WO2014157289A1 - Metal-resin bonded body, and production method therefor - Google Patents

Metal-resin bonded body, and production method therefor Download PDF

Info

Publication number
WO2014157289A1
WO2014157289A1 PCT/JP2014/058435 JP2014058435W WO2014157289A1 WO 2014157289 A1 WO2014157289 A1 WO 2014157289A1 JP 2014058435 W JP2014058435 W JP 2014058435W WO 2014157289 A1 WO2014157289 A1 WO 2014157289A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
metal
oxygen
film
containing film
Prior art date
Application number
PCT/JP2014/058435
Other languages
French (fr)
Japanese (ja)
Inventor
正憲 遠藤
令子 高澤
みゆき 吉田
秀水 近藤
敦子 石田
三典 松島
亮太 高橋
Original Assignee
日本軽金属株式会社
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社, ポリプラスチックス株式会社 filed Critical 日本軽金属株式会社
Priority to KR1020157030218A priority Critical patent/KR102016783B1/en
Priority to JP2015508577A priority patent/JP6017675B2/en
Priority to CN201480017983.8A priority patent/CN105073375B/en
Publication of WO2014157289A1 publication Critical patent/WO2014157289A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/66Treatment of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts

Definitions

  • the present invention relates to a metal resin joined body in which a metal base material made of metal and a resin molded body made of a thermoplastic resin are integrally and firmly joined by injection molding or thermocompression bonding of a thermoplastic resin, and a method for manufacturing the same. .
  • the present inventors have already made an aluminum / resin injection integrated molded product in which an aluminum shaped body and a resin molded body are already locked together by a concave portion of an aluminum material and a fitting portion of a thermoplastic resin.
  • Patent Document 1 an aluminum alloy member excellent in resin bondability characterized by having a convex portion made of silicon crystal
  • Patent Document 2 an aluminum alloy member excellent in resin bondability characterized by having a convex portion made of silicon crystal
  • a technique for integrating an aluminum alloy material and a thermoplastic resin composition obtained through a pretreatment immersed in one or more aqueous solutions selected from ammonia, hydrazine, and a water-soluble amine compound by injection molding (Patent Documents 3 and 4), an aqueous solution of triazine dithiols, or a solution using various organic solvents as a solvent is used as an electrodeposition solution, and after the electrochemical surface treatment of the metal, the metal after the surface treatment (Patent Document 5) that joins rubber and plastic has been proposed. Further, an adhesive is applied on a metal plate, or an organic film is formed by surface treatment, and then injection molding is performed.
  • Technology for integrating metal and resin (Patent Document 6), or treating the surface of the metal with an acid or alkali and then treating with a silane coupling agent, followed by injection molding Techniques for joining the (Patent Document 7) have been proposed respectively.
  • Patent Document 8 a technique for injecting a thermoplastic resin onto the surface of a metal on which a microporous hydroxyl group-containing film is formed and integrating the metal and the thermoplastic resin through the film
  • Patent Document 9 polyarylene A technique
  • a metal terminal or the like is inserted and joined using a resin material mainly composed of a sulfide resin and a specific olefin copolymer and an inorganic filler blended therein.
  • Patent Document 1 and Patent Document 2 the present inventors have so far proposed a physical bonding mainly based on the fitting of the anchor effect, and a special treatment in which halogen ions are contained in the treatment bath as the technique.
  • a method by a simple etching process has been proposed. Although these methods have no problem in performance such as bonding strength and airtightness of the bonded portion, gas derived from halogen is generated during this etching process, and the surrounding metal parts and equipment are not corroded. There was another issue of having to take measures to prevent polluting the environment.
  • Patent Document 8 describes the anchor effect and chemical action of a porous hydroxyl group-containing film, and the effect of using a thermoplastic resin composition to which a thermoplastic elastomer is added.
  • Patent Document 9 discloses polyarylene sulfide resin. However, it is not clear about the effect on the bonding strength and adhesion by combining the metal surface treatment and the functional group of the resin composition. there were.
  • an oxygen-containing film containing oxygen is formed on the surface of a metal substrate by intentionally increasing the oxygen content.
  • an additive compound having a specific functional group that reacts with the oxygen-containing film is added to the thermoplastic resin composition.
  • an object of the present invention is to provide a metal-resin joint that exhibits excellent metal-resin bond strength and that does not cause a decrease in strength after a durability test and that can maintain excellent metal-resin bond strength over a long period of time. To provide a body.
  • the present invention includes a metal substrate made of metal, an oxygen-containing film containing oxygen formed by intentionally increasing the oxygen content on the surface of the metal substrate, and the oxygen-containing film.
  • the thermoplastic resin composition contains an additive compound having a functional group that reacts with an oxygen-containing film,
  • the additive compound is selected from the group consisting of carboxyl groups and salts thereof and esters thereof, epoxy groups, glycidyl groups, isocyanate groups, carbodiimide groups, amino groups and salts thereof, and acid anhydride groups and esters thereof.
  • thermoplastic resin composition contains an additive compound having a functional group that reacts with an oxygen-containing film, and the additive compound comprises a carboxyl group and a salt thereof and an ester thereof, an epoxy group, a glycidyl group, an isocyanate group, and a carbodiimide. It is a method for producing a gold resin joined body having at least one functional group selected from the group consisting of a group, an amino group and a salt thereof, and an acid anhydride group and an ester thereof.
  • the present invention relates to a film forming step of forming an oxygen-containing film by intentionally increasing the oxygen content on the surface of a metal substrate made of metal, and injection molding of a thermoplastic resin composition.
  • the resin molded body obtained in the resin molding step is formed by injection molding or thermocompression bonding on the resin-containing process for forming the molded body and the oxygen-containing film of the surface-treated metal base material obtained in the film forming process.
  • a metal resin bonding process for bonding It is a method for producing a metal resin joined body for producing a metal resin joined body in which a metal substrate and a resin molded body are joined through the oxygen-containing film,
  • the thermoplastic resin composition contains an additive compound having a functional group that reacts with an oxygen-containing film, and the additive compound comprises a carboxyl group and a salt thereof and an ester thereof, an epoxy group, a glycidyl group, an isocyanate group, and a carbodiimide. It is a method for producing a metal resin joined body having at least one functional group selected from the group consisting of a group, an amino group and a salt thereof, and an acid anhydride group and an ester thereof.
  • the metal base material used as a base is particularly limited, such as a copper base material made of copper or a copper alloy, an iron base material made of iron or an iron alloy, an aluminum base material made of aluminum or an aluminum alloy, or the like.
  • a copper base material made of copper or a copper alloy such as copper base material made of copper or a copper alloy, an iron base material made of iron or an iron alloy, an aluminum base material made of aluminum or an aluminum alloy, or the like.
  • it can be determined on the basis of various physical properties such as strength, corrosion resistance, and workability required for the use of the metal-resin bonded body formed by using the metal-resin bonded body.
  • the material and shape of the aluminum base material are not particularly limited as long as it is made of aluminum or an aluminum alloy, and the strength required for the use of the aluminum resin joined body formed using the aluminum base material. It can be determined based on various physical properties such as corrosion resistance and workability.
  • the oxygen-containing film formed on the surface of such a metal substrate is not particularly limited as long as the adhesion with the metal substrate is good, but the metal substrate is copper.
  • a substrate for example, an oxygen-containing film obtained by blackening treatment or an oxygen-containing film (thermal oxide film) obtained by laser treatment can be exemplified, and the metal substrate is iron-based.
  • a material for example, an oxygen-containing film derived from a zinc film obtained by galvanizing treatment can be mentioned.
  • the metal substrate is an aluminum substrate, a zinc ion-containing alkaline aqueous solution is used.
  • a zinc-containing film containing zinc element obtained by the film forming process used, a film forming process using hot water of 91 ° C. or higher and 100 ° C. or lower, or a film using hot water of 60 ° C. or higher and 90 ° C. or lower The hydrated oxide film obtained by the forming process It can be exemplified obtained oxide film or the like with a film forming process for performing laser processing on a surface of the aluminum substrate.
  • the surface of the aluminum base material is oxidized with zinc oxide (ZnO) and oxidized with the zinc element. It is only necessary to be able to form a coating containing zinc iron (ZnFeO), zinc oxide aluminum (ZnAlO), etc., and when molding a resin molded body by injection molding of a thermoplastic resin composition, this thermoplasticity By thermocompression bonding with a resin molded body obtained by molding the resin composition, a strong aluminum-resin bonding strength is achieved between the resin molded body formed on the oxygen-containing film.
  • the film-forming process using the zinc ion containing aqueous alkali solution preferably an alkali hydroxide (MOH) and zinc ion (Zn 2+) in a weight ratio (MOH / Zn 2+) ratio of 1 to 100 inclusive
  • a zinc ion-containing aqueous alkali solution that is preferably contained in a proportion of 2 or more and 20 or less, more preferably 3 or more and 10 or less
  • the zinc ion-containing alkaline aqueous solution is brought into contact with the surface of the aluminum substrate at room temperature, thereby producing A zinc-containing film containing oxygen is preferably formed on the surface of the substrate.
  • the alkali source in the zinc ion-containing alkaline aqueous solution preferably one or more selected from sodium hydroxide, potassium hydroxide, and lithium hydroxide is used, and this zinc ion-containing alkaline aqueous solution is used.
  • the zinc ion source is preferably at least one selected from zinc oxide, zinc hydroxide, zinc peroxide, zinc chloride, zinc sulfate, and zinc nitrate.
  • the alkali hydroxide concentration is 10 g / L or more and 1000 g / L or less, preferably 50 g / L or more and 300 g / L or less. It may be 1 g / L or more and 200 g / L or less, preferably 10 g / L or more and 100 g / L or less.
  • the composition of the aqueous solution containing zinc ions within the above range, aluminum and zinc ions cause a substitution reaction on the surface of the aluminum base material, aluminum is dissolved, and zinc ions are precipitated as fine particles, As a result, an oxygen-containing film (zinc-containing film) containing an oxygen element and a zinc element is formed on the surface of the aluminum substrate. That is, aluminum melts while forming a concave portion, and zinc is precipitated in the concave portion to form a zinc-containing film containing zinc element.
  • the alkali hydroxide concentration is less than 10 g / L, there is a problem that the formation of a zinc-containing film containing zinc element becomes insufficient.
  • the electrical conductivity is 0.01 mS / m or more and 20 mS / m or less, preferably 0.01 mS / m.
  • m hot water of not less than 10 mS / m and not less than 91 ° C. and not more than 100 ° C.
  • the aluminum substrate is usually immersed in this hot water for not less than 0.5 minutes and not more than 30 minutes, preferably not less than 1 minute and not more than 10 minutes.
  • a hydrated oxide film or hot water having an electrical conductivity of 0.01 mS / m to 20 mS / m, preferably 0.01 mS / m to 10 mS / m, and 60 ° C. to 90 ° C.
  • the aluminum substrate is usually immersed for 0.5 minutes to 30 minutes, preferably 1 minute to 10 minutes to form a hydrated oxide film.
  • the hot water or hot water used in the film forming treatment for forming the hydrated oxide film is pure water.
  • the electrical conductivity of hot water or hot water used in the film formation process for forming this hydrated oxide film is less than 0.01 mS / m, it will be in the region of ultrapure water, resulting in high production costs of pure water. On the other hand, when it exceeds 20 mS / m, the hydrated oxide film may not be formed, and the film formation rate becomes extremely slow, and the presence of impurities. There is also a problem that film defects of the hydrated film easily occur.
  • boehmite or pseudoboehmite (boehmite) or pseudoboehmite ( This is a film with a broad peak mainly composed of pseudoboehmite), and in the film formation treatment using hot water of 60 ° C. or more and 90 ° C. or less, the peak derived from the crystalline component is not mainly observed. It is a film mainly composed of (amorphous).
  • the X-ray diffraction measurement of the hydrated oxide film was performed by measuring 30 mm ⁇ from the surface-treated aluminum base material after the hydrated oxide film was formed as the oxygen-containing film on the surface of the aluminum base material by the film forming process.
  • a sample for measurement was prepared with a thickness of 30 mm, and this sample was fixed to a glass sample plate (sample part 24 mm square / penetration) of an X-ray diffraction apparatus [manufactured by Rigaku Corporation: RAD-rR].
  • Cu rotating anti-cathode target (used X-ray and wavelength: CuK ⁇ 1.5418 ⁇ ), X-ray output: 50 kV, 200 mA, detector: scintillation detector, optical system attributes: Bragg-Brentano optical system (concentration method), diverging slit 1 ° , Measured under conditions of a scattering slit of 1 ° and a light receiving slit of 0.3 mm, the contained components are identified, and then, among the peaks representing each detected phase, the peaks are high in intensity and derived from other components Integral diffraction strength for one non-overlapping peak To calculate the which it was sought.
  • the vicinity of the surface of the aluminum substrate is partially made of aluminum. Heating to above the melting temperature of the base material to oxidize and deposit aluminum oxide (Al 2 O 3 ) near the surface of the aluminum base material to form an oxygen-containing film containing this aluminum oxide (Al 2 O 3 )
  • a laser etching apparatus or the like can be used.
  • the surface-treated aluminum base material obtained by forming the oxygen-containing film on the surface of the aluminum base material in the above-described film forming step is measured by EPMA on the surface layer from the outermost surface to a depth of 3 ⁇ m.
  • the oxygen content is 0.1 to 50% by weight, preferably 1.0 to 30% by weight.
  • the coating is too thin to achieve sufficient aluminum-resin bonding strength between the aluminum base material and the resin molding.
  • the oxygen content is increased beyond 50% by weight, the film becomes too thick, causing film cohesive failure, and sufficient aluminum-resin bonding strength cannot be obtained. .
  • the thickness of the oxygen-containing film formed on the surface of the aluminum substrate in this film forming process is usually 0.06 ⁇ m or more and 2 ⁇ m or less, preferably 0.1 ⁇ m or more and 1 ⁇ m or less. Good. If the film thickness of the oxygen-containing film is less than 0.06 ⁇ m, the film may be too thin to obtain sufficient aluminum-resin bonding strength. Conversely, if the film thickness exceeds 2 ⁇ m, the film will be thick. Thus, cohesive failure of the film may occur, and sufficient aluminum-resin bonding strength may not be obtained.
  • the thickness of the hydrated oxide film formed on the surface of the aluminum base material by the film forming process using hot water of 91 ° C. or higher and 100 ° C. or lower is usually 0.1 ⁇ m or more and 1 ⁇ m or less.
  • the thickness is preferably 0.2 ⁇ m or more and 0.5 ⁇ m or less. If the film thickness of this oxygen-containing film is less than 0.1 ⁇ m, the film may be too thin to obtain sufficient aluminum-resin bonding strength. Conversely, if the film thickness exceeds 1 ⁇ m, the film will be thick. Thus, cohesive failure of the film may occur, and sufficient aluminum-resin bonding strength may not be obtained.
  • the thickness of the hydrated oxide film formed on the surface of the aluminum substrate by the film forming process using hot water of 60 ° C. or more and 90 ° C. or less is usually 0.1 ⁇ m or more and 1 ⁇ m or less.
  • the thickness is preferably 0.2 ⁇ m or more and 0.5 ⁇ m or less. If the film thickness of this oxygen-containing film is less than 0.1 ⁇ m, the film may be too thin to obtain sufficient aluminum-resin bonding strength. Conversely, if it exceeds 1 ⁇ m, the film will be thick. Thus, cohesive failure of the film may occur, and sufficient aluminum-resin bonding strength may not be obtained.
  • the resin molded body is integrated on the oxygen-containing film by injection molding of a thermoplastic resin composition.
  • the resin molding process for forming the resin molded body by injection molding of the thermoplastic resin composition, and the obtained resin molded body with the surface-treated aluminum base Aluminum that is integrally bonded by thermocompression using means such as laser welding, vibration welding, ultrasonic welding, hot press welding, hot plate welding, non-contact hot plate welding, or high frequency welding on the oxygen-containing film of the material.
  • An aluminum resin bonded body is manufactured by a resin bonding process.
  • the thermoplastic resin composition used in the above resin molding step specifically includes a sulfur element such as a polyarylene sulfide resin such as polyphenylene sulfide (PPS) or a sulfone resin.
  • a sulfur element such as a polyarylene sulfide resin such as polyphenylene sulfide (PPS) or a sulfone resin.
  • Resins such as polyester resins such as polybutylene terephthalate (PBT), resins containing oxygen atoms such as liquid crystal polymers, polycarbonate resins, polyacetal resins, polyether resins, polyphenylene ether resins, such as polyamide (PA) , ABS, polyimide, polyetherimide, and other resin compositions comprising a thermoplastic resin containing a nitrogen atom.
  • PA polyamide
  • ABS polyimide
  • polyetherimide polyetherimide
  • automotive parts that have a great need for metal-resin bonded bodies are particularly preferred in terms of heat resistance and rigidity.
  • PPS is used from the viewpoint of rigidity.
  • PBT liquid crystal polymer
  • engineering plastics such as polyacetal particularly preferred.
  • thermoplastic resin composition used in the resin molding step a resin composition containing an additive compound having a specific functional group that reacts with the oxygen-containing film is used.
  • the additive compound means a substance other than the thermoplastic resin constituting the thermoplastic resin composition, and is particularly limited as long as it is used by being added to the thermoplastic resin composition. It is not intended to be added for various purposes in consideration of the production of thermoplastic resin compositions, the moldability and processability of thermoplastic resin compositions, the properties of resin moldings obtained by molding thermoplastic resin compositions, etc.
  • Examples include various additives such as antioxidants, mold release agents, plasticizers, UV absorbers, heat stabilizers, antistatic agents, dyes, pigments, lubricants, silane coupling agents, fillers, and elastomers.
  • an elastomer is particularly preferable as the additive from the viewpoint of alleviating the distortion between the metal and the resin caused by the difference in linear expansion.
  • the additive compound includes a carboxyl group and a salt thereof and an ester thereof, an epoxy group, a glycidyl group, an isocyanate group, a carbodiimide group, an amino group and a salt thereof, and an acid anhydride group and an ester thereof.
  • a compound having at least one functional group selected from among them is preferable, and among them, a compound having a glycidyl group is particularly preferable.
  • the additive compound is preferably an olefin copolymer containing a structural unit derived from ⁇ -olefin and a structural unit derived from a glycidyl ester of an ⁇ , ⁇ -unsaturated acid, and is further a (meth) acrylic copolymer.
  • (meth) acrylic acid ester is also referred to as (meth) acrylate.
  • glycidyl (meth) acrylate is also referred to as glycidyl (meth) acrylate.
  • (meth) acrylic acid means both acrylic acid and methacrylic acid
  • (meth) acrylate” means both acrylate and methacrylate.
  • the ⁇ -olefin is not particularly limited, and examples thereof include ethylene, propylene, butylene and the like, and ethylene is particularly preferable.
  • the ⁇ -olefin can be used alone or in combination of two or more.
  • the additive compound contains a structural unit derived from ⁇ -olefin, flexibility is easily imparted to the resin molded body. By providing this flexibility, the resin molded body becomes soft, and excellent metal-resin bonding strength is exhibited, and strength reduction after a durability test is prevented, and excellent metal-resin bonding strength over a long period of time. Is easily maintained.
  • the glycidyl ester of ⁇ , ⁇ -unsaturated acid is not particularly limited and includes, for example, glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, and the like, and glycidyl methacrylate is particularly preferable.
  • the glycidyl ester of ⁇ , ⁇ -unsaturated acid can be used alone or in combination of two or more. When the additive compound contains a glycidyl ester of ⁇ , ⁇ -unsaturated acid, an effect of improving the bonding strength between the metal and the resin can be obtained.
  • the (meth) acrylic acid ester is not particularly limited.
  • methyl acrylate is particularly preferable.
  • the (meth) acrylic acid ester can be used alone or in combination of two or more.
  • the structural unit derived from (meth) acrylic acid ester contributes to the improvement of the bonding strength between the metal and the resin.
  • a coalescence can be manufactured by superposing
  • the copolymer can be obtained by performing copolymerization by a well-known radical polymerization reaction.
  • the type of the copolymer is not particularly limited.
  • the copolymer may be a random copolymer or a block copolymer.
  • An olefin-based graft copolymer in which polyacrylonitrile / styrene copolymer, butyl acrylate / styrene copolymer, or the like is chemically bonded in a branched or cross-linked structure may be used.
  • the olefin copolymer used in the present invention can contain structural units derived from other copolymer components as long as the effects of the present invention are not impaired.
  • the functional group of the additive compound is contained in the thermoplastic resin composition at a rate of 0.5 to 150 ⁇ mol / g, preferably 0.5 to 50 ⁇ mol / g, more preferably 2 to 25 ⁇ mol / g.
  • the ratio of the functional group in this thermoplastic resin composition is lower than 0.5 ⁇ mol / g, the metal-resin bonding strength tends to be lowered, and conversely if it is higher than 150 ⁇ mol / g, characteristics as a resin material, particularly fluidity It is not preferable because it tends to adversely affect mechanical strength such as tensile strength and bending strength, and rigidity.
  • the ratio of the functional group in the thermoplastic resin composition is as follows.
  • M molecular weight per functional group
  • the amount of the functional group is 1 / M (mol / g)
  • the additive compound is added to the thermoplastic resin composition in a proportion of 1% by mass
  • (1 / M) ⁇ (1/100 ) 1/100 M (mol / g)
  • the “molecular weight per functional group” M is 1 ⁇ 2 of the molecular weight Mw of the additive compound itself if the additive compound has a plurality of, for example, two functional groups.
  • an oxygen-containing film is formed on the entire surface of the metal base material to be a base, and resin molding is performed by injection molding only at a necessary portion of the obtained surface-treated metal base material or by thermocompression bonding.
  • the body may be joined, or in consideration of cost, an oxygen-containing film is formed only on a part of the surface of the metal substrate or only at a necessary portion, and the obtained surface-treated metal substrate is necessary. You may join a resin molding to a location by injection molding or thermocompression bonding.
  • the oxygen-containing film when forming the oxygen-containing film only on a part of the surface of the metal substrate or only necessary portions, the oxygen-containing film is masked after masking portions other than the part that forms the oxygen-containing film, for example, with a masking tape or the like.
  • a process for forming the mask may be performed, and then the masking tape or the like of the masked portion may be removed.
  • a pre-treatment of the surface of the metal substrate if necessary, as a pretreatment of the surface of the metal substrate, if necessary, a degreasing treatment, an etching treatment, a desmut treatment, and a rough surface. Any one type or two or more types of processing selected from a chemical conversion treatment, a chemical polishing treatment, and an electrolytic polishing treatment may be performed.
  • the degreasing process performed as said pre-processing it can carry out using the normal degreasing bath which consists of sodium hydroxide, sodium carbonate, sodium phosphate, surfactant, etc.
  • immersion temperature is usually 15
  • the immersion time is 1 minute or more and 10 minutes or less, preferably 3 minutes or more and 6 minutes or less.
  • an alkali aqueous solution such as sodium hydroxide or an acid aqueous solution such as a sulfuric acid-phosphoric acid mixed aqueous solution is usually used.
  • concentration of 20 g / L or more and 200 g / L or less is used, Preferably it is 50 g / L or more and 150 g / L or less, Immersion temperature 30 to 70 degreeC, Preferably it is 40 to 60 degreeC.
  • the immersion treatment may be performed under a treatment condition of not more than ° C. and a treatment time of 0.5 to 5 minutes, preferably 1 to 3 minutes.
  • the sulfuric acid concentration is 10 g / L or more and 500 g / L or less, preferably 30 g / L or more and 300 g / L or less
  • the phosphoric acid concentration is 10 g / L or more and 1200 g. / L or less, preferably 30 g / L or more and 500 g / L, immersion temperature 30 ° C. or more and 110 ° C. or less, preferably 55 ° C. or more and 75 ° C. or less, and immersion time 0.5 minutes or more and 15 minutes or less, preferably
  • the immersion treatment is preferably performed under a treatment condition of 1 minute or more and 6 minutes or less.
  • a desmut bath made of an aqueous nitric acid solution having a concentration of 1 to 30% is used, an immersion temperature of 15 ° C. to 55 ° C., preferably 25 ° C. to 40 ° C., and an immersion time of 1
  • the immersion treatment may be performed under a treatment condition of not less than 10 minutes and not more than 10 minutes, preferably not less than 3 minutes and not more than 6 minutes.
  • the roughening treatment performed as the pretreatment for example, after the pretreatment of the aluminum base material, in the treatment liquid mainly composed of ammonium acid fluoride (trade name: JCB-3712 manufactured by Nippon Sea Hey Chemical) The method etc. which are immersed in can be illustrated.
  • the treatment liquid mainly composed of ammonium acid fluoride (trade name: JCB-3712 manufactured by Nippon Sea Hey Chemical)
  • JCB-3712 manufactured by Nippon Sea Hey Chemical
  • the metal is an aluminum substrate
  • a plurality of surface-treated aluminum substrates having an oxygen-containing film are formed on the surface of the aluminum substrate, and some of the surface-treated aluminum substrates have a glycidyl group on the surface.
  • the PPS molded body was joined by injection molding of polyphenylene sulfide (PPS) having an aluminum PPS joined body.
  • PPS polyphenylene sulfide
  • For the remaining surface-treated aluminum substrate first, stearic acid is volatilized in an electric furnace maintained at 100 ° C., and the surface-treated aluminum substrate is exposed therein for 24 hours.
  • a stearic acid-treated aluminum base material having a monomolecular film of stearic acid, and a PPS molded body is joined to the surface of the stearic acid-treated aluminum base material by injection molding of PPS having a glycidyl group, thereby stearic acid-treated aluminum PPS joining.
  • the body The difference in bonding strength between the aluminum PPS bonded body and the stearic acid-treated aluminum PPS bonded body was measured. As a result, the bonding strength in the stearinized aluminum PPS bonded body is the bonding strength of the aluminum PPS bonded body. Compared with, it was clearly reduced.
  • Stearic acid has both a carboxyl group (COOH) which is a hydrophilic group and an alkyl group (C 17 H 35 ) which is a hydrophobic group, and has a property of forming a monomolecular film having a thickness of one molecule.
  • COOH carboxyl group
  • C 17 H 35 alkyl group
  • Stearic acid has both a carboxyl group (COOH) which is a hydrophilic group and an alkyl group (C 17 H 35 ) which is a hydrophobic group, and has a property of forming a monomolecular film having a thickness of one molecule.
  • COOH carboxyl group
  • C 17 H 35 alkyl group
  • the surface-treated aluminum base material before and after the stearic acid treatment was compared and examined by observing the surface, but no difference was found in the surface structure depending on the presence or absence of the stearic acid monomolecular film.
  • the contact angle was close to 180 °, and the droplet was almost spherical. This is a result of supporting that the alkyl group side of stearic acid is unevenly distributed on the outermost layer side of the aluminum base material.
  • the metal-resin bonded body of the present invention is a specific material in which the surface of a metal substrate is coated with an oxygen-containing film by intentionally increasing the oxygen content and reacts with the oxygen-containing film as a thermoplastic composition.
  • a resin composition containing an additive compound having a functional group of by injection molding of this thermoplastic resin composition, or by thermocompression bonding of a resin molded body obtained by injection molding of this thermoplastic resin composition It is obtained by joining a resin molded body on the oxygen-containing film on the surface of the metal substrate, and the metal substrate and the resin molded body are not only firmly bonded via the oxygen-containing film, but also for a long time. In addition, excellent metal-resin bonding strength can be maintained.
  • the method for producing a metal-resin joined body of the present invention in the film formation step of forming an oxygen-containing film by intentionally increasing the oxygen content on the surface of the metal substrate, gas generation, etc.
  • it can be operated at room temperature, has no problems with surrounding equipment and environment, is easy to operate and low cost, and can exhibit excellent metal-resin bonding strength over a long period of time.
  • the body can be manufactured.
  • FIG. 1 is an explanatory view for explaining a metal resin bonded body produced in Example 1 of the present invention.
  • FIG. 2 is an explanatory diagram for explaining a method for evaluating a bonding strength between a metal and a resin performed in Example 1 of the present invention.
  • the metal resin joined body of this invention and its manufacturing method are demonstrated concretely. 1.
  • the surface roughening treatment and the film formation treatment for forming the oxygen-containing film performed as pretreatment are as follows.
  • the aluminum substrate was immersed in an aqueous nitric acid solution adjusted to 30% by mass at room temperature for 0.5 minutes, and then 50 ° C. in an aqueous sodium hydroxide solution adjusted to 5% by mass, After dipping for 0.5 minutes and further dipping in an aqueous nitric acid solution adjusted to 30% by weight at room temperature for 0.5 minutes, the pretreated aluminum substrate was then adjusted to a concentration of 20% by weight.
  • a roughened aluminum base material was prepared by immersing in a treatment liquid (JCB-3712, manufactured by Nippon CB Chemical Co., Ltd.) containing adjusted acidic ammonium fluoride as a main component at a temperature of 40 ° C. for 10 minutes.
  • Treatment method A Formation of zinc-containing film
  • Zinc ion-containing aqueous solution of sodium of (NaOH-Zn 2+ solution) was prepared (20 g / L as Zn 2+) sodium hydroxide as a film-forming treatment agent concentration 100 g / L and the zinc oxide concentration 25 g / L.
  • the aluminum base material was immersed in this zinc ion-containing sodium aqueous solution for 1 minute at room temperature (Note: only in the case of Comparative Example 1 was immersed for 5 minutes), then washed with water, and an oxygen-containing film on the surface.
  • a surface-treated aluminum base material for testing in which a zinc-containing film containing zinc element was formed was produced.
  • Treatment method B formation of hydrated oxide film by hot water
  • a test in which an aluminum substrate was immersed in hot water (pure water) at 91 to 100 ° C. for 0.5 to 30 minutes to form a hydrated oxide film mainly composed of boehmite or pseudoboehmite as an oxygen-containing film on the surface.
  • a surface-treated aluminum substrate was prepared.
  • Treatment method C formation of hydrated oxide film by hot water
  • Treatment method D formation of oxide film by laser treatment
  • laser etching processing device name: Miyachi Technos / ML-7112A; laser wavelength: 1064 nm, spot diameter: 50-60 ⁇ m, oscillation mode: Q switch pulse, frequency: 10 kHz
  • pitch width is 50 ⁇ m intervals on the surface of aluminum substrate
  • PPS (1) PPS-based resin composition [trade name: DURAFIDE (registered trademark) RSF-10719 manufactured by Polyplastics Co., Ltd .; additive compounds a and b described later; and inorganic filler 50%.
  • PPS (2) PPS resin [trade name: Fortron KPS W203A manufactured by Kureha Co., Ltd.
  • the above aromatic polyester liquid crystal resin (LCP) is manufactured as follows. Using a reactor equipped with a stirrer, a distillation pipe, a gas introduction pipe, a discharge hole, etc., p-hydroxybenzoic acid 345 parts by weight (73 mol%), 6-hydroxy-2-naphthoic acid 175 parts by weight (27 mol%), 0.02 part by weight of potassium acetate and 350 parts by weight of acetic anhydride were charged into the reactor, and the reactor was sufficiently replaced with nitrogen. Then, the temperature was raised to 150 ° C. under normal pressure, and stirring was started. The mixture was stirred at 150 ° C. for 30 minutes, and the temperature was gradually raised, and acetic acid produced as a by-product was distilled off.
  • Additive compound in resin composition [Additive compound in resin composition]
  • Additive Compound a Glycidyl group-containing elastomer [trade name: Modiper A4300, manufactured by NOF Corporation]
  • Additive compound b Elastomer not containing functional group [Dow Chemical Japan Co., Ltd. trade name: Engage 8440]
  • Additive compound c Elastomer containing glycidyl group [trade name: Bondfast 7L, manufactured by Sumitomo Chemical Co., Ltd.]
  • Additive compound d isocyanate compound [Degussa Japan Co., Ltd.
  • Additive compound e Epoxy compound [Mitsubishi Chemical Corporation product name: Epicoat JER1004K]
  • Additive compound f Ester elastomer (trade name: NUC-6570, manufactured by Nihon Unicar Co., Ltd.)
  • Additive Compound g Dicyandiamide [Nippon Carbide Industries, Ltd., trade name: Dicyandiamide G]
  • Additive compound h Carbodiimide compound [Rhein Chemie Japan Co., Ltd. trade name: Stavacsol P400]
  • Additive compound i Glycidyl group-containing elastomer (trade name: Bond First E, manufactured by Sumitomo Chemical Co., Ltd.)
  • the “oxygen content” and “film thickness” of the oxygen-containing film formed on the surface of the aluminum substrate and the “film thickness of the aluminum resin joined body” are as follows: And measured. [Measurement of oxygen content of oxygen-containing film]
  • the surface-treated aluminum base material obtained in the manufacturing process of the aluminum resin joined body was subjected to mapping analysis using EPMA (manufactured by Shimadzu: EPMA 1610) and measuring 512 steps in the vertical and horizontal directions at an irradiation diameter of 40 ⁇ m / step.
  • the measurement area is 20.48 mm ⁇ 20.48 mm
  • the sampling time for one step is 20 ms
  • the acceleration voltage is 15 kV
  • the resolution in the depth direction of oxygen is 3 ⁇ m or less.
  • the detected oxygen intensity was calculated as a weight percentage (wt%) from a calibration curve prepared in advance.
  • the calibration curve used was calculated and prepared from two points: the oxygen intensity of the Al 2 O 3 standard sample (oxygen content: 48 wt%) and the oxygen intensity of the high-purity Al foil.
  • the aluminum resin bonded body and the surface-treated aluminum base material obtained in the manufacturing process of the aluminum resin bonded body are each focused on the sample surface using a type focused ion beam processing apparatus (manufactured by FEI: Quanta 3D type).
  • the observation site was extracted by applying an ion beam to repel atoms on the surface and processed into a thin film having a thickness of about 100 nm to prepare an observation sample.
  • the observation was performed using a transmission electron microscope (TEM) (manufactured by FEI: Tecnai G2 F20 S-TWIN) under an acceleration voltage of 200 kV.
  • TEM transmission electron microscope
  • Example 1 Production of surface-treated aluminum substrate An aluminum substrate having a size of 50 mm x 25 mm was cut out from a commercially available aluminum plate (A5052; plate thickness 2.0 mm). Next, the surface-treated aluminum base material for the test by which the oxygen-containing film
  • thermoplastic resin composition As the thermoplastic resin composition, a PPS resin composition [PPS (1)] containing additive compound a and additive compound b shown in Table 1 and 50% inorganic filler was used. .
  • This PPS resin composition [PPS (1)] is a resin composition having a melt viscosity of 230 Pa ⁇ s (310 ° C., 1000 s ⁇ 1 ).
  • Example 2 to 47 The aluminum substrate, the film formation treatment of the oxygen-containing film, the oxygen-containing film, the resin composition, and the resin molding conditions are as shown in Tables 1 to 8, respectively. Went. In Example 29, a 30 wt% HNO 3 solution was used, and in Example 30, the electrical conductivity of hot water was adjusted to the values shown in Table 5 using 0.1 M NaOH water.
  • Example 3 4, 12 to 14, 18, 23, 24, 29 to 34, 42, 43, 45, and 46, the same PPS resin composition [PPS (1)] as in Example 1 was used. Using. In Example 2 using PPS resin [PPS (2)], 40% by mass of a glass-based filler was added to the resin composition, and Examples 5 to 9 using PBT were used. 15 to 17, 19 to 22, 25 to 28, 35, 36, 44, and 47, and Examples 10 and 11 using PP, 30% by mass of glass-based filler was added to the resin composition. Furthermore, in Examples 37 to 40 using POM, 25% by mass of glass-based filler is added, and in Example 41 using LCP, 50% by mass of glass is added. System filler material is added.
  • Example 3 (Cool thermal shock test) Using a thermal shock tester (manufactured by ESPEC Corporation), a thermal shock test is performed under predetermined cycle conditions, taken out after 100 cycles, and a joint strength evaluation test is performed in the same manner as in Example 1 to evaluate durability. did.
  • the cycle conditions are as follows. In Example 3, after heating at 160 ° C. for 1.5 hours, the temperature was lowered to ⁇ 40 ° C., cooled for 1.5 hours, and then heated to 160 ° C. again. In Example 27, after heating at 140 ° C. for 1.5 hours, the heating-cooling process in which the temperature is lowered to ⁇ 40 ° C., cooled for 1.5 hours, and then heated again to 140 ° C. is 1 cycle. It was. The results are shown in Tables 1 to 8.
  • Comparative Examples 4 and 7 to 10 the same PPS resin composition [PPS (1)] as in Example 1 was used.
  • Comparative Examples 1, 11, 17, and 18 using PPS resin [PPS (2)] 40% by mass of a glass-based filler was added to the resin composition, and PBT was used.
  • Comparative Examples 2, 5, 12 and 16, and Comparative Examples 3, 6 and 15 using PP 30% by mass of a glass filler is added to the resin composition, and POM is used.
  • Comparative Example 13 25% by mass of the glass-based filler was added, and in Comparative Example 14 using LCP, 30% by mass of the glass-based filler was added.
  • Comparative Examples 4 to 6 the roughening treatment as the pretreatment and the film formation treatment (surface treatment) for forming the oxygen-containing film were not performed, and in Comparative Examples 9 and 10, the oxygen-containing film was formed.
  • An aluminum resin joined body was prepared in the same manner as in the above example except that an aluminum substrate was used without performing the film forming process (surface treatment) to be performed, and the joint strength was evaluated in the same manner as in Example 1. A test was conducted.
  • Comparative Examples 7 and 8 the electrical conductivity of hot water was adjusted to the values shown in Table 10 using 0.1 M NaOH water. The results are shown in Tables 9 to 11.
  • the metal resin bonded body of the present invention has excellent bonding strength before and after the durability test, it is suitably used for manufacturing various parts such as parts for various sensors for automobiles, parts for home appliances and parts for industrial equipment. Is possible.
  • SYMBOLS 1 Aluminum resin joined body, 2 ... Surface-treated aluminum base material, 3 ... PPS molded object (resin molded object), 4 ... Tip joint part, 5 ... Pin gate, 6 ... Jig, 7 ... Load.

Abstract

Provided is a metal-resin bonded body with which excellent bonding strength can be achieved, strength is not reduced after being subjected to a durability test, and excellent bonding strength can be maintained for a long time. This metal-resin bonded body is provided with: a metal base material: an oxygen-containing film which includes oxygen, and which is formed on a surface of the metal base material by being subjected to processing in which the oxygen content thereof is intentionally increased; and a resin moulded body which is bonded to a top of the oxygen-containing film, and which is formed using a thermoplastic resin composition including an additive compound having a specific functional group that reacts with the oxygen-containing film. The functional group in the additive compound is at least one selected from the group consisting of a carboxyl group and salts and esters thereof, an epoxy group, a glycidyl group, an isocyanate group, a carbodiimide group, an amino group and salts thereof, and an acid anhydride group and esters thereof.

Description

金属樹脂接合体及びその製造方法Metal-resin bonded body and manufacturing method thereof
 この発明は、金属からなる金属基材と熱可塑性樹脂製の樹脂成形体とが、熱可塑性樹脂の射出成形又は熱圧着により、一体的に強固に接合された金属樹脂接合体及びその製造方法に関する。 The present invention relates to a metal resin joined body in which a metal base material made of metal and a resin molded body made of a thermoplastic resin are integrally and firmly joined by injection molding or thermocompression bonding of a thermoplastic resin, and a method for manufacturing the same. .
 近年、自動車の各種センサー部品、家庭電化製品部品、産業機器部品等の分野では、放熱性や導電性が非常に高い銅又は銅合金からなる銅基材や、放熱性が高く、かつ、他金属と比較し、軽量なアルミニウム又はアルミニウム合金からなるアルミ基材と、絶縁性能が高く、軽量でしかも安価である熱可塑性樹脂製の樹脂成形体とを一体に接合した金属樹脂接合体が幅広く用いられるようになり、また、その用途が拡大している。 In recent years, in the fields of various sensor parts of automobiles, home appliance parts, industrial equipment parts, etc., copper base materials made of copper or copper alloy with extremely high heat dissipation and conductivity, heat dissipation, and other metals Compared to the above, a wide range of metal-resin joints are used in which an aluminum base material made of lightweight aluminum or an aluminum alloy and a resin molded body made of a thermoplastic resin, which has high insulation performance, is lightweight, and inexpensive, are integrally joined. In addition, its uses are expanding.
 そして、従来においては、このような異種材質である金属基材と樹脂成形体とを互いに一体的に接合した金属樹脂接合体としては、金属基材と樹脂成形体との間を接着剤により加圧下に接合したものが用いられていた。しかるに、昨今、工業的により好適な接合方法として、金属基材を射出成形用金型内にインサートし、このインサートされた金属基材の表面に向けて溶融した熱可塑性樹脂を射出し、熱可塑性樹脂の射出成形により樹脂成形体を成形する際に同時に金属基材と樹脂成形体との間を接合する方法が開発され、金属基材と樹脂成形体との間の接合をより安価に、また、接合強度をより向上させるための幾つかの方法が提案されている。そして、このような提案の多くは、金属基材の表面に適切な表面処理を施すというものである。 Conventionally, as a metal resin bonded body in which a metal base material and a resin molded body, which are different materials, are integrally bonded to each other, an adhesive is added between the metal base material and the resin molded body. What was joined under pressure was used. However, in recent years, as an industrially more suitable joining method, a metal base material is inserted into an injection mold, and a molten thermoplastic resin is injected toward the surface of the inserted metal base material, so that thermoplasticity is achieved. A method of joining a metal substrate and a resin molded body at the same time when molding a resin molded body by injection molding of resin has been developed. Several methods for improving the bonding strength have been proposed. And many of such proposals are to perform an appropriate surface treatment on the surface of the metal substrate.
 例えば、本発明者らは、既にアルミ材の凹状部と熱可塑性樹脂の嵌入部とによりアルミ形状体と樹脂成形体とが互いに係止されていることを特徴とするアルミ・樹脂射出一体成形品を提案し(特許文献1)、また、シリコン結晶からなる凸部を有することを特徴とする樹脂接合性に優れたアルミニウム合金部材を提案している(特許文献2)。 For example, the present inventors have already made an aluminum / resin injection integrated molded product in which an aluminum shaped body and a resin molded body are already locked together by a concave portion of an aluminum material and a fitting portion of a thermoplastic resin. (Patent Document 1) and an aluminum alloy member excellent in resin bondability characterized by having a convex portion made of silicon crystal (Patent Document 2).
 また、例えば、アンモニア、ヒドラジン、及び水溶性アミン化合物から選択される1種以上の水溶液に浸漬する前処理を経て得られたアルミニウム合金物と熱可塑性樹脂組成物とを射出成形によって一体化する技術(特許文献3、4)や、トリアジンジチオール類の水溶液、又は種々の有機溶剤を溶媒とした溶液を電着溶液として用い、金属の電気化学的表面処理を行った後、この表面処理後の金属とゴム又はプラスチックとを接合する技術(特許文献5)が提案されており、更には、金属板上に接着剤を塗布し、あるいは、表面処理して有機皮膜を形成し、その後に射出成形により金属と樹脂とを一体化する技術(特許文献6)や、金属の表面を酸又はアルカリで処理した後にシランカップリング剤で処理し、その後に射出成形により樹脂と接合させる技術(特許文献7)がそれぞれ提案されている。 In addition, for example, a technique for integrating an aluminum alloy material and a thermoplastic resin composition obtained through a pretreatment immersed in one or more aqueous solutions selected from ammonia, hydrazine, and a water-soluble amine compound by injection molding (Patent Documents 3 and 4), an aqueous solution of triazine dithiols, or a solution using various organic solvents as a solvent is used as an electrodeposition solution, and after the electrochemical surface treatment of the metal, the metal after the surface treatment (Patent Document 5) that joins rubber and plastic has been proposed. Further, an adhesive is applied on a metal plate, or an organic film is formed by surface treatment, and then injection molding is performed. Technology for integrating metal and resin (Patent Document 6), or treating the surface of the metal with an acid or alkali and then treating with a silane coupling agent, followed by injection molding Techniques for joining the (Patent Document 7) have been proposed respectively.
 更に、微多孔質の水酸基含有皮膜が形成された金属の表面に、熱可塑性樹脂を射出し、上記皮膜を介して金属と熱可塑性樹脂とを一体化する技術(特許文献8)や、ポリアリーレンサルファイド樹脂を主体とし、これに特定のオレフィン系共重合体及び無機充填剤を配合した樹脂材料を用いて金属端子等をインサートして接合させる技術(特許文献9)がそれぞれ提案されている。 Furthermore, a technique for injecting a thermoplastic resin onto the surface of a metal on which a microporous hydroxyl group-containing film is formed and integrating the metal and the thermoplastic resin through the film (Patent Document 8), or polyarylene A technique (Patent Document 9) has been proposed in which a metal terminal or the like is inserted and joined using a resin material mainly composed of a sulfide resin and a specific olefin copolymer and an inorganic filler blended therein.
WO2009-151,099号公報WO2009-151,099 publication 特開2010-174,372号公報JP 2010-174,372 特許第3,954,379号公報Japanese Patent No. 3,954,379 特許第4,270,444号公報Japanese Patent No. 4,270,444 特公平05-051,671号公報Japanese Patent Publication No. 05-051,671 特許3,016,331号公報Japanese Patent No. 3,016,331 特開2003-103,562号公報JP2003-103,562 特開2008-162,115号公報Japanese Patent Laid-Open No. 2008-162,115 特開平04-211,916号公報JP 04-211,916
 ここで、特許文献3、4に記載されたアンモニア、ヒドラジン、及び水溶性アミン化合物を利用した方法においては、処理後から射出成形までの時間に制限があるため、安定した表面状態を維持できる時間が短いという問題がある。また、特許文献5に記載の処理方法においては、処理が複雑であるという問題があり、また、特許文献6や7に記載された方法についても、工程の複雑さや処理コストが高いといった問題がある。 Here, in the methods using ammonia, hydrazine, and water-soluble amine compounds described in Patent Documents 3 and 4, there is a limit on the time from the treatment to the injection molding, so the time for maintaining a stable surface state There is a problem that is short. Further, the processing method described in Patent Document 5 has a problem that the processing is complicated, and the methods described in Patent Documents 6 and 7 have a problem that the process is complicated and the processing cost is high. .
 ところで、特許文献1や特許文献2に記載の通り、本発明者らは、これまでも主としてアンカー効果の嵌合に基づく物理的な接合を提案し、その手法として処理浴にハロゲンイオンを含む特殊なエッチング処理による方法を提案してきた。これらの方法は、接合強度や接合部分の気密性といった性能に問題はないものの、このエッチング処理中にハロゲンに由来するガスが発生し、周辺の金属部品や装置を腐食させず、また、周辺の環境を汚染させないための対策を講じなければならないという別の課題があった。 By the way, as described in Patent Document 1 and Patent Document 2, the present inventors have so far proposed a physical bonding mainly based on the fitting of the anchor effect, and a special treatment in which halogen ions are contained in the treatment bath as the technique. A method by a simple etching process has been proposed. Although these methods have no problem in performance such as bonding strength and airtightness of the bonded portion, gas derived from halogen is generated during this etching process, and the surrounding metal parts and equipment are not corroded. There was another issue of having to take measures to prevent polluting the environment.
 また、特許文献8に多孔質の水酸基含有皮膜のアンカー効果と化学的な作用と、熱可塑性エラストマーを添加した熱可塑性樹脂組成物を使用する効果が記載され、特許文献9にはポリアリーレンサルファイド樹脂にオレフィン系共重合体等を配合した樹脂材料と金属との密着性について記載されているが、金属の表面処理と樹脂組成物の官能基の組合せによる接合強度や密着性への効果ついては不明であった。 Patent Document 8 describes the anchor effect and chemical action of a porous hydroxyl group-containing film, and the effect of using a thermoplastic resin composition to which a thermoplastic elastomer is added. Patent Document 9 discloses polyarylene sulfide resin. However, it is not clear about the effect on the bonding strength and adhesion by combining the metal surface treatment and the functional group of the resin composition. there were.
 そこで、本発明者らは、金属基材と熱可塑性樹脂製の樹脂成形体との間を接合するに際し、周辺の設備や環境に問題がなく、簡単な操作かつ低コストで、しかも、長期に亘って優れた接合強度を達成し得る方法を開発すべく鋭意検討した結果、金属基材の表面に、意図的に酸素含有量を増やす処理を施すことにより酸素を含有する酸素含有皮膜を形成し、この酸素含有皮膜の上に熱可塑性樹脂組成物で形成された樹脂成形体を接合するに際し、この熱可塑性樹脂組成物中に酸素含有皮膜と反応する特定の官能基を有する添加剤化合物を添加することにより、金属基材と樹脂成形体との間の射出成形又は熱圧着による接合(金属-樹脂間接合)の際に、金属基材表面の酸素含有皮膜と樹脂成形体との間に長期に亘って強固な接合が形成されることを見出し、本発明を完成した。 Therefore, the present inventors have no problem with surrounding equipment and environment when joining between the metal substrate and the resin molded body made of thermoplastic resin, and are simple operation, low cost, and long-term. As a result of extensive studies to develop a method that can achieve excellent bonding strength, an oxygen-containing film containing oxygen is formed on the surface of a metal substrate by intentionally increasing the oxygen content. When joining a resin molded body formed of a thermoplastic resin composition on the oxygen-containing film, an additive compound having a specific functional group that reacts with the oxygen-containing film is added to the thermoplastic resin composition. By doing so, during the injection molding or thermocompression bonding (metal-resin bonding) between the metal substrate and the resin molded body, the oxygen-containing film on the surface of the metal substrate and the resin molded body for a long time. A strong bond is formed over Heading the door, and have completed the present invention.
 従って、本発明の目的は、優れた金属-樹脂間の接合強度を発現すると共に耐久試験後に強度低下を起こさず、長期に亘って優れた金属-樹脂間の接合強度を維持し得る金属樹脂接合体を提供することにある。 Accordingly, an object of the present invention is to provide a metal-resin joint that exhibits excellent metal-resin bond strength and that does not cause a decrease in strength after a durability test and that can maintain excellent metal-resin bond strength over a long period of time. To provide a body.
 すなわち、本発明は、金属からなる金属基材と、この金属基材の表面に、意図的に酸素含有量を増やす処理を施すことにより形成された酸素を含有する酸素含有皮膜と、この酸素含有皮膜の上に接合され、熱可塑性樹脂組成物で形成された樹脂成形体とを有し、
 前記熱可塑性樹脂組成物が、酸素含有皮膜と反応する官能基を有する添加剤化合物を含有し、
 前記添加剤化合物が、カルボキシル基及びその塩及びそのエステル、エポキシ基、グリシジル基、イソシアネート基、カルボジイミド基、アミノ基及びその塩、並びに、酸無水物基及びそのエステルからなる群の中から選ばれる少なくとも1種の官能基を有することを特徴とする金属樹脂接合体である。
That is, the present invention includes a metal substrate made of metal, an oxygen-containing film containing oxygen formed by intentionally increasing the oxygen content on the surface of the metal substrate, and the oxygen-containing film. A resin molded body joined on the film and formed of a thermoplastic resin composition;
The thermoplastic resin composition contains an additive compound having a functional group that reacts with an oxygen-containing film,
The additive compound is selected from the group consisting of carboxyl groups and salts thereof and esters thereof, epoxy groups, glycidyl groups, isocyanate groups, carbodiimide groups, amino groups and salts thereof, and acid anhydride groups and esters thereof. A metal-resin bonded body having at least one functional group.
 また、金属からなる金属基材の表面に、意図的に酸素含有量を増やす処理を施すことにより酸素含有皮膜を形成する皮膜形成工程と、この皮膜形成工程で得られた表面処理済金属基材の酸素含有皮膜の上に、熱可塑性樹脂組成物の射出成形により樹脂成形体を形成する樹脂成形工程とを有し、
 前記酸素含有皮膜を介して金属基材と樹脂成形体とが接合された金属樹脂接合体を製造する金属樹脂接合体の製造方法であり、
 前記熱可塑性樹脂組成物が、酸素含有皮膜と反応する官能基を有する添加剤化合物を含有し、前記添加剤化合物が、カルボキシル基及びその塩及びそのエステル、エポキシ基、グリシジル基、イソシアネート基、カルボジイミド基、アミノ基及びその塩、並びに、酸無水物基及びそのエステルからなる群の中から選ばれる少なくとも1種の官能基を有することを特徴とする金樹脂接合体の製造方法である。
Also, a film forming step for forming an oxygen-containing film by intentionally increasing the oxygen content on the surface of a metal base material made of metal, and a surface-treated metal substrate obtained in this film forming step A resin molding step of forming a resin molded body by injection molding of a thermoplastic resin composition on the oxygen-containing film of
It is a method for producing a metal resin joined body for producing a metal resin joined body in which a metal substrate and a resin molded body are joined through the oxygen-containing film,
The thermoplastic resin composition contains an additive compound having a functional group that reacts with an oxygen-containing film, and the additive compound comprises a carboxyl group and a salt thereof and an ester thereof, an epoxy group, a glycidyl group, an isocyanate group, and a carbodiimide. It is a method for producing a gold resin joined body having at least one functional group selected from the group consisting of a group, an amino group and a salt thereof, and an acid anhydride group and an ester thereof.
 更に、本発明は、金属からなる金属基材の表面に、意図的に酸素含有量を増やす処理を施すことにより酸素含有皮膜を形成する皮膜形成工程と、熱可塑性樹脂組成物の射出成形により樹脂成形体を形成する樹脂成形工程と、前記皮膜形成工程で得られた表面処理済金属基材の酸素含有皮膜の上に、前記樹脂成形工程で得られた樹脂成形体を射出成形又は熱圧着により接合する金属樹脂接合工程とを有し、
 前記酸素含有皮膜を介して金属基材と樹脂成形体とが接合された金属樹脂接合体を製造する金属樹脂接合体の製造方法であり、
 前記熱可塑性樹脂組成物が、酸素含有皮膜と反応する官能基を有する添加剤化合物を含有し、前記添加剤化合物が、カルボキシル基及びその塩及びそのエステル、エポキシ基、グリシジル基、イソシアネート基、カルボジイミド基、アミノ基及びその塩、並びに、酸無水物基及びそのエステルからなる群の中から選ばれる少なくとも1種の官能基を有することを特徴とする金属樹脂接合体の製造方法である。
Furthermore, the present invention relates to a film forming step of forming an oxygen-containing film by intentionally increasing the oxygen content on the surface of a metal substrate made of metal, and injection molding of a thermoplastic resin composition. The resin molded body obtained in the resin molding step is formed by injection molding or thermocompression bonding on the resin-containing process for forming the molded body and the oxygen-containing film of the surface-treated metal base material obtained in the film forming process. A metal resin bonding process for bonding,
It is a method for producing a metal resin joined body for producing a metal resin joined body in which a metal substrate and a resin molded body are joined through the oxygen-containing film,
The thermoplastic resin composition contains an additive compound having a functional group that reacts with an oxygen-containing film, and the additive compound comprises a carboxyl group and a salt thereof and an ester thereof, an epoxy group, a glycidyl group, an isocyanate group, and a carbodiimide. It is a method for producing a metal resin joined body having at least one functional group selected from the group consisting of a group, an amino group and a salt thereof, and an acid anhydride group and an ester thereof.
 本発明において、素地となる金属基材については、銅又は銅合金からなる銅基材や、鉄又は鉄合金からなる鉄基材や、アルミニウム又はアルミニウム合金からなるアルミ基材等、特には制限されるものではなく、これを用いて形成される金属樹脂接合体の用途やその用途に要求される強度、耐食性、加工性等の種々の物性に基づいて決めることができる。また、アルミ基材の材質や形状等についても、アルミニウム又はアルミニウム合金からなるものであれば特には制限されず、これを用いて形成されるアルミ樹脂接合体の用途やその用途に要求される強度、耐食性、加工性等の種々の物性に基づいて決めることができる。 In the present invention, the metal base material used as a base is particularly limited, such as a copper base material made of copper or a copper alloy, an iron base material made of iron or an iron alloy, an aluminum base material made of aluminum or an aluminum alloy, or the like. However, it can be determined on the basis of various physical properties such as strength, corrosion resistance, and workability required for the use of the metal-resin bonded body formed by using the metal-resin bonded body. The material and shape of the aluminum base material are not particularly limited as long as it is made of aluminum or an aluminum alloy, and the strength required for the use of the aluminum resin joined body formed using the aluminum base material. It can be determined based on various physical properties such as corrosion resistance and workability.
 また、このような金属基材の表面に皮膜形成工程で形成される酸素含有皮膜については、金属基材との密着性が良好であれば特に限定されるものではないが、金属基材が銅基材である場合には、例えば黒化処理で得られた酸素含有皮膜や、レーザー処理で得られた酸素含有皮膜(熱酸化皮膜)を例示することができ、また、金属基材が鉄基材である場合には、例えば亜鉛めっき処理で得られた亜鉛皮膜由来の酸素含有皮膜等を挙げることができ、更に、金属基材がアルミ基材である場合には、亜鉛イオン含有アルカリ水溶液を用いた皮膜形成処理で得られた亜鉛元素を含有する亜鉛含有皮膜や、91℃以上100℃以下の熱水を用いた皮膜形成処理で、又は、60℃以上90℃以下の温水を用いた皮膜形成処理で得られた水和酸化物皮膜や、アルミ基材の表面にレーザー処理を施す皮膜形成処理で得られた酸化物皮膜等を例示することができる。 Further, the oxygen-containing film formed on the surface of such a metal substrate is not particularly limited as long as the adhesion with the metal substrate is good, but the metal substrate is copper. In the case of a substrate, for example, an oxygen-containing film obtained by blackening treatment or an oxygen-containing film (thermal oxide film) obtained by laser treatment can be exemplified, and the metal substrate is iron-based. In the case of a material, for example, an oxygen-containing film derived from a zinc film obtained by galvanizing treatment can be mentioned. Furthermore, when the metal substrate is an aluminum substrate, a zinc ion-containing alkaline aqueous solution is used. A zinc-containing film containing zinc element obtained by the film forming process used, a film forming process using hot water of 91 ° C. or higher and 100 ° C. or lower, or a film using hot water of 60 ° C. or higher and 90 ° C. or lower The hydrated oxide film obtained by the forming process It can be exemplified obtained oxide film or the like with a film forming process for performing laser processing on a surface of the aluminum substrate.
 ここで、アルミ基材の表面に酸素含有皮膜として亜鉛元素を含有する亜鉛含有皮膜を形成するための皮膜形成処理については、アルミ基材の表面に亜鉛元素と共に酸素を酸化亜鉛(ZnO)、酸化亜鉛鉄(ZnFeO)、酸化亜鉛アルミ(ZnAlO)等の形で含有する皮膜を形成することができればよく、熱可塑性樹脂組成物の射出成形により樹脂成形体を成形する際に、あるいは、この熱可塑性樹脂組成物を成形して得られた樹脂成形体との熱圧着により、この酸素含有皮膜の上に形成される樹脂成形体との間に強固なアルミ-樹脂間の接合強度が達成される。 Here, regarding the film formation treatment for forming the zinc-containing film containing zinc element as the oxygen-containing film on the surface of the aluminum base material, the surface of the aluminum base material is oxidized with zinc oxide (ZnO) and oxidized with the zinc element. It is only necessary to be able to form a coating containing zinc iron (ZnFeO), zinc oxide aluminum (ZnAlO), etc., and when molding a resin molded body by injection molding of a thermoplastic resin composition, this thermoplasticity By thermocompression bonding with a resin molded body obtained by molding the resin composition, a strong aluminum-resin bonding strength is achieved between the resin molded body formed on the oxygen-containing film.
 そして、この亜鉛イオン含有アルカリ水溶液を用いる皮膜形成処理については、好ましくは、水酸化アルカリ(MOH)と亜鉛イオン(Zn2+)とを重量比(MOH/Zn2+)1以上100以下の割合、好ましくは2以上20以下の割合、より好ましくは3以上10以下の割合で含む亜鉛イオン含有アルカリ水溶液を用い、この亜鉛イオン含有アルカリ水溶液を常温でアルミ基材の表面に接触させることにより、アルミ基材の表面に酸素を含む亜鉛含有皮膜を形成するのがよい。この水酸化アルカリ(MOH)と亜鉛イオン(Zn2+)との重量比(MOH/Zn2+)が1より小さい(MOH<Zn2+)と、亜鉛が十分に溶解しないのでその効果が十分に発揮されず、反対に、100より大きい(MOH>100 Zn2+)と、亜鉛の置換析出よりもアルミ基材の溶解が速くなり、このアルミ基材の表面に亜鉛が析出し難くなる。 Then, the film-forming process using the zinc ion containing aqueous alkali solution, preferably an alkali hydroxide (MOH) and zinc ion (Zn 2+) in a weight ratio (MOH / Zn 2+) ratio of 1 to 100 inclusive By using a zinc ion-containing aqueous alkali solution that is preferably contained in a proportion of 2 or more and 20 or less, more preferably 3 or more and 10 or less, the zinc ion-containing alkaline aqueous solution is brought into contact with the surface of the aluminum substrate at room temperature, thereby producing A zinc-containing film containing oxygen is preferably formed on the surface of the substrate. If the weight ratio (MOH / Zn 2+ ) between the alkali hydroxide (MOH) and zinc ions (Zn 2+ ) is less than 1 (MOH <Zn 2+ ), the effect of the zinc is not sufficiently dissolved. On the other hand, if it is larger than 100 (MOH> 100 Zn 2+ ), the dissolution of the aluminum base becomes faster than the substitutional precipitation of zinc, and zinc does not easily precipitate on the surface of the aluminum base.
 ここで、亜鉛イオン含有アルカリ水溶液中のアルカリ源については、好ましくは水酸化ナトリウム、水酸化カリウム、及び水酸化リチウムから選ばれたいずれか1種以上が用いられ、また、この亜鉛イオン含有アルカリ水溶液中の亜鉛イオン源としては、好ましくは酸化亜鉛、水酸化亜鉛、過酸化亜鉛、塩化亜鉛、硫酸亜鉛、及び硝酸亜鉛から選ばれたいずれか1種以上が用いられる。 Here, with respect to the alkali source in the zinc ion-containing alkaline aqueous solution, preferably one or more selected from sodium hydroxide, potassium hydroxide, and lithium hydroxide is used, and this zinc ion-containing alkaline aqueous solution is used. The zinc ion source is preferably at least one selected from zinc oxide, zinc hydroxide, zinc peroxide, zinc chloride, zinc sulfate, and zinc nitrate.
 そして、この亜鉛イオン含有アルカリ水溶液において、水酸化アルカリ濃度については、10g/L以上1000g/L以下、好ましくは50g/L以上300g/L以下であるのがよく、また、亜鉛イオン濃度については、1g/L以上200g/L以下、好ましくは10g/L以上100g/L以下であるのがよい。亜鉛イオン含有アルカリ水溶液の組成を上記の範囲内にすることにより、アルミ基材の表面ではアルミニウムと亜鉛イオンとが置換反応を起こし、アルミニウムは溶解し、また、亜鉛イオンは微細粒として析出し、その結果としてアルミ基材の表面に酸素元素と亜鉛元素を含有する酸素含有皮膜(亜鉛含有皮膜)が形成される。すなわち、アルミニウムは凹部を形成しながら溶解し、この凹部内に亜鉛が析出し、亜鉛元素を含有する亜鉛含有皮膜が形成される。ここで、水酸化アルカリ濃度が10g/L未満では亜鉛元素を含有する亜鉛含有皮膜の形成が不十分になるという問題があり、反対に、1000g/Lを超えるとアルカリによるアルミの溶解速度が速く亜鉛元素を含有する亜鉛含有皮膜が形成されないという問題が生じる。また、亜鉛イオン濃度が1g/L未満では亜鉛含有皮膜の形成に時間がかかるという問題があり、反対に、200g/Lを超えると亜鉛析出速度が制御できず不均一な表面になるという問題が生じる。 In this zinc ion-containing aqueous alkali solution, the alkali hydroxide concentration is 10 g / L or more and 1000 g / L or less, preferably 50 g / L or more and 300 g / L or less. It may be 1 g / L or more and 200 g / L or less, preferably 10 g / L or more and 100 g / L or less. By making the composition of the aqueous solution containing zinc ions within the above range, aluminum and zinc ions cause a substitution reaction on the surface of the aluminum base material, aluminum is dissolved, and zinc ions are precipitated as fine particles, As a result, an oxygen-containing film (zinc-containing film) containing an oxygen element and a zinc element is formed on the surface of the aluminum substrate. That is, aluminum melts while forming a concave portion, and zinc is precipitated in the concave portion to form a zinc-containing film containing zinc element. Here, when the alkali hydroxide concentration is less than 10 g / L, there is a problem that the formation of a zinc-containing film containing zinc element becomes insufficient. On the other hand, when the alkali hydroxide concentration exceeds 1000 g / L, the dissolution rate of aluminum by alkali is high. There arises a problem that a zinc-containing film containing zinc element is not formed. In addition, when the zinc ion concentration is less than 1 g / L, there is a problem that it takes time to form a zinc-containing film. Conversely, when the zinc ion concentration exceeds 200 g / L, the zinc deposition rate cannot be controlled and the surface becomes uneven. Arise.
 また、アルミ基材の表面に酸素含有皮膜として水和酸化物皮膜を形成するための皮膜形成処理については、先ず、導電率が0.01mS/m以上20mS/m以下、好ましくは0.01mS/m以上10mS/m以下であって91℃以上100℃以下の熱水を用い、この熱水中にアルミ基材を通常0.5分以上30分以下、好ましくは1分以上10分以下浸漬して水和酸化物皮膜を形成するか、あるいは、導電率が0.01mS/m以上20mS/m以下、好ましくは0.01mS/m以上10mS/m以下であって60℃以上90℃以下の温水を用い、この熱水中にアルミ基材を通常0.5分以上30分以下、好ましくは1分以上10分以下浸漬して水和酸化物皮膜を形成する。この水和酸化物皮膜を形成するための皮膜形成処理に使用する熱水や温水は純水であるのが好ましい。この水和酸化物皮膜を形成するための皮膜形成処理に使用する熱水や温水の導電率が0.01mS/m未満であると、超純水の領域になるため,純水製造コストが高くなり過ぎて実用化や工業化が困難になり、反対に、20mS/mを超えると、水和酸化物皮膜が形成されないことがあるほか、皮膜形成速度が極端に遅くなり、また、不純物の存在により水和皮膜の皮膜欠陥が生じ易くなるという問題もある。 Regarding the film formation treatment for forming a hydrated oxide film as an oxygen-containing film on the surface of the aluminum substrate, first, the electrical conductivity is 0.01 mS / m or more and 20 mS / m or less, preferably 0.01 mS / m. m hot water of not less than 10 mS / m and not less than 91 ° C. and not more than 100 ° C. The aluminum substrate is usually immersed in this hot water for not less than 0.5 minutes and not more than 30 minutes, preferably not less than 1 minute and not more than 10 minutes. To form a hydrated oxide film, or hot water having an electrical conductivity of 0.01 mS / m to 20 mS / m, preferably 0.01 mS / m to 10 mS / m, and 60 ° C. to 90 ° C. In this hot water, the aluminum substrate is usually immersed for 0.5 minutes to 30 minutes, preferably 1 minute to 10 minutes to form a hydrated oxide film. It is preferable that the hot water or hot water used in the film forming treatment for forming the hydrated oxide film is pure water. If the electrical conductivity of hot water or hot water used in the film formation process for forming this hydrated oxide film is less than 0.01 mS / m, it will be in the region of ultrapure water, resulting in high production costs of pure water. On the other hand, when it exceeds 20 mS / m, the hydrated oxide film may not be formed, and the film formation rate becomes extremely slow, and the presence of impurities. There is also a problem that film defects of the hydrated film easily occur.
 このアルミ基材の表面に形成される水和酸化物皮膜について、X線回折により確認したところ、91℃以上100℃以下の熱水を用いた皮膜形成処理では、ベーマイト(boehmite)又は擬ベーマイト(pseudoboehmite)を主体としたブロードのピークが認められる皮膜であり、また、60℃以上90℃以下の温水を用いた皮膜形成処理では、結晶性成分に由来するピークが認められない主に非晶質(amorphous)を主体とした皮膜である。 The hydrated oxide film formed on the surface of the aluminum base material was confirmed by X-ray diffraction. As a result, it was confirmed that boehmite or pseudoboehmite (boehmite) or pseudoboehmite ( This is a film with a broad peak mainly composed of pseudoboehmite), and in the film formation treatment using hot water of 60 ° C. or more and 90 ° C. or less, the peak derived from the crystalline component is not mainly observed. It is a film mainly composed of (amorphous).
 なお、水和酸化物皮膜についてのX線回折の測定は、皮膜形成処理によりアルミ基材の表面に酸素含有皮膜として水和酸化物皮膜を形成した後の表面処理済みアルミ基材から、30mm×30mmにして測定用試料を作製し、この試料をX線回析装置〔(株)リガク社製:RAD-rR〕のガラス試料板(試料部24mm角・貫通)に固定し、X線源:Cu回転対陰極ターゲット(使用X線及び波長:CuKα 1.5418Å)、X線出力:50kV、200mA、検出器:シンチレーション検出器、光学系属性:Bragg-Brentano光学系(集中法)、発散スリット1°、散乱スリット1°、及び受光スリット0.3mmの条件で測定し、含有成分を同定し、次に、検出された各相を代表するピークのうち、強度が高くて他成分に由来するピークと重複しない1ピークについて、積分回析強度を算出して求めた。 The X-ray diffraction measurement of the hydrated oxide film was performed by measuring 30 mm × from the surface-treated aluminum base material after the hydrated oxide film was formed as the oxygen-containing film on the surface of the aluminum base material by the film forming process. A sample for measurement was prepared with a thickness of 30 mm, and this sample was fixed to a glass sample plate (sample part 24 mm square / penetration) of an X-ray diffraction apparatus [manufactured by Rigaku Corporation: RAD-rR]. Cu rotating anti-cathode target (used X-ray and wavelength: CuKα 1.5418Å), X-ray output: 50 kV, 200 mA, detector: scintillation detector, optical system attributes: Bragg-Brentano optical system (concentration method), diverging slit 1 ° , Measured under conditions of a scattering slit of 1 ° and a light receiving slit of 0.3 mm, the contained components are identified, and then, among the peaks representing each detected phase, the peaks are high in intensity and derived from other components Integral diffraction strength for one non-overlapping peak To calculate the which it was sought.
 更に、皮膜形成工程で行われるアルミ基材の表面に酸素含有皮膜として酸化物皮膜を形成するためのレーザー処理については、アルミ基材の表面付近を、好ましくは表面付近のみを部分的に、アルミ基材の溶融温度以上まで加熱して酸化し、アルミ基材の表面付近に酸化アルミニウム(Al2O3)を析出させてこの酸化アルミニウム(Al2O3)を含む酸素含有皮膜を形成することができればよく、例えばレーザーエッチング装置等を用いて行うことができる。 Furthermore, with respect to the laser treatment for forming an oxide film as an oxygen-containing film on the surface of the aluminum substrate performed in the film forming step, the vicinity of the surface of the aluminum substrate, preferably only the vicinity of the surface, is partially made of aluminum. Heating to above the melting temperature of the base material to oxidize and deposit aluminum oxide (Al 2 O 3 ) near the surface of the aluminum base material to form an oxygen-containing film containing this aluminum oxide (Al 2 O 3 ) For example, a laser etching apparatus or the like can be used.
 このようにして上記皮膜形成工程でアルミ基材の表面に酸素含有皮膜を形成して得られた表面処理済アルミ基材については、その最表面から3μmの深さまでの表層において、EPMAで測定される酸素含有率が0.1重量%以上50重量%以下、好ましくは1.0重量%以上30重量%以下であるのがよい。この表面処理済アルミ基材の表層における酸素含有率が0.1重量%より低いと、皮膜が薄過ぎてアルミ基材と樹脂成形体との間の十分なアルミ-樹脂間の接合強度を達成するのが困難になる場合があり、反対に、酸素含有率を50重量%を超えて高くすると、皮膜が厚過ぎて皮膜凝集破壊が生じ、充分なアルミ-樹脂間の接合強度が得られない。 The surface-treated aluminum base material obtained by forming the oxygen-containing film on the surface of the aluminum base material in the above-described film forming step is measured by EPMA on the surface layer from the outermost surface to a depth of 3 μm. The oxygen content is 0.1 to 50% by weight, preferably 1.0 to 30% by weight. When the oxygen content in the surface layer of this surface-treated aluminum base material is lower than 0.1% by weight, the coating is too thin to achieve sufficient aluminum-resin bonding strength between the aluminum base material and the resin molding. On the other hand, if the oxygen content is increased beyond 50% by weight, the film becomes too thick, causing film cohesive failure, and sufficient aluminum-resin bonding strength cannot be obtained. .
 また、この皮膜形成工程でアルミ基材の表面に形成された酸素含有皮膜の厚さについては、通常0.06μm以上2μm以下であるのがよく、好ましくは0.1μm以上1μm以下であるのがよい。この酸素含有皮膜の皮膜厚さが0.06μm未満であると、皮膜が薄すぎて充分なアルミ-樹脂間の接合強度が得られない場合があり、反対に、2μmを超えると、皮膜が厚過ぎて皮膜凝集破壊が生じ、充分なアルミ-樹脂間の接合強度が得られない場合がある。 In addition, the thickness of the oxygen-containing film formed on the surface of the aluminum substrate in this film forming process is usually 0.06 μm or more and 2 μm or less, preferably 0.1 μm or more and 1 μm or less. Good. If the film thickness of the oxygen-containing film is less than 0.06 μm, the film may be too thin to obtain sufficient aluminum-resin bonding strength. Conversely, if the film thickness exceeds 2 μm, the film will be thick. Thus, cohesive failure of the film may occur, and sufficient aluminum-resin bonding strength may not be obtained.
 そして、91℃以上100℃以下の熱水を用いた皮膜形成処理でアルミ基材の表面に形成された水和酸化物皮膜の厚さについては、通常0.1μm以上1μm以下であるのがよく、好ましくは0.2μm以上0.5μm以下であるのがよい。この酸素含有皮膜の皮膜厚さが0.1μm未満であると、皮膜が薄すぎて充分なアルミ-樹脂間の接合強度が得られない場合があり、反対に、1μmを超えると、皮膜が厚過ぎて皮膜凝集破壊が生じ、充分なアルミ-樹脂間の接合強度が得られない場合がある。 The thickness of the hydrated oxide film formed on the surface of the aluminum base material by the film forming process using hot water of 91 ° C. or higher and 100 ° C. or lower is usually 0.1 μm or more and 1 μm or less. The thickness is preferably 0.2 μm or more and 0.5 μm or less. If the film thickness of this oxygen-containing film is less than 0.1 μm, the film may be too thin to obtain sufficient aluminum-resin bonding strength. Conversely, if the film thickness exceeds 1 μm, the film will be thick. Thus, cohesive failure of the film may occur, and sufficient aluminum-resin bonding strength may not be obtained.
 また、60℃以上90℃以下の温水を用いた皮膜形成処理でアルミ基材の表面に形成された水和酸化物皮膜の厚さについては、通常0.1μm以上1μm以下であるのがよく、好ましくは0.2μm以上0.5μm以下であるのがよい。この酸素含有皮膜の皮膜厚さが0.1μm未満であると、皮膜が薄すぎて充分なアルミ-樹脂間の接合強度が得られない場合があり、反対に、1μmを超えると、皮膜が厚過ぎて皮膜凝集破壊が生じ、充分なアルミ-樹脂間の接合強度が得られない場合がある。 In addition, the thickness of the hydrated oxide film formed on the surface of the aluminum substrate by the film forming process using hot water of 60 ° C. or more and 90 ° C. or less is usually 0.1 μm or more and 1 μm or less. The thickness is preferably 0.2 μm or more and 0.5 μm or less. If the film thickness of this oxygen-containing film is less than 0.1 μm, the film may be too thin to obtain sufficient aluminum-resin bonding strength. Conversely, if it exceeds 1 μm, the film will be thick. Thus, cohesive failure of the film may occur, and sufficient aluminum-resin bonding strength may not be obtained.
 本発明において、上記皮膜形成工程で得られた表面に酸素含有皮膜を有する表面処理済アルミ基材については、その酸素含有皮膜の上に熱可塑性樹脂組成物の射出成形により樹脂成形体を一体的に接合する樹脂成形工程でアルミ樹脂接合体を製造するか、あるいは、熱可塑性樹脂組成物の射出成形により樹脂成形体を形成する樹脂成形工程と、得られた樹脂成形体を表面処理済アルミ基材の酸素含有皮膜の上にレーザー溶着、振動溶着、超音波溶着、ホットプレス溶着、熱板溶着、非接触熱板溶着、又は高周波溶着等の手段を用いた熱圧着により一体的に接合するアルミ樹脂接合工程とでアルミ樹脂接合体を製造する。 In the present invention, for the surface-treated aluminum base material having an oxygen-containing film on the surface obtained in the film forming step, the resin molded body is integrated on the oxygen-containing film by injection molding of a thermoplastic resin composition. The resin molding process for forming the resin molded body by injection molding of the thermoplastic resin composition, and the obtained resin molded body with the surface-treated aluminum base. Aluminum that is integrally bonded by thermocompression using means such as laser welding, vibration welding, ultrasonic welding, hot press welding, hot plate welding, non-contact hot plate welding, or high frequency welding on the oxygen-containing film of the material. An aluminum resin bonded body is manufactured by a resin bonding process.
 そして、本発明においては、上記の樹脂成形工程で用いる熱可塑性樹脂組成物として、具体的には、例えばポリフェニレンスルフィド(PPS)等のポリアリーレンスルフィド系樹脂やサルフォン系樹脂等の硫黄元素を含有する樹脂、例えばポリブチレンテレフタレート(PBT)等のポリエステル系樹脂や、液晶ポリマー、ポリカーボネート系樹脂、ポリアセタール系樹脂、ポリエーテル系樹脂、ポリフェニレンエーテル系樹脂等の酸素原子を含有する樹脂、例えばポリアミド(PA)、ABS、ポリイミド、ポリエーテルイミド等の窒素原子を含有する熱可塑性樹脂等からなる樹脂組成物が挙げられ、中でも、金属樹脂接合体のニーズが大きい自動車部品では耐熱性及び剛性の観点で、また、電機・電子部品では剛性の観点で、PPS、PBT、液晶ポリマー、ポリアセタール等のエンジニアリングプラスチックが特に好ましい。 In the present invention, the thermoplastic resin composition used in the above resin molding step specifically includes a sulfur element such as a polyarylene sulfide resin such as polyphenylene sulfide (PPS) or a sulfone resin. Resins such as polyester resins such as polybutylene terephthalate (PBT), resins containing oxygen atoms such as liquid crystal polymers, polycarbonate resins, polyacetal resins, polyether resins, polyphenylene ether resins, such as polyamide (PA) , ABS, polyimide, polyetherimide, and other resin compositions comprising a thermoplastic resin containing a nitrogen atom. Among them, automotive parts that have a great need for metal-resin bonded bodies are particularly preferred in terms of heat resistance and rigidity. In electrical and electronic parts, PPS is used from the viewpoint of rigidity. PBT, liquid crystal polymer, engineering plastics such as polyacetal particularly preferred.
 また、上記の樹脂成形工程で用いる熱可塑性樹脂組成物としては、酸素含有皮膜と反応する特定の官能基を有する添加剤化合物を含有する樹脂組成物が用いられる。ここで、前記添加剤化合物とは、熱可塑性樹脂組成物を構成する熱可塑性樹脂以外の物質をいい、また、熱可塑性樹脂組成物中に添加して用いられるものであれば、特に制限されるものではなく、熱可塑性樹脂組成物の製造、熱可塑性樹脂組成物の成形性及び加工性、熱可塑性樹脂組成物を成形して得られる樹脂成形体の特性等を考慮して様々な目的で添加される、例えば、酸化防止剤、離型剤、可塑剤、紫外線吸収剤、熱安定剤、帯電防止剤、染料、顔料、滑剤、シランカップリング剤、フィラー、エラストマー等の種々の添加剤を例示することができ、中でも、線膨張差に起因して発生する金属・樹脂間の歪みを緩和する観点から、添加剤としては特にエラストマーが好ましい。 In addition, as the thermoplastic resin composition used in the resin molding step, a resin composition containing an additive compound having a specific functional group that reacts with the oxygen-containing film is used. Here, the additive compound means a substance other than the thermoplastic resin constituting the thermoplastic resin composition, and is particularly limited as long as it is used by being added to the thermoplastic resin composition. It is not intended to be added for various purposes in consideration of the production of thermoplastic resin compositions, the moldability and processability of thermoplastic resin compositions, the properties of resin moldings obtained by molding thermoplastic resin compositions, etc. Examples include various additives such as antioxidants, mold release agents, plasticizers, UV absorbers, heat stabilizers, antistatic agents, dyes, pigments, lubricants, silane coupling agents, fillers, and elastomers. Among them, an elastomer is particularly preferable as the additive from the viewpoint of alleviating the distortion between the metal and the resin caused by the difference in linear expansion.
 ここで、前記添加剤化合物としては、カルボキシル基及びその塩及びそのエステル、エポキシ基、グリシジル基、イソシアネート基、カルボジイミド基、アミノ基及びその塩、並びに、酸無水物基及びそのエステルからなる群の中から選ばれる少なくとも1種の官能基を有する化合物であるのがよく、中でも、グリシジル基を有する化合物であることが特に好ましい。前記添加剤化合物としては、α-オレフィン由来の構成単位とα,β-不飽和酸のグリシジルエステル由来の構成単位とを含むオレフィン系共重合体であることが好ましく、また、更に(メタ)アクリル酸エステル由来の構成単位を含むオレフィン系共重合体であることがより好ましい。なお、以下、(メタ)アクリル酸エステルを(メタ)アクリレートともいう。例えば、(メタ)アクリル酸グリシジルエステルをグリシジル(メタ)アクリレートともいう。また、本明細書において、「(メタ)アクリル酸」は、アクリル酸とメタクリル酸との両方を意味し、「(メタ)アクリレート」は、アクリレートとメタクリレートとの両方を意味する。 Here, the additive compound includes a carboxyl group and a salt thereof and an ester thereof, an epoxy group, a glycidyl group, an isocyanate group, a carbodiimide group, an amino group and a salt thereof, and an acid anhydride group and an ester thereof. A compound having at least one functional group selected from among them is preferable, and among them, a compound having a glycidyl group is particularly preferable. The additive compound is preferably an olefin copolymer containing a structural unit derived from α-olefin and a structural unit derived from a glycidyl ester of an α, β-unsaturated acid, and is further a (meth) acrylic copolymer. It is more preferable that it is an olefin-type copolymer containing the structural unit derived from an acid ester. Hereinafter, (meth) acrylic acid ester is also referred to as (meth) acrylate. For example, glycidyl (meth) acrylate is also referred to as glycidyl (meth) acrylate. In the present specification, “(meth) acrylic acid” means both acrylic acid and methacrylic acid, and “(meth) acrylate” means both acrylate and methacrylate.
 α-オレフィンとしては、特に限定されず、例えば、エチレン、プロピレン、ブチレン等が挙げられ、特にエチレンが好ましい。α-オレフィンは、1種単独で使用することも、2種以上を併用することもできる。 The α-olefin is not particularly limited, and examples thereof include ethylene, propylene, butylene and the like, and ethylene is particularly preferable. The α-olefin can be used alone or in combination of two or more.
 前記添加剤化合物がα-オレフィン由来の構成単位を含むことで、樹脂成形体には可撓性が付与され易い。この可撓性の付与により、樹脂成形体が軟らかくなり、優れた金属-樹脂間の接合強度が発現すると共に耐久試験後の強度低下が防止され、長期に亘る優れた金属-樹脂間の接合強度が維持され易い。 When the additive compound contains a structural unit derived from α-olefin, flexibility is easily imparted to the resin molded body. By providing this flexibility, the resin molded body becomes soft, and excellent metal-resin bonding strength is exhibited, and strength reduction after a durability test is prevented, and excellent metal-resin bonding strength over a long period of time. Is easily maintained.
 α,β-不飽和酸のグリシジルエステルとしては、特に限定されず、例えば、アクリル酸グリシジルエステル、メタクリル酸グリシジルエステル、エタクリル酸グリシジルエステル等が挙げられ、特にメタクリル酸グリシジルエステルが好ましい。α,β-不飽和酸のグリシジルエステルは、1種単独で使用することも、2種以上を併用することもできる。前記添加剤化合物がα,β-不飽和酸のグリシジルエステルを含むことで、金属-樹脂間の接合強度が向上する効果が得られる。 The glycidyl ester of α, β-unsaturated acid is not particularly limited and includes, for example, glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, and the like, and glycidyl methacrylate is particularly preferable. The glycidyl ester of α, β-unsaturated acid can be used alone or in combination of two or more. When the additive compound contains a glycidyl ester of α, β-unsaturated acid, an effect of improving the bonding strength between the metal and the resin can be obtained.
 (メタ)アクリル酸エステルとしては、特に限定されず、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸-n-プロピル、アクリル酸イソプロピル、アクリル酸-n-ブチル、アクリル酸-n-ヘキシル、アクリル酸-n-オクチル等のアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸-n-プロピル、メタクリル酸イソプロピル、メタクリル酸-n-ブチル、メタクリル酸イソブチル、メタクリル酸-n-アミル、メタクリル酸-n-オクチル等のメタクリル酸エステルが挙げられる。中でも、特にアクリル酸メチルが好ましい。(メタ)アクリル酸エステルは、1種単独で使用することも、2種以上を併用することもできる。(メタ)アクリル酸エステル由来の構成単位は、金属-樹脂間の接合強度の向上に寄与する。 The (meth) acrylic acid ester is not particularly limited. For example, methyl acrylate, ethyl acrylate, acrylic acid-n-propyl, acrylic acid isopropyl, acrylic acid-n-butyl, acrylic acid-n-hexyl, acrylic Acrylic acid esters such as acid-n-octyl; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-amyl methacrylate, methacrylic acid and methacrylates such as -n-octyl. Of these, methyl acrylate is particularly preferable. The (meth) acrylic acid ester can be used alone or in combination of two or more. The structural unit derived from (meth) acrylic acid ester contributes to the improvement of the bonding strength between the metal and the resin.
 α-オレフィン由来の構成単位とα,β-不飽和酸のグリシジルエステル由来の構成単位とを含むオレフィン系共重合体、及び、更に(メタ)アクリル酸エステル由来の構成単位を含むオレフィン系共重合体は、従来公知の方法で重合することにより製造することができる。例えば、通常よく知られたラジカル重合反応により共重合を行うことによって、上記共重合体を得ることが出来る。共重合体の種類は特に問われず、例えば、ランダム共重合体であっても、ブロック共重合体であってもよい。また、このオレフィン系共重合体に、例えばポリメタアクリル酸メチル、ポリメタアクリル酸エチル、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸ブチル、ポリアクリル酸-2エチルヘキシル、ポリスチレン、ポリアクリロニトリル、ポリアクリロニトリル・スチレン共重合体、アクリル酸ブチル・スチレン共重合体等が、分岐状に又は架橋構造的に化学結合したオレフィン系グラフト共重合体であってもよい。 Olefin copolymer containing a structural unit derived from α-olefin and a structural unit derived from a glycidyl ester of α, β-unsaturated acid, and an olefin copolymer containing a structural unit derived from (meth) acrylic acid ester A coalescence can be manufactured by superposing | polymerizing by a conventionally well-known method. For example, the copolymer can be obtained by performing copolymerization by a well-known radical polymerization reaction. The type of the copolymer is not particularly limited. For example, the copolymer may be a random copolymer or a block copolymer. In addition, for example, polymethyl methacrylate, polymethacrylate ethyl, polymethyl acrylate, polyethyl acrylate, polybutyl acrylate, polyethyl acrylate-2-ethylhexyl, polystyrene, polyacrylonitrile, An olefin-based graft copolymer in which polyacrylonitrile / styrene copolymer, butyl acrylate / styrene copolymer, or the like is chemically bonded in a branched or cross-linked structure may be used.
 本発明に用いるオレフィン系共重合体は、本発明の効果を害さない範囲で、他の共重合成分由来の構成単位を含有することができる。 The olefin copolymer used in the present invention can contain structural units derived from other copolymer components as long as the effects of the present invention are not impaired.
 また、前記添加剤化合物の官能基については、熱可塑性樹脂組成物中に0.5~150μmol/g、好ましくは0.5~50μmol/g、更に好ましくは2~25μmol/gの割合で含有される。この熱可塑性樹脂組成物中における官能基の割合が0.5μmol/gより低いと金属-樹脂間の接合強度が低下し易く、反対に150μmol/gより高くなると樹脂材料としての特性、特に流動性、引張強度や曲げ強度等の機械的強度、及び剛性に悪影響を与え易いという点で好ましくない。 The functional group of the additive compound is contained in the thermoplastic resin composition at a rate of 0.5 to 150 μmol / g, preferably 0.5 to 50 μmol / g, more preferably 2 to 25 μmol / g. The If the ratio of the functional group in this thermoplastic resin composition is lower than 0.5 μmol / g, the metal-resin bonding strength tends to be lowered, and conversely if it is higher than 150 μmol / g, characteristics as a resin material, particularly fluidity It is not preferable because it tends to adversely affect mechanical strength such as tensile strength and bending strength, and rigidity.
 ここで、熱可塑性樹脂組成物中における官能基の割合は、この熱可塑性樹脂組成物中に添加する添加剤化合物における“官能基1個当りの分子量”をMとした場合、この添加剤化合物中の官能基の量は1/M(mol/g)となるので、この添加剤化合物を熱可塑性樹脂組成物中に例えば1質量%の割合で添加すると、(1/M)×(1/100)=1/100M(mol/g)と計算される。なお、前記“官能基1個当りの分子量”Mは、もし添加剤化合物が複数、例えば2個の官能基を有する場合には、添加剤化合物それ自体の分子量Mwの1/2になる。 Here, the ratio of the functional group in the thermoplastic resin composition is as follows. When “Molecular weight per functional group” in the additive compound added to the thermoplastic resin composition is M, Since the amount of the functional group is 1 / M (mol / g), for example, when this additive compound is added to the thermoplastic resin composition in a proportion of 1% by mass, (1 / M) × (1/100 ) = 1/100 M (mol / g). The “molecular weight per functional group” M is ½ of the molecular weight Mw of the additive compound itself if the additive compound has a plurality of, for example, two functional groups.
 また、本発明においては、素地となる金属基材の表面全体に酸素含有皮膜を形成し、得られた表面処理済金属基材の必要な個所にのみ射出成形により、又は、熱圧着により樹脂成形体を接合してもよく、あるいは、コスト性を考慮して、金属基材の表面の一部又は必要な個所のみに酸素含有皮膜を形成し、得られた表面処理済金属基材の必要な個所に射出成形により、又は、熱圧着により樹脂成形体を接合してもよい。そして、金属基材の表面の一部又は必要な個所のみに酸素含有皮膜を形成する際には、酸素含有皮膜を形成する部分以外の部分を、例えばマスキングテープ等でマスキングした後に酸素含有皮膜を形成するための処理を行い、次いでこのマスキングした部分のマスキングテープ等を除去すればよい。 Further, in the present invention, an oxygen-containing film is formed on the entire surface of the metal base material to be a base, and resin molding is performed by injection molding only at a necessary portion of the obtained surface-treated metal base material or by thermocompression bonding. The body may be joined, or in consideration of cost, an oxygen-containing film is formed only on a part of the surface of the metal substrate or only at a necessary portion, and the obtained surface-treated metal substrate is necessary. You may join a resin molding to a location by injection molding or thermocompression bonding. And, when forming the oxygen-containing film only on a part of the surface of the metal substrate or only necessary portions, the oxygen-containing film is masked after masking portions other than the part that forms the oxygen-containing film, for example, with a masking tape or the like. A process for forming the mask may be performed, and then the masking tape or the like of the masked portion may be removed.
 本発明における金属樹脂接合体の製造方法においては、必要により上記酸素含有皮膜を形成する皮膜形成工程に先駆けて、金属基材の表面の前処理として、脱脂処理、エッチング処理、デスマット処理、粗面化処理、化学研磨処理、及び電解研磨処理から選ばれたいずれか1種又は2種以上の処理を行ってもよい。 In the method for producing a metal-resin bonded body according to the present invention, a pre-treatment of the surface of the metal substrate, if necessary, as a pretreatment of the surface of the metal substrate, if necessary, a degreasing treatment, an etching treatment, a desmut treatment, and a rough surface. Any one type or two or more types of processing selected from a chemical conversion treatment, a chemical polishing treatment, and an electrolytic polishing treatment may be performed.
 上記前処理として行う脱脂処理については、水酸化ナトリウム、炭酸ナトリウム、リン酸ナトリウム、界面活性剤等からなる通常の脱脂浴を用いて行うことができ、処理条件としては、通常、浸漬温度が15℃以上55℃以下、好ましくは25℃以上40℃以下であって、浸漬時間が1分以上10分以下、好ましくは3分以上6分以下である。 About the degreasing process performed as said pre-processing, it can carry out using the normal degreasing bath which consists of sodium hydroxide, sodium carbonate, sodium phosphate, surfactant, etc. As immersion conditions, immersion temperature is usually 15 The immersion time is 1 minute or more and 10 minutes or less, preferably 3 minutes or more and 6 minutes or less.
 また、上記前処理として行うエッチング処理については、通常、水酸化ナトリウム等のアルカリ水溶液、又は、硫酸-リン酸混合水溶液等の酸水溶液が用いられる。そして、アルカリ水溶液を用いる場合には、濃度20g/L以上200g/L以下、好ましくは50g/L以上150g/L以下のものを用い、浸漬温度30℃以上70℃以下、好ましくは40℃以上60℃以下、及び処理時間0.5分以上5分以下、好ましくは1分以上3分以下の処理条件で浸漬処理を行うのがよい。また、酸水溶液である硫酸-リン酸混合水溶液を用いる場合には、硫酸濃度10g/L以上500g/L以下、好ましくは30g/L以上300g/L以下、及びリン酸濃が10g/L以上1200g/L以下、好ましくは30g/L以上500g/Lのものを用い、浸漬温度30℃以上110℃以下、好ましくは55℃以上75℃以下、及び浸漬時間0.5分以上15分以下、好ましくは1分以上6分以下の処理条件で浸漬処理を行うのがよい。 In addition, for the etching treatment performed as the pretreatment, an alkali aqueous solution such as sodium hydroxide or an acid aqueous solution such as a sulfuric acid-phosphoric acid mixed aqueous solution is usually used. And when using aqueous alkali solution, the density | concentration of 20 g / L or more and 200 g / L or less is used, Preferably it is 50 g / L or more and 150 g / L or less, Immersion temperature 30 to 70 degreeC, Preferably it is 40 to 60 degreeC. The immersion treatment may be performed under a treatment condition of not more than ° C. and a treatment time of 0.5 to 5 minutes, preferably 1 to 3 minutes. When a sulfuric acid-phosphoric acid mixed aqueous solution which is an acid aqueous solution is used, the sulfuric acid concentration is 10 g / L or more and 500 g / L or less, preferably 30 g / L or more and 300 g / L or less, and the phosphoric acid concentration is 10 g / L or more and 1200 g. / L or less, preferably 30 g / L or more and 500 g / L, immersion temperature 30 ° C. or more and 110 ° C. or less, preferably 55 ° C. or more and 75 ° C. or less, and immersion time 0.5 minutes or more and 15 minutes or less, preferably The immersion treatment is preferably performed under a treatment condition of 1 minute or more and 6 minutes or less.
 更に、上記前処理として行うデスマット処理については、例えば1~30%濃度の硝酸水溶液からなるデスマット浴を用い、浸漬温度15℃以上55℃以下、好ましくは25℃以上40℃以下、及び浸漬時間1分以上10分以下、好ましくは3分以上6分以下の処理条件で浸漬処理を行うのがよい。 Further, with respect to the desmut treatment performed as the pretreatment, for example, a desmut bath made of an aqueous nitric acid solution having a concentration of 1 to 30% is used, an immersion temperature of 15 ° C. to 55 ° C., preferably 25 ° C. to 40 ° C., and an immersion time of 1 The immersion treatment may be performed under a treatment condition of not less than 10 minutes and not more than 10 minutes, preferably not less than 3 minutes and not more than 6 minutes.
 更にまた、上記前処理として行う粗面化処理については、例えば、アルミ基材の前処理後に、酸性フッ化アンモニウムを主成分とする処理液(日本シーヒーケミカル製商品名:JCB-3712)中に浸漬する方法等を例示することができる。この処理により,Siを合金中に含むAl材についてもSiを残存させずに溶解除去することが可能となるため、その後に酸素含有皮膜を付けても欠陥等の問題が生じることがなく、良好な接合強度を得ることが可能となる。
 なお、上記前処理として行う化学研磨処理や電解研磨処理については、従来公知の方法を採用することができる。
Furthermore, with regard to the roughening treatment performed as the pretreatment, for example, after the pretreatment of the aluminum base material, in the treatment liquid mainly composed of ammonium acid fluoride (trade name: JCB-3712 manufactured by Nippon Sea Hey Chemical) The method etc. which are immersed in can be illustrated. By this treatment, it is possible to dissolve and remove the Al material containing Si in the alloy without leaving the Si, so that even if an oxygen-containing film is subsequently applied, no problems such as defects occur, and it is good. It is possible to obtain a high bonding strength.
In addition, a conventionally well-known method is employable about the chemical polishing process and electropolishing process performed as said pre-processing.
 本発明における金属基材と樹脂成形体との間の接合の原理については、未だ不明な点も多いが、金属基材と樹脂成形体との接合後に金属基材の表面に形成した酸素含有皮膜が破壊されずに残存しており、また、次のような検証結果から、概ね以下のように考えている。 The principle of bonding between the metal substrate and the resin molded body in the present invention is still unclear, but the oxygen-containing film formed on the surface of the metal substrate after bonding between the metal substrate and the resin molded body Remains without being destroyed, and from the following verification results, it is generally considered as follows.
 例えば、金属がアルミ基材の場合、アルミ基材の表面に酸素含有皮膜を有する複数の表面処理済アルミ基材を形成し、一部の表面処理済アルミ基材については、その表面にグリシジル基を有するポリフェニレンスルフィド(PPS)の射出成形によりPPS成形体を接合してアルミPPS接合体とした。また、残りの表面処理済アルミ基材については、先ず、100℃に保持した電気炉中でステアリン酸を揮発させ、その中に表面処理済アルミ基材を24時間暴露し、酸素含有皮膜の上にステアリン酸の単分子膜を有するステアリン酸処理済アルミ基材とし、このステアリン処理済アルミ基材の表面にグリシジル基を有するPPSの射出成形によりPPS成形体を接合してステアリン酸処理アルミPPS接合体とした。
 そして、これらアルミPPS接合体とステアリン酸処理アルミPPS接合体との間における接合強度の違いを測定したところ、結果は、ステアリン処理有アルミPPS接合体における接合強度は、アルミPPS接合体の接合強度に比べて、明確に低下していた。
For example, when the metal is an aluminum substrate, a plurality of surface-treated aluminum substrates having an oxygen-containing film are formed on the surface of the aluminum substrate, and some of the surface-treated aluminum substrates have a glycidyl group on the surface. The PPS molded body was joined by injection molding of polyphenylene sulfide (PPS) having an aluminum PPS joined body. For the remaining surface-treated aluminum substrate, first, stearic acid is volatilized in an electric furnace maintained at 100 ° C., and the surface-treated aluminum substrate is exposed therein for 24 hours. A stearic acid-treated aluminum base material having a monomolecular film of stearic acid, and a PPS molded body is joined to the surface of the stearic acid-treated aluminum base material by injection molding of PPS having a glycidyl group, thereby stearic acid-treated aluminum PPS joining. The body.
The difference in bonding strength between the aluminum PPS bonded body and the stearic acid-treated aluminum PPS bonded body was measured. As a result, the bonding strength in the stearinized aluminum PPS bonded body is the bonding strength of the aluminum PPS bonded body. Compared with, it was clearly reduced.
 ステアリン酸は親水基であるカルボキシル基(COOH)と疎水基であるアルキル基(C17H35)とを併せ持ち、1分子の厚みをもつ単分子膜を形成する性質がある。ステアリン酸処理アルミPPS接合体においては、そのアルミ基材の酸素含有皮膜とステアリン酸のカルボキシル基側が化学結合してしまい、アルキル基側がPPS成形体と接触するかたちとなるため、その結果として、アルミ基材とPPS成形体の化学結合が阻害され、アルミPPS接合体の接合強度に比べて接合強度が低下したものと考えられる。 Stearic acid has both a carboxyl group (COOH) which is a hydrophilic group and an alkyl group (C 17 H 35 ) which is a hydrophobic group, and has a property of forming a monomolecular film having a thickness of one molecule. In a stearic acid-treated aluminum PPS bonded body, the oxygen-containing film of the aluminum base and the carboxyl group side of stearic acid are chemically bonded, and the alkyl group side comes into contact with the PPS molded body. It is considered that the chemical bond between the base material and the PPS molded body is inhibited, and the bonding strength is lower than the bonding strength of the aluminum PPS bonded body.
 また、ステアリン酸処理前後の表面処理済アルミ基材について、その表面を観察して比較検討したが、ステアリン酸単分子膜の有無により表面の構造に違いは見られなかった。一方、ステアリン酸処理後の表面処理済アルミ基材について、液滴を垂らし、その接触角を測定すると、接触角は180°に近くなり、液滴はほぼ球形になった。このことは、ステアリン酸のアルキル基側がアルミ基材の最表層側に偏在していることを裏付ける結果である。 Further, the surface-treated aluminum base material before and after the stearic acid treatment was compared and examined by observing the surface, but no difference was found in the surface structure depending on the presence or absence of the stearic acid monomolecular film. On the other hand, when the surface-treated aluminum base material after the stearic acid treatment was dropped and the contact angle was measured, the contact angle was close to 180 °, and the droplet was almost spherical. This is a result of supporting that the alkyl group side of stearic acid is unevenly distributed on the outermost layer side of the aluminum base material.
 以上から、本発明の金属樹脂接合体における表面処理済金属基材とグリシジル基を有する樹脂成形体との間において、酸素含有皮膜の酸素と樹脂中のグリシジル基との間に化学的な結合が生じ、この化学的な結合による作用が金属基材と樹脂成形体との間の接合強度を高くする効果を発現しているものと考えられる。 From the above, between the surface-treated metal substrate in the metal resin bonded body of the present invention and the resin molded body having a glycidyl group, there is a chemical bond between oxygen of the oxygen-containing film and the glycidyl group in the resin. It is considered that this chemical bond action exerts an effect of increasing the bonding strength between the metal substrate and the resin molded body.
 本発明の金属樹脂接合体は、金属基材の表面を、意図的に酸素含有量を増やす処理を施すことにより酸素含有皮膜で被覆し、また、熱可塑性組成物として酸素含有皮膜と反応する特定の官能基を有する添加剤化合物を含有する樹脂組成物を用い、この熱可塑性樹脂組成物の射出成形により、又は、この熱可塑性樹脂組成物の射出成形で得られた樹脂成形体の熱圧着により、金属基材表面の酸素含有皮膜の上に樹脂成形体を接合して得られるものであり、酸素含有皮膜を介して金属基材と樹脂成形体とが強固に接合されるだけでなく、長期に亘って優れた金属-樹脂間の接合強度を維持し得るものである。 The metal-resin bonded body of the present invention is a specific material in which the surface of a metal substrate is coated with an oxygen-containing film by intentionally increasing the oxygen content and reacts with the oxygen-containing film as a thermoplastic composition. By using a resin composition containing an additive compound having a functional group of, by injection molding of this thermoplastic resin composition, or by thermocompression bonding of a resin molded body obtained by injection molding of this thermoplastic resin composition It is obtained by joining a resin molded body on the oxygen-containing film on the surface of the metal substrate, and the metal substrate and the resin molded body are not only firmly bonded via the oxygen-containing film, but also for a long time. In addition, excellent metal-resin bonding strength can be maintained.
 また、本発明の金属樹脂接合体の製造方法によれば、金属基材の表面に、意図的に酸素含有量を増やす処理を施すことにより酸素含有皮膜を形成する皮膜形成工程において、ガス発生等もないほか常温での操作も可能であり、周辺の設備や環境に問題がなく、簡単な操作かつ低コストで、長期に亘って優れた金属-樹脂間の接合強度を発揮し得る金属樹脂接合体を製造することができる。 Further, according to the method for producing a metal-resin joined body of the present invention, in the film formation step of forming an oxygen-containing film by intentionally increasing the oxygen content on the surface of the metal substrate, gas generation, etc. In addition, it can be operated at room temperature, has no problems with surrounding equipment and environment, is easy to operate and low cost, and can exhibit excellent metal-resin bonding strength over a long period of time. The body can be manufactured.
図1は、本発明の実施例1で作成された金属樹脂接合体を説明するための説明図である。FIG. 1 is an explanatory view for explaining a metal resin bonded body produced in Example 1 of the present invention. 図2は、本発明の実施例1で実施された金属-樹脂間の接合強度の評価試験の方法を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a method for evaluating a bonding strength between a metal and a resin performed in Example 1 of the present invention.
 以下、実施例及び比較例に基づいて、本発明の金属樹脂接合体及びその製造方法を具体的に説明する。
 1.以下の実施例及び比較例において、前処理として行われた粗面化処理及び酸素含有皮膜を形成する皮膜形成処理は以下の通りである。
Hereinafter, based on an Example and a comparative example, the metal resin joined body of this invention and its manufacturing method are demonstrated concretely.
1. In the following Examples and Comparative Examples, the surface roughening treatment and the film formation treatment for forming the oxygen-containing film performed as pretreatment are as follows.
〔粗面化処理〕
 先ず、前処理として、アルミ基材を、30質量%に調整した硝酸水溶液中に室温、0.5分間の条件で浸漬し、その後、5質量%に調整した水酸化ナトリウム水溶液中に50℃、0.5分間の条件で浸漬し、更に、30質量%に調整した硝酸水溶液中に室温、0.5分間の条件で浸漬した後、次いで、前処理後のアルミ基材を濃度20質量%に調整した酸性フッ化アンモニウムを主成分とする処理液(日本シービーケミカル製:JCB-3712)中に温度40℃、10分間の条件で浸漬し、粗面化処理済のアルミ基材を作製した。
(Roughening treatment)
First, as a pretreatment, the aluminum substrate was immersed in an aqueous nitric acid solution adjusted to 30% by mass at room temperature for 0.5 minutes, and then 50 ° C. in an aqueous sodium hydroxide solution adjusted to 5% by mass, After dipping for 0.5 minutes and further dipping in an aqueous nitric acid solution adjusted to 30% by weight at room temperature for 0.5 minutes, the pretreated aluminum substrate was then adjusted to a concentration of 20% by weight. A roughened aluminum base material was prepared by immersing in a treatment liquid (JCB-3712, manufactured by Nippon CB Chemical Co., Ltd.) containing adjusted acidic ammonium fluoride as a main component at a temperature of 40 ° C. for 10 minutes.
〔酸素含有皮膜の皮膜形成処理〕
 (1) 処理法A(亜鉛含有皮膜の形成)
 皮膜形成処理剤として水酸化ナトリウム濃度100g/L及び酸化亜鉛濃度25g/L(Zn2+として20g/L)の亜鉛イオン含有ナトリウム水溶液(NaOH-Zn2+溶液)を調製した。次に、この亜鉛イオン含有ナトリウム水溶液中にアルミ基材を室温下に1分間浸漬し(注:比較例1の場合のみ5分間の浸漬を行った。)、その後水洗し、表面に酸素含有皮膜として亜鉛元素を含有する亜鉛含有皮膜が形成された試験用の表面処理済アルミ基材を作製した。
[Film formation treatment of oxygen-containing film]
(1) Treatment method A (Formation of zinc-containing film)
Zinc ion-containing aqueous solution of sodium of (NaOH-Zn 2+ solution) was prepared (20 g / L as Zn 2+) sodium hydroxide as a film-forming treatment agent concentration 100 g / L and the zinc oxide concentration 25 g / L. Next, the aluminum base material was immersed in this zinc ion-containing sodium aqueous solution for 1 minute at room temperature (Note: only in the case of Comparative Example 1 was immersed for 5 minutes), then washed with water, and an oxygen-containing film on the surface. As a test, a surface-treated aluminum base material for testing in which a zinc-containing film containing zinc element was formed was produced.
 (2) 処理法B(熱水による水和酸化物皮膜の形成)
 アルミ基材を91~100℃の熱水(純水)中に0.5~30分間浸漬し、表面に酸素含有皮膜としてベーマイトあるいは擬ベーマイトを主体とする水和酸化物皮膜が形成された試験用の表面処理済アルミ基材を作製した。
(2) Treatment method B (formation of hydrated oxide film by hot water)
A test in which an aluminum substrate was immersed in hot water (pure water) at 91 to 100 ° C. for 0.5 to 30 minutes to form a hydrated oxide film mainly composed of boehmite or pseudoboehmite as an oxygen-containing film on the surface. A surface-treated aluminum substrate was prepared.
 (3) 処理法C(温水による水和酸化物皮膜の形成)
 温度60~80℃の温水(純水)を用い、浸漬時間を1~5分間に変更した以外は、処理法B(熱水による水和酸化物皮膜の形成)と同様にして、アルミ基材の表面に酸素含有皮膜として非晶質成分を主体とする水和酸化物皮膜が形成された試験用の表面処理済アルミ基材を作製した。
(3) Treatment method C (formation of hydrated oxide film by hot water)
Aluminum base material in the same manner as treatment method B (formation of hydrated oxide film with hot water) except that hot water (pure water) at a temperature of 60 to 80 ° C. was used and the immersion time was changed to 1 to 5 minutes. A surface-treated aluminum base material for testing, in which a hydrated oxide film mainly composed of an amorphous component was formed as an oxygen-containing film on the surface, was prepared.
 (4) 処理法D(レーザー処理による酸化物皮膜の形成)
 レーザーエッチング処理(装置名:ミヤチテクノス/ML-7112A;レーザー光波長:1064nm、スポット径:50~60μm、発振方式:Qスイッチパルス、周波数:10kHz)において、アルミ基材の表面にピッチ幅50μm間隔で同一方向にレーザー照射を行い、アルミ基材の表層に酸素含有皮膜として酸化物皮膜(Al2O3)が形成された試験用の表面処理済アルミ基材を作製した。
(4) Treatment method D (formation of oxide film by laser treatment)
In laser etching processing (device name: Miyachi Technos / ML-7112A; laser wavelength: 1064 nm, spot diameter: 50-60 μm, oscillation mode: Q switch pulse, frequency: 10 kHz), pitch width is 50 μm intervals on the surface of aluminum substrate Were subjected to laser irradiation in the same direction to produce a surface-treated aluminum base material for test in which an oxide film (Al 2 O 3 ) was formed as an oxygen-containing film on the surface of the aluminum base material.
 2.以下の実施例及び比較例において、使用された樹脂組成物中の樹脂種及び添加剤化合物は以下の通りである。
〔樹脂組成物中の樹脂種〕
 PPS(1):PPS系樹脂組成物〔ポリプラスチックス(株)製商品名:ジュラファイド(登録商標)RSF-10719;後述する添加剤化合物a及びbと、無機系充填材料50%を含む。〕
 PPS(2):PPS樹脂〔(株)クレハ製商品名:フォートロンKPS W203A{溶融粘度:30Pa・s(せん断速度:1216sec-1、310℃)}〕
 PBT:PBT樹脂〔ウィンテックポリマー(株)製商品名:TRB-CP〕
 PP:PP系樹脂組成物〔(株)プライムポリマー製商品名:R-350G〕
 POM:POM樹脂〔トリオキサン96.7質量%と1,3-ジオキソラン3.3質量%とを共重合させて得られたポリアセタール共重合体であり、メルトインデックス(190℃、荷重2160gで測定):9g/10min〕
 LCP:芳香族ポリエステル液晶樹脂〔融点:280℃、溶融粘度(300℃):50.1Pa・s〕
2. In the following Examples and Comparative Examples, the resin species and additive compounds in the resin compositions used are as follows.
[Resin species in the resin composition]
PPS (1): PPS-based resin composition [trade name: DURAFIDE (registered trademark) RSF-10719 manufactured by Polyplastics Co., Ltd .; additive compounds a and b described later; and inorganic filler 50%. ]
PPS (2): PPS resin [trade name: Fortron KPS W203A manufactured by Kureha Co., Ltd. {melt viscosity: 30 Pa · s (shear rate: 1216 sec −1 , 310 ° C.)}]
PBT: PBT resin [trade name: TRB-CP manufactured by Wintech Polymer Co., Ltd.]
PP: PP resin composition (trade name: R-350G, manufactured by Prime Polymer Co., Ltd.)
POM: POM resin (polyacetal copolymer obtained by copolymerizing 96.7% by mass of trioxane and 3.3% by mass of 1,3-dioxolane, melt index (measured at 190 ° C. and a load of 2160 g): 9g / 10min]
LCP: Aromatic polyester liquid crystal resin (melting point: 280 ° C, melt viscosity (300 ° C): 50.1 Pa · s)
 なお、上記の芳香族ポリエステル液晶樹脂(LCP)は、次のようにして製造されたものである。
 攪拌機、留出管、ガス導入管、排出孔等を備えた反応器を用い、p-ヒドロキシ安息香酸345重量部(73mol%)、6-ヒドロキシ-2-ナフトエ酸175重量部(27mol%)、酢酸カリウム0.02重量部、及び無水酢酸350重量部を反応器内に仕込み、この反応器内を十分に窒素で置換した後、常圧下で150℃まで温度を上げ、攪拌を開始した。150℃で30分攪拌し、更に徐々に温度を上昇させ、副生する酢酸を留去した。温度が300℃に達したところで徐々に反応器内を減圧し、5Torr(即ち、665Pa)の圧力で1時間攪拌を続け、目標の攪拌トルクに達した時点で、反応器下部の排出孔を開け、窒素圧を使って生成した樹脂をストランド状に押し出して取り出した。取り出されたストランドをペレタイザーで粒子状に成形した。
The above aromatic polyester liquid crystal resin (LCP) is manufactured as follows.
Using a reactor equipped with a stirrer, a distillation pipe, a gas introduction pipe, a discharge hole, etc., p-hydroxybenzoic acid 345 parts by weight (73 mol%), 6-hydroxy-2-naphthoic acid 175 parts by weight (27 mol%), 0.02 part by weight of potassium acetate and 350 parts by weight of acetic anhydride were charged into the reactor, and the reactor was sufficiently replaced with nitrogen. Then, the temperature was raised to 150 ° C. under normal pressure, and stirring was started. The mixture was stirred at 150 ° C. for 30 minutes, and the temperature was gradually raised, and acetic acid produced as a by-product was distilled off. When the temperature reaches 300 ° C, the pressure inside the reactor is gradually reduced, and stirring is continued for 1 hour at a pressure of 5 Torr (ie, 665 Pa). When the target stirring torque is reached, a discharge hole is opened at the bottom of the reactor. The resin produced using nitrogen pressure was extruded into a strand shape and taken out. The taken-out strand was shaped into particles with a pelletizer.
〔樹脂組成物中の添加剤化合物〕
 添加剤化合物a:グリシジル基含有エラストマー〔日油(株)製商品名:モディパーA4300〕
 添加剤化合物b:官能基を含有しないエラストマー〔ダウ・ケミカル日本(株)製商品名:Engage 8440〕
 添加剤化合物c:グリシジル基を含有するエラストマー〔住友化学(株)製商品名:ボンドファースト7L〕
 添加剤化合物d:イソシアネート化合物〔デグサジャパン(株)製商品名:Vestanat T1890/100〕
 添加剤化合物e:エポキシ系化合物〔三菱化学(株)製商品名:エピコート JER1004K〕
 添加剤化合物f:エステル系エラストマー〔日本ユニカー(株)製商品名:NUC-6570〕
 添加剤化合物g:ジシアンジアミド〔日本カーバイド工業(株)製商品名:ジシアンジアミドG〕
 添加剤化合物h:カルボジイミド化合物〔ラインケミージャパン(株)製商品名:スタバックゾールP400〕
 添加剤化合物i:グリシジル基含有エラストマー〔住友化学(株)製商品名:ボンドファーストE〕
[Additive compound in resin composition]
Additive Compound a: Glycidyl group-containing elastomer [trade name: Modiper A4300, manufactured by NOF Corporation]
Additive compound b: Elastomer not containing functional group [Dow Chemical Japan Co., Ltd. trade name: Engage 8440]
Additive compound c: Elastomer containing glycidyl group [trade name: Bondfast 7L, manufactured by Sumitomo Chemical Co., Ltd.]
Additive compound d: isocyanate compound [Degussa Japan Co., Ltd. product name: Vestanat T1890 / 100]
Additive compound e: Epoxy compound [Mitsubishi Chemical Corporation product name: Epicoat JER1004K]
Additive compound f: Ester elastomer (trade name: NUC-6570, manufactured by Nihon Unicar Co., Ltd.)
Additive Compound g: Dicyandiamide [Nippon Carbide Industries, Ltd., trade name: Dicyandiamide G]
Additive compound h: Carbodiimide compound [Rhein Chemie Japan Co., Ltd. trade name: Stavacsol P400]
Additive compound i: Glycidyl group-containing elastomer (trade name: Bond First E, manufactured by Sumitomo Chemical Co., Ltd.)
 3.以下の実施例及び比較例において、アルミ基材の表面に形成された酸素含有皮膜の「酸素含有率」及び「皮膜厚さ」と、「アルミ樹脂接合体の皮膜厚さ」は、以下のようにして測定した。
〔酸素含有皮膜の酸素含有率の測定〕
 アルミ樹脂接合体の製造過程で得られた表面処理済アルミ基材について、EPMA(島津製:EPMA 1610)を用い、照射径が40μm/stepで縦横方向にそれぞれ512step測定するマッピング分析を実施した。ここで、測定面積は20.48mm×20.48mmであり、1stepのサンプリングタイムは20msであって、加速電圧は15kVであり、酸素の深さ方向の分解能は3μm以下である。次に、検出された酸素強度を事前に作成した検量線から重量百分率(wt%)として算出した。なお、検量線は、Al2O3標準試料(酸素含有率:48wt%)の酸素強度と高純度Al箔の酸素強度の2点から算出し作成したものを使用した。
3. In the following examples and comparative examples, the “oxygen content” and “film thickness” of the oxygen-containing film formed on the surface of the aluminum substrate and the “film thickness of the aluminum resin joined body” are as follows: And measured.
[Measurement of oxygen content of oxygen-containing film]
The surface-treated aluminum base material obtained in the manufacturing process of the aluminum resin joined body was subjected to mapping analysis using EPMA (manufactured by Shimadzu: EPMA 1610) and measuring 512 steps in the vertical and horizontal directions at an irradiation diameter of 40 μm / step. Here, the measurement area is 20.48 mm × 20.48 mm, the sampling time for one step is 20 ms, the acceleration voltage is 15 kV, and the resolution in the depth direction of oxygen is 3 μm or less. Next, the detected oxygen intensity was calculated as a weight percentage (wt%) from a calibration curve prepared in advance. The calibration curve used was calculated and prepared from two points: the oxygen intensity of the Al 2 O 3 standard sample (oxygen content: 48 wt%) and the oxygen intensity of the high-purity Al foil.
〔酸素含有皮膜の皮膜厚さの測定〕
 アルミ樹脂接合体と、このアルミ樹脂接合体の製造過程で得られた表面処理済アルミ基材とについて、それぞれ、型集束イオンビーム加工装置(FEI社製:Quanta3D型)を用い、試料表面に集束イオンビームを当てて表面の原子をはじきとばすことにより観察部位を摘出すると共に、厚さ約100nmの薄膜状に加工して観察試料を作製した。観察は、透過電子顕微鏡(TEM)(FEI製:Tecnai G2 F20 S-TWIN)を用い、加速電圧200kVの条件で実施した。
[Measurement of film thickness of oxygen-containing film]
The aluminum resin bonded body and the surface-treated aluminum base material obtained in the manufacturing process of the aluminum resin bonded body are each focused on the sample surface using a type focused ion beam processing apparatus (manufactured by FEI: Quanta 3D type). The observation site was extracted by applying an ion beam to repel atoms on the surface and processed into a thin film having a thickness of about 100 nm to prepare an observation sample. The observation was performed using a transmission electron microscope (TEM) (manufactured by FEI: Tecnai G2 F20 S-TWIN) under an acceleration voltage of 200 kV.
〔実施例1〕
 (1) 表面処理済アルミ基材の作製
 市販のアルミニウム板材(A5052;板厚2.0mm)から50mm×25mmの大きさのアルミ基材を切り出した。次に、上記の処理法A(亜鉛含有皮膜の形成)により、表面に亜鉛元素を含有する酸素含有皮膜が形成された試験用の表面処理済アルミ基材を作製した。
 得られた表面処理済アルミ基材について、その酸素含有皮膜における酸素含有量測定、酸素強度測定、及び皮膜厚測定を行った。
 結果を表1に示す。
[Example 1]
(1) Production of surface-treated aluminum substrate An aluminum substrate having a size of 50 mm x 25 mm was cut out from a commercially available aluminum plate (A5052; plate thickness 2.0 mm). Next, the surface-treated aluminum base material for the test by which the oxygen-containing film | membrane containing a zinc element was formed in the surface by said processing method A (formation of a zinc containing film | membrane) was produced.
The obtained surface-treated aluminum base material was subjected to oxygen content measurement, oxygen strength measurement, and film thickness measurement in the oxygen-containing film.
The results are shown in Table 1.
 (2) 樹脂組成物
 熱可塑性樹脂組成物として、表1に示す添加剤化合物a及び添加剤化合物bと、無機系充填材料50%を含むPPS系樹脂組成物〔PPS(1)〕を用いた。このPPS系樹脂組成物〔PPS(1)〕は溶融粘度が230Pa・s(310℃、1000s-1)の樹脂組成物である。
(2) Resin composition As the thermoplastic resin composition, a PPS resin composition [PPS (1)] containing additive compound a and additive compound b shown in Table 1 and 50% inorganic filler was used. . This PPS resin composition [PPS (1)] is a resin composition having a melt viscosity of 230 Pa · s (310 ° C., 1000 s −1 ).
 (3) アルミ樹脂接合体の作製
 上で得られた樹脂組成物を射出成形機に導入後、試験用表面処理済アルミ基材射出成形機の金型内にセットし、金型温度160℃、シリンダー温度320℃、射出速度70mm/s、保圧80MPa、保圧時間5秒の射出成形条件で樹脂の射出成形を行い、図1に示す試験用のアルミ樹脂接合体1を作製した。
 このアルミ樹脂接合体1は、厚さ2mmの表面処理済アルミ基材2と、先端に5mm×5mm×10mmの大きさの先端接合部4を有すると共にこの先端接合部4以外の厚さが4mmのアルミ樹脂接合体1とが前記先端接合部4で接合されたもので、50mm2の接合部面積を有し、また、先端接合部4の部分には1.5mmφのピンゲート5が形成されている。
(3) Production of aluminum resin joined body After introducing the resin composition obtained above into an injection molding machine, it was set in a mold of a surface-treated aluminum base material injection molding machine for testing, and the mold temperature was 160 ° C. Resin injection molding was performed under injection molding conditions of a cylinder temperature of 320 ° C., an injection speed of 70 mm / s, a pressure holding pressure of 80 MPa, and a pressure holding time of 5 seconds, to produce the test aluminum resin joined body 1 shown in FIG.
This aluminum resin joined body 1 has a surface-treated aluminum substrate 2 having a thickness of 2 mm, a tip joint portion 4 having a size of 5 mm × 5 mm × 10 mm at the tip, and a thickness other than the tip joint 4 is 4 mm. The aluminum resin joined body 1 is joined at the tip joint 4 and has a joint area of 50 mm 2 , and a 1.5 mmφ pin gate 5 is formed in the tip joint 4 portion. Yes.
〔アルミ樹脂接合体の接合強度の評価試験〕
 このアルミ樹脂接合体1について、下記の方法でそのアルミ-樹脂間の接合強度の評価試験を行った。
 図2に示すように、アルミ樹脂接合体1の表面処理済アルミ基材2を冶具6に固定し、PPS成形体3の上端にその上方から1mm/minの速度で荷重7を印加し、表面処理済アルミ基材2と樹脂成形体3との間の接合部分を破壊する試験を実施した。その後、破断面のアルミ側について目視判断により樹脂凝集破壊率を判定した。
 結果を表1に示す。
[Evaluation test of bonding strength of aluminum resin bonded body]
This aluminum resin bonded body 1 was subjected to an evaluation test of the bonding strength between the aluminum and resin by the following method.
As shown in FIG. 2, the surface-treated aluminum base material 2 of the aluminum resin joined body 1 is fixed to the jig 6, and a load 7 is applied to the upper end of the PPS molded body 3 from above at a speed of 1 mm / min. The test which destroys the junction part between the processed aluminum base material 2 and the resin molding 3 was implemented. Thereafter, the resin cohesive failure rate was determined by visual judgment on the aluminum side of the fracture surface.
The results are shown in Table 1.
〔実施例2~47〕
 アルミ基材、酸素含有皮膜の皮膜形成処理、酸素含有皮膜、樹脂組成物、及び樹脂成形条件についてはそれぞれ表1~表8に示す通りであり、実施例1と同様にして接合強度の評価試験を行った。
 また、実施例29は30wt%HNO3溶液を用い、実施例30においては、0.1MのNaOH水を用いて熱水の導電率を表5に示す数値に調整した。
[Examples 2 to 47]
The aluminum substrate, the film formation treatment of the oxygen-containing film, the oxygen-containing film, the resin composition, and the resin molding conditions are as shown in Tables 1 to 8, respectively. Went.
In Example 29, a 30 wt% HNO 3 solution was used, and in Example 30, the electrical conductivity of hot water was adjusted to the values shown in Table 5 using 0.1 M NaOH water.
 なお、実施例3、4、12~14、18、23、24、29~34、42、43、45、及び46においては、実施例1と同じPPS系樹脂組成物〔PPS(1)〕を用いた。また、PPS樹脂〔PPS(2)〕を用いた実施例2においては、樹脂組成物中に40質量%のガラス系充填材料が添加されており、また、PBTを用いた実施例5~9、15~17、19~22、25~28、35、36、44、及び47、並びに、PPを用いた実施例10及び11においては、樹脂組成物中に30質量%のガラス系充填材料が添加されており、更に、POMを用いた実施例37~40においては、25質量%のガラス系充填材料が添加されており、更にまた、LCPを用いた実施例41においては、50質量%のガラス系充填材料が添加されている。 In Examples 3, 4, 12 to 14, 18, 23, 24, 29 to 34, 42, 43, 45, and 46, the same PPS resin composition [PPS (1)] as in Example 1 was used. Using. In Example 2 using PPS resin [PPS (2)], 40% by mass of a glass-based filler was added to the resin composition, and Examples 5 to 9 using PBT were used. 15 to 17, 19 to 22, 25 to 28, 35, 36, 44, and 47, and Examples 10 and 11 using PP, 30% by mass of glass-based filler was added to the resin composition. Furthermore, in Examples 37 to 40 using POM, 25% by mass of glass-based filler is added, and in Example 41 using LCP, 50% by mass of glass is added. System filler material is added.
 また、実施例3及び27においては、耐久性評価試験として、接合強度の評価試験に用いたアルミ-樹脂接合体と同様の試験片を用い、下記の冷熱衝撃試験を実施し、この冷熱衝撃試験後の接合強度を評価した。 In Examples 3 and 27, the following thermal shock test was performed as a durability evaluation test using the same test piece as the aluminum-resin bonded body used in the bonding strength evaluation test. The subsequent bonding strength was evaluated.
〔冷熱衝撃試験〕
 冷熱衝撃試験機(エスペック(株)製)を用い、所定のサイクル条件で冷熱衝撃試験を行い、100サイクル後に取り出して、実施例1と同様にして接合強度の評価試験を行い、耐久性を評価した。
 上記のサイクル条件は、実施例3では、160℃、1.5時間の加熱後に、-40℃に降温して1.5時間冷却し、その後再び160℃に昇温する加熱-冷却過程を1サイクルとし、また、実施例27では、140℃、1.5時間の加熱後に、-40℃に降温して1.5時間冷却し、その後再び140℃に昇温する加熱-冷却過程を1サイクルとした。
 結果を表1~表8に示す。
(Cool thermal shock test)
Using a thermal shock tester (manufactured by ESPEC Corporation), a thermal shock test is performed under predetermined cycle conditions, taken out after 100 cycles, and a joint strength evaluation test is performed in the same manner as in Example 1 to evaluate durability. did.
In the example 3, the cycle conditions are as follows. In Example 3, after heating at 160 ° C. for 1.5 hours, the temperature was lowered to −40 ° C., cooled for 1.5 hours, and then heated to 160 ° C. again. In Example 27, after heating at 140 ° C. for 1.5 hours, the heating-cooling process in which the temperature is lowered to −40 ° C., cooled for 1.5 hours, and then heated again to 140 ° C. is 1 cycle. It was.
The results are shown in Tables 1 to 8.
〔比較例1~18〕
 アルミ基材、酸素含有皮膜の皮膜形成処理、酸素含有皮膜、樹脂組成物、及び樹脂成形条件についてはそれぞれ表9~表11に示す通りであり、実施例1と同様にして接合強度の評価試験を行った。
[Comparative Examples 1 to 18]
The aluminum substrate, the film formation treatment of the oxygen-containing film, the oxygen-containing film, the resin composition, and the resin molding conditions are as shown in Tables 9 to 11, respectively. Went.
 なお、比較例4及び7~10においては、実施例1と同じPPS系樹脂組成物〔PPS(1)〕を用いた。また、PPS樹脂〔PPS(2)〕を用いた比較例1、11、17及び18においては、樹脂組成物中に40質量%のガラス系充填材料が添加されており、また、PBTを用いた比較例2、5、12及び16、並びに、PPを用いた比較例3、6及び15においては、樹脂組成物中に30質量%のガラス系充填材料が添加されており、また、POMを用いた比較例13においては、25質量%のガラス系充填材料が添加されており、更にまた、LCPを用いた比較例14においては、30質量%のガラス系充填材料が添加されている。 In Comparative Examples 4 and 7 to 10, the same PPS resin composition [PPS (1)] as in Example 1 was used. In Comparative Examples 1, 11, 17, and 18 using PPS resin [PPS (2)], 40% by mass of a glass-based filler was added to the resin composition, and PBT was used. In Comparative Examples 2, 5, 12 and 16, and Comparative Examples 3, 6 and 15 using PP, 30% by mass of a glass filler is added to the resin composition, and POM is used. In Comparative Example 13, 25% by mass of the glass-based filler was added, and in Comparative Example 14 using LCP, 30% by mass of the glass-based filler was added.
 また、比較例4~6においては前処理としての粗面化処理と酸素含有皮膜を形成する皮膜形成処理(表面処理)を行わずに、また、比較例9及び10については酸素含有皮膜を形成する皮膜形成処理(表面処理)を行わずに、それぞれアルミ基材を用いた以外は、上記の実施例と同様にしてアルミ樹脂接合体を作製し、実施例1と同様にして接合強度の評価試験を行った。
 また、比較例7、8においては、0.1MのNaOH水を用いて熱水の導電率を表10に示す数値に調整した。
 結果を表9~表11に示す。
In Comparative Examples 4 to 6, the roughening treatment as the pretreatment and the film formation treatment (surface treatment) for forming the oxygen-containing film were not performed, and in Comparative Examples 9 and 10, the oxygen-containing film was formed. An aluminum resin joined body was prepared in the same manner as in the above example except that an aluminum substrate was used without performing the film forming process (surface treatment) to be performed, and the joint strength was evaluated in the same manner as in Example 1. A test was conducted.
In Comparative Examples 7 and 8, the electrical conductivity of hot water was adjusted to the values shown in Table 10 using 0.1 M NaOH water.
The results are shown in Tables 9 to 11.
〔酸素含有皮膜の皮膜形成処理の参考例〕
 実施例1と同じアルミ基材に対して、導電率25mS/mの水道水を用い、95℃で1分間の条件で熱水による皮膜形成処理を行った。
 結果は、アルミ基材の表面に形成された酸素含有皮膜はその厚さがバラついているが0.02~0.05μmに過ぎなかった。
[Reference example of film formation treatment of oxygen-containing film]
The same aluminum base material as in Example 1 was subjected to a film formation treatment with hot water at 95 ° C. for 1 minute using tap water having a conductivity of 25 mS / m.
As a result, although the thickness of the oxygen-containing film formed on the surface of the aluminum base material varied, it was only 0.02 to 0.05 μm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 本発明の金属樹脂接合体は、耐久試験の前後において共に優れた接合強度を有するため、自動車用各種センサーの部品、家庭電化製品の部品、産業機器の部品等の各種部品の製造に好適に利用可能である。 Since the metal resin bonded body of the present invention has excellent bonding strength before and after the durability test, it is suitably used for manufacturing various parts such as parts for various sensors for automobiles, parts for home appliances and parts for industrial equipment. Is possible.
 1…アルミ樹脂接合体、2…表面処理済アルミ基材、3…PPS成形体(樹脂成形体)、4…先端接合部、5…ピンゲート、6…冶具、7…荷重。 DESCRIPTION OF SYMBOLS 1 ... Aluminum resin joined body, 2 ... Surface-treated aluminum base material, 3 ... PPS molded object (resin molded object), 4 ... Tip joint part, 5 ... Pin gate, 6 ... Jig, 7 ... Load.

Claims (23)

  1.  金属からなる金属基材と、この金属基材の表面に、意図的に酸素含有量を増やす処理を施すことにより形成された酸素を含有する酸素含有皮膜と、この酸素含有皮膜の上に接合され、熱可塑性樹脂組成物で形成された樹脂成形体とを有し、
     前記熱可塑性樹脂組成物が、前記酸素含有皮膜と反応する官能基を有する添加剤化合物を含有し、
     前記添加剤化合物が、カルボキシル基及びその塩及びそのエステル、エポキシ基、グリシジル基、イソシアネート基、カルボジイミド基、アミノ基及びその塩、並びに、酸無水物基及びそのエステルからなる群の中から選ばれる少なくとも1種の官能基を有することを特徴とする金属樹脂接合体。
    A metal base material made of metal, an oxygen-containing film containing oxygen formed by intentionally increasing the oxygen content on the surface of the metal base material, and the oxygen-containing film are joined to each other. A resin molded body formed of a thermoplastic resin composition,
    The thermoplastic resin composition contains an additive compound having a functional group that reacts with the oxygen-containing film,
    The additive compound is selected from the group consisting of carboxyl groups and salts thereof and esters thereof, epoxy groups, glycidyl groups, isocyanate groups, carbodiimide groups, amino groups and salts thereof, and acid anhydride groups and esters thereof. A metal resin joined body having at least one functional group.
  2.  前記添加剤化合物の官能基が、熱可塑性樹脂組成物中に0.5~150μmol/gの割合で含有されていることを特徴とする請求項1に記載の金属樹脂接合体。 2. The metal resin joined body according to claim 1, wherein the functional group of the additive compound is contained in the thermoplastic resin composition at a rate of 0.5 to 150 μmol / g.
  3.  前記添加剤化合物が、α-オレフィン由来の構成単位とα,β-不飽和酸のグリシジルエステル由来の構成単位とを含むオレフィン系共重合体である請求項1又は2に記載の金属樹脂接合体。 The metal resin joined body according to claim 1 or 2, wherein the additive compound is an olefin-based copolymer containing a structural unit derived from α-olefin and a structural unit derived from a glycidyl ester of α, β-unsaturated acid. .
  4.  前記添加剤化合物が、更に(メタ)アクリル酸エステル由来の構成単位を含むオレフィン系共重合体であるオレフィン系共重合体である請求項1~3に記載の金属樹脂接合体。 The metal resin joined body according to claims 1 to 3, wherein the additive compound is an olefin copolymer which is an olefin copolymer further comprising a structural unit derived from a (meth) acrylic acid ester.
  5.  樹脂成形体が接合される前の表面に酸素含有皮膜を有する金属基材は、その最表面から3μmの深さまでの表層においてEPMAで測定された酸素含有率が0.1~50重量%の範囲内であることを特徴とする請求項1~4に記載の金属樹脂接合体。 The metal substrate having an oxygen-containing film on the surface before the resin molded body is joined has an oxygen content measured by EPMA in the surface layer from the outermost surface to a depth of 3 μm in the range of 0.1 to 50% by weight. The metal-resin bonded body according to any one of claims 1 to 4, wherein
  6.  酸素含有皮膜の上に樹脂成形体を接合する接合方法が、射出成形又は熱圧着による方法であることを特徴とする請求項1~5に記載の金属樹脂接合体。 6. The metal resin bonded body according to claim 1, wherein the bonding method for bonding the resin molded body on the oxygen-containing film is a method by injection molding or thermocompression bonding.
  7.  酸素含有皮膜が形成される金属基材が、アルミニウム又はアルミニウム合金からなるアルミ基材であることを特徴とする請求項1~6に記載の金属樹脂接合体。 The metal resin bonded body according to any one of claims 1 to 6, wherein the metal substrate on which the oxygen-containing film is formed is an aluminum substrate made of aluminum or an aluminum alloy.
  8.  皮膜形成処理で得られた酸化物皮膜の厚さが0.06μm以上2μm以下の酸化物皮膜であることを特徴とする請求項1~7のいずれかに記載の金属樹脂接合体。 The metal-resin bonded body according to any one of claims 1 to 7, wherein the oxide film obtained by the film formation treatment is an oxide film having a thickness of 0.06 µm to 2 µm.
  9.  酸素含有皮膜が、亜鉛イオン含有アルカリ水溶液を用いた皮膜形成処理で得られた亜鉛元素を含有する亜鉛含有皮膜であることを特徴とする請求項1~8のいずれかに記載の金属樹脂接合体。 The metal-resin joined body according to any one of claims 1 to 8, wherein the oxygen-containing film is a zinc-containing film containing a zinc element obtained by a film formation treatment using a zinc ion-containing alkaline aqueous solution. .
  10.  酸素含有皮膜が、導電率が0.01mS/m以上20mS/m以下であって91℃以上100℃以下の熱水を用いた皮膜形成処理で形成され、厚さが0.1μm以上1μm以下の水和酸化物皮膜であることを特徴とする請求項1~8のいずれかに記載の金属樹脂接合体。 The oxygen-containing film is formed by a film forming process using hot water having a conductivity of 0.01 mS / m or more and 20 mS / m or less and 91 ° C. or more and 100 ° C. or less, and a thickness of 0.1 μm or more and 1 μm or less. 9. The metal resin bonded body according to claim 1, which is a hydrated oxide film.
  11.  酸素含有皮膜が、導電率が0.01mS/m以上20mS/m以下であって60℃以上90℃以下の温水を用いた皮膜形成処理で形成され、厚さが0.1μm以上1μm以下の水和酸化物皮膜であることを特徴とする請求項1~8のいずれかに記載の金属樹脂接合体。 An oxygen-containing film is formed by a film forming process using hot water having an electrical conductivity of 0.01 mS / m to 20 mS / m and a temperature of 60 ° C. to 90 ° C., and has a thickness of 0.1 μm to 1 μm. The metal-resin bonded body according to any one of claims 1 to 8, wherein the metal-resin bonded body is a sum oxide film.
  12.  酸素含有皮膜が、アルミ基材の表面にレーザー処理を施す皮膜形成処理で得られた酸化物皮膜であることを特徴とする請求項1~8のいずれかに記載の金属樹脂接合体。 The metal-resin bonded body according to any one of claims 1 to 8, wherein the oxygen-containing film is an oxide film obtained by a film forming process in which a laser treatment is performed on the surface of an aluminum base.
  13.  熱可塑性樹脂組成物を構成する熱可塑性樹脂が、ポリアリーレンスルフィド系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアセタール系樹脂、ポリエーテル系樹脂、ポリフェニレンエーテル系樹脂、ポリイミド系樹脂、ポリエーテルイミド系樹脂、液晶ポリマー、サルフォン系樹脂、ポリフェニレンオキサイド系樹脂、ポリアミド系樹脂、及びポリプロピレン系樹脂からなる群から選ばれたいずれか1種又は2種以上の樹脂であることを特徴とする請求項1~12のいずれかに記載の金属樹脂接合体。 The thermoplastic resin constituting the thermoplastic resin composition is a polyarylene sulfide resin, a polyester resin, a polycarbonate resin, a polyacetal resin, a polyether resin, a polyphenylene ether resin, a polyimide resin, or a polyetherimide resin. A liquid crystal polymer, a sulfone-based resin, a polyphenylene oxide-based resin, a polyamide-based resin, and a polypropylene-based resin, and any one or two or more resins selected from the group consisting of: The metal resin joined body according to any one of the above.
  14.  金属からなる金属基材の表面に、意図的に酸素含有量を増やす処理を施すことにより酸素含有皮膜を形成する皮膜形成工程と、この皮膜形成工程で得られた表面処理済金属基材の酸素含有皮膜の上に、熱可塑性樹脂組成物の射出成形により樹脂成形体を形成する樹脂成形工程とを有し、
     前記酸素含有皮膜を介して金属基材と樹脂成形体とが接合された金属樹脂接合体を製造する金属樹脂接合体の製造方法であり、
     前記熱可塑性樹脂組成物が、酸素含有皮膜と反応する官能基を有する添加剤化合物を含有し、
     前記添加剤化合物が、カルボキシル基及びその塩及びそのエステル、エポキシ基、グリシジル基、イソシアネート基、カルボジイミド基、アミノ基及びその塩、並びに、酸無水物基及びそのエステルからなる群の中から選ばれる少なくとも1種の官能基を有することを特徴とする金樹脂接合体の製造方法。
    A film forming step of forming an oxygen-containing film by intentionally increasing the oxygen content on the surface of a metal base material made of metal, and oxygen of the surface-treated metal substrate obtained in this film forming step A resin molding step of forming a resin molding by injection molding of a thermoplastic resin composition on the containing film;
    It is a method for producing a metal resin joined body for producing a metal resin joined body in which a metal substrate and a resin molded body are joined through the oxygen-containing film,
    The thermoplastic resin composition contains an additive compound having a functional group that reacts with an oxygen-containing film,
    The additive compound is selected from the group consisting of carboxyl groups and salts thereof and esters thereof, epoxy groups, glycidyl groups, isocyanate groups, carbodiimide groups, amino groups and salts thereof, and acid anhydride groups and esters thereof. A method for producing a gold resin joined body, comprising at least one functional group.
  15.  金属からなる金属基材の表面に、意図的に酸素含有量を増やす処理を施すことにより酸素含有皮膜を形成する皮膜形成工程と、熱可塑性樹脂組成物の射出成形により樹脂成形体を形成する樹脂成形工程と、前記皮膜形成工程で得られた表面処理済金属基材の酸素含有皮膜の上に、前記樹脂成形工程で得られた樹脂成形体を射出成形又は熱圧着により接合する金属樹脂接合工程とを有し、
     前記酸素含有皮膜を介して金属基材と樹脂成形体とが接合された金属樹脂接合体を製造する金属樹脂接合体の製造方法であり、
     前記熱可塑性樹脂組成物が、酸素含有皮膜と反応する官能基を有する添加剤化合物を含有し、
     前記添加剤化合物が、カルボキシル基及びその塩及びそのエステル、エポキシ基、グリシジル基、イソシアネート基、カルボジイミド基、アミノ基及びその塩、並びに、酸無水物基及びそのエステルからなる群の中から選ばれる少なくとも1種の官能基を有することを特徴とする金属樹脂接合体の製造方法。
    A film forming step for forming an oxygen-containing film by intentionally increasing the oxygen content on the surface of a metal base made of metal, and a resin for forming a resin molded body by injection molding of a thermoplastic resin composition Metal resin bonding step of bonding the resin molded body obtained in the resin molding step on the oxygen-containing film of the surface-treated metal substrate obtained in the film forming step by injection molding or thermocompression bonding And
    It is a method for producing a metal resin joined body for producing a metal resin joined body in which a metal substrate and a resin molded body are joined through the oxygen-containing film,
    The thermoplastic resin composition contains an additive compound having a functional group that reacts with an oxygen-containing film,
    The additive compound is selected from the group consisting of carboxyl groups and salts thereof and esters thereof, epoxy groups, glycidyl groups, isocyanate groups, carbodiimide groups, amino groups and salts thereof, and acid anhydride groups and esters thereof. A method for producing a metal-resin joined body, comprising at least one functional group.
  16.  酸素含有皮膜が形成される金属基材がアルミニウム又はアルミニウム合金からなるアルミ基材であることを特徴とする請求項14又は15に記載の金属樹脂接合体の製造方法。 16. The method for producing a metal-resin bonded body according to claim 14, wherein the metal substrate on which the oxygen-containing film is formed is an aluminum substrate made of aluminum or an aluminum alloy.
  17.  皮膜形成工程では、水酸化アルカリ(MOH)と亜鉛イオン(Zn2+)とを重量比(MOH/Zn2+)1~100の割合で含む亜鉛イオン含有アルカリ水溶液中にアルミ基材を浸漬する皮膜形成処理により、このアルミ基材の表面に亜鉛元素を含有する亜鉛含有皮膜を形成することを特徴とする請求項16に記載の金属樹脂接合体の製造方法。 In the film formation process, the aluminum substrate is immersed in a zinc ion-containing aqueous alkali solution containing alkali hydroxide (MOH) and zinc ions (Zn 2+ ) in a weight ratio (MOH / Zn 2+ ) of 1 to 100. The method for producing a metal-resin bonded body according to claim 16, wherein a zinc-containing film containing a zinc element is formed on the surface of the aluminum base material by a film forming process.
  18.  亜鉛イオン含有アルカリ水溶液中のアルカリ源が、水酸化ナトリウム、水酸化カリウム、及び水酸化リチウムからなる群から選ばれたいずれか1種又は2種以上の水酸化アルカリであることを特徴とする請求項16又は17に記載の金属樹脂接合体の製造方法。 The alkali source in the zinc ion-containing alkaline aqueous solution is any one or two or more alkali hydroxides selected from the group consisting of sodium hydroxide, potassium hydroxide, and lithium hydroxide. Item 18. A method for producing a metal resin joined body according to Item 16 or 17.
  19.  亜鉛イオン含有アルカリ水溶液中の亜鉛イオン源が、酸化亜鉛、水酸化亜鉛、過酸化亜鉛、塩化亜鉛、硫酸亜鉛、及び硝酸亜鉛からなる群から選ばれたいずれか1種又は2種以上の亜鉛塩であることを特徴とする請求項16~18のいずれかに記載の金属樹脂接合体の製造方法。 The zinc ion source in the alkaline aqueous solution containing zinc ions is one or more zinc salts selected from the group consisting of zinc oxide, zinc hydroxide, zinc peroxide, zinc chloride, zinc sulfate, and zinc nitrate. The method for producing a metal-resin bonded body according to any one of claims 16 to 18, wherein:
  20.  皮膜形成工程では、アルミ基材の表面に、導電率が0.01mS/m以上20mS/m以下であって91℃以上100℃以下の熱水を用いた皮膜形成処理により、厚さが0.1μm以上1μm以下の水和酸化物皮膜を形成することを特徴とする請求項16に記載の金属樹脂接合体の製造方法。 In the film forming step, the thickness of the surface of the aluminum base material is set to 0. 1 by a film forming process using hot water having a conductivity of 0.01 mS / m to 20 mS / m and 91 ° C to 100 ° C. The method for producing a metal resin joined body according to claim 16, wherein a hydrated oxide film having a thickness of 1 µm to 1 µm is formed.
  21.  皮膜形成工程では、アルミ基材の表面に、導電率が0.01mS/m以上20mS/m以下であって60℃以上90℃以下の温水を用いた皮膜形成処理により、厚さが0.1μm以上1μm以下の水和酸化物皮膜を形成することを特徴とする請求項16に記載の金属樹脂接合体の製造方法。 In the film forming step, the thickness of the surface of the aluminum base material is 0.1 μm by a film forming process using hot water having an electrical conductivity of 0.01 mS / m to 20 mS / m and 60 ° C. to 90 ° C. The method for producing a metal-resin bonded body according to claim 16, wherein a hydrated oxide film having a thickness of 1 µm or less is formed.
  22.  皮膜形成工程では、アルミ基材の表面付近を加熱するレーザー処理を施す皮膜形成処理により酸化物皮膜を形成することを特徴とする請求項16に記載の金属樹脂接合体の製造方法。 The method for producing a metal-resin bonded body according to claim 16, wherein in the film forming step, an oxide film is formed by a film forming process in which a laser treatment for heating the vicinity of the surface of the aluminum substrate is performed.
  23.  熱可塑性樹脂組成物を構成する熱可塑性樹脂が、ポリアリーレンスルフィド系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアセタール系樹脂、ポリエーテル系樹脂、ポリフェニレンエーテル系樹脂、ポリイミド系樹脂、ポリエーテルイミド系樹脂、液晶ポリマー、サルフォン系樹脂、ポリフェニレンオキサイド系樹脂、ポリアミド系樹脂、及びポリプロピレン系樹脂からなる群から選ばれたいずれか1種又は2種以上の樹脂であることを特徴とする請求項14~22のいずれかに記載の金属樹脂接合体の製造方法。 The thermoplastic resin constituting the thermoplastic resin composition is a polyarylene sulfide resin, a polyester resin, a polycarbonate resin, a polyacetal resin, a polyether resin, a polyphenylene ether resin, a polyimide resin, or a polyetherimide resin. A liquid crystal polymer, a sulfone-based resin, a polyphenylene oxide-based resin, a polyamide-based resin, and a polypropylene-based resin, and one or more resins selected from the group consisting of: The manufacturing method of the metal resin joined body in any one of.
PCT/JP2014/058435 2013-03-26 2014-03-26 Metal-resin bonded body, and production method therefor WO2014157289A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157030218A KR102016783B1 (en) 2013-03-26 2014-03-26 Metal-resin bonded body, and production method therefor
JP2015508577A JP6017675B2 (en) 2013-03-26 2014-03-26 Metal-resin bonded body and manufacturing method thereof
CN201480017983.8A CN105073375B (en) 2013-03-26 2014-03-26 Metal-resin conjugant and its manufacture method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-065268 2013-03-26
JP2013065268 2013-03-26

Publications (1)

Publication Number Publication Date
WO2014157289A1 true WO2014157289A1 (en) 2014-10-02

Family

ID=51624254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058435 WO2014157289A1 (en) 2013-03-26 2014-03-26 Metal-resin bonded body, and production method therefor

Country Status (5)

Country Link
JP (1) JP6017675B2 (en)
KR (1) KR102016783B1 (en)
CN (1) CN105073375B (en)
TW (1) TWI630101B (en)
WO (1) WO2014157289A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038945A1 (en) * 2014-09-11 2016-03-17 オリンパス株式会社 Insert molded article, device using said insert molded article, and method for producing insert molded article
EP2899296A4 (en) * 2012-09-21 2016-05-11 Uacj Corp Surface-treated aluminum material and method for producing same
JP2017007306A (en) * 2015-06-26 2017-01-12 株式会社豊田中央研究所 Metal resin joining member and method for producing the same
JP2017013084A (en) * 2015-06-29 2017-01-19 マツダ株式会社 Joining method of metal member and resin member, metal member used in the method, and conjugant of metal member and resin member
JP2017177464A (en) * 2016-03-29 2017-10-05 マツダ株式会社 Method of joining metal member and resin member, and metal member used in the method
JP2017218615A (en) * 2016-06-03 2017-12-14 三井化学株式会社 Method for producing surface roughened metal member and method for producing metal/resin composite structure
JP2017218614A (en) * 2016-06-03 2017-12-14 三井化学株式会社 Method for producing surface roughened metal member and method for producing metal/resin composite structure
JP6351902B1 (en) * 2017-09-26 2018-07-04 住友理工株式会社 Manufacturing method of composite member
JP2018144475A (en) * 2017-03-03 2018-09-20 三井化学株式会社 Aluminum-based metal/resin composite structure, aluminum-based metallic member, production method of aluminum-based metallic member and production method of aluminum-based metal/resin composition structure
JP2019058949A (en) * 2018-06-05 2019-04-18 住友理工株式会社 Manufacturing method of composite member
WO2019097624A1 (en) 2017-11-16 2019-05-23 睦月電機株式会社 Metal member, method for producing metal member, metal-resin bonded body and method for producing metal-resin bonded body
WO2020075804A1 (en) * 2018-10-12 2020-04-16 Dic株式会社 Metal-resin composite and method for producing same
WO2020184440A1 (en) * 2019-03-08 2020-09-17 睦月電機株式会社 Production method for metal/resin joined body
JPWO2021131804A1 (en) * 2019-12-27 2021-07-01
CN113396243A (en) * 2019-01-29 2021-09-14 三井化学株式会社 Aluminum-based metal-resin composite structure, aluminum-based metal member, method for producing aluminum-based metal member, and method for producing aluminum-based metal-resin composite structure

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6621694B2 (en) * 2016-03-25 2019-12-18 株式会社神戸製鋼所 Surface-treated steel sheet for bonding polyolefin resin and composite member using the same
KR101707789B1 (en) * 2017-01-20 2017-02-20 주식회사 우신엠에스 Apparatus for manufacturing light emitting metal knob
WO2019131046A1 (en) * 2017-12-28 2019-07-04 株式会社デンソー Resin molded article and manufacturing method therefor, physical quantity sensor and manufacturing method therefor, insert component and manufacturing method therefor, and resin molded article manufacturing system and resin molded article manufacturing method using same
JP6837580B2 (en) * 2018-05-18 2021-03-03 ポリプラスチックス株式会社 Powdered liquid crystal resin for hot press molded products and hot press molded products
US20200070269A1 (en) * 2018-08-30 2020-03-05 GM Global Technology Operations LLC Laser-induced anti-corrosion micro-anchor structural layer for metal-polymeric composite joint and methods of manufacturing thereof
KR102601050B1 (en) * 2019-04-22 2023-11-10 미쯔이가가꾸가부시끼가이샤 Electronic device housing, manufacturing method thereof and metal resin composite
JP2021004377A (en) * 2019-06-25 2021-01-14 本田技研工業株式会社 Manufacturing method of aluminum member and aluminum member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997035716A1 (en) * 1996-03-27 1997-10-02 Toyo Kohan Co., Ltd. Thermoplastic resin-coated aluminum alloy plate, and process and apparatus for producing the same
JP2003103562A (en) * 2001-09-28 2003-04-09 Toray Ind Inc Manufacturing method for metal insert resin joined molded article, and manufacturing method for pressure gauge having metal insert resin joined molded article
JP2010149511A (en) * 2008-11-19 2010-07-08 Lanxess Deutschland Gmbh Lightweight member for hybrid design
JP2011076887A (en) * 2009-09-30 2011-04-14 Toppan Printing Co Ltd Packaging material for lithium ion battery
JP2011173353A (en) * 2010-02-25 2011-09-08 Toray Ind Inc Composite structure
JP2012232583A (en) * 2011-04-21 2012-11-29 Taisei Plas Co Ltd Composite of aluminum alloy and resin and method for manufacturing the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2702814B2 (en) 1990-03-09 1998-01-26 ポリプラスチックス株式会社 Molded product with metal inserted
JPH0551671A (en) 1991-08-21 1993-03-02 Nikko Kyodo Co Ltd High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
JP3016331B2 (en) 1993-09-07 2000-03-06 富士通株式会社 Manufacturing method of electronic equipment housing
JP3954379B2 (en) 2001-12-28 2007-08-08 大成プラス株式会社 Aluminum alloy-resin composite and its manufacturing method
JP4270444B2 (en) 2003-10-14 2009-06-03 大成プラス株式会社 Aluminum alloy / resin composite and method for producing the same
WO2008078714A1 (en) * 2006-12-22 2008-07-03 Taisei Plas Co., Ltd. Metal/resin composite and process for producing the composite
JP5058593B2 (en) 2006-12-28 2012-10-24 Ykk株式会社 Method for producing composite of metal and resin
JP4600701B2 (en) * 2007-12-14 2010-12-15 株式会社デンソー Resin metal bonded body and manufacturing method thereof
WO2009139450A1 (en) * 2008-05-13 2009-11-19 住友化学株式会社 Alumina composite material
JPWO2009151099A1 (en) 2008-06-12 2011-11-17 日本軽金属株式会社 Aluminum / resin injection integrated molded product and its manufacturing method
JP5381687B2 (en) 2008-12-29 2014-01-08 日本軽金属株式会社 Aluminum alloy member excellent in resin bondability and manufacturing method thereof
JP4930565B2 (en) * 2009-09-30 2012-05-16 ブラザー工業株式会社 Developer container and image forming apparatus
JP5499741B2 (en) * 2010-02-04 2014-05-21 三菱樹脂株式会社 Resin / metal laminate, resin / metal composite injection molded body, and method for producing the same
JP5501026B2 (en) * 2010-02-22 2014-05-21 日新製鋼株式会社 Composite in which stainless steel plate and thermoplastic resin composition are joined, and method for producing the same
JP5423468B2 (en) * 2010-02-23 2014-02-19 オムロン株式会社 Anomaly analyzer and control method of anomaly analyzer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997035716A1 (en) * 1996-03-27 1997-10-02 Toyo Kohan Co., Ltd. Thermoplastic resin-coated aluminum alloy plate, and process and apparatus for producing the same
JP2003103562A (en) * 2001-09-28 2003-04-09 Toray Ind Inc Manufacturing method for metal insert resin joined molded article, and manufacturing method for pressure gauge having metal insert resin joined molded article
JP2010149511A (en) * 2008-11-19 2010-07-08 Lanxess Deutschland Gmbh Lightweight member for hybrid design
JP2011076887A (en) * 2009-09-30 2011-04-14 Toppan Printing Co Ltd Packaging material for lithium ion battery
JP2011173353A (en) * 2010-02-25 2011-09-08 Toray Ind Inc Composite structure
JP2012232583A (en) * 2011-04-21 2012-11-29 Taisei Plas Co Ltd Composite of aluminum alloy and resin and method for manufacturing the same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2899296A4 (en) * 2012-09-21 2016-05-11 Uacj Corp Surface-treated aluminum material and method for producing same
WO2016038945A1 (en) * 2014-09-11 2016-03-17 オリンパス株式会社 Insert molded article, device using said insert molded article, and method for producing insert molded article
JP5945650B1 (en) * 2014-09-11 2016-07-05 オリンパス株式会社 Insert molded product, apparatus using the insert molded product, and method of manufacturing the insert molded product
JP2017007306A (en) * 2015-06-26 2017-01-12 株式会社豊田中央研究所 Metal resin joining member and method for producing the same
JP2017013084A (en) * 2015-06-29 2017-01-19 マツダ株式会社 Joining method of metal member and resin member, metal member used in the method, and conjugant of metal member and resin member
JP2017177464A (en) * 2016-03-29 2017-10-05 マツダ株式会社 Method of joining metal member and resin member, and metal member used in the method
JP2017218615A (en) * 2016-06-03 2017-12-14 三井化学株式会社 Method for producing surface roughened metal member and method for producing metal/resin composite structure
JP2017218614A (en) * 2016-06-03 2017-12-14 三井化学株式会社 Method for producing surface roughened metal member and method for producing metal/resin composite structure
JP2018144475A (en) * 2017-03-03 2018-09-20 三井化学株式会社 Aluminum-based metal/resin composite structure, aluminum-based metallic member, production method of aluminum-based metallic member and production method of aluminum-based metal/resin composition structure
JP6351902B1 (en) * 2017-09-26 2018-07-04 住友理工株式会社 Manufacturing method of composite member
WO2019064344A1 (en) * 2017-09-26 2019-04-04 住友理工株式会社 Manufacturing method for composite member
US11090908B2 (en) 2017-11-16 2021-08-17 Mutsuki Electric Co., Ltd. Metal member, method for producing metal member, metal-resin joined body and method for producing metal-resin joined body
WO2019097624A1 (en) 2017-11-16 2019-05-23 睦月電機株式会社 Metal member, method for producing metal member, metal-resin bonded body and method for producing metal-resin bonded body
JP2019058949A (en) * 2018-06-05 2019-04-18 住友理工株式会社 Manufacturing method of composite member
WO2020075804A1 (en) * 2018-10-12 2020-04-16 Dic株式会社 Metal-resin composite and method for producing same
JPWO2020075804A1 (en) * 2018-10-12 2021-02-15 Dic株式会社 Metal resin composite and its manufacturing method
CN112823091A (en) * 2018-10-12 2021-05-18 Dic株式会社 Metal-resin composite and method for producing same
US11766836B2 (en) 2018-10-12 2023-09-26 Dic Corporation Metal-resin composite and method for producing same
CN113396243B (en) * 2019-01-29 2024-03-01 三井化学株式会社 Aluminum-based metal-resin composite structure, aluminum-based metal member, method for producing aluminum-based metal member, and method for producing aluminum-based metal-resin composite structure
CN113396243A (en) * 2019-01-29 2021-09-14 三井化学株式会社 Aluminum-based metal-resin composite structure, aluminum-based metal member, method for producing aluminum-based metal member, and method for producing aluminum-based metal-resin composite structure
US11426947B2 (en) 2019-03-08 2022-08-30 Mutsuki Electric Co., Ltd. Method for manufacturing metal-resin joint
WO2020184440A1 (en) * 2019-03-08 2020-09-17 睦月電機株式会社 Production method for metal/resin joined body
WO2020183747A1 (en) * 2019-03-08 2020-09-17 睦月電機株式会社 Method for producing synthetic resin molded body, and method for producing metal resin joined body
JP6830721B1 (en) * 2019-03-08 2021-02-17 睦月電機株式会社 Manufacturing method of metal resin joint
WO2021131804A1 (en) * 2019-12-27 2021-07-01 Dic株式会社 Composite structure and manufacturing method therefor
CN114901458A (en) * 2019-12-27 2022-08-12 Dic株式会社 Composite structure and method for manufacturing same
JP7070804B2 (en) 2019-12-27 2022-05-18 Dic株式会社 Composite structure and its manufacturing method
JPWO2021131804A1 (en) * 2019-12-27 2021-07-01

Also Published As

Publication number Publication date
CN105073375B (en) 2018-01-05
JPWO2014157289A1 (en) 2017-02-16
TWI630101B (en) 2018-07-21
KR102016783B1 (en) 2019-08-30
CN105073375A (en) 2015-11-18
JP6017675B2 (en) 2016-11-02
KR20150134384A (en) 2015-12-01
TW201504036A (en) 2015-02-01

Similar Documents

Publication Publication Date Title
JP6017675B2 (en) Metal-resin bonded body and manufacturing method thereof
JP5772966B2 (en) Aluminum resin bonded body and manufacturing method thereof
JP4927871B2 (en) Metal-resin composite and method for producing the composite
JP6387301B2 (en) Aluminum resin bonded body and manufacturing method thereof
JP5055288B2 (en) Metal-resin composite and method for producing the same
JP5167261B2 (en) Metal-resin composite and method for producing the same
JP4527196B2 (en) Composite and production method thereof
JP4452220B2 (en) Composite and production method thereof
JP4927864B2 (en) Method for producing high corrosion resistance composite
JP4965649B2 (en) Copper alloy composite and manufacturing method thereof
JP2013052671A (en) Method for producing aluminum-resin composite
JP6503936B2 (en) Metal-resin composite molded article and method for producing the same
JP2009298144A (en) Bonded composite article of a plurality of metallic shaped bodies, and method for production thereof
JP2012157991A (en) Metal-resin composite and production process thereof
WO2016047454A1 (en) Heat exchanger
JP2006305838A (en) Resin composite and its manufacturing method
WO2017169571A1 (en) Conversion-coated metal plate, surface-treated metal plate, composite member, and method for producing conversion-coated metal plate
JP2013022761A (en) Method of manufacturing copper-resin complex
WO2023063270A1 (en) Metal member, metal-resin joined body, and production methods therefor
JP2023059620A (en) Metal member, metal-resin joined body, and production methods therefor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017983.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508577

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157030218

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14773867

Country of ref document: EP

Kind code of ref document: A1