WO2014158052A1 - Method for producing ceramic gradient material - Google Patents

Method for producing ceramic gradient material Download PDF

Info

Publication number
WO2014158052A1
WO2014158052A1 PCT/RU2013/000264 RU2013000264W WO2014158052A1 WO 2014158052 A1 WO2014158052 A1 WO 2014158052A1 RU 2013000264 W RU2013000264 W RU 2013000264W WO 2014158052 A1 WO2014158052 A1 WO 2014158052A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
metal oxide
ceramic
powder
temperature
Prior art date
Application number
PCT/RU2013/000264
Other languages
French (fr)
Russian (ru)
Inventor
Сергей Николаевич КУЛЬКОВ
Светлана Петровна БУЯКОВА
Сергей Григорьевич ПСАХЬЕ
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН)
Priority to RU2014151346/02A priority Critical patent/RU2592652C2/en
Priority to PCT/RU2013/000264 priority patent/WO2014158052A1/en
Publication of WO2014158052A1 publication Critical patent/WO2014158052A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/053Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/057Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on calcium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • C04B2235/775Products showing a density-gradient

Definitions

  • the invention relates to powder metallurgy, in particular to the manufacture of gradient ceramic materials based on powders of metal oxides or mixtures thereof and can be used to obtain products with variable porosity, for example, bone implants, filters, drug carriers, etc. with increased resistance to thermal impacts.
  • the disadvantages of these methods include the following:
  • the main disadvantage for all known is a sharp change in the properties in macro-volumes of the material.
  • the known method [1] does not allow to obtain sintered regions from various powders lying in the same plane, which leads to the presence of a vertical interface between the product areas, and the disadvantage of the method [2] is the multistage process of obtaining a gradient material.
  • a known method of producing composite materials with a gradient structure (RU2164260, C22C1 / 04, C22C29 / 00, B22F3 / 12, publ.
  • the disadvantages of this method [3] is the multi-stage process and the limited method for using only metal impregnation materials with a melting point in the range from 1200 ° C to 1500 ° C.
  • the closest in technical essence is a method of obtaining a ceramic gradient material (RU2454297, B22F3 / 12,
  • a finely dispersed powder in the form of supersaturated solid solutions on the basis of 2GO with components dissolved in it selected from the group of stabilizing oxides of the tetragonal phase is pressed at a pressure of 550-800 Pa and sintered at 500-1700 ° C for 1-5 hours.
  • the disadvantage of the gradient material obtained by the known method [4] is that it has insufficiently high resistance to thermal effects during cyclic exposure and is at temperatures of 1400-600 ° C less than 50 cycles.
  • An object of the invention is to develop a method for producing a ceramic gradient material, in which the structure provides a uniform change in the mechanical properties of product cross section and, as a result, high resistance to thermal influences.
  • a polydisperse ceramic metal oxide powder or a mixture of metal oxide powders is first obtained by the plasma-chemical method by spraying aqueous solutions of metal salts or mixtures of metal salts into a high-frequency discharge plasma through a slot nozzle of variable cross-section from 0.1 to 100 ⁇ m, then an organic binder is added to the obtained powder, mix the molding mixture, pour it into the mold, hold the molding mixture to separate it into fractions and sinter the obtained preform with isothermal exposure.
  • a polydisperse ceramic metal oxide powder or a mixture of metal oxide powders is obtained with a particle morphology - from individual nanocrystallites 20-50 nm in size to spherical hollow particles up to 250 microns in size.
  • the molding mixture has the following ratio of components, wt.%: Metal oxide powder or a mixture of metal oxide powders 80-85; organic bunch the rest.
  • Polydisperse ceramic metal oxide powder or a mixture of metal oxide powders is an oxide powder: A1 2 0 3 , Zr0 2 , CaO, Y 2 0 3 , MgO.
  • Paraffin, or wax, or a mixture of paraffin and wax in a ratio of 9: 1 is used as an organic ligament.
  • the molding mixture is stirred at a temperature of 85-90 ° C.
  • the molding mixture is kept in a form to separate it into fractions for 1-10 hours at a temperature of 75-90 ° C.
  • the resulting preform is sintered at a temperature of 1300 - 1700 ° C with an isothermal exposure of 1-5 hours.
  • the essence of the invention lies in the fact that a ceramic material with a gradient structure is obtained from a polydispersed ceramic metal oxide powder or a mixture of metal oxide powders obtained by the plasma-chemical method by spraying aqueous solutions of metal salts or mixtures of metal salts into a high-frequency discharge plasma through a slot nozzle of variable cross section from 0.1 to 100 ⁇ m.
  • a ceramic material with a gradient structure is obtained from a polydispersed ceramic metal oxide powder or a mixture of metal oxide powders obtained by the plasma-chemical method by spraying aqueous solutions of metal salts or mixtures of metal salts into a high-frequency discharge plasma through a slot nozzle of variable cross section from 0.1 to 100 ⁇ m.
  • a polydisperse ceramic metal oxide powder or a mixture of metal oxide powders with particle morphology is obtained — from individual nanocrystallites 20-50 nm in size to spherical hollow particles up to 250 microns in size.
  • the presence of polydisperse particles will provide the necessary different density of the casting when it is aged after casting.
  • an organic binder is added, which is: paraffin, or wax, or a mixture of paraffin and wax in a ratio of 9: 1.
  • the ratio of the components of the molding mixture is as follows, wt.%: Metal oxide powder or a mixture of powders of metal oxides 80-85; organic bunch the rest.
  • the molding mixture is thoroughly mixed for 25-50 hours, then it is poured into the mold and kept at the melting temperature of the organic binder 75-90 ° C for 1-10 hours.
  • the formation mixture is stratified into fractions due to the gradient deposition of fractions of the obtained powder particles. Varying the exposure time (1-10 hours) and the temperature at which the organic binder is located (75-90 ° ⁇ ), i.e. the process of stratification of the molding mixture into fractions in the form, you can get a ceramic material with a given gradient structure and, therefore, resistance to thermal influences.
  • the resulting preform is sintered at a temperature of 1300 - 1700 ° C with isothermal exposure for 1-5 hours.
  • Ceramic material obtained by the proposed method has gradually changing porosity and a uniform (smooth) change in properties over the entire volume of the material obtained as it moves away from the surface into the volume.
  • the obtained ceramic gradient material has a variable porosity structure in the volume - from 20 to 75 vol.%.
  • an aqueous solution of zirconium nitrate is taken and sprayed through a slot nozzle of variable cross-section - from 0.1 to 100 ⁇ m into a high-frequency discharge plasma.
  • An organic binder is added to the obtained polydisperse ceramic powder of zirconium oxide taken in an amount of 80 wt.% - a mixture of paraffin and wax (9: 1) in an amount of 20 wt.%, Then stirred for 50 hours at a temperature of 85-90 ° C.
  • the resulting moldable mixture is poured / injected into the mold and kept in this state, i.e. at a temperature of 90 ° C for 2 hours.
  • the resulting preform is sintered at a temperature of 1550 ° C with an isothermal exposure of 1 hour.
  • aqueous solution of aluminum nitrate salt is taken and sprayed through a slot nozzle of variable cross section - from 0.1 to 100 ⁇ m into a high-frequency discharge plasma.
  • an organic binder - paraffin in an amount of 15 wt.%, Then stirred for 35 hours at a temperature of 85-90 ° C.
  • the resulting moldable mixture is poured / injected into the mold and kept in this state, i.e. at a temperature of 75 ° C for 10 hours.
  • the resulting preform is sintered at a temperature of 1300 ° C with an isothermal exposure of 5 hours.
  • a polydisperse ceramic powder of zirconium, magnesium, and yttrium oxides take an aqueous solution of the nitric acid salt of zirconium, magnesium, and yttrium, spray it through a slot nozzle of variable cross section, from 0.1 to 100 ⁇ m, into a high-frequency discharge plasma.
  • the resulting moldable mixture is poured / injected into the mold and kept in this state, i.e. at a temperature of 85 ° C for 2 hours.
  • the resulting preform is sintered at a temperature of 1700 ° C with an isothermal exposure of 1 hour.
  • an aqueous solution of zirconium and calcium nitrate is taken, sprayed through a slot nozzle of variable cross section - from 0.1 to 100 ⁇ m into a high-frequency discharge plasma.
  • An organic binder is added to the obtained polydisperse ceramic powder of zirconium and calcium oxides taken in an amount of 84 wt.% - a mixture of paraffin and wax (9: 1) in an amount of 16 wt.%, then stirred for 25 hours at a temperature of 85-90 ° C.
  • the resulting moldable mixture is poured / injected into the mold and kept in this state, i.e. at a melting point of an organic binder of 80 ° C for 6 hours.
  • the resulting preform is sintered at a temperature of 1600 ° C with an isothermal exposure of 3 hours.

Abstract

The invention relates to powder metallurgy, and specifically to the production of ceramic gradient materials on the basis of metal oxide powders. The method for producing a ceramic gradient material includes first obtaining a polydisperse ceramic powder of a metal oxide or of a mixture of metal oxides using a plasma-chemical method by means of spraying aqueous solutions of salts of a metal or of a mixture of salts of metals into a high-frequency discharge plasma through a slot nozzle having a variable cross-section of 0.1-100 microns. An organic binder is added to the powder and the molding mixture is mixed and is poured into a mold. The molding mixture is cured for stratification by particle size and the resulting product is sintered isothermally.

Description

СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКОГО ГРАДИЕНТНОГО  METHOD FOR PRODUCING CERAMIC GRADIENT
МАТЕРИАЛА  MATERIAL
ОБЛАСТЬ ТЕХНИКИ FIELD OF TECHNOLOGY
Изобретение относится к порошковой металлургии, в частности к изготовлению градиентных керамических материалов на основе порошков оксидов металлов или их смесей и может быть использовано для получения изделий с переменной пористостью, например, костных имплантатов, фильтров, носителей лекарственных препаратов и др. с повышенной устойчивостью к термическим воздействиям. The invention relates to powder metallurgy, in particular to the manufacture of gradient ceramic materials based on powders of metal oxides or mixtures thereof and can be used to obtain products with variable porosity, for example, bone implants, filters, drug carriers, etc. with increased resistance to thermal impacts.
Известны способы получения градиентных материалов заключающихся:  Known methods for producing gradient materials are:
- в последовательном нанесении слоев из различных порошков и их селективном спекании (Wang, Chunchau, Ни, Yiadong. Cu/Fe Powder - in the sequential deposition of layers of various powders and their selective sintering (Wang, Chunchau, Ni, Yiadong. Cu / Fe Powder
Gradient Material Sintering by Laser Processing // Proceedings SPIE. Vol.3550. Pp.60-64. 1998) [1]; Gradient Material Sintering by Laser Processing // Proceedings SPIE. Vol. 3550. Pp. 60-64. 1998) [1];
- в прессовании и спекании каркаса из порошка карбида титана с последующей пропиткой никелидом титана и легированием железом с целью создания градиентной структуры (Сивоха В. П., Рудай В.В., Миронов Ю.П., Кульков С.Н. Композиционные материалы TiC-NiTi с градиентной структурно-неустойчивой матрицей / Физическая мезомеханика, 2004, 7 спец. Выпуск 4.1 , с. 241-244) [2];  - in pressing and sintering a frame made of titanium carbide powder followed by impregnation with titanium nickelide and alloying with iron to create a gradient structure (Sivokha V.P., Rudai V.V., Mironov Yu.P., Kulkov S.N. Composite materials TiC -NiTi with a gradient structurally unstable matrix / Physical Mesomechanics, 2004, 7th Special Issue 4.1, pp. 241-244) [2];
К недостаткам перечисленных способов можно отнести следующее: Основным недостатком для всех известных является резкое изменение свойств в макрообъемах материала.  The disadvantages of these methods include the following: The main disadvantage for all known is a sharp change in the properties in macro-volumes of the material.
Кроме обозначенного недостатка известный способ [1] не позволяет получить спеченные области из различных порошков, лежащих в одной плоскости, что обуславливает наличие вертикальной границы раздела областей изделия, а недостатком способа [2] является многостадийность технологического процесса получения градиентного материала. Известен способ получения композиционных материалов с градиентной структурой (RU2164260, С22С1/04, С22С29/00, B22F3/12, опубл. 20.03.2001) [3], включающий приготовление шихты, прессование и спекание в засыпке, при этом шихту готовят из соединений, выбранных из группы, состоящей из карбидов, оксикарбидов, карбонитридов, нитридов с добавлением сталей или сплавов, содержащих элементы, способные испаряться в процессе спекания, а спекание проводят в вакууме при 1200-1500°С с выдержкой 10-300 мин, при этом одна из поверхностей прессовки свободна от засыпки. In addition to the indicated drawback, the known method [1] does not allow to obtain sintered regions from various powders lying in the same plane, which leads to the presence of a vertical interface between the product areas, and the disadvantage of the method [2] is the multistage process of obtaining a gradient material. A known method of producing composite materials with a gradient structure (RU2164260, C22C1 / 04, C22C29 / 00, B22F3 / 12, publ. 20.03.2001) [3], including the preparation of the mixture, pressing and sintering in the backfill, while the mixture is prepared from compounds selected from the group consisting of carbides, oxycarbides, carbonitrides, nitrides with the addition of steels or alloys containing elements that can evaporate during sintering, and sintering is carried out in vacuum at 1200-1500 ° C with a holding time of 10-300 min, while one of pressing surfaces free of backfill.
Недостатками известного способа [3] является многостадийность технологического процесса и ограниченность способа по использованию в качестве материала пропитки только металлов с температурой плавления в диапазоне от 1200°С до 1500°С.  The disadvantages of this method [3] is the multi-stage process and the limited method for using only metal impregnation materials with a melting point in the range from 1200 ° C to 1500 ° C.
Наиболее близким по технической сущности является способ получения керамического градиентного материала (RU2454297, B22F3/12,  The closest in technical essence is a method of obtaining a ceramic gradient material (RU2454297, B22F3 / 12,
С04В35/64, С22С1/10, опубл. 27.06.2012) [4] на основе диоксида циркония. Высокодисперсный порошок в виде пересыщенных твердых растворов на основе 2гОг с растворенными в нем компонентами, выбранными из группы оксидов-стабилизаторов тетрагональной фазы, подвергают прессованию при давлении 550-800 Па и спеканию при 500-1700°С с выдержкой в течение 1-5 часов.  С04В35 / 64, С22С1 / 10, publ. June 27, 2012) [4] based on zirconium dioxide. A finely dispersed powder in the form of supersaturated solid solutions on the basis of 2GO with components dissolved in it selected from the group of stabilizing oxides of the tetragonal phase is pressed at a pressure of 550-800 Pa and sintered at 500-1700 ° C for 1-5 hours.
Недостатком градиентного материала, полученного по известному способу [4] является то, что он обладает недостаточно высокой устойчивостью к термическим воздействиям при циклических выдержках и составляет при температурах 1400- 600° С менее 50 циклов.  The disadvantage of the gradient material obtained by the known method [4] is that it has insufficiently high resistance to thermal effects during cyclic exposure and is at temperatures of 1400-600 ° C less than 50 cycles.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ Технической задачей изобретения является разработка способа получения керамического градиентного материала, у которого структура обеспечивает равномерное изменение механических свойств по сечению изделия и как следствие, высокую устойчивость к термическим воздействиям. SUMMARY OF THE INVENTION An object of the invention is to develop a method for producing a ceramic gradient material, in which the structure provides a uniform change in the mechanical properties of product cross section and, as a result, high resistance to thermal influences.
Указанный технический результат достигается тем, что в способе получения керамического градиентного материала, заключающемся в формовании заготовки и ее спекании, сначала получают полидисперсный керамический порошок оксида металла или смесь порошков оксидов металлов плазмохимическим методом посредством распыления водных растворов солей металла или смесей солей металлов в плазму высокочастотного разряда через щелевую форсунку переменного сечения от 0.1 до 100 мкм, затем в полученный упомянутый порошок добавляют органическую связку, перемешивают формовочную смесь, заливают ее в форму, выдерживают формовочную смесь для расслоения ее по фракциям и спекают полученную заготовку с изотермической выдержкой.  The specified technical result is achieved by the fact that in the method for producing a ceramic gradient material, which consists in molding a preform and sintering it, a polydisperse ceramic metal oxide powder or a mixture of metal oxide powders is first obtained by the plasma-chemical method by spraying aqueous solutions of metal salts or mixtures of metal salts into a high-frequency discharge plasma through a slot nozzle of variable cross-section from 0.1 to 100 μm, then an organic binder is added to the obtained powder, mix the molding mixture, pour it into the mold, hold the molding mixture to separate it into fractions and sinter the obtained preform with isothermal exposure.
Полидисперсный керамический порошок оксида металла или смесь порошков оксидов металлов получают с морфологией частиц - от отдельных нанокристаллитов размером 20-50 нм до сферических пустотелых частиц размером до 250 мкм.  A polydisperse ceramic metal oxide powder or a mixture of metal oxide powders is obtained with a particle morphology - from individual nanocrystallites 20-50 nm in size to spherical hollow particles up to 250 microns in size.
Формовочная смесь имеет следующее соотношение компонентов, вес.%: порошок оксида металла или смесь порошков оксидов металлов 80-85; органическая связка остальное.  The molding mixture has the following ratio of components, wt.%: Metal oxide powder or a mixture of metal oxide powders 80-85; organic bunch the rest.
Полидисперсный керамический порошок оксида металла или смесь порошков оксидов металлов представляет собой порошки оксидов: А1203, Zr02, CaO, Y203, MgO. Polydisperse ceramic metal oxide powder or a mixture of metal oxide powders is an oxide powder: A1 2 0 3 , Zr0 2 , CaO, Y 2 0 3 , MgO.
В качестве органической связки используют парафин, или воск, или смесь парафина и воска в соотношении 9:1.  Paraffin, or wax, or a mixture of paraffin and wax in a ratio of 9: 1 is used as an organic ligament.
Формовочную смесь перемешивают при температуре 85-90°С.  The molding mixture is stirred at a temperature of 85-90 ° C.
Формовочную смесь выдерживают в форме для расслоения ее по фракциям в течение 1-10 часа при температуре 75-90°С.  The molding mixture is kept in a form to separate it into fractions for 1-10 hours at a temperature of 75-90 ° C.
Полученную заготовку спекают при температуре 1300 - 1700°С с изотермической выдержкой в 1-5 часов.  The resulting preform is sintered at a temperature of 1300 - 1700 ° C with an isothermal exposure of 1-5 hours.
Сущность предлагаемого изобретения заключается в том, что керамический материал с градиентной структурой получают из полидисперсного керамического порошка оксида металла или смеси порошков оксидов металлов, полученных плазмохимическим методом посредством распыления водных растворов солей металла или смесей солей металлов в плазму высокочастотного разряда через щелевую форсунку переменного сечения от 0.1 до 100 мкм. В результате высокой температуры плазмы происходит быстрое испарение-разложение соли с образованием частиц порошка полидисперсного оксида металла или смеси оксидов металлов. При этом получают полидисперсный керамический порошок оксида металла или смесь порошков оксидов металлов с морфологией частиц - от отдельных нанокристаллитов размером 20-50 нм до сферических пустотелых частиц размером до 250 мкм. Наличие полидисперсных частиц обеспечит необходимую разноплотность отливки при ее выдержке после литья в форму. The essence of the invention lies in the fact that a ceramic material with a gradient structure is obtained from a polydispersed ceramic metal oxide powder or a mixture of metal oxide powders obtained by the plasma-chemical method by spraying aqueous solutions of metal salts or mixtures of metal salts into a high-frequency discharge plasma through a slot nozzle of variable cross section from 0.1 to 100 μm. As a result of the high temperature of the plasma, rapid evaporation-decomposition of the salt occurs with the formation of particles of a powder of a polydispersed metal oxide or a mixture of metal oxides. In this case, a polydisperse ceramic metal oxide powder or a mixture of metal oxide powders with particle morphology is obtained — from individual nanocrystallites 20-50 nm in size to spherical hollow particles up to 250 microns in size. The presence of polydisperse particles will provide the necessary different density of the casting when it is aged after casting.
В полученный полидисперсный керамический порошок оксида металла или смесь порошков оксидов металлов для получения формовочной смеси добавляют органическую связку, представляющую собой: парафин, или воск, или смесь парафина и воска в соотношении 9:1. При этом соотношение компонентов формовочной смеси следующее, вес.%: порошок оксида металла или смесь порошков оксидов металлов 80-85; органическая связка остальное. In the obtained polydisperse ceramic metal oxide powder or a mixture of metal oxide powders to obtain a molding mixture, an organic binder is added, which is: paraffin, or wax, or a mixture of paraffin and wax in a ratio of 9: 1. The ratio of the components of the molding mixture is as follows, wt.%: Metal oxide powder or a mixture of powders of metal oxides 80-85; organic bunch the rest.
При температуре 85-90°С формовочную смесь тщательно перемешивают в течение 25-50 часов, затем заливают ее в форму и выдерживают при температуре плавления органической связки 75-90°С, в течение 1-10 часов. В результате чего происходит расслоение формовочной смеси по фракциям вследствие градиентного осаждения по фракциям частиц полученного порошка. Варьируя временем выдержки (1-10 часов) и температурой, при которой находится органическая связка (75-90°С), т.е. процессом расслоения формовочной смеси по фракциям в форме можно получать керамический материал с заданной градиентной структуройи, следовательно, устойчивостью к термическим воздействиям. По истечении указанного времени полученную заготовку спекают, при температуре 1300 - 1700 °С с изотермической выдержкой в течение 1-5 часов. Керамический материал, полученный по предлагаемому способу, обладает постепенно изменяющимися по мере удаления от поверхности в объём пористостью и равномерным (плавным) изменением свойств по всему объему получаемого материала. Полученный керамический градиентный материал имеет в объеме структуру переменной пористости - от 20 до 75 об.%. At a temperature of 85-90 ° C, the molding mixture is thoroughly mixed for 25-50 hours, then it is poured into the mold and kept at the melting temperature of the organic binder 75-90 ° C for 1-10 hours. As a result, the formation mixture is stratified into fractions due to the gradient deposition of fractions of the obtained powder particles. Varying the exposure time (1-10 hours) and the temperature at which the organic binder is located (75-90 ° С), i.e. the process of stratification of the molding mixture into fractions in the form, you can get a ceramic material with a given gradient structure and, therefore, resistance to thermal influences. After the specified time, the resulting preform is sintered at a temperature of 1300 - 1700 ° C with isothermal exposure for 1-5 hours. Ceramic material obtained by the proposed method has gradually changing porosity and a uniform (smooth) change in properties over the entire volume of the material obtained as it moves away from the surface into the volume. The obtained ceramic gradient material has a variable porosity structure in the volume - from 20 to 75 vol.%.
Устойчивость полученного керамического градиентного материала при циклических выдержках при температуре 1600 °С не менее 200 циклов.  The stability of the obtained ceramic gradient material during cyclic exposure at a temperature of 1600 ° C for at least 200 cycles.
ПРИМЕРЫ КОНКРЕТНОГО ВЫПОЛНЕНИЯ EXAMPLES OF SPECIFIC IMPLEMENTATION
Пример 1. Example 1
Для получения полидисперсного керамического порошка оксида циркония берут водный раствор азотнокислой соли циркония и распыляют ее через щелевую форсунку переменного сечения - от 0.1 до 100 мкм в плазму высокочастотного разряда.  To obtain a polydisperse ceramic powder of zirconium oxide, an aqueous solution of zirconium nitrate is taken and sprayed through a slot nozzle of variable cross-section - from 0.1 to 100 μm into a high-frequency discharge plasma.
В полученный полидисперсный керамический порошок оксида циркония, взятого в количестве 80 вес.% добавляют органическую связку - смесь парафина и воска (9:1) в количестве 20 вес.%, затем перемешивают в течение 50 часов при температуре 85-90°С. Полученную формовочную смесь заливают/инжектируют в форму и выдерживают в таком состоянии, т.е. при температуре 90 °С 2 часа. Полученную заготовку спекают ее при температуре 1550 °С с изотермической выдержкой 1 час.  An organic binder is added to the obtained polydisperse ceramic powder of zirconium oxide taken in an amount of 80 wt.% - a mixture of paraffin and wax (9: 1) in an amount of 20 wt.%, Then stirred for 50 hours at a temperature of 85-90 ° C. The resulting moldable mixture is poured / injected into the mold and kept in this state, i.e. at a temperature of 90 ° C for 2 hours. The resulting preform is sintered at a temperature of 1550 ° C with an isothermal exposure of 1 hour.
Устойчивость полученного керамического градиентного материала при циклических выдержках при температуре 1600°С 200 циклов.  The stability of the obtained ceramic gradient material during cyclic exposure at a temperature of 1600 ° C for 200 cycles.
Пример 2.  Example 2
Для получения полидисперсного керамического порошка оксида алюминия берут водный раствор азотнокислой соли алюминия и распыляют ее через щелевую форсунку переменного сечения - от 0.1 до 100 мкм в плазму высокочастотного разряда. В полученный полидисперсный керамический порошок оксида алюминия, взятого в количестве 85 вес.% добавляют органическую связку - парафин в количестве 15 вес.%, затем перемешивают в течение 35 часов при температуре 85-90°С. Полученную формовочную смесь заливают/инжектируют в форму и выдерживают в таком состоянии, т.е. при температуре 75 °С 10 часов. Полученную заготовку спекают ее при температуре 1300°С с изотермической выдержкой 5 часов. To obtain a polydisperse ceramic powder of aluminum oxide, an aqueous solution of aluminum nitrate salt is taken and sprayed through a slot nozzle of variable cross section - from 0.1 to 100 μm into a high-frequency discharge plasma. In the obtained polydisperse ceramic powder of alumina, taken in an amount of 85 wt.% Add an organic binder - paraffin in an amount of 15 wt.%, Then stirred for 35 hours at a temperature of 85-90 ° C. The resulting moldable mixture is poured / injected into the mold and kept in this state, i.e. at a temperature of 75 ° C for 10 hours. The resulting preform is sintered at a temperature of 1300 ° C with an isothermal exposure of 5 hours.
Устойчивость полученного керамического градиентного материала при циклических выдержках при температуре 1600 °С 220 циклов.  The stability of the obtained ceramic gradient material during cyclic exposure at a temperature of 1600 ° C 220 cycles.
Пример 3.  Example 3
Для получения полидисперсного керамического порошка оксидов циркония, магния и итрия берут водный раствор азотнокислой соли циркония, магния и иттрия, распыляют ее через щелевую форсунку переменного сечения - от 0.1 до 100 мкм в плазму высокочастотного разряда.  To obtain a polydisperse ceramic powder of zirconium, magnesium, and yttrium oxides, take an aqueous solution of the nitric acid salt of zirconium, magnesium, and yttrium, spray it through a slot nozzle of variable cross section, from 0.1 to 100 μm, into a high-frequency discharge plasma.
В полученный полидисперсный керамический порошок оксидов циркония, магния и иттрия, взятого в количестве 82 вес.%. добавляют органическую связку - воск в количестве 18 вес.%, затем перемешивают в течение 40 часов при температуре 85-90°С. Полученную формовочную смесь заливают/инжектируют в форму и выдерживают в таком состоянии, т.е. при температуре 85°С 2 часа. Полученную заготовку спекают ее при температуре 1700 °С с изотермической выдержкой 1 час.  The resulting polydisperse ceramic powder of zirconium, magnesium and yttrium oxides taken in an amount of 82 wt.%. add an organic binder - wax in an amount of 18 wt.%, then mix for 40 hours at a temperature of 85-90 ° C. The resulting moldable mixture is poured / injected into the mold and kept in this state, i.e. at a temperature of 85 ° C for 2 hours. The resulting preform is sintered at a temperature of 1700 ° C with an isothermal exposure of 1 hour.
Устойчивость полученного керамического градиентного материала при циклических выдержках при температуре 1600 °С 210 циклов.  The stability of the obtained ceramic gradient material during cyclic exposure at a temperature of 1600 ° C 210 cycles.
Пример 4.  Example 4
Для получения полидисперсного керамического порошка оксидов циркония и кальция берут водный раствор азотнокислой соли циркония и кальция, распыляют ее через щелевую форсунку переменного сечения - от 0.1 до 100 мкм в плазму высокочастотного разряда.  To obtain a polydisperse ceramic powder of zirconium and calcium oxides, an aqueous solution of zirconium and calcium nitrate is taken, sprayed through a slot nozzle of variable cross section - from 0.1 to 100 μm into a high-frequency discharge plasma.
В полученный полидисперсный керамический порошок оксидов циркония и кальция, взятого в количестве 84 вес.% добавляют органическую связку - смесь парафина и воска (9:1) в количестве 16 вес.%, затем перемешивают в течение 25 часов при температуре 85- 90°С. Полученную формовочную смесь заливают/инжектируют в форму и выдерживают в таком состоянии, т.е. при температуре плавления органической связки 80°С 6 часов. Полученную заготовку спекают ее при температуре 1600°С с изотермической выдержкой 3 часа. An organic binder is added to the obtained polydisperse ceramic powder of zirconium and calcium oxides taken in an amount of 84 wt.% - a mixture of paraffin and wax (9: 1) in an amount of 16 wt.%, then stirred for 25 hours at a temperature of 85-90 ° C. The resulting moldable mixture is poured / injected into the mold and kept in this state, i.e. at a melting point of an organic binder of 80 ° C for 6 hours. The resulting preform is sintered at a temperature of 1600 ° C with an isothermal exposure of 3 hours.
Устойчивость полученного керамического градиентного материала при циклических выдержках при температуре 1600 °С 200 циклов.  The stability of the obtained ceramic gradient material during cyclic exposure at a temperature of 1600 ° C for 200 cycles.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) SUBSTITUTE SHEET (RULE 26)

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ CLAIM
1. Способ получения керамического градиентного материала, заключающийся в формовании заготовки и ее спекании, отличающийся тем, что сначала получают полидисперсный керамический порошок оксида металла или смесь порошков оксидов металлов плазмохимическим методом посредством распыления водных растворов солей металла или смесей солей металлов в плазму высокочастотного разряда через щелевую форсунку переменного сечения от 0.1 до 100 мкм, затем в полученный упомянутый порошок добавляют органическую связку, перемешивают формовочную смесь, далее заливают ее в форму, выдерживают формовочную смесь для расслоения ее по фракциям и спекают полученную заготовку с изотермической выдержкой. 1. A method of obtaining a ceramic gradient material, which consists in forming a preform and sintering it, characterized in that the polydisperse ceramic metal oxide powder or a mixture of metal oxide powders is first obtained by the plasma-chemical method by spraying aqueous solutions of metal salts or mixtures of metal salts into a high-frequency discharge plasma through a gap a nozzle of variable cross section from 0.1 to 100 μm, then an organic binder is added to the obtained powder, the molding mixture is mixed, d Lee pour it into a mold, molding the mixture incubated for its separation into fractions and the resulting preform is sintered with isothermal exposure.
2. Способ по п.1 , отличающийся тем, что полидисперсный керамический порошок оксида металла или смесь порошков оксидов металлов получают с морфологией частиц - от отдельных нанокристаллитов размером 20-50 нм до сферических пустотелых частиц размером до 250 мкм.  2. The method according to claim 1, characterized in that the polydisperse ceramic metal oxide powder or a mixture of metal oxide powders is obtained with a particle morphology - from individual nanocrystallites with a size of 20-50 nm to spherical hollow particles up to 250 microns in size.
3. Способ по п.1 , отличающийся тем, что формовочная смесь имеет следующее соотношение компонентов, вес.%:  3. The method according to claim 1, characterized in that the molding mixture has the following ratio of components, wt.%:
порошок оксида металла или смесь порошков оксидов металлов 80- metal oxide powder or a mixture of powders of metal oxides 80-
85, 85,
органическая связка остальное.  organic bunch the rest.
4. Способ по любому из п.1 или п.2 или п.З, отличающийся тем, что полидисперсный керамический порошок оксида металла или смесь порошков оксидов металлов представляет собой порошки оксидов: А12О3, ZrO2, CaO, Y2O3, MgO. 4. The method according to any one of claim 1 or claim 2 or claim 3, characterized in that the polydispersed ceramic metal oxide powder or a mixture of metal oxide powders is an oxide powder: Al 2 O 3 , ZrO 2 , CaO, Y 2 O 3 , MgO.
5. Способ по любому из п.1 или п.З, отличающийся тем, что в качестве органической связки используют парафин, или воск, или смесь парафина и воска в соотношении 9:1.  5. The method according to any one of claim 1 or claim 3, characterized in that paraffin, or wax, or a mixture of paraffin and wax in a ratio of 9: 1 is used as an organic bond.
6. Способ по п.1 , отличающийся тем, что перемешивают формовочную смесь при температуре 85-90°С в течение 25-50 часов.  6. The method according to claim 1, characterized in that the molding sand is mixed at a temperature of 85-90 ° C for 25-50 hours.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) SUBSTITUTE SHEET (RULE 26)
7. Способ по п.1 , отличающийся тем, что выдерживают формовочную смесь в форме для расслоения ее по фракциям в течение 1-10 часа при температуре 75-90°С. 7. The method according to claim 1, characterized in that the moldable mixture is kept in a mold for stratification into fractions for 1-10 hours at a temperature of 75-90 ° C.
8. Способ по п.1 , отличающийся тем, что спекают полученную заготовку при температуре 1300 - 1700°С с изотермической выдержкой в 1-5 часов.  8. The method according to claim 1, characterized in that the obtained preform is sintered at a temperature of 1300 - 1700 ° C with an isothermal exposure of 1-5 hours.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26) SUBSTITUTE SHEET (RULE 26)
PCT/RU2013/000264 2013-03-29 2013-03-29 Method for producing ceramic gradient material WO2014158052A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2014151346/02A RU2592652C2 (en) 2013-03-29 2013-03-29 Method of producing ceramic gradient material
PCT/RU2013/000264 WO2014158052A1 (en) 2013-03-29 2013-03-29 Method for producing ceramic gradient material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2013/000264 WO2014158052A1 (en) 2013-03-29 2013-03-29 Method for producing ceramic gradient material

Publications (1)

Publication Number Publication Date
WO2014158052A1 true WO2014158052A1 (en) 2014-10-02

Family

ID=51624879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2013/000264 WO2014158052A1 (en) 2013-03-29 2013-03-29 Method for producing ceramic gradient material

Country Status (2)

Country Link
RU (1) RU2592652C2 (en)
WO (1) WO2014158052A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107214343A (en) * 2017-05-31 2017-09-29 河北工业职业技术学院 A kind of preparation method of gradient nozzle
CN113953513A (en) * 2021-10-14 2022-01-21 山东大学 Preparation method and system of nano silicon carbide particle reinforced aluminum-based gradient composite material
CN117418143A (en) * 2023-12-19 2024-01-19 汕头大学 Ceramic reinforced metal matrix composite gradient coating and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2722480C1 (en) * 2019-10-14 2020-06-01 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ) Method of producing porous ceramic material with three-level porous structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2164260C1 (en) * 1999-06-23 2001-03-20 Институт физики прочности и материаловедения СО РАН Method of manufacture of composite materials with gradient structure
JP2002180107A (en) * 2000-12-19 2002-06-26 Honda Motor Co Ltd Method for manufacturing functionally gradient composite material
RU2252817C1 (en) * 2003-12-23 2005-05-27 Институт проблем химической физики Российской Академии наук Installation and method for production of nanodispersed powders in microwave plasma
CN101418391A (en) * 2008-12-15 2009-04-29 哈尔滨理工大学 Method for preparing gradient porous material
RU2454297C1 (en) * 2010-12-13 2012-06-27 Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН) Method of producing ceramic gradient material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2164260C1 (en) * 1999-06-23 2001-03-20 Институт физики прочности и материаловедения СО РАН Method of manufacture of composite materials with gradient structure
JP2002180107A (en) * 2000-12-19 2002-06-26 Honda Motor Co Ltd Method for manufacturing functionally gradient composite material
RU2252817C1 (en) * 2003-12-23 2005-05-27 Институт проблем химической физики Российской Академии наук Installation and method for production of nanodispersed powders in microwave plasma
CN101418391A (en) * 2008-12-15 2009-04-29 哈尔滨理工大学 Method for preparing gradient porous material
RU2454297C1 (en) * 2010-12-13 2012-06-27 Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН) Method of producing ceramic gradient material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107214343A (en) * 2017-05-31 2017-09-29 河北工业职业技术学院 A kind of preparation method of gradient nozzle
CN113953513A (en) * 2021-10-14 2022-01-21 山东大学 Preparation method and system of nano silicon carbide particle reinforced aluminum-based gradient composite material
CN117418143A (en) * 2023-12-19 2024-01-19 汕头大学 Ceramic reinforced metal matrix composite gradient coating and preparation method and application thereof
CN117418143B (en) * 2023-12-19 2024-03-26 汕头大学 Ceramic reinforced metal matrix composite gradient coating and preparation method and application thereof

Also Published As

Publication number Publication date
RU2592652C2 (en) 2016-07-27
RU2014151346A (en) 2016-07-10

Similar Documents

Publication Publication Date Title
Franks et al. Colloidal processing: enabling complex shaped ceramics with unique multiscale structures
JP6637956B2 (en) Sintered ceramic material, powder composition for obtaining sintered ceramic material, method for producing the same, and ceramic component
JP2006503188A (en) Near net shape metal and / or ceramic member manufacturing method
WO2014158052A1 (en) Method for producing ceramic gradient material
CN102211346B (en) Method for preparing functionally graded material through pressure filtration forming in motional magnetic field
CN107042309A (en) A kind of water-soluble core part and preparation method thereof
CN106588020A (en) Preparation method of HfxTa1-xC alloy precursor and HfxTa1-xC alloy obtained through method
CN104353835A (en) Part manufacturing method combining 3D (three-dimensional) printing with powder metallurgy
CN103194631B (en) Preparation method of high-volume fraction alumina ceramic particle enhanced composite material
CN108137412B (en) Fused zirconia-spinel particles and refractory products obtained from said particles
CN102303353B (en) Gel-casting preparation method for gradient material in moving magnetic field
CN106938331B (en) Mesoporous dusty materials of NiAl and preparation method thereof
CN103639396B (en) Utilize the method that ceramic mould prepares Titanium and titanium alloy casting
JP2010222155A (en) Silicon carbide sintered compact and method for producing the same
JP2014122406A (en) Metal-ceramic composite material, and method for manufacturing the same
CN111868008B (en) Method for producing porous preforms with controlled porosity from silicon carbide and porous preforms of silicon carbide
RU2454297C1 (en) Method of producing ceramic gradient material
CN1206069C (en) Press filtering process to form functional gradient material in static magnetic field
Yang et al. Preparation and sintering behaviour of nanostructured alumina/titania composite powders modified with nano-dopants
JP2011255398A (en) Casting tool, method for producing casting tool and precision casting method
Shahzad et al. Negative additive manufacturing of Al2O3-Al cermet material by fused deposition and Direct Ink Writing
RU2531960C1 (en) Production of ceramic slurry
JP2001322865A (en) Alumina sintered body with high strength and high toughness and method for manufacturing the same
JPH04285141A (en) Manufacture of ferrous sintered body
Chuankrerkkul et al. Role of tungsten carbide reinforcement on alumina matrix composites fabricated by powder injection moulding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014151346

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880671

Country of ref document: EP

Kind code of ref document: A1