JP2001322865A - Alumina sintered body with high strength and high toughness and method for manufacturing the same - Google Patents

Alumina sintered body with high strength and high toughness and method for manufacturing the same

Info

Publication number
JP2001322865A
JP2001322865A JP2000143425A JP2000143425A JP2001322865A JP 2001322865 A JP2001322865 A JP 2001322865A JP 2000143425 A JP2000143425 A JP 2000143425A JP 2000143425 A JP2000143425 A JP 2000143425A JP 2001322865 A JP2001322865 A JP 2001322865A
Authority
JP
Japan
Prior art keywords
sintered body
alumina
strength
toughness
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000143425A
Other languages
Japanese (ja)
Other versions
JP3878976B2 (en
Inventor
Hidenori Kuroki
英憲 黒木
Hiroyuki Suzuki
裕之 鈴木
Shunzo Tajima
俊造 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000143425A priority Critical patent/JP3878976B2/en
Publication of JP2001322865A publication Critical patent/JP2001322865A/en
Application granted granted Critical
Publication of JP3878976B2 publication Critical patent/JP3878976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alumina sintered body having a dense and fine sintered structure, high strength and toughness as high as >=5 MPa.m1/2 fracture toughness as measured by to JIS-R1607 and more preferably >=6 MPa.m1/2. SOLUTION: A high purity alumina calcined body having pores with 40 to 63% relative density is impregnated with a solution of a metal salt of Ca, Sr or Ba. The body is then sintered at 1,350 to 1,600 deg.C to thermally decompose the metal salt so that alumina grains are anisotropically grown by the effect when the metal oxide is formed on the intergranular faces and that anisotropic particles having <=3 μm major diameter and >=2 aspect ratio occupies an area of >=20% based on observation of the cross section. The structure of the sintered body is homogenous, dense and fine, and the fracture toughness can be significantly improved while high strength is maintained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度・高靱性を
有し、工具用材料、構造材料、高温構造材料等として有
用なアルミナ質焼結体およびその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alumina sintered body having high strength and high toughness and useful as a tool material, a structural material, a high-temperature structural material, and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、アルミナ質焼結体は、耐熱
性、耐環境性、強度等の特性に優れることから、例え
ば、半導体素子収納用パッケージに代表される電子材料
や生体用セラミックス、鋳鉄切削用工具等の高機能性材
料として使用されている。
2. Description of the Related Art Conventionally, alumina-based sintered bodies have excellent properties such as heat resistance, environmental resistance, and strength. For example, electronic materials represented by packages for housing semiconductor elements, ceramics for living bodies, cast iron, etc. It is used as a highly functional material for cutting tools and the like.

【0003】アルミナ質焼結体は上記のような優れた熱
的、機械的特性の他に本質的に耐酸化性及び耐食性に優
れており既に各種分野で使用されているにもかかわら
ず、一般的に破壊靱性が低いことから、構造材料として
は広く応用されるまでには至っていない。
[0003] In addition to the above-mentioned excellent thermal and mechanical properties, an alumina-based sintered body is inherently excellent in oxidation resistance and corrosion resistance, and has been used in various fields. Due to its low fracture toughness, it has not been widely applied as a structural material.

【0004】したがって、アルミナ質焼結体の応用分野
を更に広げるためには、その破壊靭性を一層増大させる
必要があり、アルミナ質焼結体の強度を維持すると共
に、その破壊靭性を改善するための種々の手段が開発さ
れている。
Therefore, in order to further expand the application field of the alumina-based sintered body, it is necessary to further increase its fracture toughness. In order to maintain the strength of the alumina-based sintered body and to improve its fracture toughness, Various means have been developed.

【0005】アルミナ質焼結体の靭性改善の手段とし
て、特開平9−87008号公報には、Al2 3 粉末
に、Al2 3 との共晶点が1600℃以下のNa,M
g,Ca,Sr,Ba,Ti,Fe,Mn,W,Siま
たは周期律表第3A族の元素の酸化物を添加混合し、成
形後に焼成する際に、室温から焼成温度までを8℃/m
in以上の高い昇温速度で昇温する方法によって、焼成
中に液相を一定量生成させることにより、等方性Al2
3 と長径が10μm以上、アスペクト比が3以上の異
方性Al2 3 結晶粒が全量中20〜85体積%の割合
で混在する焼結体とする方法が開示されている。
As a means for improving the toughness of an alumina sintered body, Japanese Patent Application Laid-Open No. 9-87008 discloses that Al 2 O 3 powder contains Na, M having a eutectic point with Al 2 O 3 of 1600 ° C. or less.
g, Ca, Sr, Ba, Ti, Fe, Mn, W, Si or an oxide of an element of Group 3A of the periodic table are added and mixed, and when firing after molding, the temperature is increased from room temperature to the firing temperature by 8 ° C. / m
In a method of raising the temperature at a high temperature rising rate of at least in, a constant amount of a liquid phase is generated during firing, so that isotropic Al 2
O 3 and major diameter 10μm or more, a method for a sintered body having an aspect ratio of 3 or more anisotropic Al 2 O 3 crystal grains are mixed in a proportion of 20 to 85 vol% in the total amount is disclosed.

【0006】また、特開平10−158055号公報、
特開平10−212157号公報には、アルミナにTi
2 、MgOおよびSiO2 を所定比率で配合して焼結
することによって液相生成を促進してAl2 3 結晶の
高異方性成長を促進して、焼結体中にアスペクト比5以
上の板状Al2 3 結晶を20体積%以上含む焼結体と
する方法が開示されている。
[0006] Also, Japanese Patent Application Laid-Open No. Hei 10-158055,
Japanese Patent Application Laid-Open No. Hei 10-212157 discloses that alumina is made of Ti.
By mixing and sintering O 2 , MgO and SiO 2 at a predetermined ratio, the formation of a liquid phase is promoted, and the highly anisotropic growth of Al 2 O 3 crystals is promoted. A method for forming a sintered body containing the above plate-like Al 2 O 3 crystal in an amount of 20% by volume or more is disclosed.

【0007】さらに、特開平11−71167号公報に
は、アルミナを主体とする焼結体に3A族から選ばれた
1種以上の元素と4A族から選ばれた1種以上の元素と
を含む酸化物化合物を混合して焼結し粒界相組成物をフ
イルム状に粒界に分散させることによってクラックの回
折を生じやすくするとともに、Al2 3 の形状異方性
の成長を促進する元素としてマグネシウムや珪素を添加
して10体積%以上がアスペクト比3以上のAl2 3
結晶粒とすることによって靱性を向上させる方法が開示
されている。
Further, JP-A-11-71167 discloses that a sintered body mainly composed of alumina contains one or more elements selected from Group 3A and one or more elements selected from Group 4A. An element that mixes and sinters an oxide compound and disperses the grain boundary phase composition in the form of a film at the grain boundaries to facilitate crack diffraction and promote Al 2 O 3 shape anisotropy growth. Al 2 O 3 with an aspect ratio of 3 or more by adding magnesium or silicon
A method of improving toughness by forming crystal grains is disclosed.

【0008】その他に、特開平11−1365号公報に
は、バイヤー法で製造された水酸化アルミニウムを原料
として0.1μm以下の微細なα−酸化アルミニウム粉
末をα−酸化アルミニウムの種結晶として0.01〜2
0mass%添加した混合物を900〜1200℃で仮
焼して得られた酸化アルミニウム粉末を焼結することに
よって、長径が10μm以下でアスペクト比が2以上の
異方性を有する結晶粒の割合が20面積%以上であるア
ルミナ焼結体が開示されている。
In addition, Japanese Patent Application Laid-Open No. H11-1365 discloses that aluminum hydroxide produced by the Bayer method is used as a raw material and fine α-aluminum oxide powder of 0.1 μm or less is used as a seed crystal of α-aluminum oxide. .01-2
By sintering the aluminum oxide powder obtained by calcining the mixture added with 0 mass% at 900 to 1200 ° C., the ratio of the anisotropic crystal grains having a major axis of 10 μm or less and an aspect ratio of 2 or more is 20% or less. An alumina sintered body having an area% or more is disclosed.

【0009】[0009]

【発明が解決しようとする課題】上記の各特許文献に示
されるように、アルミナに各種の酸化物を混合して液相
生成を促進してAl2 3 結晶の高異方性成長を促進す
ることによって破壊靭性を5〜5.5MPa・m1/2
度に向上できるが、これらの焼結組織には粒子の高異方
性成長によって長径が10μm以上にまで成長してしま
った粗大な粒子を含んでおり、これら粗大粒子は欠陥源
として作用するために、この材料は強度の面において劣
り、強度と靱性とを両立させるのが困難である。また、
粒界相組成物がフイルム状や粒子状になるほどに大量の
3A族および4A族の元素を含有させると強度は低下す
る。
As shown in the above-mentioned patent documents, various oxides are mixed with alumina to promote the formation of a liquid phase to promote the highly anisotropic growth of Al 2 O 3 crystals. By doing so, the fracture toughness can be improved to about 5 to 5.5 MPa · m 1/2 , but these sintered structures have coarse grains whose major axis has grown to 10 μm or more due to the highly anisotropic growth of the particles. This material contains particles, and since these coarse particles act as defect sources, this material is inferior in strength, and it is difficult to achieve both strength and toughness. Also,
If the grain boundary phase composition contains a large amount of Group 3A and Group 4A elements so as to be in the form of a film or particles, the strength is reduced.

【0010】また、特開平11−1365号公報に示さ
れる方法は、アルミナ焼結体の原料として通常使用され
る市販粉末であるバイヤー法により製造された安価なα
−酸化アルミニウム粉末を原料とし、0.1μm以下の
微細なα−酸化アルミニウム粉末を種結晶として使用す
ることで粒子の異常成長を抑制し、粗大な粒子を含むに
もかかわらずある程度の微細組織を得ている。しかし、
種結晶の役をする微細な粉末としてボールミルの研磨粉
を用いるために、研磨する側の粉末などプロセス中の不
純物が全て混入することになり、成分や粒径が不明確で
あるために、実生産で長期にわたって安定して焼結組織
を自由に制御することは困難である。
The method disclosed in Japanese Patent Application Laid-Open No. 11-1365 discloses an inexpensive α produced by the Bayer method, which is a commercially available powder commonly used as a raw material for an alumina sintered body.
-Using aluminum oxide powder as a raw material and suppressing the abnormal growth of particles by using fine α-aluminum oxide powder of 0.1 μm or less as a seed crystal, and achieving a certain fine structure despite containing coarse particles. It has gained. But,
Since the ball mill polishing powder is used as a fine powder serving as a seed crystal, all impurities in the process, such as the powder to be polished, are mixed, and the components and particle diameter are unclear. It is difficult to stably control the sintering structure freely for a long time in production.

【0011】本発明は、上記のような従来技術の課題を
解決すべく、緻密で微細な焼結組織を持ち、高い強度を
確保すると共にJIS−R1607で制定される破壊靱
性が5MPa・m1/2 以上、さらに好ましくは6MPa
・m1/2 より高い靱性を有するアルミナ質焼結体を提供
することを目的とする。
In order to solve the above-mentioned problems of the prior art, the present invention has a dense and fine sintered structure, ensures high strength, and has a fracture toughness specified by JIS-R1607 of 5 MPa · m 1. / 2 or more, more preferably 6MPa
-To provide an alumina-based sintered body having a toughness higher than m1 / 2 .

【0012】[0012]

【課題を解決するための手段】本発明者らは、アルミナ
質焼結体の強度特性を損なうことなく、その破壊靭性を
向上させるための方法について検討を重ねた結果、相対
密度の小さいアルミナ仮焼結体の気孔全体にCa、S
r、またはBaのいずれか1種以上の金属塩の溶液を含
浸させた後に焼結することによって、結晶粒の粗大化を
伴わずに、大部分のアルミナ結晶粒が形状異方性を持つ
ようにすることによりJIS−R1607で制定される
破壊靱性値が5MPa・m1/2 以上、さらには6MPa
・m1/2 より高いアルミナ質焼結体を得ることができる
ことを見出した。
The present inventors have repeatedly studied a method for improving the fracture toughness without impairing the strength characteristics of the alumina-based sintered body. Ca, S throughout the pores of the sintered body
By sintering after impregnating with a solution of at least one metal salt of r or Ba, most alumina crystal grains have shape anisotropy without coarsening of crystal grains. The fracture toughness value defined by JIS-R1607 is 5 MPa · m 1/2 or more, and furthermore 6 MPa
-It has been found that an alumina-based sintered body higher than m1 / 2 can be obtained.

【0013】すなわち、本発明は、仮焼結体にCa,S
r,またはBaのいずれか1種以上の金属塩を含浸して
焼結されたアルミナ質焼結体であって、長径が3μm以
下でアペクト比2以上である非等方的な結晶粒子の割合
が切断面の観察において20面積%以上であって、長径
が3μmを超える粗大粒子を実質的に含まない緻密かつ
微細な組織を持つことを特徴とする高強度・高靱性アル
ミナ質焼結体である。
That is, according to the present invention, Ca, S
A ratio of anisotropic crystal particles having a major axis of 3 μm or less and an aspect ratio of 2 or more, which is an alumina sintered body sintered by impregnating at least one metal salt of r or Ba. Is a high-strength and high-toughness alumina-based sintered body characterized by having a dense and fine structure that is not less than 20 area% in observation of a cut surface and has substantially no major particles having a major diameter exceeding 3 μm. is there.

【0014】また、本発明は、焼結時におけるCa,S
r,またはBaのいずれか1種以上の金属塩の熱分解と
酸化によって形成された該金属の酸化物を結晶粒界に焼
結体の全量に対して金属換算量で0.02〜2.0質量
%含有していることを特徴とする上記の高強度・高靱性
アルミナ質焼結体である。
Further, the present invention relates to a method for producing Ca, S
An oxide of the metal formed by thermal decomposition and oxidation of at least one metal salt of any one of r and Ba is used at the grain boundary in an amount of 0.02 to 2. The above high-strength and high-toughness alumina-based sintered body characterized by containing 0% by mass.

【0015】さらに、本発明は、相対密度40%以上6
3%以下のアルミナ仮焼結体にCa,Sr,またはBa
のいずれか1種以上の金属塩の溶液を含浸させ、次に、
該含浸された仮焼結体を1350〜1600℃の温度で
酸化性雰囲気中で焼結することを特徴とする上記のアル
ミナ質焼結体の製造方法である。また、本発明は、仮焼
結体は、純度99.5%以上、平均粒径0.5μm以下
の高純度アルミナ粉末を用いて、湿式成形法で成形した
生成形体を800〜1000℃で焼結したものであるこ
とを特徴とする上記のアルミナ質焼結体の製造方法であ
る。
Further, the present invention provides a method for producing a resin having a relative density of 40% or more.
Ca, Sr, or Ba on 3% or less alumina
Impregnated with a solution of one or more metal salts of
The method for producing an alumina-based sintered body according to the above, wherein the impregnated temporary sintered body is sintered in an oxidizing atmosphere at a temperature of 1350 to 1600 ° C. Further, in the present invention, the pre-sintered body is sintered at 800 to 1000 ° C. using a high-purity alumina powder having a purity of 99.5% or more and an average particle size of 0.5 μm or less by a wet molding method. A method for producing the above-mentioned alumina-based sintered body, characterized in that the sintered body is a sintered body.

【0016】また、本発明は、湿式成形法は、アルミナ
泥漿を型中に装填後、重力倍数10kG〜20kGの高
い遠心力を作用させて成形する高速遠心成形法であるこ
とを特徴とする上記のアルミナ質焼結体の製造方法であ
る。また、本発明は、アルミナ仮焼結体にCaの硝酸塩
の水溶液を含浸させることを特徴とする上記のアルミナ
質焼結体の製造方法である。
Further, the present invention is characterized in that the wet molding method is a high-speed centrifugal molding method in which alumina slurry is charged into a mold and then molded by applying a high centrifugal force of a gravity multiple of 10 kG to 20 kG. This is a method for producing an alumina sintered body. Further, the present invention is the above-described method for producing an alumina-based sintered body, characterized by impregnating an aqueous solution of Ca nitrate into the temporarily-sintered alumina.

【0017】本発明のアルミナ焼結体は、大きい粒子と
小さい粒子の混在の程度が小さく、すなわち均質性が高
く、かつ緻密で微細である焼結組織によってもたらされ
る効果と、これに加えて緻密で微細である焼結組織を保
った上で粒子の異方性成長によって形成されるアスペク
ト比が2以上の非等方的な結晶粒子による効果とを有す
る。また、Ca,Sr,またはBaのいずれか1種以上
の金属塩からなる結晶粒成長制御剤の添加量を変えるこ
とで容易にこのような焼結組織を制御できるので、本発
明の製造方法は、特殊な薬品や装置を使う必要のないコ
ストパフォーマンスに優れた新規な製造方法である。
The alumina sintered body of the present invention has a small degree of intermixing of large particles and small particles, that is, a high homogeneity, and a dense and fine sintered structure. And an anisotropic crystal particle having an aspect ratio of 2 or more formed by anisotropic growth of particles while maintaining a fine sintered structure. Further, such a sintered structure can be easily controlled by changing the amount of addition of a crystal grain growth controlling agent comprising at least one metal salt of Ca, Sr, or Ba. It is a new manufacturing method that is excellent in cost performance without using special chemicals or equipment.

【0018】[0018]

【作用】セラミックスの強度および靱性は、一般に焼結
体の組織が微細であればあるほど優れていることが知ら
れている。また、アルミナ質焼結体の結晶粒界に形状異
方性の粒子、つまりアスペクト比が大きな粒子が分散し
ていると、クラックが粒界を進展する際に、該クラック
が回折することにより靱性が向上することも知られてい
る。
It is generally known that the finer the structure of the sintered body, the better the strength and toughness of the ceramic. In addition, when particles having a shape anisotropy, that is, particles having a large aspect ratio, are dispersed in the crystal grain boundaries of the alumina-based sintered body, the cracks are diffracted when the cracks propagate through the grain boundaries, resulting in toughness. Is also known to improve.

【0019】しかし、たとえ、アスペクト比が大きな粒
子であっても粒径が大きければ、焼結体の組織は粗大な
ものとなり利点よりも欠点の方が大きくなる。焼結時に
形状異方性を促進するように粒子の成長を行うと、通常
は、粒子が10μm以上にまで成長してしまい、焼結体
の組織を微細に保つことができない。本発明は、焼結体
の組織を微細に保つことで強度を高く保ち、そこに粒子
の異方性によってもたらされる効果を付け加えること
で、アルミナ焼結体の持つ元々の特性を損なうことなく
靱性をさらに向上させたものである。
However, even if the particles have a large aspect ratio, if the particle size is large, the structure of the sintered body becomes coarse and the defects are larger than the advantages. When particles are grown so as to promote shape anisotropy during sintering, the particles usually grow to 10 μm or more, and the structure of the sintered body cannot be kept fine. The present invention maintains the strength by maintaining the structure of the sintered body finely, and by adding the effect brought by the anisotropy of the particles thereto, toughness without impairing the original properties of the alumina sintered body. Is further improved.

【0020】本発明においては、アルミナ仮焼結体にC
a,Sr,またはBaのいずれか1種以上の金属塩を含
浸したものを焼結することにより該金属塩の焼結時の熱
分解と酸化によって該金属の酸化物が結晶粒界に形成さ
れて粒子の異方性成長を促進して3次元的に見てほぼ全
ての結晶粒子をアスペクト比2以上まで成長させても長
径は3μm以下を保持することができるので長径が3μ
mを超える粗大粒子は実質的に含まれない。
In the present invention, the alumina temporarily sintered body is C
By sintering a material impregnated with at least one metal salt of a, Sr, or Ba, an oxide of the metal is formed at a crystal grain boundary by thermal decomposition and oxidation during sintering of the metal salt. The major axis can be maintained at 3 μm or less even when almost all crystal grains are grown up to an aspect ratio of 2 or more when viewed three-dimensionally by promoting anisotropic growth of the particles.
Substantially no coarse particles exceeding m.

【0021】焼結体中のほぼすべてが長径が3μm以下
でアスペクト比が2以上の粒子であることが望ましい。
このような粒子が切断面の観察においてその量が多けれ
ば多いほど焼結体中の量が多いことを意味するが、この
ような条件を満たす粒子が20面積%以上であれば靱性
の向上に寄与する。40面積%以上であればより好まし
い。長径が3μmを超える粗大粒子は強度を低下させる
こととなるので望ましくない。また、アスペクト比が2
未満の粒子は、靱性の向上に寄与する度合いが小さい。
It is desirable that almost all of the sintered bodies are particles having a major axis of 3 μm or less and an aspect ratio of 2 or more.
The greater the amount of such particles in the observation of the cut surface, the greater the amount in the sintered body, but if the particles satisfying such conditions are at least 20 area%, the toughness will be improved. Contribute. It is more preferable that the area be 40% by area or more. Coarse particles having a major axis of more than 3 μm are not desirable because they reduce the strength. If the aspect ratio is 2
Particles with less than a small extent contribute to an improvement in toughness.

【0022】焼結組織の均質性を保つためには、成形体
組織の均質性が高くなければならない。本発明のアルミ
ナ質焼結体の製造方法は、均質性の極めて高い成形体
に、均質性を損なうことなく結晶粒成長制御剤を添加す
る方法として溶液含浸法を組み合わせたことを特徴とす
る。
In order to maintain the homogeneity of the sintered structure, the homogeneity of the structure of the compact must be high. The method for producing an alumina-based sintered body according to the present invention is characterized in that a solution impregnation method is combined with a method for adding a crystal grain growth controlling agent to a molded article having extremely high homogeneity without impairing homogeneity.

【0023】本発明の製造方法において、焼結時に仮焼
結体のアルミナは、結晶粒が成長して気孔部分が消滅す
る。また、同時に、仮焼結体に結晶粒成長制御剤として
含浸した金属塩は、焼結時に熱分解するが、分解時に飛
散せずに残った該金属が結晶粒の成長時に酸化雰囲気に
より酸化されて該金属の酸化物が結晶粒界に生成して、
結晶粒の表面エネルギーを変化させて結晶成長の方向性
に作用して、大部分の結晶粒が形状異方性を持つように
なる。なお、生じた酸化物は電子顕微鏡で観察する限り
では酸化物が固まって存在している痕跡は認められない
ので原子単位か少なくとも非常に微細な結晶として結晶
粒界に存在していると推定される。
In the production method of the present invention, during sintering, the alumina of the pre-sintered body grows crystal grains and the pores disappear. At the same time, the metal salt impregnated in the temporary sintered body as a crystal grain growth controlling agent is thermally decomposed during sintering, but the metal remaining without being scattered during decomposition is oxidized by an oxidizing atmosphere during the growth of crystal grains. The oxide of the metal is formed at the grain boundary,
Most of the crystal grains have shape anisotropy by changing the surface energy of the crystal grains and acting on the direction of crystal growth. It should be noted that, as far as observed by an electron microscope, no trace of the solidified oxide is observed, and it is presumed that the generated oxide is present at the grain boundaries as atomic units or at least as very fine crystals. You.

【0024】本発明の製造方法において、仮焼結体の出
発原料に用いるアルミナを0.5μm以下の十分な細粒
とすることによって、1350℃以上の高温焼結時の結
晶粒の成長による粗大化があっても焼結後の結晶粒径を
平均粒径で3μm以下、より好ましくは、1〜2μmに
十分微細に維持できる。これによって焼結体の強度を高
く維持することができる。
In the production method of the present invention, the alumina used as the starting material of the pre-sintered body is made to be fine enough to have a particle size of 0.5 μm or less, so that the coarse particles due to the growth of crystal grains at a high temperature of 1350 ° C. or more are sintered. Despite the change, the crystal grain size after sintering can be kept sufficiently fine to an average grain size of 3 μm or less, more preferably 1-2 μm. Thereby, the strength of the sintered body can be maintained high.

【0025】[0025]

【発明の実施の形態】本発明の製造方法において、出発
原料として、高純度アルミナを用いる。強度と靭性とを
兼ね備えた焼結組織を得るためには、純度99.95%
以上、平均粒径0.5μm以下、より好ましくは0.2
μm以下のアルミナ粉末が望ましい。仮焼結体を形成す
る前に、この粉末を用いてアルミナ粉末成形体を成形す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the production method of the present invention, high-purity alumina is used as a starting material. In order to obtain a sintered structure having both strength and toughness, a purity of 99.95%
Or more, the average particle size is 0.5 μm or less, more preferably 0.2 μm or less.
Alumina powder of μm or less is desirable. Before forming the temporary sintered body, the powder is used to form an alumina powder molded body.

【0026】アルミナ粉末成形体は、粒子充填率が40
%以上〜63%以下で、組織が均一であればいずれの成
形法も使用可能である。均一粒径の粒子をランダムに充
填したときに得られる最高の充填率は63%である。上
記の高純度アルミナ粉末を使用した場合、安定してほぼ
この粒子充填密度が得られる。粒径分布のある粉末を充
填した方が見掛けの密度は上昇するが、組織の均質性と
いう観点からは好ましくない。充填率が40%未満であ
ると、高温焼結後の相対密度が低下して、十分な強度の
確保が困難となる。また、充填率がランダム最密充填の
63%であっても、含浸工程において何ら問題はない。
The alumina powder compact has a particle filling rate of 40
Any molding method can be used as long as the structure is uniform in the range of not less than% and not more than 63%. The highest packing fraction obtained when particles of uniform size are randomly packed is 63%. When the high-purity alumina powder described above is used, almost this particle packing density can be obtained stably. Filling with a powder having a particle size distribution increases the apparent density, but is not preferred from the viewpoint of tissue homogeneity. If the filling ratio is less than 40%, the relative density after high-temperature sintering decreases, and it becomes difficult to secure sufficient strength. Even if the filling rate is 63% of the random close packing, there is no problem in the impregnation step.

【0027】アルミナ焼結体の組織の均質性を保つため
には、成形体組織の均質性が高くなければならない。ア
ルミナ主粉末に添加成分を他の粉末として混ぜる乾式混
合方法では組織の均質性を確保するのは非常に困難であ
る。このような乾式の混合方法に比べて加圧鋳込み成形
または遠心成形などの湿式成形法は、アルミナ粉末成形
体の粉末充填の均質性を確保するために、より好ましい
方法である。特に、スリップを型中に装填後、重力倍数
10kG〜20kG程度の高い遠心力を作用させて成形
する高速遠心成形法は好ましい方法である。
In order to maintain the homogeneity of the structure of the alumina sintered body, the homogeneity of the structure of the formed body must be high. It is very difficult to ensure the homogeneity of the structure by the dry mixing method in which the additive component is mixed with the alumina main powder as another powder. A wet molding method such as pressure casting or centrifugal molding is a more preferable method than the dry mixing method in order to ensure homogeneity of powder filling of the alumina powder molded body. In particular, a high-speed centrifugal molding method in which a slip is loaded into a mold and then molded by applying a high centrifugal force of about 10 kG to 20 kG by a gravity multiple is a preferable method.

【0028】この高速遠心成形法は、本発明者らが開発
した方法であり(高純度アルミナ超微粉の遠心成形;
「粉体および粉末冶金」,第39巻,第1号,39〜4
3頁,1992年1月、高速遠心成形法による高純度ア
ルミナ焼結体の機械的特性の組織依存性;「粉体および
粉末冶金」,第46巻,第4号,331〜338頁,1
999年4月、特開平8−47907号公報)、60%
以上の高充填率かつ低水分量の成形体が得られ、Ca,
Sなどによる汚染がないので高純度アルミナ超微粉を1
220℃の低温でも焼成可能である。また、短時間で成
形、乾燥、焼成ができるので生産性も高い。
This high-speed centrifugal molding method is a method developed by the present inventors (centrifugal molding of high-purity alumina ultrafine powder;
"Powder and Powder Metallurgy," Vol. 39, No. 1, 39-4
3, January 1992, Microstructure dependence of mechanical properties of high-purity alumina sintered body by high-speed centrifugal molding; "Powder and Powder Metallurgy", Vol. 46, No. 4, pp. 331-338, 1
Apr. 999, JP-A-8-47907), 60%
A compact having a high filling rate and a low moisture content as described above was obtained, and Ca,
High-purity alumina ultra-fine powder
It can be fired even at a low temperature of 220 ° C. In addition, since molding, drying, and firing can be performed in a short time, productivity is high.

【0029】より具体的には、この方法は、セラミック
スの超微粉末のスリップまたはコロイド状の泥漿を重力
の1〜2万倍(10kG〜20kG)の加速度による高
速遠心成形法で沈降成形するものである。この方法にお
いて、型としては金型を使用してもよいが、蝋型を用い
ることによって、成型後に型を溶融除去して複雑な形状
の精密な成形体を取り出すことができる。泥漿の作成に
は、アルミナ製ポットにアルミナ粉末とアルミナボール
及び所定量の溶媒(例えば、イオン交換水)と分散剤
(例えば、ポリカルボン酸アンモニウム)を加えてボー
ルミルで分散処理を行った後、所定量の結合剤(例え
ば、アクリルポリマー)を添加して、再度分散処理を行
って泥漿とする。
More specifically, in this method, the slip or colloidal slurry of ultrafine ceramic powder is settled by high-speed centrifugal molding at an acceleration of 10,000 to 20,000 times the gravity (10 kG to 20 kG). It is. In this method, a mold may be used as a mold, but by using a wax mold, the mold can be melted and removed after molding, and a precise molded body having a complicated shape can be taken out. For the preparation of the slurry, alumina powder, alumina balls, a predetermined amount of a solvent (for example, ion-exchanged water) and a dispersant (for example, ammonium polycarboxylate) were added to an alumina pot, followed by dispersion treatment in a ball mill. A predetermined amount of a binder (for example, an acrylic polymer) is added, and the dispersion treatment is performed again to obtain a slurry.

【0030】アルミナ粉末成形体は、大気中において8
00〜1000℃で1時間程度仮焼結し、必要な強度を
持たせる。これ以下の温度では仮焼結体の強度が低下
し、以上では緻密化が進行して気孔網の面積が低下して
しまう。焼結雰囲気は大気中などの酸化性雰囲気の方が
アルミナは安定して焼結できる。なお、仮焼結体の組織
は、粒子同士が僅かに接触した骨格構造、すなわち気孔
が全て外界とつながっている構造であるから含浸する液
体が成形体の内部全体に行き渡ることができる。
The alumina powder compact is 8
Temporary sintering is performed at 00 to 1000 ° C. for about 1 hour to give necessary strength. If the temperature is lower than this, the strength of the temporary sintered body decreases, and if the temperature is higher than this, the densification proceeds and the area of the pore network decreases. Alumina can be sintered more stably in an oxidizing atmosphere such as the air. The structure of the pre-sintered body has a skeletal structure in which the particles are slightly in contact with each other, that is, a structure in which all pores are connected to the outside, so that the impregnating liquid can spread throughout the inside of the formed body.

【0031】仮焼結体には結晶粒成長制御剤として作用
する含浸材料を含浸するが、仮焼結体の空孔率や寸法に
応じて含浸時間を調整する必要がある。含浸材料である
Ca,Sr,Baの金属塩は硝酸塩、炭酸塩などの無機
塩が適する。これらは水溶液の他エタノールなどの非水
溶液としても使用できる。焼結工程におけるガス成分の
発生から考えると、硝酸塩がより好ましい。硝酸塩は、
常温では通常は水和物となっているので、これを加熱溶
解して高濃度溶液とするか、またはイオン交換水で薄め
て必要な濃度の溶液とする。
The pre-sintered body is impregnated with an impregnating material which acts as a crystal grain growth controlling agent, and it is necessary to adjust the impregnation time in accordance with the porosity and size of the pre-sintered body. As the metal salts of Ca, Sr, and Ba as the impregnating materials, inorganic salts such as nitrates and carbonates are suitable. These can be used not only as an aqueous solution but also as a non-aqueous solution such as ethanol. Considering the generation of gas components in the sintering step, nitrates are more preferable. Nitrates
Since hydrates are usually formed at room temperature, they are dissolved by heating to form a high-concentration solution, or diluted with ion-exchanged water to obtain a solution having a required concentration.

【0032】Ca,Sr,Baは、周期律表2A族金属
として、本発明の焼結体において共通の作用をもたらす
が、周期律表2A族金属のうちMgは同等の作用をもた
らさないので不適である。Be,Cd,Hgは作業安全
性からその使用は好ましくない。Ca,Sr,またはB
aの金属塩の添加量は、金属換算量で焼結体の全量の
0.02〜2.0質量%とする。0.02質量%未満で
あると、アルミナ結晶粒の異方性形成の効果が現れず、
靭性向上の効果がない。また、2.0質量%を超えると
強度低下をもたらす。
Although Ca, Sr, and Ba have a common function in the sintered body of the present invention as a Group 2A metal of the periodic table, Mg among the Group 2A metals of the periodic table is not suitable because it does not provide an equivalent function. It is. Be, Cd, and Hg are not preferable to use because of work safety. Ca, Sr, or B
The addition amount of the metal salt of a is 0.02 to 2.0% by mass of the total amount of the sintered body in terms of metal. When the content is less than 0.02% by mass, the effect of forming anisotropic alumina crystal grains does not appear,
There is no effect of improving toughness. If the content exceeds 2.0% by mass, the strength is reduced.

【0033】含浸後に仮焼結体を乾燥することによっ
て、仮焼結体の内部に均一に硝酸塩水和物が析出する。
なお、ランダム最密充填の密度63%の仮焼結体でも一
回の含浸処理で十分な量のCa,Sr,またはBaの金
属塩を仮焼結体に添加できる。
By drying the pre-sintered body after the impregnation, the nitrate hydrate is uniformly deposited in the pre-sintered body.
Note that a sufficient amount of Ca, Sr, or Ba metal salt can be added to the temporary sintered body by a single impregnation process even in a randomly close-packed temporary sintered body having a density of 63%.

【0034】乾燥後に次いで仮焼結体を焼結する。焼結
方法としては、大気中での常圧焼結で十分である。ただ
し、ホットプレス法、ガス加圧焼結法、マイクロ波焼結
法でもよい。本発明の製造方法においては、焼結時にC
a,Sr,またはBaの金属塩を熱分解させると同時に
該金属の酸化物を形成するものであるから、焼結雰囲気
は酸化性雰囲気とする。なお、上記の各方法による焼結
後に熱間静水圧(HIP)処理、およびガラスシールの
後にHIP処理する等の焼結手段は、工程が複雑となる
が適宜使用することができる。
After drying, the temporarily sintered body is sintered. As the sintering method, atmospheric pressure sintering in the atmosphere is sufficient. However, a hot press method, a gas pressure sintering method, or a microwave sintering method may be used. In the production method of the present invention, C
Since the metal salt of a, Sr, or Ba is thermally decomposed and simultaneously forms an oxide of the metal, the sintering atmosphere is an oxidizing atmosphere. Sintering means such as hot isostatic pressure (HIP) treatment after sintering by each of the above methods and HIP treatment after glass sealing can be used as appropriate, although the process is complicated.

【0035】本発明では、1,623K(1,350
℃)〜1,873K(1,600℃)の温度範囲で焼結
を行う。好ましくは、1,673〜1,773K(1,
400〜1,500℃)と、通常の焼結温度に比べ比較
的低い焼結温度で結晶粒を異方的に成長させることがで
きる。1,623K(1,350℃)未満の焼結温度で
は、結晶粒の異方性が十分確保できないので、靭性が上
がらない。また、1,873K(1,600℃)を超え
る焼結温度では、結晶粒が必要以上に大きくなり、ま
た、組織の均質性も崩れる。
In the present invention, 1,623K (1,350K)
C.) to 1,873K (1,600C). Preferably, 1,673 to 1,773K (1,
(400 to 1,500 ° C.), and the crystal grains can be grown anisotropically at a relatively low sintering temperature as compared with a normal sintering temperature. At a sintering temperature lower than 1,623 K (1,350 ° C.), the anisotropy of the crystal grains cannot be sufficiently ensured, so that the toughness does not increase. At a sintering temperature exceeding 1,873 K (1,600 ° C.), the crystal grains become unnecessarily large, and the homogeneity of the structure is lost.

【0036】[0036]

【実施例】以下に、実施例1〜5および比較例A,Bに
基づいて本発明をさらに詳細に説明する。 (1)使用材料 出発原料としては、純度が99.99%、平均粒径0.
2μmの粒径分布の狭いアルミナ粉末(大明化学工業
製、商品名:タイミクロンTM−DAR)を用意した。
また、含浸用の金属塩としては硝酸カルシウム水和物
(Ca(NO3 2・4H2 O)を用意した。
Hereinafter, the present invention will be described in more detail with reference to Examples 1 to 5 and Comparative Examples A and B. (1) Materials used As starting materials, the purity is 99.99% and the average particle size is 0.
Alumina powder having a narrow particle size distribution of 2 μm (manufactured by Daimei Chemical Co., Ltd., trade name: Taimicron TM-DAR) was prepared.
In addition, calcium nitrate hydrate (Ca (NO 3 ) 2 .4H 2 O) was prepared as a metal salt for impregnation.

【0037】(2)アルミナ粉末成形体の成形 分散媒として超純水を使用し、これに上記のアルミナ粉
末を75質量%加え、さらに、分散剤としてポリカルボ
ン酸アンモニウム、結合剤としてアクリルポリマーをそ
れぞれアルミナ粉末量に対して0.6質量%、0.1質
量%加え、48時間ボールミルにて攪拌混合してアルミ
ナ泥漿を得た。
(2) Molding of Alumina Powder Compact Ultra-pure water was used as a dispersion medium, and 75% by mass of the above alumina powder was added thereto. Further, ammonium polycarboxylate was used as a dispersant, and an acrylic polymer was used as a binder. 0.6% by mass and 0.1% by mass were added to the respective alumina powder amounts, and the mixture was stirred and mixed by a ball mill for 48 hours to obtain alumina slurry.

【0038】次に、成形は、高速遠心成形法(High-Spee
d Centrifugal Compaction Process、 HCP) で行った。
内径8mm×高さ90mmのアルミニウム円筒の一方に
底板を取り付けた円筒型の金型に4.5cm3 の泥漿を
注入し、ロータ半径120mmのスゥイング型高速遠心
機で回転数11,500rpmで1時間成形し、高さ約
60mmの円柱形の成形体を得た。
Next, molding is performed by a high-speed centrifugal molding method (High-Spee
d Centrifugal Compaction Process, HCP).
4.5 cm 3 of slurry was poured into a cylindrical mold having a bottom plate attached to one side of an aluminum cylinder having an inner diameter of 8 mm and a height of 90 mm, and was rotated at 11,500 rpm for 1 hour with a swing type high-speed centrifuge having a rotor radius of 120 mm. It was molded to obtain a cylindrical molded body having a height of about 60 mm.

【0039】(3)仮焼結体の作製 成形体は十分に乾燥後、1,073K(800℃)で1
時間仮焼結した。この仮焼結体の粒体充填率は約63%
であった。
(3) Preparation of Temporary Sintered Body After the molded body was sufficiently dried, it was heated at 1,073 K (800 ° C.) for 1 hour.
Temporarily sintered for a time. The particle filling rate of this temporary sintered body is about 63%
Met.

【0040】(4)含浸材料の含浸 10〜50質量%の硝酸カルシウム水和物を含む水溶液
を調製し、これを容器に入れ、容器中の硝酸カルシウム
水溶液に仮焼結体を浸し、容器全体を減圧式含浸装置に
入れて3kPa程度になるまで減圧し5分間保持するこ
とで、仮焼結体内部の空気を取り除いた。次に、容器を
大気圧に戻し、5分間保持することで仮焼結体中に硝酸
塩溶液が含浸された。
(4) Impregnation of impregnated material An aqueous solution containing 10 to 50% by mass of calcium nitrate hydrate is prepared, put in a container, and the pre-sintered body is immersed in the aqueous solution of calcium nitrate in the container, and the whole container is Was put into a reduced pressure impregnation apparatus, and the pressure was reduced to about 3 kPa, and the pressure was maintained for 5 minutes to remove air from the temporarily sintered body. Next, the container was returned to the atmospheric pressure and held for 5 minutes to impregnate the temporary sintered body with the nitrate solution.

【0041】このとき、溶液の硝酸カルシウム濃度と、
実測した含浸前後の仮焼結体の質量増量とから、仮焼結
体に含浸されたカルシウムイオン量を計算することがで
きる。含浸後の仮焼結体は乾燥炉中で24時間乾燥し
た。なお、比較例Bは、仮焼結体に含浸処理を行わなか
った。
At this time, the calcium nitrate concentration of the solution
From the measured increase in mass of the pre-sintered body before and after the impregnation, the amount of calcium ions impregnated in the pre-sintered body can be calculated. The impregnated temporary sintered body was dried in a drying furnace for 24 hours. In Comparative Example B, no impregnation treatment was performed on the temporary sintered body.

【0042】(4)焼結 温度1,573〜1,773K(1,300〜1,50
0℃)で1.5時間大気中にて焼結した。焼結途上で硝
酸カルシウムは分解しカルシウム以外の成分は揮発し、
カルシウムは酸素と結合してカルシアとなり、アルミナ
粒子を異方的に成長させる役割を果たした。
(4) Sintering temperature: 1,573 to 1,773K (1,300 to 1,50K)
(0 ° C.) for 1.5 hours in the air. During the sintering process, calcium nitrate decomposes and components other than calcium volatilize,
Calcium combines with oxygen to form calcia, which plays a role in growing alumina particles anisotropically.

【0043】(5)焼結体の評価 得られた焼結体はアルキメデス法で密度を測定し、さら
に切断面を鏡面加工、熱腐食してから走査型電子顕微鏡
で観察し、組織の均質性、平均粒径、粒子のアスペクト
比をそれぞれ測定した。また、機械的特性として、ビッ
カース硬さおよび破壊靭性値を測定した。ビッカース硬
さは、JIS−R1610に基づき試験加重98Nで、
加重速度70μm/s、加重時間15秒で、また破壊靭
性値KICはJIS−R1607に基づきIF法にて、
試験加重196Nでそれぞれ行った。
(5) Evaluation of the sintered body The density of the obtained sintered body was measured by the Archimedes method, and the cut surface was mirror-polished and heat-corroded, and then observed with a scanning electron microscope. , Average particle size, and particle aspect ratio were measured. In addition, Vickers hardness and fracture toughness were measured as mechanical properties. Vickers hardness is 98N test weight based on JIS-R1610,
The loading speed was 70 μm / s, the loading time was 15 seconds, and the fracture toughness value KIC was determined by the IF method based on JIS-R1607.
Each test was performed at a test weight of 196N.

【0044】(6)結果 焼結体の作製条件を表1に、諸特性を表2にまとめた。
また、実施例1の焼結体を走査型電子顕微鏡観察した組
織形状を図1に示す。
(6) Results Table 1 shows the conditions for producing the sintered body, and Table 2 summarizes the characteristics.
FIG. 1 shows the structure of the sintered body of Example 1 observed with a scanning electron microscope.

【0045】[0045]

【表1】 [Table 1]

【0046】表1において、硝酸カルシウム水溶液濃度
欄は、各仮焼結体の含浸処理における溶液濃度を、カル
シウムイオン濃度欄は、仮焼結体に添加されたカルシウ
ムイオン量を示す。表2において、粒子のアスペクト比
の欄に記載した数値は、切断面を鏡面加工、熱腐食して
から走査型電子顕微鏡で観察した視野中のアスペクト比
2以上の粒子の面積率(%)を求めた。
In Table 1, the column of calcium nitrate aqueous solution concentration indicates the solution concentration in the impregnation treatment of each of the pre-sintered bodies, and the column of calcium ion concentration indicates the amount of calcium ions added to the pre-sintered body. In Table 2, the numerical values described in the column of the aspect ratio of the particles represent the area ratio (%) of the particles having an aspect ratio of 2 or more in the visual field observed by a scanning electron microscope after the cut surface is mirror-polished and thermally corroded. I asked.

【0047】[0047]

【表2】 [Table 2]

【0048】以上より明らかなように、比較例A、B
は、硬さがHv1712〜2037と高く、アルミナ焼
結体として十分な強度が推測される一方で、アスペクト
比2以上の粒子の面積率が小さく、破壊靭性値は約4.
5MPa・m1/2 以下と低い。一方、本発明の実施例1
のカルシウム添加焼結体は、図1に示すように、いずれ
も粒子が均質で高密度であり、結晶粒の大部分が異方性
を示して板状あるいは棒状に成長している。
As is clear from the above, Comparative Examples A and B
Has a high hardness of Hv 1712 to 2037 and is assumed to have sufficient strength as an alumina sintered body, but has a small area ratio of particles having an aspect ratio of 2 or more and has a fracture toughness of about 4.
It is as low as 5 MPa · m 1/2 or less. On the other hand, Example 1 of the present invention
As shown in FIG. 1, all of the calcium-added sintered bodies have uniform and high-density particles, and most of the crystal grains are anisotropic and grow in a plate or rod shape.

【0049】実施例1〜2は、1.1%カルシウム添加
材である。実施例1は、平均粒径0.2μm、アスペク
ト比2以上の粒子の面積率は47%、ビッカース硬さH
v1841,破壊靭性値6.1MPa・m1/2 であり、
実施例2は、平均粒径0.9μm、アスペクト比2以上
の粒子の面積率は68%、ビッカース硬さHv165
2、破壊靭性値5.0MPa・m1/2 である。
Examples 1 and 2 are 1.1% calcium additives. In Example 1, the area ratio of particles having an average particle diameter of 0.2 μm and an aspect ratio of 2 or more was 47%, and the Vickers hardness H
v1841, a fracture toughness value of 6.1 MPa · m 1/2 ,
In Example 2, the area ratio of particles having an average particle diameter of 0.9 μm and an aspect ratio of 2 or more was 68%, and Vickers hardness Hv165
2. The fracture toughness is 5.0 MPa · m 1/2 .

【0050】焼結温度が高い実施例2の方がアスペクト
比2以上の粒子の面積率が大きいにもかかわらず硬さと
破壊靱性値が低下しているが、これは平均粒径の増大に
よるものである。逆に見れば、焼結温度が低い実施例1
の方がアスペクト比2以上の粒子の面積率以上に組織の
微細化が寄与して、硬さと破壊靱性値の両方の向上をも
たらしていることがわかる。
In Example 2 in which the sintering temperature was high, the hardness and fracture toughness values were lowered although the area ratio of particles having an aspect ratio of 2 or more was large. It is. Conversely, Example 1 having a low sintering temperature
It can be seen that in the case of the above, the refinement of the structure contributed to the area ratio of the particles having an aspect ratio of 2 or more, and both the hardness and the fracture toughness were improved.

【0051】また、カルシウム添加量を0.66〜0.
07%まで減少させて、温度1,773K(1,500
℃)で焼結した実施例3〜5でも、いずれもアスペクト
比2以上の粒子の面積率20%以上が得られ、破壊靭性
値も5.7MPa・m1/2 以上となり、微量のカルシウ
ム添加で十分な効果が認められる。
The amount of calcium added is 0.66 to 0.5.
07% and a temperature of 1,773K (1,500
C), the area ratio of particles having an aspect ratio of 2 or more was 20% or more, the fracture toughness was 5.7 MPa · m 1/2 or more, and a small amount of calcium was added. Is sufficient effect.

【0052】[0052]

【発明の効果】以上詳述した通り、本発明のアルミナ質
焼結体は、高強度と高靱性とを兼ね備え、耐摩耗性にも
優れる構造材料、または高温構造材料として優れた特性
を有し、また、製造方法は、焼結反応条件を制御しやす
く、いかなる複雑形状製品でも適用が容易な汎用性の高
い製造方法である。
As described in detail above, the alumina-based sintered body of the present invention has both high strength and high toughness and has excellent properties as a structural material having excellent wear resistance or a high-temperature structural material. Further, the production method is a highly versatile production method in which the sintering reaction conditions are easily controlled and any complex shaped product can be easily applied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、実施例1の焼結体を走査型電子顕微鏡
観察した焼結組織を示す図面代用写真である。
FIG. 1 is a drawing substitute photograph showing a sintered structure obtained by observing a sintered body of Example 1 with a scanning electron microscope.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年8月15日(2000.8.1
5)
[Submission Date] August 15, 2000 (2008.1.
5)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Correction target item name] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0018】[0018]

【作用】セラミックスの強度および靱性は、一般に焼結
体の組織が微細であればあるほど優れていることが知ら
れている。また、アルミナ質焼結体に形状異方性の粒
子、つまりアスペクト比が大きな粒子が存在している
と、クラックが結晶粒界を進展する際に、該クラックが
回折することにより靱性が向上することも知られてい
る。
It is generally known that the finer the structure of the sintered body, the better the strength and toughness of the ceramic. In addition, when particles having a shape anisotropy, that is, particles having a large aspect ratio, are present in the alumina-based sintered body, when the cracks propagate through the crystal grain boundaries, the cracks are diffracted, thereby improving toughness. It is also known.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Correction target item name] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0030】アルミナ粉末成形体は、大気中において8
00〜1000℃で1時間程度仮焼結し、必要な強度を
持たせる。これ以下の温度では仮焼結体の強度が低下
し、以上では緻密化が進行して気孔網の体積が低下して
しまう。焼結雰囲気は大気中などの酸化性雰囲気の方が
アルミナは安定して焼結できる。なお、仮焼結体の組織
は、粒子同士が僅かに接触した骨格構造、すなわち気孔
が全て外界とつながっている構造であるから含浸する液
体が成形体の内部全体に行き渡ることができる。
The alumina powder compact is 8
Temporary sintering is performed at 00 to 1000 ° C. for about 1 hour to give necessary strength. At a temperature lower than this, the strength of the temporary sintered body decreases, and at a temperature above this, the densification proceeds and the volume of the pore network decreases. Alumina can be sintered more stably in an oxidizing atmosphere such as the air. The structure of the pre-sintered body has a skeletal structure in which the particles are slightly in contact with each other, that is, a structure in which all pores are connected to the outside, so that the impregnating liquid can spread throughout the inside of the formed body.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 仮焼結体にCa,Sr,またはBaのい
ずれか1種以上の金属塩を含浸して焼結されたアルミナ
質焼結体であって、長径が3μm以下でアペクト比2以
上である非等方的な結晶粒子の割合が切断面の観察にお
いて20面積%以上であって、長径が3μmを超える粗
大粒子を実質的に含まない緻密かつ微細な組織を持つこ
とを特徴とする高強度・高靱性アルミナ質焼結体。
An alumina sintered body obtained by impregnating a temporary sintered body with at least one metal salt of Ca, Sr, or Ba and having a major axis of 3 μm or less and an aspect ratio of 2 The ratio of the above anisotropic crystal grains is 20 area% or more in the observation of the cut surface, and has a dense and fine structure substantially free of coarse particles whose major axis exceeds 3 μm. High-strength, high-toughness alumina-based sintered body.
【請求項2】 焼結時におけるCa,Sr,またはBa
のいずれか1種以上の金属塩の熱分解と酸化によって形
成された該金属の酸化物を結晶粒界に焼結体の全量に対
して金属換算量で0.02〜2.0質量%含有している
ことを特徴とする請求項1記載の高強度・高靱性アルミ
ナ質焼結体。
2. Ca, Sr, or Ba during sintering
The oxide of the metal formed by the thermal decomposition and oxidation of any one or more metal salts is contained in the crystal grain boundary in an amount of 0.02 to 2.0% by mass in terms of metal with respect to the total amount of the sintered body. The high-strength, high-toughness alumina-based sintered body according to claim 1, wherein
【請求項3】 相対密度40%以上63%以下のアルミ
ナ仮焼結体にCa,Sr,またはBaのいずれか1種以
上の金属塩の溶液を含浸させ、次に、該含浸された仮焼
結体を1350〜1600℃の温度で酸化性雰囲気中で
焼結することを特徴とする請求項1または2記載の高強
度・高靱性アルミナ質焼結体の製造方法。
3. A pre-sintered alumina having a relative density of 40% or more and 63% or less is impregnated with a solution of at least one metal salt of Ca, Sr, or Ba. The method for producing a high-strength and high-toughness alumina-based sintered body according to claim 1 or 2, wherein the sintered body is sintered at a temperature of 1350 to 1600 ° C in an oxidizing atmosphere.
【請求項4】 仮焼結体は、純度99.5%以上、平均
粒径0.5μm以下の高純度アルミナ粉末を用いて、湿
式成形法で成形した生成形体を800〜1000℃で焼
結したものであることを特徴とする請求項3記載の高強
度・高靱性アルミナ質焼結体の製造方法。
4. A pre-sintered body is sintered at 800 to 1000 ° C. using a high-purity alumina powder having a purity of 99.5% or more and an average particle size of 0.5 μm or less by a wet molding method. 4. The method for producing a high-strength and high-toughness alumina-based sintered body according to claim 3, wherein
【請求項5】 湿式成形法は、アルミナ泥漿を型中に装
填後、重力倍数10kG〜20kGの高い遠心力を作用
させて成形する高速遠心成形法であることを特徴とする
請求項3または4記載の高強度・高靱性アルミナ質焼結
体の製造方法。
5. The wet molding method is a high-speed centrifugal molding method in which alumina slurry is charged into a mold and then molded by applying a high centrifugal force of a gravity multiple of 10 kG to 20 kG. The method for producing a high-strength, high-toughness alumina-based sintered body according to the above description.
【請求項6】 アルミナ仮焼結体にCaの硝酸塩の水溶
液を含浸させることを特徴とする請求項3乃至5のいず
れか一に記載の高強度・高靱性アルミナ質焼結体の製造
方法。
6. The method for producing a high-strength and high-toughness alumina-based sintered body according to claim 3, wherein the alumina-temporarily sintered body is impregnated with an aqueous solution of Ca nitrate.
JP2000143425A 2000-05-11 2000-05-11 High strength and high toughness alumina sintered body and manufacturing method thereof Expired - Fee Related JP3878976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000143425A JP3878976B2 (en) 2000-05-11 2000-05-11 High strength and high toughness alumina sintered body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000143425A JP3878976B2 (en) 2000-05-11 2000-05-11 High strength and high toughness alumina sintered body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001322865A true JP2001322865A (en) 2001-11-20
JP3878976B2 JP3878976B2 (en) 2007-02-07

Family

ID=18650245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000143425A Expired - Fee Related JP3878976B2 (en) 2000-05-11 2000-05-11 High strength and high toughness alumina sintered body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3878976B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099429A (en) * 2017-12-06 2019-06-24 信越化学工業株式会社 Method of producing transparent ceramic for faraday rotator
WO2019131818A1 (en) * 2017-12-25 2019-07-04 Showa Denko K.K. Method for producing alumina sintered body
WO2019131819A1 (en) * 2017-12-25 2019-07-04 Showa Denko K.K. Alumina sintered body, abrasive grain, and grinding wheel
JP2019112271A (en) * 2017-12-25 2019-07-11 昭和電工株式会社 Alumina sintered body, abrasive grain, and grindstone

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101514180B1 (en) * 2014-02-20 2015-04-21 금오공과대학교 산학협력단 Method for manufacturing ceramic body having uniform density

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099429A (en) * 2017-12-06 2019-06-24 信越化学工業株式会社 Method of producing transparent ceramic for faraday rotator
WO2019131818A1 (en) * 2017-12-25 2019-07-04 Showa Denko K.K. Method for producing alumina sintered body
WO2019131819A1 (en) * 2017-12-25 2019-07-04 Showa Denko K.K. Alumina sintered body, abrasive grain, and grinding wheel
JP2019112271A (en) * 2017-12-25 2019-07-11 昭和電工株式会社 Alumina sintered body, abrasive grain, and grindstone
JP2019112272A (en) * 2017-12-25 2019-07-11 昭和電工株式会社 Alumina sintered body, abrasive grain, and grindstone
KR20200033970A (en) * 2017-12-25 2020-03-30 쇼와 덴코 가부시키가이샤 Manufacturing method of alumina sintered body
KR20200040896A (en) * 2017-12-25 2020-04-20 쇼와 덴코 가부시키가이샤 Alumina sintered body, grindstone particle and grindstone
CN111263740A (en) * 2017-12-25 2020-06-09 昭和电工株式会社 Alumina sintered body, abrasive grain, and grinding wheel
CN111278947A (en) * 2017-12-25 2020-06-12 昭和电工株式会社 Method for producing alumina sintered body
US10710213B2 (en) 2017-12-25 2020-07-14 Showa Denko K.K. Alumina sintered body, abrasive grain, and grinding wheel
KR102184307B1 (en) * 2017-12-25 2020-12-01 쇼와 덴코 가부시키가이샤 Manufacturing method of alumina sintered body
KR102197802B1 (en) * 2017-12-25 2021-01-05 쇼와 덴코 가부시키가이샤 Alumina sintered body, grinding stone particles and grinding stone
CN111278947B (en) * 2017-12-25 2021-02-26 昭和电工株式会社 Method for producing alumina sintered body
US10941077B2 (en) 2017-12-25 2021-03-09 Showa Denko K.K. Method for producing alumina sintered body
CN111263740B (en) * 2017-12-25 2021-06-11 昭和电工株式会社 Alumina sintered body, abrasive grain, and grinding wheel
US11041102B2 (en) 2017-12-25 2021-06-22 Showa Denko K.K. Alumina sintered body, abrasive grain, and grinding wheel
EP3848340A1 (en) * 2017-12-25 2021-07-14 Showa Denko K.K. Abrasive grain and grinding wheel

Also Published As

Publication number Publication date
JP3878976B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
JP3581879B2 (en) Alumina porous body and method for producing the same
US20070179041A1 (en) Zirconia Ceramic
JP2749199B2 (en) Densified SiC ceramic article
US20080318759A1 (en) Method of Producing Porous Ceramic Supports of Controlled Microstructure
JPH0475190B2 (en)
FI87187C (en) Precursor powder which can be transformed into a zirconia ceramic composite ceramic composite, composite made therefrom and process for making sinterable ceramic material
Chao et al. Optimal composition of zircon–fused silica ceramic cores for casting superalloys
JP2007045700A (en) Yttria sintered compact, anticorrosion member and process for producing the same
WO2013124183A2 (en) Thermal shock-resistant and corrosion-resistant ceramic material based on calcium zirconate and process for the production thereof
JP2612578B2 (en) Method for producing self-supporting ceramic composite
EP3560904A1 (en) Oriented aln sintered body, and production method therefor
JP3878976B2 (en) High strength and high toughness alumina sintered body and manufacturing method thereof
JPH0122221B2 (en)
Jeng et al. Effect of rigid inclusions on the sintering of mullite synthesized by sol-gel processing
JPH0987008A (en) Aluminous sintered compact and its production
JP5403851B2 (en) Method for producing sintered zirconium silicate
JP5673945B2 (en) Method for producing silicon nitride ceramics
JPH10182220A (en) Beta&#39;&#39;-alumina-base solid electrolyte and its production
JPH0549627B2 (en)
Sciti et al. Improvements Offered by Coprecipitation of Sintering Additives on Ultra‐Fine SiC Materials
JP2008297134A (en) Boron carbide based sintered compact and protective member
JP3656899B2 (en) High density barium zirconate sintered body and production method
US20100272997A1 (en) Densification of metal oxides
KR20140137175A (en) Method for synthesis of Zr2WP2O12 ceramics
RU2529540C2 (en) Composite ceramic material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees