WO2014157518A1 - Pdnゲートウェイ装置及び移動通信方法 - Google Patents

Pdnゲートウェイ装置及び移動通信方法 Download PDF

Info

Publication number
WO2014157518A1
WO2014157518A1 PCT/JP2014/058860 JP2014058860W WO2014157518A1 WO 2014157518 A1 WO2014157518 A1 WO 2014157518A1 JP 2014058860 W JP2014058860 W JP 2014058860W WO 2014157518 A1 WO2014157518 A1 WO 2014157518A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
serving gateway
gateway device
target
base station
Prior art date
Application number
PCT/JP2014/058860
Other languages
English (en)
French (fr)
Inventor
震 繆
威津馬 田中
鈴木 啓介
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US14/781,178 priority Critical patent/US20160127959A1/en
Priority to CN201480018931.2A priority patent/CN105075330A/zh
Priority to EP14776284.3A priority patent/EP2981133A4/en
Publication of WO2014157518A1 publication Critical patent/WO2014157518A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/12Reselecting a serving backbone network switching or routing node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00698Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using different RATs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements

Definitions

  • the present invention relates to a PDN gateway device and a mobile communication method for transferring downlink data addressed to a mobile station toward a source serving gateway device or a target serving gateway device.
  • Non-Patent Document 1 A method for transmitting an end marker from a serving gateway device to a source radio base station of a transition source is defined (for example, Non-Patent Document 1).
  • FIG. 1 shows a handover procedure of a mobile station in a conventional radio access network. Specifically, FIG. 1 shows a handover procedure defined in Section 5.5.1.1.2 (X2-based handover without Serving GW relocation) of 3GPP TS23.401.
  • the Source eNB (source radio base station) communicates with the handover destination Target eNB (target radio base station) to the network, specifically, P- Forward the downlink data addressed to the UE received from the GW (PDN gateway device) (Forwarding of data) ((1) in the figure).
  • GW PDN gateway device
  • the S-GW serving gateway device
  • Target eNB downlink data (Fresh Data) destined for the UE
  • the S-GW transmits the end marker to the Source eNB after switching the connection destination of the downlink data transfer path from the Source eNB to the Target eNB, and the Source eNB that has received the end marker transmits to the Target eNB. Transfer end marker.
  • Target eNB once buffers the downlink data (Fresh Data) received from S-GW and receives the end marker from Source eNB to ensure the ordering of downlink data transmitted to the UE That is, after confirming that there is no downlink data (Forwarding Data) transferred from Source eNB, downlink data (Fresh Data) is transferred to the UE.
  • Downlink data Form Data
  • 3GPP (23.401) V9.13.0 (Section 4.4.3.2) Serving (GW), (3rd) Generation (Partnership) Project; (Technical) Specification (Group) Services (and System) Aspects; (General) Packet (Radio) Service (GPRS) (enhancements) for (Evolved) Universal (Terrestrial) Access Retransmission (U) , 3GPP, June 2012
  • the mobile station handover procedure in the above-described conventional radio access network has the following problems. Specifically, since the radio base station is managed by a specific S-GW, the S-GW that manages the Source eNB differs from the S-GW that manages the Target eNB (S-GW Relocation) Can occur.
  • the S-GW source serving gateway device
  • the S-GW that manages the Source eNB cannot recognize the downlink data transfer path set as the Target eNB. For this reason, the S-GW that manages Source eNB cannot determine the end marker transmission timing and cannot transmit the end marker. Therefore, when such a handover is performed such that the S-GWs that manage the radio base stations are different, the Target eNB cannot guarantee the order of the downlink data.
  • the Target eNB implements a timer and forwards downlink data (Fresh Data) received from the S-GW to the mobile station (UE) after the timer expires.
  • Fresh Data downlink data
  • the set time of the timer is shortened, the possibility that downlink data (Forwarding ⁇ ⁇ Data) will be transferred from Source eNB after the start of downlink data (Fresh Data) transfer to the UE increases, and the order of downlink data Guarantee becomes difficult.
  • the number of data retransmissions in the higher layer increases, and as a result, the downlink data throughput decreases.
  • the waiting time from the completion of the transfer of the downlink data (Forwarding Data) to the UE after the completion of the transfer of the downlink data (Forwarding Data) to the UE may increase.
  • the downstream data throughput decreases.
  • the present invention has been made in view of such a situation, and serves as a serving gateway apparatus that manages a radio base station that is a transition source of a mobile station, and a serving that manages a radio base station that is a transition destination of the mobile station.
  • An object of the present invention is to provide a PDN gateway apparatus and a mobile communication method that can guarantee the order of downlink data while avoiding a decrease in downlink data throughput even when the gateway apparatus is different.
  • a first feature of the present invention is a PDN gateway device that forwards downlink data addressed to a mobile station toward a source serving gateway device or a target serving gateway device, from the source radio base station to the target radio base station of the mobile station
  • a path setting unit that sets a downlink data transfer path via the target serving gateway device and the target radio base station with the target serving gateway device, and the source radio base with the transition.
  • the serving gateway device is switched from the source serving gateway device that manages the station to the target serving gateway device that manages the target radio base station, it means that the transfer of the downlink data via the source radio base station ends.
  • the end marker which, depending on the setting of the downlink data transfer path by the path setting unit, and summarized in that with an end marker transmitting unit that transmits to the source serving gateway apparatus.
  • a second feature of the present invention is a PDN gateway device that forwards downlink data addressed to a mobile station toward a source serving gateway device or a target serving gateway device, the source radio base station of the mobile station being a target radio base station
  • a path setting unit that sets a downlink data transfer path via the target serving gateway device and the target radio base station with the target serving gateway device, and the source radio base with the transition.
  • the serving gateway device is switched from the source serving gateway device that manages the station to the target serving gateway device that manages the target radio base station, it means that the transfer of the downlink data via the source radio base station ends.
  • a transmission instruction of end marker which, depending on the setting of the downlink data transfer path by the path setting unit, and summarized in that and a transmission instruction unit that transmits to the source serving gateway apparatus.
  • a third feature of the present invention is a mobile communication method for transferring downlink data addressed to a mobile station toward a source serving gateway device or a target serving gateway device, the source radio base station of the mobile station to a target radio base station Along with the transition, a step of setting a downlink data transfer path via the target serving gateway device and the target radio base station between the target serving gateway device and the PDN gateway device, and along with the transition
  • the serving gateway apparatus switches from the source serving gateway apparatus that manages the source radio base station to the target serving gateway apparatus that manages the target radio base station, the PDN gateway apparatus Transmitting an end marker indicating the end of transfer of the downlink data via a radio base station to the source serving gateway device according to the setting of the downlink data transfer path; and the source serving gateway device includes the PDN And transferring the end marker received from the gateway device to the source radio base station.
  • a fourth feature of the present invention is a mobile communication method for transferring downlink data addressed to a mobile station toward a source serving gateway device or a target serving gateway device, the source radio base station of the mobile station to a target radio base station Along with the transition, a step of setting a downlink data transfer path via the target serving gateway device and the target radio base station between the target serving gateway device and the PDN gateway device, and along with the transition
  • the serving gateway apparatus switches from the source serving gateway apparatus that manages the source radio base station to the target serving gateway apparatus that manages the target radio base station
  • the PDN gateway apparatus A step of transmitting an end marker transmission instruction indicating the end of transfer of the downlink data via a radio base station to the source serving gateway apparatus according to the setting of the downlink data transfer path; and And transferring the end marker to the source radio base station based on the transmission instruction received from the PDN gateway device.
  • FIG. 1 is a diagram illustrating a handover procedure of a mobile station in a conventional radio access network according to an embodiment of the present invention.
  • FIG. 2 is an overall schematic configuration diagram of the mobile communication system 10 according to the embodiment of the present invention.
  • FIG. 3 is a functional block configuration diagram of the P-GW 60 according to the first embodiment of the present invention.
  • FIG. 4 is a functional block configuration diagram of the S-GW 50 according to the first embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a handover procedure of the UE 20 according to the operation example 1 of the first embodiment of the present invention.
  • FIG. 6 is a conceptual diagram showing the downlink data and end marker transfer paths when the handover procedure is executed in the operation example 1 of the first embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a handover procedure of a mobile station in a conventional radio access network according to an embodiment of the present invention.
  • FIG. 2 is an overall schematic configuration diagram of the mobile communication system 10 according to the embodiment of the
  • FIG. 7 is a diagram illustrating a handover procedure of the UE 20 according to the operation example 2 of the first embodiment of the present invention.
  • FIG. 8 is a functional block configuration diagram of the P-GW 60 according to the second embodiment of the present invention.
  • FIG. 9 is a functional block configuration diagram of the S-GW 50 according to the second embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a handover procedure of the UE 20 according to the operation example 1 of the second embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a handover procedure of the UE 20 according to the operation example 2 of the second embodiment of the present invention.
  • FIG. 2 is an overall schematic configuration diagram of the mobile communication system 10 according to the first embodiment of the present invention.
  • a mobile station 20 hereinafter referred to as UE20
  • a radio base station 30 hereinafter referred to as eNB30
  • MME40 mobility management device
  • S-GW50 serving gateway device 50
  • P-GW60 PDN gateway device 60
  • PCRF70 policy / billing control device
  • the mobile communication system 10 may include a home subscriber server (HSS), and the P-GW 60 includes an IP-based external network (packet data network) such as an IP multimedia core network subsystem (IMS). Connected.
  • IMS IP multimedia core network subsystem
  • the MME40 is an exchange that accommodates eNB30 and provides mobility control and bearer control functions.
  • the S-GW 50 accommodates a 3GPP (LTE) access system. Specifically, the S-GW 50 manages the eNB 30 that matches the conditions according to the conditions such as the installation area (for example, the northern Japan area and the eastern Japan area). That is, the S-GW 50 can manage a plurality of eNBs 30 and each of the eNBs 30 is associated with a specific S-GW 50.
  • LTE 3GPP
  • the S-GW 50 that manages the handover source radio base station is referred to as a Source S-GW (source serving gateway device), and the handover destination radio base station
  • the S-GW 50 that manages the (target radio base station) is called Target S-GW (target serving gateway device).
  • P-GW60 is a connection point with the packet data network (PDN), and assigns IP addresses and transfers packets to the S-GW50.
  • PDN packet data network
  • the P-GW 60 transfers downlink data addressed to the UE 20 toward the S-GW 50.
  • the P-GW 60 transfers downlink data addressed to the UE 20 toward the Source S-GW or Target S-GW.
  • P-GW60 performs QoS control and bearer setting control in cooperation with PCRF70.
  • the PCRF 70 executes control for QoS and charging for user data transfer.
  • GTP GPRS tunneling protocol
  • PMIPv6 Proxy Mobile IPv6
  • GTPv1 GTPv1 that operates on the user plane (U-Plane)
  • GTPv2 GTPv2 that operates on the control plane (C-Plane)
  • PMIPv6 a Generic Routing Encapsulation protocol that operates on the user plane (U-Plane) and PMIP that operates on the control plane (C-Plane) are used.
  • FIG. 3 is a functional block configuration diagram of the P-GW60.
  • FIG. 4 is a functional block configuration diagram of the S-GW50. Note that in FIG. 3 and FIG. 4, only functional blocks related to the present invention are shown, and other functional blocks are not shown.
  • the P-GW 60 includes a path setting unit 61 and an end marker transmission unit 63.
  • the path setting unit 61 sets a data transfer path set between the UE 20 and the P-GW 60 via the eNB 30 and the S-GW 50. Specifically, the path setting unit 61 sets a path capable of transferring uplink and downlink data between the UE 20 and the P-GW 60.
  • the path setting unit 61 sets the downlink data transfer path via Target S-GW and Target eNB as Target S-GW along with the transition from Source eNB to Target eNB of UE20. .
  • the end marker transmission unit 63 transmits an end marker to the Source eNB when the UE 20 is handed over to another radio base station.
  • the end marker means the end of downlink data transfer via the Source eNB when the UE 20 is handed over.
  • the end marker transmission unit 63 switches the S-GW 50 from the Source S-GW that manages the Source eNB to the Target S S-GW that manages the Target ⁇ eNB in accordance with a transition such as a handover of the UE 20. Send the end marker to Source ⁇ eNB.
  • the end marker transmission unit 63 transmits an end marker to the Source S-GW according to the setting of the downlink data transfer path by the path setting unit 61.
  • the end marker transmission unit 63 transmits the end marker to the Source S-GW without delay.
  • the UE 20 is switched, for example, when the S-GW 50 is switched from the Source S-GW that manages the Source eNB to the Target S-GW that manages the Target eNB, ENB30 (Target eNB) located near the boundary of the area (for example, Northern Japan) managed by other S-GW50 from the connected eNB30 (Source eNB) located near the boundary of the area (for example, Eastern Japan) managed by Typically, a handover is performed.
  • the end marker transmission unit 63 can transmit the end marker to the Source S-GW via a user plane set according to the GPRS tunneling protocol (GTP) between the Source S-GW and the P-GW 60.
  • the end marker transmission unit 63 may transmit the end marker to the Source S-GW via the user plane set according to the Generic Routing Encapsulation (GRE) protocol between the Source S-GW and the P-GW 60. it can. That is, the end marker transmission unit 63 sets the end marker as Source S-GW regardless of which of the two types of protocols (GTP, PMIP) defined for the S5 or S8 interface defined in 3GPP is used. Can be sent to.
  • GTP GPRS tunneling protocol
  • PMIP Generic Routing Encapsulation
  • the S-GW 50 includes an end marker receiving unit 51 and an end marker transfer unit 53.
  • the end marker receiving unit 51 receives an end marker from the P-GW 60 when the S-GW 50 is operating as a Source S-GW. Further, the end marker receiving unit 51 confirms that the received end marker is addressed to its own device (Source S-GW), and outputs the end marker to the end marker transfer unit 53.
  • the end marker transfer unit 53 transfers the end marker received from the P-GW 60 to Target eNB. Specifically, the end marker transfer unit 53 transfers the end marker output from the end marker reception unit 51 to Target eNB.
  • FIG. 5 shows a handover procedure of UE 20 according to Operation Example 1.
  • FIG. 5 is a modification of the handover procedure shown in FIG. 5.5.1.1.3-1 (X2-based handover with Serving GW relocation) of 3GPP TS23.401.
  • GTP is used as the S5 / S8 interface.
  • FIG. 6 is a conceptual diagram showing the downlink data and end marker transfer paths when the handover procedure in Operation Example 1 is executed.
  • the P-GW 60 that can recognize the switching of the downlink data transfer path transmits the end marker. Specifically, when P-GW60 receives Modify Bearer Request from Target S-GW (Step 3a), P-GW60 transmits Modify Bearer Response to Target S-GW in response to the received Modify Bearer Request (Step 3b). ). By such processing, a downlink data transfer path via P-GW60, Target S-GW and Target eNB is set, and P-GW60 transmits downlink data (data # 4 in FIG. 6) to Target S-GW. 5) is started.
  • P-GW60 sends an end marker to Source S-GW. Specifically, the P-GW 60 ends the transfer to the Source S-GW after completing the transfer of the downlink data (data # 1, 2, 3 in FIG. 6) via the Source S-GW, that is, the Source SNB. A marker (“E” in FIG. 6) is transmitted (step 5X).
  • the Source S-GW that has received the end marker transfers the downlink data (data # 1, 2, 3) and the end marker transferred from the P-GW 60 to the Source eNB. Further, the Source eNB that has received the downlink data (data # 1, 2, 3) and the end marker transfers the downlink data and the end marker to the Target eNB (step 5Y).
  • the Target eNB performs the ordering of the downlink data (data # 1, 2, 3) received via the Source S-GW and the downlink data (# 4, 5) received via the Target S-GW. It can be transferred to the UE 20 while guaranteeing (see FIG. 6).
  • FIG. 7 shows a handover procedure of UE 20 according to Operation Example 2. Specifically, Figure 7 shows changes made to the handover procedure shown in Figure 5.7.1-1 (Intra-LTE and Inter-eNodeB Handover with Serving GW Relocation) of 3GPP TS23.402 (V9.12.0) It is a thing.
  • PMIP is used as the S5 / S8 interface.
  • the P-GW 60 that can recognize the switching of the downlink data transfer path transmits the end marker in the same manner as in the operation example 1.
  • PMIP is used.
  • the end marker is only GTPv1 operating on the user plane (U-Plane), so the end marker is used as a signal according to the GRE protocol. Expanded to allow transmission.
  • P-GW60 executes Target S-GW (new S-GW) and Proxy Binding Update processing (step A.3, A.4), and then sets an end marker in Source S-GW (old S-GW). Send (step M.1). As described above, the end marker is transmitted to the Source S-GW as a signal according to the GRE protocol.
  • new-S-GW corresponds to Target S-GW
  • old S-GW corresponds to Source S-GW.
  • the Source S-GW that received the end marker sends an end marker to eNB30 (Source eNB) together with the execution of Gateway Control Session Termination Procedure (Step B.1) that terminates the Control Session with PCRF70 (h-PCRF). Send (step M.2).
  • the end marker may be transmitted to the eNB 30 (Source (eNB) before or after the GatewayGateControl Session Termination Procedure.
  • eNB30 (Source eNB) transfers the end marker to Target eNB in the same manner as in Operation Example 1.
  • Target eNB can transfer the downlink data received via Source S-GW and the downlink data received via Target S-GW to UE 20 while ensuring the order.
  • the source S-GW that manages the Source eNB is changed from the Source S-GW that manages the Source eNB to the Target S-GW that manages the Target eNB along with the handover of the UE 20 or the like.
  • P-GW60 which can recognize switching of the downlink data transfer path, sets an end marker that means the end of downlink data transfer via the Source eNB to the downlink data transfer path setting with Target S-GW.
  • send to Source S-GW send to Source S-GW.
  • the Source S-GW transfers the end marker received from the P-GW 60 to the Target eNB via the Source eNB.
  • FIG. 8 is a functional block configuration diagram of the P-GW60.
  • FIG. 9 is a functional block configuration diagram of the S-GW50.
  • the configuration of the mobile communication system 10 according to the present embodiment is the same as that of the first embodiment (see FIG. 2). 8 and 9, it should be noted that only functional blocks related to the present invention are shown, and other functional blocks are not shown.
  • the P-GW 60 includes a path setting unit 61 and a transmission instruction unit 65.
  • the path setting unit 61 is the same as in the first embodiment.
  • the transmission instruction unit 65 transmits an end marker transmission instruction to the Source S-GW. Specifically, when the S-GW 50 is switched from the Source S-GW to the Target ⁇ S-GW due to a transition such as a handover of the UE 20, the transmission instruction unit 65 sends an end marker transmission instruction to the Target by the path setting unit 61. Transmit to Source S-GW according to the setting of downlink data transfer path with S-GW.
  • the transmission instruction unit 65 can transmit an end marker transmission instruction to the Source S-GW via the control plane set according to the GPRS tunneling protocol (GTP) between the Source S-GW and the P-GW 60. Further, the transmission instruction unit 65 can also transmit an end marker transmission instruction to the Source S-GW as a signal according to Proxy Mobile IPv6 (PMIPv6) between the Source S-GW and the P-GW 60.
  • GTP GPRS tunneling protocol
  • PMIPv6 Proxy Mobile IPv6
  • the S-GW 50 includes a transmission instruction receiving unit 55 and an end marker transmitting unit 57.
  • the transmission instruction receiving unit 55 receives an end marker transmission instruction from the P-GW 60 when the S-GW 50 is operating as a Source S-GW. Also, the transmission instruction receiving unit 55 confirms that the received transmission instruction of the end marker is addressed to its own device (Source S-GW), and outputs the transmission instruction of the end marker to the end marker transmission unit 57.
  • the end marker transmission unit 57 generates an end marker based on the end marker transmission instruction received from the P-GW 60, and transmits the generated end marker to the Target eNB.
  • FIG. 10 shows a handover procedure of UE 20 according to Operation Example 1. Specifically, FIG. 10 is a modification of the handover procedure shown in Figure 5.5.1.1.3-1 (X2-based handover with Serving GW relocation) of 3GPP TS23.401. In operation example 1, GTP is used as the S5 / S8 interface.
  • the P-GW 60 transmits an end marker transmission instruction to the Source S-GW instead of transmitting the end marker (step 5X).
  • the Source S-GW Upon receiving the end marker transmission instruction, the Source S-GW generates an end marker, and transfers the downlink data and end marker transferred from the P-GW 60 to the Source eNB. Further, the Source eNB that has received the downlink data and the end marker transfers the downlink data and the end marker to the Target eNB (step 5Y).
  • end marker may be an extension of an existing GTPv2 signal or a new GTPv2 signal.
  • FIG. 11 shows a handover procedure of UE 20 according to Operation Example 2.
  • FIG. 11 is a modification of the handover procedure shown in Figure 5.7.1-1 (Intra-LTE and Inter-eNodeB Handover with Serving GW Relocation) of 3GPP TS23.402 (V9.12.0). It is a thing.
  • PMIP is used as the S5 / S8 interface.
  • the P-GW 60 transmits an end marker transmission instruction to the Source S-GW instead of transmitting the end marker (step M.11).
  • the end marker transmission instruction may be an extension of an existing PMIPv6 signal or a new PMIPv6 signal.
  • the Source S-GW that has received the instruction to send the end marker sends an eNB30 (Source eNB) together with the execution of Gateway Control Session Termination Procedure (Step B.1) that terminates the Control Session with PCRF70 (h-PCRF). Send an end marker (step M.12).
  • the transmission of the end marker transmission instruction to the eNB 30 (Source eNB) may be performed before or after the Gateway Control Session Termination Procedure.
  • the X2over handover has been described as an example, but the same procedure can be applied not only to the X2R handover but also to the S1 handover and the Inter-RAT handover.
  • a first feature of the present invention is a P-GW60 (PDN gateway device) that forwards downlink data addressed to a mobile station toward a source serving gateway device or a target serving gateway device, and the source radio base station of the mobile station
  • a path setting unit 61 path setting unit that sets a downlink data transfer path passing through the target serving gateway device and the target radio base station with the target serving gateway device in accordance with the transition from the target radio base station to the target radio base station;
  • the serving gateway apparatus switches from the source serving gateway apparatus that manages the source radio base station to the target serving gateway apparatus that manages the target radio base station with the transition, the source radio base station passes through the source radio base station.
  • An end marker transmitting unit 63 end marker transmitting unit that transmits an end marker that means the end of data transfer to the source serving gateway device according to the setting of the downlink data transfer path by the path setting unit. Is the gist.
  • the end marker transmitting unit transmits the end marker to the source serving via a user plane set according to a GPRS tunneling protocol between the source serving gateway device and the PDN gateway device. You may transmit to a gateway apparatus.
  • the end marker transmission unit sends the end marker to the source via a user plane set in accordance with a Generic Routing Encapsulation protocol between the source serving gateway device and the PDN gateway device. You may transmit to a serving gateway apparatus.
  • a second feature of the present invention is a P-GW60 (PDN gateway device) that forwards downlink data addressed to a mobile station toward a source serving gateway device or a target serving gateway device, the source radio base station of the mobile station
  • a path setting unit 61 path setting unit
  • path setting unit sets a downlink data transfer path passing through the target serving gateway device and the target radio base station with the target serving gateway device in accordance with the transition from the target radio base station to the target radio base station;
  • the serving gateway apparatus switches from the source serving gateway apparatus that manages the source radio base station to the target serving gateway apparatus that manages the target radio base station with the transition, the source radio base station passes through the source radio base station.
  • a transmission instruction unit 65 (transmission instruction unit) that transmits an end marker transmission instruction that means the end of data transfer end to the source serving gateway device according to the setting of the downlink data transfer path by the path setting unit;
  • the gist is to provide.
  • the end marker transmitting unit transmits the end marker to the source serving via a user plane set according to a GPRS tunneling protocol between the source serving gateway device and the PDN gateway device. You may transmit to a gateway apparatus.
  • the end marker transmission unit sends the end marker to the source via a user plane set in accordance with a Generic Routing Encapsulation protocol between the source serving gateway device and the PDN gateway device. You may transmit to a serving gateway apparatus.
  • a third feature of the present invention is a mobile communication method for transferring downlink data addressed to a mobile station toward a source serving gateway device or a target serving gateway device, the source radio base station of the mobile station to a target radio base station Along with the transition, a step of setting a downlink data transfer path via the target serving gateway device and the target radio base station between the target serving gateway device and the PDN gateway device, and along with the transition
  • the serving gateway apparatus switches from the source serving gateway apparatus that manages the source radio base station to the target serving gateway apparatus that manages the target radio base station, the PDN gateway apparatus Transmitting an end marker indicating the end of transfer of the downlink data via a radio base station to the source serving gateway device according to the setting of the downlink data transfer path; and the source serving gateway device includes the PDN And transferring the end marker received from the gateway device to the source radio base station.
  • a fourth feature of the present invention is a mobile communication method for transferring downlink data addressed to a mobile station toward a source serving gateway device or a target serving gateway device, the source radio base station of the mobile station to a target radio base station Along with the transition, a step of setting a downlink data transfer path via the target serving gateway device and the target radio base station between the target serving gateway device and the PDN gateway device, and along with the transition
  • the serving gateway apparatus switches from the source serving gateway apparatus that manages the source radio base station to the target serving gateway apparatus that manages the target radio base station
  • the PDN gateway apparatus A step of transmitting an end marker transmission instruction indicating the end of transfer of the downlink data via a radio base station to the source serving gateway apparatus according to the setting of the downlink data transfer path; and And transferring the end marker to the source radio base station based on the transmission instruction received from the PDN gateway device.
  • the serving gateway apparatus that manages the radio base station that is the transition source of the mobile station and the serving gateway apparatus that manages the radio base station that is the transition destination of the mobile station are different, It is possible to provide a PDN gateway apparatus and a mobile communication method that can guarantee the order of downlink data while avoiding a decrease in throughput.

Abstract

移動局の遷移元の無線基地局を管理するサービングゲートウェイ装置と、当該移動局の遷移先の無線基地局を管理するサービングゲートウェイ装置とが異なる場合でも、下りデータのスループットの低下を回避しつつ、下りデータの順序性を保証し得るPDNゲートウェイ装置及び移動通信方法を提供する。P-GW60は、UE20のハンドオーバに伴って、Target S-GW及びTarget eNBを経由する下りデータ転送パスを設定し、UE20のハンドオーバ遷移に伴って、Source S-GWからTarget eNBを管理するTarget S-GWにサービングゲートウェイ装置が切り替わる場合、Source eNBを経由した下りデータの転送終了を意味するエンドマーカを、下りデータ転送パスの設定に応じて、Source S-GWに送信する。

Description

PDNゲートウェイ装置及び移動通信方法
 本発明は、移動局宛ての下りデータをソースサービングゲートウェイ装置またはターゲットサービングゲートウェイ装置に向けて転送するPDNゲートウェイ装置及び移動通信方法に関する。
 従来、3rd Generation Partnership Project(3GPP)において規定される無線アクセスネットワーク(E-UTRAN)の技術標準では、移動局(UE)が接続先の無線基地局(eNB)を切り替えるハンドオーバなどの遷移に伴って、サービングゲートウェイ装置から遷移元のソース無線基地局に対してエンドマーカを送信する方法が規定されている(例えば、非特許文献1)。
 図1は、従来の無線アクセスネットワークにおける移動局のハンドオーバ手順を示す。具体的には、図1は、3GPP TS23.401のSection 5.5.1.1.2(X2-based handover without Serving GW relocation)に規定されているハンドオーバ手順を示す。
 図1に示すように、UEのハンドオーバが開始されると、Source eNB(ソース無線基地局)は、ハンドオーバ先のTarget eNB(ターゲット無線基地局)に対して、ネットワーク、具体的には、P-GW(PDNゲートウェイ装置)から受信したUE宛ての下りデータを転送(Forwarding of data)する(図中の(1))。
 また、S-GW(サービングゲートウェイ装置)とTarget eNBとの下りデータ転送パスが確立されると、UE宛ての下りデータ(Fresh Data)は、Target eNBに到達する(図中の(2)。具体的には、S-GWは、下りデータ転送パスの接続先をSource eNBからTarget eNBに切り替えた後、Source eNBに対してエンドマーカを送信する。エンドマーカを受信したSource eNBは、Target eNBにエンドマーカを転送する。
 Target eNBは、UEに向けて送信される下りデータの順序性(ordering)を確保するため、S-GWから受信した下りデータ(Fresh Data)を一旦バッファリングし、Source eNBからエンドマーカを受信後、つまり、Source eNBから転送される下りデータ(Forwarding Data)がないことを確認した後、下りデータ(Fresh Data)をUEに向けて転送する。
3GPP 23.401 V9.13.0 Section 4.4.3.2 Serving GW, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access(Release 9)、3GPP、2012年6月
 しかしながら、上述した従来の無線アクセスネットワークにおける移動局のハンドオーバ手順には、次のような問題があった。具体的には、無線基地局は、特定のS-GWによって管理されているため、Source eNBを管理するS-GWと、Target eNBを管理するS-GWとが異なる場合(S-GW Relocation)が発生し得る。
 この場合、Source eNBを管理するS-GW(ソースサービングゲートウェイ装置)は、Target eNBと設定される下りデータ転送パスを認識できない。このため、Source eNBを管理するS-GWは、エンドマーカの送信タイミングを判定することができず、エンドマーカを送信することができない。従って、このような無線基地局を管理するS-GWが異なるようなハンドオーバが実行されると、Target eNBは、下りデータの順序性を保証できない。
 このような問題の対策として、Target eNBがタイマを実装し、当該タイマの満了後にS-GWから受信した下りデータ(Fresh Data)を移動局(UE)に転送することが考えられる。しかしながら、タイマの設定時間を短くすれば、下りデータ(Fresh Data)のUEへの転送開始後に、Source eNBから下りデータ(Forwarding Data)が転送される可能性が高くなり、下りデータの順序性の保証が難しくなる。この結果、上位レイヤでのデータ再送が多くなり、結果的に下りデータのスループットが低下する。
 一方、タイマの設定時間を長くすれば、Source eNBから下りデータ(Forwarding Data)のUEへの転送を完了してから下りデータ(Fresh Data)の転送を開始するまでの待ち時間が長くなる可能性が高くなり、結果的に下りデータのスループットが低下する。
 そこで、本発明は、このような状況に鑑みてなされたものであり、移動局の遷移元の無線基地局を管理するサービングゲートウェイ装置と、当該移動局の遷移先の無線基地局を管理するサービングゲートウェイ装置とが異なる場合でも、下りデータのスループットの低下を回避しつつ、下りデータの順序性を保証し得るPDNゲートウェイ装置及び移動通信方法の提供を目的とする。
 本発明の第1の特徴は、移動局宛ての下りデータをソースサービングゲートウェイ装置またはターゲットサービングゲートウェイ装置に向けて転送するPDNゲートウェイ装置であって、前記移動局のソース無線基地局からターゲット無線基地局への遷移に伴って、前記ターゲットサービングゲートウェイ装置及び前記ターゲット無線基地局を経由する下りデータ転送パスを、前記ターゲットサービングゲートウェイ装置と設定するパス設定部と、前記遷移に伴って、前記ソース無線基地局を管理する前記ソースサービングゲートウェイ装置から前記ターゲット無線基地局を管理する前記ターゲットサービングゲートウェイ装置にサービングゲートウェイ装置が切り替わる場合、前記ソース無線基地局を経由した前記下りデータの転送終了を意味するエンドマーカを、前記パス設定部による前記下りデータ転送パスの設定に応じて、前記ソースサービングゲートウェイ装置に送信するエンドマーカ送信部とを備えることを要旨とする。
 本発明の第2の特徴は、移動局宛ての下りデータをソースサービングゲートウェイ装置またはターゲットサービングゲートウェイ装置に向けて転送するPDNゲートウェイ装置であって、前記移動局のソース無線基地局からターゲット無線基地局への遷移に伴って、前記ターゲットサービングゲートウェイ装置及び前記ターゲット無線基地局を経由する下りデータ転送パスを、前記ターゲットサービングゲートウェイ装置と設定するパス設定部と、前記遷移に伴って、前記ソース無線基地局を管理する前記ソースサービングゲートウェイ装置から前記ターゲット無線基地局を管理する前記ターゲットサービングゲートウェイ装置にサービングゲートウェイ装置が切り替わる場合、前記ソース無線基地局を経由した前記下りデータの転送終了を意味するエンドマーカの送信指示を、前記パス設定部による前記下りデータ転送パスの設定に応じて、前記ソースサービングゲートウェイ装置に送信する送信指示部とを備えることを要旨とする。
 本発明の第3の特徴は、移動局宛ての下りデータをソースサービングゲートウェイ装置またはターゲットサービングゲートウェイ装置に向けて転送する移動通信方法であって、前記移動局のソース無線基地局からターゲット無線基地局への遷移に伴って、前記ターゲットサービングゲートウェイ装置及び前記ターゲット無線基地局を経由する下りデータ転送パスを、前記ターゲットサービングゲートウェイ装置とPDNゲートウェイ装置との間において設定するステップと、前記遷移に伴って、前記ソース無線基地局を管理する前記ソースサービングゲートウェイ装置から前記ターゲット無線基地局を管理する前記ターゲットサービングゲートウェイ装置にサービングゲートウェイ装置が切り替わる場合、前記PDNゲートウェイ装置が、前記ソース無線基地局を経由した前記下りデータの転送終了を意味するエンドマーカを、前記下りデータ転送パスの設定に応じて、前記ソースサービングゲートウェイ装置に送信するステップと、前記ソースサービングゲートウェイ装置が、前記PDNゲートウェイ装置から受信した前記エンドマーカを前記ソース無線基地局に転送するステップとを含むことを要旨とする。
 本発明の第4の特徴は、移動局宛ての下りデータをソースサービングゲートウェイ装置またはターゲットサービングゲートウェイ装置に向けて転送する移動通信方法であって、前記移動局のソース無線基地局からターゲット無線基地局への遷移に伴って、前記ターゲットサービングゲートウェイ装置及び前記ターゲット無線基地局を経由する下りデータ転送パスを、前記ターゲットサービングゲートウェイ装置とPDNゲートウェイ装置との間において設定するステップと、前記遷移に伴って、前記ソース無線基地局を管理する前記ソースサービングゲートウェイ装置から前記ターゲット無線基地局を管理する前記ターゲットサービングゲートウェイ装置にサービングゲートウェイ装置が切り替わる場合、前記PDNゲートウェイ装置が、前記ソース無線基地局を経由した前記下りデータの転送終了を意味するエンドマーカの送信指示を、前記下りデータ転送パスの設定に応じて、前記ソースサービングゲートウェイ装置に送信するステップと、前記ソースサービングゲートウェイ装置が、前記PDNゲートウェイ装置から受信した前記送信指示に基づいて、前記エンドマーカを前記ソース無線基地局に転送するステップとを含むことを要旨とする。
図1は、本発明の実施形態に係る従来の無線アクセスネットワークにおける移動局のハンドオーバ手順を示す図である。 図2は、本発明の実施形態に係る移動通信システム10の全体概略構成図である。 図3は、本発明の第1実施形態に係るP-GW60の機能ブロック構成図である。 図4は、本発明の第1実施形態に係るS-GW50の機能ブロック構成図である。 図5は、本発明の第1実施形態の動作例1に係るUE20のハンドオーバ手順を示す図である。 図6は、本発明の第1実施形態の動作例1におけるハンドオーバ手順が実行された場合における下りデータ及びエンドマーカの転送経路を示す概念図である。 図7は、本発明の第1実施形態の動作例2に係るUE20のハンドオーバ手順を示す図である。 図8は、本発明の第2実施形態に係るP-GW60の機能ブロック構成図である。 図9は、本発明の第2実施形態に係るS-GW50の機能ブロック構成図である。 図10は、本発明の第2実施形態の動作例1に係るUE20のハンドオーバ手順を示す図である。 図11は、本発明の第2実施形態の動作例2に係るUE20のハンドオーバ手順を示す図である。
次に、本発明の実施形態について説明する。なお、以下の図面の記載において、同一または類似の部分には、同一または類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。
 したがって、具体的な寸法などは以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 [第1実施形態]
 (1)移動通信システムの全体概略構成
 図2は、本発明の第1実施形態に係る移動通信システム10の全体概略構成図である。図3に示すように、移動局20(以下、UE20)、無線基地局30(以下、eNB30)、移動管理装置(以下、MME40)、サービングゲートウェイ装置50(以下、S-GW50)、PDNゲートウェイ装置60(以下、P-GW60)、及びポリシー・課金制御装置(以下、PCRF70)を含む。また、移動通信システム10には、ホーム加入者サーバ(HSS)が含まれてもよく、P-GW60には、IP Multimedia core network Subsystem(IMS)などのIPベースの外部ネットワーク(パケットデータネットワーク)が接続される。
 MME40は、eNB30を収容し、モビリティ制御やベアラ制御機能などを提供する交換機である。S-GW50は、3GPP(LTE)のアクセスシステムを収容する。具体的には、S-GW50は、設置エリア(例えば、北日本エリアと東日本エリア)などの条件に応じて、当該条件に合致するeNB30を管理する。つまり、S-GW50は複数のeNB30を管理することができ、eNB30のそれぞれは特定のS-GW50と対応付けられている。本実施形態では、UE20がハンドオーバする場合に、ハンドオーバ元の無線基地局(ソース無線基地局)を管理するS-GW50をSource S-GW(ソースサービングゲートウェイ装置)と呼び、ハンドオーバ先の無線基地局(ターゲット無線基地局)を管理するS-GW50をTarget S-GW(ターゲットサービングゲートウェイ装置)と呼ぶ。
 P-GW60は、パケットデータネットワーク(PDN)との接続点であり、IPアドレスの割当てやS-GW50へのパケット転送などを行う。特に、本実施形態では、P-GW60は、UE20宛ての下りデータをS-GW50に向けて転送する。具体的には、P-GW60は、UE20宛ての下りデータを、Source S-GWまたはTarget S-GWに向けて転送する。
 また、P-GW60は、PCRF70と連携し、QoS制御やベアラ設定制御などを実行する。PCRF70は、ユーザデータ転送のQoS及び課金のための制御を実行する。
 S-GW50とP-GW60との間のインターフェース、具体的には、3GPPにおいて規定されるS5またはS8インターフェースでは、2種類のプロトコルを用いることが可能である。具体的には、GPRSトンネリングプロトコル(GTP)及びProxy Mobile IPv6(PMIPv6)が用いられる。より具体的には、GTPの場合、ユーザプレーン(U-Plane)上で動作するGTPv1と、制御プレーン(C-Plane)上で動作するGTPv2とが用いられる。また、PMIPv6の場合、ユーザプレーン(U-Plane)上で動作するGeneric Routing Encapsulationプロトコルと、制御プレーン(C-Plane)上で動作するPMIPとが用いられる。
 (2)移動通信システムの機能ブロック構成
 次に、移動通信システム10の機能ブロック構成について説明する。具体的には、S-GW50及びP-GW60の機能ブロック構成について説明する。図3は、P-GW60の機能ブロック構成図である。また、図4は、S-GW50の機能ブロック構成図である。なお、図3及び図4では、本発明に関連する機能ブロックのみ図示し、他の機能ブロックについては図示していないことに留意されたい。
 (2.1)P-GW60
 図3に示すように、P-GW60は、パス設定部61及びエンドマーカ送信部63を備える。
 パス設定部61は、eNB30及びS-GW50を経由して、UE20とP-GW60との間に設定されるデータ転送用のパスを設定する。具体的には、パス設定部61は、UE20とP-GW60との間において、上り方向及び下り方向のデータを転送可能なパスを設定する。
 特に、本実施形態では、パス設定部61は、UE20のSource eNBからTarget eNBへの遷移に伴って、Target S-GW及びTarget eNBを経由する下りデータ転送パスを、Target S-GWと設定する。
 エンドマーカ送信部63は、UE20が他の無線基地局にハンドオーバした場合、Source eNBに対してエンドマーカを送信する。エンドマーカは、UE20がハンドオーバした場合に、Source eNBを経由した下りデータの転送終了を意味する。
 特に、本実施形態では、エンドマーカ送信部63は、UE20のハンドオーバなどの遷移に伴って、Source eNBを管理するSource S-GWからTarget eNBを管理するTarget S-GWにS-GW50が切り替わる場合、エンドマーカをSource eNBに送信する。具体的には、エンドマーカ送信部63は、パス設定部61による下りデータ転送パスの設定に応じて、エンドマーカをSource S-GWに送信する。
 なお、後述するように、エンドマーカ送信部63は、パス設定部61によってTarget S-GWと下りデータ転送パスが設定された場合、遅滞なくエンドマーカをSource S-GWに送信する。また、UE20のハンドオーバなどの遷移に伴って、Source eNBを管理するSource S-GWからTarget eNBを管理するTarget S-GWにS-GW50が切り替わる場合とは、例えば、UE20が、Source S-GWが管理するエリア(例えば、東日本)の境界付近に位置する接続中のeNB30(Source eNB)から、他のS-GW50が管理するエリア(例えば、北日本)の境界付近に位置するeNB30(Target eNB)にハンドオーバした場合が典型的である。
 エンドマーカ送信部63は、Source S-GWとP-GW60との間おけるGPRSトンネリングプロトコル(GTP)に従って設定されたユーザプレーンを経由してエンドマーカをSource S-GWに送信することができる。また、エンドマーカ送信部63は、Source S-GWとP-GW60との間おけるGeneric Routing Encapsulation(GRE)プロトコルに従って設定されたユーザプレーンを経由してエンドマーカをSource S-GWに送信することもできる。つまり、エンドマーカ送信部63は、3GPPにおいて規定されるS5またはS8インターフェース用として規定されている2種類のプロトコル(GTP, PMIP)の何れが用いられている場合でも、エンドマーカをSource S-GWに送信することができる。
 (2.2)S-GW50
 図4に示すように、S-GW50は、エンドマーカ受信部51及びエンドマーカ転送部53を備える。
 エンドマーカ受信部51は、S-GW50がSource S-GWとして動作している場合において、P-GW60からエンドマーカを受信する。また、エンドマーカ受信部51は、受信したエンドマーカが自装置(Source S-GW)宛てであることを確認し、当該エンドマーカをエンドマーカ転送部53に出力する。
 エンドマーカ転送部53は、P-GW60から受信したエンドマーカをTarget eNBに転送する。具体的には、エンドマーカ転送部53は、エンドマーカ受信部51から出力されたエンドマーカをTarget eNBに転送する。
 (3)移動通信システムの動作
 次に、移動通信システム10の動作について説明する。具体的には、Source S-GWからTarget S-GWにS-GW50が切り替わる場合におけるUE20のハンドオーバ手順について説明する。上述したように、Source S-GWからTarget S-GWにS-GW50が切り替わる場合としては、UE20が、Source S-GWが管理するエリア(例えば、東日本)の境界付近に位置する接続中のeNB30(Source eNB)から、他のS-GW50が管理するエリア(例えば、北日本)の境界付近に位置するeNB30(Target eNB)にハンドオーバした場合が挙げられる。
 (3.1)動作例1
 図5は、動作例1に係るUE20のハンドオーバ手順を示す。具体的には、図5は、3GPP TS23.401のFigure 5.5.1.1.3-1(X2-based handover with Serving GW relocation)に示されているハンドオーバ手順に変更を加えたものである。動作例1では、S5/S8インターフェースとしてGTPが用いられる。また、図6は、動作例1におけるハンドオーバ手順が実行された場合における下りデータ及びエンドマーカの転送経路を示す概念図である。
 図5及び図6に示すように、動作例1では、下りデータ転送パスの切り替えを認識できるP-GW60がエンドマーカを送信する。具体的には、P-GW60は、Target S-GWからModify Bearer Requestを受信する(ステップ3a)と、受信したModify Bearer Requestに応じて、Modify Bearer ResponseをTarget S-GWに送信する(ステップ3b)。このような処理によって、P-GW60、Target S-GW及びTarget eNBを経由した下りデータ転送パスが設定され、P-GW60は、Target S-GWに向けて下りデータ(図6のデータ#4,5)を開始する。
 また、P-GW60は、Source S-GWに対してエンドマーカを送信する。具体的には、P-GW60は、Source S-GW、つまり、Source eNBを経由した下りデータ(図6のデータ#1,2,3)の転送を終了後、Source S-GWに対してエンドマーカ(図6の「E」)を送信する(ステップ5X)。
 エンドマーカを受信したSource S-GWは、P-GW60から転送された下りデータ(データ#1,2,3)及びエンドマーカをSource eNBに転送する。また、下りデータ(データ#1,2,3)及びエンドマーカを受信したSource eNBは、当該下りデータ及びエンドマーカをTarget eNBに転送する(ステップ5Y)。
 この結果、Target eNBは、Source S-GW経由で受信した下りデータ(データ#1,2,3)と、Target S-GW経由で受信した下りデータ(#4,5)とを、順序性を保証しつつ、UE20に転送できる(図6参照)。
 (3.2)動作例2
 図7は、動作例2に係るUE20のハンドオーバ手順を示す。具体的には、図7は、3GPP TS23.402(V9.12.0)のFigure 5.7.1-1(Intra-LTE and Inter-eNodeB Handover with Serving GW Relocation)に示されているハンドオーバ手順に変更を加えたものである。動作例2では、S5/S8インターフェースとしてPMIPが用いられる。
 図7に示すように、動作例2でも、動作例1と同様に下りデータ転送パスの切り替えを認識できるP-GW60がエンドマーカを送信する。また、動作例2では、PMIPが用いられるが、従来の3GPPの規定では、エンドマーカはユーザプレーン(U-Plane)上で動作するGTPv1のみであるため、GREプロトコルに従った信号としてエンドマーカを送信できるように拡張される。
 P-GW60は、Target S-GW(new S-GW)とProxy Binding Updateの処理(ステップA.3, A.4)を実行した後、Source S-GW(old S-GW)にエンドマーカを送信する(ステップM.1)。上述したように、エンドマーカは、GREプロトコルに従った信号としてSource S-GWに送信される。なお、図7のnew S-GWはTarget S-GWに相当し、old S-GWはSource S-GWに相当する。
 エンドマーカを受信したSource S-GWは、PCRF70(h-PCRF)とのControl Sessionを終了するGateway Control Session Termination Procedureの実行(ステップB.1)と合わせて、eNB30(Source eNB)にエンドマーカを送信する(ステップM.2)。なお、eNB30(Source eNB)へのエンドマーカの送信は、Gateway Control Session Termination Procedureの前でも後でも構わない。
 その後、eNB30(Source eNB)は、動作例1と同様に当該エンドマーカをTarget eNBに転送する。この結果、Target eNBは、Source S-GW経由で受信した下りデータと、Target S-GW経由で受信した下りデータとを、順序性を保証しつつ、UE20に転送できる。
 (4)作用・効果
 本実施形態に係る移動通信システム10によれば、UE20のハンドオーバなどの遷移に伴って、Source eNBを管理するSource S-GWからTarget eNBを管理するTarget S-GWにS-GW50が切り替わる場合、下りデータ転送パスの切り替えを認識できるP-GW60が、Source eNBを経由した下りデータの転送終了を意味するエンドマーカを、Target S-GWとの下りデータ転送パスの設定に応じてSource S-GWに送信する。また、Source S-GWは、P-GW60から受信したエンドマーカをSource eNBを経由してTarget eNBに転送する。
 このため、UE20のハンドオーバなどの遷移に伴って、Source eNBを管理するSource S-GWからTarget eNBを管理するTarget S-GWにS-GW50が切り替わる場合、つまり、S-GW Relocationの場合でも、下りデータ転送パスの切り替えを認識できるP-GW60からSource eNBにエンドマーカを送信できる。すなわち、S-GW Relocationの場合でも、下りデータのスループットの低下を回避しつつ、下りデータの順序性を保証し得る。
 [第2実施形態]
 次に、本発明の第2実施形態について説明する。本実施形態では、P-GW60によるエンドマーカの送信に代えて、エンドマーカの送信指示がP-GW60からSource eNBに送信される。以下、上述した第1実施形態と異なる部分について主に説明する。
 (1)機能ブロック構成
 図8は、P-GW60の機能ブロック構成図である。また、図9は、S-GW50の機能ブロック構成図である。なお、本実施形態に係る移動通信システム10の構成は、第1実施形態と同様(図2参照)である。また、図8及び図9でも、本発明に関連する機能ブロックのみ図示し、他の機能ブロックについては図示していないことに留意されたい。
 (1.1)P-GW60
 図8に示すように、P-GW60は、パス設定部61及び送信指示部65を備える。パス設定部61は、第1実施形態と同様である。
 送信指示部65は、エンドマーカの送信指示をSource S-GWに送信する。具体的には、送信指示部65は、UE20のハンドオーバなどの遷移に伴って、Source S-GWからTarget S-GWにS-GW50が切り替わる場合、エンドマーカの送信指示をパス設定部61によるTarget S-GWとの下りデータ転送パスの設定に応じて、Source S-GWに送信する。
 送信指示部65は、Source S-GWとP-GW60との間おけるGPRSトンネリングプロトコル(GTP)に従って設定された制御プレーンを経由してエンドマーカの送信指示をSource S-GWに送信することができる。また、送信指示部65は、Source S-GWとP-GW60との間おけるProxy Mobile IPv6(PMIPv6)に従った信号としてエンドマーカの送信指示をSource S-GWに送信することもできる。
 (1.2)S-GW50
 図9に示すように、S-GW50は、送信指示受信部55及びエンドマーカ送信部57を備える。
 送信指示受信部55は、S-GW50がSource S-GWとして動作している場合において、P-GW60からエンドマーカの送信指示を受信する。また、送信指示受信部55は、受信したエンドマーカの送信指示が自装置(Source S-GW)宛てであることを確認し、当該エンドマーカの送信指示をエンドマーカ送信部57に出力する。
 エンドマーカ送信部57は、P-GW60から受信したエンドマーカの送信指示に基づいてエンドマーカを生成し、生成したエンドマーカをTarget eNBに送信する。
 (2)移動通信システムの動作
 次に、本実施形態に係る移動通信システム10の動作について説明する。具体的には、第1実施形態と同様に、Source S-GWからTarget S-GWにS-GW50が切り替わる場合におけるUE20のハンドオーバ手順について説明する。
 (2.1)動作例1
 図10は、動作例1に係るUE20のハンドオーバ手順を示す。具体的には、図10は、3GPP TS23.401のFigure 5.5.1.1.3-1(X2-based handover with Serving GW relocation)に示されているハンドオーバ手順に変更を加えたものである。動作例1では、S5/S8インターフェースとしてGTPが用いられる。
 本実施形態では、P-GW60は、エンドマーカの送信に代えて、エンドマーカの送信指示をSource S-GWに対して送信する(ステップ5X)。エンドマーカの送信指示を受信したSource S-GWは、エンドマーカを生成し、P-GW60から転送された下りデータ及びエンドマーカをSource eNBに転送する。また、下りデータ及びエンドマーカを受信したSource eNBは、当該下りデータ及びエンドマーカをTarget eNBに転送する(ステップ5Y)。
 なお、エンドマーカは、既存のGTPv2信号の拡張でもよいし、新規なGTPv2信号であってもよい。
 (2.2)動作例2
 図11は、動作例2に係るUE20のハンドオーバ手順を示す。具体的には、図11は、3GPP TS23.402(V9.12.0)のFigure 5.7.1-1(Intra-LTE and Inter-eNodeB Handover with Serving GW Relocation)に示されているハンドオーバ手順に変更を加えたものである。動作例2では、S5/S8インターフェースとしてPMIPが用いられる。
 本実施形態では、P-GW60は、エンドマーカの送信に代えて、エンドマーカの送信指示をSource S-GWに対して送信する(ステップM.11)。なお、エンドマーカの送信指示は、既存PMIPv6信号の拡張でもよいし、新規なPMIPv6信号であってもよい。
 エンドマーカの送信指示を受信したSource S-GWは、PCRF70(h-PCRF)とのControl Sessionを終了するGateway Control Session Termination Procedureの実行(ステップB.1)と合わせて、eNB30(Source eNB)にエンドマーカを送信する(ステップM.12)。また、第1実施形態と同様に、eNB30(Source eNB)へのエンドマーカの送信指示の送信は、Gateway Control Session Termination Procedureの前でも後でも構わない。
 (3)作用・効果
 本実施形態に係る移動通信システム10によれば、S-GW Relocationの場合でも、下りデータ転送パスの切り替えを認識できるP-GW60からSource S-GWにエンドマーカの送信指示を送信でき、Source S-GWはSource eNBにエンドマーカを送信できる。このため、第1実施形態と同様に、S-GW Relocationの場合でも、下りデータのスループットの低下を回避しつつ、下りデータの順序性を保証し得る。
 [その他の実施形態]
 上述したように、本発明の一実施形態を通じて本発明の内容を開示したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態が明らかとなろう。
 例えば、上述した本発明の実施形態では、X2 handoverを例として説明したが、X2 handoverに限らず、S1 handoverやInter-RAT handoverにも同様の手順を適用できる。
 また、上述した本発明は、次のように表現されてもよい。本発明の第1の特徴は、移動局宛ての下りデータをソースサービングゲートウェイ装置またはターゲットサービングゲートウェイ装置に向けて転送するP-GW60(PDNゲートウェイ装置)であって、前記移動局のソース無線基地局からターゲット無線基地局への遷移に伴って、前記ターゲットサービングゲートウェイ装置及び前記ターゲット無線基地局を経由する下りデータ転送パスを、前記ターゲットサービングゲートウェイ装置と設定するパス設定部61(パス設定部)と、前記遷移に伴って、前記ソース無線基地局を管理する前記ソースサービングゲートウェイ装置から前記ターゲット無線基地局を管理する前記ターゲットサービングゲートウェイ装置にサービングゲートウェイ装置が切り替わる場合、前記ソース無線基地局を経由した前記下りデータの転送終了を意味するエンドマーカを、前記パス設定部による前記下りデータ転送パスの設定に応じて、前記ソースサービングゲートウェイ装置に送信するエンドマーカ送信部63(エンドマーカ送信部)とを備えることを要旨とする。
 本発明の第1の特徴において、前記エンドマーカ送信部は、前記ソースサービングゲートウェイ装置と前記PDNゲートウェイ装置との間おけるGPRSトンネリングプロトコルに従って設定されたユーザプレーンを経由して前記エンドマーカを前記ソースサービングゲートウェイ装置に送信してもよい。
 本発明の第1の特徴において、前記エンドマーカ送信部は、前記ソースサービングゲートウェイ装置と前記PDNゲートウェイ装置との間おけるGeneric Routing Encapsulationプロトコルに従って設定されたユーザプレーンを経由して前記エンドマーカを前記ソースサービングゲートウェイ装置に送信してもよい。
 本発明の第2の特徴は、移動局宛ての下りデータをソースサービングゲートウェイ装置またはターゲットサービングゲートウェイ装置に向けて転送するP-GW60(PDNゲートウェイ装置)であって、前記移動局のソース無線基地局からターゲット無線基地局への遷移に伴って、前記ターゲットサービングゲートウェイ装置及び前記ターゲット無線基地局を経由する下りデータ転送パスを、前記ターゲットサービングゲートウェイ装置と設定するパス設定部61(パス設定部)と、前記遷移に伴って、前記ソース無線基地局を管理する前記ソースサービングゲートウェイ装置から前記ターゲット無線基地局を管理する前記ターゲットサービングゲートウェイ装置にサービングゲートウェイ装置が切り替わる場合、前記ソース無線基地局を経由した前記下りデータの転送終了を意味するエンドマーカの送信指示を、前記パス設定部による前記下りデータ転送パスの設定に応じて、前記ソースサービングゲートウェイ装置に送信する送信指示部65(送信指示部)とを備えることを要旨とする。
 本発明の第2の特徴において、前記エンドマーカ送信部は、前記ソースサービングゲートウェイ装置と前記PDNゲートウェイ装置との間おけるGPRSトンネリングプロトコルに従って設定されたユーザプレーンを経由して前記エンドマーカを前記ソースサービングゲートウェイ装置に送信してもよい。
 本発明の第2の特徴において、前記エンドマーカ送信部は、前記ソースサービングゲートウェイ装置と前記PDNゲートウェイ装置との間おけるGeneric Routing Encapsulationプロトコルに従って設定されたユーザプレーンを経由して前記エンドマーカを前記ソースサービングゲートウェイ装置に送信してもよい。
 本発明の第3の特徴は、移動局宛ての下りデータをソースサービングゲートウェイ装置またはターゲットサービングゲートウェイ装置に向けて転送する移動通信方法であって、前記移動局のソース無線基地局からターゲット無線基地局への遷移に伴って、前記ターゲットサービングゲートウェイ装置及び前記ターゲット無線基地局を経由する下りデータ転送パスを、前記ターゲットサービングゲートウェイ装置とPDNゲートウェイ装置との間において設定するステップと、前記遷移に伴って、前記ソース無線基地局を管理する前記ソースサービングゲートウェイ装置から前記ターゲット無線基地局を管理する前記ターゲットサービングゲートウェイ装置にサービングゲートウェイ装置が切り替わる場合、前記PDNゲートウェイ装置が、前記ソース無線基地局を経由した前記下りデータの転送終了を意味するエンドマーカを、前記下りデータ転送パスの設定に応じて、前記ソースサービングゲートウェイ装置に送信するステップと、前記ソースサービングゲートウェイ装置が、前記PDNゲートウェイ装置から受信した前記エンドマーカを前記ソース無線基地局に転送するステップとを含むことを要旨とする。
 本発明の第4の特徴は、移動局宛ての下りデータをソースサービングゲートウェイ装置またはターゲットサービングゲートウェイ装置に向けて転送する移動通信方法であって、前記移動局のソース無線基地局からターゲット無線基地局への遷移に伴って、前記ターゲットサービングゲートウェイ装置及び前記ターゲット無線基地局を経由する下りデータ転送パスを、前記ターゲットサービングゲートウェイ装置とPDNゲートウェイ装置との間において設定するステップと、前記遷移に伴って、前記ソース無線基地局を管理する前記ソースサービングゲートウェイ装置から前記ターゲット無線基地局を管理する前記ターゲットサービングゲートウェイ装置にサービングゲートウェイ装置が切り替わる場合、前記PDNゲートウェイ装置が、前記ソース無線基地局を経由した前記下りデータの転送終了を意味するエンドマーカの送信指示を、前記下りデータ転送パスの設定に応じて、前記ソースサービングゲートウェイ装置に送信するステップと、前記ソースサービングゲートウェイ装置が、前記PDNゲートウェイ装置から受信した前記送信指示に基づいて、前記エンドマーカを前記ソース無線基地局に転送するステップとを含むことを要旨とする。
 このように、本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本発明の技術的範囲は、上述の説明から妥当な請求の範囲に係る発明特定事項によってのみ定められるものである。
 なお、日本国特許出願第2013-074001号(2013年3月29日出願)の全内容が、参照により、本願明細書に組み込まれている。
 本発明の特徴によれば、移動局の遷移元の無線基地局を管理するサービングゲートウェイ装置と、当該移動局の遷移先の無線基地局を管理するサービングゲートウェイ装置とが異なる場合でも、下りデータのスループットの低下を回避しつつ、下りデータの順序性を保証し得るPDNゲートウェイ装置及び移動通信方法を提供することができる。
 10…移動通信システム
 20…UE
 30…eNB
 40…MME
 50…S-GW
 51…エンドマーカ受信部
 53…エンドマーカ転送部
 55…送信指示受信部
 57…エンドマーカ送信部
 60…P-GW
 61…パス設定部
 63…エンドマーカ送信部
 65…送信指示部
 70…PCRF

Claims (8)

  1.  移動局宛ての下りデータをソースサービングゲートウェイ装置またはターゲットサービングゲートウェイ装置に向けて転送するPDNゲートウェイ装置であって、
     前記移動局のソース無線基地局からターゲット無線基地局への遷移に伴って、前記ターゲットサービングゲートウェイ装置及び前記ターゲット無線基地局を経由する下りデータ転送パスを、前記ターゲットサービングゲートウェイ装置と設定するパス設定部と、
     前記遷移に伴って、前記ソース無線基地局を管理する前記ソースサービングゲートウェイ装置から前記ターゲット無線基地局を管理する前記ターゲットサービングゲートウェイ装置にサービングゲートウェイ装置が切り替わる場合、前記ソース無線基地局を経由した前記下りデータの転送終了を意味するエンドマーカを、前記パス設定部による前記下りデータ転送パスの設定に応じて、前記ソースサービングゲートウェイ装置に送信するエンドマーカ送信部と
    を備えるPDNゲートウェイ装置。
  2.  前記エンドマーカ送信部は、前記ソースサービングゲートウェイ装置と前記PDNゲートウェイ装置との間おけるGPRSトンネリングプロトコルに従って設定されたユーザプレーンを経由して前記エンドマーカを前記ソースサービングゲートウェイ装置に送信する請求項1に記載のPDNゲートウェイ装置。
  3.  前記エンドマーカ送信部は、前記ソースサービングゲートウェイ装置と前記PDNゲートウェイ装置との間おけるGeneric Routing Encapsulationプロトコルに従って設定されたユーザプレーンを経由して前記エンドマーカを前記ソースサービングゲートウェイ装置に送信する請求項1に記載のPDNゲートウェイ装置。
  4.  移動局宛ての下りデータをソースサービングゲートウェイ装置またはターゲットサービングゲートウェイ装置に向けて転送するPDNゲートウェイ装置であって、
     前記移動局のソース無線基地局からターゲット無線基地局への遷移に伴って、前記ターゲットサービングゲートウェイ装置及び前記ターゲット無線基地局を経由する下りデータ転送パスを、前記ターゲットサービングゲートウェイ装置と設定するパス設定部と、
     前記遷移に伴って、前記ソース無線基地局を管理する前記ソースサービングゲートウェイ装置から前記ターゲット無線基地局を管理する前記ターゲットサービングゲートウェイ装置にサービングゲートウェイ装置が切り替わる場合、前記ソース無線基地局を経由した前記下りデータの転送終了を意味するエンドマーカの送信指示を、前記パス設定部による前記下りデータ転送パスの設定に応じて、前記ソースサービングゲートウェイ装置に送信する送信指示部と
    を備えるPDNゲートウェイ装置。
  5.  前記送信指示部は、前記ソースサービングゲートウェイ装置と前記PDNゲートウェイ装置との間おけるGPRSトンネリングプロトコルに従って設定された制御プレーンを経由して前記送信指示を前記ソースサービングゲートウェイ装置に送信する請求項4に記載のPDNゲートウェイ装置。
  6.  前記送信指示部は、前記ソースサービングゲートウェイ装置と前記PDNゲートウェイ装置との間おけるProxy Mobile IPv6に従った信号として前記送信指示を前記ソースサービングゲートウェイ装置に送信する請求項4に記載のPDNゲートウェイ装置。
  7.  移動局宛ての下りデータをソースサービングゲートウェイ装置またはターゲットサービングゲートウェイ装置に向けて転送する移動通信方法であって、
     前記移動局のソース無線基地局からターゲット無線基地局への遷移に伴って、前記ターゲットサービングゲートウェイ装置及び前記ターゲット無線基地局を経由する下りデータ転送パスを、前記ターゲットサービングゲートウェイ装置とPDNゲートウェイ装置との間において設定するステップと、
     前記遷移に伴って、前記ソース無線基地局を管理する前記ソースサービングゲートウェイ装置から前記ターゲット無線基地局を管理する前記ターゲットサービングゲートウェイ装置にサービングゲートウェイ装置が切り替わる場合、前記PDNゲートウェイ装置が、前記ソース無線基地局を経由した前記下りデータの転送終了を意味するエンドマーカを、前記下りデータ転送パスの設定に応じて、前記ソースサービングゲートウェイ装置に送信するステップと、
     前記ソースサービングゲートウェイ装置が、前記PDNゲートウェイ装置から受信した前記エンドマーカを前記ソース無線基地局に転送するステップと
    を含む移動通信方法。
  8.  移動局宛ての下りデータをソースサービングゲートウェイ装置またはターゲットサービングゲートウェイ装置に向けて転送する移動通信方法であって、
     前記移動局のソース無線基地局からターゲット無線基地局への遷移に伴って、前記ターゲットサービングゲートウェイ装置及び前記ターゲット無線基地局を経由する下りデータ転送パスを、前記ターゲットサービングゲートウェイ装置とPDNゲートウェイ装置との間において設定するステップと、
     前記遷移に伴って、前記ソース無線基地局を管理する前記ソースサービングゲートウェイ装置から前記ターゲット無線基地局を管理する前記ターゲットサービングゲートウェイ装置にサービングゲートウェイ装置が切り替わる場合、前記PDNゲートウェイ装置が、前記ソース無線基地局を経由した前記下りデータの転送終了を意味するエンドマーカの送信指示を、前記下りデータ転送パスの設定に応じて、前記ソースサービングゲートウェイ装置に送信するステップと、
     前記ソースサービングゲートウェイ装置が、前記PDNゲートウェイ装置から受信した前記送信指示に基づいて、前記エンドマーカを前記ソース無線基地局に転送するステップと
    を含む移動通信方法。
PCT/JP2014/058860 2013-03-29 2014-03-27 Pdnゲートウェイ装置及び移動通信方法 WO2014157518A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/781,178 US20160127959A1 (en) 2013-03-29 2014-03-27 Pdn gateway device and mobile communication method
CN201480018931.2A CN105075330A (zh) 2013-03-29 2014-03-27 Pdn网关装置以及移动通信方法
EP14776284.3A EP2981133A4 (en) 2013-03-29 2014-03-27 DEVICE FORMING PDN GATEWAY AND METHOD FOR MOBILE COMMUNICATIONS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013074001A JP2014199980A (ja) 2013-03-29 2013-03-29 Pdnゲートウェイ装置及び移動通信方法
JP2013-074001 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014157518A1 true WO2014157518A1 (ja) 2014-10-02

Family

ID=51624479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058860 WO2014157518A1 (ja) 2013-03-29 2014-03-27 Pdnゲートウェイ装置及び移動通信方法

Country Status (5)

Country Link
US (1) US20160127959A1 (ja)
EP (1) EP2981133A4 (ja)
JP (1) JP2014199980A (ja)
CN (1) CN105075330A (ja)
WO (1) WO2014157518A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017141648A1 (ja) * 2016-02-17 2018-02-22 株式会社Nttドコモ ゲートウェイ変更方法
CN109565734A (zh) * 2016-08-17 2019-04-02 株式会社Ntt都科摩 通信控制装置及通信控制方法
CN110313195A (zh) * 2017-02-27 2019-10-08 华为技术有限公司 通信方法和装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9538563B2 (en) * 2014-10-13 2017-01-03 At&T Intellectual Property I, L.P. System and methods for managing a user data path
EP3466156B1 (en) 2016-06-06 2020-10-21 Nokia Solutions and Networks Oy Assisted distributed gateway selection
CN109565729B (zh) 2016-08-08 2021-02-02 诺基亚技术有限公司 用于5g与lte之间的移动性的端标记处理
CN112261696A (zh) 2016-11-04 2021-01-22 华为技术有限公司 发送结束标记的方法、设备和系统
WO2018165982A1 (zh) * 2017-03-17 2018-09-20 华为技术有限公司 一种发送结束标记的方法
WO2020200287A1 (en) * 2019-04-02 2020-10-08 Huawei Technologies Co., Ltd. Method, apparatus and systems for supporting packet delivery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182802A (ja) * 2009-03-27 2012-09-20 Sharp Corp 移動端末装置、外部ゲートウェイ装置及び通信方法
JP2013038806A (ja) * 2008-07-16 2013-02-21 Huawei Technologies Co Ltd トンネル管理方法、トンネル管理装置および通信システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050265284A1 (en) * 2003-10-10 2005-12-01 Hsu Liangchi Alan Apparatus, and associated method, for facilitating communication handoff in multiple-network radio communication system
US8483174B2 (en) * 2007-04-20 2013-07-09 Qualcomm Incorporated Method and apparatus for providing gateway relocation
WO2009157171A1 (ja) * 2008-06-24 2009-12-30 パナソニック株式会社 ハンドオーバ処理方法、その方法で用いられる移動端末及び接続管理装置
US9596634B2 (en) * 2008-12-19 2017-03-14 Telefonaktiebolaget Lm Ericsson (Publ) Assist reordering of downlink data at serving GW relocation
EP2380392A1 (en) * 2008-12-19 2011-10-26 Telefonaktiebolaget LM Ericsson (publ) Method and entity for conveying data units
WO2011002244A2 (en) * 2009-07-02 2011-01-06 Lg Electronics Inc. A method to facilitate user equipment (ue) handoff within a packet data communication system
CN102763460A (zh) * 2009-10-06 2012-10-31 北方电讯网络有限公司 用于移动接入网关间隧道传输以进行快速切换过渡的系统和协议
WO2011052136A1 (en) * 2009-10-30 2011-05-05 Panasonic Corporation Communication system and apparatus for status dependent mobile services
EP2532142A1 (en) * 2010-02-01 2012-12-12 Telefonaktiebolaget LM Ericsson (publ) Caching in mobile networks
US8982838B2 (en) * 2011-02-11 2015-03-17 Lg Electronics Inc. Method for processing data associated with handover in a wireless network
US8861475B2 (en) * 2011-05-19 2014-10-14 Telefonaktiebolaget L M Ericsson (Publ) Inter-RAT handover control using sequence numbers
EP2944110B1 (en) * 2013-01-11 2019-07-24 LG Electronics Inc. Method for transmitting information in wireless communication system
US9521600B2 (en) * 2013-01-28 2016-12-13 Blackberry Limited Handover mechanism in cellular networks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013038806A (ja) * 2008-07-16 2013-02-21 Huawei Technologies Co Ltd トンネル管理方法、トンネル管理装置および通信システム
JP2012182802A (ja) * 2009-03-27 2012-09-20 Sharp Corp 移動端末装置、外部ゲートウェイ装置及び通信方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access (Release 9", 3GPP 23.401 V9.13, June 2012 (2012-06-01)
3RD GENERATION PARTNERSHIP PROJECT,: "(3GPP TS 36.300 V 10.9.0)Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN) ;Stage 2(Release 10)", December 2012 (2012-12-01), pages 65, XP055282581 *
CATT: "End marker during Handover procedure with Serving GW change", 3GPP TSG-SA WG2#67, 25 August 2008 (2008-08-25), pages 2 - 085423, XP050265831 *
HUAWEI: "Data Forwarding Resource Release", 3GPP TSG-RAN WG3 #63 R3-090169, 9 February 2009 (2009-02-09), XP050324946 *
See also references of EP2981133A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017141648A1 (ja) * 2016-02-17 2018-02-22 株式会社Nttドコモ ゲートウェイ変更方法
CN109565734A (zh) * 2016-08-17 2019-04-02 株式会社Ntt都科摩 通信控制装置及通信控制方法
CN109565734B (zh) * 2016-08-17 2022-01-25 株式会社Ntt都科摩 通信控制装置及通信控制方法
CN110313195A (zh) * 2017-02-27 2019-10-08 华为技术有限公司 通信方法和装置
US11159997B2 (en) 2017-02-27 2021-10-26 Huawei Technologies Co., Ltd. Communication method and apparatus

Also Published As

Publication number Publication date
EP2981133A1 (en) 2016-02-03
JP2014199980A (ja) 2014-10-23
CN105075330A (zh) 2015-11-18
EP2981133A4 (en) 2016-11-23
US20160127959A1 (en) 2016-05-05

Similar Documents

Publication Publication Date Title
WO2014157518A1 (ja) Pdnゲートウェイ装置及び移動通信方法
JP5039833B2 (ja) 無線通信ネットワークにおけるハンドオーバ方法及び機器
JP4834162B2 (ja) イントラE−UTranのハンドオーバのための方法及びシステム
KR102005591B1 (ko) 비어있는 gre 패킷들을 사용하는 3g lte 인트라-eutran 핸드오버 제어
JP5400222B2 (ja) ソースサービングゲートウェイとターゲットサービングゲートウェイとの間でパケットを転送するインターネットワーキング技術
CN105338655B (zh) 一种用户平面承载建立的方法及装置
US8391151B2 (en) Inter-network-nodes flow control
JP5538544B2 (ja) モビリティアンカーの移転
EP2394464B1 (en) Method and device for data processing in a mobile communication network
CN107211331B (zh) 用于在通信系统中配置断开连接的tcp连接的方法和装置、切换支持方法及其装置
CN106686572B (zh) 一种基于sdn的移动性管理的方法
CN109428818A (zh) 处理分组路由的装置及方法
AU2017424739A1 (en) Switching method, access network device and terminal device
WO2015188357A1 (zh) 一种控制承载切换的设备和控制方法
JP5655138B2 (ja) S1ハンドオーバ方法、s1ハンドオーバのデータ伝送方法及び移動通信システム
JP5710549B2 (ja) 順方向リンク及び逆方向リンクのサービングアクセスポイントの変更
WO2011113330A1 (zh) 一种业务通路切换方法及其装置
KR20160120052A (ko) 세그먼트 라우팅을 이용한 아이피 패킷 전송 방법 및 장치
JP2013229662A (ja) 移動体ipネットワークハンドオーバシステム、移動体パケット処理装置および地上パケット処理装置
WO2016082477A1 (zh) 一种网络切换方法及移动管理实体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018931.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14776284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14781178

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014776284

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014776284

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201506856

Country of ref document: ID