量过程中, 分别测量出所述拟手指 目标物的近点距离和远点距离, 并作为所述测量结果上 4艮给所述控制和处理 模块;
所述控制和处理模块还设置为: 接收各组超声波测距装置发来的测量结 果, 进行相应计算, 包括:
所述控制和处理模块使用得到的三组以上的近点距离和远点距离, 结合 对应的超声波测距装置的空间坐标, 计算得到所述拟手指目标物的计算中心 点坐标。
优选地 ,
所述各组超声波测距装置设置为: 测量出拟手指目标物的近点距离和远 点距离, 包括:
所述各组超声波测距装置发射超声波并开始计时; 记录在有效测量时长 内收到的第一个反射波的时间点 T1 及在所述有效测量时长内接收到的最后 一个反射波的时间点 T2; 其中, 所述有效测量时长的值等于 2倍的超声波测 距装置的最大测量有效距离与超声波波速的商; 根据所述 Tl、 Τ2及开始计 时时的时间点 TO,计算得到所述拟手指目标物的近点距离和远点距离;其中, 所述拟手指目标物的近点距离等于 T1与 TO的差与超声波波速的一半的乘积; 所述拟手指目标物的远点距离等于 T2与 TO的差与超声波波速的一半的乘积。
优选地 ,
所述各组超声波测距装置还设置为: 若在有效测量时长内仅接收到一个 反射波, 则将时间点 T2的值置为 TO与所述有效测量时长的和。
优选地 ,
所述各组超声波测距装置设置为: 分别测量出拟手指目标物的近点距离 和远点距离, 包括:
所述各组超声波测距装置在所述控制和处理模块的控制下轮流测量出拟 手指目标物的近点距离和远点距离。
优选地 ,
所述各组超声波测距装置设置为: 分别测量出拟手指目标物的近点距离 和远点距离, 包括:
所述各组超声波测距装置分别使用不同的发射波频率测量出拟手指目标 物的近点距离和远点距离。
优选地 ,
所述控制和处理模块还设置为: 在计算得到所述拟手指目标物的计算中 心点坐标之前, 分别判断各组近点距离和远点距离的测量方超声波测距装置 是否为前端点;
所述控制和处理模块设置为: 计算得到所述拟手指目标物的计算中心点 坐标, 包括:
所述控制和处理模块使用前端点测量出的近点距离和远点距离, 结合对 应的超声波测距装置的空间坐标, 计算得到所述拟手指目标物的计算中心点 坐标。
本发明实施例不需要用户使用额外的遥控器、 书写笔或指套等其他额外 辅助电子装置, 徒手即可完成输入操作, 操作更为自由, 便捷。 附图概述
图 1为本发明实施例中三维输入装置的结构示意图;
图 2为本发明实施例中超声波测距装置发射和接收超声波的示意图; 图 3为本发明实施例中空间半球体的示意图;
图 4为本发明实施例中由多组超声波测距装置分别测量得到的数据形成 的多个空间半球体的示意图;
图 5为本发明实施例中轨迹跟踪操作启动时刻的示意图;
图 6为本发明实施例中轨迹跟踪操作启动的瞬间测量多面体的示意图; 图 7为本发明实施例中手指发生移动时的示意图;
图 8为本发明实施例中对预置测量球体和预置空间球体的球心进行移动 的示意图;
图 9为本发明实施例中对预置测量球体和预置空间球体的球心进行移动 后的结果示意图;
图 10为本发明实施例中 6个超声波换能器安装位置示意图;
图 11 为本发明实施例中超声波换能器在平板电脑正面的安装方式和夹 角示意图;
图 12 为本发明实施例中用户通过手指点击三维输入应用的启动图标启 动输入流程的示意图;
图 13为本发明实施例中前端点的位置示意图;
图 14为本发明实施例中用户手指可能便宜角度的示意图;
图 15为本发明实施例中各组有效测量数据的示意图。 本发明的较佳实施方式
下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
在本实施例中, 一种三维空间坐标的检测方法, 包括: 由设置在移动终端四周的、 三组以上的不在同一直线上的超声波测距装 置分别测量出拟手指目标物的近点距离和远点距离, 并使用得到的三组以上 的近点距离和远点距离, 结合对应的超声波测距装置的空间坐标, 计算得到 所述拟手指目标物的计算中心点坐标。
较佳地,
所述测量出拟手指目标物的近点距离和远点距离, 具体包括:
针对每一超声波测距装置, 发射超声波并开始计时; 记录在有效测量时 长内收到的第一个反射波的时间点 T1 及在所述有效测量时长内接收到的最 后一个反射波的时间点 T2; 其中, 所述有效测量时长的值等于 2倍的超声波 测距装置的最大测量有效距离与超声波波速的商;
根据所述 Tl、 Τ2及开始计时时的时间点 TO, 计算得到所述拟手指目标 物的近点距离和远点距离; 其中, 所述拟手指目标物的近点距离等于 T1 与 TO的差与超声波波速的一半的乘积; 所述拟手指目标物的远点距离等于 T2 与 TO的差与超声波波速的一半的乘积。
较佳地,
若所述超声波测距装置在有效测量时长内仅接收到一个反射波, 则将时 间点 T2的值置为 TO与所述有效测量时长的和。
较佳地,
所述由设置在移动终端四周的、 三组以上的不在同一直线上的超声波测 距装置分别测量出拟手指目标物的近点距离和远点距离, 具体包括:
各超声波测距装置在所述移动终端的控制下, 按照一定次序轮流测量出 拟手指目标物的近点距离和远点距离。
较佳地,
所述由设置在移动终端四周的、 三组以上的不在同一直线上的超声波测 距装置分别测量出拟手指目标物的近点距离和远点距离, 具体包括:
所述设置在移动终端四周的、 三组以上的不在同一直线上的超声波测距 装置分别使用不同的发射波频率测量出拟手指目标物的近点距离和远点距离。 较佳地,
在计算得到所述拟手指目标物的计算中心点坐标之前, 还包括: 分别判 断各组得到的近点距离和远点距离的测量超声波测距装置是否为前端点; 所述计算得到所述拟手指目标物的计算中心点坐标, 具体包括: 使用前端点测量出的近点距离和远点距离, 结合对应的超声波测距装置 的空间坐标, 计算得到所述拟手指目标物的计算中心点坐标。
本发明还提供了一种三维输入方法, 包括:
当检测到预置触发动作被触发时, 由设置在移动终端四周的、 三组以上 的不在同一直线上的超声波测距装置启动跟踪测量拟手指目标位的三维空间 坐标, 对应显示到所述移动终端中。
较佳地,
所述检测到预置触发动作被触发, 包括以下任意一种方式:
检测到所述拟手指目标物点击在所述移动终端正面的显示触摸屏上显示 的三维输入应用的开始图标; 或者,
检测到所述拟手指目标物点击在所述移动终端正面上设定为启动三维输 入应用的按键; 或者,
检测到所述拟手指目标物悬停于所述移动终端正面指定位置持续一段时 间; 或者,
检测到所述拟手指目标物在所述移动终端正面画出一个预置图形。
较佳地,
所述测量拟手指目标物的三维空间坐标, 具体包括:
在每一次测量过程中, 所述三组以上的超声波测距装置分别测量出所述 拟手指目标物的近点距离和远点距离, 并使用得到的三组以上的近点距离和 远点距离, 结合对应的超声波测距装置的空间坐标, 计算得到所述拟手指目 标物的计算中心点坐标。
较佳地,
所述测量出拟手指目标物的近点距离和远点距离, 具体包括: 针对每一超声波测距装置, 发射超声波并开始计时; 记录在有效测量时 长内收到的第一个反射波的时间点 T1 及在所述有效测量时长内接收到的最 后一个反射波的时间点 T2; 其中, 所述有效测量时长的值等于 2倍的超声波 测距装置的最大测量有效距离与超声波波速的商;
根据所述 Tl、 Τ2及开始计时时的时间点 TO, 计算得到所述拟手指目标 物的近点距离和远点距离; 其中, 所述拟手指目标物的近点距离等于 T1 与 TO的差与超声波波速的一半的乘积; 所述拟手指目标物的远点距离等于 T2 与 TO的差与超声波波速的一半的乘积。
较佳地,
若所述超声波测距装置在有效测量时长内仅接收到一个反射波, 则将时 间点 T2的值置为 TO与所述有效测量时长的和。
较佳地,
所述由设置在移动终端四周的、 三组以上的不在同一直线上的超声波测 距装置分别测量出拟手指目标物的近点距离和远点距离, 具体包括:
各超声波测距装置在所述移动终端的控制下轮流测量出拟手指目标物的 近点距离和远点距离。
较佳地,
所述由设置在移动终端四周的、 三组以上的不在同一直线上的超声波测 距装置分别测量出拟手指目标物的近点距离和远点距离, 具体包括:
所述设置在移动终端四周的、 三组以上的不在同一直线上的超声波测距 装置分别使用不同的发射波频率测量出拟手指目标物的近点距离和远点距离。
较佳地,
在计算得到所述拟手指目标物的计算中心点坐标之前, 还包括: 分别判 断各组近点距离和远点距离的测量方超声波测距装置是否为前端点;
所述计算得到所述拟手指目标物的计算中心点坐标, 具体包括: 使用前端点测量出的近点距离和远点距离, 结合对应的超声波测距装置 的空间坐标, 计算得到所述拟手指目标物的计算中心点坐标。 在本实施例中, 一种三维输入装置, 包括超声定位模块及控制和处理模 块。 其中, 超声定位模块用于测量各超声波测距装置和被测目标物之间的距 离信息, 并传递给控制和处理模块; 控制和处理模块用于控制超声定位模块 进行测距操作并接收相应数据信息, 计算被测目标物的三维空间坐标。
如图 1所示, 所述超声定位模块, 包括配置在移动终端四周的、 三组以 上的不在同一直线上的超声波测距装置。 其中各组超声波测距装置的三维空 间坐标已知, 各组超声波测距装置中超声波发射口的法线和安装平面的中垂 线相交且交点位于安装平面的同一侧 (交点相对于安装平面的一侧后续称为 移动终端正面) 。 每组超声波测距装置中超声波发射口的法线和安装平面的 夹角等于超声波测距装置的有效测量范围角度的半角。
所述控制和处理模块中包括: 控制微处理器芯片、 超声定位模块的连接 装置及计算机主机的连接装置。 处理数据信息所需要的各种算法, 既可以存 储于控制微处理器芯片内部, 也可以存储于计算机主机一侧。
所述被测目标物, 在本实施例内, 仅限于具有手指动作功能的物体(后 续称为拟手指目标物) , 包括但不限于: 用户的手指、 可完成手指动作的机 械手或具有手指动作功能的其他机械物体。 拟手指目标物位于上述至少三组 超声波测距装置的有效测量范围的交集内。
在本实施例中, 一种对拟手指目标物的反射面进行三维空间定位得到空 间多面体数据信息,并计算空间多面体计算中心点的三维空间坐标的方法(后 续称为三维空间坐标的检测方法)如下所述:
如图 2所示, 超声波测距装置发射超声波, 该超声波测距装置发射的超 声波频率为 K, 预设最大测量有效距离为 L (大于此距离的测量信息忽略, 物体过远, 不等待反射波返回) 。 在发射超声波的同时开始计时 叚设此时 时间点为 TO ) , 并等待反射波返回。 超声波测距装置将在有效测量时长内收 到的第一个反射波作为近点反射波, 记录接收到近点反射波的时间点 T1 (以 下称为近点反射时间点 T1 ) , 将在有效测量时长内接收到的最后一个反射波 作为远点反射波, 记录接收到远点反射波的时间点 T2 (以下称为远点反射时 间点 T2 ) 。 其中, 有效测量时长 Τ3等于 2倍的最大测量有效距离与超声波 波速 C的商, 即 Τ3=2 X L ÷ C。 若在有效测量时长内仅接收到一个反射波, 则将时间点 T2的值置为 TO与有效测量时长的和。
如图 3所示, 把时间点 Tl、 Τ2转化为拟手指目标物的近点距离 S1和远 点距离 S2, 分别以 S1为内径、 以 S2为外径、 以本超声波测距装置中超声波 发射口的中心位置为球心、 以本超声波测距装置中超声波发射口所在平面为 底面, 得到一个空间半球体; 其中, S1= (T1-T0 ) x C÷2, S2= ( T2-T0 ) χ C ÷ 2。 这个空心半球体即为本超声波测距装置通过测量得到的拟手指目标 物在三维空间中存在的区域。
超声波测距装置对拟手指目标物的测量结果, 仅包括拟手指目标物的反 射面信息, 并不能表示拟手指目标物整体的位置信息。 本发明中把能代表拟 手指目标物三维动作信息的标识点, 称为目标物有效点。 超声波测距装置得 到的测量结果中, 如果包含目标物有效点, 称为有效测量数据, 如果不包含 目标物有效点, 则称为非有效测量数据。 可通过算法分析来判断得到的测量 结果是否为有效测量数据, 对为有效测量数据的测量结果进行保留, 丟弃为 非有效测量数据的测量结果。 由有效测量数据形成的空心半球体, 称为有效 空心半球体。
(有效数据, 非有效数据) =fl (Tl, T2) ;
具体算法实现, 在说明实例中详细说明。 如图 4所示, 存在三组以上的不在同一直线上、 相互之间的位置固定且 空间三维坐标已知的超声波测距装置, 分别标记为 a, b, c ...... , 这三组超 声波测距装置中超声波发射口的中心位置的三维空间坐标分别标记为 ( Xa , Ya, Za) , (Xb, Yb, Zb ) , (Xc, Yc, Zc ) ...... , 设定发射的超声波频 率分别为 Ka, Kb, Kc ...... (以排除相互间的声波干扰) , 设定最大测量有 效距离 L (这个设定所有超声波测距装置通用) 。 多组超声波测距装置在控 制和处理模块的控制下, 按照一定次序 (如 Index)轮流测量同一个拟手指 目标物 (多组超声波测距装置按 Index轮流测量, 可以最大可能的避开本轮 测量中各组超声波测距装置之间的相互干扰) 。 按照算法 fl()确定测量结果 如果为有效测量数据则保留, 如果为非有效测量数据则丟弃, 然后把各组有 效测量数据近点反射时间点 T1和远点反射时间点 T2转化得到有效空心半球 体 -a, 有效空心半球体 -b, 有效空心半球体 -c 。 三个以上的有效空心半球 体相交, 可以得到空间多面体 -abc。 空间多面体 -abc 所在的空间区域必定包 含目标物有效点。 超声波测距装置的数量越多, 形成的有效空心半球体就越多, 相互相交 得到的空间多面体的表面数量就越多, 空间多面体的形状也就越贴近真实的 拟手指目标物的形状。
为了表示空间多面体 -abc在三维空间内的移动, 本实施例使用空间多面 体 -abc 的计算中心点 (X, y, z ) 的位置变化来体现。 由于空间多面体 -abc 是由多个有效空心半球体相交得到的, 空间多面体 -abc的各个表面都属于某 一个有效空心半球体的内表面或外表面的一部分, 因此空间多面体 -abc的各 个表面距离相应有效空心半球体球心的距离是已知的, 即: 当该空间多面体 -abc的一个表面是相应有效空间半球体的外表面的一部分时, 该表面距离该 相应有效空心半球体球心的距离等于该相应有效空心半球体的外径; 当该空 间多面体 -abc的一个表面是相应有效空间半球体的内表面的一部分时, 该表 面距离该相应有效空心半球体球心的距离等于该相应有效空心半球体的内径。 使用算法可以得到空间多面体 -abc到各个有效空心半球体球心的距离, 再以 此来计算得到计算中心点的三维空间坐标。 按照空间几何原理, 如果能够得 到某点与三个不在同一直线上的位置已知的点的距离, 则该点的坐标在以这 三个点所在平面为分界面的某半个空间区域内被唯一确定(另一个半个空间 区域内会存在另一个对称点) 。
空间多面体 -abc的计算中心点 (X, y, z )
=f2 ( Sla, S2a, Sib, S2b, Sic, S2c ...... ) ;
=β (Tla, T2a, Tib, T2b, Tic, T2c ) ;
具体算法的实现方式, 在后续说明实例中详细说明。
在本实施例中, 还提供了一种基于上述三维空间坐标的检测方法, 对拟 手指目标物的运动轨迹进行跟踪, 并提取三维空间坐标的变化的方法 (后续 称为三维输入方法) 。 对该方法的说明如下: 已知前提: 存在三组以上的不在同一直线上、 相互之间的位置固定且空 间三维坐标已知的超声波测距装置, 分别标记为 a, b, c ... ... , 这三组以上 的超声波测距装置中超声波发射口的三维空间坐标分别标记为( Xa, Ya, Za ), ( Xb, Yb, Zb ) , ( Xc, Yc, Zc ) ... ... ,设定发射的超声波频率分别为 Ka,
Kb, Kc ... ... (排除相互声波干扰) , 设定最大测量有效距离 L (这个设定所 有超声波测距装置通用)。多组超声波测距装置在控制和处理模块的控制下, 按照一定次序 (如 Index ) , 轮流测量同一个拟手指目标物 (多组超声波测 距装置按 Index轮流测量, 可以最大可能的避开本轮测量中各组超声波测距 装置之间的相互干扰) 。
三维输入方法的第一步, 在检测到预置触发动作被触发后, 启动对拟手 指目标物的运动轨迹的跟踪操作, 设置预置空间球体, 设置预置测量球体, 完成初始化准备。
如图 5所示, 当检测到预置触发动作被触发的瞬间, 启动整个轨迹跟踪 操作流程, 并确定了预置空间球体、 预置测量球体的相关参数。
所述预置触发动作, 是指用户在移动终端上预先设置的一种指定动作, 当该指定动作被触发后, 关联启动执行对拟手指目标物进行动作轨迹的跟踪 操作。 在预置触发动作被触发的瞬间, 拟手指目标物被限制于预置已知的三 维空间区域, 此三维空间区域的坐标已知(后续称为初始三维空间坐标, 至 于如何得到这个初始三维空间坐标, 方法可以多种多样, 本输入方法并不关 心如何得到初始三维空间坐标, 仅关心轨迹跟踪操作启动瞬间, 初始三维空 间坐标已知) 。 预置触发动作, 包括但不限于包括: 拟手指目标物点击在移 动终端正面的显示触摸屏上显示的三维输入应用的开始图标(此种情况下, 该开始图标的空间坐标即为初始三维空间坐标) 、 或拟手指目标物点击在移 动终端正面上设定为启动三维输入应用的按键(此种情况下, 该按键的空间 坐标即为初始三维空间坐标) 、 或拟手指目标物悬停于移动终端正面指定位 置持续一段时间 (此种情况下, 悬停手指尖所处的三维空间位置的坐标即为 初始三维空间坐标)、或拟手指目标物在移动终端正面画出一个预置图形(如 一个圓或一个 8字形) (此种情况下, 停止运动一瞬间手指尖端所处的三维 空间位置的坐标即为初始三维空间坐标) 。
在预置触发动作被触发、 整个轨迹跟踪操作开启的瞬间, 初始三维空间 坐标已知, 以初始三维空间坐标为球心(空间坐标记为(预置 X , 预置 y , 预 置 z ) , 后续称为预置球体球心) 、 分别以预设置的预置半径 (预置 R )和 测量半径 (测量 R ) (数值可按实际需求设置, 看算法的需求, 并无硬性规 定的数值)作为半径, 可以得到两个同球心的空间球体(后续分别称为预置 空间球体和预置测量球体) 。 通过计算可以得到预置空间球体和预置测量球 体距离各组超声波测距装置的近点距离和远点距离, 并可转化为相关的近点 反射时间点和远点反射时间点:
( (预置空间 Tla ) , (预置空间 T2a ) )
=f4 ( (预置空间 Sla ) , (预置空间 S2a ) )
=f5 ( ( Xa,Ya,Za ) , ( (预置 χ ) , (预置 y ) , (预置 ζ ) ) , (预置 R ) ); 。 。 。 。 。 。 (其他多组)
( (预置测量 Tla ) , (预置测量 T2a ) )
=f4 ( (预置测量 Sla ) , (预置测量 S2a ) )
=f5 ( ( Xa,Ya,Za ) , ( (预置 χ ) , (预置 y ) , (预置 ζ ) ) , (测量 R ) );
。 。 。 。 。 。 (其他多组)
具体算法实现, 在下述说明实例中详细说明。 如图 6所示, 在轨迹跟踪操作启动的瞬间, 拟手指目标物的尖端 (即拟 手指目标物上用于触发预置触发动作的部分) 必定处于预置测量球体内, 以 拟手指目标物的尖端上的点为目标物有效点, 预置测量球体内必定包含目标 物有效点。 通过多组超声波测距装置对拟手指目标物进行测量得到空间多面 体, 将该空间多面体和预置测量球体相交得到的三维空间区域称为测量多面 体。 通过跟踪测量多面体在预置空间球体内的运动轨迹, 来提取拟手指目标 物的三维空间坐标变化。
三维输入方法的第二步, 在检测到拟手指目标物移动后, 重新确定各超 声波测距装置通过对拟手指目标物进行测量得到的新空间多面体和预置测量 球体相交所得到的新测量多面体。
如图 7所示, 当拟手指目标物移动的瞬间, 预置测量球体的球心 (坐标 位置记为 (预置 X, 预置 y, 预置 z ) ) 尚未变化。 各组超声波测距装置通过 分别对拟手指目标物进行测量,得到三组以上的有效空心半球体 (有效空心半 球体是由有效测量数据组成的,测量结果必须先经过 fl()选择,抛弃无效数据), 这些有效空心半球体相交得到新空间多面体。 新空间多面体和预置测量球体 相交, 形成新测量多面体。 该新测量多面体的计算中心点和预置测量球体的 球心相分离, 记录新测量多面体的计算中心点坐标为(测量 X, 测量 y, 测量 z ) 。 该新测量多面体的计算中心点的坐标计算方法参见下述实例。
三维输入方法的第三步, 将预置测量球体和预置空间球体的球心朝新测 量多面体的计算中心点的方向移动。
如图 8所示,将预置测量球体和预置空间球体的球心(坐标位置记为(预 置 X, 预置 y, 预置 z ) )向新测量多面体的计算中心点 (坐标位置记为 (新 X, 新 y, 新 z ) )方向移动。 按调整后的系统参数, 可以得到新预置测量球 体和新预置测量球体的球心(坐标位置记为(新预置 X,新预置 y,新预置 z ) ), 如图 9所示。 新预置测量球体和新空间多面体相交, 得到新测量多面体。 将 预置空间球体和预置测量球体的球心的坐标(预置 X, 预置 y, 预置 z )重置 为新预置测量球体的球心坐标(新预置 X, 新预置 y, 新预置 z ) , 重置预置 空间球体和预置测量球体的系统参数, 重置新测量多面体。
三维输入方法的第四步, 将当前预置测量球体和预置空间球体的球心坐 标 (预置 X, 预置 y, 预置 z )传输给计算机主机, 等待下一次拟手指目标物 移动测量。
顺序执行三维输入方法的第二步, 第三步, 第四步, 完成一次对拟手指 目标物的动作轨迹跟踪操作。 每完成一次动作轨迹跟踪操作, 系统就会回到 第二步的初始状态, 预置测量球体和预置空间球体的球心与拟手指目标物的 计算中心点重合, 测量多面体内必定包含目标物有效点。 连续循环不停, 可 以不停的跟踪拟手指目标物的动作轨迹的三维空间坐标信息, 并上报动作轨 迹的三维空间坐标给计算机主机。 在动作轨迹跟踪操作流程中, 出现了问题 则跳转到三维输入方法第五步。 三维输入方法第五步, 流程错误处理。 超声波测距装置通过测量拟手指目标物得到的测量结果, 通过 fl ( )算 法提取有效测量数据。 如果有效测量数据不足三组, 无法转化得到拟手指目 标物的空间多面体, 也无法得到计算中心点。
移动预置测量球体和预置空间球体的球心, 直至移动到超声波测距装置 的有效测量范围外, 无法得到测量结果。
超声波测距装置在测量过程中, 若被其他物体遮挡, 导致测量数据不正 确, 无法如实反映拟手指目标物的情况, 均无法得到有效测量数据。
以上情况出现的时候, 对拟手指目标物的动作轨迹跟踪操作失败, 传输 预置的错误三维空间坐标给计算机主机, 关闭本次动作轨迹跟踪操作流程, 表示本次三维输入操作失败, 等待下一轮三维输入重新开始, 即等待预置触 发动作, 重新初始化。 (预置的错误三维空间坐标, 是指移动终端预先设置 的一个指定三维空间坐标, 包括不仅限于 (-1 , -1 , -1 ) ) 。
下面通过实例, 来详细描述三维输入装置和方法。
在本实例中, 移动终端选用平板电脑。 超声波测距装置选用超声波换能 器, 数量为 6个。 超声波换能器的安装位置如下:
如图 10所示,在平板电脑的周围, 6个超声波换能器安装位置如图所示。 分别标记为 a, b, c , d, e, f, 各超声波换能器的三维空间坐标已知, 分别 为 ( Xa, Ya, Za ) 、 ( Xb, Yb , Zb ) 、 ( Xc, Yc , Zc ) 、 ( Xd, Yd, Zd ) 、 ( Xe, Ye, Ze )及( Xf , Yf, Zf ) , 设定发射的超声波频率分别为 40kHz、 45kHz、 50kHz、 55kHz、 60kHz及 65kHz,设定最大测量有效距离 L为 50cm, 有效测量时长为 ( 1/340 )秒(这个设定所有超声波换能器通用) 。 多组超声 波换能器在控制和处理模块的控制下, 按照 a->b->c->d->e->f 的次序轮流对 同一个拟手指目标物进行测量, (多组轮流测量, 可以最大可能的避开本轮 测量中各组装置相互干扰)。各组超声波换能器分配的测量时间为 1/300秒, 6组超声波换能器完成一轮测试所需要的总时间为 6 χ ( 1/300 )秒 =20毫秒。
如图 11所示, 描述了超声波换能器在平板电脑正面的安装方式和夹角。 在实例中选用广角超声波换能器, 有效测量角度为 150度, 各超声波换能器 有效测量角度的法线和平板电脑显示平面的中垂线相交且交点位于显示平面 的同一侧 (交点位于该平板电脑显示正面的一侧) 。 每组超声波换能器的法 线和平板电脑显示平面的夹角等于 75 度, 平板电脑的三维输入有效角度为 120度。
在本实例中, 控制和处理模块中控制微处理器芯片安装在平板电脑主板 上, 算法存储在平板电脑侧。
下面开始对通过三维输入装置进行三维输入操作的流程方法进行说明, 通过三维输入方法来跟踪拟手指目标物的空间动作, 并传输动作轨迹的三维 空间坐标给平板电脑的操作系统。 在本实例中, 拟手指目标物是用户手指, 目标物有效点位于用户手指尖端。 通过跟踪用户手指尖端的三维空间坐标变 化来体现用户手指的动作轨迹, 用户手指尖端称为有效跟踪目标, 其他部分 称为非有效跟踪目标。
三维输入方法的第一步, 通过预置触发动作, 启动对拟手指目标物的运 动轨迹的跟踪操作, 设置预置空间球体, 设置预置测量球体, 完成初始化准 备。
如图 12所示,在本实例中,选择用户手指点击三维输入应用的启动图标 作为预置触发动作, 图标的三维空间坐标已知是(xO, yO, ζθ ) , 即初始三 维空间坐标是(xO , yO , ζθ ) , 设置预置球体球心 = ( xO , yO , ζθ ) , 设置(预 置 R ) =2cm, 设置(测量 R ) =lcm, 得到预置空间球体和预置测量球体, 球 体内每一个点的三维空间点坐标(x,y,z ) 的相关函数方程分别为:
根号 ( ( x,y,z ) , ( χθ,γθ,ζθ ) ) 《= 2cm;
根号 ( (x,y,z ) , ( χθ,γθ,ζθ ) ) 《= lcm;
算法 f4 ( ) 、 f5 ( )通过预置球体球心, 预置球体半径和超声波换能器 的三维空间坐标, 计算得到预置空间球体和预置测量球体到各组超声波换能 器的近点距离和远点距离 (SI , S2 ) , 分别如下: 预置空间球体到超声波 换能器的近点距离为该超声波换能器的坐标与该预置空间球体的球心的坐标 之间的距离减去预置空间球体的半径, 预置空间球体到超声波换能器的远点 距离为该超声波换能器的坐标与该预置空间球体的球心的坐标之间的距离加 上预置空间球体的半径, 预置测量球体到超声波换能器的近点距离为该超声 波换能器的坐标与该预置测量球体的球心的坐标之间的距离减去预置测量球 体的半径, 预置测量球体到超声波换能器的远点距离为该超声波换能器的坐 标与该预置测量球体的球心的坐标之间的距离加上预置空间球体的半径。
L = C X T, 超声波在空气的传输速率是 340m/s,
(预置空间 Tla) =(2 * (预置空间 Sla) )/340;
(预置空间 T2a) =(2* (预置空间 S2a) )/340;
(预置测量 Tla) =(2* (预置测量 Sla) )/340;
(预置测量 T2a ) =(2 * (预置测量 S2a ) ) / 340;
其他组同理 ......。
在第一步完结时, 预置测量球体内必定包含有效跟踪目标, 且必定包含 目标物有效点。 各个超声波换能器对用户手指进行测量, 并保存测量数据。
三维输入方法的第二步, 用户手指移动后, 重新测量得到的新空间多面 体和预置测量球体相交, 得到新测量多面体。
各超声波换能器 、 b、 c、 d、 e、 f分别测量用户手指, 得到了各组近点 反射点时间和远点反射点时间,分别记做( Tla, T2a) , ( Tib, T2b ) , ( Tic, T2c) , (Tld, T2d) , (Tie, T2e ) , (Tlf, T2f) 。
L = C x T, 超声波在空气的传输速率 C是 340m/s, 分别计算得到近 点距离和远点距离 (Sla, S2a) , (Sib, S2b ) , (Sic, S2c ) , (Sid, S2d) , (Sle, S2e) , ( Slf, S2f) 。
每个超声波换能器在测量的过程中, 使用 fl ( )算法对测量得到的测量 结果进行挑选, 挑选出包含目标物有效点的有效测量数据, 抛弃非有效测量 数据。
算法 fl ( ) 的选择方法说明如下:
说明 1: 用户手指和超声波换能器的有效测量距离。
超声波换能器在测量过程中存在盲区, 会有一个最小测量有效距离。 超 声波在空气中传播, 信号会衰减, 为保证测量的准确度和精度, 过滤衰减信 号和噪音, 还会有一个最大测量有效距离。 最小测量有效距离和最大测量有 效距离之间, 才是超声波换能器的有效测量范围。
用户手指移动后, 可能超出超声波换能器的有效测量范围, 需要判断用 户手指移动前的预置球体球心的所在位置, 如果预置球体球心的位置已经达 到了有效测量范围的边缘, 移动后可能超出有效测量范围, 则标记本次测量 结果为非有效测量数据。
说明 2: 用户手指移动前, 用户手指和平板电脑的关系如下:
如图 13所示, 在本实例中, 如果超声波换能器的测量结果中, 近点反射 点在预置测量球体内, 远点反射点在预置测量球体外, 则这个超声波换能器 称为前端点。在本 fl ( )算法中,有效测量数据除了包含目标物有效点之外, 还必须是前端点的测量结果。 不是前端点的测量结果, 全都标记为非有效测 量数据。 以后所说的有效测量数据都是指前端点的测量结果。
用户手指移动后的测量结果, 必定满足如下条件: 预置测量球体必定包 含有效跟踪目标, 且必定包含目标物有效点, 测量结果中必定包含三组以上 的有效测量数据。
由于 6 个超声波换能器的安装方位围绕平板电脑一周, 平均夹角为 60 度, 相邻的三个超声波换能器之间的夹角约为 120度, 用户手指的反射夹角 小于 90度,则用户手指移动前的测量结果中至少存在三个连续前端点,分别 称为左前端点、 中前端点及右前端点。 在三个连续前端点的外延端点, 不是 前端点, 再分别称为左外端点, 右外端点。
如果用户手指移动前的测量结果中不存在前端点, 或前端点的数量少于 三个的话, 则本次用户手指移动后, 执行三维输入方法第二步失败, 转入三 维输入方法第五步, 错误流程处理。 说明 3: 用户手指移动后, 用户手指在预置空间球体内变化如下: 如图 14所示, 在本实例中, 预置空间球体半径 (预置 R ) =2cm, 预置 测量球体半径(测量 R ) =lcm, 6 组超声波换能器一轮测试时间周期为 20 毫秒。 设定用户手指移动速率上限为 50cm/s, 则用户手指移动后, 任意情况 下, 预置测量球体内仍然存在至少部分有效跟踪目标, 有效跟踪目标仍然在 预置测量球体内, 目标物有效点也在预置测量球体内。 (如果用户手指移动 太快, 有效跟踪目标完全移出预置测量球体, 甚至移出预置空间球体, 则标 记为非有效测量数据)
结合上述说明 1、 说明 2和说明 3, 可以得到以下选择数据的方法:
1. 设定测量有效范围, 从各组测量结果中截取出测量有效数据(过滤掉 有效测量范围之外的数据) ;
如图 15所示,在本实例中,超声波换能器最小有效测量距离设定为 2cm, 得到有效阀值 Tl= ( 2 X 0.02 ) /340秒 (超声波波速和具体的超声波换能器型 号相关),设定最大测量有效距离为 50cm,得到有效阀值 T2= ( 2 X 0.5 ) /340 秒。 分别取各组测量结果(近点反射点时间-开始测量时间, 远点反射点时间 -开始测量时间)和有效测量范围 (有效阀值 T1, 有效阀值 Τ2) 的交集, 得 到并记录测量有效数据(有效 T1, 有效 Τ2) 。
测量有效数据的集合为空的话, 表示本次测量结果的数据不是在有效测 量范围内, 标记为非有效测量数据;
2. 在测量有效数据(有效 T1, 有效 Τ2)的基础上, 判断预置球体球心 所在的位置。 (过滤用户手指在有效测量范围边缘, 移动后有可能超出测量 边界的测量结果)
(预置空间 T1, 预置空间 Τ2) 的范围在(有效阀值 T1, 有效阀值 Τ2) 之内, 如果超出边界, 则表示用户手指位置太远或太近, 有效跟踪目标的所 在位置在移动之后可能超出有效测量范围。 本次测量结果的数据标记为非有 效测量数据;
3. 在测量有效数据(有效 T1, 有效 Τ2)的基础上, 分析预置测量球体 内的测量数据。 (过滤用户手指移动过快, 预置测量球体无有效跟踪目标的 测量结果)
取测量有效数据(有效 T1, 有效 Τ2)和预置测量球体的近点反射时间 点和远点反射时间点(预置测量 T1, 预置测量 Τ2)的交集, 得到并记录(有 效测量 T1, 有效测量 Τ2)。 如果(有效测量 T1, 有效测量 Τ2)为空, 表示 在测量结果中, 落在预置测量球体的区域范围内没有反射信号, 预置测量球 体内自然不可能存在跟踪有效目标。 本次测量结果数据标记为非有效测量数 据;
4. 在(有效测量 T1 , 有效测量 T2 )为非空集的基础上, 分析预置空间 球体内的测量数据, 以过滤非前端点的测量结果。
用户手指移动后, 有效跟踪目标必须还存在于预置空间球体内, 所有近 点反射点在(预置空间 T1 , 预置空间 T2 )之外的测量结果都不可能是前端 点的测量结果, 本次测量结果数据标记为非有效测量数据。
5. 分析满足条件 3和条件 4的测量结果的测量数据,判断用户手指的前 端点, 得到有效测量数据。
在满足上述条件的测量数据中, 寻找近点反射点是有效跟踪目标的反射 的测量结果, 这个就是寻找的前端点, 测量结果标记为有效测量数据。
一轮超声波换能器测量时间为 20ms,每轮测量时间中用户手指移动角度 上限为 36度, 即用户手指每秒角速度 1800度(5圈) 。 由于 6个超声波换 能器的安装方位围绕平板电脑一周,平均夹角为 60度,用户手指水平方向上 的角度变化最多偏移一个超声波换能器。 用户手指移动前的测量结果中至少 存在三个连续前端点, 其中, 中前端点在用户手指移动后在水平方向上必定 仍然是前端点, 近点反射点是有效跟踪目标的反射。 左前端点, 右前端点则 取决于用户手指的角度变化。 (用户手指垂直方向上的角度变化会导致所有 前端点的测量结果, 近点反射点从有效跟踪目标的反射变化为非有效跟踪目 标的反射。 )
分析本轮测量结果和上轮测量结果的变化, 可以得到对各组超声波换能 器测量结果的变化, 如果近点反射点数值变小, 表示用户手指靠近; 如果近 点反射点数值变大, 表示用户手指远离; 如果近点反射点数值没有变化, 表 示用户手指平移。
超声波换能器测量结果中的近点反射点, 是用户手指的整体反射, 不一 定是有效跟踪目标的反射, 也可能是非有效跟踪目标的反射。 随着用户手指 的移动, 可能从有效跟踪目标的反射变化为非有效跟踪目标的反射。 由于上 轮测量结果中至少存在三个连续前端点,近点反射点是有效跟踪目标的反射, 有效跟踪目标到各组超声波换能器的距离已知, 可以确定有效跟踪目标的所 在空间区域, 本轮测量结果中, 考虑水平方向上用户手指的角度变化, 左外 端点, 左前端点, 中前端点为第一组, 左前端点, 中前端点, 右前端点为第 二组, 中前端点, 右前端点, 右外端点为第三组。 这三组测量数据的近点反 射点已知, 可以计算得到三组数据的用户手指的反射面所在空间区域。 比较 得到这三组数据中反射面所在空间区域最小的一组, 就是在水平方向上用户 手指的反射面就是有效跟踪目标的反射。(如果有前端点得到的近点反射点, 从有效跟踪目标的反射变化为非有效跟踪目标的反射, 计算得到的反射面所 在空间区域会变大。 )
上轮测量结果和本轮测量结果中, 如果反射面所在空间区域整体变大, 则表示在垂直方向上, 近点反射点从有效跟踪目标的反射变化为非有效跟踪 目标的反射, 即这些前端点都不再是本轮测试结果中的前端点, 标记为非有 效测量数据。
按照这个方法, 找到本轮测量结果中的前端点, 标记为有效测量数据。 如果有效测量数据的数量小于三组,则表示本次测量数据无法达到所需标准, 跳转到三维输入方法第五步, 错误流程处理。
通过算法 fl ( )挑选出三组以上的有效测量数据,形成有效空心半球体, 相互相交成空间多面体 -abcdef。 空间多面体 -abcdef必定包含了有效跟踪目标 , 且必定包含目标物有效点。 空间多面体 -abcdef和预置测量球体相交, 得到测 量多面体 -abcdef。 上文所述的发明内容中, 算法 ( ) , β ( )使用有效测 量数据来计算测量多面体 -abcdef 计算中心点的三维空间坐标。 在本实例中, 选择一个简单的算法取得测量多面体 -abcdef 的计算中心点到各超声波换能 器的距离:
(有效 Sa ) = ( (有效 Sla ) + (有效 S2a ) ) 12;
(有效 Sb ) = ( (有效 Sib ) + (有效 S2b ) ) 12;
(有效 Sc ) = ( (有效 Sic ) + (有效 S2c ) ) 12;
按照空间几何原理, 如果能够得到某点与三个不在同一直线上的位置已 知的点的距离, 则该点的坐标在以这三个点所在平面为分界面的某半个空间 区域内被唯一确定(另外半个空间区域内会存在另一个对称点) 。 各超声波 换能器三维空间坐标已知, 分别为(Xa, Ya, Za) , (Xb, Yb, Zb ) , (Xc, Yc, Zc) , (Xd, Yd, Zd) , (Xe, Ye, Ze ) , ( Xf , Yf, Zf) 。 已知存 在三组以上的测量多面体 -abcdef的计算中心点到各超声波换能器的距离。 因 此, 在具体实现时, 可从上述三组以上的测量多面体 -abcdef的计算中心点到 各超声波换能器的距离中任选三组,计算得到测量多面体 -abcdef的计算中心 点的三维空间坐标(测量 X, 测量 y, 测量 z) 。
三维输入方法的第三步, 移动预置球体球心, 使其朝新测量多面体计算 中心点移动。
在本实例中, 以测量多面体 -abcdef的计算中心点为移动后新预置球体的 球心。设置新预置球体的球心坐标为( (测量 X ) , (测量 y ) , (测量 z ) ) , 设置(预置 R) =2cm, (测量 R) =lcm, 得到新预置空间球体和新预置测量 球体, 球体内每一个点的三维空间点坐标(x,y,z) 的相关函数方程分别为: 根号 ( (x,y,z) , ((测量 X), (测量 y), (测量 z) ) ) 《= 2cm;
根号 ( (x,y,z) , ((测量 X), (测量 y), (测量 z) ) ) 《= lcm;
由于预置球体球心, 预置空间球体, 预置测量球体重置, 新预置测量球 体和空间多面体 -abcdef相互相交, 得到新测量多面体 -abcdef, 并计算新计算 中心点。 (使用的算法, 和上文使用的 ( ) , β ( ) , f4 ( ) , f 5 ( ) 算 法相同。 )
三维输入方法的第四步, 传输当前预置测量球体和预制空间球体的球心 (测量 X, 测量 y, 测量 z)给平板电脑的操作系统, 等待下一次用户手指移 动。
按顺序执行三维输入方法第二步, 第三步, 第四步, 完成一次对用户手 指的动作轨迹跟踪操作。 每完成一次动作轨迹跟踪操作, 系统就会回到方法 第二步的初始状态, 预置球体球心和用户手指计算中心点重合, 测量多面体 内必定包含有效跟踪目标, 且必定包含目标物有效点, 测量结果存在三个以 上的尖端点。 对用户手指的动作轨迹跟踪操作, 连续循环, 可以不停的跟踪用户手指 动作轨迹的三维空间坐标信息, 并上报动作轨迹的三维空间坐标给平板电脑 的操作系统。 在动作轨迹跟踪操作流程中, 出现了问题则跳转到三维输入方 法第五步。
三维输入方法第五步, 流程中错误处理。
如果在方法的流程步骤中, 出现错误, 则会跳转到第五步, 执行错误处 理。 清空所有系统参数, 上传预置的错误三维空间坐标 ( ( -1 ) , ( -1 ) , ( -1 ) )给平板电脑的操作系统。 平板电脑的操作系统接收到这个错误三维 空间坐标后,显示屏幕提示 "三维输入操作失败" , 关闭本轮三维输入操作, 等待下一轮三维输入重新开始。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上所述仅为本发明的优选实施例而已, 并非用于限定本发明的保护范 围。 根据本发明的发明内容, 还可有其他多种实施例, 在不背离本发明精神 改变和变形, 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
工业实用 4生
本发明实施例不需要用户使用额外的遥控器、 书写笔或指套等其他额外 辅助电子装置, 徒手即可完成输入操作, 操作更为自由, 便捷。

Claims

权 利 要 求 书
1、 一种三维空间坐标的检测方法, 包括:
由设置在移动终端四周的、 三组以上的不在同一直线上的超声波测距装 置分别测量出拟手指目标物的近点距离和远点距离, 并使用得到的三组以上 的近点距离和远点距离, 结合对应的超声波测距装置的空间坐标, 计算得到 所述拟手指目标物的计算中心点坐标。
2、 如权利要求 1所述的方法, 包括:
所述测量出拟手指目标物的近点距离和远点距离, 包括:
针对每一超声波测距装置, 发射超声波并开始计时; 记录在有效测量时 长内收到的第一个反射波的时间点 T1 及在所述有效测量时长内接收到的最 后一个反射波的时间点 T2; 其中, 所述有效测量时长的值等于 2倍的超声波 测距装置的最大测量有效距离与超声波波速的商;
根据所述 Tl、 Τ2及开始计时时的时间点 TO, 计算得到所述拟手指目标 物的近点距离和远点距离; 其中, 所述拟手指目标物的近点距离等于 T1 与 TO的差与超声波波速的一半的乘积; 所述拟手指目标物的远点距离等于 T2 与 TO的差与超声波波速的一半的乘积。
3、 如权利要求 2所述的方法, 其中,
若所述超声波测距装置在有效测量时长内仅接收到一个反射波, 则将时 间点 T2的值置为 TO与所述有效测量时长的和。
4、 如权利要求 1所述的方法, 其中,
所述由设置在移动终端四周的、 三组以上的不在同一直线上的超声波测 距装置分别测量出拟手指目标物的近点距离和远点距离, 包括:
各超声波测距装置在所述移动终端的控制下, 按照一定次序轮流测量出 拟手指目标物的近点距离和远点距离。
5、 如权利要求 1或 4所述的方法, 其中,
所述由设置在移动终端四周的、 三组以上的不在同一直线上的超声波测 距装置分别测量出拟手指目标物的近点距离和远点距离, 包括: 所述设置在移动终端四周的、 三组以上的不在同一直线上的超声波测距 装置分别使用不同的发射波频率测量出拟手指目标物的近点距离和远点距离。
6、 如权利要求 1所述的方法, 其中,
在计算得到所述拟手指目标物的计算中心点坐标之前, 还包括: 分别判 断各组得到的近点距离和远点距离的测量超声波测距装置是否为前端点; 所述计算得到所述拟手指目标物的计算中心点坐标, 包括:
使用前端点测量出的近点距离和远点距离, 结合对应的超声波测距装置 的空间坐标, 计算得到所述拟手指目标物的计算中心点坐标。
7、 一种三维输入方法, 包括:
当检测到预置触发动作被触发时, 由设置在移动终端四周的、 三组以上 的不在同一直线上的超声波测距装置启动跟踪测量拟手指目标位的三维空间 坐标, 对应显示到所述移动终端中。
8、 如权利要求 7所述的方法, 其中,
所述检测到预置触发动作被触发, 包括以下任意一种方式:
检测到所述拟手指目标物点击在所述移动终端正面的显示触摸屏上显示 的三维输入应用的开始图标; 或者,
检测到所述拟手指目标物点击在所述移动终端正面上设定为启动三维输 入应用的按键; 或者,
检测到所述拟手指目标物悬停于所述移动终端正面指定位置持续一段时 间; 或者,
检测到所述拟手指目标物在所述移动终端正面画出一个预置图形。
9、 如权利要求 7所述的方法, 其中,
所述测量拟手指目标物的三维空间坐标, 包括:
在每一次测量过程中, 所述三组以上的超声波测距装置分别测量出所述 拟手指目标物的近点距离和远点距离, 并使用得到的三组以上的近点距离和 远点距离, 结合对应的超声波测距装置的空间坐标, 计算得到所述拟手指目 标物的计算中心点坐标。
10、 如权利要求 9所述的方法, 其中,
所述测量出拟手指目标物的近点距离和远点距离, 包括:
针对每一超声波测距装置, 发射超声波并开始计时; 记录在有效测量时 长内收到的第一个反射波的时间点 T1 及在所述有效测量时长内接收到的最 后一个反射波的时间点 T2; 其中, 所述有效测量时长的值等于 2倍的超声波 测距装置的最大测量有效距离与超声波波速的商;
根据所述 Tl、 Τ2及开始计时时的时间点 TO, 计算得到所述拟手指目标 物的近点距离和远点距离; 其中, 所述拟手指目标物的近点距离等于 T1 与 TO的差与超声波波速的一半的乘积; 所述拟手指目标物的远点距离等于 T2 与 TO的差与超声波波速的一半的乘积。
11、 如权利要求 10所述的方法, 其中,
若所述超声波测距装置在有效测量时长内仅接收到一个反射波, 则将时 间点 T2的值置为 TO与所述有效测量时长的和。
12、 如权利要求 9所述的方法, 其中,
所述由设置在移动终端四周的、 三组以上的不在同一直线上的超声波测 距装置分别测量出拟手指目标物的近点距离和远点距离, 具体包括:
各超声波测距装置在所述移动终端的控制下轮流测量出拟手指目标物的 近点距离和远点距离。
13、 如权利要求 9或 12所述的方法, 其中,
所述由设置在移动终端四周的、 三组以上的不在同一直线上的超声波测 距装置分别测量出拟手指目标物的近点距离和远点距离, 包括:
所述设置在移动终端四周的、 三组以上的不在同一直线上的超声波测距 装置分别使用不同的发射波频率测量出拟手指目标物的近点距离和远点距离。
14、 如权利要求 9所述的方法, 其中,
在计算得到所述拟手指目标物的计算中心点坐标之前, 还包括: 分别判 断各组近点距离和远点距离的测量方超声波测距装置是否为前端点;
所述计算得到所述拟手指目标物的计算中心点坐标, 包括: 使用前端点测量出的近点距离和远点距离, 结合对应的超声波测距装置 的空间坐标, 计算得到所述拟手指目标物的计算中心点坐标。
15、 一种三维空间坐标的检测装置, 包括: 超声波定位模块及控制和处 理模块;
所述超声波定位模块设置为: 包含设置在移动终端四周的、 三组以上的 不在同一直线上的超声波测距装置, 各组超声波测距装置分别设置为: 测量 出拟手指目标物的近点距离和远点距离, 并发送给所述控制和处理模块; 所述控制和处理模块设置为: 使用接到的三组以上的近点距离和远点距 离, 结合对应的超声波测距装置的空间坐标, 计算得到所述拟手指目标物的 计算中心点坐标。
16、 如权利要求 15所述的装置, 其中,
所述超声波测距装置设置为: 测量出拟手指目标物的近点距离和远点距 离, 包括:
所述超声波测距装置用于发射超声波并开始计时; 记录在有效测量时长 内收到的第一个反射波的时间点 T1 及在所述有效测量时长内接收到的最后 一个反射波的时间点 T2; 其中, 所述有效测量时长的值等于 2倍的超声波测 距装置的最大测量有效距离与超声波波速的商;
还根据所述 Tl、 Τ2及开始计时时的时间点 TO, 计算得到所述拟手指目 标物的近点距离和远点距离; 其中, 所述拟手指目标物的近点距离等于 T1 与 TO 的差与超声波波速的一半的乘积; 所述拟手指目标物的远点距离等于 T2与 TO的差与超声波波速的一半的乘积。
17、 如权利要求 16所述的装置, 其中,
所述超声波测距装置还设置为: 若在有效测量时长内仅接收到一个反射 波, 则将时间点 T2的值置为 TO与所述有效测量时长的和。
18、 如权利要求 15所述的装置, 其中,
所述各组超声波测距装置分别设置为: 测量出拟手指目标物的近点距离 和远点距离, 包括:
所述各组超声波测距装置在所述控制和处理模块的控制下, 按照一定次 序轮流测量出拟手指目标物的近点距离和远点距离。
19、 如权利要求 15或 18所述的装置, 其中,
所述各组超声波测距装置分别设置为: 测量出拟手指目标物的近点距离 和远点距离, 包括:
所述各组超声波测距装置分别使用不同的发射波频率测量出拟手指目标 物的近点距离和远点距离。
20、 如权利要求 15所述的装置, 其中,
所述控制和处理模块还设置为: 在计算得到所述拟手指目标物的计算中 心点坐标之前, 分别判断各组得到的近点距离和远点距离的测量超声波测距 装置是否为前端点;
所述控制和处理模块设置为: 计算得到所述拟手指目标物的计算中心点 坐标, 包括:
所述控制和处理模块使用前端点测量出的近点距离和远点距离, 结合对 应的超声波测距装置的空间坐标, 计算得到所述拟手指目标物的计算中心点 坐标。
21、 一种三维输入装置, 包括:
控制和处理模块, 设置为: 在获知预置触发动作被触发时, 控制设置在 移动终端四周的、 三组以上的不在同一直线上的超声波测距装置启动跟踪测 量拟手指目标位的三维空间坐标;接收各组超声波测距装置发来的测量结果, 进行相应计算后发送到所述移动终端侧;
各组超声波测距装置, 设置为: 在所述控制和处理模块的控制下, 跟踪 测量拟手指目标位的三维空间坐标, 并将测量结果发送到所述控制和处理模 块。
22、 如权利要求 21所述的装置, 其中,
所述控制和处理模块获知所述预置触发动作被触发, 包括以下任意一种 方式:
所述控制和处理模块获知所述拟手指目标物点击在所述移动终端正面的 显示触摸屏上显示的三维输入应用的开始图标; 或者,
所述控制和处理模块获知所述拟手指目标物点击在所述移动终端正面上 设定为启动三维输入应用的按键; 或者,
所述控制和处理模块获知所述拟手指目标物悬停于所述移动终端正面指 定位置持续一段时间; 或者,
所述控制和处理模块获知所述拟手指目标物在所述移动终端正面画出一 个预置图形。
23、 如权利要求 21所述的装置, 其中,
所述各组超声波测距装置设置为: 测量拟手指目标物的三维空间坐标, 包括:
所述各组超声波测距装置在每一次测量过程中, 分别测量出所述拟手指 目标物的近点距离和远点距离, 并作为所述测量结果上 4艮给所述控制和处理 模块;
所述控制和处理模块还设置为: 接收各组超声波测距装置发来的测量结 果, 进行相应计算, 包括:
所述控制和处理模块使用得到的三组以上的近点距离和远点距离, 结合 对应的超声波测距装置的空间坐标, 计算得到所述拟手指目标物的计算中心 点坐标。
24、 如权利要求 23所述的装置, 其中,
所述各组超声波测距装置设置为: 测量出拟手指目标物的近点距离和远 点距离, 包括:
所述各组超声波测距装置发射超声波并开始计时; 记录在有效测量时长 内收到的第一个反射波的时间点 T1 及在所述有效测量时长内接收到的最后 一个反射波的时间点 T2; 其中, 所述有效测量时长的值等于 2倍的超声波测 距装置的最大测量有效距离与超声波波速的商; 根据所述 Tl、 Τ2及开始计 时时的时间点 TO ,计算得到所述拟手指目标物的近点距离和远点距离;其中, 所述拟手指目标物的近点距离等于 T1与 TO的差与超声波波速的一半的乘积; 所述拟手指目标物的远点距离等于 T2与 TO的差与超声波波速的一半的乘积。
25、 如权利要求 24所述的装置, 其中,
所述各组超声波测距装置还设置为: 若在有效测量时长内仅接收到一个 反射波, 则将时间点 T2的值置为 TO与所述有效测量时长的和。
26、 如权利要求 25所述的装置, 其中,
所述各组超声波测距装置设置为: 分别测量出拟手指目标物的近点距离 和远点距离, 包括:
所述各组超声波测距装置在所述控制和处理模块的控制下轮流测量出拟 手指目标物的近点距离和远点距离。
27、 如权利要求 23或 25所述的装置, 其中,
所述各组超声波测距装置设置为: 分别测量出拟手指目标物的近点距离 和远点距离, 包括:
所述各组超声波测距装置分别使用不同的发射波频率测量出拟手指目标 物的近点距离和远点距离。
28、 如权利要求 23所述的装置, 其中,
所述控制和处理模块还设置为: 在计算得到所述拟手指目标物的计算中 心点坐标之前, 分别判断各组近点距离和远点距离的测量方超声波测距装置 是否为前端点;
所述控制和处理模块设置为: 计算得到所述拟手指目标物的计算中心点 坐标, 包括:
所述控制和处理模块使用前端点测量出的近点距离和远点距离, 结合对 应的超声波测距装置的空间坐标, 计算得到所述拟手指目标物的计算中心点 坐标。
PCT/CN2013/083535 2013-07-19 2013-09-16 一种三维空间坐标的检测方法、三维输入方法及相应装置 WO2014161276A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310306094.0 2013-07-19
CN201310306094.0A CN104298342B (zh) 2013-07-19 2013-07-19 一种三维空间坐标的检测方法、三维输入方法及相应装置

Publications (1)

Publication Number Publication Date
WO2014161276A1 true WO2014161276A1 (zh) 2014-10-09

Family

ID=51657470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083535 WO2014161276A1 (zh) 2013-07-19 2013-09-16 一种三维空间坐标的检测方法、三维输入方法及相应装置

Country Status (2)

Country Link
CN (1) CN104298342B (zh)
WO (1) WO2014161276A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230081556A1 (en) * 2021-09-16 2023-03-16 Apple Inc. Electronic Devices with Air Input Sensors

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017096600A1 (en) * 2015-12-10 2017-06-15 SZ DJI Technology Co., Ltd. System and method for mobile platform operation
US10732719B2 (en) 2016-03-03 2020-08-04 Lenovo (Singapore) Pte. Ltd. Performing actions responsive to hovering over an input surface
CN106598293B (zh) * 2016-12-14 2019-09-06 吉林大学 一种三维大空间多通道笔式交互系统
CN109040442A (zh) * 2018-07-25 2018-12-18 北京小米移动软件有限公司 禁止显示方法、装置及终端
CN109870984B (zh) * 2018-12-26 2020-09-11 浙江大学 一种基于可穿戴设备的多家电控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730874A (zh) * 2006-06-28 2010-06-09 诺基亚公司 基于免接触的手势的输入
CN102937832A (zh) * 2012-10-12 2013-02-20 广东欧珀移动通信有限公司 一种移动终端的手势捕捉方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2272965T3 (es) * 2002-04-15 2007-05-01 Epos Technologies Limited Metodo y sistema para obtener datos de posicion.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730874A (zh) * 2006-06-28 2010-06-09 诺基亚公司 基于免接触的手势的输入
CN102937832A (zh) * 2012-10-12 2013-02-20 广东欧珀移动通信有限公司 一种移动终端的手势捕捉方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230081556A1 (en) * 2021-09-16 2023-03-16 Apple Inc. Electronic Devices with Air Input Sensors

Also Published As

Publication number Publication date
CN104298342A (zh) 2015-01-21
CN104298342B (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
WO2014161276A1 (zh) 一种三维空间坐标的检测方法、三维输入方法及相应装置
JP4553917B2 (ja) ゲームプログラムの実行を制御するための入力を取得する方法
TWI476633B (zh) 傳輸觸覺資訊的系統和方法
EP3470963B1 (en) Control using movements
US8169404B1 (en) Method and device for planary sensory detection
US9600078B2 (en) Method and system enabling natural user interface gestures with an electronic system
WO2018036229A1 (zh) 一种投影触控方法、装置及设备
US20110242305A1 (en) Immersive Multimedia Terminal
US20130194208A1 (en) Information terminal device, method of controlling information terminal device, and program
TWI659221B (zh) 追蹤系統、追蹤裝置及追蹤方法
KR20140140095A (ko) 증강된 가상 터치패드 및 터치스크린
TWI549497B (zh) 控制游標的方法、遙控器以及智慧電視
CN109645896A (zh) 一种清洁地面的方法、控制装置、清洁机器人及存储介质
TW201135517A (en) Cursor control device, display device and portable electronic device
RU179301U1 (ru) Перчатка виртуальной реальности
WO2018219279A1 (zh) 一种虚拟触控系统、方法及装置
US20070237029A1 (en) Frequency matched relative position tracking system
CN110381407A (zh) 一种无线耳机及其佩戴检测系统及方法
JP4278598B2 (ja) 無線タグの位置推定システム
US20140024453A1 (en) Detection of an orientiation of a game player relative to a screen
TWI825004B (zh) 輸入方法、裝置、設備、系統和電腦儲存媒體
RU2670649C9 (ru) Способ изготовления перчатки виртуальной реальности (варианты)
WO2021093543A1 (zh) 扫描仪、及其操作方法、装置、系统、存储介质和处理器
CN107291308A (zh) 一种手势识别装置及其识别方法
WO2023227072A1 (zh) 在虚拟现实场景中确定虚拟光标方法、装置、设备和介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880746

Country of ref document: EP

Kind code of ref document: A1