JP2012232583A - Composite of aluminum alloy and resin and method for manufacturing the same - Google Patents

Composite of aluminum alloy and resin and method for manufacturing the same Download PDF

Info

Publication number
JP2012232583A
JP2012232583A JP2012095418A JP2012095418A JP2012232583A JP 2012232583 A JP2012232583 A JP 2012232583A JP 2012095418 A JP2012095418 A JP 2012095418A JP 2012095418 A JP2012095418 A JP 2012095418A JP 2012232583 A JP2012232583 A JP 2012232583A
Authority
JP
Japan
Prior art keywords
aluminum alloy
injection
resin
treatment
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012095418A
Other languages
Japanese (ja)
Other versions
JP5622785B2 (en
Inventor
Masanori Narutomi
正徳 成富
Naoki Ando
直樹 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Purasu Co Ltd
Original Assignee
Taisei Purasu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Purasu Co Ltd filed Critical Taisei Purasu Co Ltd
Priority to JP2012095418A priority Critical patent/JP5622785B2/en
Publication of JP2012232583A publication Critical patent/JP2012232583A/en
Application granted granted Critical
Publication of JP5622785B2 publication Critical patent/JP5622785B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite of the aluminum alloy and resin with high water resistance.SOLUTION: A super-minute asperity surface of 20-40 nm cycle is formed by immersing the aluminum alloy in the hydration hydrazine aqueous solution of a several % concentration adjusted to 45-65°C in one to a few minutes, then the hydrazine is adsorbed in the aluminum alloy surface by immersing the aluminum alloy in the hydration hydrazine aqueous solution of 0.05-1% concentration assumed to be 15-55°C for a few minutes, and washing it in clear water, and next, drying it with the low temperature at 50-70°C. This is inserted in the mold for the injection formation, PPS resin composition 53 is injected into the surface and is connected to the aluminum alloy. An aluminum hydroxide layer 54 is formed on the aluminum alloy surface, by immersing the obtained injection joining object in the ion exchange water of 98°C and further heating it for one hour at 170°C.

Description

本発明はアルミニウム合金とポリフェニレンサルファイド(以下「PPS」という)系樹脂組成物からなる複合体に関する。本発明に係る複合体は、特に、屋外使用される輸送機械や産業用機械等の部品、建設材等に適している。   The present invention relates to a composite comprising an aluminum alloy and a polyphenylene sulfide (hereinafter referred to as “PPS”) resin composition. The composite according to the present invention is particularly suitable for parts such as transport machines and industrial machines used outdoors, construction materials, and the like.

金属同士、又は金属と合成樹脂を強く接合する技術は、自動車、家庭電化製品、産業機器等の部品製造業等だけでなく広い産業分野において求められ、このために多くの接着剤が開発されている。このような接合技術は、あらゆる製造業に於いて基幹となる技術である。   Technology for strongly bonding metals or metal and synthetic resin is required not only in parts manufacturing industries such as automobiles, home appliances, and industrial equipment, but also in a wide range of industrial fields. For this reason, many adhesives have been developed. Yes. Such joining technology is a key technology in all manufacturing industries.

接着剤を使用しない接合方法に関しても従来から研究されている。その中でも製造業に大きな影響を与えたのは、本発明者らが開発した「NMT(Nano molding technologyの略)」である。NMTとは、アルミニウム合金と樹脂組成物との接合技術であり、予め射出成形金型内にインサートしていたアルミニウム合金に、溶融したエンジニアリング樹脂を射出して樹脂部分を成形すると同時に、その成形品とアルミニウム合金とを接合する方法(以下、略称して「射出接合」という。)である。特許文献1には、特定の表面処理を施したアルミニウム合金に対し、ポリブチレンテレフタレート(以下、「PBT」という。)系樹脂組成物を射出接合させる技術を開示している。また、特許文献2には、特定の表面処理を施したアルミニウム合金に対し、PPS系樹脂組成物を射出接合させる技術を開示している。特許文献1及び特許文献2における射出接合の原理を簡単に説明すると以下のとおりである。   Research has also been conducted on bonding methods that do not use an adhesive. Among them, “NMT (abbreviation of Nano molding technology)” developed by the present inventors has a great influence on the manufacturing industry. NMT is a joining technique between an aluminum alloy and a resin composition. At the same time as molding a resin part by injecting a molten engineering resin into an aluminum alloy that has been inserted into an injection mold in advance. And an aluminum alloy (hereinafter abbreviated as “injection joining”). Patent Document 1 discloses a technique in which a polybutylene terephthalate (hereinafter referred to as “PBT”) resin composition is injection-bonded to an aluminum alloy subjected to a specific surface treatment. Patent Document 2 discloses a technique in which a PPS resin composition is injection-bonded to an aluminum alloy subjected to a specific surface treatment. The principle of injection joining in Patent Document 1 and Patent Document 2 will be briefly described as follows.

(NMT)
NMTの要件として、アルミニウム合金に2の条件、樹脂組成物に1の条件がある。アルミニウム合金の2条件を以下に示す。
(1)アルミニウム合金表面が20〜80nm周期(好ましくは20〜50nm周期)の超微細凹凸、又は直径20〜80nm(好ましくは直径20〜50nm)の超微細凹部又は超微細凸部で覆われていること。指標としては、RSmが20nm〜80nmである超微細凹凸で覆われていると良い。また、Rzが20〜80nmの超微細凹部又は超微細凸部で覆われていても良い。さらに、RSmが20nm〜80nmであり、且つRzが20〜80nmの超微細凹凸で覆われていても良い。RSmは、日本工業規格(JIS B 0601:2001, ISO 4287:1997)に規定される輪郭曲線要素の平均長さであり、Rzは、日本工業規格(JIS B 0601:2001, ISO 4287:1997)に規定される最大高さである。ここで、このアルミニウム合金の表層は酸化アルミニウムの薄層であり、その厚さは3nm以上である。
(2)アルミニウム合金表面に、アンモニア、ヒドラジン、又は水溶性アミン化合物が化学吸着していること。
一方、樹脂組成物の条件は以下の通りである。
(3)硬質の結晶性熱可塑性樹脂であって、150〜200℃でアンモニア、ヒドラジン、又は水溶性アミン類等の広義のアミン系化合物と反応し得る樹脂を主成分とすること。具体的には、PBT、PPS、又はポリアミド樹脂等が主成分として含まれている樹脂組成物であること。
(NMT)
As requirements for NMT, there are two conditions for the aluminum alloy and one condition for the resin composition. Two conditions of the aluminum alloy are shown below.
(1) The surface of the aluminum alloy is covered with ultra fine irregularities with a period of 20 to 80 nm (preferably with a period of 20 to 50 nm), or ultra fine recesses or ultra fine protrusions with a diameter of 20 to 80 nm (preferably with a diameter of 20 to 50 nm). Being. As an index, RSm is preferably covered with ultra fine irregularities having a thickness of 20 nm to 80 nm. Moreover, Rz may be covered with an ultrafine concave portion or an ultrafine convex portion having a diameter of 20 to 80 nm. Furthermore, it may be covered with ultra-fine irregularities with RSm of 20 nm to 80 nm and Rz of 20 to 80 nm. RSm is the average length of contour curve elements defined in Japanese Industrial Standards (JIS B 0601: 2001, ISO 4287: 1997), and Rz is Japanese Industrial Standards (JIS B 0601: 2001, ISO 4287: 1997) Is the maximum height specified. Here, the surface layer of this aluminum alloy is a thin layer of aluminum oxide, and its thickness is 3 nm or more.
(2) Ammonia, hydrazine, or a water-soluble amine compound is chemically adsorbed on the aluminum alloy surface.
On the other hand, the conditions of the resin composition are as follows.
(3) The main component is a hard crystalline thermoplastic resin that can react with a broadly defined amine compound such as ammonia, hydrazine, or water-soluble amines at 150 to 200 ° C. Specifically, it is a resin composition containing PBT, PPS, polyamide resin or the like as a main component.

ここで、樹脂組成物がPBT又はPPSを主成分とし(即ち(3)の条件を満たし)、且つ10〜40質量%のガラス繊維を含むものであった場合、(1)及び(2)の条件を満たすアルミニウム合金と従来になく強固な接合力を示した。アルミニウム合金及び樹脂組成物がいずれも板状物であって、両者を一定面積(0.5cm)で接合した複合体を引っ張り試験して破断させたときに、破断力で20〜25MPaを示した。 Here, when the resin composition contains PBT or PPS as a main component (that is, satisfies the condition of (3)) and contains 10 to 40% by mass of glass fiber, (1) and (2) The aluminum alloy that satisfies the conditions and the unprecedented strong bonding strength were exhibited. When the aluminum alloy and the resin composition are both plate-like materials, and the composite body in which both are joined at a constant area (0.5 cm 2 ) is subjected to a tensile test and is broken, it shows a breaking force of 20 to 25 MPa. It was.

NMTにおいて、強い接合力を得るためには樹脂組成物側に更に1の条件が加わる。
(4)主成分高分子と異なる高分子が含まれており、異高分子の大部分が主成分の結晶性熱可塑性樹脂と分子レベルで混ざっていること。
この条件(4)を追加した目的は、溶融状態の樹脂組成物が急冷された時に、結晶化する速度を低下させることにある。分子レベルで異高分子が混ざっていれば、溶融状態から結晶化に向かう際に異高分子の存在が邪魔になって整列し難くなり、結果的に急冷時の結晶化速度を抑制するとの考えに基づく。これにより、樹脂組成物が硬化する前に超微細凹凸に十分侵入し、接合力の向上に寄与すると予測した。この予測は結果として正しかった。
In NMT, in order to obtain a strong bonding force, the condition 1 is further added to the resin composition side.
(4) A polymer different from the main component polymer is included, and most of the different polymer is mixed with the main component crystalline thermoplastic resin at a molecular level.
The purpose of adding this condition (4) is to reduce the rate of crystallization when the molten resin composition is quenched. It is thought that if different polymers are mixed at the molecular level, the presence of the different polymers becomes a hindrance when moving from the molten state to crystallization, and it becomes difficult to align, and as a result, the crystallization rate during rapid cooling is suppressed. based on. Thus, it was predicted that the ultrafine irregularities sufficiently penetrate before the resin composition was cured, thereby contributing to an improvement in bonding strength. This prediction was correct as a result.

樹脂組成物がPBT又はPPSを主成分とし(即ち(3)の条件を満たし)、且つ(4)の条件を満たし(異種の高分子をコンパウンドし)、さらに10〜40質量%のガラス繊維を含むものであった場合、(1)及び(2)の条件を満たすアルミニウム合金と極めて強固な接合力を示した。アルミニウム合金及び樹脂組成物がいずれも板状物であって、両者を一定面積(約0.5〜0.8cm)で接合した複合体を引っ張り試験して破断させたときに、破断力で25〜35MPaを示した。異種のポリアミド樹脂同士をコンパウンドした樹脂組成物を使用した場合、20〜30MPaの破断力を示した。 The resin composition contains PBT or PPS as a main component (that is, satisfies the condition (3)), satisfies the condition (4) (compounds different types of polymers), and further contains 10 to 40% by mass of glass fiber. When it was included, it showed an extremely strong bonding force with the aluminum alloy satisfying the conditions (1) and (2). When the aluminum alloy and the resin composition are both plate-like materials and the composite body in which both are joined at a constant area (about 0.5 to 0.8 cm 2 ) is pulled and broken, 25-35 MPa was shown. When a resin composition obtained by compounding different types of polyamide resins was used, a breaking force of 20 to 30 MPa was exhibited.

WO 03/064150 A1WO 03/064150 A1 WO 2004/041532 A1WO 2004/041532 A1 特願2010−264652Japanese Patent Application No. 2010-264652 特許第4452220号公報Japanese Patent No. 4452220 特許第4452256号公報Japanese Patent No. 4452256

NMTにより得られたアルミニウム合金とPPS系樹脂組成物の複合体は、携帯電話、モバイルコンピュータ、データプロジェクター等の電子機器に最適である。しかし、本複合体を自動車、自転車、航空機等の輸送機械や屋外で使用される産業用機械、建設材に使用するためには、アルミニウム合金とPPS系樹脂組成物の接合力のみならず、耐候性を兼備させなければならない。上記用途に必要な耐候性とは、陽光に対する耐性があること、水分や湿気、特に潮風の塩分が溶け込んだ雨水、汚水、海水に対する耐性があること、気温−40〜+100℃の環境で長期間の使用に耐えうること、さらにこれらの条件が複合した環境下で長期間の使用に耐えうること等である。   A composite of an aluminum alloy and a PPS resin composition obtained by NMT is most suitable for electronic devices such as mobile phones, mobile computers, and data projectors. However, in order to use this composite for transportation equipment such as automobiles, bicycles and airplanes, industrial machines used outdoors, and construction materials, not only the bonding strength of aluminum alloy and PPS resin composition, but also weather resistance. You must combine sex. The weather resistance required for the above uses is resistance to sunlight, resistance to rainwater, sewage, seawater in which moisture and moisture, especially salty seawater dissolved, long-term in an environment of temperatures from -40 to + 100 ° C. That can withstand long-term use in an environment where these conditions are combined.

本発明はこのような技術背景のもとになされたものであり、その目的はアルミニウム合金とPPS系樹脂組成物の強固な接合を達成しつつ、耐候性に優れた複合体とその製造方法を提供することにある。   The present invention has been made based on such a technical background, and its object is to provide a composite having excellent weather resistance and a method for producing the same while achieving strong bonding between an aluminum alloy and a PPS resin composition. It is to provide.

複合体の耐候性確保に最も有効なのは塗装である。塗料業界では、アルミニウム合金に2層塗装又は3層塗装することにより、陽光を遮断し、汚水、塩水も遮断する。但し、酸素、窒素、水分子は完全には遮断できず、塩水等に含まれる塩素イオン、ナトリウムイオンを完全遮断することは困難である。塗膜は高分子の絡み合った物であり、小さな分子は絡まった分子鎖の隙間を通過可能である。塗膜から露出している部分は傷付けられる場合があり、傷は金属相まで達することがあり、そこから錆が発生しうる。耐候性確保のためには、その錆が周辺に拡がる速度を抑制しなければならない。これらを勘案し、実際のアルミニウム合金材は耐候性を得るために、塗装前に表面処理が施されている。通常はクロメート処理やベーマイト化処理等の化成処理が施されている。化成処理の目的は、化成処理層と塗膜との接着性を良好にして塗膜による部材保護を良好にすること、化成処理層自体をナトリウムイオンや塩素イオンに対し低反応性とすることで、これらのイオンが金属相に侵入するのを防ぐこと等にある。   Coating is the most effective for ensuring the weather resistance of the composite. In the paint industry, two-layer or three-layer coating is applied to an aluminum alloy to block sunlight, and to prevent sewage and salt water. However, oxygen, nitrogen and water molecules cannot be completely blocked, and it is difficult to completely block chlorine ions and sodium ions contained in salt water. The coating film is an entangled polymer, and small molecules can pass through the gaps between the entangled molecular chains. The part exposed from the coating film may be scratched, and the scratch may reach the metal phase, from which rust may be generated. In order to ensure weather resistance, the speed at which the rust spreads to the periphery must be suppressed. Taking these into consideration, the actual aluminum alloy material is subjected to surface treatment before painting in order to obtain weather resistance. Usually, chemical conversion treatment such as chromate treatment and boehmite treatment is performed. The purpose of the chemical conversion treatment is to improve the adhesion between the chemical conversion treatment layer and the coating film to improve the component protection by the coating film, and to make the chemical conversion treatment layer itself low reactive to sodium ions and chlorine ions. The purpose is to prevent these ions from entering the metal phase.

NMTによって得られたアルミニウム合金とPPS系樹脂組成物の射出接合物に耐候性を持たせる場合にも、前述したようにアルミニウム合金露出部に化成処理を施して、厚い塗装をすることが必要となる。化成処理と塗装を接合後に行うことを前提とした場合、当初得られるアルミニウム合金とPPS系樹脂組成物には水分子の侵入に対する耐性があれば良い。即ち、射出接合によって得られた直後の複合体に関しては、少なくとも耐水性が必要である。   Even in the case where weather resistance is imparted to the injection-bonded product of the aluminum alloy and the PPS resin composition obtained by NMT, it is necessary to apply a chemical treatment to the exposed portion of the aluminum alloy and apply a thick coating as described above. Become. When it is assumed that the chemical conversion treatment and the coating are performed after joining, the aluminum alloy and the PPS resin composition obtained at the beginning may be resistant to intrusion of water molecules. That is, at least water resistance is required for the composite immediately after being obtained by injection joining.

本発明者らは以下に示すNMT及びNMTを改良したNMT2によって、接合部分への水分子の侵入を抑制することが可能であると判断した。これはNMT及びNMT2によって、複合体におけるアルミニウム合金とPPS系樹脂組成物との隙間を極めて小さくすることができたためである。また、本発明者らは特許文献3に示すように、NMT及びNMT2によって、アルミニウム合金とPPS系樹脂組成物との接合部分のガス通過量を抑制できることを確認している。本発明者らは、このようなガス封止性に優れた接合技術は水分子の通過も抑制することが可能であると判断した。   The inventors of the present invention have determined that the penetration of water molecules into the bonded portion can be suppressed by the following NMT and NMT2 improved from NMT. This is because the gap between the aluminum alloy and the PPS resin composition in the composite can be extremely reduced by NMT and NMT2. In addition, as shown in Patent Document 3, the present inventors have confirmed that NMT and NMT2 can suppress the gas passage amount at the joint portion between the aluminum alloy and the PPS resin composition. The present inventors have determined that such a bonding technique with excellent gas sealing properties can also suppress the passage of water molecules.

(NMT)
図1に示すNMTの例では、アルミニウム合金相10の表面に形成された直径20〜50nmの超微細凹部に樹脂組成物20が侵入している。超微細凹部は厚さ3nm以上の酸化アルミニウム薄層30で覆われている。このような表面構造のアルミニウム合金を射出成形金型にインサートし、溶融した熱可塑性樹脂を高圧で射出させる。このとき、熱可塑性樹脂と、アルミニウム合金表面に吸着していたアミン系化合物分子が遭遇することで化学反応する。この化学反応は、この熱可塑性樹脂が低温の金型温度に保たれたアルミニウム合金に接して急冷されて結晶化し固化せんとする物理反応を抑制する。その結果、樹脂は、結晶化や固化が遅れ、その間にアルミニウム合金表面の超微細凹部に浸入し、侵入後に結晶化、固化して硬質の酸化アルミニウム薄層30と接合する。このアンカー効果により、熱可塑性樹脂は外力を受けてもアルミニウム合金表面から剥がれ難くなる。即ち、アルミニウム合金と形成された樹脂成形品は強固に接合する。実際、アミン系化合物と化学反応できるPBTやPPSがこのアルミニウム合金と射出接合ができることを確認している。
(NMT)
In the example of NMT shown in FIG. 1, the resin composition 20 penetrates into an ultrafine recess having a diameter of 20 to 50 nm formed on the surface of the aluminum alloy phase 10. The ultrafine recess is covered with an aluminum oxide thin layer 30 having a thickness of 3 nm or more. An aluminum alloy having such a surface structure is inserted into an injection mold, and a molten thermoplastic resin is injected at a high pressure. At this time, a chemical reaction occurs when the thermoplastic resin and the amine compound molecules adsorbed on the aluminum alloy surface are encountered. This chemical reaction suppresses a physical reaction in which the thermoplastic resin is rapidly cooled in contact with an aluminum alloy maintained at a low mold temperature to crystallize and solidify. As a result, the resin is delayed in crystallization and solidification, and in the meantime, enters the ultrafine recesses on the surface of the aluminum alloy, crystallizes and solidifies after entering, and joins the hard aluminum oxide thin layer 30. This anchor effect makes it difficult for the thermoplastic resin to be peeled off from the aluminum alloy surface even when subjected to an external force. That is, the resin molded product formed with the aluminum alloy is firmly bonded. In fact, it has been confirmed that PBT and PPS that can chemically react with an amine compound can be injection-bonded with the aluminum alloy.

NMTは特許文献1、2に開示されているが、その概要を記載する。形状化したアルミニウム合金部品を脱脂槽に投入して脱脂操作をする。次いで数%濃度の苛性ソーダ水溶液に浸漬して表層を溶かし、脱脂操作で落とし切れなかった汚れをアルミニウム表層ごと落とす。次いで数%濃度の硝酸水溶液に浸漬して、前操作で表面に付着したナトリウムイオン等を中和し除去する。ここまでの操作はアルミニウム合金部品の表面を構造的、化学的に安定した綺麗な表面にする操作であり、言わば化粧前の洗顔である。もし汚れや腐食箇所の全くない綺麗なアルミニウム合金部品であれば、これら前処理操作は省くことができる。   NMT is disclosed in Patent Documents 1 and 2, but an outline thereof will be described. The shaped aluminum alloy part is put into a degreasing tank and degreased. Next, the surface layer is dissolved by immersing in a caustic soda aqueous solution having a concentration of several percent, and the dirt that cannot be removed by the degreasing operation is removed together with the aluminum surface layer. Next, it is immersed in an aqueous nitric acid solution having a concentration of several percent to neutralize and remove sodium ions and the like adhering to the surface in the previous operation. The operation so far is an operation of making the surface of the aluminum alloy part a beautiful surface that is structurally and chemically stable, that is, washing the face before makeup. If the aluminum alloy parts are clean and free from dirt and corrosion, these pretreatment operations can be omitted.

NMTにおける重要な処理は以下に示すものである。NMTでは水溶性アミン系化合物の水溶液にアルミニウム合金を適当な条件で浸漬し、合金表面をエッチングして20〜80nm周期の超微細凹凸を形成し、同時にそのアミン系化合物を化学吸着させる。本発明者等は、表面処理条件を異ならせた各々のアルミニウム合金を射出成形金型にインサートしてNMT用のPBT系樹脂やPPS系樹脂を射出接合する実験を行った。そして、その接合力が最大になり、且つ表面処理の際の浸漬時間が1〜2分になる条件を探し出し、これを最適な製造方法として使用してきた。より具体的に言えば、アルミニウム合金の表面処理に使用する水溶性のアミン系化合物は一水和ヒドラジンであり、条件(濃度、液温度、浸漬時間)を異ならせて表面処理を行い、各アルミニウム合金と熱可塑性樹脂との接合力を測定し、最適の濃度、液温度、及び浸漬時間を決定した。   The important processes in NMT are as follows. In NMT, an aluminum alloy is immersed in an aqueous solution of a water-soluble amine compound under appropriate conditions, and the alloy surface is etched to form ultrafine irregularities with a period of 20 to 80 nm, and the amine compound is chemisorbed simultaneously. The inventors of the present invention conducted an experiment in which each aluminum alloy having different surface treatment conditions was inserted into an injection mold, and an NMT PBT resin or PPS resin was injected and joined. And the conditions which the joining force becomes the maximum and the immersion time in the case of surface treatment becomes 1-2 minutes were searched, and this has been used as an optimal manufacturing method. More specifically, the water-soluble amine compound used for the surface treatment of the aluminum alloy is monohydric hydrazine, and the surface treatment is performed under different conditions (concentration, liquid temperature, immersion time). The bonding strength between the alloy and the thermoplastic resin was measured, and the optimum concentration, liquid temperature, and immersion time were determined.

例えば、アルミニウム合金部品を、45〜65℃にした数%濃度の水和ヒドラジン水溶液に1分〜数分浸漬して20〜40nm周期の超微細凹凸表面とする超微細エッチングを行う。この水和ヒドラジン水溶液への浸漬処理では、水溶液の弱塩基性によって水素ガスを発しつつアルミニウム合金部品が全面腐食型にエッチングされる。温度と濃度、及び浸漬時間を調節すると、アルミニウム合金表面が20〜40nm周期の超微細凹凸で覆われるようになる。超微細エッチング後、アルミニウム合金部品をイオン交換水でよく水洗し、50〜70℃で乾燥すると、ヒドラジンの化学吸着が認められる射出接合に適しものとなる。これが「NMT」の表面処理法である。   For example, an aluminum alloy component is immersed in a hydrazine hydrate solution having a concentration of several percent at 45 to 65 [deg.] C. for 1 minute to several minutes to perform ultra fine etching with an ultra fine uneven surface having a period of 20 to 40 nm. In the immersion treatment in the hydrated hydrazine aqueous solution, the aluminum alloy part is etched into a general corrosion type while emitting hydrogen gas due to the weak basicity of the aqueous solution. When the temperature, concentration, and immersion time are adjusted, the aluminum alloy surface is covered with ultrafine irregularities having a period of 20 to 40 nm. After ultra-fine etching, the aluminum alloy part is thoroughly washed with ion-exchanged water and dried at 50 to 70 ° C., which makes it suitable for injection joining in which chemical adsorption of hydrazine is observed. This is the surface treatment method of “NMT”.

(NMT2)
本発明者らはNMTを改良して、さらにガス封止性に優れた射出接合技術を開発した。この技術を「NMT2」と称する。NMTではアルミニウム合金と樹脂組成物を従来になく高い接合力で接合させることができる。しかしながら、接合力という観点から最適の条件が、ガス封止性においても最適の条件とは限らない。この改良とは、超微細凹凸の直径は20〜80nm程度に維持しつつ、吸着させるアミン系化合物の量を増大させるというものである。即ち、超微細凹凸の形状を変形させずに接合力は最大レベルを維持しつつ、アミン系化合物(例えばヒドラジン)をNMTの場合よりも多量に吸着させて、熱可塑性樹脂の結晶化、固化をさらに遅らせ、超微細凹凸への侵入度を高めようようというものである。
(NMT2)
The inventors of the present invention have improved NMT and developed an injection joining technique with excellent gas sealing performance. This technique is referred to as “NMT2”. In NMT, an aluminum alloy and a resin composition can be bonded with a higher bonding force than ever before. However, the optimum condition from the viewpoint of bonding strength is not always the optimum condition in terms of gas sealing performance. This improvement is to increase the amount of the amine compound to be adsorbed while maintaining the diameter of the ultra fine irregularities at about 20 to 80 nm. That is, the bonding strength is maintained at the maximum level without deforming the shape of the ultra-fine irregularities, and an amine compound (for example, hydrazine) is adsorbed in a larger amount than in the case of NMT, thereby crystallizing and solidifying the thermoplastic resin. It is intended to further delay and increase the degree of penetration into the ultra-fine irregularities.

本発明者らは、このような視点を持って処理法を工夫した。先ずアルミニウム合金表面にNMTと同様の条件で、超微細エッチングによって超微細凹凸を作り、その後に、NMTで使用するものより低温で、より希釈された水溶性アミン系化合物水溶液に浸漬してアミン系化合物の化学吸着量を増加させる処理工程を設けた。具体例としては、まず45〜65℃にした数%濃度の水和ヒドラジン水溶液に1分〜数分浸漬して、表面に直径20〜40nmの超微細凹部を形成する(NMTと同じ処理)。この水和ヒドラジン水溶液への浸漬処理では、水溶液の弱塩基性によって水素ガスを発しつつアルミニウム合金が全面腐食型にエッチングされるが、温度と濃度、及び浸漬時間を調節すると20〜40nm周期の超微細凹凸で全面が覆われるようになる。   The present inventors devised a processing method with such a viewpoint. First, ultra-fine irregularities are created by ultra-fine etching on the aluminum alloy surface under the same conditions as NMT, and then immersed in a more diluted water-soluble amine-based compound aqueous solution at a lower temperature than that used in NMT. A treatment step for increasing the chemical adsorption amount of the compound was provided. As a specific example, first, it is immersed in an aqueous hydrazine solution having a concentration of several percent at 45 to 65 ° C. for 1 to several minutes to form ultrafine recesses having a diameter of 20 to 40 nm on the surface (the same treatment as NMT). In the immersion treatment in the hydrated hydrazine aqueous solution, the aluminum alloy is etched into a general corrosion type while emitting hydrogen gas due to the weak basicity of the aqueous solution. However, if the temperature, concentration, and immersion time are adjusted, the aluminum alloy may exceed 20 to 40 nm period. The entire surface is covered with fine irregularities.

NMT2においては、上記エッチング処理(NMTと同じ処理)の後に、15〜55℃とした0.05〜1%濃度の水溶性アミン系化合物水溶液(例えば水和ヒドラジン水溶液)に1分〜10分浸漬して水洗し、さらに50〜70℃で低温乾燥する。その意図は、低濃度水溶性アミン系化合物水溶液(例えば水和ヒドラジン水溶液)でエッチングを控え、アミン系化合物(例えばヒドラジン)の化学吸着のみを進めることにある。また、水洗後の乾燥条件を50〜70℃と低温にしている。これはアルミニウム合金表面の水酸化を防ぐために低温乾燥するのではなく、吸着したアミン系化合物(例えばヒドラジン)を化学吸着物として定着させるために最適な温度を探った結果である。なお、NMTにおけるアルミニウム合金の表面処理はヒドラジンに限らず、アンモニア又は水溶性アミンでも可能であり、NMT2もこれと同様である。後述する実験例では、水和ヒドラジン水溶液、アルキルアミン類水溶液、及びエタノールアミン水溶液を使用して、それぞれでNMT2用の表面処理が可能であることを確認した。   In NMT2, after the etching process (the same process as NMT), it is immersed for 1 minute to 10 minutes in a 0.05 to 1% aqueous water-soluble amine compound solution (for example, hydrated hydrazine aqueous solution) at 15 to 55 ° C. Then, it is washed with water and further dried at a low temperature of 50 to 70 ° C. The intent is to refrain from etching with a low-concentration water-soluble amine-based compound aqueous solution (for example, a hydrated hydrazine aqueous solution) and advance only the chemical adsorption of the amine-based compound (for example, hydrazine). Moreover, the drying conditions after water washing are 50-70 degreeC and low temperature. This is a result of searching for an optimum temperature for fixing the adsorbed amine compound (for example, hydrazine) as a chemical adsorbent, rather than drying at low temperature to prevent hydroxylation of the aluminum alloy surface. In addition, the surface treatment of the aluminum alloy in NMT is not limited to hydrazine but can be performed with ammonia or a water-soluble amine, and NMT2 is the same as this. In the experimental examples described later, it was confirmed that a surface treatment for NMT2 was possible using a hydrated hydrazine aqueous solution, an alkylamine aqueous solution, and an ethanolamine aqueous solution.

再度の水溶性アミン系化合物水溶液への浸漬では、エッチング速度が大幅に低下する一方で、化学吸着するアミン系化合物量を増加させ得る可能性があると判断し、実験を行った結果、良好な結果を得た。射出接合による接合力は全く低下せず、ガス封止性が、NMTと比較して大幅に向上した。アルミニウム合金表面に射出された熱可塑性樹脂は、直径20〜40nm程度の超微細凹部の奥底までほぼ完全に侵入し、図2に示すように、アルミニウム合金相の表層の酸化アルミニウム薄層と、熱可塑性樹脂との隙間がほぼ無くなったとみられる。これがNMTと比較してNMT2のガス封止性が格段に向上した理由であろう。   As a result of conducting an experiment, it was determined that immersion in the aqueous solution of a water-soluble amine compound again could significantly increase the amount of amine compound to be chemisorbed while significantly reducing the etching rate. The result was obtained. The joining force by injection joining did not decrease at all, and the gas sealing performance was greatly improved as compared with NMT. The thermoplastic resin injected on the surface of the aluminum alloy penetrates almost completely to the bottom of the ultrafine recess having a diameter of about 20 to 40 nm, and as shown in FIG. 2, a thin aluminum oxide layer on the surface of the aluminum alloy phase, It seems that there is almost no gap with the plastic resin. This is the reason why the gas sealing performance of NMT2 is significantly improved compared to NMT.

接合力が従来型NMTとNMT2で変化しない理由は、いずれも強い外力が加わったときに破断するのは樹脂部分であることによる。即ち、破断が生じても侵入した樹脂は超微細凹凸内部に殆ど残っており、樹脂自体の材料破壊により破断が生じる以上、接合力自体は同じである。このように、NMT2による射出接合技術はアルミニウム合金に特定の表面処理を施し、射出成形金型にインサートし、改良型熱可塑性樹脂を射出して離型し、アルミニウム合金/樹脂成形品の一体化物を得るという点では「NMT」と全く同じである。但し、そのガス封止性はNMTと比較して明かに高い。   The reason why the bonding force does not change between the conventional NMT and NMT2 is that the resin part is broken when a strong external force is applied. That is, even when the breakage occurs, the invaded resin remains almost inside the ultra-fine irregularities, and the joining force itself is the same as long as the breakage occurs due to the material destruction of the resin itself. In this way, the injection joining technology using NMT2 applies a specific surface treatment to an aluminum alloy, inserts it into an injection mold, injects an improved thermoplastic resin, releases the mold, and integrates an aluminum alloy / resin molded product. Is exactly the same as “NMT”. However, its gas sealing property is clearly higher than that of NMT.

NMT2により得られた複合体はガス封止性能以外の点では、NMTによる複合体と際が無い。複合体の破断力においては、いずれも25〜30MPa程度であり、これらの数値は樹脂成形品の破断値である。NMT用の表面処理がされたアルミニウム合金材とNMT2用の表面処理がされたアルミニウム合金材を電子顕微鏡観察しても、差異は確認できない。また、複合体のアルミニウム合金片の接合部分を50nmの厚さにスライスして、これを透過型分析電子顕微鏡で観察してもNMTとNMT2の差異を確認するのは困難である。従って、後述する構造体を作成して、数日〜1週間以上かけてガス封止性を測定する方法を採った。   The composite obtained by NMT2 is very different from the composite by NMT except for the gas sealing performance. In the breaking force of the composite, all are about 25 to 30 MPa, and these numerical values are the breaking values of the resin molded product. Even when the aluminum alloy material subjected to the surface treatment for NMT and the aluminum alloy material subjected to the surface treatment for NMT2 are observed with an electron microscope, the difference cannot be confirmed. In addition, it is difficult to confirm the difference between NMT and NMT2 even if the joint portion of the composite aluminum alloy piece is sliced to a thickness of 50 nm and observed with a transmission analytical electron microscope. Therefore, a method of measuring a gas sealing property over several days to one week or more after preparing a structure to be described later was adopted.

その他の手段としては、表面処理後のアルミニウム合金片をXPSで分析する方法がある。ただし、単独試料ではNMT用の表面処理を施したのか、又はNMT2用の表面処理を施したのかを確定するのは難しい。XPSは試料表面から深さ数nmまでのほぼ全原子の存在信号を引き出す分析法なので、全面吸着しているとしても1分子層しかない化学吸着ではその存在率は低くなり、ヒドラジン分子が発する窒素原子の信号は極めて小さい。よって、NMT処理品であってもNMT2処理品であってもXPSで窒素原子の存在確認をするには少なくとも5回以上の照射データを積算しなければ雑音信号からピークを引き出せない。一方、繰り返しのX線照射は試料を痛め、化学吸着ヒドラジンも照射繰り返しによって次第に減少する。従って積算を多数行えば良いというものでもなく、15回程度の積算が限度となる。結論としては、XPSを吸着ヒドラジンの定量分析に使用するのは困難であり、むしろ定性分析用と言える。しかしながら、NMT処理品とNMT2処理品を同日、同条件で連続的にXPS分析すれば窒素原子ピークは明らかに後者が大きくなる。   As another means, there is a method of analyzing a surface-treated aluminum alloy piece by XPS. However, it is difficult to determine whether a single sample has been subjected to a surface treatment for NMT or a surface treatment for NMT2. XPS is an analytical method that draws out the presence signal of almost all atoms from the sample surface to a depth of several nanometers. Even if it is adsorbed over the entire surface, the absorptance is low in chemical adsorption with only one molecular layer, and nitrogen generated by hydrazine molecules. The atomic signal is very small. Therefore, in order to confirm the presence of nitrogen atoms by XPS, it is not possible to extract a peak from the noise signal, even if it is an NMT-treated product or an NMT2-treated product, unless the irradiation data is accumulated at least five times. On the other hand, repeated X-ray irradiation damages the sample, and chemisorbed hydrazine gradually decreases with repeated irradiation. Therefore, it is not a matter of performing a large number of integrations, and the integration of about 15 times is the limit. In conclusion, it is difficult to use XPS for quantitative analysis of adsorbed hydrazine, and it can be said that it is rather for qualitative analysis. However, if the NMT-treated product and the NMT2-treated product are continuously subjected to XPS analysis on the same day and under the same conditions, the nitrogen atom peak obviously becomes larger.

このようにNMTの表面処理方法を一部変更することで、アルミニウム合金表面に化学吸着するアミン系化合物の量を増大させることができ、射出接合工程時にPPS系樹脂組成物が超微細凹部の奥底まで侵入し得る。図2に示すように、NMT2では、NMTよりも超微細凹部の奥まで樹脂が侵入している。これによりガス封止性はNMTより大幅に向上した。特許文献3に示す実験では、アルミニウム合金とPPS樹脂成形品との接合部分に0.5MPaの差圧をかけた状態(0.5MPaのヘリウムが接合部分を通過して大気圧側に漏れるようにした状態)で7日間放置しても、ヘリウムの漏れを確認することができない程のガス封止性を実現した。   In this way, by partially changing the surface treatment method of NMT, the amount of amine compound chemically adsorbed on the surface of the aluminum alloy can be increased. Can invade. As shown in FIG. 2, in NMT 2, the resin penetrates deeper into the ultrafine recess than NMT. As a result, the gas sealing property was significantly improved as compared with NMT. In the experiment shown in Patent Document 3, a state in which a pressure difference of 0.5 MPa is applied to the joint portion between the aluminum alloy and the PPS resin molded product (so that 0.5 MPa helium passes through the joint portion and leaks to the atmospheric pressure side). In such a state, gas sealing performance was realized so that helium leakage could not be confirmed even if left for 7 days.

(「NMT」と「NMT2」の比較)
同じアルミニウム合金とPPS系樹脂を使用して「NMT」による射出接合物、及び「NMT2」による射出接合物を作成し双方の接合力を比較した。この場合、双方共に破断力は樹脂部の材料破壊値であり、破断力は25〜35MPaとなり差異を見出せない。双方の差異は、前述したガス封性試験を行うことでようやく生ずる。「NMT2」による射出接合品は、射出樹脂がアルミニウム合金の超微細凹凸に深く侵入しており、アルミニウム合金表層と樹脂層の隙間距離が軽量分子の通過も困難にするほど小さくなっている。
(Comparison of “NMT” and “NMT2”)
Using the same aluminum alloy and PPS resin, an injection joint by “NMT” and an injection joint by “NMT2” were prepared, and the joint strengths of both were compared. In this case, in both cases, the breaking force is the material breaking value of the resin part, and the breaking force is 25 to 35 MPa, and no difference can be found. The difference between the two finally occurs when the gas tightness test described above is performed. In the injection bonded product by “NMT2”, the injection resin penetrates deeply into the ultrafine irregularities of the aluminum alloy, and the gap distance between the aluminum alloy surface layer and the resin layer is so small that it is difficult for light molecules to pass through.

本発明者らは、射出接合物の耐候性を高めるには、射出接合物自体に高い耐水性や耐湿熱性が必要と考え、その獲得にはアルミニウム合金表層と樹脂層との隙間が可能な限り小さく、水分子の通過も困難とする「NMT2」が有効と推定した。実験結果から言えば、NMTよりNMT2を使用した射出接合物の方が耐湿熱性は高かった。しかし、NMTを使用した射出接合物であっても、アルミニウム合金種によっては、射出接合後に水酸化処理及びアニール処理を加えることで、十分高い耐湿熱性が得られた。それ故、NMT、NMT2の何れも有効であると言える。   The inventors believe that in order to increase the weather resistance of an injection-joined product, the injection-joint product itself needs to have high water resistance and heat-and-moisture resistance, and as much as possible, the clearance between the aluminum alloy surface layer and the resin layer is as much as possible. It is estimated that “NMT2”, which is small and difficult to pass water molecules, is effective. Speaking from the experimental results, the injection-joint using NMT2 was higher in heat and moisture resistance than NMT. However, even with an injection-joined product using NMT, depending on the type of aluminum alloy, sufficiently high moisture and heat resistance was obtained by adding a hydroxylation treatment and an annealing treatment after injection joining. Therefore, it can be said that both NMT and NMT2 are effective.

(耐水性試験)
複合体(射出接合物)の耐水性試験としては、水と酸素が存在する環境下に数年間複合体を置いて試験する方法が実際の使用状態に近い。例えば、水中に数年間浸漬した後、複合体を取り出し、引っ張り破断試験を行って、浸漬前から破断力が変化しなければ理想的な耐候性を有していることになる。しかしながら、このような試験方法は時間がかかりずぎて実用的ではない。それ故、樹脂業界や機械製造業界では、高温高湿試験機を使用した湿熱試験を採用しており、この試験を耐水性の加速試験と位置づけている。一般的に採用されている試験条件は、温度85℃、湿度85%とした高温高湿試験機内に複合体を数百時間〜数千時間置いて、耐湿熱性を測るというものである。但し、湿熱試験を耐水性試験の加速試験として用いる場合は、湿熱試験後に複合体を常温湿度に一定時間置いた後に接合力を測定して初期値と比較する必要がある。
(Water resistance test)
As a water resistance test of a composite (injected joint), a method in which the composite is tested for several years in an environment where water and oxygen are present is close to the actual use state. For example, after being immersed in water for several years, the composite is taken out and subjected to a tensile breaking test. If the breaking force does not change from before the immersion, it has ideal weather resistance. However, such a test method is time consuming and impractical. Therefore, in the resin industry and the machine manufacturing industry, a wet heat test using a high-temperature and high-humidity tester is adopted, and this test is positioned as an accelerated test for water resistance. The test conditions generally adopted are to place the composite in a high-temperature and high-humidity tester at a temperature of 85 ° C. and a humidity of 85% to measure the heat and humidity resistance for several hundred to several thousand hours. However, when the wet heat test is used as an accelerated test for the water resistance test, it is necessary to measure the bonding strength after placing the composite in room temperature and humidity for a certain period of time after the wet heat test and compare it with the initial value.

NMTやNMT2において最も良く使用される樹脂はPPSである。PPSは高耐熱性、低吸湿性の樹脂であり、湿熱試験の温度域80〜100℃では樹脂組成物の基本構造は変化しない。即ち、湿熱試験下に置けば吸水量が増えて軟化し、接合力は低下するが、室温下に戻し放置すれば元に戻る可逆性がある。この物性は、耐水試験の加速試験として湿熱試験を使用するに適している。   The most frequently used resin in NMT and NMT2 is PPS. PPS is a resin having high heat resistance and low hygroscopicity, and the basic structure of the resin composition does not change in the temperature range of 80 to 100 ° C. in the wet heat test. That is, if it is placed under a moist heat test, the amount of water absorption increases and softens, and the bonding strength decreases. This physical property is suitable for using the wet heat test as an accelerated test for the water resistance test.

(ポット湿熱試験)
NMT2処理したアルミニウム合金とPPS系樹脂の射出接合物には優れた耐水性がある可能性が高い。これを実証すべくA5052/PPS樹脂(「SGX120」東ソー株式会社製)」の射出接合物を作製し、これらを水中投入して耐水試験にかけると共に、その加速試験である湿熱試験(85℃85%湿度)にかけた。但し、この湿熱試験であっても1000時間程度を要するため、湿熱試験として、さらに短時間で耐湿熱性を測定可能な試験方法が望ましい。耐湿熱性を短時間で測定可能な試験として、本発明者等は「ポット湿熱試験」を開発した。ポット湿熱試験とは、電気ポットに水(イオン交換水等)を入れて98℃にし、これに射出接合物を20時間投入し、取り出して70℃で10時間温風乾燥し、更に常温下で10時間送風してから引っ張り試験機にかけて破断させ、そのときの破断力を測定するというものである。この試験により、合計40時間程度で、射出接合物に高い耐水性があるか否かを判断することができる。
(Pot wet heat test)
There is a high possibility that NMT2-treated aluminum alloy and PPS resin injection joints have excellent water resistance. In order to demonstrate this, an injection joined product of A5052 / PPS resin (“SGX120” manufactured by Tosoh Corporation) ”was prepared, and these were put into water and subjected to a water resistance test, and a wet heat test (85 ° C. 85 ° C.) as an acceleration test thereof. % Humidity). However, since this wet heat test requires about 1000 hours, a test method capable of measuring wet heat resistance in a shorter time is desirable as the wet heat test. As a test capable of measuring the heat and humidity resistance in a short time, the present inventors have developed a “pot wet heat test”. In the pot heat and humidity test, water (ion exchange water or the like) is put in an electric pot to 98 ° C., and the injection bonded product is put into this for 20 hours, taken out and dried in hot air at 70 ° C. for 10 hours, and further at room temperature. The air is blown for 10 hours and then broken by a tensile tester, and the breaking force at that time is measured. By this test, it is possible to determine whether or not the injection bonded product has high water resistance in about 40 hours in total.

(射出接合物の耐水性)
NMT及びNMT2を使用したアルミニウム合金と樹脂の射出接合物では、アルミニウム合金と樹脂部との隙間距離はnmオーダーである。特にNMT2の場合にはアルミニウム合金表層と樹脂との隙間が小さく、この隙間は水分子の通過をも制限する。水分子の侵入が抑制されればアルミニウムの腐食も抑制され、アルミニウム合金表面を成す超微細凹凸面形状も変化し難い。そうなれば高温高湿下に置かれても接合力の変化、即ち、接合力の経時による低下は小さい。但し、射出接合物におけるアルミニウム合金と樹脂部との隙間は全く0(水分子が全く通過できない)ものではなく、高温高湿下に長時間置かれたときの接合力の低下は免れない。
(Water resistance of injection joints)
In an injection bonded product of an aluminum alloy and a resin using NMT and NMT2, the gap distance between the aluminum alloy and the resin part is on the order of nm. Especially in the case of NMT2, the gap between the aluminum alloy surface layer and the resin is small, and this gap also restricts the passage of water molecules. If the intrusion of water molecules is suppressed, the corrosion of aluminum is also suppressed, and the shape of the ultra fine irregular surface forming the aluminum alloy surface is difficult to change. If so, the change in the bonding force, that is, the decrease of the bonding force over time is small even when placed under high temperature and high humidity. However, the gap between the aluminum alloy and the resin part in the injection-bonded product is not zero (water molecules cannot pass through at all), and a reduction in bonding force is unavoidable when placed under high temperature and high humidity for a long time.

(耐水性の向上)
アルミニウム合金の化成処理法として、アルミニウムの水酸化反応を使用したベーマイト化処理がある。アルミニウムの水酸化は80〜100℃の水中に置くだけで進行し、100〜130℃の水蒸気中でも進行する。高温水中で水酸化が進行するということは、ごく低濃度の触媒(水酸化促進剤)を加えて水酸化速度を高め得ることを示している。本発明者等は耐水性を向上させる方法として、この水酸化処理に注目した。例えば沸騰水中に前記射出接合物を浸漬した場合、接合範囲(樹脂組成物と接している領域)以外のアルミニウム合金部位は水酸化アルミニウム層(ベーマイト層)が生成して、化成処理された状態になる。そして、アルミニウム合金と樹脂との接合境界線周辺では、水酸化反応によってアルミニウム合金表層が厚くなることにより、境界部分におけるアルミニウム合金表面層と樹脂との隙間が小さくなり、さらには図3に示すように、アルミニウム合金51と樹脂組成物53との接合境界線がアルミニウム合金表層に形成されたベーマイト層54によって覆われるようになる。このように接合範囲52の周囲がベーマイト層54によって覆われ、結果として接合範囲内への水分子の侵入が抑制される。
(Improved water resistance)
As a chemical conversion treatment method for an aluminum alloy, there is a boehmite treatment using a hydroxylation reaction of aluminum. The hydroxylation of aluminum proceeds only by placing it in water at 80 to 100 ° C, and also proceeds in water vapor at 100 to 130 ° C. The fact that hydroxylation proceeds in high temperature water indicates that a very low concentration of catalyst (hydroxylation accelerator) can be added to increase the hydroxylation rate. The present inventors paid attention to this hydroxylation treatment as a method for improving water resistance. For example, when the injection-bonded product is immersed in boiling water, an aluminum hydroxide layer (boehmite layer) is formed in the aluminum alloy region other than the bonding range (the region in contact with the resin composition) and is subjected to a chemical conversion treatment. Become. In the vicinity of the boundary line between the aluminum alloy and the resin, the surface layer of the aluminum alloy becomes thicker due to the hydroxylation reaction, so that the gap between the aluminum alloy surface layer and the resin at the boundary portion is reduced, and as shown in FIG. Further, the joining boundary line between the aluminum alloy 51 and the resin composition 53 is covered with the boehmite layer 54 formed on the aluminum alloy surface layer. Thus, the periphery of the joining range 52 is covered with the boehmite layer 54, and as a result, the intrusion of water molecules into the joining range is suppressed.

水酸化反応時間を長く取ることで、成長した水酸化アルミニウムがアルミニウム合金表面層と樹脂との隙間を埋める可能性も高まる。即ち水酸化処理によって、水分子の侵入を接合範囲の外周線(接合境界線)で止めることができる可能性がある。結果として、接合範囲内の水酸化反応は抑制され、超微細凹凸形状の維持、即ちアルミニウム合金と樹脂間の接合力が維持されると推定した。但し、水酸化処理によって成長した水酸化アルミニウムが樹脂部を押し上げ、破壊を誘う内部歪を生じる可能性も生じると思われる。   By taking a long hydroxylation reaction time, the possibility that the grown aluminum hydroxide fills the gap between the aluminum alloy surface layer and the resin increases. That is, there is a possibility that the penetration of water molecules can be stopped at the outer peripheral line (bonding boundary line) of the bonding range by the hydroxylation treatment. As a result, it was estimated that the hydroxylation reaction within the bonding range was suppressed, and the maintenance of the ultra-fine uneven shape, that is, the bonding force between the aluminum alloy and the resin was maintained. However, it seems that aluminum hydroxide grown by the hydroxylation process may push up the resin part and cause internal strain that causes destruction.

本発明者らは、NMT2によって得られたA5052アルミニウム合金/PPS系樹脂「SGX120」の射出接合物20個を「ポット湿熱試験」にかける実験を行った。このポット湿熱試験は、前述したように湿熱試験の加速試験であるが、同時に上記水酸化反応を促進させる処理でもある。即ち、「ポット湿熱試験」によって耐水性の向上を図ることが可能か否かを試験した。即ち、98℃の純水中に20時間投入し、取り出して70℃で10時間温風乾燥し、更に常温下で10時間送風してから引っ張り試験機にかけて破断させ、取り出して70℃で10時間温風乾燥し、更に常温下で10時間送風してから引っ張り試験機にかけて破断させた。その際測定された20個の破断力と、ポット湿熱試験前のA5052アルミニウム合金/PPS系樹脂「SGX120」の射出接合物の破断力を比較した結果、20個のうちの5個については破断力が全く低下していなかった。一部であっても破断力が全く低下しない現象は見逃せなかった。そこで前記の推論に従い、水酸化反応後に射出接合物を150℃〜200℃で20分以上加熱するアニール工程を付けることとした。これにより内部歪を解消できると判断した。   The present inventors conducted an experiment in which 20 injection-bonded products of A5052 aluminum alloy / PPS resin “SGX120” obtained by NMT2 were subjected to a “pot wet heat test”. This pot moist heat test is an accelerated test of the moist heat test as described above, and at the same time, is a treatment for promoting the hydroxylation reaction. That is, it was tested whether the water resistance could be improved by the “pot wet heat test”. That is, it was poured into pure water of 98 ° C. for 20 hours, taken out, dried with warm air at 70 ° C. for 10 hours, further blown at room temperature for 10 hours, then ruptured by a tensile tester, taken out and taken out at 70 ° C. for 10 hours. The sample was dried with warm air, further blown at room temperature for 10 hours, and then ruptured by a tensile tester. As a result of comparing the breaking force measured at that time with the breaking force of the injection-bonded product of A5052 aluminum alloy / PPS resin “SGX120” before the pot wet heat test, the breaking force of 5 out of 20 was compared. There was no decline at all. It was not possible to overlook the phenomenon in which the breaking force did not decrease at all even in some cases. Therefore, in accordance with the above reasoning, an annealing step is performed in which the injection bonded product is heated at 150 ° C. to 200 ° C. for 20 minutes or more after the hydroxylation reaction. As a result, it was determined that the internal distortion could be eliminated.

(水酸化処理+アニール処理)
NMT2によってA5052/「SGX120」の射出接合物を多数作成し、それらを98℃にしたイオン交換水入りポットに20時間投入し(水酸化処理)、取り出して80℃で15分乾燥し更に170℃で1時間アニールした。これら水酸化処理及びアニール処理を行った射出接合物の接合力は、水酸化処理を行わなかった射出接合物と同等であった。水酸化処理及びアニール処理を行った射出接合物は、「ポット湿熱試験」で全く接合力(破断力)が低下しないのみならず、常温下の純水に6ヶ月浸漬する耐水試験を行っても全く接合力が低下しなかった。さらに、水酸化処理及びアニール処理を行った射出接合物を、温度85℃湿度85%にした高温高湿試験機に1000時間投入した後、70℃で10時間乾燥させ、さらに常温に10時間置いて冷却した後に、引張り試験機にかけて破断力を測定した。その結果、高温高湿試験機に入れる前から全く接合力は低下していなかった。
(Hydroxylation treatment + annealing treatment)
A number of injection joints of A5052 / “SGX120” were prepared by NMT2, and these were put into a pot containing ion exchange water at 98 ° C. for 20 hours (hydroxylation treatment), taken out, dried at 80 ° C. for 15 minutes, and further 170 ° C. For 1 hour. The bonding strength of the injection bonded product that was subjected to the hydroxylation treatment and the annealing treatment was equivalent to that of the injection bonded material that was not subjected to the hydroxylation treatment. Injected joints that have been subjected to hydroxylation treatment and annealing treatment are not only reduced in bonding strength (breaking force) in the “pot moist heat test” but also subjected to a water resistance test in which they are immersed in pure water at room temperature for 6 months. The bonding force did not decrease at all. Further, the injection bonded product subjected to the hydroxylation treatment and the annealing treatment was put into a high-temperature and high-humidity tester having a temperature of 85 ° C. and a humidity of 85% for 1000 hours, then dried at 70 ° C. for 10 hours, and further placed at room temperature for 10 hours. After cooling, the breaking force was measured with a tensile tester. As a result, the bonding strength was not reduced at all before entering the high-temperature and high-humidity tester.

(自己修復機能)
上記高温高湿試験では、水酸化処理及びアニール処理を行った射出接合物を、温度85℃湿度85%にした高温高湿試験機に多数投入し、200時間後、400時間後、600時間後、800時間後、及び1000時間後に、各々所定数の射出接合物を取り出して、引張り試験機にかける実験を行った。そして1000時間経過後に取り出した射出接合物に関しては、高温高湿試験機に投入する前の射出接合物と比較して、接合力が同等であったという結果を得た。しかしながら、200時間経過後に取り出した射出接合物に関しては、破断力が低下しているものが複数個確認された。一方で、400時間経過後に取り出した射出接合物に関しては、破断力が低下しているものは確認されなかった。
(Self-repair function)
In the high-temperature and high-humidity test, a large number of injection joints subjected to the hydroxylation treatment and annealing treatment are put into a high-temperature and high-humidity testing machine having a temperature of 85 ° C. and a humidity of 85%. After 200 hours, 400 hours, and 600 hours After 800 hours and 1000 hours, a predetermined number of injection joints were taken out and subjected to an experiment on a tensile tester. And about the injection joined thing taken out after 1000-hour progress, the result that the joining force was equivalent compared with the injection joined thing before throwing into a high-temperature, high-humidity tester was obtained. However, with regard to the injection-joined product taken out after 200 hours, a plurality of those having a reduced breaking force were confirmed. On the other hand, regarding the injection-joined product taken out after 400 hours, it was not confirmed that the breaking force was reduced.

これは湿熱試験自体が、アルミニウム合金表層と樹脂層との隙間を埋める効果を生じさせたためと推定される。即ち水酸化処理及びアニール処理を行った後も、アルミニウム合金表層と樹脂層との間に隙間が残っている物もあり、そこでは未だ水分子の侵入余地があったが、高温高湿環境下(温度85℃湿度85%)に長時間置かれることによって水酸化反応が促進され、残っていた隙間がベーマイト層によって塞がれたものと考えられる。そこで、本発明者らは、射出接合物に水酸化処理を施す際、98℃のイオン交換水に20時間浸漬するという条件に代えて、酢酸ニッケルを数百PPM含有する水溶液(98℃)に20時間浸漬する条件や数千PPM含有する水溶液(98℃)に数十分浸漬する条件とした。これにより得られた水酸化処理及びアニール処理を施した射出接合物を、温度85℃湿度85%にした高温高湿試験機に多数投入し、200時間後に取り出して引張り試験機にかけて接合力を測定した結果、接合力が低下したものはなかった。即ち、強い水酸化処理を行うことで、接合範囲の周囲をベーマイト層で封止することが可能であることを確認した。   This is presumably because the wet heat test itself produced the effect of filling the gap between the aluminum alloy surface layer and the resin layer. In other words, even after the hydroxylation treatment and annealing treatment, there are still gaps between the aluminum alloy surface layer and the resin layer, where there was still room for water molecules to enter, but in a high temperature and high humidity environment. It is considered that the hydroxylation reaction was promoted by being placed at (temperature 85 ° C., humidity 85%) for a long time, and the remaining gap was blocked by the boehmite layer. Therefore, the present inventors replaced the condition of immersing in the ion-exchanged water at 98 ° C. for 20 hours when performing a hydroxylation treatment on the injection-joined product, and the aqueous solution (98 ° C.) containing several hundred PPM of nickel acetate. The conditions were soaked for 20 hours or soaked in an aqueous solution (98 ° C.) containing several thousand PPM for several tens of minutes. A large number of injection bonded products obtained by this treatment subjected to hydroxylation treatment and annealing treatment were put into a high-temperature and high-humidity testing machine with a temperature of 85 ° C. and a humidity of 85%, taken out after 200 hours, and subjected to a tensile testing machine to measure the joining force. As a result, none of the bonding strength was reduced. That is, it was confirmed that the periphery of the joining range can be sealed with a boehmite layer by performing strong hydroxylation treatment.

これらの結果から、実環境(高温高湿環境下)においてもアルミニウム合金表層の水酸化処理が促進され、これが接合力の低下を阻止することが期待される。即ち、射出接合物が高温高湿環境下におかれることで自己修復機能を発揮する可能性を示唆している。   From these results, it is expected that the hydroxylation treatment of the aluminum alloy surface layer is promoted even in an actual environment (in a high-temperature and high-humidity environment), and this prevents a decrease in bonding force. That is, it suggests the possibility that the injection-bonded product exhibits a self-repair function when placed in a high-temperature and high-humidity environment.

前述した水酸化処理及びアニール処理に関しては、A5052アルミニウム合金を使用した実験で、その効果を確認することができた。一方、アルミニウム合金の種類によって水酸化反応の反応速度が異なるため、各種類毎に水酸化反応の条件調整が必要となる。前述したように、これらは水酸化反応に純水以外、例えば酢酸ニッケルやその他の水酸化用触媒を含めた水溶液の使用で、水酸化反応の促進させることができるため、アルミニウム合金種毎に水溶液の種類や濃度を適宜調整すると良い。   Regarding the above-described hydroxylation treatment and annealing treatment, the effect could be confirmed by an experiment using A5052 aluminum alloy. On the other hand, since the reaction rate of the hydroxylation reaction varies depending on the type of aluminum alloy, it is necessary to adjust the conditions of the hydroxylation reaction for each type. As described above, since these can promote the hydroxylation reaction by using an aqueous solution other than pure water in the hydroxylation reaction, for example, nickel acetate or other hydroxylation catalyst, an aqueous solution for each aluminum alloy species. It is advisable to adjust the type and concentration of the liquid as appropriate.

本発明に係るアルミニウム合金とPPS樹脂の複合体は、アルミニウム合金とPPS樹脂の成形品が強固に接合したものであり、且つ高温高湿環境下に長時間おかれても接合力が低下しないことを特徴とする。本発明ではアルミニウムが有する水分子との反応性を利用し、アルミニウム合金表層のベーマイト層を形成することによって、接合部への水分子の侵入を抑制し、耐水性に優れた複合体を得ることができた。このような複合体に耐候性塗料を塗布することにより、耐候性を有する部材にすることができる。   The composite of the aluminum alloy and the PPS resin according to the present invention is a molded product of the aluminum alloy and the PPS resin, and the bonding strength does not decrease even if the composite is placed in a high temperature and high humidity environment for a long time. It is characterized by. In the present invention, by utilizing the reactivity of aluminum with water molecules and forming a boehmite layer on the surface of the aluminum alloy, it is possible to suppress the penetration of water molecules into the joint and obtain a composite with excellent water resistance. I was able to. By applying a weather resistant paint to such a composite, a weather resistant member can be obtained.

図1は、NMTによって得られた射出接合物の断面模式図である。FIG. 1 is a schematic cross-sectional view of an injection bonded product obtained by NMT. 図2は、NMT2によって得られた射出接合物の断面模式図である。FIG. 2 is a schematic cross-sectional view of an injection bonded product obtained by NMT2. 図3は、水酸化処理を行った射出接合物の断面模式図である。FIG. 3 is a schematic cross-sectional view of an injection bonded product that has been subjected to hydroxylation. 図4は、引張り試験に用いる射出接合物の斜視図である。FIG. 4 is a perspective view of an injection bonded product used for a tensile test. 図5は、引張り試験に用いる射出接合物の斜視図である。FIG. 5 is a perspective view of an injection bonded article used for a tensile test. 図6は、引張り試験で射出接合物が破断したときの破断形状を示す模式図である。FIG. 6 is a schematic diagram showing a fracture shape when the injection-joined material fractures in the tensile test. 図7は、研磨紙で研磨して線傷を設けたときのアルミニウム合金表面を示すである。FIG. 7 shows the surface of the aluminum alloy when it is ground with abrasive paper and provided with scratches. 図8は、NCフライス盤で加工して溝をもうけたときのアルミニウム合金表面を示す図である。FIG. 8 is a view showing an aluminum alloy surface when a groove is formed by machining with an NC milling machine.

[PPS系樹脂組成物]
NMT用のPPS系樹脂は現在数種市販されている。前記した様にNMT2では、NMTで使用する樹脂組成物を使用することができる。即ちPBT、PPS、又はポリアミド樹脂等が含まれている樹脂組成物を使用できる。ここではPPS系樹脂を例に説明する。NMT用のPPS系樹脂として現在数種市販されている。「SGX120(東ソー株式会社製)」は、NMT用PPS系樹脂の一つである。これをNMT2でも使用できる。樹脂組成物の詳細は特許文献4及び5に記載があり、その概要を記載する。NMT用のPPS系樹脂組成物は、樹脂分の70〜97%がPPSであり、30〜3%が変性ポリオレフィン系樹脂である組成物である。これに加え、両者の相溶化を促進する成分が含まれているのが好ましい。樹脂分の他には、フィラー、その他が含まれる。
[PPS resin composition]
Several types of PPS resins for NMT are currently commercially available. As described above, in NMT2, a resin composition used in NMT can be used. That is, a resin composition containing PBT, PPS, polyamide resin, or the like can be used. Here, a PPS resin will be described as an example. Several types of PPS resins for NMT are currently commercially available. “SGX120 (manufactured by Tosoh Corporation)” is one of NMT PPS resins. This can also be used in NMT2. Details of the resin composition are described in Patent Documents 4 and 5, and an outline thereof is described. The PPS resin composition for NMT is a composition in which 70 to 97% of the resin component is PPS and 30 to 3% is a modified polyolefin resin. In addition to this, it is preferable that a component that promotes compatibilization of the two is contained. In addition to the resin component, fillers and others are included.

変性ポリオレフィン系樹脂としては、無水マレイン酸変性エチレン系共重合体、グリシジルメタクリレート変性エチレン系共重合体、グリシジルエーテル変性エチレン共重合体、エチレンアルキルアクリレート共重合体等であることが好ましい。該無水マレイン酸変性エチレン系共重合体としては、例えば無水マレイン酸グラフト変性エチレン重合体、無水マレイン酸−エチレン共重合体、エチレン−アクリル酸エステル−無水マレイン酸三元共重合体等をあげることができ、その中でも特に優れた複合体が得られることからエチレン−アクリル酸エステル−無水マレイン酸三元共重合体であることが好ましく、該エチレン−アクリル酸エステル−無水マレイン酸三元共重合体の具体的例示としては、「ボンダイン(アルケマ社製)」等が挙げられる。   The modified polyolefin resin is preferably a maleic anhydride-modified ethylene copolymer, a glycidyl methacrylate-modified ethylene copolymer, a glycidyl ether-modified ethylene copolymer, an ethylene alkyl acrylate copolymer, or the like. Examples of the maleic anhydride-modified ethylene copolymer include maleic anhydride graft-modified ethylene polymer, maleic anhydride-ethylene copolymer, ethylene-acrylic acid ester-maleic anhydride terpolymer. Among them, an ethylene-acrylic acid ester-maleic anhydride terpolymer is preferable because a particularly excellent composite is obtained, and the ethylene-acrylic acid ester-maleic anhydride terpolymer is preferable. Specific examples of these include “Bondaine (manufactured by Arkema)” and the like.

該グリシジルメタクリレート変性エチレン系共重合体としては、グリシジルメタクリレートグラフト変性エチレン重合体、グリシジルメタクリレート−エチレン共重合体を挙げることができ、その中でも特に優れた複合体が得られることからグリシジルメタクリレート−エチレン共重合体であることが好ましく、該グリシジルメタクリレート−エチレン共重合体の具体例としては、「ボンドファースト(住友化学社製)」等が挙げられる。   Examples of the glycidyl methacrylate-modified ethylene-based copolymer include glycidyl methacrylate graft-modified ethylene polymer and glycidyl methacrylate-ethylene copolymer. Among them, particularly excellent composites are obtained, and therefore glycidyl methacrylate-ethylene copolymer. A polymer is preferred, and specific examples of the glycidyl methacrylate-ethylene copolymer include “Bond First” (manufactured by Sumitomo Chemical Co., Ltd.).

該グリシジルエーテル変性エチレン共重合体としては、例えばグリシジルエーテルグラフト変性エチレン共重合体、グリシジルエーテル−エチレン共重合体を挙げることができ、該エチレンアルキルアクリレート共重合体の具体例としては、「ロトリル(アルケマ社製)」等が挙げられる。又、エチレンアルキルアクリレート共重合体には、エチレンアルキルアクリレート共重合体、エチレンアルキルメタクリレート共重合体等があり好ましく使用できる。   Examples of the glycidyl ether-modified ethylene copolymer include glycidyl ether graft-modified ethylene copolymer and glycidyl ether-ethylene copolymer. Specific examples of the ethylene alkyl acrylate copolymer include “rotoryl ( Arkema) ”and the like. The ethylene alkyl acrylate copolymer includes an ethylene alkyl acrylate copolymer, an ethylene alkyl methacrylate copolymer, and the like, which can be preferably used.

上記樹脂分100重量部に対し、多官能性イソシアネート化合物0.1〜6重量部及び/又はエポキシ樹脂1〜25重量部を配合した場合に押し出し機での混ざり(分子レベルでの混ざり)がよくなり好ましい。該多官能性イソシアネート化合物は、市販の非ブロック型、ブロック型のものが使用できる。該多官能性非ブロック型イソシアネート化合物としては、例えば4,4’−ジフェニルメタンジイソシアネート、4,4’−ジフェニルプロパンジイソシアネート、トルエンジイソシアネート、フェニレンジイソシアネート、ビス(4−イソシアネートフェニル)スルホン等が例示される。また、該多官能性ブロック型イソシアネート化合物としては、分子内に2個以上のイソシアネート基を有し、そのイソシアネート基を揮発性の活性水素化合物と反応させて、常温では不活性としたものであり、該多官能性ブロック型イソシアネート化合物の種類は特に規定したものではなく、一般的には、アルコール類、フェノール類、ε−カプロラクタム、オキシム類、活性メチレン化合物類等のブロック剤によりイソシアネート基がマスクされた構造を有する。該多官能性ブロック型イソシアネートとしては、例えば「タケネート(三井竹田ケミカル社製)」等が挙げられる。   When blended with 0.1 to 6 parts by weight of a polyfunctional isocyanate compound and / or 1 to 25 parts by weight of an epoxy resin with respect to 100 parts by weight of the resin, mixing with an extruder (mixing at a molecular level) is good. It is preferable. As the polyfunctional isocyanate compound, commercially available non-block type and block type compounds can be used. Examples of the polyfunctional non-blocked isocyanate compound include 4,4'-diphenylmethane diisocyanate, 4,4'-diphenylpropane diisocyanate, toluene diisocyanate, phenylene diisocyanate, and bis (4-isocyanatophenyl) sulfone. The polyfunctional block type isocyanate compound has two or more isocyanate groups in the molecule, and the isocyanate group is reacted with a volatile active hydrogen compound so as to be inactive at room temperature. The type of the polyfunctional block type isocyanate compound is not particularly specified. Generally, the isocyanate group is masked by a blocking agent such as alcohols, phenols, ε-caprolactam, oximes, and active methylene compounds. Has a structured. Examples of the polyfunctional block type isocyanate include “Takenate (manufactured by Mitsui Takeda Chemical Co.)”.

該エポキシ樹脂としては、一般にビスフェノールA型、クレゾールノボラック型等として知られているエポキシ樹脂を用いることができ、該ビスフェノールA型エポキシ樹脂としては、例えば「エピコート(ジャパンエポキシレジン社製)」等が挙げられ、該クレゾールノボラック型エポキシ樹脂としては、「エピクロン(大日本インキ化学工業社製)」等が挙げられる。   As the epoxy resin, an epoxy resin generally known as a bisphenol A type, a cresol novolak type or the like can be used. As the bisphenol A type epoxy resin, for example, “Epicoat (manufactured by Japan Epoxy Resin Co., Ltd.)” or the like can be used. Examples of the cresol novolac type epoxy resin include “Epiclon (manufactured by Dainippon Ink and Chemicals)” and the like.

フィラーとしては強化繊維、粉体フィラー等を挙げることができ、強化繊維としては、ガラス繊維、炭素繊維、アラミド繊維などが挙げられ、ガラス繊維の具体的例示としては、平均繊維径が6〜14μmのチョップドストランド等が挙げられる。また、粉体フィラーとしては、例えば炭酸カルシウム、マイカ、ガラスフレーク、ガラスバルーン、炭酸マグネシウム、シリカ、タルク、粘土、炭素繊維やアラミド繊維の粉砕物等が挙げられる。該充填剤は、シランカップリング剤、チタネート系カップリング剤で処理したものあることが好ましい。フィラー含有量は出来上がった樹脂組成物中の0〜60%、好ましくは20〜40%である。   Examples of fillers include reinforcing fibers and powder fillers. Examples of reinforcing fibers include glass fibers, carbon fibers, and aramid fibers. Specific examples of glass fibers include an average fiber diameter of 6 to 14 μm. Chopped strands and the like. Examples of the powder filler include calcium carbonate, mica, glass flake, glass balloon, magnesium carbonate, silica, talc, clay, pulverized carbon fiber and aramid fiber. The filler is preferably treated with a silane coupling agent or a titanate coupling agent. The filler content is 0-60% in the finished resin composition, preferably 20-40%.

[射出接合工程]
(射出接合の実施)
射出成形金型にNMT又はNMT2処理をしたアルミニウム合金材をインサートし、前記のPPS系樹脂を射出する。射出条件は通常のPPS系樹脂の射出成形条件と同様であるが、金型温度は通常よりやや高めの120〜150℃にし、射出速度と射出圧も通常のPPS射出成形時の設定条件よりやや高めにするのが好ましい。NMT及びNMT2の共通の目的は、アルミニウム合金材の超微細凹凸面の超微細凹部に樹脂を押し込むことで強い接合力を生み出すことである。それ故、ガス溜まり、ガス焼け等は厳禁となり、金型にはガス抜きが欠かせない。ガス抜きをした場合には薄バリも生じやすいが、NMT2の場合には薄バリが出る程度にしっかり射出することが好ましい。要するに、見た目が綺麗な成形品を得ることのみを目的にして射出成形条件を決定すべきではない。目的はしっかり射出接合させることであり、薄バリが生じることが支障になる場合には後工程で薄バリ除きをすべきである。
[Injection joining process]
(Implementation of injection joining)
An aluminum alloy material treated with NMT or NMT2 is inserted into an injection mold, and the PPS resin is injected. The injection conditions are the same as the injection molding conditions of ordinary PPS resin, but the mold temperature is set to 120 to 150 ° C., which is slightly higher than normal, and the injection speed and injection pressure are slightly higher than the setting conditions at the time of normal PPS injection molding. It is preferable to make it higher. A common purpose of NMT and NMT2 is to generate a strong bonding force by pushing a resin into the ultrafine recesses of the ultrafine uneven surface of the aluminum alloy material. Therefore, gas accumulation and gas burning are strictly prohibited, and degassing is indispensable for the mold. When degassing, thin burrs are likely to occur, but in the case of NMT2, it is preferable to inject firmly to such an extent that thin burrs are produced. In short, injection molding conditions should not be determined solely for the purpose of obtaining a molded article with a beautiful appearance. The purpose is to make it firmly injection-bonded, and if thin burr formation hinders it, it should be removed in a later process.

(アニール)
射出接合物を射出成形機から離型した後、24時間以内に170℃付近の温度下に1時間程度置くのが好ましい。これはアルミニウム合金と成形されたPPS系樹脂組成物が強い接合力を長期間維持できるようにする上で必要な工程である。強い接合力確保を目的とする射出接合では、その金型温度は110〜160℃となっているため、離型し放冷されると金属合金部は100℃程度冷却され線膨張率に応じて収縮する。一方の樹脂部は成形収縮率に応じて収縮する。この収縮率自体が金属合金(ここではアルミニウム合金)と樹脂(ここではPPS系樹脂)で異なるし、その収縮する速度(収縮の経時変化)も異なる。
(Annealing)
After releasing the injection bonded article from the injection molding machine, it is preferable to place it at a temperature around 170 ° C. for about 1 hour within 24 hours. This is a process necessary for allowing the aluminum alloy and the molded PPS resin composition to maintain a strong bonding force for a long period of time. In injection joining for the purpose of securing a strong joining force, the mold temperature is 110 to 160 ° C. Therefore, when the mold is released from the mold and allowed to cool, the metal alloy part is cooled by about 100 ° C. and the coefficient of linear expansion is increased. Shrink. One resin part shrinks according to the molding shrinkage rate. The shrinkage rate itself differs between a metal alloy (here, an aluminum alloy) and a resin (here, a PPS resin), and the shrinking speed (change in shrinkage with time) also differs.

射出接合物が成形機から離型されて常温まで放冷される間にアルミニウム合金側は0.2〜0.3%の収縮をしようとするが、PPS系樹脂組成物は離型されてから24時間程度かけて0.3〜0.8%程度成形収縮しようとする。樹脂側での数値範囲が大きいのは樹脂の流れ方向によって成形収縮率が異なるからであり、24時間かかるのは結晶化が室温下になっても続くためである。また、結晶化による樹脂成形物の収縮速度は当初速く、経時に伴って低下していく。何れにしても、金属と樹脂の収縮具合は異なるのであるが、一方で両者は強く接合している。このとき接合面付近ではアルミニウム合金、樹脂部共に相手側の干渉を受けて内部歪が生じる。この内部歪を解消する目的でアニール工程を行った。   While the injection bonded product is released from the molding machine and allowed to cool to room temperature, the aluminum alloy side tries to shrink by 0.2 to 0.3%, but after the PPS resin composition is released. Attempts to shrink the mold about 0.3 to 0.8% over about 24 hours. The reason why the numerical range on the resin side is large is that the molding shrinkage varies depending on the flow direction of the resin, and it takes 24 hours because crystallization continues even at room temperature. In addition, the shrinkage rate of the resin molded product due to crystallization is initially high and decreases with time. In any case, the shrinkage of the metal and the resin is different, but the two are strongly bonded. At this time, in the vicinity of the joint surface, both the aluminum alloy and the resin part are subjected to interference from the other side, and internal strain occurs. An annealing process was performed for the purpose of eliminating this internal strain.

PPS系樹脂では170℃付近になると柔らかくなり、高分子間の絡みつきが緩む。全く自由になるわけではないが若干の移動が可能になって内部歪は解消する。しかも樹脂部の結晶化はアニール前には既に大部分が終了しているから、アニール終了後に放冷された場合の樹脂部の収縮は、成形収縮率に従うのではなく、通常の線膨張率に従うことになる。それ故、アルミニウム合金と樹脂間の収縮率差は小さくなるため、放冷後に残る内部歪はアニール前より大幅減少する。このような理由から射出接合後のアニールは内部歪を解消するために必要な工程である。   The PPS resin becomes soft at around 170 ° C., and the entanglement between the polymers is loosened. Although it is not free at all, a slight movement becomes possible and internal distortion is eliminated. In addition, since most of the crystallization of the resin part has already been completed before annealing, the shrinkage of the resin part when it is allowed to cool after the annealing is not according to the mold shrinkage rate, but according to the normal linear expansion rate. It will be. Therefore, since the difference in shrinkage rate between the aluminum alloy and the resin is reduced, the internal strain remaining after cooling is significantly reduced from that before annealing. For these reasons, annealing after injection bonding is a process necessary to eliminate internal strain.

(射出接合物の形状)
本発明者らは、後述する実験によって、射出接合物として図4に示す形状のものと図5に示す形状のものを作成した。図4に示す射出接合物は、アルミニウム合金51の形状が45mm×18mm×厚さ1.6mmの板状物であり、樹脂成形物53は45mm×10mm×厚さ3mmの板状物である。そして両部材の接合範囲52の面積は10mm×5mm=0.5cmである。また、図5に示す射出接合物は、アルミニウム合金51の形状が30mm×30mm×厚さ2mmの板状物であり、樹脂成形物53は45mm×10mm×厚さ3mmの板状物である。そして両部材の接合範囲52の面積は10mm×5mm=0.5cmである。
(Shape of injection joint)
The inventors of the present invention made an injection bonded product having the shape shown in FIG. 4 and the shape shown in FIG. 4 is a plate-like product in which the shape of the aluminum alloy 51 is 45 mm × 18 mm × 1.6 mm thick, and the resin molded product 53 is a plate-like product of 45 mm × 10 mm × thickness 3 mm. The area of the joining range 52 of both members is 10 mm × 5 mm = 0.5 cm 2 . 5 is a plate-like product in which the shape of the aluminum alloy 51 is 30 mm × 30 mm × thickness 2 mm, and the resin molded product 53 is a plate-like product of 45 mm × 10 mm × thickness 3 mm. The area of the joining range 52 of both members is 10 mm × 5 mm = 0.5 cm 2 .

これら射出接合物はアルミニウム合金片の厚さ及び形状が異なるだけだが、これによって湿熱試験の結果が異なってしまう。ポット湿熱試験及び、温度85℃湿度85%の高温高湿試験機による試験のいずれについても、図5に示した射出接合物の接合力が、高温高湿環境下に置かれる前の接合力から低下した。一方、常温浸水試験(期間6ヶ月)に関しては、図4図5双方の射出接合物の接合力は低下しなかった。   These injection joints differ only in the thickness and shape of the aluminum alloy pieces, but this results in different wet heat test results. For both the pot moist heat test and the test with the high temperature and high humidity tester at 85 ° C. and 85% humidity, the bonding strength of the injection bonded product shown in FIG. 5 is determined from the bonding strength before being placed in the high temperature and high humidity environment. Declined. On the other hand, regarding the room temperature immersion test (period of 6 months), the bonding strength of both the injection-bonded members in FIGS. 4 and 5 did not decrease.

図4と図5の射出接合物を比較すると、相違するのはアルミニウム合金片の形状のみであり、特に図5の射出接合物は幅広になっただけでなく厚さを2mmとしているため、これにより接合力の湿熱耐久性が低下したと考えられる。一般的に異なる材質からなる複合体の接合力を長期間維持するためには、双方が軟質の部材であるか、又は少なくとも片方が軟質の部材であることが必要である。双方共に強固な部材である場合、線膨張率も含水膨張率も異なる部材同士の接合面において内部歪が生じ、内部歪を解消する柔軟性がなければ、接合部分の外周から剥がれが生じて破断に至る。   Comparing the injection joints of FIG. 4 and FIG. 5, the only difference is the shape of the aluminum alloy piece. In particular, the injection joint of FIG. 5 is not only wide, but also has a thickness of 2 mm. It is considered that the wet heat durability of the bonding force was lowered by the above. In general, in order to maintain the bonding force of composites made of different materials for a long period of time, it is necessary that both are soft members or at least one of them is a soft member. When both are strong members, internal strain occurs at the joint surface between members having different linear expansion coefficient and moisture content expansion coefficient, and if there is no flexibility to eliminate the internal strain, peeling occurs from the outer periphery of the joint part and breaks. To.

図5に示すようにアルミニウム合金部は板状物であり、厚さが厚いと曲げ強度が強い。接合力を長期間維持するには、樹脂部との接合面積を小さくして内部歪を下げるか又は樹脂部の厚さを薄くして曲げ強度を下げるしかない。射出接合物は、少なくとも−50℃/+100℃の温度衝撃試験にかけて接合力が低下しないことが要求される。さらに射出接合物は、温度40℃湿度60%程度の環境下に長期間(1月以上)おいて、接合力が低下しないことが要求される。このような実験で接合力の低下がなければ、接合範囲の形状にも変化はなく、耐水性は保たれているはずである。   As shown in FIG. 5, the aluminum alloy part is a plate-like material, and the bending strength is strong when the thickness is large. In order to maintain the bonding force for a long period of time, there is no choice but to reduce the internal strain by reducing the bonding area with the resin part or to reduce the bending strength by reducing the thickness of the resin part. The injection-bonded product is required to have a bonding force that does not decrease through a temperature impact test of at least −50 ° C./+100° C. Furthermore, it is required for the injection-bonded product that the bonding force does not decrease over a long period (one month or more) in an environment of a temperature of about 40 ° C. and a humidity of about 60%. If there is no decrease in bonding force in such an experiment, the shape of the bonding range will not change, and the water resistance should be maintained.

(アルミニウム合金片の破断形状)
NMT又はNMT2によって得られた射出接合物は図6に示すように引張り試験機にかけて破断させ、破断したときの測定値を破断力として測定した。ただし、NMT及びNMT2による接合は極めて強度が高いため、図6(b)に示す方向に射出接合物を引っ張ると、接合面部分が伸びて金属及び樹脂の双方に曲がり変形が生じる。その結果、接合部分がせん断破断する以前に樹脂折れ破断が生じる場合がある(図6(c))。図6(c)の左に示す図は、せん断破断が生じた場合の破断形状を示し、右に示す図は、樹脂折れ破断が生じた場合の破断形状を示している。樹脂折れ破断の場合、測定された破断力は真の接合力よりも低いことは明らかである。
(Fracture shape of aluminum alloy piece)
The injection bonded product obtained by NMT or NMT2 was broken by a tensile tester as shown in FIG. 6, and the measured value at the time of breaking was measured as the breaking force. However, since the joining by NMT and NMT2 is extremely high in strength, when the injection joint is pulled in the direction shown in FIG. 6B, the joint surface portion is stretched and both the metal and the resin are bent and deformed. As a result, resin breakage may occur before the joint portion shears and breaks (FIG. 6C). The figure shown on the left of FIG.6 (c) shows the fracture | rupture shape when a shear fracture | rupture has arisen, and the figure shown on the right has shown the fracture | rupture shape when a resin broken fracture | rupture has arisen. In the case of resin breakage, it is clear that the measured breaking force is lower than the true bonding force.

図4に示す射出接合物の場合(アルミニウム合金片の厚さ1.6mm)、破断力は25〜27MPaであり、破断形状は樹脂折れ型となる。一方、図5に示す射出接合物(アルミニウム合金片の厚さ2.0mm)では引っ張り破断時に金属側が曲げ変形し難く、破断力は29〜31MPaになり、破断形状は樹脂折れ型とせん断形が混在する。従って、測定された破断力以外に、接合箇所の観察を行うことで接合状態を判断することとした。樹脂折れ破断の場合は、アルミニウム合金部に残った樹脂部をニッパー等で強引に剥がし、接合箇所を観察した。樹脂残りが少量であっても接合箇所全面に点々と付着していれば接合状態は「良」であり、中心部にだけ樹脂残りがあるものの周辺部に樹脂付着がなければ接合状態は「不良」と判断した。   In the case of the injection bonded product shown in FIG. 4 (a thickness of the aluminum alloy piece 1.6 mm), the breaking force is 25 to 27 MPa, and the breaking shape is a resin folding type. On the other hand, in the injection-bonded product (thickness of aluminum alloy piece 2.0 mm) shown in FIG. 5, the metal side is not easily bent and deformed at the time of tensile break, the break force is 29 to 31 MPa, and the break shape is a resin fold type and a shear type. Mixed. Therefore, in addition to the measured breaking force, the joining state is determined by observing the joining portion. In the case of resin breakage, the resin part remaining in the aluminum alloy part was forcibly peeled off with a nipper or the like, and the joining part was observed. Even if there is a small amount of resin remaining, the bonding state is "good" if it adheres to the entire surface of the joint, but if there is resin residue only in the center but there is no resin adhesion in the periphery, the bonding state is "bad" I decided.

[接合力を向上させる方法]
前述したように、射出接合物の双方の部材の膨張率や吸湿膨張率が異なれば、接合範囲に必ず内部歪(応力)が生じる。この内部歪は縦弾性率に影響するのみならず実際には横弾性率や容積弾性率にも影響する。要するに、接合面を2次元(面)としてではなく、3次元(厚みを持った層)として考慮しなければならない。この層の中で内部歪が生じ、外力がかかったときに内部歪と外力の加算値が材料破壊値を越すと破壊になる。この層を厚くして容積を増やすことが出来れば、内部歪をその大きな容積で分散させられると思われた。要するに接合関連層を厚くしての内部歪緩和法である。
[Method of improving bonding strength]
As described above, if the expansion coefficient and the hygroscopic expansion coefficient of both members of the injection bonded product are different, an internal strain (stress) is always generated in the bonding range. This internal strain not only affects the longitudinal elastic modulus but also actually affects the transverse elastic modulus and bulk elastic modulus. In short, the joint surface must be considered not as two-dimensional (surface) but as three-dimensional (thick layer). Internal strain occurs in this layer, and when an external force is applied, the sum of the internal strain and the external force exceeds the material destruction value, resulting in destruction. If this layer could be thickened to increase the volume, it was thought that internal strain could be dispersed in that large volume. In short, this is an internal strain relaxation method by thickening the bonding-related layer.

ここでNMT及びNMT2では、アルミニウム合金表面に20〜80nm周期の超微細凹凸を形成し、この超微細凹凸に射出した樹脂を食い込ませることによって強固な接合を達成している。換言すると、この接合に関与している部分は厚さ100nm程度の薄層であり、この薄層が金属相と樹脂相の間の歪を緩和する。20〜80nm周期の超微細凹凸に加え、より大きな周期(数μm〜数mm周期)の凹凸を加えた2重凹凸構造を採用することにより、より大きな歪を緩和することも可能になると考えられる。具体的には、射出接合前のアルミニウム合金表面の樹脂と接合する部分に、20〜80nm周期の凹凸と、数μm〜数mm周期の凹凸(RSmが2μm〜2mmの範囲であり、Rzが1μm〜1mmの範囲である凹凸)を併存させ、当該部分に樹脂を射出する。これにより、図5に示す厚いアルミニウム合金片を使用した場合であっても、耐湿熱性は低下せず、アルミニウム合金片の強度の相違による接合力の低下を防止することができた。   Here, in NMT and NMT2, strong bonding is achieved by forming ultrafine irregularities with a period of 20 to 80 nm on the surface of the aluminum alloy and causing the injected resin to bite into the ultrafine irregularities. In other words, the part involved in the bonding is a thin layer having a thickness of about 100 nm, and this thin layer relieves strain between the metal phase and the resin phase. By adopting a double concavo-convex structure in which concavo-convex with a larger period (several μm to several mm) is added in addition to ultra-fine concavo-convex with a period of 20 to 80 nm, it is considered that larger strain can be relaxed. . Specifically, on the part to be bonded to the resin on the surface of the aluminum alloy before injection bonding, irregularities with a period of 20 to 80 nm and irregularities with a period of several μm to several mm (RSm is in the range of 2 μm to 2 mm, and Rz is 1 μm. (Unevenness in the range of ˜1 mm) coexist and the resin is injected into the part. Thereby, even when the thick aluminum alloy piece shown in FIG. 5 was used, the wet heat resistance was not lowered, and it was possible to prevent the joining force from being lowered due to the difference in strength of the aluminum alloy pieces.

射出接合物の形状を決めて金型を設計し、NMT又はNMT2によって射出接合物の試作物を作成し、−50℃/+100℃程度の温度衝撃試験を行い、また、温度60℃湿度60%程度の高湿度試験を行って、接合力の低下の有無を確認する。これらの試験によって接合力の耐久性が低下した場合、前述したように、アルミニウム合金表面に20〜80nm周期の凹凸と、数μm〜数mm周期の凹凸を併存させ、射出接合を行うことによって高温高湿環境下における接合力の低下を防ぐことができる。また、樹脂部の厚さを薄くすることによって、即ち射出接合物の一方の強度を低下させて接合力を維持することも可能である。   Decide the shape of the injection joint and design the mold, make a prototype of the injection joint using NMT or NMT2, perform a temperature shock test of about -50 ° C / + 100 ° C, temperature 60 ° C humidity 60% Perform a high-humidity test to the extent that there is a decrease in bonding strength. When the durability of the bonding force is reduced by these tests, as described above, the surface of the aluminum alloy is made to have high temperature by performing injection bonding by causing unevenness with a period of 20 to 80 nm and unevenness with a period of several μm to several mm to coexist. It is possible to prevent a decrease in bonding strength in a high humidity environment. It is also possible to maintain the bonding force by reducing the thickness of the resin part, that is, reducing the strength of one of the injection-bonded articles.

(アルミニウム合金の粗面化方法)
前述のように、NMT又はNMT2用の表面処理をしたアルミニウム合金に対して、数μm〜数mm周期の凹凸を形成することで接合力を維持することも可能となるが、特に数十μm〜数百μm周期の凹凸を形成することが好ましい。具体的には、アルミニウム合金表面の樹脂と接合する箇所を粗い研磨紙(JISR6252に規定される40番〜240番の研磨紙)を使用して粗面化する。研磨によって形成される線傷は、幅0.05〜0.5mmで深さ0.02〜0.5mm程度となる。また、プレス加工やNCフライス盤を使用して当該箇所に複数の溝を設けるようにしても良い。例えば、幅0.5〜2.0mmであり、深さ0.2〜1.0mmの溝を、間隔0.5〜2.0mmで複数設けるようにしても良い。
(Roughening method of aluminum alloy)
As described above, it is possible to maintain the bonding force by forming irregularities with a period of several μm to several mm for an aluminum alloy subjected to surface treatment for NMT or NMT2, but in particular, several tens of μm to It is preferable to form irregularities with a period of several hundred μm. Specifically, the surface of the aluminum alloy surface to be joined with the resin is roughened using rough abrasive paper (No. 40-240 abrasive paper defined in JIS R6252). The line scar formed by polishing has a width of 0.05 to 0.5 mm and a depth of about 0.02 to 0.5 mm. Moreover, you may make it provide a some groove | channel in the said location using press work or NC milling machine. For example, a plurality of grooves having a width of 0.5 to 2.0 mm and a depth of 0.2 to 1.0 mm may be provided at intervals of 0.5 to 2.0 mm.

[射出接合物の耐水性]
射出接合物の耐湿熱性が良ければ耐水性がよいことになるが、必ずしも耐湿熱性が悪いからといって耐水性も悪いということにならない。実際、NMT2によって得られたA5052アルミニウム合金とPBT系樹脂又はポリアミド樹脂との射出接合物は、純水中に3ヶ月以上置いた後で引張り試験しても全く接合力は低下しない。従って耐水性は良好である。一方、高温高湿環境下に数日置く湿熱試験を行った場合には接合力が急落した。PBT及びポリアミドは、室温下や単に高温環境下に置かれただけでは変質せず、耐熱性樹脂とされているが、高温高湿環境下に置かれると加水分解が生じるからである。
[Water resistance of injection joints]
If the injection-bonded product has good heat-and-moisture resistance, the water resistance is good. However, just because the heat-and-moisture resistance is bad, it does not mean that the water-resistance is bad. In fact, the bonding strength of the injection bonded product of A5052 aluminum alloy and PBT resin or polyamide resin obtained by NMT2 does not decrease at all even if it is placed in pure water for 3 months or more and subjected to a tensile test. Therefore, the water resistance is good. On the other hand, when a wet heat test was performed for several days in a high temperature and high humidity environment, the bonding strength dropped sharply. This is because PBT and polyamide do not change in quality when placed at room temperature or simply in a high temperature environment, and are heat-resistant resins. However, hydrolysis occurs when placed in a high temperature and high humidity environment.

即ち、湿熱試験で設定する条件は実環境に存在せず、過度である。屋外環境や車内環境では、温度衝撃−50℃/+100℃に耐えうる物であれば良く、温度60℃湿度50%程度の環境下で接合力が低下しなれば良い。PBT系樹脂やポリアミド系樹脂も自動車部品に多用されている。   That is, the conditions set in the wet heat test do not exist in the actual environment and are excessive. In an outdoor environment or an in-vehicle environment, any material that can withstand a temperature shock of −50 ° C./+100° C. may be used. PBT resins and polyamide resins are also frequently used in automobile parts.

[水酸化処理及びアニール処理]
前述したように、射出接合物に水酸化処理及びアニール処理を行うことによって、高温高湿環境下における接合力の維持を図ることができる。これには、市販の電気温水ポットを使用できる。電気温水ポットにイオン交換水、又は、水酸化反応の触媒である酢酸ニッケル等を100〜10000PPM含むイオン交換水を入れ、98℃に昇温させてから射出接合物を投入する。射出接合物をポット中のイオン交換水に10分〜50時間浸漬した後に取り出し、簡易乾燥又は表面の水分を拭き取った後、熱風乾燥機に入れ、170℃で1時間アニールする処理を行った。また、水に代えて水蒸気を使用しても良い。ベーマイト層を形成しうる方法であれば良い。一方、アニールに関しては160〜180℃の範囲が好ましい。
[Hydroxylation treatment and annealing treatment]
As described above, it is possible to maintain the bonding force in a high-temperature and high-humidity environment by performing a hydroxylation treatment and an annealing treatment on the injection-bonded product. A commercially available electric hot water pot can be used for this. Ion exchange water or ion exchange water containing 100 to 10000 PPM of nickel acetate or the like as a catalyst for hydroxylation reaction is put into an electric hot water pot, and the temperature is raised to 98 ° C., and then the injection bonded article is introduced. The injection bonded product was immersed in ion exchange water in a pot for 10 minutes to 50 hours and then taken out, and after simple drying or wiping off moisture on the surface, it was placed in a hot air dryer and annealed at 170 ° C. for 1 hour. Further, water vapor may be used instead of water. Any method that can form a boehmite layer may be used. On the other hand, regarding annealing, the range of 160-180 degreeC is preferable.

水酸化処理及びアニール処理を行った後、一旦、射出接合物の接合力が低下していないか確認することが好ましい。通常は、これらの処理によって接合力は低下しないが、仮に低下している場合には、NMT又はNMT2の表面処理が適切に行われていない、又は射出接合工程で問題が生じたと考えられる。NMT又はNMT2の表面処理が適切に為されていると、射出接合工程で多少の問題が生じても接合力は低下しないが、射出接合工程に問題が生じると、耐水性の獲得が困難になる。   After performing the hydroxylation treatment and the annealing treatment, it is preferable to confirm once whether or not the joining strength of the injection-bonded product has decreased. Normally, the bonding force is not reduced by these treatments. However, if it is lowered, it is considered that the surface treatment of NMT or NMT2 is not properly performed, or a problem has occurred in the injection bonding process. If the surface treatment of NMT or NMT2 is appropriately performed, the bonding force does not decrease even if some problems occur in the injection joining process, but if problems occur in the injection joining process, it becomes difficult to obtain water resistance. .

(ポット湿熱試験)
水酸化処理及びアニール処理を施した射出接合物は、十分な耐水性、耐湿熱性がある部品部材であり、塗装によって耐候性を有する部材となる。ここで塗装前の検査として「ポット湿熱試験」を行うことが好ましい。「ポット湿熱試験」とは、98℃にしたイオン交換水に水酸化処理及びアニール処理を施した射出接合物を20時間程度浸漬し、取り出して70℃で10時間乾燥し、次いで常温で10時間乾燥した後、引張り試験機にかけて接合力を測定する試験である。
(Pot wet heat test)
The injection-bonded product that has been subjected to hydroxylation treatment and annealing treatment is a component member having sufficient water resistance and moisture and heat resistance, and becomes a member having weather resistance by painting. Here, it is preferable to perform a “pot wet heat test” as an inspection before coating. The “pot moist heat test” is a method in which an injection bonded product subjected to hydroxylation treatment and annealing treatment is immersed in ion exchange water at 98 ° C. for about 20 hours, taken out, dried at 70 ° C. for 10 hours, and then at room temperature for 10 hours. After drying, this is a test for measuring the bonding force by using a tensile tester.

[耐候性]
水酸化処理及びアニール処理を施した射出接合物が得られたら、これに塗装を加えることで耐候性にすぐれた部品とすることができる。また、射出接合物にクロメート処理等の化成処理を加えてから塗装すればより高い耐候性を得ることができるとみられる。アルミ板材や押し出し材メーカーが多く採用しているのはクロメート型化成処理である。また、化成処理をしていない板材、押し出し材、及びブロック材等を使用して機械加工し、最終品に近いアルミ製品を製造しているメーカーでは、ベーマイト処理(水酸化処理)が多用される。後述する実験例では、射出接合物に水酸化処理及びアニール処理を施しており、これは実質的にベーマイト処理であるから、その後に再度の化成処理を行う必要は無い。水酸化処理及びアニール処理を施した射出接合物を塗装することによって高い耐候性が得られる。なお、水酸化処理及びアニール処理を施した射出接合物を、クロメート処理液やノンクロメート処理液に浸漬して追加の化成処理をしても接合力には影響しないため、追加の化成処理を施しても良い。なお、クロメート型化成処理等の化成処理が施されている場合、アルミニウム合金表面をXPSで元素分析したときに、クロム、ジルコニウム、マンガン、及び珪素から選択される1種以上の元素信号が検出される。これらの元素は、化成処理によって生じた沈着物である。
[Weatherability]
Once an injection-bonded product that has been subjected to a hydroxylation treatment and an annealing treatment is obtained, it is possible to obtain a component with excellent weather resistance by adding a coating thereto. Further, it is considered that higher weather resistance can be obtained by applying a chemical conversion treatment such as a chromate treatment to the injection bonded product. It is the chromate type chemical conversion treatment that many aluminum plate and extrusion material manufacturers use. In addition, boehmite treatment (hydration treatment) is frequently used in manufacturers that manufacture aluminum products that are close to the final product by machining using unprocessed plate materials, extruded materials, block materials, and the like. . In the experimental example to be described later, the injection-bonded product is subjected to a hydroxylation treatment and an annealing treatment, which is substantially a boehmite treatment, and therefore it is not necessary to perform a chemical conversion treatment again thereafter. High weather resistance can be obtained by coating the injection-bonded product that has been subjected to hydroxylation and annealing. It should be noted that additional chemical conversion treatment is not applied to the injection bonded product that has been subjected to hydroxylation treatment and annealing treatment because it does not affect the bonding force even if it is immersed in chromate treatment liquid or non-chromate treatment liquid. May be. In addition, when chemical conversion treatment such as chromate type chemical conversion is performed, one or more element signals selected from chromium, zirconium, manganese, and silicon are detected when the aluminum alloy surface is subjected to elemental analysis by XPS. The These elements are deposits generated by the chemical conversion treatment.

(塗料)
PPS系樹脂は耐熱性樹脂であり、PPS系樹脂との接着性を確保するという観点からも金属焼付け用塗料、即ち、1液性で硬化温度が120℃以上、好ましくは150℃以上の熱硬化型塗料を使用することが好ましい。塗料メーカーがアルミニウム合金板材やアルミニウム合金中間部材(パイプ、棒、その他異形押し出し材など)、サッシ部材等の塗装用に多種の塗料を市販しているので、それらの中から選択できる。一般的には、下塗り用として金属酸化物との接着性がよいエポキシ系塗料、上塗り用として陽光に強いポリエステル系塗料やポリウレタン系塗料や弗素樹脂塗料が適している。
(paint)
The PPS resin is a heat-resistant resin, and from the viewpoint of ensuring adhesion with the PPS resin, it is a coating for metal baking, that is, a one-component, thermosetting with a curing temperature of 120 ° C or higher, preferably 150 ° C or higher. It is preferable to use a mold paint. Various paints are marketed by paint manufacturers for coating aluminum alloy sheets, aluminum alloy intermediate members (pipe, bar, other shaped extrusion materials, etc.), sash members, etc., so you can choose from these. In general, an epoxy-based paint having good adhesion to a metal oxide is suitable for undercoating, and a polyester-based paint, polyurethane-based paint, or fluororesin paint that is resistant to sunlight is suitable for overcoating.

後述する実験例では、射出接合物を2層塗装した。下地塗料はエポキシ系の1液性焼き付け塗料、上塗り塗料は弗素樹脂系焼き付け塗料とした。化成皮膜との接着性に優れ、且つ、PPSとの接着性が良い高温硬化型の1液性エポキシ系塗料を下地用として使うのが好ましい。ただしエポキシ系塗料は陽光に弱いので1層塗装とするよりも、トップコートとして陽光に強い弗素樹脂塗料、ポリエステル系塗料、又はウレタン系塗料を使用する2層塗装が好ましい。   In the experimental example to be described later, two layers of the injection-bonded product were applied. The base coating was an epoxy one-component baking coating, and the top coating was a fluororesin baking coating. It is preferable to use a high-temperature curing type one-component epoxy paint having excellent adhesion to the chemical conversion film and good adhesion to PPS for the base. However, since the epoxy paint is weak against sunlight, a two-layer paint using a fluorine resin paint, a polyester paint, or a urethane paint resistant to sunlight as the top coat is preferable to the one-coat paint.

また、後述する実験例では、追加のクロメート処理を行わずに2層塗装した射出接合物と、追加のクロメート処理をして2層塗装した射出接合物の双方に対して2サイクル(48時間)の塩水噴霧試験を行った。いずれも錆の発生はなく、少なくとも、追加のクロメート処理が接合力を低下させることはなかった。   Further, in the experimental example described later, two cycles (48 hours) are performed on both of the injection-joint that has been coated with two layers without any additional chromate treatment and the injection-joint with two layers that have been subjected to additional chromate treatment. The salt spray test was conducted. In all cases, no rust was generated, and at least the additional chromate treatment did not reduce the bonding force.

[実験例]
以下、実験例について説明する。実験に使用した装置を以下に示す。
(1)電子顕微鏡観察
アルミニウム合金材表面の観察のために電子顕微鏡を用いた。走査型(SEM)の電子顕微鏡「JSM−6700F」(日本国東京都、日本電子株式会社製)を使用し、加速電圧1〜10kVにて観察した。
(2)XPS観察
アルミニウム合金材表面に存在する元素種観察のためにXPS(X線光電子分光分析)を行なった。この試験にXPS「ESCA−3400」(株式会社 島津製作所製)を使用した。
(3)複合体の接合強度の測定
複合体の接合強度の測定として、引張り応力を測定する。具体的には、引張り試験機で複合体を引っ張ってせん断力を負荷し、複合体が破断するときの破断力を測定した。引張り試験機は「AG−10kNX」(株式会社 島津製作所製)を使用し、引っ張り速度10mm/分とした。
(4)高温高湿試験
複合体を温度85℃、湿度85%以下の環境に200時間〜2000時間おき、接合力の推移を測定した。この試験に高温高湿試験機「60リットル小型環境試験機」(エスペック株式会社製)を使用した。
(5)温度衝撃サイクル試験
複合体に対して−40℃/+100℃の温度衝撃をかけた。最低温度及び最高温度の滞在時間を各30分とし、両温度間の移動時間を各5分とし、1サイクル合計1時間10分とした。複合体に1000サイクルの温度衝撃を付加する試験を行った。この試験に「小型温度衝撃試験機」(エスペック株式会社製)を使用した。
(6)塩水噴霧試験
複合体を35℃下において、中性とした5%濃度の塩水を8時間噴霧し、噴霧を中止して16時間報知するサイクル(24時間)を、2サイクル(48時間)繰り返した。この試験に塩水噴霧試験機「STP−200(スガ試験機社製)」を使用した。
[Experimental example]
Hereinafter, experimental examples will be described. The equipment used for the experiment is shown below.
(1) Electron microscope observation An electron microscope was used for observation of the aluminum alloy material surface. A scanning (SEM) electron microscope “JSM-6700F” (Tokyo, Japan, manufactured by JEOL Ltd.) was used and observed at an acceleration voltage of 1 to 10 kV.
(2) XPS observation XPS (X-ray photoelectron spectroscopic analysis) was performed to observe the element species present on the surface of the aluminum alloy material. XPS “ESCA-3400” (manufactured by Shimadzu Corporation) was used for this test.
(3) Measurement of the bonding strength of the composite As a measurement of the bonding strength of the composite, tensile stress is measured. Specifically, the composite was pulled with a tensile tester to apply a shearing force, and the breaking force when the composite broke was measured. As the tensile tester, “AG-10kNX” (manufactured by Shimadzu Corporation) was used, and the tensile speed was 10 mm / min.
(4) High temperature and high humidity test The composite was measured every 200 hours to 2000 hours in an environment having a temperature of 85 ° C and a humidity of 85% or less, and the transition of the bonding force was measured. A high-temperature and high-humidity tester “60 liter small environmental tester” (manufactured by Espec Corp.) was used for this test.
(5) Temperature shock cycle test The composite was subjected to a temperature shock of −40 ° C./+100° C. The residence time at the lowest temperature and the highest temperature was 30 minutes each, the transfer time between both temperatures was 5 minutes each, and one cycle was 1 hour 10 minutes in total. The composite was tested for 1000 cycles of temperature shock. A “small temperature impact tester” (manufactured by Espec Corp.) was used for this test.
(6) Salt spray test At 35 ° C., the complex was sprayed with neutral 5% strength salt water for 8 hours, and the spray was stopped for 16 hours and the cycle (24 hours) was reported for 2 cycles (48 hours). ) Repeated. A salt spray tester “STP-200 (manufactured by Suga Test Instruments Co., Ltd.)” was used for this test.

[実験例1]A5052片の表面処理(NMT2)
厚さ1.6mmのA5052アルミニウム合金板材を入手し、45mm×18mmに切断して多数のA5052片を作成した。各A5052片の端部に穴を開け、その孔に塩ビコートの銅線を通すことにより、銅線に多数のA5052片をぶら下げて同時に浸漬処理を行うことができるようにした。これらA5052片に対してNMT2用の表面処理を行った。先ず、槽にアルミ用脱脂剤「NE−6」(メルテックス社製)を7.5%含む水溶液(液温60℃)を用意し、これを脱脂槽とした。A5052片を脱脂層に5分浸漬し、水道水(群馬県太田市)で水洗した。次いで別の槽に塩酸1%を含む水溶液(液温40℃)を用意し、これを予備酸洗槽とした。この予備酸洗槽に前記A5052片を1分浸漬し、イオン交換水で水洗した。次いで別の槽に苛性ソーダを1.5%含む水溶液(液温40℃)を用意し、これをエッチング槽とした。このエッチング槽に前記A5052片を1分浸漬し、イオン交換水で水洗した。次いで別の槽に3%濃度の硝酸水溶液(液温40℃)を用意し、これを中和槽とした。この中和槽に前記A5052片を1分浸漬し、イオン交換水で水洗した。次いで別の槽に水和ヒドラジン3.5%を含む水溶液(液温60℃)を用意し、これをNMT第1処理槽とした。このNMT第1処理槽に前記A5052片を1分浸漬し、イオン交換水で水洗した。次いで別の槽に水和ヒドラジン0.5%を含む水溶液(液温33℃)を用意し、これをNMT第2処理槽とした。このNMT第2処理槽に前記A5052片を3分浸漬し、イオン交換水で水洗した。次いで前記A5052片を67℃とした温風乾燥機内に15分置いて乾燥した。このように表面処理したA5052片を重ねてアルミ箔で包み、更にポリ袋に入れて封じて保管した。
[Experiment 1] Surface treatment of A5052 piece (NMT2)
An A5052 aluminum alloy sheet having a thickness of 1.6 mm was obtained and cut into 45 mm × 18 mm to produce a large number of A5052 pieces. A hole was made in the end of each A5052 piece, and a PVC-coated copper wire was passed through the hole, so that a large number of A5052 pieces were suspended from the copper wire so that a dipping process could be performed simultaneously. Surface treatment for NMT2 was performed on these A5052 pieces. First, an aqueous solution (liquid temperature 60 ° C.) containing 7.5% of an aluminum degreasing agent “NE-6” (manufactured by Meltex) was prepared in a tank, and this was used as a degreasing tank. A5052 piece was immersed in the degreasing layer for 5 minutes and washed with tap water (Ota City, Gunma Prefecture). Next, an aqueous solution containing 1% hydrochloric acid (liquid temperature 40 ° C.) was prepared in another tank, and this was used as a preliminary pickling tank. The A5052 piece was immersed in this preliminary pickling tank for 1 minute and washed with ion-exchanged water. Next, an aqueous solution (liquid temperature 40 ° C.) containing 1.5% of caustic soda was prepared in another tank, and this was used as an etching tank. The A5052 piece was immersed in this etching tank for 1 minute and washed with ion-exchanged water. Next, a 3% nitric acid aqueous solution (liquid temperature 40 ° C.) was prepared in another tank, and this was used as a neutralization tank. The A5052 piece was immersed in this neutralization tank for 1 minute and washed with ion-exchanged water. Next, an aqueous solution (liquid temperature 60 ° C.) containing 3.5% hydrated hydrazine was prepared in another tank, and this was used as the NMT first processing tank. The A5052 piece was immersed in this NMT first treatment tank for 1 minute and washed with ion-exchanged water. Next, an aqueous solution (liquid temperature 33 ° C.) containing 0.5% of hydrated hydrazine was prepared in another tank, and this was used as the NMT second processing tank. The A5052 piece was immersed in this NMT second treatment tank for 3 minutes and washed with ion-exchanged water. Next, the A5052 piece was placed in a hot air dryer at 67 ° C. for 15 minutes and dried. The A5052 pieces thus surface-treated were overlapped and wrapped with aluminum foil, further sealed in a plastic bag and stored.

上記表面処理を施したA5052片表面を電子顕微鏡で観察した結果、表面は無数の超微細凹部で覆われており、その凹部の径は20〜40nmであった。また、XPSによる表面観察で窒素の存在を確認できた。   As a result of observing the surface of the A5052 piece subjected to the above surface treatment with an electron microscope, the surface was covered with innumerable ultrafine recesses, and the diameter of the recesses was 20 to 40 nm. Moreover, the presence of nitrogen could be confirmed by surface observation by XPS.

[実験例2]PPS樹脂
市販のPPS樹脂「SGX120」(株式会社 東ソー製)を使用した。この「SGX120」ペレットを数Kg毎にステンレス製平皿に取り、150℃にセットした熱風乾燥機内に2時間以上置いて乾燥した。
Experimental Example 2 PPS Resin A commercially available PPS resin “SGX120” (manufactured by Tosoh Corporation) was used. The “SGX120” pellets were taken on a stainless steel flat plate every several kg and placed in a hot air dryer set at 150 ° C. for 2 hours or more to dry.

[実験例3]射出接合(A5052/SGX120)
金型温度145℃にした射出成形用金型に実験例1の表面処理を施したA5052片をインサートし、その表面に実験例2の「SGX120」を射出した。射出温度は300℃とした。このようにしてA5052/SGX120射出接合物を多数得た。SG120からなる樹脂片は45mm×10mm×5mm厚の直方体であり、A5052片との接合面積は10mm×5mm=0.5cmである。射出接合物は170℃にした熱風乾燥機に1時間入れてアニールし、放冷した。このようにして得られた射出接合物3個を引張り試験機にかけて接合力を測定した結果、破断力は平均26.1MPaであり、全て樹脂折れ破断であった。接合範囲であった箇所に残っている樹脂をニッパーで剥がして観察した。接合範囲に残る樹脂が少なく、接合範囲全体に点々と付着しており、接合状態は「良」であった。
[Experiment 3] Injection joining (A5052 / SGX120)
An A5052 piece subjected to the surface treatment of Experimental Example 1 was inserted into an injection mold having a mold temperature of 145 ° C., and “SGX120” of Experimental Example 2 was injected on the surface thereof. The injection temperature was 300 ° C. In this way, a large number of A5052 / SGX120 injection joints were obtained. The resin piece made of SG120 is a rectangular parallelepiped having a thickness of 45 mm × 10 mm × 5 mm, and the bonding area with the A5052 piece is 10 mm × 5 mm = 0.5 cm 2 . The injection-bonded product was annealed for 1 hour in a hot air dryer set at 170 ° C. and allowed to cool. As a result of measuring the joining force of the three injection joints obtained in this manner by using a tensile tester, the breaking force was an average of 26.1 MPa, and all were resin fractures. The resin remaining at the location that was in the joining range was peeled off with a nipper and observed. There was little resin remaining in the bonding range, and it adhered to the entire bonding range, and the bonding state was “good”.

[実験例4]水酸化処理及びアニール処理
市販の温水ポット(タイガー魔法瓶社製)にイオン交換水を6分目ほど入れて、98℃にセットし、昇温後に実験例3で得た射出接合物を投入して20時間置いた後、ポットから取り出した(水酸化処理)。その後、射出接合物を熱風乾燥機に入れて80℃で30分、次いで170℃で1時間のアニールをした。放冷後、射出接合物3個を各々引張り試験機にかけて接合力を測定した結果、平均の破断力は25.8MPaであり、全て樹脂折れ破断であった。接合状態は全て「良」であり、実験例3における接合力と実質的に変化していないことを確認した。
[Experimental Example 4] Hydroxide treatment and annealing treatment Ion exchange water was put into a commercially available hot water pot (manufactured by Tiger Thermos) for about 6 minutes, set at 98 ° C., and injection joining obtained in Experimental Example 3 after the temperature rise. The product was put in and left for 20 hours, and then removed from the pot (hydroxylation treatment). Thereafter, the injection bonded product was put in a hot air dryer and annealed at 80 ° C. for 30 minutes and then at 170 ° C. for 1 hour. After allowing to cool, the three bonded joints were each subjected to a tensile tester and the bonding force was measured. As a result, the average breaking force was 25.8 MPa, and all were resin fractures. It was confirmed that all of the joining states were “good” and substantially unchanged from the joining force in Experimental Example 3.

[実験例5]高温高湿試験
実験例4の水酸化処理及びアニール処理を施した射出接合物を使用して、高温高湿試験を行った。射出接合物16個を温度85℃、湿度85%にした高温高湿試験機に入れて200時間後、400時間後、750時間後、1000時間後、2000時間後に各々2個づつ取り出し、取り出した射出接合物を70℃下に10時間置いて乾燥し、その後常温下に10時間置いて冷却した。冷却後の射出接合物を引張り試験機にかけて接合力を測定した結果を表1に示す。表1の結果から、射出接合物を高温高湿環境下に2000時間置いても、接合力が実質的に低下していないことを確認できる。また、接合状態は10個全て「良」であった。
[Experimental Example 5] High-temperature and high-humidity test Using the injection bonded product subjected to the hydroxylation treatment and annealing treatment of Experimental Example 4, a high-temperature and high-humidity test was conducted. 16 injection joints were put into a high-temperature and high-humidity tester with a temperature of 85 ° C. and a humidity of 85%, and two pieces were taken out after 200 hours, 400 hours, 750 hours, 1000 hours, and 2000 hours, respectively. The injection-bonded product was dried at 70 ° C. for 10 hours and then cooled at room temperature for 10 hours. Table 1 shows the results of measuring the joining force by applying the injection-joined product after cooling to a tensile tester. From the results shown in Table 1, it can be confirmed that the bonding strength is not substantially reduced even when the injection bonded article is placed in a high temperature and high humidity environment for 2000 hours. In addition, all 10 bonding states were “good”.

Figure 2012232583
Figure 2012232583

[実験例6]A5052片の表面処理(NMT2)
厚さ2mmのA5052アルミニウム合金板材を入手し、30mm×30mmに切断して60個のA5052片を作成した。そのうち30個に関しては、実験例1と同様の表面処理を行った。他の30個に関しては、PPS樹脂との接合範囲(10mm×5mm)となる箇所を粗面化した後に、実験例1と同様の表面処理を行った。粗面化にはJISR6252に規定される120番の研磨紙を使用し、研磨紙を上記箇所に押さえ付けて数回研磨した。図7に示すように、その際A5052片51に生じる傷55は線状とした。
[Experimental Example 6] Surface treatment of A5052 piece (NMT2)
An A5052 aluminum alloy sheet having a thickness of 2 mm was obtained and cut into 30 mm × 30 mm to prepare 60 A5052 pieces. 30 of them were subjected to the same surface treatment as in Experimental Example 1. The other 30 pieces were subjected to the same surface treatment as in Experimental Example 1 after roughening the portion that would be in the bonding range (10 mm × 5 mm) with the PPS resin. For the roughening, No. 120 abrasive paper defined in JIS R6252 was used, and the abrasive paper was pressed against the above-mentioned place and polished several times. As shown in FIG. 7, the scratch 55 generated on the A5052 piece 51 at that time was linear.

[実験例7]射出接合(A5052/SGX120)
金型温度140℃にした射出成形用金型に実験例6で得られた研磨を施していない傷無しのA5052片(NMT2の表面処理のみを施したもの)をインサートし、その表面に実験例2の「SGX120」を射出した。射出温度は300℃とした。このようにしてA5052/SG120射出接合物を30個得た。SG120からなる樹脂片は45mm×10mm×5mm厚の直方体であり、A5052片との接合面積は10mm×5mm=0.5cmである。射出接合物は170℃にした熱風乾燥機に1時間入れてアニールし、放冷した。また、実験例6で得られた研磨を施した傷有りのA5052片(NMT2の表面処理及び研磨処理を施したもの)についても同様の方法で「SGX120」との射出接合物を30個得た。このようにして得られた射出接合物計6個を引張り試験機にかけて接合力を測定した結果、破断力は平均31.3MPaであり、全てせん断破断であった。傷無しの射出接合物と傷有りの射出接合物の破断力に差異は認められなかった。
[Experimental Example 7] Injection joining (A5052 / SGX120)
Insert the non-scratched A5052 piece (with only the surface treatment of NMT2) obtained in Experimental Example 6 into the injection mold at a mold temperature of 140 ° C. 2 “SGX120” was injected. The injection temperature was 300 ° C. In this way, 30 A5052 / SG120 injection bonded articles were obtained. The resin piece made of SG120 is a rectangular parallelepiped having a thickness of 45 mm × 10 mm × 5 mm, and the bonding area with the A5052 piece is 10 mm × 5 mm = 0.5 cm 2 . The injection-bonded product was annealed for 1 hour in a hot air dryer set at 170 ° C. and allowed to cool. Further, for the A5052 pieces with scratches obtained by polishing in Experimental Example 6 (those subjected to surface treatment and polishing treatment of NMT2), 30 injection joints with “SGX120” were obtained in the same manner. . As a result of measuring the joining force by applying a total of 6 injection joints obtained in this way to a tensile tester, the breaking force was an average of 31.3 MPa, and all were shear fractures. There was no difference in the rupture force between the injection joint with no scratch and the injection joint with the scratch.

[実験例8]水酸化処理及びアニール処理
実験例7で得られた研磨処理を施していない射出接合物30個及び研磨処理を施した射出接合物30個の合計60個を、実験例4と同様の方法で水酸化処理し、アニール処理した。研磨処理を施していない(傷無しの)射出接合物3個を引張り試験機にかけて接合力を測定した結果、破断力は30.2MPaであった。また、研磨処理を施した(傷有りの)射出接合物3個を引張り試験機にかけて接合力を測定した結果、破断力は31.1MPaであった。いずれの場合もせん断破断と樹脂折れ破断が混合していた。せん断破断が生じた箇所の全てに、少量の樹脂が点々と付着しており、接合状態は全て「良」であった。樹脂折れ型の破断が生じた箇所から、残った樹脂をニッパーで剥がし取り、表面を観察した結果、接合状態は全て「良」であった。これらの測定結果及び観察結果から、水酸化処理及びアニール処理によって実質的に接合力が変化していないことが確認された。
[Experimental Example 8] Hydroxication Treatment and Annealing Treatment A total of 60 injection joints obtained in Experimental Example 7 that were not subjected to polishing treatment and 30 injection joints that were subjected to polishing treatment were combined with Experimental Example 4 and In the same manner, hydroxylation treatment and annealing treatment were performed. As a result of measuring the joining force of three injection joints not subjected to polishing treatment (without scratches) using a tensile tester, the breaking force was 30.2 MPa. In addition, as a result of measuring the joining force by applying three polishing joints (with scratches) subjected to polishing treatment to a tensile tester, the breaking force was 31.1 MPa. In either case, shear fracture and resin fracture were mixed. A small amount of resin adhered to all the locations where shear fracture occurred, and the bonding state was all “good”. As a result of observing the surface by peeling off the remaining resin from the location where the breakage of the broken resin mold occurred, the bonded state was all “good”. From these measurement results and observation results, it was confirmed that the bonding force was not substantially changed by the hydroxylation treatment and the annealing treatment.

[実験例9]ポット湿熱試験(大きいA5052のNMT2射出接合品)
実験例8の水酸化処理及びアニール処理を施した2種(研磨処理無し及び研磨処理有り)の射出接合物各3個を使用して、ポット湿熱試験を行った。市販の電気ポットにイオン交換水を6分目まで入れて98℃にセットした。98℃となったイオン交換水中に2種の射出接合物各3個を投入し、20時間後に全て取り出した。取り出した射出接合物を熱風乾燥機に入れ、70℃で10時間乾燥し、更に常温で10時間置いた後に、引っ張り破断試験にかけて接合力を測定した。破断力は、研磨処理無しの射出接合物で平均18.4MPa、研磨処理有りの射出接合物で平均30.7MPaであった。研磨処理によって傷を設けた射出接合物では接合力が維持されていたが、傷の無い射出接合物では,接合力が低下していた。
[Experimental Example 9] Pot Wet Heat Test (large A5052 NMT2 injection-bonded product)
A pot moist heat test was conducted using three each of the two types of injection joints (no polishing treatment and with polishing treatment) subjected to the hydroxylation treatment and annealing treatment of Experimental Example 8. Ion exchange water was put in a commercially available electric pot up to the sixth minute and set at 98 ° C. Three pieces of each of the two types of injection joints were put into ion-exchanged water at 98 ° C., and all were taken out after 20 hours. The taken-out injection bonded product was put into a hot air dryer, dried at 70 ° C. for 10 hours, and further placed at room temperature for 10 hours, and then subjected to a tensile fracture test to measure the bonding force. The breaking force was an average of 18.4 MPa for the injection-joined product without polishing treatment, and an average of 30.7 MPa for the injection-joined product with polishing treatment. The joining force was maintained in the injection-bonded product in which scratches were provided by the polishing process, but the joining force was reduced in the injection-joined product having no scratch.

[実験例10]高温高湿試験
実験例8の水酸化処理及びアニール処理を施した射出接合物を使用して、高温高湿試験を行った。2種(研磨処理無し及び研磨処理有り)の射出接合物各10個を温度85℃、湿度85%にした高温高湿試験機に入れて200時間後、400時間後、750時間後、1000時間後、2000時間後に各々2個づつ取り出し、取り出した射出接合物を70℃下に10時間置いて乾燥し、その後常温下に10時間置いて冷却した。冷却後の射出接合物を引張り試験機にかけて接合力を測定した結果を表2に示す。研磨によって傷を付けていた射出接合物については、長時間、高温高湿環境下においても接合力が高く維持されていることを確認できる。即ち実験例9のポット湿熱試験で良好な結果を示した射出接合物(傷有り)に関しては、高温高湿試験機による試験でも高い接合力を維持していた。一方、実験例9のポット湿熱試験で接合力が低下した射出接合物(傷無し)に関しては、高温高湿試験機でも時間経過と共に、接合力が低下した。
[Experimental Example 10] High-temperature and high-humidity test A high-temperature and high-humidity test was conducted using the injection-bonded product subjected to the hydroxylation treatment and annealing treatment of Experimental Example 8. Two types (no polishing treatment and with polishing treatment) of 10 injection joints were put into a high-temperature and high-humidity tester with a temperature of 85 ° C. and a humidity of 85%, after 200 hours, 400 hours, 750 hours, and 1000 hours. Thereafter, two pieces were taken out after 2000 hours, and the taken out injection-joined articles were dried at 70 ° C. for 10 hours and then cooled at room temperature for 10 hours. Table 2 shows the results of measuring the joining force of the injection-joined product after cooling using a tensile tester. It can be confirmed that the injection joint that has been scratched by polishing maintains a high joining force even in a high temperature and high humidity environment for a long time. That is, for the injection bonded product (with scratches) that showed good results in the pot moist heat test of Experimental Example 9, a high bonding force was maintained even in the test using the high temperature and high humidity tester. On the other hand, regarding the injection-bonded product (without scratches) in which the bonding strength decreased in the pot wet heat test of Experimental Example 9, the bonding strength decreased with time even in the high-temperature and high-humidity tester.

Figure 2012232583
Figure 2012232583

[実験例11]耐水性試験
実験例8の水酸化処理及びアニール処理を施した射出接合物を使用して、耐水性試験を行った。2種(研磨処理無し及び研磨処理有り)の射出接合物各8個を容量600ccの密閉可能なガラス瓶に入れ、このガラス瓶にイオン交換水を400cc入れて蓋で密閉し、陽光が当たらぬ明るい場所に置いた。ガラス瓶に密閉してから3ヶ月後に2種の射出接合物各2個を取り出し、常温送風下で乾燥させた後、引張り試験機にかけて接合力を測定した。同様に、ガラス瓶に密閉してから6ヶ月後に2種の射出接合物各2個を取り出し、常温送風下で乾燥させた後、引張り試験機にかけて接合力を測定した。全て30MPaを超える破断力を示しており、耐水性試験によって傷なしの射出接合物、傷有りの射出接合物のいずれも接合力が低下しなかった。この結果から、傷無しの射出接合物に関しては、高温高湿環境下で接合力が低下しても耐水性は有している場合があり、実用面では支障がないことも多いと考えられる。例えば高湿度環境下に射出接合物が長時間置かれるが、温度は常温に近い場合等には、実用上支障ない。
[Experimental Example 11] Water Resistance Test A water resistance test was performed using the injection-bonded product subjected to the hydroxylation treatment and the annealing treatment of Experiment Example 8. Two kinds of injection joints (no polishing treatment and with polishing treatment) 8 pieces each are put into a sealable glass bottle with a capacity of 600 cc, 400 cc of ion exchange water is put in this glass bottle and sealed with a lid, and it is a bright place where sunlight does not hit Put it on. Three months after sealing in a glass bottle, two of each of the two types of injection-bonded articles were taken out and dried under normal temperature blowing, and then subjected to a tensile tester to measure the bonding force. Similarly, after sealing in a glass bottle, two types each of two types of injection-bonded products were taken out and dried under normal temperature blowing, and then subjected to a tensile tester to measure the bonding force. All showed a breaking force exceeding 30 MPa, and the bonding strength did not decrease in any of the injection-joined product with no flaw and the injection-joined product with a flaw by the water resistance test. From this result, it can be considered that the injection-bonded product without scratches may have water resistance even when the bonding force is reduced in a high-temperature and high-humidity environment, and there is often no problem in practical use. For example, when the injection bonded product is placed in a high humidity environment for a long time, but the temperature is close to room temperature, there is no practical problem.

[実験例12]A5052片の表面処理(NMT)
実験例1と同じ厚さ1.6mmのA5052アルミニウム合金板材を、45mm×18mmに切断して多数のA5052片を作成した。各A5052片の端部に穴を開け、その孔に塩ビコートの銅線を通すことにより、銅線に多数のA5052片をぶら下げて同時に浸漬処理を行うことができるようにした。これらA5052片に対してNMT用の表面処理を行った。先ず、槽にアルミ用脱脂剤「NE−6」を7.5%を含む水溶液(液温60℃)を用意し、この槽を脱脂槽とした。A5052片をこの脱脂槽に5分浸漬し、水道水(群馬県太田市)で水洗した。次いで別の槽に塩酸1%を含む水溶液(液温40℃)を用意し、これを予備酸洗槽とした。この予備酸洗槽に前記A5052片を1分浸漬し、イオン交換水で水洗した。次いで別の槽に苛性ソーダを1.5%含む水溶液(液温40℃)を用意し、これをエッチング槽とした。このエッチング槽に前記A5052片を1分浸漬し、イオン交換水で水洗した。次いで別の槽に3%濃度の硝酸水溶液(液温40℃)を用意し、これを中和槽とした。この中和槽に前記A5052片を1分浸漬し、イオン交換水で水洗した。次いで水和ヒドラジン3.5%を含む水溶液(液温60℃)を用意し、これをNMT処理槽とした。そしてNMT処理槽に前記A5052片を1分浸漬し、イオン交換水で水洗した。その後、67℃とした温風乾燥機内に前記A5052片を15分置いて乾燥した。得られたA5052片は重ねてアルミ箔で包み、更にポリ袋に入れて封じて保管した。
[Experiment 12] Surface treatment of A5052 piece (NMT)
The same A5052 aluminum alloy sheet material having a thickness of 1.6 mm as in Experimental Example 1 was cut into 45 mm × 18 mm to produce a large number of A5052 pieces. A hole was made in the end of each A5052 piece, and a PVC-coated copper wire was passed through the hole, so that a large number of A5052 pieces were suspended from the copper wire so that a dipping process could be performed simultaneously. NMT surface treatment was performed on these A5052 pieces. First, an aqueous solution (liquid temperature 60 ° C.) containing 7.5% of the aluminum degreasing agent “NE-6” was prepared in a tank, and this tank was used as a degreasing tank. A5052 piece was immersed in this degreasing tank for 5 minutes and washed with tap water (Ota City, Gunma Prefecture). Next, an aqueous solution containing 1% hydrochloric acid (liquid temperature 40 ° C.) was prepared in another tank, and this was used as a preliminary pickling tank. The A5052 piece was immersed in this preliminary pickling tank for 1 minute and washed with ion-exchanged water. Next, an aqueous solution (liquid temperature 40 ° C.) containing 1.5% of caustic soda was prepared in another tank, and this was used as an etching tank. The A5052 piece was immersed in this etching tank for 1 minute and washed with ion-exchanged water. Next, a 3% nitric acid aqueous solution (liquid temperature 40 ° C.) was prepared in another tank, and this was used as a neutralization tank. The A5052 piece was immersed in this neutralization tank for 1 minute and washed with ion-exchanged water. Next, an aqueous solution (liquid temperature 60 ° C.) containing 3.5% hydrated hydrazine was prepared, and this was used as an NMT treatment tank. And the said A5052 piece was immersed for 1 minute in the NMT processing tank, and it washed with ion-exchange water. Thereafter, the A5052 pieces were placed in a warm air dryer at 67 ° C. for 15 minutes and dried. The obtained A5052 pieces were overlapped and wrapped with aluminum foil, and further sealed in a plastic bag for storage.

[実験例13]射出接合(A5052/SGX120)
(射出接合)
実験例3と同様にして、実験例12のNMT用表面処理を施したA5052片と実験例2の「SGX120」との射出接合物を得た。射出接合物は170℃にした熱風乾燥機に1時間入れてアニールし、放冷した。このようにして得られた射出接合物3個を引張り試験機にかけて接合力を測定した結果、破断力は平均25.5MPaであり、全て樹脂折れ破断であった。接合範囲であった箇所に残っている樹脂をニッパーで剥がして観察した。接合範囲に残る樹脂が少なく、接合範囲全体に点々と付着しており、接合状態は「良」であった。この結果は実験例4(NMT2による射出接合物)と同等である。
[Experimental example 13] Injection joining (A5052 / SGX120)
(Injection joining)
In the same manner as in Experimental Example 3, an injection bonded product of A5052 pieces subjected to NMT surface treatment in Experimental Example 12 and “SGX120” in Experimental Example 2 was obtained. The injection-bonded product was annealed for 1 hour in a hot air dryer set at 170 ° C. and allowed to cool. As a result of measuring the joining force of the three injection joints obtained in this way by applying a tensile tester, the breaking force was an average of 25.5 MPa, and all were resin fractures. The resin remaining at the location that was in the joining range was peeled off with a nipper and observed. There was little resin remaining in the bonding range, and it adhered to the entire bonding range, and the bonding state was “good”. This result is equivalent to Experimental Example 4 (injection bonded product by NMT2).

(ポット湿熱試験)
次いで1Lビーカーに水和酢酸ニッケル0.7%を溶解したイオン交換水900gを入れてアルミ箔で蓋をし、これを電気温水ポットに入れた。水をビーカーの外側面とポット内側面との間に注入して、ビーカーが浮く程度の水位にし、ポットを98℃にセットして1時間ほど置いた後、アルミ箔をビーカーから剥がしてイオン交換水の液温を測定した結果、95℃前後だった。このイオン交換水に上記射出接合物20個を投入し、20分置いてポットから取り出し(水酸化処理)、水洗した後、熱風乾燥機によって70℃で30分乾燥し、次いで170℃で1時間の強制乾燥をした(アニール処理)。放冷後の射出接合物のうち、3個を引張り試験機にかけ、接合力を測定した結果、破断力は平均25.5MPaであった。全て樹脂折れ破断であり、接合状態は全て「良」であった。即ち、水酸化処理及びアニール処理を行ったことにより、接合力は実質的には変化していないことになる。
(Pot wet heat test)
Next, 900 g of ion-exchanged water in which 0.7% of hydrated nickel acetate was dissolved was placed in a 1 L beaker, covered with aluminum foil, and placed in an electric hot water pot. Inject water between the outer surface of the beaker and the inner surface of the pot to make the water level so that the beaker floats, set the pot at 98 ° C and leave it for about 1 hour, then peel off the aluminum foil from the beaker and perform ion exchange. As a result of measuring the temperature of the water, it was around 95 ° C. Twenty injection joints were put into this ion-exchanged water, left for 20 minutes, removed from the pot (hydroxylation treatment), washed with water, dried at 70 ° C. for 30 minutes with a hot air dryer, and then at 170 ° C. for 1 hour. Was forcibly dried (annealing treatment). Of the injection-bonded articles after being allowed to cool, three were subjected to a tensile tester and the bonding force was measured. As a result, the breaking force was an average of 25.5 MPa. All were resin fractures, and the joining state was all “good”. That is, the bonding force is not substantially changed by performing the hydroxylation treatment and the annealing treatment.

[実験例14]高温高湿試験
実験例13の水酸化処理及びアニール処理を施した射出接合物を使用して、高温高湿試験を行った。射出接合物10個を温度85℃、湿度85%にした高温高湿試験機に入れて200時間後、400時間後、600時間後、800時間後、1000時間後に各々2個づつ取り出し、取り出した射出接合物を70℃下に10時間置いて乾燥し、その後常温下に10時間置いて冷却した。冷却後の射出接合物を引張り試験機にかけて接合力を測定した結果を表3に示す。全て樹脂折れ破断であり、接合状態は全て「良」であった。高温高湿試験を行うことで接合力は実質的には変化していなかった。この結果から、NMT2のみならずNMT用の表面処理を行った射出接合物についても耐湿熱性を有することが確認された。但し、この結果に関しては、水酸化処理における高濃度の触媒添加が寄与したものと考えられる。
[Experimental Example 14] High-temperature and high-humidity test Using the injection bonded product subjected to the hydroxylation treatment and annealing treatment of Experimental Example 13, a high-temperature and high-humidity test was conducted. Ten injection joints were put into a high-temperature and high-humidity tester with a temperature of 85 ° C. and a humidity of 85%, and two pieces were taken out after 200 hours, 400 hours, 600 hours, 800 hours and 1000 hours, respectively. The injection-bonded product was dried at 70 ° C. for 10 hours and then cooled at room temperature for 10 hours. Table 3 shows the results of measuring the joining force by applying the injection-joined product after cooling to a tensile tester. All were resin fractures, and the joining state was all “good”. The bonding strength was not substantially changed by performing the high temperature and high humidity test. From this result, it was confirmed that not only NMT2 but also the injection-joined product subjected to the surface treatment for NMT has moisture and heat resistance. However, regarding this result, it is considered that the addition of a high concentration catalyst in the hydroxylation treatment contributed.

Figure 2012232583
Figure 2012232583

[実験例15]A6061片の表面処理(NMT2)
厚さ2mmのA6061アルミニウム合金板材を入手し、30mm×30mmに切断し、60個のA6061片を作成した。そのうち30個のA6061片に関しては、PPS樹脂と接合する範囲(10mm×5mm)を、NCフライス盤によって加工した。図8に示すように、アルミニウム合金片51のPPS樹脂と接合する範囲に、PCフライス盤によって幅0.2mm、深さ0.15mmの溝56を3本形成する溝加工を行った。これら30個のA6061片と、溝加工を施していない30個のA6061片についてNMT2用の表面処理を行った。
[Experimental Example 15] Surface treatment of A6061 piece (NMT2)
An A6061 aluminum alloy sheet having a thickness of 2 mm was obtained and cut into 30 mm × 30 mm to prepare 60 A6061 pieces. Of these, 30 A6061 pieces were processed with an NC milling machine in a range (10 mm × 5 mm) to be bonded to the PPS resin. As shown in FIG. 8, groove processing for forming three grooves 56 having a width of 0.2 mm and a depth of 0.15 mm was performed by a PC milling machine in a range where the aluminum alloy piece 51 was bonded to the PPS resin. The surface treatment for NMT2 was performed on these 30 A6061 pieces and 30 A6061 pieces that were not grooved.

脱脂槽にアルミ用脱脂剤「NE−6」7.5%を含む水溶液(液温60℃)を用意し、これを脱脂槽とした。前記A6061片をこの脱脂槽に5分浸漬し、水道水(群馬県太田市)水洗した。次いで別の槽に塩酸1%を含む水溶液(液温40℃)を用意し、これを予備酸洗槽とした。この予備酸洗槽に前記A6061片を1分浸漬し、イオン交換水で水洗した。次いで別の槽に苛性ソーダを1.5%含む水溶液(液温40℃)を用意し、これをエッチング槽とした。このエッチング槽に前記A6061片を4分浸漬し、イオン交換水で水洗した。次いで別の槽に3%濃度の硝酸水溶液(液温40℃)を用意し、これを中和槽とした。この中和槽に前記A6061片を3分浸漬し、イオン交換水で水洗した。次いで水和ヒドラジン3.5%を含む水溶液(液温60℃)を用意し、これをNMT第1処理槽とした。そしてNMT第1処理槽に前記A6061片を1分浸漬し、イオン交換水で水洗した。次いで水和ヒドラジン0.5%を含む水溶液(液温25℃)を用意し、これをNMT第2処理槽とした。そしてNMT第2処理槽に前記A6061片を10分浸漬し、イオン交換水で水洗した。その後、前記A6061片を67℃とした温風乾燥機内に15分置いて乾燥した。このようにして得られたA6061片は重ねてアルミ箔で包み、更にポリ袋に入れて封じて保管した。   An aqueous solution (liquid temperature 60 ° C.) containing 7.5% of an aluminum degreasing agent “NE-6” was prepared in a degreasing tank, and this was used as a degreasing tank. The A6061 piece was immersed in this degreasing tank for 5 minutes and washed with tap water (Ota City, Gunma Prefecture). Next, an aqueous solution containing 1% hydrochloric acid (liquid temperature 40 ° C.) was prepared in another tank, and this was used as a preliminary pickling tank. The A6061 piece was immersed in this preliminary pickling tank for 1 minute and washed with ion-exchanged water. Next, an aqueous solution (liquid temperature 40 ° C.) containing 1.5% of caustic soda was prepared in another tank, and this was used as an etching tank. The A6061 piece was immersed in this etching tank for 4 minutes and washed with ion-exchanged water. Next, a 3% nitric acid aqueous solution (liquid temperature 40 ° C.) was prepared in another tank, and this was used as a neutralization tank. The A6061 piece was immersed in this neutralization tank for 3 minutes and washed with ion-exchanged water. Next, an aqueous solution (liquid temperature 60 ° C.) containing 3.5% of hydrated hydrazine was prepared and used as the NMT first treatment tank. And the said A6061 piece was immersed for 1 minute in the NMT 1st processing tank, and it washed with ion-exchange water. Next, an aqueous solution (liquid temperature 25 ° C.) containing 0.5% of hydrated hydrazine was prepared, and this was used as the NMT second treatment tank. And the said A6061 piece was immersed in the NMT 2nd processing tank for 10 minutes, and it washed with ion-exchange water. Thereafter, the A6061 piece was placed in a hot air dryer at 67 ° C. for 15 minutes and dried. The A6061 pieces obtained in this way were stacked and wrapped in aluminum foil, and further sealed in a plastic bag for storage.

[実験例16]射出接合、水酸化処理、及びアニール処理
(射出接合)
実験例15で得られた60個のA6061片にPPS樹脂を射出接合した。金型温度140℃にした射出成形用金型に実験例15で得たA6061片をインサートし、実験例2の「SGX120」を射出して、2種(溝有り及び溝無し)の射出接合物を各30個得た。射出接合の条件は実験例2と同様である。得られた射出接合物は全て170℃にした熱風乾燥機に1時間入れてアニールし、放冷した。溝無しの射出接合物3個を引張り試験機にかけて、接合力を測定した結果、破断力は平均32.1MPaであり、全てせん断破断であった。また、溝有りの射出接合物3個を引張り試験機にかけて、接合力を測定した結果、破断力は平均31.8MPaであり、全てせん断破断であった。
[Experiment 16] Injection joining, hydroxylation, and annealing (injection joining)
PPS resin was injection-bonded to 60 pieces of A6061 obtained in Experimental Example 15. Insert the A6061 piece obtained in Experimental Example 15 into the injection mold set at a mold temperature of 140 ° C., and inject “SGX120” in Experimental Example 2, to give two types of injection joints (with and without grooves). 30 pieces of each were obtained. The conditions for injection joining are the same as in Experimental Example 2. All of the obtained injection-joined articles were annealed by placing them in a hot air drier at 170 ° C. for 1 hour and allowed to cool. As a result of measuring the joining force by applying three injection joints without grooves to a tensile tester, the breaking force was an average of 32.1 MPa, and all were shear fractures. In addition, as a result of measuring the joining force by applying three injection joints with grooves to a tensile tester, the breaking force was an average of 31.8 MPa, and all were shear fractures.

(水酸化処理及びアニール処理)
残りの射出接合物(2種合計54個)に、実験例13と同様の方法で水酸化処理及びアニール処理を施した。但し水酸化処理には600PPM濃度の水和酢酸ニッケル水溶液(液温98℃)を使用し、浸漬時間を20時間とした。アニール処理後の、射出接合物(溝無し3個及び溝有り3個)を引張り試験機にかけて、接合力を測定した結果、破断力は31.2〜33.5MPaの範囲であり、全てせん断破断であった。溝無しの射出接合物と溝有りの射出接合物の破断力に差異は認められなかった。この結果から、水酸化処理及びアニール処理が、接合力に影響を与えていないことを確認できた。
(Hydroxylation treatment and annealing treatment)
The remaining injection-bonded materials (2 types, 54 in total) were subjected to hydroxylation treatment and annealing treatment in the same manner as in Experimental Example 13. However, a hydrated nickel acetate aqueous solution (liquid temperature 98 ° C.) having a concentration of 600 PPM was used for the hydroxylation treatment, and the immersion time was 20 hours. As a result of measuring the joining force of the injection-bonded product (3 without grooves and 3 with grooves) after the annealing treatment and measuring the joining force, the breaking force is in the range of 31.2 to 33.5 MPa, all shear breaking Met. There was no difference in the breaking force between the injection joint without groove and the injection joint with groove. From this result, it was confirmed that the hydroxylation treatment and the annealing treatment did not affect the bonding force.

[実験例17]ポット湿熱試験
実験例16で得られた2種(溝無し及び溝有り)の射出接合物各3個をポット湿熱試験にかけた。市販の電気ポットにイオン交換水を6分目まで入れて98℃にセットし、98℃となったイオン交換水中に2種の射出接合物各3個を投入し、20時間後に全て取り出した。取り出した射出接合物を熱風乾燥機に入れ、70℃で10時間乾燥し、更に常温で10時間置いた後に、引っ張り破断試験にかけて接合力を測定した。破断力は、溝無しの射出接合物で平均18.9MPa、溝有りの射出接合物で平均30.9MPaであった。溝加工した射出接合物では接合力が維持されていたが、溝加工のない射出接合物では,接合力が低下していた。
[Experimental Example 17] Pot Wet Heat Test Three each of the two types of injection joints obtained in Experiment Example 16 (without grooves and with grooves) were subjected to a pot wet heat test. Ion exchange water was put in a commercially available electric pot until the 6th minute and set to 98 ° C., and 3 kinds of each of the two injection joints were put into the ion exchange water at 98 ° C., and all were taken out after 20 hours. The taken-out injection bonded product was put into a hot air dryer, dried at 70 ° C. for 10 hours, and further placed at room temperature for 10 hours, and then subjected to a tensile fracture test to measure the bonding force. The breaking force was an average of 18.9 MPa for the injection-joined product without a groove and an average of 30.9 MPa for the injection-joined product with a groove. The joining force was maintained in the grooved injection-joined product, but the joining force was reduced in the injection-joined product without grooving.

[実験例18]高温高湿試験
実験例16の水酸化処理及びアニール処理を施した射出接合物を使用して、高温高湿試験を行った。2種(溝有り及び溝無し)の射出接合物各10個を温度85℃、湿度85%にした高温高湿試験機に入れて200時間後、400時間後、600時間後、800時間後、1000時間後に各々2個づつ取り出し、取り出した射出接合物を70℃下に10時間置いて乾燥し、その後常温下に10時間置いて冷却した。冷却後の射出接合物を引張り試験機にかけて接合力を測定した結果を表4に示す。溝有り射出接合物については、長時間、高温高湿環境下においても接合力が高く維持されていることを確認できる。即ち実験例17のポット湿熱試験で良好な結果を示した射出接合物(溝有り)に関しては、高温高湿試験機による試験でも高い接合力を維持していた。一方、実験例17のポット湿熱試験で接合力が低下した射出接合物(溝無し)に関しては、高温高湿試験機でも時間経過と共に、接合力が低下した。
[Experimental Example 18] High-temperature and high-humidity test Using the injection bonded product subjected to the hydroxylation treatment and annealing treatment of Experimental Example 16, a high-temperature and high-humidity test was conducted. Two types (grooved and non-grooved) of 10 injection joints were put into a high-temperature and high-humidity tester with a temperature of 85 ° C. and a humidity of 85%, after 200 hours, 400 hours, 600 hours, 800 hours, Two thousand pieces were taken out after 1000 hours, and the taken out injection-joined pieces were dried at 70 ° C. for 10 hours and then cooled at room temperature for 10 hours. Table 4 shows the results of measuring the joining force by applying the injection-joined product after cooling to a tensile tester. It can be confirmed that the bonding strength with a groove is maintained high even in a high temperature and high humidity environment for a long time. That is, for the injection bonded product (with grooves) that showed good results in the pot moist heat test of Experimental Example 17, a high bonding force was maintained even in the test using the high temperature and high humidity tester. On the other hand, as for the injection-bonded product (without grooves) whose bonding strength decreased in the pot moist heat test of Experimental Example 17, the bonding strength decreased with time even in the high-temperature and high-humidity tester.

Figure 2012232583
Figure 2012232583

[実験例19]化成処理
実験例16の水酸化処理及びアニール処理を施した溝有りの射出接合物8個に対して、クロメート型化成処理を施した。三酸化クロムとフッ化水素を含むクロメート型処理液「アルクロム713」(日本パーカライジング株式会社製)をメーカー指示濃度(概ね7%程度)になるようイオン交換水で薄めて化成処理液(液温45℃)とした。この化成処理液に前記射出接合物を2分間浸漬し、水洗し、80℃にセットした熱風乾燥機に入れて30分乾燥した。なお、アルミニウム合金を直接この化成処理液に浸漬した場合には通常褐色化するが、今回はこの化成処理によって色調は変化しなかった。化成処理した射出接合物のうち3個を引張り試験機にかけて接合力を測定した結果、破断力は平均30.7MPaであり、この化成処理によって接合力は実質変化しないことが確認された。引っ張り試験に使用したA6061片の表面(接合範囲ではなく、引張り試験機が掴んだチャック部分でもない範囲)をXPS分析した結果、クロムのピークが認められ、クロムイオンが沈着していることは明らかだった。
[Experimental Example 19] Chemical Conversion Treatment Chromate-type chemical conversion treatment was performed on eight injection joints with grooves subjected to the hydroxylation treatment and annealing treatment of Experimental Example 16. Chromate treatment solution “Alchrome 713” (manufactured by Nihon Parkerizing Co., Ltd.) containing chromium trioxide and hydrogen fluoride is diluted with ion-exchanged water to a concentration indicated by the manufacturer (approximately 7%). ° C). The injection-bonded product was immersed in this chemical conversion solution for 2 minutes, washed with water, and placed in a hot air dryer set at 80 ° C. and dried for 30 minutes. In addition, when an aluminum alloy is directly immersed in this chemical conversion treatment liquid, it usually browns, but this time, the color tone did not change by this chemical conversion treatment. As a result of measuring the bonding force by applying three of the chemical injection-treated injection bonded articles to a tensile tester, the breaking force was an average of 30.7 MPa, and it was confirmed that the bonding force was not substantially changed by this chemical conversion treatment. As a result of XPS analysis of the surface of the A6061 piece used in the tensile test (not the bonding range, but also the chuck portion gripped by the tensile tester), it is clear that chromium peaks are observed and chromium ions are deposited. was.

[実験例20]塗装処理
実験例16の水酸化処理及びアニール処理を施した溝有りの射出接合物5個、及び実験例19で得られた化成処理済みの射出接合物5個(溝有り)に対して塗装処理を行った。これらの射出接合物に対し、エポキシ変性樹脂塗料の「SP10−13631」(武蔵塗料株式会社製)を使用して下塗りを行った。下塗りはスプレー塗装により行い、樹脂部の端部5mm程を残して(治具で掴む部分を残して)全面塗装し、80℃で15分乾燥させることにより、半乾燥した。次いで、弗素樹脂塗料の「ニューガーメット#3000黒」(株式会社トウペ製)を使用して上塗りを行った。下塗りを行った箇所と同一箇所をスプレー塗装により上塗りし、80℃で15分乾燥した後に昇温し、170℃で20分の焼き付けをした。
[Experimental Example 20] Coating Treatment Five injection joints with grooves subjected to the hydroxylation treatment and annealing treatment of Experimental Example 16 and five injection-jointed injection-formed articles obtained in Experimental Example 19 (with grooves) The coating process was performed on. These injection-bonded articles were undercoated using “SP10-13631” (manufactured by Musashi Paint Co., Ltd.), an epoxy-modified resin paint. The undercoating was performed by spray coating, and the entire surface was coated (leaving a portion to be gripped with a jig) leaving about 5 mm of the end portion of the resin portion, and then semi-dried by drying at 80 ° C. for 15 minutes. Next, a top coat was applied using “New Garmet # 3000 Black” (manufactured by Tope Co., Ltd.), a fluorine resin paint. The same part as the part where the undercoat was applied was overcoated by spray coating, dried at 80 ° C. for 15 minutes, then heated, and baked at 170 ° C. for 20 minutes.

[実験例21]高温高湿試験及び塩水噴霧試験
(高温高湿試験)
実験例20で得られた塗装済みの射出接合物2種(化成処理無し及び化成処理有り)を使用して高温高湿試験を行った。2種の射出接合物各3個を、温度85℃、湿度85%にした高温高湿試験機に入れて1000時間後に取り出し、取り出した射出接合物を70℃下に10時間置いて乾燥し、その後常温下に10時間置いて冷却した。冷却後の射出接合物を引張り試験機にかけて接合力を測定した結果、化成処理無しの射出接合物の破断力が30.2〜31MPaであり、化成処理有りの射出接合物の破断力が30.5〜31.5MPaの範囲であった。即ち、化成処理の有無によって接合力は変化しなかった。
[Experiment 21] High temperature and high humidity test and salt spray test (High temperature and high humidity test)
A high-temperature and high-humidity test was conducted using two types of painted injection-bonded articles obtained in Experimental Example 20 (without chemical conversion treatment and with chemical conversion treatment). Three types of each of the two types of injection joints were put into a high-temperature and high-humidity tester with a temperature of 85 ° C. and a humidity of 85%, taken out after 1000 hours, and the taken out injection joints were placed under 70 ° C. for 10 hours and dried. Thereafter, it was cooled at room temperature for 10 hours. As a result of measuring the joining force of the injection-joined product after cooling using a tensile tester, the breaking force of the injection-joined product without chemical conversion treatment was 30.2 to 31 MPa, and the breaking strength of the injection-joined product with chemical conversion treatment was 30. The range was 5 to 31.5 MPa. That is, the bonding force did not change depending on the presence or absence of chemical conversion treatment.

(塩水噴霧試験)
また、実験例20で得られた塗装済みの射出接合物2種(化成処理無し及び化成処理有り)を使用して塩水噴霧試験を行った。各射出接合物の2層塗装されたA6061片中央部にカッターナイフで十字の切れ目を入れた。切れ目はアルミニウム合金相まで届くように深くした。これらの射出接合物を、食塩5%を含む中性塩水使用の塩水噴霧試験機(設定温度35℃)に入れた。噴霧時間8時間と休憩時間16時間を1サイクルとする塩水噴霧を2サイクルを行った後、試験機から射出接合物を取り出し、イオン交換水で十分に水洗した後、常温下で1時間送風乾燥した。カッターナイフの切れ目跡を観察したが全く錆は発生していなかった。次いでこれら射出接合物を引張り試験機にかけて接合力を測定したが、化成処理無しの射出接合物、化成処理有りの射出接合物全てが30.2〜31.5MPaの範囲内の破断力を示した。全てせん断破断であった。化成処理の有無による接合力の差異は認められなかった。
(Salt spray test)
In addition, a salt spray test was performed using two types of painted injection-bonded articles obtained in Experimental Example 20 (without chemical conversion treatment and with chemical conversion treatment). A cross cut was made with a cutter knife in the center of each injection-bonded A6061 piece coated with two layers. The cut was deepened to reach the aluminum alloy phase. These injection joints were placed in a salt spray tester (set temperature 35 ° C.) using neutral salt water containing 5% salt. After two cycles of salt water spraying with a spraying time of 8 hours and a break time of 16 hours as one cycle, the injection joint is taken out from the testing machine, washed thoroughly with ion-exchanged water, and then air-dried at room temperature for 1 hour. did. Although the cut mark of the cutter knife was observed, no rust was generated. Subsequently, these injection-bonded articles were subjected to a tensile tester to measure the bonding force, but all of the injection-bonded articles without chemical conversion treatment and the injection-bonded articles with chemical conversion treatment showed a breaking force within a range of 30.2 to 31.5 MPa. . All were shear fractures. There was no difference in bonding strength with or without chemical conversion treatment.

10…アルミニウム合金相
20…脂組成物相
30…酸化アルミ薄層
51…アルミニウム合金片
52…接合範囲
53…PPS樹脂組成物
54…水酸化アルミニウム層
55…線傷
56…溝
DESCRIPTION OF SYMBOLS 10 ... Aluminum alloy phase 20 ... Fat composition phase 30 ... Aluminum oxide thin layer 51 ... Aluminum alloy piece 52 ... Joining range 53 ... PPS resin composition 54 ... Aluminum hydroxide layer 55 ... Line wound 56 ... Groove

Claims (8)

アルミニウム合金と、ポリフェニレンサルファイドを含む樹脂組成物とが接合された複合体であって、
前記アルミニウム合金の表面には20〜80nm周期の超微細凹凸、又は直径20〜80nmの超微細凹部若しくは超微細凸部が形成されており、且つその表層は厚さ3nm以上の酸化アルミニウムの薄層であり、
前記アルミニウム合金表面と前記樹脂組成物との接合範囲の周囲には水酸化アルミニウム層が形成されている
ことを特徴とする複合体。
A composite in which an aluminum alloy and a resin composition containing polyphenylene sulfide are joined,
On the surface of the aluminum alloy, ultrafine irregularities having a period of 20 to 80 nm, or ultrafine recesses or ultrafine protrusions having a diameter of 20 to 80 nm are formed, and the surface layer is a thin layer of aluminum oxide having a thickness of 3 nm or more. And
An aluminum hydroxide layer is formed around the joining range of the aluminum alloy surface and the resin composition.
アルミニウム合金と、ポリフェニレンサルファイドを含む樹脂組成物とが接合された複合体であって、
前記アルミニウム合金の表面には20〜80nm周期の超微細凹凸、又は直径20〜80nmの超微細凹部若しくは超微細凸部が形成されており、且つその表層は厚さ3nm以上の酸化アルミニウムの薄層であり、
前記アルミニウム合金表面と前記樹脂組成物との接合境界線は水酸化アルミニウム層によって覆われている
ことを特徴とする複合体。
A composite in which an aluminum alloy and a resin composition containing polyphenylene sulfide are joined,
On the surface of the aluminum alloy, ultrafine irregularities having a period of 20 to 80 nm, or ultrafine recesses or ultrafine protrusions having a diameter of 20 to 80 nm are formed, and the surface layer is a thin layer of aluminum oxide having a thickness of 3 nm or more. And
A composite boundary characterized in that a joining boundary line between the aluminum alloy surface and the resin composition is covered with an aluminum hydroxide layer.
請求項1又は2に記載した複合体であって、
前記アルミニウム合金の表面には、数μm〜数mm周期の凹凸がさらに形成されていることを特徴とする複合体。
The composite according to claim 1 or 2, wherein
The composite according to claim 1, wherein unevenness having a period of several μm to several mm is further formed on the surface of the aluminum alloy.
請求項3に記載した複合体であって、
前記凹凸は、幅0.05〜0.5mmで深さ0.02〜0.5mmの線傷であることを特徴とする複合体。
A composite according to claim 3, wherein
The complex is a composite having a width of 0.05 to 0.5 mm and a depth of 0.02 to 0.5 mm.
請求項3に記載した複合体であって、
前記凹凸は、幅0.5〜2.0mmで深さ0.2〜1.0mmの溝であることを特徴とする複合体。
A composite according to claim 3, wherein
The complex is a composite having a width of 0.5 to 2.0 mm and a depth of 0.2 to 1.0 mm.
請求項1又は2に記載した複合体であって、
前記アルミニウム合金表面をXPSで元素分析したときに、クロム、ジルコニウム、マンガン、及び珪素から選択される1種以上の元素信号が検出されることを特徴とする複合体。
The composite according to claim 1 or 2, wherein
One or more element signals selected from chromium, zirconium, manganese, and silicon are detected when the aluminum alloy surface is subjected to elemental analysis by XPS.
アルミニウム合金を水溶性アミン系化合物水溶液に浸漬し、当該アルミニウム合金の表面を20〜80nm周期の超微細凹凸、又は直径20〜80nmの超微細凹部若しくは超微細凸部で覆い、且つその表面に前記アミン系化合物を吸着させるエッチング工程と、
前記エッチング工程を経たアルミニウム合金を射出形成用の金型にインサートし、当該アルミニウム合金の表面にポリフェニレンサルファイドを含む樹脂組成物を射出し、射出成形を行うと共に、当該樹脂組成物の成形品と当該アルミニウム合金を接合させる射出接合工程と、
前記射出接合工程を経た射出接合物を80℃以上の水に浸漬してアルミニウム合金表面に水酸化アルミニウム層を形成する水酸化処理工程と、
前記水酸化処理工程を経た射出接合物を150〜200℃の温度で20分以上加熱するアニール処理工程と、
を含むことを特徴とする複合体の製造方法。
An aluminum alloy is immersed in an aqueous solution of a water-soluble amine compound, and the surface of the aluminum alloy is covered with ultrafine irregularities with a period of 20 to 80 nm, or ultrafine recesses or ultrafine protrusions with a diameter of 20 to 80 nm, and the surface is covered with the above-mentioned An etching process for adsorbing an amine compound;
The aluminum alloy that has undergone the etching process is inserted into a mold for injection molding, a resin composition containing polyphenylene sulfide is injected onto the surface of the aluminum alloy, injection molding is performed, and a molded product of the resin composition and the An injection joining process for joining aluminum alloys;
A hydroxylation treatment step of immersing the injection-joined product that has undergone the injection joining step in water at 80 ° C. or higher to form an aluminum hydroxide layer on the aluminum alloy surface;
An annealing treatment step of heating the injection bonded product that has undergone the hydroxylation treatment step at a temperature of 150 to 200 ° C. for 20 minutes or more;
The manufacturing method of the composite_body | complex characterized by including.
アルミニウム合金を第1の水溶性アミン系化合物水溶液に浸漬し、当該アルミニウム合金の表面を20〜80nm周期の超微細凹凸、又は直径20〜80nmの超微細凹部若しくは超微細凸部で覆い、且つその表面に前記アミン系化合物を吸着させるエッチング工程と、
前記エッチング工程を経たアルミニウム合金を、15〜55℃とした0.05〜1%濃度の第2の水溶性アミン系化合物水溶液に1分〜10分浸漬し、アミン系化合物の吸着量を増加させる吸着工程と、
前記吸着工程を経たアルミニウム合金を50〜70℃で乾燥する乾燥工程と、
前記乾燥工程を経たアルミニウム合金を射出形成用の金型にインサートし、当該アルミニウム合金の表面にポリフェニレンサルファイドを含む樹脂組成物を射出し、射出成形を行うと共に、当該樹脂組成物の成形品と当該アルミニウム合金を接合させる射出接合工程と、
前記射出接合工程を経た射出接合物を80℃以上の水に浸漬してアルミニウム合金表面に水酸化アルミニウム層を形成する水酸化処理工程と、
前記水酸化処理工程を経た射出接合物を150〜200℃の温度で20分以上加熱するアニール処理工程と、
を含むことを特徴とする複合体の製造方法。
An aluminum alloy is immersed in the first water-soluble amine compound aqueous solution, and the surface of the aluminum alloy is covered with ultrafine irregularities having a period of 20 to 80 nm, or ultrafine concave portions or ultrafine convex portions having a diameter of 20 to 80 nm, and An etching step for adsorbing the amine compound on the surface;
The aluminum alloy that has undergone the etching step is immersed in a second water-soluble amine compound aqueous solution having a concentration of 0.05 to 1% at 15 to 55 ° C. for 1 to 10 minutes to increase the adsorption amount of the amine compound. An adsorption process;
A drying step of drying the aluminum alloy that has undergone the adsorption step at 50 to 70 ° C .;
The aluminum alloy that has undergone the drying step is inserted into a mold for injection molding, a resin composition containing polyphenylene sulfide is injected onto the surface of the aluminum alloy, injection molding is performed, and a molded product of the resin composition and the An injection joining process for joining aluminum alloys;
A hydroxylation treatment step of immersing the injection-joined product that has undergone the injection joining step in water at 80 ° C. or higher to form an aluminum hydroxide layer on the aluminum alloy surface;
An annealing treatment step of heating the injection bonded product that has undergone the hydroxylation treatment step at a temperature of 150 to 200 ° C. for 20 minutes or more;
The manufacturing method of the composite_body | complex characterized by including.
JP2012095418A 2011-04-21 2012-04-19 Aluminum alloy-resin composite and method for producing the same Active JP5622785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012095418A JP5622785B2 (en) 2011-04-21 2012-04-19 Aluminum alloy-resin composite and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011095538 2011-04-21
JP2011095538 2011-04-21
JP2012095418A JP5622785B2 (en) 2011-04-21 2012-04-19 Aluminum alloy-resin composite and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012232583A true JP2012232583A (en) 2012-11-29
JP5622785B2 JP5622785B2 (en) 2014-11-12

Family

ID=47433388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012095418A Active JP5622785B2 (en) 2011-04-21 2012-04-19 Aluminum alloy-resin composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP5622785B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051040A (en) * 2012-09-07 2014-03-20 Daicel Polymer Ltd Method for manufacturing composite molding
JP2014139003A (en) * 2012-12-21 2014-07-31 Polyplastics Co Method of manufacturing composite molding, and method of enhancing heat dissipation performance
WO2014157289A1 (en) * 2013-03-26 2014-10-02 日本軽金属株式会社 Metal-resin bonded body, and production method therefor
KR101772780B1 (en) * 2013-01-18 2017-09-12 다이세이 플라스 가부시끼가이샤 Heat exchanger and method for manufacturing same
JP2019188651A (en) * 2018-04-20 2019-10-31 大成プラス株式会社 Aluminum alloy-resin composite and method for producing the same
JP2019217704A (en) * 2018-06-20 2019-12-26 大成プラス株式会社 Composite of aluminum alloy and resin

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230155433A (en) 2021-03-17 2023-11-10 도소 가부시키가이샤 Metal member-polyarylene sulfide resin member composite and method for producing the same
WO2023017762A1 (en) 2021-08-11 2023-02-16 東ソー株式会社 Metal member–polyarylene sulfide member complex and production method therefor
WO2023068186A1 (en) 2021-10-19 2023-04-27 東ソー株式会社 Polyarylene sulfide composition and method for producing same
JP7504336B1 (en) 2023-11-24 2024-06-24 ユニオンマシナリ株式会社 Conductor crimping structure with connection terminal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041532A1 (en) * 2002-11-08 2004-05-21 Taisei Plas Co., Ltd. Composite article of aluminum alloy with resin and method for production thereof
JP2005119237A (en) * 2003-10-20 2005-05-12 Taisei Plas Co Ltd Weatherable composite of aluminum alloy and resin, and its manufacturing method
JP2005119005A (en) * 2003-10-14 2005-05-12 Taisei Plas Co Ltd Composite of aluminum alloy and resin and its manufacturing method
JP2005342895A (en) * 2004-05-31 2005-12-15 Taisei Plas Co Ltd Metal/resin compound object and its manufacturing method
JP2010030177A (en) * 2008-07-30 2010-02-12 Toray Ind Inc Complex and process for manufacturing the same
JP2010284899A (en) * 2009-06-12 2010-12-24 Tosoh Corp Combined body and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041532A1 (en) * 2002-11-08 2004-05-21 Taisei Plas Co., Ltd. Composite article of aluminum alloy with resin and method for production thereof
JP2005119005A (en) * 2003-10-14 2005-05-12 Taisei Plas Co Ltd Composite of aluminum alloy and resin and its manufacturing method
JP2005119237A (en) * 2003-10-20 2005-05-12 Taisei Plas Co Ltd Weatherable composite of aluminum alloy and resin, and its manufacturing method
JP2005342895A (en) * 2004-05-31 2005-12-15 Taisei Plas Co Ltd Metal/resin compound object and its manufacturing method
JP2010030177A (en) * 2008-07-30 2010-02-12 Toray Ind Inc Complex and process for manufacturing the same
JP2010284899A (en) * 2009-06-12 2010-12-24 Tosoh Corp Combined body and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051040A (en) * 2012-09-07 2014-03-20 Daicel Polymer Ltd Method for manufacturing composite molding
JP2014139003A (en) * 2012-12-21 2014-07-31 Polyplastics Co Method of manufacturing composite molding, and method of enhancing heat dissipation performance
KR101772780B1 (en) * 2013-01-18 2017-09-12 다이세이 플라스 가부시끼가이샤 Heat exchanger and method for manufacturing same
WO2014157289A1 (en) * 2013-03-26 2014-10-02 日本軽金属株式会社 Metal-resin bonded body, and production method therefor
JP6017675B2 (en) * 2013-03-26 2016-11-02 日本軽金属株式会社 Metal-resin bonded body and manufacturing method thereof
JPWO2014157289A1 (en) * 2013-03-26 2017-02-16 日本軽金属株式会社 Metal-resin bonded body and manufacturing method thereof
JP2019188651A (en) * 2018-04-20 2019-10-31 大成プラス株式会社 Aluminum alloy-resin composite and method for producing the same
JP7040988B2 (en) 2018-04-20 2022-03-23 大成プラス株式会社 Aluminum alloy and resin complex and its manufacturing method
JP2019217704A (en) * 2018-06-20 2019-12-26 大成プラス株式会社 Composite of aluminum alloy and resin
JP7071886B2 (en) 2018-06-20 2022-05-19 大成プラス株式会社 Aluminum alloy and resin complex

Also Published As

Publication number Publication date
JP5622785B2 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
JP5622785B2 (en) Aluminum alloy-resin composite and method for producing the same
EP2174766B1 (en) Composite of metal with resin and process for producing the same
JP5733999B2 (en) Method for producing metal resin composite
KR101115786B1 (en) Process for production of highly corrosion-resistant composite
JP4927871B2 (en) Metal-resin composite and method for producing the composite
US8703272B2 (en) Composite of metal and resin and method for manufacturing same
JP5581680B2 (en) Aluminum / resin composite with excellent weather resistance and method for producing the same
JP4903897B2 (en) Zinc-based plated steel sheet and adherend bonded body and method for producing the same
JPWO2012070654A1 (en) Metal resin composite and method for producing the same
KR101216800B1 (en) Steel product composite and process for producing the steel product composite
EP2322691A1 (en) Iron alloy article, iron alloy member, and method for producing the iron alloy article
JPWO2008081933A1 (en) Metal-resin composite and method for producing the same
JP5231738B2 (en) Metal material processed using metal surface treatment composition
JP6421906B1 (en) Aluminum paint for joining and aluminum resin composite
JP2017001378A (en) Metal resin composite molded body and method for producing the same
JP4452256B2 (en) Metal-resin composite and method for producing the same
JP2019102262A (en) Aluminum plastic film packaging material for lithium battery for extending service life
JP4927491B2 (en) Metal-resin composite and method for producing the same
JP5166978B2 (en) Method for producing composite of metal alloy and resin
JP7071886B2 (en) Aluminum alloy and resin complex
WO2021162059A1 (en) Exterior material for electrical storage device, method for manufacturing said exterior material, and electrical storage device
JP7415341B2 (en) In-mold label, container for power storage device, manufacturing method thereof, and power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140922

R150 Certificate of patent or registration of utility model

Ref document number: 5622785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250