JP4927491B2 - Metal-resin composite and method for producing the same - Google Patents

Metal-resin composite and method for producing the same Download PDF

Info

Publication number
JP4927491B2
JP4927491B2 JP2006272832A JP2006272832A JP4927491B2 JP 4927491 B2 JP4927491 B2 JP 4927491B2 JP 2006272832 A JP2006272832 A JP 2006272832A JP 2006272832 A JP2006272832 A JP 2006272832A JP 4927491 B2 JP4927491 B2 JP 4927491B2
Authority
JP
Japan
Prior art keywords
resin
metal
composite
magnesium alloy
pps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006272832A
Other languages
Japanese (ja)
Other versions
JP2007301972A (en
Inventor
正徳 成富
直樹 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Purasu Co Ltd
Original Assignee
Taisei Purasu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Purasu Co Ltd filed Critical Taisei Purasu Co Ltd
Priority to JP2006272832A priority Critical patent/JP4927491B2/en
Publication of JP2007301972A publication Critical patent/JP2007301972A/en
Application granted granted Critical
Publication of JP4927491B2 publication Critical patent/JP4927491B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、電子機器の筐体、家電機器の筐体、構造用部品、機械部品等に用いられる金属と樹脂組成物からなる金属と樹脂の複合体及びその製造方法に関する。更に詳しくは、各種機械加工で作られたマグネシウム合金製の基材と、熱可塑性樹脂組成物を一体化して積層した複合体及びその製造方法に関し、各種電子機器、電化製品、医療用機器、自動車、鉄道車両、航空機、車両搭載用品、建築資材等の構造用部品や外装用部品に用いられる金属と樹脂との複合体とその製造方法に関する。   The present invention relates to a composite of a metal and a resin composed of a metal and a resin composition used for a housing of an electronic device, a housing of a home appliance, a structural component, a mechanical component, and the like, and a manufacturing method thereof. More specifically, the present invention relates to a composite body obtained by integrating and laminating a base material made of magnesium alloy produced by various machining processes and a thermoplastic resin composition, and a method for producing the same. Various electronic devices, electrical appliances, medical devices, automobiles The present invention relates to a composite of metal and resin used for structural parts and exterior parts such as railway vehicles, aircraft, vehicle-mounted products, and building materials, and a method for manufacturing the same.

金属と合成樹脂を一体化する技術は、自動車、家庭電化製品、産業機器等の部品製造業等の広い産業分野から求められており、このために多くの接着剤が開発されている。この中には非常に優れた接着剤が提案されている。例えば、常温、又は加熱により機能を発揮する接着剤は、金属と合成樹脂を一体化する接合に使用され、この方法は現在では一般的な接合技術である。   Technology for integrating metal and synthetic resin is required from a wide range of industrial fields such as automobiles, home appliances, parts manufacturing industries such as industrial equipment, and many adhesives have been developed for this purpose. Among these, very good adhesives have been proposed. For example, an adhesive that exhibits a function at room temperature or by heating is used for joining that integrates a metal and a synthetic resin, and this method is now a common joining technique.

しかしながら、接着剤を使用しない、より合理的な接合方法も従来から研究されてきた。マグネシウム、アルミニウムやその合金である軽金属類、又、ステンレス等の鉄合金類に対し、接着剤の介在なしで高強度のエンジニアリング樹脂を一体化する方法がその一例である。例えば、本発明者等は、予め射出成形金型内にインサートしていた金属部品に、溶融樹脂を射出して樹脂部分を成形すると同時に、その成形品と金属部品とを固着(接合)する方法を提案した(以下、略称して「射出接合」という。)。
この発明は、アルミニウム合金に対しポリブチレンテレフタレート樹脂(以下、「PBT」という。)、又はポリフェニレンサルファイド樹脂(以下、「PPS」という。)を射出接合させる製造技術を提案している(例えば、特許文献1参照。)。又、他にアルミニウム材の陽極酸化皮膜に大きめの穴を設け、この穴に合成樹脂体を食い込ませ接着させる接合技術が開示されている(例えば、特許文献2参照。)。
However, more rational joining methods that do not use an adhesive have been studied. An example is a method of integrating a high-strength engineering resin into a light metal such as magnesium, aluminum or an alloy thereof, or an iron alloy such as stainless steel without an adhesive. For example, the present inventors have injected a molten resin into a metal part previously inserted in an injection mold and molded a resin portion, and at the same time, fixed (joined) the molded article and the metal part. (Hereinafter abbreviated as “injection joining”).
This invention proposes a manufacturing technique in which polybutylene terephthalate resin (hereinafter referred to as “PBT”) or polyphenylene sulfide resin (hereinafter referred to as “PPS”) is injection-bonded to an aluminum alloy (for example, a patent). Reference 1). In addition, there is disclosed a joining technique in which a large hole is provided in an anodized film of an aluminum material, and a synthetic resin body is bitten into the hole and bonded (for example, see Patent Document 2).

特許文献1の提案におけるこの射出接合の原理は、以下に示すようになっている。アルミニウム合金を水溶性アミン系化合物の希薄水溶液に浸漬させ、アルミニウム合金を水溶液の弱い塩基性によって微細にエッチングさせるものである。又、この浸漬では、アルミニウム合金表面へのアミン系化合物分子の吸着が同時に起こることが分かった。この処理がなされたアルミニウム合金を射出成形金型にインサートし、溶融した熱可塑性樹脂を高圧で射出させる。   The principle of this injection joining in the proposal of Patent Document 1 is as follows. The aluminum alloy is immersed in a dilute aqueous solution of a water-soluble amine compound, and the aluminum alloy is finely etched by the weak basicity of the aqueous solution. Further, it was found that the adsorption of amine compound molecules on the surface of the aluminum alloy occurs simultaneously with this immersion. The aluminum alloy thus treated is inserted into an injection mold, and the molten thermoplastic resin is injected at a high pressure.

このとき、熱可塑性樹脂と、アルミニウム合金表面に吸着していたアミン系化合物分子が遭遇することで発熱する。この発熱とほぼ同時に、この熱可塑性樹脂は低温の金型温度に保たれたアルミニウム合金に接して急冷され、このために結晶化しつつ固化せんとする樹脂は、固化が遅れて超微細なアルミニウム合金面上の凹部にも潜り込むことになる。このことにより、アルミニウム合金と熱可塑性樹脂は樹脂がアルミニウム合金表面から剥がれることなく強固に接合(固着)する。即ち、発熱反応が生じると強固な射出接合ができる。実際、アミン系化合物と発熱反応できるPBTやPPSがこのアルミニウム合金と射出接合ができることを確認している。
特開2004−216425号 WO2004/055248 A1号
At this time, heat is generated by encountering the thermoplastic resin and the amine compound molecules adsorbed on the aluminum alloy surface. At almost the same time as this heat generation, this thermoplastic resin is rapidly cooled in contact with the aluminum alloy maintained at a low mold temperature, so that the resin that is solidified while crystallizing is an ultrafine aluminum alloy that is delayed in solidification. It will also sink into the recess on the surface. Thus, the aluminum alloy and the thermoplastic resin are firmly bonded (fixed) without the resin being peeled off from the surface of the aluminum alloy. That is, when an exothermic reaction occurs, strong injection joining can be performed. In fact, it has been confirmed that PBT and PPS capable of exothermic reaction with an amine compound can be injection-bonded with this aluminum alloy.
JP 2004-216425 A WO2004 / 055248 A1

本発明者らは、前記した発明を更に有効にすべく射出接合に適した樹脂組成物を模索して開発を行った。即ち、金属表面に微細凹部を無数に設けて接着させる技術をさらに発展させその開発を行った。その結果、アルミニウム合金と線膨張率を合わせただけの単純なPBTやPPS系組成物のみが最適ということではなく、この射出接合には双方の樹脂の結晶性に関する物質特性が更に大きく関係していることが判明してきた。その一方で、本発明者らは、射出接合される金属の表面層にも着目した。結果としてPBTやPPSの結晶性の特徴が理解出来たので、既に解明している超微細エッチング加工されたアルミニウム合金以外にも射出成形で接合できる場合があり得るとの推論に至った。以下、この推論を詳細に説明する。   The present inventors sought and developed a resin composition suitable for injection joining in order to make the above-described invention more effective. In other words, the technology was further developed and developed to provide innumerable fine recesses on the metal surface for adhesion. As a result, not only simple PBT and PPS compositions that have a linear expansion coefficient combined with an aluminum alloy are optimal, but the material properties related to crystallinity of both resins are further related to this injection joining. It has been found that. On the other hand, the present inventors also focused on the surface layer of the metal to be injection-bonded. As a result, since the characteristics of the crystallinity of PBT and PPS were understood, it was inferred that in addition to the already elucidated aluminum alloy processed by ultrafine etching, it could be joined by injection molding. Hereinafter, this reasoning will be described in detail.

金属形状物に熱可塑性樹脂を射出接合できるとして、その条件に大きくは二つあると考えられる。一つはマイクロメートルレベルの凹凸形状を有する金属表面層であり、更にこの凹凸を為す面自体が硬い面であり、且つ電子顕微鏡レベルで(ナノレベルの超微細さで)凹凸形状があることである。マイクロメートルレベルの大きな凹部径であればアミン系分子の吸着がなくともPBT、又はPPSは侵入可能なのである。二つ目は、樹脂が結晶性樹脂であり、結晶化率が高く樹脂の結晶部が硬くて機械的強度があり、且つ樹脂の固着に適当な大きさであること、即ち、具体的にはPBTやPPSである。この二条件がある中での射出成形では、溶融樹脂が樹脂の融点から約百℃程度の低温の金型やインサート金属に接し急冷される場合に、その樹脂の結晶化固化が金属表面凹部の中にて起こる得るのである。そうなれば樹脂と金属の間に強い接合(固着)が生じることになる。   Assuming that a thermoplastic resin can be injection-bonded to a metal shape, there are two major conditions. One is a metal surface layer having an uneven shape on the micrometer level, and further, the surface itself for forming the unevenness is a hard surface and has an uneven shape on the electron microscope level (with nano-level ultrafineness). is there. PBT or PPS can penetrate even without the adsorption of amine-based molecules if the concave diameter is large at the micrometer level. Second, the resin is a crystalline resin, the crystallinity is high, the crystal part of the resin is hard, has mechanical strength, and has an appropriate size for fixing the resin. PBT or PPS. In injection molding under these two conditions, when the molten resin comes into contact with a low-temperature mold or insert metal of about 100 ° C from the melting point of the resin and is rapidly cooled, the crystallization and solidification of the resin is caused by Can happen inside. If it becomes so, strong joining (adhesion) will arise between resin and a metal.

更に射出接合に好ましい条件(三つ目の条件)として、前述した樹脂組成物が改良されていると更に射出接合が強いものになることが言える。即ち、結晶性を有する樹脂組成物は、急冷時に結晶化して固化するが、この固化速度が遅くなるようにする樹脂組成の改良である。要するに、急冷され樹脂融点より低温にされたとしても、直ちにその樹脂から種結晶が生じ、且つ成長して固化するものではない。ある微小時間は過冷却状態となって溶融状を保持するものである。この樹脂に何らかの異物樹脂を混入させることでその過冷却時間を遅らすことができると推定したのである。   Furthermore, as a preferable condition (third condition) for injection joining, it can be said that if the above-described resin composition is improved, the injection joining becomes stronger. In other words, the resin composition having crystallinity is crystallized and solidified upon rapid cooling, but is an improvement of the resin composition that slows the solidification rate. In short, even if it is rapidly cooled to a temperature lower than the melting point of the resin, a seed crystal is immediately formed from the resin and does not grow and solidify. A certain minute time becomes a supercooled state and maintains the molten state. It was estimated that the supercooling time can be delayed by mixing some foreign resin into this resin.

種結晶、即ち、樹脂結晶としての最小の大きさは、おそらく10nm程度かそれ以上であり、種結晶が出来て成長が始まってしまった後から20〜80nm径の超微細凹部入口にたどり着いても、奥まで侵入するのは容易なことではない、と推定される。しかし急冷時に直ちに種結晶が出来ず、且つその後の結晶成長がやや遅い性質の樹脂組成物であれば、凹部直径が数百nmもあれば樹脂は凹部に入り得るのである。又、この凹部内の表面がザラザラしておれば凹部内でしっかり結晶化固化した樹脂組成物は抜け難く、この場合はさらに強固な接合を生じることができると考えられた。   The minimum size of the seed crystal, that is, the resin crystal is probably about 10 nm or more. Even after the seed crystal is formed and the growth starts, it reaches the entrance of the ultra fine recess having a diameter of 20 to 80 nm. It is presumed that it is not easy to penetrate deeply. However, in the case of a resin composition in which seed crystals cannot be formed immediately upon rapid cooling and the subsequent crystal growth is somewhat slow, the resin can enter the recesses if the recess diameter is several hundred nm. Further, if the surface in the recess is rough, it is considered that the resin composition firmly crystallized and solidified in the recess is difficult to be removed, and in this case, it is considered that a stronger bond can be produced.

マグネシウム合金はアルミニウム合金よりも更に軽量であり、これがマグネシウム合金の最大の特徴だが、一方でアルミニウム合金より一段と化学的に活性である。マグネシウム合金でも研磨等でむき出しの金属面とした直後には、自然酸化層が生じて多少の安定度は与えてくれる。しかしながら、この自然酸化層の安定度や丈夫さはアルミニウム合金の酸化皮膜層より遥かに劣る。例えば、アルミニウム合金では自然酸化層の上に防錆剤の油膜や塗装塗膜が存在すれば、結露がないような室内放置では十年以上の安定が保たれるが、マグネシウム合金では1年もしない内に脹れや錆が生じる。油膜や塗膜を通して拡散して来た水分子が、自然酸化層も通過してマグネシウムを酸化するのである。要するにマグネシウム合金を実際に使用するにおいては自然酸化層膜に代わる丈夫な皮膜で覆うことが必須である。   Magnesium alloy is lighter than aluminum alloy, which is the biggest feature of magnesium alloy, but it is more chemically active than aluminum alloy. Even when a magnesium alloy is exposed to a bare metal surface by polishing or the like, a natural oxide layer is formed and gives some stability. However, the stability and robustness of this natural oxide layer is far inferior to the oxide film layer of aluminum alloy. For example, in the case of an aluminum alloy, if there is a rust preventive oil film or a paint film on the natural oxide layer, it will remain stable for more than a decade when left indoors without condensation, but in the case of a magnesium alloy, it will last for a year. Swelling and rusting will occur during this period. Water molecules that have diffused through oil films and coatings pass through the natural oxidation layer and oxidize magnesium. In short, when a magnesium alloy is actually used, it is indispensable to cover it with a strong film instead of a natural oxide film.

具体的には化成処理、又は電解酸化の何れかの手法でマグネシウム合金を処理することだが、現行では化成処理が一般的である。本発明者らは、実用的な観点から、化成処理をしたマグネシウム合金に対しても樹脂を射出接合できる技術を確立しようとした。幸い、化成処理したマグネシウム合金の表面は、金属本体である基材よりずっと硬い金属酸化物、金属炭酸化物、又は金属リン酸化物で覆われる。これは前述した射出接合で求められる二条件の内の金属側に求められる一つ、即ち、表面が硬い物質の凹凸で覆われていることに一致する。   Specifically, the magnesium alloy is processed by either chemical conversion treatment or electrolytic oxidation. Currently, chemical conversion treatment is common. The inventors of the present invention have sought to establish a technique capable of injecting and bonding a resin to a magnesium alloy subjected to chemical conversion treatment from a practical viewpoint. Fortunately, the surface of the chemically treated magnesium alloy is covered with a metal oxide, metal carbonate, or metal phosphate that is much harder than the substrate that is the metal body. This coincides with one of the two conditions required in the above-described injection joining, that is, the surface is covered with hard material irregularities.

本発明は、前述の理論的な推論のもとになされたものであり、下記の目的を達成する。
本発明の目的は、マグネシウム合金に対して、PBT、又はPPSを主成分とする樹脂層が強力に接合が可能になるようにした金属と樹脂の複合体及びその製造方法を提供する。
本発明の他の目的は、表層を化成処理して耐食性に優れているマグネシウム金属からなる基材と、PBT、又はPPSを主成分とする樹脂組成物とが一体になった金属と樹脂の複合体及びその製造方法を提供する。
本発明の更に他の目的は、PBT、又はPPSを主成分とする熱可塑性樹脂組成物を射出成形により成形することにより、量産性、生産性が高い金属と樹脂の複合体及びその製造方法を提供する。
The present invention has been made based on the above-described theoretical reasoning, and achieves the following objects.
An object of the present invention is to provide a metal / resin composite and a method for producing the same, in which a resin layer mainly composed of PBT or PPS can be strongly bonded to a magnesium alloy.
Another object of the present invention is a composite of a metal and a resin in which a base material made of magnesium metal having excellent corrosion resistance by chemical conversion of the surface layer and a resin composition mainly composed of PBT or PPS is integrated. A body and a method for manufacturing the same are provided.
Still another object of the present invention is to provide a metal-resin composite having high mass productivity and high productivity and a method for producing the same by molding a thermoplastic resin composition containing PBT or PPS as a main component by injection molding. provide.

前記目的を達成するために本発明は次の手段をとる。
本発明の金属と樹脂の複合体の要旨は、マグネシウム合金からなる基材と、クロム、マンガン、バナジウム、カルシウム、亜鉛、カルシウム、ストロンチウム、ジルコニウム、チタン、及びアルカリ金属炭酸塩から選択される1種以上を水溶液とし、この水溶液を使用して化成処理をすることで得られる金属酸化物、金属炭酸化物、及び金属リン酸化物の何れか1種が、前記マグネシウム合金の表面に形成された表層と、前記表層の凹部に射出成形により侵入して固化して固着され、かつ結晶性を有する熱可塑性樹脂である主成分がポリブチレンテレフタレート樹脂であり、従成分がポリエチレンテレフタレート樹脂である樹脂組成物層とからなる。
In order to achieve the above object, the present invention takes the following means.
The gist of the metal-resin composite of the present invention 1 is selected from a base material made of a magnesium alloy, chromium, manganese, vanadium, calcium, zinc, calcium, strontium, zirconium, titanium, and alkali metal carbonate 1 A surface layer in which any one of a metal oxide, a metal carbonate, and a metal phosphorous oxide obtained by converting a seed or more into an aqueous solution and performing a chemical conversion treatment using the aqueous solution is formed on the surface of the magnesium alloy. And a resin composition in which the main component, which is a thermoplastic resin having crystallinity, penetrates into the concave portion of the surface layer by injection molding and is solidified, is a polybutylene terephthalate resin, and a subsidiary component is a polyethylene terephthalate resin. Consists of layers .

本発明の金属と樹脂の複合体の製造方法の要旨は、マグネシウム合金からなる鋳造物又は中間材から機械加工で形状化して形状部品とする形状化工程と、前記形状部品の表層に金属酸化物、金属炭酸化物、及び金属リン酸化物から選択される1種を形成する化成処理工程と、前記化成処理工程がなされた前記形状部品を射出成形金型にインサートして、主成分がポリブチレンテレフタレート樹脂であり、従成分がポリエチレンテレフタレート樹脂である樹脂組成物を射出する射出工程と、前記金属酸化物、又は前記金属リン酸化物の凹部に前記射出成形により侵入して固化して、前記形状部品と前記樹脂組成物とを一体に固着する固着工程とからなる。 The gist of the metal-resin composite manufacturing method of the present invention 7 is a shaping step of forming a shaped part by machining from a cast or intermediate material made of a magnesium alloy, and a metal oxide on the surface layer of the shaped part A chemical conversion treatment step for forming one selected from a product, a metal carbonate, and a metal phosphate, and the molded component subjected to the chemical conversion treatment step is inserted into an injection mold, and the main component is polybutylene An injection step of injecting a resin composition which is a terephthalate resin and the subcomponent is a polyethylene terephthalate resin; and the shape is formed by intrusion into the concave portion of the metal oxide or the metal phosphate by the injection molding and solidifying It consists of the adhering step of adhering the part and the resin composition together.

以下、本発明を構成する各要素について、具体的に詳細に説明する。
〔基材〕
本発明でいう基材とは、複合体を構成する金属部分を意味する。この基材は、日本工業規格(JIS)で規定されているAZ31系等の展伸用合金、AZ91系等の鋳造用合金を含む市販、又は公知の全てのマグネシウム合金である。このマグネシウム合金は、鋳造用合金であれば、ダイカスト、チクソモールド、射出成形等の成形手段で所望の形に形状化した半製品、又それを更に所望の形状に機械加工して得られた機械部品等が使用できる。又、展伸用合金では、市販品である板材、棒材、角材、管材等、又それらをプレス加工、切削、研削等の機械加工を加えて形状化した部品が基材として使用できる。
Hereafter, each element which comprises this invention is demonstrated concretely in detail.
〔Base material〕
The base material as used in the field of this invention means the metal part which comprises a composite_body | complex. This base material is a commercially available or all known magnesium alloy including a AZ31 series wrought alloy specified by the Japanese Industrial Standards (JIS) and a AZ91 series cast alloy. If this magnesium alloy is an alloy for casting, it is a semi-finished product that has been shaped into a desired shape by molding means such as die casting, thixo mold, injection molding, etc., or a machine that is obtained by further machining it into a desired shape. Parts can be used. Further, in the wrought alloy, commercially available plates, rods, squares, pipes, etc., and parts formed by applying mechanical processing such as pressing, cutting and grinding can be used as the base material.

[基材の表層(金属酸化物、金属炭酸化物、又は金属リン酸化物)]
本発明でいう表層とは、マグネシウム合金からなる基材の表面に形成された金属酸化物、金属炭酸化物、又は金属リン酸化物をいう。この表層を構成するものは、基材の素地より硬度があり、かつ機械的な強度が高いものが好ましい。通常、マグネシウム合金の表面は、イオン化傾向が高く空気中の湿気からでも腐食酸化し易いので表面処理が必要とされる。このためにマグネシウム又はマグネシウム合金は、異種金属の塩や酸の水溶液に浸漬することで、その表面に異種金属を含む金属酸化物、金属炭酸化物、金属リン酸化物等の安定層を形成させ、その層の存在によって内部金属の防食を行うという措置が一般に採用されている。
[Surface layer of base material (metal oxide, metal carbonate, or metal phosphate)]
The surface layer as used in the field of this invention means the metal oxide, metal carbonate, or metal phosphorus oxide formed in the surface of the base material which consists of magnesium alloys. What constitutes the surface layer is preferably one having hardness and higher mechanical strength than the base material. Usually, the surface of a magnesium alloy is highly ionized and easily corroded even from moisture in the air, so that surface treatment is required. For this purpose, magnesium or a magnesium alloy is immersed in an aqueous solution of a salt or acid of a different metal to form a stable layer such as a metal oxide, metal carbonate, or metal phosphate containing a different metal on its surface, In general, measures are taken to protect the inner metal by the presence of the layer.

本発明の基材表面には水溶液浸漬処理による金属リン酸塩、金属炭酸塩、又は金属酸化物の層が形成されている。これは、イオン化傾向が高く空気中の湿気等からでも腐食酸化し易いマグネシウム合金を、異種金属の塩や酸の水溶液に浸漬することで表面に異種金属及び/又はマグネシウムの酸化物、炭酸化物、又はリン酸化物の安定層を形成させ、その層の存在によって内部金属の防食を行うというものである。金属の表面処理業界ではこのような浸漬処理を化成処理と呼んでいる。   On the surface of the substrate of the present invention, a layer of metal phosphate, metal carbonate, or metal oxide is formed by immersion in an aqueous solution. This is because the magnesium alloy, which has a high tendency to ionization and is easily corroded and oxidized even from moisture in the air, is immersed in an aqueous solution of a salt or acid of a different metal to dissimilar metal and / or magnesium oxide, carbonate, Alternatively, a stable layer of phosphorous oxide is formed, and internal metal corrosion is prevented by the presence of the layer. In the metal surface treatment industry, such immersion treatment is called chemical conversion treatment.

その化成処理の前処理として行う脱脂や化学エッチングも含めて化成処理と言うことも多い。本発明では両者を混同することがないよう、「化成処理」は耐食層を作るための狭い意味での処理を意味することとし、この化成処理の前処理として行う脱脂やエッチング等の処理は「前処理」と称し、更に、前処理と化成処理の双方を含む全体を「液処理」と称する。   In many cases, the chemical conversion treatment includes degreasing and chemical etching performed as a pretreatment of the chemical conversion treatment. In the present invention, in order not to confuse both, “chemical conversion treatment” means a treatment in a narrow sense for forming a corrosion-resistant layer, and treatments such as degreasing and etching performed as pretreatment of this chemical conversion treatment are “ The entire process including both the pretreatment and the chemical conversion treatment is referred to as “liquid treatment”.

クロム系以外の化成処理はノンクロメート処理と呼ばれ、本発明者等が知る限りでは最近ではマンガン系の処理が主に使われている(例えば、日本国、特開平7−126858号、特開2001−123274号参照)。この他に、アルミニウム、バナジウム、亜鉛、ジルコニウム、チタン等の複合酸化物から成る層を防食層として、表面に形成する方法もノンクロメート処理として知られている(例えば、日本国、特開2000−199077号参照)。歴史的には、クロム化合物を使用するクロメート処理法が耐食性に優れた処理法として長く使用されてきた。   Chemical conversion treatment other than chromium-based treatment is called non-chromate treatment, and as far as the present inventors know, manganese-based treatment has been mainly used recently (for example, Japanese Patent Laid-Open No. 7-126858, Japanese Patent Laid-Open No. 7-126858). 2001-123274). In addition, a method of forming a layer made of a composite oxide such as aluminum, vanadium, zinc, zirconium, titanium, etc. as an anticorrosive layer on the surface is also known as non-chromate treatment (for example, Japan, JP 2000- 199077). Historically, chromate treatment methods using chromium compounds have long been used as treatment methods with excellent corrosion resistance.

しかしながら、クロメート処理用のクロム酸水溶液を用いるので、これが環境上で問題ある6価クロムを含むことから問題があり、昨今、クロムを使用しない化成処理法が求められていた。そこで、前述したマンガンやその他の金属を使用した方法が開発された。最近では、マンガン化合物を使った方法がクロメート処理に代替し得る方法と見られているようである。本発明で用いる基材は、これらの何れの方法で表面処理されたものであっても使用できる。   However, since a chromic acid aqueous solution for chromate treatment is used, this has a problem because it contains hexavalent chromium which is problematic in the environment, and recently, a chemical conversion treatment method using no chromium has been demanded. Therefore, a method using the aforementioned manganese and other metals has been developed. Recently, it seems that a method using a manganese compound is regarded as an alternative to the chromate treatment. The substrate used in the present invention can be used even if it is surface-treated by any of these methods.

本発明者らの研究結果によれば、より好ましい要件は、(1)防食性が十分あること、(2)化成処理で得られた表面層に凹凸があり、且つ電子顕微鏡で見て表面に多くの結晶状物が認められることである。本発明では、要件(1)及び要件(2)の双方の要件が必要であるが、本発明では特に要件(2)に注目し検討した。マグネシウム又はマグネシウム合金が金属酸化物、金属炭酸化物、又は金属リン酸化物の硬く丈夫な表層を有することが好ましいからである。これは射出された結晶性を有する熱可塑性樹脂が、前述した硬く丈夫な凹凸のある表層に食い込んで結晶化して固化することが強い接合力を生むことから来ている。   According to the research results of the present inventors, more preferable requirements are (1) sufficient corrosion resistance, (2) the surface layer obtained by chemical conversion treatment has irregularities, and the surface is viewed with an electron microscope. Many crystalline substances are observed. In the present invention, both the requirement (1) and the requirement (2) are necessary. In the present invention, the requirement (2) is particularly considered and examined. This is because magnesium or a magnesium alloy preferably has a hard and strong surface layer of metal oxide, metal carbonate, or metal phosphate. This is because the injected thermoplastic resin has a strong bonding force when it is crystallized and solidified by biting into the hard and strong uneven surface layer described above.

化成処理で得られた硬く丈夫な表面層が、ミクロンメータレベルの大きな凹凸形状を有しており(別の表現で言えば「ミクロンレベルの粗度がある。」)、且つその凹部面にナノレベルの凹凸形状がある表面形状であれば、樹脂が金属の表面で捉えられることになり、即ち、樹脂が金属表面層の凹凸に引っかかることになりアンカー効果を生むのに好ましい。具体的には、電子顕微鏡での観察が必要であるが、1μm当りに板状結晶が2個以上認められる場合や、針状や棒状結晶が表面を広く覆っているか、又は針状や棒状結晶を外皮とする塊状物が連結して基材表面を覆っている場合が好ましい。また、電子顕微鏡観察で、約直径10nm、長さ100nm程度の円形柱が多数形成されているものであっても良い。ただし、この円形柱は、結晶物とは限らない。 The hard and strong surface layer obtained by the chemical conversion treatment has a large uneven shape on the micrometer level (in other words, “having a roughness on the micron level”), and the concave surface is nano-sized. If the surface shape has a level uneven shape, the resin is caught on the surface of the metal, that is, the resin is caught by the unevenness of the metal surface layer, which is preferable for producing an anchor effect. Specifically, observation with an electron microscope is necessary, but when two or more plate-like crystals are observed per 1 μm 2 , the needle-like or rod-like crystals cover the surface widely, or needle-like or rod-like The case where the lump which makes a crystal | crystallization outer shell connects and the base-material surface is covered is preferable. In addition, a large number of circular columns having a diameter of about 10 nm and a length of about 100 nm may be formed by electron microscope observation. However, this circular column is not necessarily a crystal.

この1μm当りに板状結晶が約2個以上認められる場合、板状結晶が凹凸部の壁の役割を為し、これが機械的に強固な固着手段となって固着力を高くするのに有効である。一方、針状や棒状結晶が表面を30%以上覆っていると、自然と頑丈な凹凸形状からなる固着手段を為し、且つこれが樹脂との引っかかりを良くして射出接合力を高くするのにより有効である。以下、各工程の具体的な実施方法とその考え方について述べる。 When about 2 or more plate crystals are observed per 1 μm 2 , the plate crystals serve as the walls of the concavo-convex portion, which is effective for increasing the fixing force as a mechanically strong fixing means. It is. On the other hand, if the surface is covered with 30% or more of needle-like or rod-like crystals, it will naturally serve as a fixing means with a rugged uneven shape, and this will improve the catching with the resin and increase the injection joining force. It is valid. In the following, the specific implementation method of each step and its concept will be described.

〔マグネシウム又はマグネシウム合金の表面処理/前処理〕
本発明でいう前処理とは、マグネシウム合金からなる基材の表面に金属酸化物、金属炭酸化物、又は金属リン酸化物からなる表層を形成するための前処理である。マグネシウム又はマグネシウム合金からなる基材は、まず脱脂槽に浸漬して機械加工で付着した油剤、切屑等の異物を除くのが好ましい。具体的には、市販のマグネシウム用脱脂材を、その薬剤メーカーの指定通りの濃度でマグネシウム用脱脂材を温水に溶かし、これにマグネシウム合金を浸漬し、更にこの後これを清浄水で水洗するのが好ましい。通常の市販品では、濃度5〜10%として液温を50〜80℃とし5〜10分浸漬する。次いで、酸性水溶液に浸漬してエッチングし、マグネシウム合金部品の表層を溶かして汚れと残存した油剤や界面活性剤の残分を除く。使用液は、PH2.0〜5.0の有機カルボン酸が良く、例えば酢酸、プロピオン酸、クエン酸、安息香酸、フタル酸等の弱酸性水溶液が使用できる。
[Surface treatment / pretreatment of magnesium or magnesium alloy]
The pretreatment referred to in the present invention is a pretreatment for forming a surface layer made of a metal oxide, a metal carbonate, or a metal phosphate on the surface of a base material made of a magnesium alloy. The base material made of magnesium or a magnesium alloy is preferably first immersed in a degreasing tank to remove foreign substances such as oils and chips attached by machining. Specifically, a commercially available magnesium degreasing material is dissolved in warm water at a concentration specified by the drug manufacturer, the magnesium alloy is immersed in this, and then this is rinsed with clean water. Is preferred. In an ordinary commercial product, the concentration is 5 to 10%, the liquid temperature is 50 to 80 ° C., and the immersion is performed for 5 to 10 minutes. Next, it is immersed and etched in an acidic aqueous solution to dissolve the surface layer of the magnesium alloy part and remove the dirt and the remaining oil agent or surfactant residue. The use liquid is preferably an organic carboxylic acid having a pH of 2.0 to 5.0, and for example, a weakly acidic aqueous solution such as acetic acid, propionic acid, citric acid, benzoic acid, and phthalic acid can be used.

マグネシウム純度が100%に近い高純度マグネシウム以外は、マグネシウム合金に異種金属が含まれている。例えば、AZ31系、AZ91系ではアルミニウムが3〜9%、亜鉛が1%程度含まれており、アルミニウムや亜鉛は弱酸性水溶液を使ったこのエッチング工程では溶け難く不溶物として表面に沈着するから、これら沈着物を溶かして除去して清浄にする工程が必要である。   Except for high-purity magnesium whose magnesium purity is close to 100%, the magnesium alloy contains dissimilar metals. For example, in AZ31 series and AZ91 series, aluminum is contained in about 3 to 9% and zinc is about 1%. Aluminum and zinc are hardly dissolved in this etching process using a weakly acidic aqueous solution and deposited on the surface as an insoluble matter. A process for dissolving and removing these deposits is necessary.

これは、いわゆるスマット除去と呼ばれている工程である。前述したAZ31B、AZ91D等では、まず弱塩基性水溶液に浸漬してアルミニウムのスマットを溶解し(第一スマット処理)、次に強塩基性水溶液に浸漬して亜鉛のスマットを溶かし去る(第二スマット処理)のが普通である。前述した第一スマット処理では市販のアルミニウム合金用の脱脂材水溶液が弱塩基性にて使用でき、本発明者等は、そのような市販されているアルミ用脱脂剤を5〜10%濃度で60〜80℃の水溶液として数分間浸漬する方法を取った。又、第二スマット処理としては、15〜25%濃度の苛性ソーダ水溶液を70〜80℃として、5〜10分間浸漬する方法を取った。   This is a process called so-called smut removal. In the above-described AZ31B, AZ91D, etc., first, the aluminum smut is dissolved by immersing it in a weakly basic aqueous solution (first smut treatment), and then the zinc smut is dissolved away by immersing in a strongly basic aqueous solution (second smut). Processing) is normal. In the first smut treatment described above, a commercially available degreasing agent aqueous solution for aluminum alloys can be used with a weak basicity, and the present inventors have used such a commercially available degreasing agent for aluminum at a concentration of 5 to 10% in 60%. A method of immersing for several minutes as an aqueous solution of ˜80 ° C. was taken. Further, as the second smut treatment, a method of dipping for 5 to 10 minutes at a temperature of 70 to 80 ° C. with a caustic soda solution having a concentration of 15 to 25% was employed.

〔マグネシウム又はマグネシウム合金の表面処理/化成処理〕
本発明でいう化成処理とは、マグネシウム合金からなる基材の表面に金属酸化物、金属炭酸化物、又は金属リン酸化物からなる表層を形成するためのものである。前述した前処理が完了したら、次に液処理の中で本処理と言える化成処理を行う。化成処理は通常2段階の浸漬処理、即ちまず、弱酸性水溶液に極短時間浸漬して微細エッチングを行い、次いで従来技術である各種マグネシウム合金用の化成処理法を改善して実施することである。微細エッチング工程には、PH2.0〜6.0の有機カルボン酸、例えば酢酸、プロピオン酸、クエン酸、安息香酸、フタル酸、フェノール、フェノール誘導体、等の弱酸性水溶液が使用でき、浸漬時間も15〜40秒と極短時間が好ましい。
[Surface treatment / chemical conversion treatment of magnesium or magnesium alloy]
The chemical conversion treatment referred to in the present invention is for forming a surface layer made of a metal oxide, a metal carbonate, or a metal phosphorus oxide on the surface of a base material made of a magnesium alloy. When the above-described pretreatment is completed, a chemical conversion treatment that can be called the main treatment is then performed in the liquid treatment. The chemical conversion treatment is usually a two-stage immersion treatment, that is, first, the fine chemical etching is performed by immersing in a weak acidic aqueous solution for a short time, and then the conventional chemical conversion treatment method for various magnesium alloys is improved. . In the fine etching process, an organic carboxylic acid having a pH of 2.0 to 6.0, for example, a weakly acidic aqueous solution such as acetic acid, propionic acid, citric acid, benzoic acid, phthalic acid, phenol, and a phenol derivative can be used, and the immersion time is also long. An extremely short time of 15 to 40 seconds is preferable.

又、本発明に用いる化成処理工程は従来知られている化成処理と基本的には同じ工程である。即ち、この化成処理方法は特許も多数なされ公開され公知技術であり、その詳細については省略する。この化成処理は、例えばクロム、マンガン、バナジウム、カルシウム、亜鉛、カルシウム、ストロンチウム、ジルコニウム、チタン化合物、及びアルカリ金属炭酸塩から選択される1種以上の金属を含んだ水溶液、水性懸濁液に浸漬することにより、表層に金属酸化物、金属炭酸化物、又は金属リン酸化物を形成させて、マグネシウム合金の耐食性を向上させるものも提案されている。一方、実際に商業化されている化成処理は、本発明者等が知る限りにおいて、クロム酸系の水溶液に浸漬して酸化クロム、又はマグネシウムを含むクロム酸化物で表面を覆うクロメート法、又はリン酸マンガン系水溶液に浸漬してマンガンのリン酸化物で覆う方法の2種類のようである。   The chemical conversion treatment step used in the present invention is basically the same as the conventionally known chemical conversion treatment. That is, this chemical conversion treatment method is a publicly known technique with many patents published, and details thereof are omitted. This chemical conversion treatment is performed by, for example, immersing in an aqueous solution or aqueous suspension containing one or more metals selected from chromium, manganese, vanadium, calcium, zinc, calcium, strontium, zirconium, titanium compounds, and alkali metal carbonates. By doing this, a metal oxide, metal carbonate, or metal phosphate is formed on the surface layer to improve the corrosion resistance of the magnesium alloy. On the other hand, as far as the present inventors know, the chemical conversion treatment that is actually commercialized is immersed in a chromic acid aqueous solution to cover the surface with chromium oxide or chromium oxide containing magnesium, or phosphorous treatment. There seem to be two kinds of methods of immersing in manganese acid aqueous solution and covering with manganese phosphate.

現在、6価クロムの使用は人体への影響から敬遠されており、前述した表面処理では後者が主流になってノンクロメート法として呼ばれているものに変わりつつある状況である。本発明者等にとって化成処理の目的は、耐食性を与えるだけでなく、射出接合されたとき材料力学的に機械強度が高い表面を形成することにある。本発明者等の検討結果によると、前述した特許出願されているタイプの化成処理や、実用化されているクロメート、ノンクロメート処理法の何れに於いても十分な耐食性が得られ、且つそこそこの強度の射出接合物が得られた。ただその中でも、特に射出接合結果の良かった物でその金属表面を電子顕微鏡で見ると、明確な微結晶が観察されたり綺麗なナノレベルの繰り返し構造が観察された。そして電子顕微鏡で見て結晶や綺麗な繰り返し構造が多く観察された物を調整するには微細エッチング工程を経たものが好ましい。   Currently, the use of hexavalent chromium is avoided from the influence on the human body, and in the surface treatment described above, the latter has become the mainstream and is changing to what is called the non-chromate method. The purpose of the chemical conversion treatment for the present inventors is not only to provide corrosion resistance but also to form a surface having high mechanical strength in terms of material mechanics when injection-bonded. According to the results of the study by the present inventors, sufficient corrosion resistance can be obtained in any of the chemical conversion treatment of the above-mentioned patent application type, chromate treatment, and non-chromate treatment method, which are practically used. A strong injection joint was obtained. However, when the surface of the metal was observed with an electron microscope, particularly the ones with good injection joining results, clear microcrystals were observed and beautiful nano-level repetitive structures were observed. And what adjusted the fine crystal | crystallization etching process in order to adjust the thing in which many crystals and beautiful repeating structures were observed with the electron microscope is preferable.

最も好ましいものの一つと思われた化成処理工程の具体例を示す。前処理を終わったマグネシウム合金部品を、再度、40℃前後とした0.1〜0.5%濃度の水和クエン酸水溶液に、15〜60秒間浸漬し微細エッチングし、この後イオン交換水で水洗する。次に化成処理液として、過マンガン酸カリ1〜5%、酢酸0.5〜2%、水和酢酸ナトリウム0.1〜1.0%を、含む水溶液を40〜60℃として用意し、これに前記マグネシウム合金部品を0.5〜2分間浸漬し水洗し、60〜90℃とした温風乾燥機に5〜20分間入れて乾燥する。酸化マンガンの薄層で覆われた茶褐色のマグネシウム合金部品が得られる。   A specific example of the chemical conversion treatment process which is considered to be one of the most preferable ones will be shown. The magnesium alloy part that has been pretreated is again immersed in a 0.1 to 0.5% strength hydrated citric acid solution at about 40 ° C. for 15 to 60 seconds and finely etched. Wash with water. Next, as a chemical conversion treatment solution, an aqueous solution containing potassium permanganate 1-5%, acetic acid 0.5-2%, and hydrated sodium acetate 0.1-1.0% was prepared at 40-60 ° C. The magnesium alloy part is immersed in 0.5 to 2 minutes, washed with water, and placed in a hot air drier at 60 to 90 ° C. for 5 to 20 minutes for drying. A brown magnesium alloy part covered with a thin layer of manganese oxide is obtained.

一方、耐食性として最も優れていると一般に認められるクロメート処理法で本発明を実施するに好ましい方法の一例を示す。前記前処理を終わったマグネシウム合金の基材を、再度、40℃前後とした0.1〜0.5%濃度の水和クエン酸水溶液に、15〜60秒間浸漬し微細エッチングし、この後イオン交換水で水洗する。次いで化成処理液として、無水クロム酸(三酸化クロム)の15〜20%濃度の水溶液を60〜80℃として用意し、これに微細エッチングしたマグネシウム部品を2〜4分間浸漬し水洗する。これを60〜90℃とした温風乾燥機に5〜20分入れて乾燥する。表層がクロメート処理され表面が灰色のマグネシウム合金の基材が得られる。   On the other hand, an example of a preferable method for carrying out the present invention by a chromate treatment method generally recognized as the most excellent corrosion resistance will be described. The magnesium alloy base material after the pretreatment was again finely etched by immersion in a 0.1 to 0.5% strength hydrated citric acid aqueous solution at about 40 ° C. for 15 to 60 seconds. Wash with replacement water. Next, as a chemical conversion treatment solution, an aqueous solution of chromic anhydride (chromium trioxide) having a concentration of 15 to 20% is prepared at 60 to 80 ° C., and the finely etched magnesium component is immersed in this for 2 to 4 minutes and washed with water. This is put into a warm air dryer set at 60 to 90 ° C. for 5 to 20 minutes and dried. The surface layer is chromated and a magnesium alloy substrate having a gray surface is obtained.

〔樹脂層〕
本発明を構成する樹脂層は、結晶性を有する熱可塑性樹脂であるPBTを主成分とする樹脂である。ポリアミドも高度の結晶性樹脂であり本発明で使用できない樹脂ではないが、機械的強度が若干弱く且つ吸水性があるので長期間固着力を保てるかという観点で、現段階では信頼性におい充分でなく本発明では使用しない。しかしながら、その用途によっては使用も可能である。なお、本発明でいう樹脂層とは、射出成形によって形成される部分であり、層の文字で示したが薄いものを指しているものではない、厚みを持ったものであり形状物である。
[Resin layer]
The resin layer which comprises this invention is resin which has PBT which is a thermoplastic resin which has crystallinity as a main component. Although there is not a resin can not be used in the present invention in a high degree of crystalline resin polyamides, in terms of either maintain long-term bonding strength because the mechanical strength is somewhat weak and absorbent enough Te reliability odor at this stage do not use in the present invention rather than. However, it can be used depending on the application. In addition, the resin layer as used in the field of this invention is a part formed by injection molding, and although it showed with the character of the layer, it does not indicate the thin thing, it has a thickness and is a shape object.

本発明の樹脂層には、機械的な各種特性を改善するためにPBT又はPPS以外のポリマー、ガラス繊維、炭素繊維等の充填剤、改質剤等を常法により必要に応じて混入させるのがよい。PBTの基本樹脂としては射出成形用に合成した各種のPBTが使用できる。一方、PPSの基本樹脂としては、直鎖状のものであっても、分岐構造を導入したものであっても、不活性ガス中で加熱処理を施したものであっても良いが、好ましくは分岐構造を導入したものや不活性ガス中で加熱処理を施したものが良い。   In the resin layer of the present invention, polymers other than PBT or PPS, fillers such as glass fibers and carbon fibers, modifiers, and the like are mixed as necessary by a conventional method in order to improve various mechanical properties. Is good. As the basic resin of PBT, various PBT synthesized for injection molding can be used. On the other hand, the basic resin of PPS may be a linear one, a one having a branched structure introduced therein, or one subjected to heat treatment in an inert gas. What introduced the branched structure and what heat-processed in inert gas are good.

〔樹脂層(PPSとポリオフィンの組成物)
本発明の樹脂層として主にPBTを用いるが、PPSの場合には特にポリオレフィン系樹脂を適量加えると固着強度がより強くなる。この推定される理由は、急冷時の結晶化速度がポリオレフィン系樹脂の適量の添加で遅くなるためと推定される。その結果、樹脂が化成処理面が成す凹部内に充分に侵入した後に結晶化固化し、固化前の溶融樹脂流れが凹部表面上のナノレベルのデコボコにもある程度対応する結果、滑り止め、抜け止めにもなって、固着強度が上がるものと理解される。
[Resin layer (composition of PPS and polio les fins)
PBT is mainly used as the resin layer of the present invention, but in the case of PPS, particularly when an appropriate amount of polyolefin resin is added, the fixing strength becomes stronger. The reason for this presumption is presumed that the crystallization rate during quenching is slowed by the addition of an appropriate amount of polyolefin resin. As a result, the resin sufficiently penetrates into the recess formed by the chemical conversion treatment surface and then crystallizes and solidifies, and the molten resin flow before solidification also corresponds to the nano level unevenness on the surface of the recess to some extent. Therefore, it is understood that the fixing strength increases.

本発明で用いるポリオレフィン系樹脂を加えたPPSからなる樹脂組成物は、PPS70〜97重量%、及びポリオレフィン系樹脂3〜30重量%を含む樹脂分組成物からなるのが好ましい。より好ましくは、固着性に優れた複合体とするにはPPS80〜97重量%、及びポリオレフィン系樹脂3〜20重量%を含む樹脂分組成とすることが良い。ここで、PPSが65重量%未満である場合、又は、97重量%を越える場合、得られる複合体は基材と樹脂層との固着力に劣るものとなる。   The resin composition comprising PPS to which the polyolefin resin used in the present invention is added is preferably composed of a resin component composition containing 70 to 97% by weight of PPS and 3 to 30% by weight of the polyolefin resin. More preferably, a resin composition containing 80 to 97 wt% PPS and 3 to 20 wt% polyolefin-based resin is preferable in order to obtain a composite having excellent adhesion. Here, when PPS is less than 65% by weight, or when it exceeds 97% by weight, the composite obtained is inferior in adhesion between the substrate and the resin layer.

PPSとしては、PPSと称される範疇に属するものであればよく、その中でも樹脂組成物とする際の成形加工性に優れることから、溶融粘度が100〜30,000ポイズであるものが好ましい。この溶融粘度の測定は、直径1mm、長さ2mmのダイスを装着した高化式フローテスターにて、測定温度315℃、荷重10kgの条件下、測定した値である。また、PPSはアミノ基やカルボキシル基等で置換したものや、重合時にトリクロロベンゼン等で共重合したものであってもよい。   Any PPS may be used as long as it belongs to a category referred to as PPS. Among them, those having a melt viscosity of 100 to 30,000 poise are preferable because they are excellent in moldability when used as a resin composition. The melt viscosity is measured using a Koka flow tester equipped with a die having a diameter of 1 mm and a length of 2 mm under the conditions of a measurement temperature of 315 ° C. and a load of 10 kg. PPS may be substituted with an amino group, a carboxyl group or the like, or may be copolymerized with trichlorobenzene or the like during polymerization.

また、PPSとしては、直鎖状のものであっても、分岐構造を導入したものであっても、不活性ガス中で加熱処理を施したものであっても使用できる。更に、このPPSは、加熱硬化前又は後に脱イオン処理(酸洗浄や熱水洗浄等)、或いはアセトン等の有機溶媒による洗浄処理を行うことによって、イオン、オリゴマー等の不純物を低減させたものであってもよいし、重合反応終了後に酸化性ガス中で加熱処理を行って硬化を進めたものであってもよい。   Moreover, as PPS, even if it is a linear thing, what introduce | transduced the branched structure, what was heat-processed in inert gas can be used. Furthermore, this PPS has reduced impurities such as ions and oligomers by performing deionization treatment (acid washing, hot water washing, etc.) before or after heat curing, or washing with an organic solvent such as acetone. Alternatively, it may be cured by performing a heat treatment in an oxidizing gas after completion of the polymerization reaction.

ポリオレフィン系樹脂としては、通常知られているエチレン系樹脂、プロピレン系樹脂等であり、市販されているものであってもよい。その中でも、特に接着性に優れた複合体を得るという観点から、無水マレイン酸変性エチレン系共重合体、グリシジルメタクリレート変性エチレン系共重合体、グリシジルエーテル変性エチレン共重合体、エチレンアルキルアクリレート共重合体等であることが好ましい。   Examples of the polyolefin-based resin include commonly known ethylene-based resins and propylene-based resins, and may be commercially available. Among these, from the viewpoint of obtaining a composite having particularly excellent adhesiveness, maleic anhydride-modified ethylene copolymer, glycidyl methacrylate-modified ethylene copolymer, glycidyl ether-modified ethylene copolymer, ethylene alkyl acrylate copolymer Etc.

この無水マレイン酸変性エチレン系共重合体としては、例えば無水マレイン酸グラフト変性エチレン重合体、無水マレイン酸−エチレン共重合体、エチレン−アクリル酸エステル−無水マレイン酸三元共重合体等をあげることができる。これらの中でも特に優れた複合体が得られる観点から、エチレン−アクリル酸エステル−無水マレイン酸三元共重合体であることが好ましく、このエチレン−アクリル酸エステル−無水マレイン酸三元共重合体の具体的例示としては、「ボンダイン(製品名)」(日本国京都府京都市、アルケマ社製)」等が挙げられる。   Examples of the maleic anhydride-modified ethylene copolymer include maleic anhydride graft-modified ethylene polymer, maleic anhydride-ethylene copolymer, ethylene-acrylic acid ester-maleic anhydride terpolymer. Can do. Among these, from the viewpoint of obtaining a particularly excellent composite, an ethylene-acrylic acid ester-maleic anhydride terpolymer is preferable, and this ethylene-acrylic acid ester-maleic anhydride terpolymer is preferable. Specific examples include “Bondaine (product name)” (Kyoto, Japan, Arkema).

このグリシジルメタクリレート変性エチレン系共重合体としては、グリシジルメタクリレートグラフト変性エチレン重合体、グリシジルメタクリレート−エチレン共重合体を挙げることができ、その中でも特に優れた複合体が得られることからグリシジルメタクリレート−エチレン共重合体であることが好ましく、このグリシジルメタクリレート−エチレン共重合体の具体例としては、「ボンドファースト(製品名)」(日本国東京都中央区、住友化学社製)」等が挙げられる。   Examples of the glycidyl methacrylate-modified ethylene copolymer include glycidyl methacrylate graft-modified ethylene polymer and glycidyl methacrylate-ethylene copolymer. Among them, particularly excellent composites can be obtained, and thus glycidyl methacrylate-ethylene copolymer. It is preferably a polymer, and specific examples of this glycidyl methacrylate-ethylene copolymer include “Bond First (product name)” (Chuo-ku, Tokyo, Japan).

このグリシジルエーテル変性エチレン共重合体としては、例えばグリシジルエーテルグラフト変性エチレン共重合体、グリシジルエーテル−エチレン共重合体を挙げることができ、該エチレンアルキルアクリレート共重合体の具体例としては、「ロトリル(製品名)」(日本国京都府京都市、アルケマ社製)」等が挙げられる。本発明の複合体においては基材と樹脂層との接合性がより優れたものとなることから、樹脂組成物はPPS70〜97重量%及びポリオレフィン系樹脂3〜30重量%を含む樹脂分の合計100重量部に対し、さらに多官能性イソシアネート化合物0.1〜6重量部、及び/又はエポキシ樹脂1〜25重量部を配合してなるものが好ましい。   Examples of the glycidyl ether-modified ethylene copolymer include glycidyl ether graft-modified ethylene copolymer and glycidyl ether-ethylene copolymer. Specific examples of the ethylene alkyl acrylate copolymer include “rotoryl ( Product name) "(Kyoto, Japan, Arkema Co., Ltd.)" and the like. In the composite of the present invention, since the bondability between the base material and the resin layer becomes better, the resin composition is a total of the resin content including 70 to 97% by weight of PPS and 3 to 30% by weight of polyolefin resin. What blends 0.1-6 weight part of polyfunctional isocyanate compounds and / or 1-25 weight part of epoxy resins with respect to 100 weight part is preferable.

この多官能性イソシアネート化合物は、市販の非ブロック型、ブロック型のものが使用できる。該多官能性非ブロック型イソシアネート化合物としては、例えば4,4’−ジフェニルメタンジイソシアネート、4,4’−ジフェニルプロパンジイソシアネート、トルエンジイソシアネート、フェニレンジイソシアネート、ビス(4−イソシアネートフェニル)スルホン等が例示される。また、該多官能性ブロック型イソシアネート化合物としては、分子内に2個以上のイソシアネート基を有し、そのイソシアネート基を揮発性の活性水素化合物と反応させて、常温では不活性としたものであり、該多官能性ブロック型イソシアネート化合物の種類は特に規定したものではなく、一般的には、アルコール類、フェノール類、ε−カプロラクタム、オキシム類、活性メチレン化合物類等のブロック剤によりイソシアネート基がマスクされた構造を有する。該多官能性ブロック型イソシアネートとしては、例えば「タケネート(製品名)」(日本国東京都、三井化学ポリウレタン社製)」等が挙げられる。   As this polyfunctional isocyanate compound, a commercially available non-block type or block type compound can be used. Examples of the polyfunctional non-blocked isocyanate compound include 4,4'-diphenylmethane diisocyanate, 4,4'-diphenylpropane diisocyanate, toluene diisocyanate, phenylene diisocyanate, and bis (4-isocyanatophenyl) sulfone. The polyfunctional block type isocyanate compound has two or more isocyanate groups in the molecule, and the isocyanate group is reacted with a volatile active hydrogen compound so as to be inactive at room temperature. The type of the polyfunctional block type isocyanate compound is not particularly specified. Generally, the isocyanate group is masked by a blocking agent such as alcohols, phenols, ε-caprolactam, oximes, and active methylene compounds. Has a structured. Examples of the polyfunctional block-type isocyanate include “Takenate (product name)” (Tokyo, Japan, manufactured by Mitsui Chemicals Polyurethanes).

このエポキシ樹脂としては、一般にビスフェノールA型、クレゾールノボラック型等として知られているエポキシ樹脂を用いることができ、該ビスフェノールA型エポキシ樹脂としては、例えば「エピコート(製品名)」(日本国東京都、ジャパンエポキシレジン社製)」等が挙げられ、該クレゾールノボラック型エポキシ樹脂としては、「エピクロン(製品名)」(日本国東京都、大日本インキ化学工業社製」等が挙げられる。   As this epoxy resin, an epoxy resin generally known as a bisphenol A type, a cresol novolak type or the like can be used. As the bisphenol A type epoxy resin, for example, “Epicoat (product name)” (Tokyo, Japan) , Manufactured by Japan Epoxy Resin Co., Ltd.) and the like, and examples of the cresol novolac type epoxy resin include “Epiclon (product name)” (manufactured by Dainippon Ink & Chemicals, Tokyo, Japan).

〔樹脂層(PBTとPETの混合した組成物)]
本発明の樹脂層の樹脂分は、PBT及びポリエチレンテレフタレート(PET)を混合した組成物である。PBT65〜87重量%、及びPET13〜35重量%の混合割合が適当である。
[Resin layer (composition of PBT and PET mixed)]
The resin component of the resin layer of the present invention is a composition in which PBT and polyethylene terephthalate (PET) are mixed. A mixing ratio of 65 to 87 % by weight of PBT and 13 to 35% by weight of PET is suitable.

[充填剤]
本発明の樹脂層に使用する樹脂は、結晶性を有する熱可塑性樹脂であるポリブチレンテレフタレート樹脂、又はポリフェニレンサルファイド樹脂を主ポマーとして用いるが、これに機械的特性の改善等の理由から、これらのポリマーに充填剤を混合しても良い。この充填剤の混合割合は、ポリフェニレンサルファイド樹脂とポリオレフィン系樹脂の合計樹脂分100重量部、又はポリブチレンテレフタレート樹脂とポリエチレンテレフタレート樹脂の合計樹脂100重量部に対して、充填剤1〜200重量部を配合してなるものが良い。この充填剤としては繊維状充填剤、粒状充填剤、板状充填剤等の充填剤を挙げることができる。この繊維状充填剤としては、例えばガラス繊維、炭素繊維、アラミド繊維等が挙げられ、ガラス繊維の具体的例示としては、平均繊維径が6〜14μmのチョップドストランド等が挙げられる。また、該板状、粒状充填剤としては、例えば炭酸カルシウム、マイカ、ガラスフレーク、ガラスバルーン、炭酸マグネシウム、シリカ、タルク、粘土、炭素繊維やアラミド繊維の粉砕物等が挙げられる。該充填剤は、シランカップリング剤、チタネート系カップリング剤で処理したものあることが好ましい。
[filler]
The resin used in the resin layer of the present invention uses a polybutylene terephthalate resin or a polyphenylene sulfide resin, which is a thermoplastic resin having crystallinity, as a main pomer. For reasons such as improvement of mechanical properties, these resins are used. You may mix a filler with a polymer. The mixing ratio of the filler is 1 to 200 parts by weight of the filler with respect to 100 parts by weight of the total resin content of the polyphenylene sulfide resin and the polyolefin resin, or 100 parts by weight of the total resin of the polybutylene terephthalate resin and the polyethylene terephthalate resin. What is blended is good. Examples of the filler include fillers such as a fibrous filler, a granular filler, and a plate filler. Examples of the fibrous filler include glass fiber, carbon fiber, and aramid fiber. Specific examples of the glass fiber include chopped strands having an average fiber diameter of 6 to 14 μm. Examples of the plate-like and granular fillers include calcium carbonate, mica, glass flakes, glass balloons, magnesium carbonate, silica, talc, clay, pulverized products of carbon fibers and aramid fibers. The filler is preferably treated with a silane coupling agent or a titanate coupling agent.

〔複合体の製造方法〕
本発明の複合体の製造方法としては、マグネシウム合金からなる基材を射出成形金型にインサートし金型を閉め樹脂を射出する方法、即ち射出接合法により製造することが好ましく、以下に好ましい製造例を述べる。射出成形金型を用意し、この金型を開いてその一方に前述のような処理等により得られた化成処理済みのマグネシウム合金からなる基材をインサートし、金型を閉じ、PBT又はPPSを含む樹脂分組成の熱可塑性樹脂組成物を射出し、固化した後に金型を開き離型することにより、複合体の製造を行う。
[Production method of composite]
As a method for producing the composite of the present invention, it is preferable to produce the composite by a method in which a base material made of a magnesium alloy is inserted into an injection mold, the mold is closed, and a resin is injected, that is, an injection joining method. An example is given. An injection mold is prepared, this mold is opened, and a base material made of a magnesium alloy subjected to chemical conversion treatment obtained by the above-mentioned treatment is inserted into one of the molds, the mold is closed, and PBT or PPS is inserted. A composite is manufactured by injecting and solidifying a thermoplastic resin composition having a resin component composition, and then opening and releasing the mold.

次に射出条件について説明する。金型温度としては特に樹脂の固化後に樹脂強度への影響が少なく、複合体の生産効率に優れることから100℃以上が好ましく、より好ましくは120℃以上である。一方、射出温度、射出圧、射出速度は、通常の射出成形条件と変わることはないが、強いて言えば射出速度と射出圧は高目がよい。   Next, injection conditions will be described. The mold temperature is preferably 100 ° C. or higher, and more preferably 120 ° C. or higher, because it has little influence on the resin strength after the resin is solidified and is excellent in production efficiency of the composite. On the other hand, the injection temperature, the injection pressure, and the injection speed are not different from the normal injection molding conditions, but speakingly, the injection speed and the injection pressure should be high.

以上詳記したように、本発明の複合体は、樹脂組成物部品とマグネシウム合金からなる基材とが容易に剥がれることなく一体化できた。又、この複合体は、この基材の表層に金属酸化物、金属炭酸化物、又は金属リン酸化物を形成されているので、耐食性にも優れている。更に、PBTを主成分とし従成分がPETとする熱可塑性樹脂組成物を射出成形により成形することにより、量産性、生産性が高いマグネシウム合金からなる基材と樹脂層からなる複合体を作ることができた。 As described above in detail, the composite of the present invention can be integrated without easily peeling off the resin composition part and the base material made of a magnesium alloy. In addition, this composite is excellent in corrosion resistance because a metal oxide, metal carbonate, or metal phosphate is formed on the surface layer of the substrate. Furthermore, by molding a thermoplastic resin composition containing PBT as a main component and a subsidiary component as PET by injection molding, a composite body composed of a base material made of a magnesium alloy and a resin layer having high mass productivity and high productivity is made. I was able to.

以下、本発明の実施の形態を参考例、実施例によって説明する。図1、図2は各参考例及び実施例の共通の図として使用される。図1は、可動側型板、固定側型板等からなる射出成形金型を模式的に示した金型構造図である。図2は、この射出成形金型により基材1と樹脂組成物4が一体に固着された複合体7の外観である。 Hereinafter, embodiments of the present invention will be described with reference examples and examples. FIG. 1 and FIG. 2 are used as a common view of each reference example and embodiment. FIG. 1 is a mold structure diagram schematically showing an injection mold including a movable side mold, a fixed side mold, and the like. FIG. 2 is an appearance of the composite 7 in which the base material 1 and the resin composition 4 are integrally fixed by this injection mold.

所定形状に加工されたマグネシウム合金板1を可動側型板2、固定側型板3の間にインサートし、溶融した樹脂組成物4をノズルから射出し、ピンゲート5を介してそのキャビティに注入する。マグネシウム合金板1の表面に形成された微細凹部を有する接合面6に、樹脂組成物4が固着され、両者は一体化された複合体7を製造する。以下の各参考例及び実施例は、各参考例及び実施例で製造される複合体7の固着強度を計測するために、マグネシウム合金板1と樹脂組成物4を互いに引っ張り、その接合面6にせん断応力を負荷し、その破断強度を測定することにより、その固着力を確認したものである。 The magnesium alloy plate 1 processed into a predetermined shape is inserted between the movable side mold plate 2 and the fixed side mold plate 3, and the molten resin composition 4 is injected from the nozzle and injected into the cavity through the pin gate 5. . The resin composition 4 is fixed to the joint surface 6 having fine concave portions formed on the surface of the magnesium alloy plate 1, and the composite 7 in which both are integrated is manufactured. In each of the following reference examples and examples, the magnesium alloy plate 1 and the resin composition 4 are pulled together to measure the bonding strength of the composite body 7 produced in each reference example and example. The fixing force was confirmed by applying a shear stress and measuring the breaking strength.

以下、本発明の実施例、参考例、比較例及びそのための要素について詳記する。前提として、後述する実施例より得られた複合体の評価・測定に用いた、評価・測定方法、及び測定機材を以下に示す。
[評価・測定方法、及び測定機材]
(a)樹脂の溶融粘度測定
樹脂の溶融粘度を測定するために、熱可塑性、熱硬化性の各種プラスチックの溶融粘性、流動性能を測定するものとして知られている高化式フローテスターを用いた。直径1mm、長さ2mmのダイスを装着した高化式フローテスター「CFT−500(製品名)」(日本国京都府、島津製作所社製)で、測定温度315℃、荷重0.98Mpa(10kgf)の条件下で溶融粘度の測定を行った。
(b)X線光電子分析装置(XPS観察)
表面観察方法の一つに、試料にX線を照射することによって試料から放出してくる光電子のエネルギーを分析し、元素の定性分析等を行う光電子分析装置(XPS観察)により行った。この光電子分析装置は、数μm径の表面を深さ数nmまでの範囲で観察する形式の「AXIS−Nova(製品名)」(英国、クレイトスアナリティカル社/島津製作所社製)を使用した。
(c)電子顕微鏡観察
主に基材表面の観察のために電子顕微鏡を用いた。この電子顕微鏡は、走査型(SEM)の電子顕微鏡「S−4800(製品名)」(日本国東京都、日立製作所社製)」及び「JSM−6700F(製品名)」(日本国東京都、日本電子社製)を使用し、1〜2KVにて観察した。
(d)走査型プローブ顕微鏡観察
更に、主に基材表面の観察のために上記顕微鏡を用いた。この顕微鏡は、先端を尖らせた探針を用いて、物質の表面をなぞるように動かして表面状態を拡大観察する走査型プローブ顕微鏡である。この走査型プローブ顕微鏡として、「SPM−9600(製品名)」(日本国京都府、島津製作所社製)」を使用した。
(e)複合体の接合強度の測定
引張り応力は、引張り試験機で複合体7を引っ張ってせん断力を負荷して、破断するときの破断力をせん断応力とした。この引張り試験機は、「モデル1323(製品名)」(日本国東京都、アイコーエンジニヤリング社製)」を使用し、引っ張り速度10mm/分でせん断力を測定した。
(f)塩水噴霧試験
本発明の複合体の耐食性を試験するめたに塩水噴霧試験を行った。この試験のために、塩水を噴霧して材料の耐食性、劣化等を試験する材料試験器の一種である塩水噴霧試験機「SPT−90(日本国東京都、スガ試験機社製)」を用いた。
Examples of the present invention , reference examples, comparative examples and elements therefor will be described in detail below. As a premise, the evaluation / measurement method and measurement equipment used for evaluation / measurement of the composites obtained from the examples described later are shown below.
[Evaluation / Measurement Method and Measurement Equipment]
(A) Measurement of melt viscosity of resin In order to measure the melt viscosity of resin, an elevated flow tester known as a measure of melt viscosity and flow performance of various thermoplastic and thermosetting plastics was used. . A Koka-type flow tester “CFT-500 (product name)” (manufactured by Shimadzu Corporation, Kyoto, Japan) equipped with a die having a diameter of 1 mm and a length of 2 mm, measuring temperature 315 ° C., load 0.98 Mpa (10 kgf) The melt viscosity was measured under the following conditions.
(B) X-ray photoelectron analyzer (XPS observation)
As one of the surface observation methods, the energy of photoelectrons emitted from the sample was analyzed by irradiating the sample with X-rays, and a photoelectron analyzer (XPS observation) for performing qualitative analysis of elements and the like was performed. This photoelectron analyzer used “AXIS-Nova (product name)” (manufactured by Kleitos Analytical Co., Ltd./Shimadzu Corporation) in the form of observing a surface having a diameter of several μm within a depth of several nanometers.
(C) Electron microscope observation An electron microscope was mainly used for observation of the substrate surface. This electron microscope is a scanning (SEM) electron microscope “S-4800 (product name)” (Tokyo, Japan, manufactured by Hitachi, Ltd.) and “JSM-6700F (product name)” (Tokyo, Japan, (Manufactured by JEOL Ltd.) and observed at 1-2 KV.
(D) Scanning probe microscope observation Further, the above microscope was used mainly for the observation of the substrate surface. This microscope is a scanning probe microscope that uses a probe with a sharp tip to move the surface of a substance so as to trace the surface state. As this scanning probe microscope, “SPM-9600 (product name)” (Kyoto, Japan, manufactured by Shimadzu Corporation) ”was used.
(E) Measurement of bonding strength of composite The tensile stress was determined by pulling the composite 7 with a tensile tester and applying a shearing force, and taking the breaking force as the shearing stress. This tensile tester used “Model 1323 (product name)” (Tokyo, Japan, manufactured by Aiko Engineering Co., Ltd.) and measured the shear force at a pulling speed of 10 mm / min.
(F) Salt spray test To test the corrosion resistance of the composite of the present invention, a salt spray test was conducted. For this test, a salt spray tester “SPT-90 (Tokyo, Japan, manufactured by Suga Test Instruments Co., Ltd.)” which is a kind of material tester for spraying salt water to test the corrosion resistance and deterioration of the material is used. It was.

[PPS組成物の調製例1]
このPPS調整例1は、PPSとポリオレフィン系樹脂の混合した調整例を示すものである。攪拌機を装備する50リットル容量を有するオートクレーブに、NaS・2.9HOを6,214g、及びN−メチル−2−ピロリドンを17,000g仕込み、窒素気流下で攪拌しながら徐々に205℃まで昇温して、1355gの水を留去した。この系を140℃まで冷却した後、p−ジクロロベンゼン7160gとN−メチル−2−ピロリドン5000gを添加し、窒素気流下に系を封入した。この系を2時間かけて225℃に昇温し、225℃にて2時間重合させた後、30分かけて250℃に昇温し、さらに250℃にて3時間重合を行った。
[Preparation Example 1 of PPS Composition]
This PPS adjustment example 1 shows an adjustment example in which PPS and polyolefin resin are mixed. An autoclave equipped with a stirrer and having a capacity of 50 liters was charged with 6,214 g of Na 2 S · 2.9H 2 O and 17,000 g of N-methyl-2-pyrrolidone and gradually stirred while stirring under a nitrogen stream. The temperature was raised to 0 ° C., and 1355 g of water was distilled off. After the system was cooled to 140 ° C., 7160 g of p-dichlorobenzene and 5000 g of N-methyl-2-pyrrolidone were added, and the system was sealed under a nitrogen stream. This system was heated to 225 ° C. over 2 hours and polymerized at 225 ° C. for 2 hours, then heated to 250 ° C. over 30 minutes, and further polymerized at 250 ° C. for 3 hours.

重合終了後、室温まで冷却しポリマーを遠心分離機により単離した。該固形分を温水でポリマーを繰り返し洗浄し100℃で一昼夜乾燥することにより、溶融粘度が280ポイズのPPS(以下、PPS(1)と記す。)を得た。このPPS(1)を、さらに窒素雰囲気下250℃で3時間硬化を行いPPS(以下、PPS(2)と記す。)を得た。得られたPPS(2)の溶融粘度は、400ポイズであった。   After completion of the polymerization, the mixture was cooled to room temperature and the polymer was isolated using a centrifuge. The solid content was repeatedly washed with warm water and dried at 100 ° C. for a whole day and night to obtain PPS having a melt viscosity of 280 poise (hereinafter referred to as PPS (1)). This PPS (1) was further cured at 250 ° C. for 3 hours under a nitrogen atmosphere to obtain PPS (hereinafter referred to as PPS (2)). The resulting PPS (2) had a melt viscosity of 400 poise.

得られたPPS(2)を6.0kgと、エチレン−アクリル酸エステル−無水マレイン酸三元共重合体1.5kg「ボンダインTX8030(製品名)」(日本国京都府京都市、アルケマ社製)」、エポキシ樹脂「エピコート1004(製品名)」(日本国東京都、ジャパンエポキシレジン社製)」0.5kgをあらかじめタンブラーにて均一に混合した。その後、二軸押出機「TEM−35B(製品名)」(日本国静岡県、東芝機械社製)」にて、平均繊維径9μm、繊維長3mmのガラス繊維「RES03−TP91(製品名)」(日本国東京都、日本板硝子社製)」を、サイドフィーダーから添加量が20重量%となるように供給しながら、シリンダー温度300℃で溶融混練してペレット化したPPS組成物(1)を得た。このPPS組成物(1)はポリオレフィン系樹脂が樹脂分合計の20%を占める樹脂組成であり、且つエポキシ樹脂分が樹脂分合計を100部として7部を占めるものである。得られたPPS組成物(1)を175℃で5時間乾燥した。   6.0 kg of the obtained PPS (2) and 1.5 kg of ethylene-acrylic acid ester-maleic anhydride terpolymer "Bondyne TX8030 (product name)" (Kyoto, Japan, Arkema Co., Ltd.) ”, 0.5 kg of epoxy resin“ Epicoat 1004 (product name) ”(Tokyo, Japan, manufactured by Japan Epoxy Resin Co., Ltd.) was previously mixed uniformly with a tumbler. Thereafter, glass fiber “RES03-TP91 (product name)” having an average fiber diameter of 9 μm and a fiber length of 3 mm in a twin screw extruder “TEM-35B (product name)” (manufactured by Toshiba Machine Co., Ltd., Shizuoka, Japan). (Tokyo, Japan, manufactured by Nippon Sheet Glass Co., Ltd.) was fed from the side feeder so that the addition amount was 20% by weight, and the PPS composition (1) pelletized by melt kneading at a cylinder temperature of 300 ° C. Obtained. This PPS composition (1) is a resin composition in which the polyolefin resin occupies 20% of the total resin content, and the epoxy resin content occupies 7 parts with the total resin content being 100 parts. The obtained PPS composition (1) was dried at 175 ° C. for 5 hours.

[PPS組成物の調製例2]
PPS組成物の調整例1で得られたPPS組成物(1)を、酸素雰囲気下250℃で3時間硬化を行いPPS(以下、PPS(3)と記す。)を得た。得られたPPS(3)の溶融粘度は、1800ポイズであった。得られたPPS(3)5.98kgとポリエチレン0.02kg「ニポロンハード8300A(製品名)」(日本国東京都、東ソー社製)をあらかじめタンブラーにて均一に混合した。その後、前述の二軸押出機「TEM−35B」(前出)にて、平均繊維径9μm、繊維長3mmのガラス繊維「RES03−TP91」をサイドフィーダーから添加量が40重量%となるように供給しながら、シリンダー温度300℃で溶融混練してペレット化したPPS組成物(2)を得た。この組成物はポリオレフィン系樹脂が樹脂分合計の0.3%を占める樹脂組成である。得られたPPS組成物(2)を175℃で5時間乾燥した。
[Preparation Example 2 of PPS Composition]
The PPS composition (1) obtained in Preparation Example 1 of the PPS composition was cured at 250 ° C. for 3 hours in an oxygen atmosphere to obtain PPS (hereinafter referred to as PPS (3)). The resulting PPS (3) had a melt viscosity of 1800 poise. 5.98 kg of the obtained PPS (3) and 0.02 kg of polyethylene “Nipolon Hard 8300A (product name)” (manufactured by Tosoh Corporation, Tokyo, Japan) were uniformly mixed in advance with a tumbler. Thereafter, the glass fiber “RES03-TP91” having an average fiber diameter of 9 μm and a fiber length of 3 mm is added from the side feeder in the above-described twin-screw extruder “TEM-35B” (described above) so that the addition amount becomes 40% by weight. While being supplied, a PPS composition (2) was obtained which was melt-kneaded and pelletized at a cylinder temperature of 300 ° C. This composition is a resin composition in which the polyolefin resin occupies 0.3% of the total resin content. The obtained PPS composition (2) was dried at 175 ° C. for 5 hours.

[PPS組成物の調製例3]
PPS組成物の調整例1で得られたPPS(2)を7.2kgと、グリシジルメタクリレート−エチレン共重合体0.8kg「ボンドファーストE(住友化学社製)」をあらかじめタンブラーにて均一に混合した。その後、二軸押出機「TEM−35B」(前出)にて、平均繊維径9μm、繊維長3mmのガラス繊維「RES03−TP91」をサイドフィーダーから添加量が20重量%となるように供給しながら、シリンダー温度300℃で溶融混練してペレット化したPPS組成物(3)を得た。この組成物はポリオレフィン系樹脂が樹脂分合計の10%を占める樹脂組成である。得られたPPS組成物(3)を175℃で5時間乾燥した。
[Preparation Example 3 of PPS Composition]
7.2 kg of PPS (2) obtained in Preparation Example 1 of PPS composition and 0.8 kg of glycidyl methacrylate-ethylene copolymer “Bond First E (manufactured by Sumitomo Chemical Co., Ltd.)” were previously mixed uniformly with a tumbler. did. Thereafter, glass fiber “RES03-TP91” having an average fiber diameter of 9 μm and a fiber length of 3 mm is supplied from the side feeder with a twin screw extruder “TEM-35B” (described above) so that the addition amount is 20% by weight. Then, the PPS composition (3) which was melt-kneaded and pelletized at a cylinder temperature of 300 ° C. was obtained. This composition is a resin composition in which the polyolefin resin occupies 10% of the total resin content. The obtained PPS composition (3) was dried at 175 ° C. for 5 hours.

[PPS組成物の調製例4]
PPS組成物の調整例1で得られたPPS(2)4.0kgとエチレン−アクリル酸エステル−無水マレイン酸三元共重合体4.0kg「ボンダインTX8030(製品名)」(日本国京都府京都市、アルケマ社製)」をあらかじめタンブラーにて均一に混合した。その後、二軸押出機「TEM−35B」(前出)にて、平均繊維径9μm、繊維長3mmのガラス繊維「RES03−TP91」をサイドフィーダーから添加量が20重量%となるように供給しながら、シリンダー温度300℃で溶融混練してペレット化したPPS組成物(4)を得た。この組成物はポリオレフィン系樹脂が樹脂分合計の50%を占める樹脂組成である。得られたPPS組成物(4)を175℃で5時間乾燥した。
[Preparation Example 4 for PPS Composition]
4.0 kg of PPS (2) obtained in Preparation Example 1 of PPS composition and 4.0 kg of ethylene-acrylic acid ester-maleic anhydride terpolymer "Bondyne TX8030 (product name)" (Kyoto, Kyoto, Japan) City, Arkema) ”was previously mixed uniformly with a tumbler. Thereafter, glass fiber “RES03-TP91” having an average fiber diameter of 9 μm and a fiber length of 3 mm is supplied from the side feeder with a twin screw extruder “TEM-35B” (described above) so that the addition amount is 20% by weight. Then, the PPS composition (4) which was melt-kneaded and pelletized at a cylinder temperature of 300 ° C. was obtained. This composition is a resin composition in which the polyolefin resin occupies 50% of the total resin content. The obtained PPS composition (4) was dried at 175 ° C. for 5 hours.

[PBT組成物の調製例5]
市販のPBT樹脂「トレコン1101G45(日本国東京都、東レ社製)」とPET樹脂を二軸押出機「TEM−35B」(前出)を使用して、PBT47%、ガラス繊維38%を含むPBT組成物(1)を得た。このPBT組成物(1)は、PETが樹脂分合計の24%を占める樹脂組成物である。得られた組成物は、130℃で5時間乾燥した。
[PBT Composition Preparation Example 5]
PBT containing 47% PBT and 38% glass fiber using commercially available PBT resin “Torcon 1101G45 (Tokyo, Japan, Toray Industries, Inc.)” and PET resin using a twin screw extruder “TEM-35B” (supra) A composition (1) was obtained. This PBT composition (1) is a resin composition in which PET accounts for 24% of the total resin content. The resulting composition was dried at 130 ° C. for 5 hours.

参考例1]
最終表面加工が湿式のバフ掛けであり、その表面の金属結晶粒径の平均が7μmである0.8mm厚のAZ31Bマグネシウム合金(日本国東京都、日本金属工業社製)を用いた。このマグネシウム合金板を、18mm×45mm(0.8mm厚)の長方形片に切断し、マグネシウム合金板1とした。このマグネシウム合金板1の端部に貫通孔を開け、十個に対し塩化ビニルでコートした銅線を通し、複数枚のマグネシウム合金板1同士が互いに重ならないように銅線を曲げて加工し、全てを同時にぶら下げられるようにした。
[ Reference Example 1]
The final surface treatment was wet buffing, and a 0.8 mm thick AZ31B magnesium alloy (Tokyo, Japan, manufactured by Nippon Metal Industry Co., Ltd.) having an average metal crystal grain size of 7 μm on its surface was used. This magnesium alloy plate was cut into 18 mm × 45 mm (0.8 mm thickness) rectangular pieces to obtain a magnesium alloy plate 1. Opening a through-hole at the end of the magnesium alloy plate 1 and passing ten copper wires coated with vinyl chloride, bending and processing the copper wire so that the plurality of magnesium alloy plates 1 do not overlap each other, All can be hung at the same time.

脱脂槽に市販のマグネシウム合金用脱脂剤「クリーナー160(製品名)」(日本国東京都、メルテックス社製)」を水に投入して75℃、濃度10%の水溶液とした。これに前記合金片を5分浸漬しよく水洗した。続いて別の槽に40℃とした2%酢酸水溶液を用意し、これに前記の合金片を2分浸漬してよく水洗した。黒色のスマットが付着していた。続いて別の槽に75℃としたアルミニウム合金用脱脂剤「NE−6(製品名)」(日本国東京都、メルテックス社製)」7.5%水溶液を用意し、5分浸漬してよく水洗した。この液の弱塩基性でスマットの内のアルミニウム分が溶解できたものと見られた。続いて別の槽に75℃とした20%苛性ソーダ水溶液を用意し、これに前記の合金片を5分浸漬してよく水洗した。これでスマットの内の亜鉛分が溶解できたものと推定される。続いて別の槽に用意した40℃の2%の硝酸水溶液に1.5分浸漬してよく水洗した。   A commercially available magnesium alloy degreasing agent “Cleaner 160 (product name)” (manufactured by Meltex Inc., Tokyo, Japan) was added to water in a degreasing tank to obtain an aqueous solution at 75 ° C. and a concentration of 10%. The alloy piece was immersed in this for 5 minutes and washed thoroughly with water. Subsequently, a 2% acetic acid aqueous solution at 40 ° C. was prepared in another tank, and the alloy pieces were immersed in this for 2 minutes and washed with water. Black smut was attached. Subsequently, a 7.5% aqueous solution of a degreasing agent for aluminum alloy “NE-6 (product name)” (manufactured by Meltex Inc., Tokyo, Japan) adjusted to 75 ° C. in another tank is prepared and immersed for 5 minutes. Washed well with water. It was considered that the aluminum content in the smut could be dissolved due to the weak basicity of this solution. Subsequently, a 20% aqueous solution of caustic soda at 75 ° C. was prepared in another tank, and the alloy pieces were immersed in this for 5 minutes and washed with water. It is estimated that the zinc content in the smut could be dissolved. Subsequently, it was immersed in a 2% nitric acid aqueous solution at 40 ° C. prepared in another tank for 1.5 minutes and washed with water.

次に、別の槽に45℃としたリン酸マンガン系のノンクロメート化成処理液を用意した。即ち、重リン酸マンガン2.5%、85%濃度リン酸を2.5%、トリエチルアミンを2%含む水溶液を用意し、これに5分浸漬し、よく水洗して60℃にした温風乾燥機に10分入れて乾燥した。乾燥後、清浄なアルミ箔の上でマグネシウム合金板から銅線を抜いて置き、まとめて包み、更にこれをポリ袋に入れて封じ保管した。このとき、接合すべき面(貫通孔を開けたのと反対側の端部)に指等が接触しないようにした。   Next, a manganese phosphate non-chromate chemical conversion treatment liquid at 45 ° C. was prepared in another tank. That is, prepare an aqueous solution containing 2.5% manganese phosphate, 2.5% 85% phosphoric acid, and 2% triethylamine, soak it in water for 5 minutes, wash thoroughly with water and dry at 60 ° C. The machine was dried for 10 minutes. After drying, the copper wire was pulled out from the magnesium alloy plate on a clean aluminum foil, placed together, wrapped in a plastic bag and sealed and stored. At this time, a finger or the like was prevented from coming into contact with the surfaces to be joined (the end on the opposite side from where the through hole was formed).

2日後、このうちの1個を電子顕微鏡による観察を行った。表面に板状結晶が多く見え、他に不定形物が見えた。板状結晶同士が作る空隙部の長径は600〜400nmで深さは500nm以上あった。1μm四方当たりに確認できる板状結晶は場所によって異なるが1〜5個であった。表面像を電子顕微鏡写真(図3参照。)に示す。更に、1日後に残りのマグネシウム合金板1を取り出し、油分等が付着せぬよう貫通孔のある方を手袋で摘まみ140℃とした射出成形金型にインサートした。金型を閉じガラス繊維30%を含むPBT樹脂組成物「タフペットG1030(製品名)」(日本国東京都、三菱レイヨン社製)」を射出温度260℃で射出した。金型温度は140℃であり、図2で示す一体化した複合体20個を得た。樹脂部の大きさは10mm×45mm×5mmであり、接合面6は10mm×5mmの0.5cmであった。 Two days later, one of them was observed with an electron microscope. Many plate crystals were seen on the surface, and other irregular shapes were seen. The major axis of the void formed by the plate crystals was 600 to 400 nm and the depth was 500 nm or more. The number of plate-like crystals that can be confirmed per 1 μm square was 1 to 5, although it varied depending on the location. The surface image is shown in an electron micrograph (see FIG. 3). Further, after one day, the remaining magnesium alloy plate 1 was taken out, and the one with a through hole was picked with gloves so as to prevent oil and the like from adhering, and inserted into an injection mold set at 140 ° C. A PBT resin composition “Tuffpet G1030 (product name)” (manufactured by Mitsubishi Rayon Co., Ltd., Tokyo, Japan) containing 30% glass fiber was injected at an injection temperature of 260 ° C. The mold temperature was 140 ° C., and 20 integrated composites shown in FIG. 2 were obtained. The size of the resin part was 10 mm × 45 mm × 5 mm, and the bonding surface 6 was 0.5 cm 2 of 10 mm × 5 mm.

成形当日に4個を引っ張り破断試験したところ、平均のせん断力は11.8Mpaであった。又、成形当日に150℃の熱風乾燥機に1時間投入してアニールした5個は、更にその1日後に引っ張り試験したが、平均の剪断破断応力は、11.9MPaであった。残った一体化品10個に塗料「オーマック/シルバーメタリック(製品名)」(日本国大阪府、大橋化学工業社製)を10μm厚の設定で塗装し170℃×30分焼き付けた。1%塩水を使用して、常温で8時間塩水噴霧を行った後、水洗して乾燥したが、何れも外観上で異常は認められなかった。   When four pieces were subjected to a tensile break test on the day of molding, the average shear force was 11.8 Mpa. In addition, five pieces annealed by putting them in a hot air dryer at 150 ° C. for 1 hour on the molding day were further subjected to a tensile test one day later, and the average shear breaking stress was 11.9 MPa. The remaining 10 integrated products were coated with a paint “Omak / Silver Metallic (product name)” (manufactured by Ohashi Chemical Industries, Osaka, Japan) at a thickness of 10 μm and baked at 170 ° C. for 30 minutes. After spraying with salt water for 8 hours at room temperature using 1% salt water, it was washed with water and dried, but no abnormality was observed in appearance.

参考例2]
平均の金属結晶粒径が7μmである厚さ0.8mmのAZ31B合金板を入手した。実施例1と同様に切断して長方形片とし、これを75℃とした脱脂剤「クリーナー160」10%濃度の水溶液に5分浸漬し、よく水洗した。続いて別の槽に40℃とした酢酸2%の水溶液を用意し、これに前記のマグネシウム合金板1を2分浸漬してよく水洗した。黒色のスマットが付着していた。続いて別の槽に75℃としたアルミニウム合金用脱脂剤「NE−6(製品名)」(日本国東京都、メルテックス社製)」7.5%水溶液を用意し、5分浸漬してよく水洗した。続いて別の槽に75℃とした20%苛性ソーダ水溶液を用意し、これに前記のマグネシウム合金板1群を5分浸漬してよく水洗した。ここまでが前処理であり、処理法は参考例1と同じであった。
[ Reference Example 2]
An AZ31B alloy plate having a thickness of 0.8 mm and an average metal crystal grain size of 7 μm was obtained. A rectangular piece was cut in the same manner as in Example 1, and this was immersed in a 10% strength aqueous solution of the degreasing agent “Cleaner 160” at 75 ° C. for 5 minutes and washed thoroughly with water. Subsequently, a 2% aqueous solution of acetic acid at 40 ° C. was prepared in another tank, and the magnesium alloy plate 1 was immersed in this for 2 minutes and washed with water. Black smut was attached. Subsequently, a 7.5% aqueous solution of a degreasing agent for aluminum alloy “NE-6 (product name)” (manufactured by Meltex Inc., Tokyo, Japan) adjusted to 75 ° C. in another tank is prepared and immersed for 5 minutes. Washed well with water. Subsequently, a 20% caustic soda aqueous solution at 75 ° C. was prepared in another tank, and the magnesium alloy plate group 1 was immersed in this for 5 minutes and washed with water. This is the pretreatment, and the treatment method was the same as in Reference Example 1.

続いて別の槽に用意した40℃で0.5%濃度のクエン酸水溶液に15秒浸漬し、水洗した。次いで、過マンガン酸カリ3%、酢酸1%、酢酸ナトリウム0.5%を含む水溶液を45℃として用意し、1分浸漬し、よく水洗した。褐色となっており2酸化マンガンで覆われているようであった。60℃にした温風乾燥機に10分入れて乾燥した。清浄なアルミ箔の上でマグネシウム合金板1から銅線を抜いて置き、まとめて包み、さらにこれをポリ袋に入れて封じ保管した。この作業で、接合すべき面(貫通孔を開けたのと反対側の端部)に指は触れなかった。   Subsequently, it was immersed in a 0.5% strength aqueous citric acid solution at 40 ° C. prepared in a separate tank for 15 seconds and washed with water. Next, an aqueous solution containing potassium permanganate 3%, acetic acid 1% and sodium acetate 0.5% was prepared at 45 ° C., immersed for 1 minute, and thoroughly washed with water. It was brown and seemed to be covered with manganese dioxide. It put into the warm air dryer which was 60 degreeC for 10 minutes, and dried. The copper wire was pulled out from the magnesium alloy plate 1 and placed on a clean aluminum foil, wrapped together, and then stored in a plastic bag. In this operation, the finger did not touch the surface to be joined (the end opposite to the through hole).

2日後、このうち1個を電子顕微鏡による観察を行ったところ、細かい針状結晶の生えた80〜120nm径の球状物が集まっており、これらが集まり接合し合って大きな周期の凹凸を作っており、その周期は0.5〜1μmでその凹部は深さが0.3〜1μmであっ た。1μm四方当たりに数えられる球状物は90〜120個であった。図4に写真を示す。更に1日後に残りのマグネシウム合金板1を取り出し、油分等が付着せぬよう貫通孔のある方を手袋で摘まみ140℃とした射出成形金型にインサートした。参考例1と全く同様にして図2に示す一体化した複合体10個を得た。成形当日に150℃の熱風乾燥機に1時間投入してアニールし、更にその1日後に引っ張り試験したが、平均のせん断力は11.6MPaであった。 Two days later, one of them was observed with an electron microscope. As a result, spherical objects with a diameter of 80 to 120 nm with fine needle crystals gathered, and these gathered and joined together to form irregularities with a large period. The period was 0.5-1 μm and the depth of the recess was 0.3-1 μm. There were 90 to 120 spheres counted per 1 μm square. A photograph is shown in FIG. Further, after 1 day, the remaining magnesium alloy plate 1 was taken out, and the one with a through hole was picked with gloves so as to prevent oil or the like from adhering, and inserted into an injection mold set at 140 ° C. Ten integrated composites shown in FIG. 2 were obtained in exactly the same manner as in Reference Example 1. On the day of molding, the sample was put into a 150 ° C. hot air dryer for 1 hour for annealing, and a tensile test was conducted one day later. The average shear force was 11.6 MPa.

参考例3]
平均の金属結晶粒径が7μmである厚さ0.8mmのAZ31合金板を入手した。実施例1と同様に切断して長方形片とし、これを75℃とした脱脂剤「クリーナー160」10%濃度の水溶液に5分浸漬し、よく水洗した。続いて別の槽に40℃とした酢酸2%の水溶液を用意し、これに前記のマグネシウム合金板1を2分浸漬してよく水洗した。黒色のスマットが付着していた。続いて別の槽に75℃としたアルミニウム合金用脱脂剤「NE−6(製品名)」7.5%水溶液を用意し、5分浸漬してよく水洗した。続いて別の槽に75℃とした20%苛性ソーダ水溶液を用意し、これに前記のマグネシウム合金板1群を5分浸漬してよく水洗した。ここまでが前処理であり、処理法は参考例1と同じであった。
[ Reference Example 3]
An AZ31 alloy plate having a thickness of 0.8 mm with an average metal crystal grain size of 7 μm was obtained. A rectangular piece was cut in the same manner as in Example 1, and this was immersed in a 10% strength aqueous solution of the degreasing agent “Cleaner 160” at 75 ° C. for 5 minutes and washed thoroughly with water. Subsequently, a 2% aqueous solution of acetic acid at 40 ° C. was prepared in another tank, and the magnesium alloy plate 1 was immersed in this for 2 minutes and washed with water. Black smut was attached. Subsequently, a 7.5% aqueous solution of an aluminum alloy degreasing agent “NE-6 (product name)” adjusted to 75 ° C. in a separate tank was prepared and immersed in water for 5 minutes. Subsequently, a 20% caustic soda aqueous solution at 75 ° C. was prepared in another tank, and the magnesium alloy plate group 1 was immersed in this for 5 minutes and washed with water. This is the pretreatment, and the treatment method was the same as in Reference Example 1.

続いて別の槽に用意した40℃で0.5%濃度のクエン酸水溶液に15秒浸漬し、水洗した。次いで、ジルコンアセチルアセトナート0.12%、弗化チタン酸の40%水溶液を0.05%含む60℃とした水溶液に2分浸漬し、よく水洗した。60℃にした温風乾燥機に10分間入れて乾燥した。清浄なアルミ箔の上でマグネシウム合金板1から銅線を抜いて置き、まとめて包み、さらにこれをポリ袋に入れて封じ保管した。この作業で、接合すべき面(貫通孔を開けたのと反対側の端部)に指は触れなかった。   Subsequently, it was immersed in a 0.5% strength aqueous citric acid solution at 40 ° C. prepared in a separate tank for 15 seconds and washed with water. Next, it was immersed in a 60 ° C. aqueous solution containing 0.12% zircon acetylacetonate and 0.05% 40% aqueous solution of fluorotitanic acid for 2 minutes and washed thoroughly with water. It put into the warm air dryer which was 60 degreeC for 10 minutes, and dried. The copper wire was pulled out from the magnesium alloy plate 1 and placed on a clean aluminum foil, wrapped together, and then stored in a plastic bag. In this operation, the finger did not touch the surface to be joined (the end opposite to the through hole).

更に、1日後に残りのマグネシウム合金板1を取り出し、油分等が付着せぬよう貫通孔のある方を手袋で摘まみ140℃とした射出成形金型にインサートした。参考例1と全く同様にして図2に示す一体化した複合体10個を得た。成形当日に150℃の熱風乾燥機に1時間投入してアニールし、更にその1日後に引っ張り試験したが、平均のせん断力は7.7MPa(78Kgf/cm2)であった。 Further, after one day, the remaining magnesium alloy plate 1 was taken out, and the one with a through hole was picked with gloves so as to prevent oil and the like from adhering, and inserted into an injection mold set at 140 ° C. Ten integrated composites shown in FIG. 2 were obtained in exactly the same manner as in Reference Example 1. On the day of molding, the sample was annealed for 1 hour in a hot air dryer at 150 ° C., and a tensile test was conducted one day later. The average shear force was 7.7 MPa (78 kgf / cm 2).

参考例4]
平均の金属結晶粒径が7μmである厚さ0.8mmのAZ31合金板を入手した。参考例1と同様に切断して長方形片とし、これを75℃とした脱脂剤「クリーナー160」10%濃度の水溶液に5分浸漬し、よく水洗した。続いて別の槽に40℃とした酢酸2%の水溶液を用意し、これに前述したマグネシウム合金板1を2分浸漬してよく水洗した。黒色のスマットが付着していた。続いて別の槽に75℃としたアルミニウム合金用脱脂剤「NE−6(製品名)」7.5%水溶液を用意し、5分浸漬してよく水洗した。続いて別の槽に75℃とした20%苛性ソーダ水溶液を用意し、これに前記のマグネシウム合金板1群を5分浸漬してよく水洗した。ここまでが前処理であり、処理法は参考例1と同じであった。
[ Reference Example 4]
An AZ31 alloy plate having a thickness of 0.8 mm with an average metal crystal grain size of 7 μm was obtained. A rectangular piece was cut in the same manner as in Reference Example 1, and this was immersed in a 10% strength aqueous solution of the degreasing agent “Cleaner 160” at 75 ° C. for 5 minutes and washed thoroughly with water. Subsequently, a 2% aqueous solution of acetic acid at 40 ° C. was prepared in another tank, and the magnesium alloy plate 1 described above was immersed in this for 2 minutes and washed with water. Black smut was attached. Subsequently, a 7.5% aqueous solution of an aluminum alloy degreasing agent “NE-6 (product name)” adjusted to 75 ° C. in a separate tank was prepared and immersed in water for 5 minutes. Subsequently, a 20% caustic soda aqueous solution at 75 ° C. was prepared in another tank, and the magnesium alloy plate group 1 was immersed in this for 5 minutes and washed with water. This is the pretreatment, and the treatment method was the same as in Reference Example 1.

続いて別の槽に用意した40℃で0.5%濃度のクエン酸水溶液に15秒浸漬し、水洗した。次いで、亜鉛アセチルアセトナート2%、硫酸チタンの24%水溶液を1%、弗化ジルコニウム酸2アンモニウム0.1%を含む70℃とした水溶液に5秒浸漬し、よく水洗した。60℃にした温風乾燥機に10分入れて乾燥した。清浄なアルミ箔の上でマグネシウム合金板1から銅線を抜いて置き、まとめて包み、さらにこれをポリ袋に入れて封じ保管した。この作業で、接合すべき面(貫通孔を開けたのと反対側の端部)に指は触れなかった。   Subsequently, it was immersed in a 0.5% strength aqueous citric acid solution at 40 ° C. prepared in a separate tank for 15 seconds and washed with water. Next, it was immersed for 5 seconds in a 70 ° C. aqueous solution containing 1% zinc acetylacetonate 2%, titanium sulfate 24% aqueous solution and 0.1% diammonium dizirconate 0.1%, and washed thoroughly with water. It put into the warm air dryer which was 60 degreeC for 10 minutes, and dried. The copper wire was pulled out from the magnesium alloy plate 1 and placed on a clean aluminum foil, wrapped together, and then stored in a plastic bag. In this operation, the finger did not touch the surface to be joined (the end opposite to the through hole).

更に1日後に残りのマグネシウム合金板1を取り出し、油分等が付着せぬよう貫通孔のある方を手袋で摘まみ140℃とした射出成形金型にインサートした。参考例1と全く同様にして図2に示す一体化した複合体10個を得た。成形当日に150℃の熱風乾燥機に1時間投入してアニールし、更にその1日後に引っ張り試験したが、平均のせん断力は6.9MPaであった。 Further, after 1 day, the remaining magnesium alloy plate 1 was taken out, and the one with a through hole was picked with gloves so as to prevent oil or the like from adhering, and inserted into an injection mold set at 140 ° C. Ten integrated composites shown in FIG. 2 were obtained in exactly the same manner as in Reference Example 1. On the day of molding, the sample was put into a hot air dryer at 150 ° C. for 1 hour for annealing, and a tensile test was conducted one day later. The average shear force was 6.9 MPa.

参考例5]
平均の金属結晶粒径が7μmである厚さ0.8mmのAZ31B合金板を入手した。参考例1と同様に切断して長方形片とし、脱脂を含む前処理を行った。前処理法は参考例1〜4と同じであった。続いて別の槽に用意した40℃で0.25%濃度の水和クエン酸水溶液に30秒浸漬し、水洗した。次いでクロム酸20%を含む75℃とした水溶液に前記マグネシウム片を5分間浸漬し、よく水洗した。次いで60℃とした温風乾燥機に10分入れて乾燥した。綺麗なアルミ箔の上でマグネシウム合金片から銅線を抜いて置き、まとめて包み、さらにこれをポリ袋に入れて封じ保管した。この作業で、接合すべき面(貫通孔を開けた一端の反対側の他端)に指は触れなかった。
[ Reference Example 5]
An AZ31B alloy plate having a thickness of 0.8 mm and an average metal crystal grain size of 7 μm was obtained. It cut | disconnected similarly to the reference example 1 and made it the rectangular piece, and the pre-processing including degreasing was performed. The pretreatment method was the same as in Reference Examples 1 to 4. Subsequently, it was immersed in a 0.25% strength aqueous hydrated citric acid solution at 40 ° C. prepared in a separate tank for 30 seconds and washed with water. Next, the magnesium pieces were immersed in an aqueous solution containing 20% chromic acid at 75 ° C. for 5 minutes and washed thoroughly with water. Then, it was put into a warm air dryer set to 60 ° C. for 10 minutes and dried. The copper wire was pulled out from the magnesium alloy piece on a clean aluminum foil, wrapped together, and then stored in a plastic bag. In this operation, the finger did not touch the surface to be joined (the other end opposite to the end where the through hole was opened).

1日後、1個をESCAで観察した。クロムと酸素が大量に観察された。主成分は3価の酸化クロムか水酸化クロムとの複合物とみられた。更に1日後、マグネシウム合金片を取り出し、油分等が付着せぬよう貫通孔のある方を手袋で摘まみ140℃とした射出成形金型にインサートした。参考例1と全く同様にして図2で示す一体化した複合体7を20個得た。そのまま150℃の熱風乾燥機に1時間投入してアニールし、更にその1日後に引っ張り試験した処、平均のせん断力は6.6MPaであった。残った一体化品10個に塗料「オーマック/シルバーメタリック(製品名)」を10μm厚の設定で塗装し170℃×30分焼き付けた。5%塩水を使用して35℃での8時間塩水噴霧を行い水洗して乾燥したが、何れも外観上で異常は認められなかった。 One day later, one was observed with ESCA. A large amount of chromium and oxygen was observed. The main component appeared to be a composite of trivalent chromium oxide or chromium hydroxide. Further, one day later, the magnesium alloy piece was taken out, and the one with a through hole was picked with a glove so as to prevent oil or the like from adhering, and inserted into an injection mold set at 140 ° C. Twenty integrated composites 7 shown in FIG. 2 were obtained in exactly the same manner as in Reference Example 1. As it was put in a hot air dryer at 150 ° C. for 1 hour and annealed, and a tensile test was conducted one day later, the average shearing force was 6.6 MPa. The remaining 10 integrated products were coated with a paint “Omak / Silver Metallic (product name)” at a thickness of 10 μm and baked at 170 ° C. for 30 minutes. Although sprayed with salt water at 35 ° C. for 8 hours using 5% salt water, washed with water and dried, no abnormality was observed in appearance.

参考例6]
最終処理が湿式バフ掛けの平均の金属結晶粒径が、7μm以下である0.8mm厚のAZ31Bマグネシウム合金(日本国東京都、日本金属工業社製)を切断して参考例1と同じ形の長方形片とし、脱脂を含む前処理を行った。前処理法は参考例1〜5と同じであった。続いて別の槽に用意した40℃で0.25%濃度のクエン酸水溶液に30秒浸漬し、水洗した。次いで、炭酸カリウム1%を含む70℃とした水溶液に5分浸漬し、よく水洗した。60℃にした温風乾燥機に10分入れて乾燥した。清浄なアルミ箔の上でマグネシウム合金片から銅線を抜いて置き、まとめて包み、さらにこれをポリ袋に入れて封じ保管した。この作業で、接合すべき面(貫通孔を開けたのと反対側の端部)に指は触れなかった。
[ Reference Example 6]
Metal crystal grain size of the average final processing of wet buffing is, 7 [mu] m or less is 0.8mm thick AZ31B magnesium alloy (Tokyo, Japan, Nippon Metal Industry Co., Ltd.) cut to the same shape as in Reference Example 1 A rectangular piece was prepared and pretreatment including degreasing was performed. The pretreatment method was the same as in Reference Examples 1-5. Subsequently, it was immersed in a 0.25% strength aqueous citric acid solution at 40 ° C. prepared in a separate tank for 30 seconds and washed with water. Subsequently, it was immersed in the 70 degreeC aqueous solution containing 1% of potassium carbonate for 5 minutes, and washed with water well. It put into the warm air dryer which was 60 degreeC for 10 minutes, and dried. The copper wire was pulled out from the magnesium alloy piece on a clean aluminum foil, wrapped together, and then stored in a plastic bag. In this operation, the finger did not touch the surface to be joined (the end opposite to the through hole).

1日後、1個を電子顕微鏡で観察した。その結果を図5の写真に示す。交錯した棒状結晶が網目模様となった綺麗なものであった。一方、ESCAによる分析ではマグネシウム、酸素、炭素の他に微量のアルミニウム、亜鉛、珪素が認められた。微量ではない炭素が確認されたので炭酸マグネシウムが表層の主成分であると推定された。更に、1日後に残りのマグネシウム合金片を取り出し、油分等が付着せぬよう貫通孔のある方を手袋で摘まみ140℃とした射出成形金型にインサートした。参考例1と全く同様にして射出成形し、図2に示す一体化した複合体7を20個得た。成形当日に150℃の熱風乾燥機に1時間投入してアニールし、更にその1日後に引っ張り試験したが、平均のせん断力は7.0MPaであった。 One day later, one was observed with an electron microscope. The result is shown in the photograph of FIG. The crossed rod-like crystals were beautiful with a mesh pattern. On the other hand, in the analysis by ESCA, trace amounts of aluminum, zinc and silicon were recognized in addition to magnesium, oxygen and carbon. Since carbon which was not a trace amount was confirmed, it was estimated that magnesium carbonate was the main component of the surface layer. Further, after one day, the remaining magnesium alloy piece was taken out, and the one with a through hole was picked with a glove so as to prevent oil or the like from adhering, and inserted into an injection mold set at 140 ° C. Injection molding was performed in exactly the same manner as in Reference Example 1 to obtain 20 integrated composites 7 shown in FIG. On the day of molding, the sample was put into a hot air dryer at 150 ° C. for 1 hour for annealing, and a tensile test was conducted one day later. The average shearing force was 7.0 MPa.

参考例7]
参考例1と全く同様にして、平均の金属結晶粒径が7μm以下である0.8mm厚のAZ31Bマグネシウム合金(日本金属社製)片を使って前処理まで行った。次いで別の槽に用意した40℃で0.25%濃度のクエン酸水溶液に30秒浸漬し、水洗した。次いで、水和硝酸カルシウム1%、水和硝酸ストロンチウム1%、塩素化ナトリウム0.05%、及び80%リンを0.95%含む65℃とした水溶液に10分浸漬し、よく水洗した。60℃にした温風乾燥機に10分入れて乾燥した。清浄なアルミ箔の上でマグネシウム合金片から銅線を抜いて置き、まとめて包み、さらにこれをポリ袋に入れて封じ保管した。この作業で、接合すべき面(貫通孔を開けた一端と反対側の他端)に指は触れなかった。1日後、1個をESCAで観察した。
[ Reference Example 7]
In exactly the same manner as in Reference Example 1, pretreatment was performed using a 0.8 mm-thick AZ31B magnesium alloy (manufactured by Nippon Metal Co., Ltd.) piece having an average metal crystal grain size of 7 μm or less. Subsequently, it was immersed in a 0.25% strength aqueous citric acid solution at 40 ° C. prepared in a separate tank for 30 seconds and washed with water. Subsequently, it was immersed for 10 minutes in 65 degreeC aqueous solution which contains 0.95% of hydrated calcium nitrate 1%, hydrated strontium nitrate 1%, sodium chlorination 0.05%, and 80% phosphorus, and washed well with water. It put into the warm air dryer which was 60 degreeC for 10 minutes, and dried. The copper wire was pulled out from the magnesium alloy piece on a clean aluminum foil, wrapped together, and then stored in a plastic bag. In this operation, the finger did not touch the surface to be joined (the other end opposite to the one end where the through hole was opened). One day later, one was observed with ESCA.

マグネシウム、カルシウム、ストロンチウム及び酸素が大量に、又ごく少量の亜鉛、アルミニウム、炭素、珪素が観察された。主成分はマグネシウムとカルシウムとストロンチウムの酸化物とみられた。単独組成物か複数組成物かは使用した分析装置では分からなかった。更に、1日後に残りのマグネシウム合金片を取り出し、油分等が付着せぬよう貫通孔のある方を手袋で摘まみ140℃とした射出成形金型にインサートした。参考例1と全く同様にして射出成形し、図2に示す一体化した複合体20個を得た。成形当日に150℃の熱風乾燥機に1時間投入してアニールし、更にその1日後に引っ張り試験したが、平均のせん断力は7.3MPaであった。 Large amounts of magnesium, calcium, strontium and oxygen and very small amounts of zinc, aluminum, carbon and silicon were observed. The main components were seen as oxides of magnesium, calcium and strontium. Whether it was a single composition or multiple compositions was not known by the analyzer used. Further, after one day, the remaining magnesium alloy piece was taken out, and the one with a through hole was picked with a glove so as to prevent oil or the like from adhering, and inserted into an injection mold set at 140 ° C. Injection molding was performed in exactly the same manner as in Reference Example 1 to obtain 20 integrated composites shown in FIG. On the day of molding, the sample was put into a hot air dryer at 150 ° C. for 1 hour for annealing, and a tensile test was conducted one day later. The average shearing force was 7.3 MPa.

参考例8]
参考例1と全く同様にして、平均の金属結晶粒径が7μm以下である0.8mm厚のAZ31Bマグネシウム合金片を使って前処理まで行った。次いで別の槽に用意した40℃で0.25%濃度のクエン酸水溶液に30秒浸漬し、水洗した。次いで、三塩化バナジウム1%を含む45℃とした水溶液に2分浸漬し、よく水洗した。60℃にした温風乾燥機に10分入れて乾燥した。清浄なアルミ箔の上でマグネシウム合金片から銅線を抜いて置き、まとめて包み、さらにこれをポリ袋に入れて封じ保管した。この作業で、接合すべき面(貫通孔を開けたのと反対側の端部)に指は触れなかった。1日後、1個をESCAで観察した。バナジウム、酸素が大量に、マグネシウムが少量、又ごく少量の亜鉛、アルミニウム、珪素が観察された。主成分はバナジウム酸化物かバナジウムとマグネシウムの酸化物とみられた。
[ Reference Example 8]
In exactly the same manner as in Reference Example 1, pretreatment was performed using 0.8 mm-thick AZ31B magnesium alloy pieces having an average metal crystal grain size of 7 μm or less. Subsequently, it was immersed in a 0.25% strength aqueous citric acid solution at 40 ° C. prepared in a separate tank for 30 seconds and washed with water. Then, it was immersed in an aqueous solution containing 45% vanadium trichloride at 45 ° C. for 2 minutes and washed thoroughly with water. It put into the warm air dryer which was 60 degreeC for 10 minutes, and dried. The copper wire was pulled out from the magnesium alloy piece on a clean aluminum foil, wrapped together, and then stored in a plastic bag. In this operation, the finger did not touch the surface to be joined (the end opposite to the through hole). One day later, one was observed with ESCA. A large amount of vanadium, oxygen, a small amount of magnesium, and a very small amount of zinc, aluminum, and silicon were observed. The main component was seen as vanadium oxide or oxide of vanadium and magnesium.

更に、1日後に残りのマグネシウム合金片を取り出し、油分等が付着せぬよう貫通孔のある方を手袋で摘まみ140℃とした射出成形金型にインサートした。参考例1と全く同様にして射出成形し、図2に示す一体化した複合体7を20個得た。成形当日に150℃の熱風乾燥機に1時間投入してアニールし、更にその1日後に引っ張り試験したが、平均のせん断力は7.0MPaであった。残った一体化品10個に塗料「オーマック/シルバーメタリック(製品名)」を10μm厚の設定で塗装し170℃×30分焼き付けた。5%塩水を使用して35℃での8時間塩水噴霧を行い水洗して乾燥したが、何れも外観上で異常は認められなかった。 Further, after one day, the remaining magnesium alloy piece was taken out, and the one with a through hole was picked with a glove so as to prevent oil or the like from adhering, and inserted into an injection mold set at 140 ° C. Injection molding was performed in exactly the same manner as in Reference Example 1 to obtain 20 integrated composites 7 shown in FIG. On the day of molding, the sample was put into a hot air dryer at 150 ° C. for 1 hour for annealing, and a tensile test was conducted one day later. The average shearing force was 7.0 MPa. The remaining 10 integrated products were coated with a paint “Omak / Silver Metallic (product name)” at a thickness of 10 μm and baked at 170 ° C. for 30 minutes. Although sprayed with salt water at 35 ° C. for 8 hours using 5% salt water, washed with water and dried, no abnormality was observed in appearance.

参考例9]
参考例9は、PPS系樹脂の効果を確認するためのものである。射出する樹脂としてガラス繊維30%を含んだPPS樹脂である「サスティールGS−30(製品名)」(日本国東京都、東ソー社製)を使用した。成形時の射出条件は、射出温度310℃で射出し、金型温度は140℃とした。この射出成形条件以外は、参考例1と全く同様の条件である。成形当日に4個を引っ張り破断試験したところ、平均のせん断力は8.8MPa(90Kgf/cm2 )であった。又、成形当日に170℃の熱風乾燥機に1時間投入してアニールした5個は、更にその1日後に引っ張り試験したが、平均のせん断力は9.3MPaであった。
[ Reference Example 9]
Reference Example 9 is for confirming the effect of the PPS resin. As a resin to be injected, “Sustile GS-30 (product name)” (manufactured by Tosoh Corporation, Tokyo, Japan), which is a PPS resin containing 30% glass fiber, was used. The injection conditions during molding were injection at an injection temperature of 310 ° C. and a mold temperature of 140 ° C. Except for this injection molding condition, the conditions are exactly the same as in Reference Example 1. When four pieces were subjected to a tensile fracture test on the same day of molding, the average shearing force was 8.8 MPa (90 kgf / cm @ 2). In addition, five samples annealed by putting them in a hot air dryer at 170 ° C. for 1 hour on the molding day were further subjected to a tensile test one day later, and the average shear force was 9.3 MPa.

残った一体化品10個に塗料「オーマック/シルバーメタリック(製品名)」を10μm厚の設定で塗装し170℃×30分焼き付けた。1%塩水を使用して常温での8時間塩水噴霧を行い水洗して乾燥したが、何れも外観上で異常は認められなかった。   The remaining 10 integrated products were coated with a paint “Omak / Silver Metallic (product name)” at a thickness of 10 μm and baked at 170 ° C. for 30 minutes. Although sprayed with salt water at room temperature for 8 hours using 1% salt water, washed with water and dried, no abnormality was observed in appearance.

参考例10]
参考例10は、PPS系樹脂の効果を確認するためのものである。マグネシウム合金片の処理は、参考例9と実質的に同一の処理を行い、射出接合も参考例9と全く同様に行った。ただし、使用した合成樹脂は、参考例9で使用した「サスティールGS−30」に換えて、PPS組成物の調整例1によるPPS組成物(1)を使用した。これで、図2で示す一体化した複合体7を20個得た。樹脂部の大きさは10mm×45mm×5mmであり、接合面6は10mm×5mmの0.5cm2であった。
[ Reference Example 10]
Reference Example 10 is for confirming the effect of the PPS resin. Processing of magnesium alloys piece, Reference Example 9 and substantially performs the same processing, injection joining was also performed in the same manner as in Reference Example 9. However, the synthetic resin used was the PPS composition (1) according to Preparation Example 1 of the PPS composition, instead of “Sustile GS-30” used in Reference Example 9. Thus, 20 integrated composites 7 shown in FIG. 2 were obtained. The size of the resin part was 10 mm × 45 mm × 5 mm, and the joining surface 6 was 0.5 cm 2 of 10 mm × 5 mm.

成形当日に4個を引っ張り破断試験したところ、平均のせん断力は13.0MPaであった。又、成形当日に170℃の熱風乾燥機に1時間投入してアニールした5個は、更にその1日後に引っ張り試験したが、平均のせん断力は12.8MPaであった。残った一体化品10個に塗料「オーマック/シルバーメタリック(製品名)」を10μm厚の設定で塗装し170℃×30分焼き付けた。5%塩水を使用して35℃での8時間塩水噴霧を行い水洗して乾燥したが、何れも外観上で異常は認められなかった。   When four pieces were subjected to a tensile break test on the day of molding, the average shear force was 13.0 MPa. Further, five samples annealed by putting them in a hot air dryer at 170 ° C. for 1 hour on the day of molding were subjected to a tensile test one day later, and the average shear force was 12.8 MPa. The remaining 10 integrated products were coated with a paint “Omak / Silver Metallic (product name)” at a thickness of 10 μm and baked at 170 ° C. for 30 minutes. Although sprayed with salt water at 35 ° C. for 8 hours using 5% salt water, washed with water and dried, no abnormality was observed in appearance.

参考例11]
PPS組成物の調製例1により得られたPPS組成物(1)の代わりに、調製例3により得られたPPS組成物(3)を用いた以外は、実施例10と全く同様の方法にして複合体を得た。成形した日に170℃×1時間のアニールをし、その2日後にこの複合体を引っ張り試験機でせん断力を測定したところ、平均で12.5MPaであった。 残った一体 化品10個に塗料「オーマック/シルバーメタリック(製品名)」(日本国大阪府、大橋化学工業社製)を10μm厚の設定で塗装し170℃×30分焼き付けた。5%塩水を使用して35℃での8時間塩水噴霧を行い水洗して乾燥したが、何れも外観上で異常は認められなかった。
[ Reference Example 11]
Except for using the PPS composition (3) obtained in Preparation Example 3 instead of the PPS composition (1) obtained in Preparation Example 1 of the PPS composition, the same method as in Example 10 was used. A complex was obtained. The composite was annealed at 170 ° C. for 1 hour on the day of molding, and two days later, the composite was measured for shearing force with a tensile tester. As a result, the average was 12.5 MPa. The remaining 10 integrated products were coated with a paint “Omak / Silver Metallic (product name)” (manufactured by Ohashi Chemical Industries, Osaka, Japan) at a thickness of 10 μm and baked at 170 ° C. for 30 minutes. Although sprayed with salt water at 35 ° C. for 8 hours using 5% salt water, washed with water and dried, no abnormality was observed in appearance.

参考例12]
調製例1により得られたPPS組成物(1)の代わりに、調製例2により得られたPPS組成物(2)を用いた以外は、参考例10と全く同様にしてマグネシウム合金片を作成し、射出成形し、複合体を得た。得られた複合体を170℃で1時間アニールした。要するに、ポリオレフィン系ポリマーを僅かしか含まないPPSとフィラーのみのPPS系樹脂組成物を使用した実験である。1日後、これらを引っ張り試験したところ、せん断力は10個の平均で9.0MPaであった。参考例1の数値の約70%に過ぎず使用した樹脂材料の差異が結果として出たものである。
[ Reference Example 12]
A magnesium alloy piece was prepared in exactly the same manner as in Reference Example 10 except that the PPS composition (2) obtained in Preparation Example 2 was used instead of the PPS composition (1) obtained in Preparation Example 1. The composite was obtained by injection molding. The resulting composite was annealed at 170 ° C. for 1 hour. In short, it is an experiment using a PPS resin composition containing only a small amount of polyolefin polymer and PPS and filler. One day later, these were subjected to a tensile test, and the shear force was 9.0 MPa on an average of 10 pieces. This is only about 70% of the numerical value of Reference Example 1, resulting in a difference in the resin material used.

参考例13]
平均の金属結晶粒径が7μmである厚さ0.8mmのAZ31B合金板を使用した。参考例1と同様に切断して長方形片とし、これを75℃とした脱脂剤「クリーナー160」10%濃度の水溶液に5分浸漬し、よく水洗した。続いて別の槽に40℃とした酢酸2%の水溶液を用意し、これに前記の合金片を2分浸漬してよく水洗した。黒色のスマットが付着していた。続いて別の槽に75℃としたアルミニウム合金用脱脂剤「NE−6(製品名)」7.5%水溶液を用意し、5分浸漬してよく水洗した。続いて別の槽に75℃とした20%苛性ソーダ水溶液を用意し、これに前記の合金片群を5分浸漬してよく水洗した。ここまでが前処理であり、処理法は参考例1と同じであった。
[ Reference Example 13]
A 0.8 mm thick AZ31B alloy plate having an average metal crystal grain size of 7 μm was used. A rectangular piece was cut in the same manner as in Reference Example 1, and this was immersed in a 10% strength aqueous solution of the degreasing agent “Cleaner 160” at 75 ° C. for 5 minutes and washed thoroughly with water. Subsequently, a 2% aqueous solution of acetic acid at 40 ° C. was prepared in a separate tank, and the alloy pieces were immersed in this for 2 minutes and washed with water. Black smut was attached. Subsequently, a 7.5% aqueous solution of an aluminum alloy degreasing agent “NE-6 (product name)” adjusted to 75 ° C. in a separate tank was prepared and immersed in water for 5 minutes. Subsequently, a 20% sodium hydroxide aqueous solution at 75 ° C. was prepared in another tank, and the alloy piece group was immersed in this for 5 minutes and washed with water. This is the pretreatment, and the treatment method was the same as in Reference Example 1.

続いて別の槽に用意した40℃で0.5%濃度の水和クエン酸水溶液に15秒浸漬し、水洗した。次いで、過マンガン酸カリ3%、酢酸1%、水和酢酸ナトリウム0.5%を含む水溶液を45℃として用意し、1分浸漬し、よく水洗した。褐色となっていた。60℃にした温風乾燥機に10分入れて乾燥した。綺麗なアルミ箔の上でマグネシウム合金片から銅線を抜いて置き、まとめて包み、さらにこれをポリ袋に入れて封じ保管した。この作業で、接合すべき面(貫通孔を開けたのと反対側の端部)に指は触れなかった。   Subsequently, it was immersed in a 0.5% strength aqueous hydrated citric acid solution at 40 ° C. prepared in a separate tank for 15 seconds and washed with water. Next, an aqueous solution containing potassium permanganate 3%, acetic acid 1% and hydrated sodium acetate 0.5% was prepared at 45 ° C., immersed for 1 minute, and thoroughly washed with water. It was brown. It put into the warm air dryer which was 60 degreeC for 10 minutes, and dried. The copper wire was pulled out from the magnesium alloy piece on a clean aluminum foil, wrapped together, and then stored in a plastic bag. In this operation, the finger did not touch the surface to be joined (the end opposite to the through hole).

2日後、1個をESCAで観察しマンガンと酸素が大量に観察され微量のマグネシウム、亜鉛、アルミニウム、炭素、珪素も観察された。主成分は二酸化マンガンを主成分とする酸化マンガンとみられた。色調も褐色でこれを裏付けた。更に1日後に残りのマグネシウム合金片を取り出し、油分等が付着せぬよう貫通孔のある方を手袋で摘まみ140℃とした射出成形金型にインサートした。参考例1と全く同様にして図2に示す一体化した複合体7を20個得た。 Two days later, one was observed by ESCA, a large amount of manganese and oxygen was observed, and trace amounts of magnesium, zinc, aluminum, carbon, and silicon were also observed. The main component was considered to be manganese oxide mainly composed of manganese dioxide. The color tone was also brown, confirming this. Further, after one day, the remaining magnesium alloy piece was taken out, and the one with a through hole was picked with gloves so as not to allow oil or the like to adhere, and inserted into an injection mold set at 140 ° C. Twenty integrated composites 7 shown in FIG. 2 were obtained in exactly the same manner as in Reference Example 1.

成形当日に170℃の熱風乾燥機に1時間投入してアニールし、更にその1日後に引っ張り試験したが、平均のせん断力は15.1MPaであった。残った一体化品10個に塗料「オーマック/シルバーメタリック(製品名)」を10μm厚の設定で塗装し170℃×30分焼き付けた。5%塩水を使用して35℃での8時間塩水噴霧を行い水洗して乾燥したが、何れも外観上で異常は認められなかった。   On the day of molding, the sample was put into a hot air dryer at 170 ° C. for 1 hour for annealing, and a tensile test was conducted one day later. The average shear force was 15.1 MPa. The remaining 10 integrated products were coated with a paint “Omak / Silver Metallic (product name)” at a thickness of 10 μm and baked at 170 ° C. for 30 minutes. Although sprayed with salt water at 35 ° C. for 8 hours using 5% salt water, washed with water and dried, no abnormality was observed in appearance.

[実施例14]
実施例13と全く同様にして、AZ31B合金片を前処理した。次いで別の槽に用意した40℃で0.25%濃度の水和クエン酸水溶液に1分浸漬し水洗した。次いで過マンガン酸カリ2%、酢酸1%、水和酢酸ナトリウム0.5%を含む水溶液を45℃として用意し、1分浸漬し水洗した。60℃にした温風乾燥機に15分入れて乾燥した。清浄なアルミ泊の上でマグネシウム合金片から銅線を抜いて置き、まとめて包み、更にこれをポリ袋に入れてこれを封じて保管した。
[Example 14]
An AZ31B alloy piece was pretreated in exactly the same manner as in Example 13. Next, it was immersed in a 0.25% strength hydrated citric acid aqueous solution at 40 ° C. prepared in another tank for 1 minute and washed with water. Next, an aqueous solution containing potassium permanganate 2%, acetic acid 1% and hydrated sodium acetate 0.5% was prepared at 45 ° C., immersed for 1 minute and washed with water. It put into the warm air dryer which was 60 degreeC for 15 minutes, and dried. The copper wire was pulled out from the magnesium alloy piece and placed on a clean aluminum bed, wrapped together, and then put in a plastic bag, which was sealed and stored.

2日後、これを取り出し、140℃とした射出成形金型にインサートして、PBT組成物(1)を射出した。射出成形条件は、実施例1と同様であった。図2に示す一体化物を得て、これを同日内に150℃の熱風乾燥機に1時間投入してアニールし、更にその1日後に引っ張り試験したが、平均のせん断力は15.8MPaであった。
残った一体化品10個に塗料「オーマック/シルバーメタリック(製品名)」を10μm厚の設定で塗装し、170℃×30分焼付けた。5%塩水を使用しての35℃での8時間塩水噴霧を行い水洗して乾燥したが、何れも外観上では異常は認められなかった。
Two days later, this was taken out and inserted into an injection mold set at 140 ° C. to inject the PBT composition (1). The injection molding conditions were the same as in Example 1. An integrated product shown in FIG. 2 was obtained, which was put into a hot air dryer at 150 ° C. for 1 hour and annealed within the same day, and then a tensile test was conducted one day later. The average shear force was 15.8 MPa. It was.
The remaining 10 integrated products were coated with the paint “Omak / Silver Metallic (product name)” at a thickness of 10 μm and baked at 170 ° C. for 30 minutes. Although sprayed with salt water at 35 ° C. for 8 hours using 5% salt water, washed with water and dried, no abnormality was observed in appearance.

[比較例1]
比較例1は、参考例1の化成処理の効果を確認するために行ったものである。化成処理をしない点を除いて他は、参考例1と全く同様にしてマグネシウム合金板1を得た。即ち、AZ31Bマグネシウム合金板1を作り、脱脂し、荒エッチングし、脱スマットし、微細エッチングし、脱スマットまでした。要するに、リン酸マンガン系のノンクロメート処理のみをせず水洗して乾燥した。2日後に残りのマグネシウム合金板1を取り出し、油分等が付着せぬよう貫通孔のある方を手袋で摘まみ140℃として射出成形金型にインサートした。
[Comparative Example 1]
Comparative Example 1 was performed in order to confirm the effect of the chemical conversion treatment of Reference Example 1. A magnesium alloy plate 1 was obtained in exactly the same manner as in Reference Example 1 except that no chemical conversion treatment was performed. That is, the AZ31B magnesium alloy plate 1 was made, degreased, roughly etched, desmutted, finely etched, and desmutted. In short, it was washed with water and dried without performing only the manganese phosphate nonchromate treatment. Two days later, the remaining magnesium alloy plate 1 was taken out, and the one with a through hole was picked with gloves so as not to allow oil or the like to adhere thereto, and inserted at 140 ° C. into an injection mold.

射出成形金型を閉じ参考例1と同じPBT系樹脂を射出温度260℃で射出した。金型温度は140℃であり、図2で示す一体化した複合体14個を得た。樹脂部の大きさは10mm×45mm×5mmであり、接合面6は10mm×5mmの0.5cm2であった。成形当日に150℃1時間のアニールをした後で4個を引っ張り破断試験したところ、平均のせん断力は7.4MPaあった。 The injection mold was closed and the same PBT resin as in Reference Example 1 was injected at an injection temperature of 260 ° C. The mold temperature was 140 ° C., and 14 integrated composites shown in FIG. 2 were obtained. The size of the resin part was 10 mm × 45 mm × 5 mm, and the joining surface 6 was 0.5 cm 2 of 10 mm × 5 mm. When annealing was performed at 150 ° C. for 1 hour on the day of molding and four pieces were subjected to a break test, the average shear force was 7.4 MPa.

残った一体化品10個に塗料「オーマック/シルバーメタリック(製品名)」を10μm厚の設定で塗装し170℃×30分焼き付けた。翌日、この塗装品に対し、1%塩水を使用して常温で8時間塩水噴霧を行い水洗して乾燥したところ、全ての一体化品で細かい塗膜脹れが観察された。この10個全てについて引っ張り破断試験をしたところせん断力は平均で4.9MPa(50Kgf/cm2)となった。破断面にも脆い酸化膜が浸入しており、化成処理をしていない場合は塗装のみでは実使用に耐えないことが確認された。 The remaining 10 integrated products were coated with a paint “Omak / Silver Metallic (product name)” at a thickness of 10 μm and baked at 170 ° C. for 30 minutes. The next day, the coated product was sprayed with salt water at room temperature for 8 hours using 1% salt water, washed with water, and dried. As a result, fine coating swelling was observed in all the integrated products. When all of the ten pieces were subjected to a tensile fracture test, the average shear force was 4.9 MPa (50 kgf / cm 2 ). A brittle oxide film also penetrated the fractured surface, and it was confirmed that if it was not chemically treated, it could not withstand actual use only by painting.

[比較例2]
化成処理をしなかった他は参考例1と全く同様にしてマグネシウム合金片を得た。即ち、AZ31Bマグネシウム合金片を作り、脱脂し、荒エッチングし、脱スマットし、微細エッチングし、脱スマットまでした。要するに、リン酸マンガン系のノンクロメート処理だけせず水洗して乾燥した。電子顕微鏡観察で結晶状の物は観察されず、表面はマグネシウムの自然酸化物層であった。
[Comparative Example 2]
A magnesium alloy piece was obtained in exactly the same manner as in Reference Example 1 except that the chemical conversion treatment was not performed. That is, an AZ31B magnesium alloy piece was made, degreased, roughly etched, desmutted, finely etched, and desmutted. In short, it was washed with water and dried without being treated with non-chromate manganese phosphate. Crystalline objects were not observed by electron microscope observation, and the surface was a natural oxide layer of magnesium.

2日後に残りのマグネシウム合金片を取り出し、油分等が付着せぬよう貫通孔のある方を手袋で摘まみ140℃とした射出成形金型にインサートした。金型を閉じ調製例1により得られたPPS(1)を射出温度310℃で射出した。金型温度は140℃であり、図2で示す一体化した複合体14個を得た。樹脂部の大きさは10mm×45mm×5mmであり、接合面6は10mm×5mmの0.5cmであった。成形当日に4個を引っ張り破断試験したところ、平均のせん断力は11.3MPaであった。 Two days later, the remaining magnesium alloy piece was taken out, and the one with a through hole was picked with a glove so as not to allow oil or the like to adhere, and inserted into an injection mold set at 140 ° C. The mold was closed and PPS (1) obtained in Preparation Example 1 was injected at an injection temperature of 310 ° C. The mold temperature was 140 ° C., and 14 integrated composites shown in FIG. 2 were obtained. The size of the resin part was 10 mm × 45 mm × 5 mm, and the bonding surface 6 was 0.5 cm 2 of 10 mm × 5 mm. When four pieces were pulled and subjected to a fracture test on the same day of molding, the average shear force was 11.3 MPa.

残った一体化品10個に塗料「オーマック/シルバーメタリック(製品名)」を10μm厚の設定で塗装し170℃×30分焼き付けた。翌日、この塗装品に対し、5%塩水を使用して35℃での8時間塩水噴霧を行い水洗して乾燥したところ、全ての一体化品で細かい塗膜脹れが観察された。この10個全てについて引っ張り破断試験をしたところせん断力は平均で7.0MPaとなった。破断面にも脆い酸化膜が浸入しており、化成処理をしていない場合は塗装のみでは実使用に耐えないことが確認された。   The remaining 10 integrated products were coated with a paint “Omak / Silver Metallic (product name)” at a thickness of 10 μm and baked at 170 ° C. for 30 minutes. The next day, this coated product was sprayed with salt water for 8 hours at 35 ° C. using 5% salt water, washed with water and dried. As a result, fine film swelling was observed in all the integrated products. When all 10 pieces were subjected to a tensile fracture test, the shearing force was 7.0 MPa on average. A brittle oxide film also penetrated the fractured surface, and it was confirmed that if it was not chemically treated, it could not withstand actual use only by painting.

[比較例3]
PPS組成物の調整例1のPPS組成物(1)の代わりに、PPS組成物の調整例4のPPS組成物(4)とした以外は、実施例10と同様の方法により複合体の製造を試みた。要するに、ポリオレフィン系ポリマーをごく大量に含むPPS系樹脂組成物を使用した実験である。この樹脂材料はPPS系材料というよりはポリオレフィン系材料というべきものである。成形時に多量のガスが発生し、射出成形困難で作業を中止した。
[Comparative Example 3]
A composite was produced in the same manner as in Example 10, except that the PPS composition (4) in Preparation Example 4 of the PPS composition was used instead of the PPS composition (1) in Preparation Example 1 of the PPS composition. Tried. In short, this is an experiment using a PPS resin composition containing a very large amount of polyolefin polymer. This resin material should be a polyolefin material rather than a PPS material. A large amount of gas was generated during molding, and the operation was stopped due to difficulty in injection molding.

[比較例4]
最終表面加工が湿式のバフ掛けであり、その表面の金属結晶粒径の平均が7μmである0.8mm厚のAZ31Bマグネシウム合金(日本国東京都、日本金属工業社製)を用いた。これを18mm×45mm片に切断し、その片の端部に貫通孔を開け、塩化ビニルでコートした銅線を通し、複数個のマグネシウム合金片同士が重ならないように銅線を曲げて加工し、10個を同時にぶら下げられるようにした。
[Comparative Example 4]
The final surface treatment was wet buffing, and a 0.8 mm thick AZ31B magnesium alloy (Tokyo, Japan, manufactured by Nippon Metal Industry Co., Ltd.) having an average metal crystal grain size of 7 μm on its surface was used. This is cut into 18 mm x 45 mm pieces, through holes are made in the ends of the pieces, a copper wire coated with vinyl chloride is passed through, and the copper wires are bent and processed so as not to overlap each other. 10 can be hung at the same time.

脱脂槽に市販のマグネシウム合金用脱脂剤「クリーナー160」を10%濃度で65℃とした湯に投入して溶かした。これに前記合金片を5分間浸漬し、充分に水洗し、67℃で15分間乾燥させた。要するに、脱脂処理のみ行った合金での接合強度を確認するための試験である。3日後、このうちの1個を電子顕微鏡で撮影した。その写真を図6に示す。更に1日経過した後、140℃とした射出成形金型にこの合金片をインサートし、PPS組成物(1)を射出した。射出成形条件は参考例10と同一条件で行ったが、射出成形金型を開いたときには、一体化物となっていなかった。 In a degreasing tank, a commercially available magnesium alloy degreasing agent “Cleaner 160” was poured into hot water having a 10% concentration of 65 ° C. and dissolved. The alloy piece was immersed in this for 5 minutes, washed thoroughly with water, and dried at 67 ° C. for 15 minutes. In short, this is a test for confirming the bonding strength of an alloy that has been subjected only to the degreasing treatment. Three days later, one of them was photographed with an electron microscope. The photograph is shown in FIG. After a further day, the alloy piece was inserted into an injection mold set at 140 ° C., and the PPS composition (1) was injected. The injection molding conditions were the same as in Reference Example 10. However, when the injection mold was opened, it was not an integrated product.

[比較例5]
使用した樹脂をPPS組成物(1)からPBT組成物(1)に換え、且つ射出成形滋養券を実施例1に合わせた以外は、比較例4と全く同様の実験を行った。この場合も射出成形金型を開くと、樹脂成形物とマグネシウム合金片は一体化して得られなかった。
[Comparative Example 5]
Except that the resin used was changed from the PPS composition (1) to the PBT composition (1) and the injection molded nourishment ticket was matched to Example 1, the same experiment as Comparative Example 4 was performed. Also in this case, when the injection mold was opened, the resin molded product and the magnesium alloy piece could not be obtained integrally.

次に示す表は、前述した実施例及び比較例の概要を示す一覧表である。
The following table is a list showing an outline of the above-described examples and comparative examples.

本発明の金属と樹脂の複合体及びその製造方法は、電子機器の筐体、家電機器の筐体、構造用部品、機械部品等に用いることができる。特に、マグネシウム合金は、重量あたりの強度や曲げ弾性率がアルミニウム合金や鉄鋼よりも高いので、構造材、又は部品としてもその用途は広い。この特性を活かして、軽量化が要請されているモバイル用電子機器、航空機の機体部品、自動車部品等にその応用が期待されている。   The metal / resin composite and the method for producing the same according to the present invention can be used for a casing of an electronic device, a casing of a household electrical appliance, a structural component, a mechanical component, and the like. In particular, a magnesium alloy has a higher strength per unit weight and flexural modulus than an aluminum alloy or steel, and therefore has a wide range of uses as a structural material or component. Utilizing this characteristic, its application is expected to mobile electronic devices, aircraft fuselage parts, automobile parts, and the like that are required to be reduced in weight.

図1は、マグネシウム板片と樹脂組成物との複合体を製造する過程を模式的に示した射出成形金型の構成図である。FIG. 1 is a configuration diagram of an injection mold schematically showing a process of manufacturing a composite of a magnesium plate piece and a resin composition. 図2は、マグネシウム板片と樹脂組成物との複合体を模式的に示す単体の外観図である。FIG. 2 is an external view of a single body schematically showing a composite of a magnesium plate piece and a resin composition. 図3は、酢酸水溶液を荒エッチング剤として使用し、微細エッチング剤として希硝酸を使用し、更にリン酸マンガン系の化成処理をして得た金属結晶平均粒径7μm以下のAZ31Bマグネシウム合金の表面写真である。FIG. 3 shows the surface of an AZ31B magnesium alloy having an average crystal grain size of 7 μm or less obtained by using an aqueous acetic acid solution as a rough etching agent, using dilute nitric acid as a fine etching agent, and further subjecting it to chemical conversion treatment with manganese phosphate. It is a photograph. 図4は、酢酸水溶液を荒エッチング剤として使用し、微細エッチング剤としてクエン酸を使用し、更に過マンガン酸カリ系の化成処理をして得た金属結晶粒径7μm以下のAZ31Bマグネシウム合金の表面写真である。FIG. 4 shows the surface of an AZ31B magnesium alloy having a metal crystal grain size of 7 μm or less, obtained by using an acetic acid aqueous solution as a rough etching agent, citric acid as a fine etching agent, and further subjected to a potassium permanganate chemical conversion treatment. It is a photograph. 図5は、酢酸水溶液を荒エッチング剤として使用し、微細エッチング剤として希硝酸を使用し、更に炭酸カリウム系の化成処理をして得た金属結晶平均粒径7μmのAZ31Bマグネシウム合金の表面写真である。FIG. 5 is a surface photograph of an AZ31B magnesium alloy having an average particle diameter of 7 μm obtained by using an aqueous acetic acid solution as a rough etching agent, using dilute nitric acid as a fine etching agent, and further subjecting it to chemical conversion treatment with potassium carbonate. is there. 図6は、脱脂処理のみを行った金属結晶平均粒径7μmのAZ31Bマグネシウム合金(日本国東京都、日本金属工業社製)の表面写真である。FIG. 6 is a surface photograph of an AZ31B magnesium alloy (manufactured by Nippon Metal Industry Co., Ltd., Tokyo, Japan) having a metal crystal average particle diameter of 7 μm that has been subjected to only degreasing treatment.

符号の説明Explanation of symbols

1…マグネシウム合金板
2…可動側型板
3…固定側型板
4…樹脂組成物
5…ピンポイントゲート
6…接合面
7…複合体
DESCRIPTION OF SYMBOLS 1 ... Magnesium alloy plate 2 ... Movable side die plate 3 ... Fixed side die plate 4 ... Resin composition 5 ... Pinpoint gate 6 ... Joining surface 7 ... Composite

Claims (11)

マグネシウム合金からなる基材と、
クロム、マンガン、バナジウム、カルシウム、亜鉛、カルシウム、ストロンチウム、ジルコニウム、チタン、及びアルカリ金属炭酸塩から選択される1種以上を水溶液とし、この水溶液を使用して化成処理をすることで得られる金属酸化物、金属炭酸化物、及び金属リン酸化物の何れか1種が、前記マグネシウム合金の表面に形成された表層と、
前記表層の凹部に射出成形により侵入して固化して固着され、かつ結晶性を有する熱可塑性樹脂である主成分がポリブチレンテレフタレート樹脂であり、従成分がポリエチレンテレフタレート樹脂である樹脂組成物層と
からなる金属と樹脂の複合体。
A base material made of a magnesium alloy;
Metal oxidation obtained by converting one or more selected from chromium, manganese, vanadium, calcium, zinc, calcium, strontium, zirconium, titanium, and alkali metal carbonate into an aqueous solution, and performing chemical conversion treatment using this aqueous solution Any one of a material, a metal carbonate, and a metal phosphate is formed on the surface of the magnesium alloy;
A resin composition layer in which the main component, which is a thermoplastic resin having crystallinity, penetrates into the concave portion of the surface layer by injection molding, is solidified, and is a polybutylene terephthalate resin, and a subsidiary component is a polyethylene terephthalate resin; A composite of metal and resin.
請求項1に記載の金属と樹脂の複合体において、
前記表層には、電子顕微鏡観察で1μm四方の正方形面積当たりに板状結晶が2個以上認められることを特徴とする金属と樹脂の複合体。
The metal / resin composite according to claim 1,
A composite of a metal and a resin, wherein two or more plate crystals are observed per square area of 1 μm square on the surface layer by observation with an electron microscope.
請求項1に記載の金属と樹脂の複合体において、
前記表層には、電子顕微鏡観察で針状結晶をまとった塊状物で覆われていることを特徴とする金属と樹脂の複合体。
The metal / resin composite according to claim 1,
A composite of metal and resin, characterized in that the surface layer is covered with a lump with needle-like crystals as observed with an electron microscope.
請求項1に記載の金属と樹脂の複合体において、
前記表層には、電子顕微鏡観察で約直径10nm、長さ100nm程度の円形柱が多数形成されていることを特徴とする金属と樹脂の複合体。
The metal / resin composite according to claim 1,
A composite of metal and resin, wherein a large number of circular columns having a diameter of about 10 nm and a length of about 100 nm are formed on the surface layer by electron microscope observation.
請求項1に記載の金属と樹脂の複合体において、
前記ポリブチレンテレフタレート65〜87重量%、及び前記ポリエチレンテレフタレート13〜35重量%である
ことを特徴とする金属と樹脂の複合体。
The metal / resin composite according to claim 1,
The polybutylene terephthalate is 65 to 87 % by weight, and the polyethylene terephthalate is 13 to 35% by weight. A metal-resin composite.
請求項1ないし5に記載の金属と樹脂の複合体から選択される1項において、
前記樹脂層は、前記ポリブチレンテレフタレート樹脂と前記ポリエチレンテレフタレート樹脂の合計樹脂100重量部に対して、さらに充填剤1〜200重量部を配合してなるものであることを特徴とする金属と樹脂の複合体。
In one selected from the metal-resin composite of claim 1-5.
The resin layer is formed by further blending 1 to 200 parts by weight of a filler with respect to 100 parts by weight of the total resin of the polybutylene terephthalate resin and the polyethylene terephthalate resin. Complex.
マグネシウム合金からなる鋳造物又は中間材から機械加工で形状化して形状部品とする形状化工程と、
前記形状部品の表層に金属酸化物、金属炭酸化物、及び金属リン酸化物から選択される1種を形成する化成処理工程と、
前記化成処理工程がなされた前記形状部品を射出成形金型にインサートして、主成分がポリブチレンテレフタレート樹脂であり、従成分がポリエチレンテレフタレート樹脂である樹脂組成物を射出する射出工程と、
前記金属酸化物、又は前記金属リン酸化物の凹部に前記射出成形により侵入して固化して、前記形状部品と前記樹脂組成物とを一体に固着する固着工程と
からなる金属と樹脂の複合体の製造方法。
A shaping step of forming a shaped part by machining from a cast or intermediate material made of a magnesium alloy;
A chemical conversion treatment step of forming one type selected from a metal oxide, a metal carbonate, and a metal phosphate on the surface layer of the shaped part;
An injection step of injecting a resin composition in which the main component is a polybutylene terephthalate resin and a secondary component is a polyethylene terephthalate resin, by inserting the shaped part subjected to the chemical conversion treatment step into an injection mold; and
A metal / resin composite comprising: a fixing step in which the shaped part and the resin composition are integrally fixed by intrusion into the concave portion of the metal oxide or the metal phosphor oxide by the injection molding and solidifying. Manufacturing method.
請求項7に記載の金属と樹脂の複合体の製造方法において、
前記化成処理工程は、クロム、マンガン、バナジウム、カルシウム、亜鉛、カルシウム、ストロンチウム、ジルコニウム、チタン化合物、及びアルカリ金属炭酸塩から選択される1種以上の水溶液を使用した化成処理であることを特徴とする金属と樹脂の複合体の製造方法。
In the manufacturing method of the composite of the metal and resin of Claim 7,
The chemical conversion treatment step is a chemical conversion treatment using one or more aqueous solutions selected from chromium, manganese, vanadium, calcium, zinc, calcium, strontium, zirconium, titanium compounds, and alkali metal carbonates. To produce a composite of metal and resin.
請求項7に記載の金属と樹脂の複合体の製造方法において、
前記表層には、電子顕微鏡観察で1μm四方の正方形面積当たりに板状結晶が2個以上認められることを特徴とする金属と樹脂の複合体の製造方法。
In the manufacturing method of the composite of the metal and resin of Claim 7,
2. The method for producing a composite of metal and resin, wherein two or more plate crystals are observed per square area of 1 μm square on the surface layer by observation with an electron microscope.
請求項7に記載の金属と樹脂の複合体の製造方法において、
前記表層には、電子顕微鏡観察で針状結晶をまとった塊状物で覆われていることを特徴とする金属と樹脂の複合体の製造方法。
In the manufacturing method of the composite of the metal and resin of Claim 7,
The method for producing a composite of a metal and a resin, characterized in that the surface layer is covered with a lump with needle-like crystals observed by an electron microscope.
請求項7に記載の金属と樹脂の複合体の製造方法において、
前記表層には、電子顕微鏡観察で約直径10nm、長さ100nm程度の円形柱が多数形成されていることを特徴とする金属と樹脂の複合体の製造方法。
In the manufacturing method of the composite of the metal and resin of Claim 7,
A method for producing a composite of a metal and a resin, wherein a number of circular columns having a diameter of about 10 nm and a length of about 100 nm are formed on the surface layer by electron microscope observation.
JP2006272832A 2005-10-04 2006-10-04 Metal-resin composite and method for producing the same Active JP4927491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006272832A JP4927491B2 (en) 2005-10-04 2006-10-04 Metal-resin composite and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005290627 2005-10-04
JP2005290627 2005-10-04
JP2006107214 2006-04-10
JP2006107214 2006-04-10
JP2006272832A JP4927491B2 (en) 2005-10-04 2006-10-04 Metal-resin composite and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007301972A JP2007301972A (en) 2007-11-22
JP4927491B2 true JP4927491B2 (en) 2012-05-09

Family

ID=38836316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006272832A Active JP4927491B2 (en) 2005-10-04 2006-10-04 Metal-resin composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP4927491B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5101983B2 (en) * 2007-10-23 2012-12-19 大成プラス株式会社 Metal coated product and method for producing the same
EP2298525A1 (en) * 2008-06-12 2011-03-23 Nippon Light Metal Co., Ltd. Integrally injection-molded aluminum/resin article and process for producing the same
DE102008040782A1 (en) * 2008-07-28 2010-02-04 Robert Bosch Gmbh Composite component and method for producing a composite component
CN102639357B (en) 2009-09-14 2016-01-20 约翰逊控制技术公司 Vehicle seat structure
JP2011057164A (en) * 2009-09-14 2011-03-24 Johnson Controls Technology Co Seat structure for vehicle
IN2012DN02733A (en) 2009-10-16 2015-09-11 Aisin Seiki
JP5606169B2 (en) * 2010-06-15 2014-10-15 京セラケミカル株式会社 Electronic device casing and manufacturing method thereof
CN106317802A (en) * 2016-08-25 2017-01-11 安特普工程塑料(苏州)有限公司 NMT-based PBT composition and manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207921A (en) * 1983-05-13 1984-11-26 Dainippon Ink & Chem Inc Thermoplastic resin composition
JP3440905B2 (en) * 2000-01-06 2003-08-25 日本軽金属株式会社 Surface treated magnesium material and method for producing the same
JP3885504B2 (en) * 2001-02-23 2007-02-21 松下電工株式会社 Tableware
JP4219101B2 (en) * 2001-08-09 2009-02-04 新神戸電機株式会社 Manufacturing method of resin molded product with insert parts
JP4202015B2 (en) * 2001-12-10 2008-12-24 大成プラス株式会社 Metal-resin composite and method for producing the same
JP4089315B2 (en) * 2002-07-04 2008-05-28 株式会社ジェイテクト Connecting member
JP4492103B2 (en) * 2002-11-25 2010-06-30 東洋製罐株式会社 Surface-treated metal material and surface treatment method thereof, resin-coated metal material, metal can, can lid
JP3939678B2 (en) * 2003-01-14 2007-07-04 大成プラス株式会社 Heat exchanger by panel formation and its manufacturing method
JP2005144674A (en) * 2003-11-11 2005-06-09 Toray Ind Inc Monolithic molded product of metal or woody material and thermoplastic resin and its manufacturing method

Also Published As

Publication number Publication date
JP2007301972A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
KR100982357B1 (en) Composite of metal and resin and method for manufacturing same
KR101115786B1 (en) Process for production of highly corrosion-resistant composite
JP4927871B2 (en) Metal-resin composite and method for producing the composite
JP4927491B2 (en) Metal-resin composite and method for producing the same
JP5167261B2 (en) Metal-resin composite and method for producing the same
JP4452220B2 (en) Composite and production method thereof
JP4527196B2 (en) Composite and production method thereof
JP4927876B2 (en) Metal-resin composite and method for producing the same
JP4452256B2 (en) Metal-resin composite and method for producing the same
JP5733999B2 (en) Method for producing metal resin composite
JP5108891B2 (en) Method for producing metal resin composite
WO2008047811A1 (en) Composite of metal with resin and process for producing the same
JP2009298144A (en) Bonded composite article of a plurality of metallic shaped bodies, and method for production thereof
TW201127992A (en) Aluminum alloy article, aluminum alloy member, and production method therefor
JP2012213922A (en) Composite, and method for producing the same
JP5166978B2 (en) Method for producing composite of metal alloy and resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4927491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250