JP2017218614A - Method for producing surface roughened metal member and method for producing metal/resin composite structure - Google Patents

Method for producing surface roughened metal member and method for producing metal/resin composite structure Download PDF

Info

Publication number
JP2017218614A
JP2017218614A JP2016112166A JP2016112166A JP2017218614A JP 2017218614 A JP2017218614 A JP 2017218614A JP 2016112166 A JP2016112166 A JP 2016112166A JP 2016112166 A JP2016112166 A JP 2016112166A JP 2017218614 A JP2017218614 A JP 2017218614A
Authority
JP
Japan
Prior art keywords
metal member
resin
manufacturing
metal
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016112166A
Other languages
Japanese (ja)
Other versions
JP6803155B2 (en
Inventor
富田 嘉彦
Yoshihiko Tomita
嘉彦 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2016112166A priority Critical patent/JP6803155B2/en
Publication of JP2017218614A publication Critical patent/JP2017218614A/en
Application granted granted Critical
Publication of JP6803155B2 publication Critical patent/JP6803155B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a production method for obtaining a metal member capable of suppressing reduction in a bond strength of a metal member after oxide film formation treatment and a resin member.SOLUTION: A method for producing a surface roughened metal member 103 is for producing the surface roughened metal member 103 used for bonding to a thermoplastic resin member 105 composed of a thermoplastic resin (P1) or a resin composition (P2) containing the thermoplastic resin (P1) and includes a step (1) of roughening at least a joint portion surface 104 of the metal member with the thermoplastic resin member 105, using a roughening treatment aqueous solution (Z) containing a compound (A) having a nitrogen atom in the molecule, and a step (2) of bringing at least the joint portion surface 104 of the metal member into contact with hot water after the step (1).SELECTED DRAWING: Figure 1

Description

本発明は、表面粗化金属部材の製造方法および金属/樹脂複合構造体の製造方法に関する。   The present invention relates to a method for producing a surface roughened metal member and a method for producing a metal / resin composite structure.

各種部品の軽量化の観点から、金属の代替品として樹脂が使用されている。しかし、全ての金属部品を樹脂で代替することは難しい場合も多い。そのような場合には、金属成形体と樹脂成形体を接合一体化することで新たな複合部品を製造することが考えられる。しかしながら、金属成形体と樹脂成形体を工業的に有利な方法で、かつ高い接合強度で接合一体化できる技術は実用化されていない。   Resin is used as a substitute for metal from the viewpoint of weight reduction of various parts. However, it is often difficult to replace all metal parts with resin. In such a case, it is conceivable to manufacture a new composite part by joining and integrating the metal molded body and the resin molded body. However, a technique capable of joining and integrating a metal molded body and a resin molded body with an industrially advantageous method with high bonding strength has not been put into practical use.

近年、金属成形体と樹脂成形体を接合一体化する技術として、金属部材の表面に微細な凹凸を形成させたものに、その金属部材と親和性を有する極性基を持つエンジニアリングプラスチックを接合させることが検討されている(例えば、特許文献1〜6等)。   In recent years, as a technology for joining and integrating metal moldings and resin moldings, engineering plastics with polar groups that have affinity with the metal member are joined to the metal member surface with fine irregularities Are being studied (for example, Patent Documents 1 to 6).

特許文献1〜6には、例えば、金属部材をヒドラジン水溶液で浸漬処理することによって、その表面に凹部を形成した後、該処理面に熱可塑性樹脂を接合させる技術が開示されている。   Patent Documents 1 to 6 disclose a technique in which, for example, a metal member is immersed in a hydrazine aqueous solution to form a recess on the surface, and then a thermoplastic resin is bonded to the treated surface.

特開2004−216425号公報JP 2004-216425 A 特開2009−6721号公報JP 2009-6721 A 国際公開第2003/064150号パンフレットInternational Publication No. 2003/064150 Pamphlet 特開2010−064496号公報JP 2010-06496 A 特開2012−066383号公報JP 2012-066383 A 特開2005−119005号公報JP 2005-119005 A

本発明者らの検討によれば、特許文献1〜6に開示されているような方法で得られた金属/樹脂複合構造体は、耐食性や耐摩耗性、耐傷性等を向上させるために金属/樹脂複合構造体における金属部材の表面に酸化被膜を形成する処理をおこなうと、金属部材と樹脂部材との接合強度が低下してしまうことが明らかになった。   According to the study by the present inventors, the metal / resin composite structure obtained by the methods disclosed in Patent Documents 1 to 6 is a metal in order to improve corrosion resistance, wear resistance, scratch resistance, and the like. / It has been clarified that when the treatment for forming an oxide film on the surface of the metal member in the resin composite structure is performed, the bonding strength between the metal member and the resin member decreases.

本発明は上記事情に鑑みてなされたものであり、酸化被膜形成処理後の金属部材と樹脂部材との接合強度の低下を抑制できる金属部材を得るための製造方法を提供するものである。   This invention is made | formed in view of the said situation, and provides the manufacturing method for obtaining the metal member which can suppress the fall of the joint strength of the metal member and resin member after an oxide film formation process.

本発明者らは、酸化被膜形成処理後の金属部材と樹脂部材との接合強度の低下を抑制できる金属部材を得るため鋭意検討した。その結果、分子内に窒素原子を有する化合物(A)を含有する粗化処理水溶液(Z)により粗化処理をおこなった後に、得られた粗化処理面を温水により処理することにより、酸化被膜形成処理後の金属部材と樹脂部材との接合強度の低下を抑制できる金属部材が得られることを見出し、本発明に至った。   The present inventors diligently studied to obtain a metal member that can suppress a decrease in bonding strength between the metal member and the resin member after the oxide film formation treatment. As a result, after the roughening treatment was performed with the roughening aqueous solution (Z) containing the compound (A) having a nitrogen atom in the molecule, the resulting roughened surface was treated with warm water, thereby forming an oxide film. The present inventors have found that a metal member that can suppress a decrease in the bonding strength between the metal member and the resin member after the formation treatment is obtained, and have reached the present invention.

すなわち、本発明によれば、以下に示す表面粗化金属部材の製造方法および金属/樹脂複合構造体の製造方法が提供される。   That is, according to this invention, the manufacturing method of the surface roughening metal member shown below and the manufacturing method of a metal / resin composite structure are provided.

[1]
熱可塑性樹脂または上記熱可塑性樹脂を含む樹脂組成物により構成された熱可塑性樹脂部材との接合のために用いられる表面粗化金属部材を製造するための製造方法であって、
少なくとも金属部材の上記熱可塑性樹脂部材との接合部表面を、分子内に窒素原子を有する化合物(A)を含有する粗化処理水溶液(Z)により粗化する工程(1)と、
上記工程(1)の後に、少なくとも上記金属部材の上記接合部表面を温水に接触させる工程(2)と、
を含む表面粗化金属部材の製造方法。
[2]
上記[1]に記載の表面粗化金属部材の製造方法において、
上記化合物(A)が分子内に酸素官能基を有するアミン(A1)、アンモニウム塩(A2)およびアミン塩(A3)から選択される一種または二種以上を含む表面粗化金属部材の製造方法。
[3]
上記[1]または[2]に記載の表面粗化金属部材の製造方法において、
上記表面粗化金属部材は鉄、鉄鋼材、ステンレス、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、銅、銅合金、亜鉛、亜鉛合金、スズ、スズ合金、チタンおよびチタン合金から選択される一種または二種以上の金属材料により構成されたものである表面粗化金属部材の製造方法。
[4]
上記[1]乃至[3]のいずれか一つに記載の表面粗化金属部材の製造方法において、
少なくとも上記金属部材の上記接合部表面を酸性水溶液および/または塩基性水溶液により洗浄する工程(0)の後に、上記工程(1)をおこなう表面粗化金属部材の製造方法。
[5]
上記[1]乃至[4]のいずれか一つに記載の表面粗化金属部材の製造方法において、
上記化合物(A)が分子内に酸素官能基を有するアミン(A1)を含み、
上記分子内に酸素官能基を有するアミン(A1)が、下記式(1)により示されるモルホリン系化合物および下記式(2)により示されるアルカノールアミン系化合物から選択される少なくとも一種を含む表面粗化金属部材の製造方法。

Figure 2017218614
(上記式(1)中、Rは水素原子または炭素数1以上10以下の炭化水素基である)
Figure 2017218614
(上記式(2)中、R〜Rは、それぞれ独立して水素原子、アルキル基、または1つのヒドロキシ基を有する脂肪族飽和炭化水素基であり、R〜Rの少なくとも1つが、1つのヒドロキシ基を有する脂肪族飽和炭化水素基である)
[6]
上記[5]に記載の表面粗化金属部材の製造方法において、
上記モルホリン系化合物がN−エチルモルホリン、N−メチルモルホリンおよびN−n−プロピルモルホリンから選択される少なくとも一種を含む表面粗化金属部材の製造方法。
[7]
上記[5]に記載の表面粗化金属部材の製造方法において、
上記アルカノールアミン系化合物がトリエタノールアミンおよびN,N−ジエチルエタノールアミンから選択される少なくとも一種を含む表面粗化金属部材の製造方法。
[8]
上記[1]乃至[4]のいずれか一つに記載の表面粗化金属部材の製造方法において、
上記化合物(A)がアンモニウム塩(A2)を含み、
上記アンモニウム塩(A2)が、アンモニア、塩化アンモニウムおよび硝酸アンモニウムから選択される少なくとも一種を含む表面粗化金属部材の製造方法。
[9]
上記[1]乃至[8]のいずれか一つに記載の表面粗化金属部材の製造方法において、
上記温水が、イオン交換水、純水、または蒸留水である表面粗化金属部材の製造方法。
[10]
上記[1]乃至[9]のいずれか一つに記載の表面粗化金属部材の製造方法において、
上記温水の温度が40℃以上90℃以下である表面粗化金属部材の製造方法。
[11]
上記[1]乃至[10]のいずれか一つに記載の表面粗化金属部材の製造方法において、
上記粗化処理水溶液(Z)の25℃における水素イオン濃度指数(pH)が9.0以上11.0以下である表面粗化金属部材の製造方法。
[12]
上記[1]乃至[11]のいずれか一つに記載の表面粗化金属部材の製造方法により表面粗化金属部材を作製する工程(A)と、
上記表面粗化金属部材の上記接合部表面に接するように、熱可塑性樹脂または上記熱可塑性樹脂を含む樹脂組成物により構成された熱可塑性樹脂部材を成形し、上記表面粗化金属部材と上記熱可塑性樹脂部材を接合させる工程(B)と、
を含む金属/樹脂複合構造体の製造方法。
[13]
上記[12]に記載の金属/樹脂複合構造体の製造方法において、
上記熱可塑性樹脂が、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリフェニレンサルファイド樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリイミド樹脂、ポリエーテルスルホン樹脂、ポリスチレン樹脂、ポリアクリロニトリル樹脂、スチレン−アクリロニトリル共重合体樹脂、アクリロニトリル−ブタジエン−スチレン共重合体樹脂、(メタ)アクリル系樹脂、およびポリアセタール樹脂から選択される一種または二種以上を含む金属/樹脂複合構造体の製造方法。
[14]
上記[12]または[13]に記載の金属/樹脂複合構造体の製造方法において、
上記工程(B)の後に、得られた金属/樹脂複合構造体を構成する金属部材の表面に酸化被膜を形成する工程(C)をさらに含む金属/樹脂複合構造体の製造方法。 [1]
A production method for producing a surface-roughened metal member used for joining with a thermoplastic resin or a thermoplastic resin member composed of a resin composition containing the thermoplastic resin,
A step (1) of roughening at least a surface of a joint portion of the metal member with the thermoplastic resin member with a roughening aqueous solution (Z) containing a compound (A) having a nitrogen atom in the molecule;
After the step (1), at least the step (2) of bringing the joint surface of the metal member into contact with warm water;
The manufacturing method of the surface roughening metal member containing this.
[2]
In the method for producing a surface roughened metal member according to [1] above,
The manufacturing method of the surface roughening metal member in which the said compound (A) contains 1 type, or 2 or more types selected from the amine (A1) which has an oxygen functional group in a molecule | numerator, ammonium salt (A2), and amine salt (A3).
[3]
In the method for producing a roughened metal member according to [1] or [2] above,
The surface roughened metal member is one or two selected from iron, steel, stainless steel, aluminum, aluminum alloy, magnesium, magnesium alloy, copper, copper alloy, zinc, zinc alloy, tin, tin alloy, titanium and titanium alloy. The manufacturing method of the surface roughening metal member which is comprised with the metal material more than a seed | species.
[4]
In the method for producing a roughened metal member according to any one of [1] to [3],
The manufacturing method of the surface roughening metal member which performs the said process (1) after the process (0) which wash | cleans the said junction part surface of the said metal member at least with acidic aqueous solution and / or basic aqueous solution.
[5]
In the method for producing a surface roughened metal member according to any one of [1] to [4],
The compound (A) includes an amine (A1) having an oxygen functional group in the molecule,
Surface roughening wherein the amine (A1) having an oxygen functional group in the molecule contains at least one selected from a morpholine compound represented by the following formula (1) and an alkanolamine compound represented by the following formula (2): A method for producing a metal member.
Figure 2017218614
(In the above formula (1), R is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms)
Figure 2017218614
(In the above formula (2), R 1 to R 3 are each independently an aliphatic saturated hydrocarbon group having a hydrogen atom, an alkyl group, or one hydroxy group, and at least one of R 1 to R 3 is An aliphatic saturated hydrocarbon group having one hydroxy group)
[6]
In the method for producing a roughened metal member according to [5] above,
A method for producing a surface roughened metal member, wherein the morpholine-based compound contains at least one selected from N-ethylmorpholine, N-methylmorpholine, and Nn-propylmorpholine.
[7]
In the method for producing a roughened metal member according to [5] above,
A method for producing a surface-roughened metal member, wherein the alkanolamine-based compound contains at least one selected from triethanolamine and N, N-diethylethanolamine.
[8]
In the method for producing a surface roughened metal member according to any one of [1] to [4],
The compound (A) includes an ammonium salt (A2),
The manufacturing method of the surface roughening metal member in which the said ammonium salt (A2) contains at least 1 type selected from ammonia, ammonium chloride, and ammonium nitrate.
[9]
In the method for producing a roughened metal member according to any one of [1] to [8] above,
The manufacturing method of the surface roughening metal member whose said warm water is ion-exchange water, a pure water, or distilled water.
[10]
In the method for producing a roughened metal member according to any one of [1] to [9],
The manufacturing method of the surface roughening metal member whose temperature of the said warm water is 40 degreeC or more and 90 degrees C or less.
[11]
In the method for producing a roughened metal member according to any one of [1] to [10],
The manufacturing method of the surface roughening metal member whose hydrogen ion concentration index (pH) in 25 degreeC of the said roughening process aqueous solution (Z) is 9.0 or more and 11.0 or less.
[12]
A step (A) of producing a surface roughened metal member by the method for producing a surface roughened metal member according to any one of [1] to [11];
A thermoplastic resin member made of a thermoplastic resin or a resin composition containing the thermoplastic resin is molded so as to contact the surface of the joint portion of the surface roughened metal member, and the surface roughened metal member and the heat A step (B) of joining the plastic resin member;
The manufacturing method of the metal / resin composite structure containing this.
[13]
In the method for producing a metal / resin composite structure according to [12] above,
The above thermoplastic resin is polyolefin resin, polyester resin, polyamide resin, polyphenylene sulfide resin, polycarbonate resin, polyether ether ketone resin, polyether ketone resin, polyimide resin, polyether sulfone resin, polystyrene resin, polyacrylonitrile resin. , A styrene-acrylonitrile copolymer resin, an acrylonitrile-butadiene-styrene copolymer resin, a (meth) acrylic resin, and a metal / resin composite structure containing one or more selected from polyacetal resins.
[14]
In the method for producing a metal / resin composite structure according to [12] or [13] above,
A method for producing a metal / resin composite structure, further comprising a step (C) of forming an oxide film on the surface of the metal member constituting the obtained metal / resin composite structure after the step (B).

本発明によれば、酸化被膜形成処理後の金属部材と樹脂部材との接合強度の低下を抑制できる金属部材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the metal member which can suppress the fall of the joint strength of the metal member and resin member after an oxide film formation process can be provided.

本実施形態に係る金属/樹脂複合構造体の構造の一例を模式的に示した外観図である。It is the external view which showed typically an example of the structure of the metal / resin composite structure which concerns on this embodiment. 本実施形態に係る金属/樹脂複合構造体を製造する過程の一例を模式的に示した構成図である。It is the block diagram which showed typically an example of the process which manufactures the metal / resin composite structure which concerns on this embodiment.

以下に、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には共通の符号を付し、適宜説明を省略する。なお、文中の数字範囲を示す「A〜B」は特に断りがなければ、A以上B以下を表す。   Embodiments of the present invention will be described below with reference to the drawings. In all the drawings, similar constituent elements are denoted by common reference numerals, and description thereof is omitted as appropriate. In addition, "A-B" which shows the numerical range in a sentence represents A or more and B or less unless there is particular notice.

図1は、本実施形態に係る金属/樹脂複合構造体106の構造の一例を模式的に示した外観図である。
本実施形態に係る表面粗化金属部材103の製造方法は、熱可塑性樹脂(P1)または熱可塑性樹脂(P1)を含む樹脂組成物(P2)により構成された熱可塑性樹脂部材105との接合のために用いられる表面粗化金属部材103を製造するための製造方法であって、少なくとも金属部材の熱可塑性樹脂部材105との接合部表面104を、分子内に窒素原子を有する化合物(A)を含有する粗化処理水溶液(Z)により粗化する工程(1)と、工程(1)の後に、少なくとも金属部材の接合部表面104を温水に接触させる工程(2)と、を含む。
FIG. 1 is an external view schematically showing an example of the structure of the metal / resin composite structure 106 according to the present embodiment.
The method of manufacturing the surface roughened metal member 103 according to the present embodiment includes joining the thermoplastic resin member 105 composed of the thermoplastic resin (P1) or the resin composition (P2) containing the thermoplastic resin (P1). It is a manufacturing method for manufacturing the surface roughening metal member 103 used for this, Comprising: The compound (A) which has a nitrogen atom in a molecule | numerator at least in the junction surface 104 with the thermoplastic resin member 105 of a metal member. Step (1) for roughening with the aqueous solution for roughening treatment (Z) contained, and Step (2) for bringing at least the joint surface 104 of the metal member into contact with warm water after Step (1) are included.

金属部材の熱可塑性樹脂部材105との接合部表面104に対して、上記工程(1)および(2)を順次おこなうことにより、酸化被膜形成処理後の金属部材と樹脂部材との接合強度の低下を抑制できる金属部材が得られる理由は明らかではないが、以下の理由が考えられる。
まず、上記工程(1)により、金属部材の接合部表面104に表面粗化金属部材103と熱可塑性樹脂部材105との間のアンカー効果を効果的に発現できる微細凹凸構造が形成されると考えられる。また、工程(2)をおこなうことによって、工程(1)により形成された微細凹凸構造表面に水酸基含有皮膜が形成されると考えられる。そして、この水酸基含有皮膜と微細凹凸構造との相乗効果により、酸化被膜形成処理後の金属/樹脂複合構造体106における表面粗化金属部材103と熱可塑性樹脂部材105との接合力を向上させることができるからだと考えられる。
以下、熱可塑性樹脂部材105、表面粗化金属部材103の製造方法、および金属/樹脂複合構造体106の製造方法の順に説明する。
By sequentially performing the above steps (1) and (2) on the joint surface 104 of the metal member with the thermoplastic resin member 105, the joint strength between the metal member and the resin member after the oxide film formation treatment is reduced. The reason for obtaining a metal member capable of suppressing the above is not clear, but the following reasons are conceivable.
First, it is considered that the above-described step (1) forms a fine concavo-convex structure capable of effectively expressing the anchor effect between the surface roughened metal member 103 and the thermoplastic resin member 105 on the joint surface 104 of the metal member. It is done. Moreover, it is thought by performing a process (2) that a hydroxyl-containing membrane | film | coat is formed in the fine concavo-convex structure surface formed by the process (1). And, by the synergistic effect of the hydroxyl group-containing film and the fine concavo-convex structure, the bonding strength between the surface roughened metal member 103 and the thermoplastic resin member 105 in the metal / resin composite structure 106 after the oxide film formation treatment is improved. It is thought that it is possible to do.
Hereinafter, the thermoplastic resin member 105, the method of manufacturing the surface roughened metal member 103, and the method of manufacturing the metal / resin composite structure 106 will be described in this order.

[熱可塑性樹脂部材]
以下、本実施形態に係る熱可塑性樹脂部材105について説明する。
熱可塑性樹脂部材105は熱可塑性樹脂(P1)または熱可塑性樹脂(P1)を含む樹脂組成物(P2)により構成されている。樹脂組成物(P2)は、樹脂成分として熱可塑性樹脂(P1)と、必要に応じて充填材(B)と、含む。さらに、樹脂組成物(P2)は必要に応じてその他の配合剤を含む。
[Thermoplastic resin member]
Hereinafter, the thermoplastic resin member 105 according to the present embodiment will be described.
The thermoplastic resin member 105 is made of a thermoplastic resin (P1) or a resin composition (P2) containing a thermoplastic resin (P1). The resin composition (P2) includes a thermoplastic resin (P1) as a resin component and, if necessary, a filler (B). Furthermore, the resin composition (P2) contains other compounding agents as necessary.

(熱可塑性樹脂(P1))
熱可塑性樹脂(P1)としては特に限定されないが、例えば、ポリオレフィン系樹脂、ポリ(メタ)アクリル酸メチル樹脂等の(メタ)アクリル系樹脂、ポリスチレン樹脂、ポリビニルアルコール−ポリ塩化ビニル共重合体樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリメチルペンテン樹脂、無水マレイン酸−スチレン共重合体樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂等の芳香族ポリエーテルケトン、ポリエステル系樹脂、ポリアミド系樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、スチレン系エラストマー、ポリオレフィン系エラストマー、ポリウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アイオノマー、アミノポリアクリルアミド樹脂、イソブチレン無水マレイン酸コポリマー、ABS、ACS、AES、AS、ASA、MBS、エチレン−塩化ビニルコポリマー、エチレン−酢酸ビニルコポリマー、エチレン−酢酸ビニル−塩化ビニルグラフトポリマー、エチレン−ビニルアルコールコポリマー、塩素化ポリ塩化ビニル樹脂、塩素化ポリエチレン樹脂、塩素化ポリプロピレン樹脂、カルボキシビニルポリマー、ケトン樹脂、非晶性コポリエステル樹脂、ノルボルネン樹脂、フッ素プラスチック、ポリテトラフルオロエチレン樹脂、フッ素化エチレンポリプロピレン樹脂、PFA、ポリクロロフルオロエチレン樹脂、エチレンテトラフルオロエチレンコポリマー、ポリフッ化ビニリデン樹脂、ポリフッ化ビニル樹脂、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル樹脂、ポリアリレート樹脂、熱可塑性ポリイミド樹脂、ポリ塩化ビニリデン樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリサルホン樹脂、ポリパラメチルスチレン樹脂、ポリアリルアミン樹脂、ポリビニルエーテル樹脂、ポリフェニレンオキシド樹脂、ポリフェニレンサルファイド(PPS)樹脂、ポリメチルペンテン樹脂、オリゴエステルアクリレート、キシレン樹脂、マレイン酸樹脂、ポリヒドロキシブチレート樹脂、ポリスルホン樹脂、ポリ乳酸樹脂、ポリグルタミン酸樹脂、ポリカプロラクトン樹脂、ポリエーテルスルホン樹脂、ポリアクリロニトリル樹脂、スチレン−アクリロニトリル共重合体樹脂、ポリアセタール樹脂等が挙げられる。これらの熱可塑性樹脂は一種単独で使用してもよいし、二種以上組み合わせて使用してもよい。
(Thermoplastic resin (P1))
Although it does not specifically limit as a thermoplastic resin (P1), For example, (meth) acrylic-type resin, such as polyolefin resin and poly (meth) acrylic acid methyl resin, polystyrene resin, polyvinyl alcohol-polyvinyl chloride copolymer resin, Aromatic polyethers such as polyvinyl acetal resin, polyvinyl butyral resin, polyvinyl formal resin, polymethylpentene resin, maleic anhydride-styrene copolymer resin, polycarbonate resin, polyphenylene ether resin, polyether ether ketone resin, polyether ketone resin Ketone, polyester resin, polyamide resin, polyamideimide resin, polyimide resin, polyetherimide resin, styrene elastomer, polyolefin elastomer, polyurethane elastomer, poly Steal elastomer, polyamide elastomer, ionomer, aminopolyacrylamide resin, isobutylene maleic anhydride copolymer, ABS, ACS, AES, AS, ASA, MBS, ethylene-vinyl chloride copolymer, ethylene-vinyl acetate copolymer, ethylene-vinyl acetate Vinyl chloride graft polymer, ethylene-vinyl alcohol copolymer, chlorinated polyvinyl chloride resin, chlorinated polyethylene resin, chlorinated polypropylene resin, carboxyvinyl polymer, ketone resin, amorphous copolyester resin, norbornene resin, fluoroplastic, polytetra Fluoroethylene resin, fluorinated ethylene polypropylene resin, PFA, polychlorofluoroethylene resin, ethylenetetrafluoroethylene copolymer, polyfluoride Vinylidene resin, polyvinyl fluoride resin, tetrafluoroethylene-perfluoroalkyl vinyl ether resin, polyarylate resin, thermoplastic polyimide resin, polyvinylidene chloride resin, polyvinyl chloride resin, polyvinyl acetate resin, polysulfone resin, polyparamethylstyrene resin , Polyallylamine resin, polyvinyl ether resin, polyphenylene oxide resin, polyphenylene sulfide (PPS) resin, polymethylpentene resin, oligoester acrylate, xylene resin, maleic acid resin, polyhydroxybutyrate resin, polysulfone resin, polylactic acid resin, poly Glutamic acid resin, polycaprolactone resin, polyethersulfone resin, polyacrylonitrile resin, styrene-acrylonitrile copolymer resin, polyaceter Resin. These thermoplastic resins may be used individually by 1 type, and may be used in combination of 2 or more types.

これらの中でも、熱可塑性樹脂(P1)としては、表面粗化金属部材103と熱可塑性樹脂部材105との接合強度向上効果をより効果的に得ることができる観点から、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリフェニレンサルファイド樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリイミド樹脂、ポリエーテルスルホン樹脂、ポリスチレン樹脂、ポリアクリロニトリル樹脂、スチレン−アクリロニトリル共重合体樹脂、アクリロニトリル−ブタジエン−スチレン共重合体樹脂、(メタ)アクリル系樹脂、およびポリアセタール樹脂から選択される一種または二種以上の熱可塑性樹脂が好適に用いられる。   Among these, as the thermoplastic resin (P1), from the viewpoint that the effect of improving the bonding strength between the surface roughened metal member 103 and the thermoplastic resin member 105 can be obtained more effectively, a polyolefin resin or a polyester resin. , Polyamide resin, polyphenylene sulfide resin, polycarbonate resin, polyether ether ketone resin, polyether ketone resin, polyimide resin, polyether sulfone resin, polystyrene resin, polyacrylonitrile resin, styrene-acrylonitrile copolymer resin, acrylonitrile-butadiene- One or two or more thermoplastic resins selected from styrene copolymer resins, (meth) acrylic resins, and polyacetal resins are preferably used.

上記ポリオレフィン系樹脂は、オレフィンを重合して得られる重合体を特に限定なく使用することができる。
上記ポリオレフィン系樹脂を構成するオレフィンとしては、例えば、エチレン、α−オレフィン、環状オレフィン等が挙げられる。
As the polyolefin-based resin, a polymer obtained by polymerizing olefin can be used without any particular limitation.
Examples of the olefin constituting the polyolefin-based resin include ethylene, α-olefin, and cyclic olefin.

上記α−オレフィンとしては、炭素原子数3〜30、好ましくは炭素原子数3〜20の直鎖状または分岐状のα−オレフィンが挙げられる。より具体的には、プロピレン、1−ブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセン等が挙げられる。   Examples of the α-olefin include linear or branched α-olefins having 3 to 30 carbon atoms, preferably 3 to 20 carbon atoms. More specifically, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-octene, 1-octene, Decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene and the like can be mentioned.

上記環状オレフィンとしては、炭素原子数3〜30の環状オレフィンが挙げられ、好ましくは炭素原子数3〜20である。より具体的には、シクロペンテン、シクロヘプテン、ノルボルネン、5−メチル−2−ノルボルネン、テトラシクロドデセン、2−メチル−1,4,5,8−ジメタノ−1,2,3,4,4a,5,8,8a−オクタヒドロナフタレン等が挙げられる。   As said cyclic olefin, a C3-C30 cyclic olefin is mentioned, Preferably it is C3-C20. More specifically, cyclopentene, cycloheptene, norbornene, 5-methyl-2-norbornene, tetracyclododecene, 2-methyl-1,4,5,8-dimethano-1,2,3,4,4a, 5 , 8,8a-octahydronaphthalene and the like.

上記ポリオレフィン系樹脂を構成するオレフィンとして好ましくは、エチレン、プロピレン、1−ブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン等が挙げられる。これらのうち、より好ましくは、エチレン、プロピレン、1−ブテン、1−ヘキセン、4−メチル−1−ペンテンであり、さらに好ましくはエチレンまたはプロピレンである。   As the olefin constituting the polyolefin resin, ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1- Examples include pentene. Of these, ethylene, propylene, 1-butene, 1-hexene and 4-methyl-1-pentene are more preferable, and ethylene or propylene is more preferable.

上記ポリオレフィン系樹脂は、上述したオレフィンを一種単独で重合して得られたもの、または二種以上を組み合わせてランダム共重合、ブロック共重合、グラフト共重合して得られたものであってもよい。   The polyolefin resin may be obtained by polymerizing the above-mentioned olefin alone, or may be obtained by random copolymerization, block copolymerization, or graft copolymerization in combination of two or more. .

また、上記ポリオレフィン系樹脂としては、直鎖状のものであっても、分岐構造を導入したものであってもよい。   The polyolefin resin may be a linear resin or a resin having a branched structure.

上記ポリエステル系樹脂としては、例えば、ポリ乳酸、ポリグルコール酸、ポリカプロラクトン、ポリエチレンサクシネート等の脂肪族ポリエステル、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート(PBT)、ポリシクロヘキシレンジメチレンテレフタレート(PCT)等が挙げられる。   Examples of the polyester resin include aliphatic polyesters such as polylactic acid, polyglycolic acid, polycaprolactone, and polyethylene succinate, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate (PBT), and polycyclohexylenedimethylene terephthalate (PCT). ) And the like.

上記ポリアミド系樹脂としては、例えば、PA6、PA12等の開環重合系脂肪族ポリアミド;PA66、PA46、PA610、PA612、PA11等の重縮合系ポリアミド;MXD6、PA6T、PA9T、PA6T/66、PA6T/6、アモルファスPA等の半芳香族ポリアミド;ポリ(p−フェニレンテレフタルアミド)、ポリ(m−フェニレンテレフタルアミド)、ポリ(m−フェニレンイソフタルアミド)等の全芳香族ポリアミド、アミド系エラストマー等が挙げられる。   Examples of the polyamide resins include ring-opening polymerization aliphatic polyamides such as PA6 and PA12; polycondensation polyamides such as PA66, PA46, PA610, PA612, and PA11; MXD6, PA6T, PA9T, PA6T / 66, PA6T / 6. Semi-aromatic polyamides such as amorphous PA; polyaromatic polyamides such as poly (p-phenylene terephthalamide), poly (m-phenylene terephthalamide), poly (m-phenylene isophthalamide), amide elastomers, etc. It is done.

(充填材(B))
樹脂組成物(P2)は、表面粗化金属部材103と熱可塑性樹脂部材105との線膨張係数差の調整や熱可塑性樹脂部材105の機械的強度の向上、ヒートサイクル特性の向上等の観点から、充填材(B)をさらに含んでもよい。
(Filler (B))
The resin composition (P2) is used from the viewpoints of adjusting the difference in coefficient of linear expansion between the surface roughened metal member 103 and the thermoplastic resin member 105, improving the mechanical strength of the thermoplastic resin member 105, and improving heat cycle characteristics. The filler (B) may further be included.

充填材(B)としては、例えば、ガラス繊維、炭素繊維、金属繊維、アラミド繊維等の有機繊維、炭素粒子、粘土、タルク、シリカ、ミネラル、炭酸カルシウム、炭酸マグネシウム、セルロース繊維からなる群から一種または二種以上を選ぶことができる。これらのうち、好ましくは、ガラス繊維、炭素繊維、タルク、ミネラルから選択される一種または二種以上である。   As the filler (B), for example, organic fibers such as glass fibers, carbon fibers, metal fibers, and aramid fibers, carbon particles, clay, talc, silica, minerals, calcium carbonate, magnesium carbonate, and cellulose fibers are used. Or you can choose two or more. Among these, Preferably, they are 1 type, or 2 or more types selected from glass fiber, carbon fiber, talc, and a mineral.

充填材(B)の形状は特に限定されず、繊維状、粒子状、板状等どのような形状であってもよい。   The shape of the filler (B) is not particularly limited, and may be any shape such as a fiber shape, a particle shape, or a plate shape.

熱可塑性樹脂部材105が充填材(B)を含む場合、その含有量は、熱可塑性樹脂部材105全体を100質量%としたとき、通常5質量%以上95質量%以下、好ましくは10質量%以上90質量%以下、より好ましくは20質量%以上80質量%以下である。   When the thermoplastic resin member 105 contains the filler (B), the content is usually 5% by mass or more and 95% by mass or less, preferably 10% by mass or more when the entire thermoplastic resin member 105 is 100% by mass. It is 90 mass% or less, More preferably, it is 20 mass% or more and 80 mass% or less.

充填材(B)は、熱可塑性樹脂部材105の剛性を高める効果の他、熱可塑性樹脂部材105の線膨張係数を制御できる効果がある。特に、本実施形態の表面粗化金属部材103と熱可塑性樹脂部材105との複合体の場合は、表面粗化金属部材103と熱可塑性樹脂部材105とで形状安定性の温度依存性が大きく異なることが多いので、大きな温度変化が起こると複合体に歪みが掛かりやすい。熱可塑性樹脂部材105が上記充填材(B)を含有することにより、この歪みを低減することができる。また、上記充填材(B)の含有量が上記範囲内であることにより、靱性の低減を抑制することができる。   The filler (B) has an effect of controlling the linear expansion coefficient of the thermoplastic resin member 105 in addition to the effect of increasing the rigidity of the thermoplastic resin member 105. In particular, in the case of the composite of the surface roughened metal member 103 and the thermoplastic resin member 105 of the present embodiment, the temperature dependence of the shape stability differs greatly between the surface roughened metal member 103 and the thermoplastic resin member 105. In many cases, the composite is likely to be distorted when a large temperature change occurs. When the thermoplastic resin member 105 contains the filler (B), this distortion can be reduced. Moreover, when content of the said filler (B) exists in the said range, reduction of toughness can be suppressed.

本実施形態において、充填材(B)は繊維状充填材であることが好ましく、ガラス繊維および炭素繊維であることがより好ましく、ガラス繊維であることが特に好ましい。
これにより、成形後の熱可塑性樹脂部材105の収縮を抑制することができるため、表面粗化金属部材103と熱可塑性樹脂部材105との接合をより強固なものとすることができる。
In the present embodiment, the filler (B) is preferably a fibrous filler, more preferably glass fiber and carbon fiber, and particularly preferably glass fiber.
Thereby, since shrinkage | contraction of the thermoplastic resin member 105 after shaping | molding can be suppressed, joining of the surface roughening metal member 103 and the thermoplastic resin member 105 can be made stronger.

(その他の配合剤)
樹脂組成物(P2)には、個々の機能を付与する目的でその他の配合剤を含んでもよい。
上記配合剤としては、熱安定剤、酸化防止剤、顔料、耐候剤、難燃剤、可塑剤、分散剤、滑剤、離型剤、帯電防止剤、耐衝撃性改質剤等が挙げられる。
(Other ingredients)
The resin composition (P2) may contain other compounding agents for the purpose of imparting individual functions.
Examples of the compounding agents include heat stabilizers, antioxidants, pigments, weathering agents, flame retardants, plasticizers, dispersants, lubricants, mold release agents, antistatic agents, and impact modifiers.

(樹脂組成物(P2)の製造方法)
樹脂組成物(P2)の製造方法は特に限定されず、一般的に公知の方法により製造することができる。例えば、以下の方法が挙げられる。まず、上記熱可塑性樹脂(P1)と、必要に応じて上記充填材(B)と、さらに必要に応じて上記その他の配合剤とを、バンバリーミキサー、単軸押出機、2軸押出機、高速2軸押出機等の混合装置を用いて、混合または溶融混合することにより、樹脂組成物(P2)が得られる。
(Production method of resin composition (P2))
The manufacturing method of a resin composition (P2) is not specifically limited, Generally, it can manufacture by a well-known method. For example, the following method is mentioned. First, the thermoplastic resin (P1), the filler (B) as necessary, and the other compounding agents as needed, a Banbury mixer, a single screw extruder, a twin screw extruder, a high speed The resin composition (P2) is obtained by mixing or melt-mixing using a mixing device such as a twin-screw extruder.

[表面粗化金属部材の製造方法]
次に、表面粗化金属部材103の製造方法について説明する。
以下、表面粗化金属部材103の製造方法の一例を示す。ただし、本実施形態に係る表面粗化金属部材103の製造方法は、以下の例に限定されない。
[Production Method of Surface Roughened Metal Member]
Next, a method for manufacturing the surface roughened metal member 103 will be described.
Hereinafter, an example of the manufacturing method of the surface roughening metal member 103 is shown. However, the manufacturing method of the surface roughening metal member 103 which concerns on this embodiment is not limited to the following examples.

本実施形態に係る表面粗化金属部材103の製造方法は、熱可塑性樹脂(P1)または熱可塑性樹脂(P1)を含む樹脂組成物(P2)により構成された熱可塑性樹脂部材105との接合のために用いられる表面粗化金属部材103を製造するための製造方法であって、少なくとも金属部材の熱可塑性樹脂部材105との接合部表面104を、分子内に窒素原子を有する化合物(A)を含有する粗化処理水溶液(Z)により粗化する工程(1)と、工程(1)の後に、少なくとも金属部材の接合部表面104を温水に接触させる工程(2)と、を含む。   The method of manufacturing the surface roughened metal member 103 according to the present embodiment includes joining the thermoplastic resin member 105 composed of the thermoplastic resin (P1) or the resin composition (P2) containing the thermoplastic resin (P1). It is a manufacturing method for manufacturing the surface roughening metal member 103 used for this, Comprising: The compound (A) which has a nitrogen atom in a molecule | numerator at least in the junction surface 104 with the thermoplastic resin member 105 of a metal member. Step (1) for roughening with the aqueous solution for roughening treatment (Z) contained, and Step (2) for bringing at least the joint surface 104 of the metal member into contact with warm water after Step (1) are included.

表面粗化金属部材103を構成する金属材料は特に限定されないが、例えば、鉄、鉄鋼材、ステンレス、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、銅、銅合金、亜鉛、亜鉛合金、スズ、スズ合金、チタンおよびチタン合金等を挙げることができる。これらの中でも、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、亜鉛、亜鉛合金、スズおよびスズ合金等が好ましい。これらは単独で使用してもよいし、二種以上組み合わせて使用してもよい。
これらの中でも、軽量かつ高強度の点から、アルミニウム(アルミニウム単体)およびアルミニウム合金が好ましく、アルミニウム合金がより好ましい。
アルミニウム合金としては、JIS H4000に規定された合金番号1050、1100、2014、2024、3003、5052、6061、6063、7075等の展伸用合金、AC5A、AC4C等の鋳物用合金、ADC12等のダイカスト用合金が好ましく用いられる。
Although the metal material which comprises the surface roughening metal member 103 is not specifically limited, For example, iron, steel materials, stainless steel, aluminum, aluminum alloy, magnesium, magnesium alloy, copper, copper alloy, zinc, zinc alloy, tin, tin alloy And titanium and titanium alloys. Among these, aluminum, aluminum alloy, magnesium, magnesium alloy, zinc, zinc alloy, tin and tin alloy are preferable. These may be used alone or in combination of two or more.
Among these, aluminum (aluminum simple substance) and aluminum alloy are preferable from the viewpoint of light weight and high strength, and aluminum alloy is more preferable.
Examples of the aluminum alloy include alloy alloys 1050, 1100, 2014, 2024, 3003, 5052, 6061, 6063, and 7075 as defined in JIS H4000, casting alloys such as AC5A and AC4C, and die castings such as ADC12. Alloys are preferably used.

表面粗化金属部材103の形状は、熱可塑性樹脂部材105と接合できる形状であれば特に限定されず、例えば、平板状、曲板状、棒状、筒状、塊状等とすることができる。また、これらの組み合わせからなる構造体であってもよい。
また、熱可塑性樹脂部材105と接合する接合部表面104の形状は、特に限定されないが、平面、曲面等が挙げられる。
The shape of the surface roughened metal member 103 is not particularly limited as long as it can be joined to the thermoplastic resin member 105. For example, the surface roughened metal member 103 can have a flat plate shape, a curved plate shape, a rod shape, a cylindrical shape, a lump shape, or the like. Moreover, the structure which consists of these combination may be sufficient.
Further, the shape of the joint surface 104 to be joined to the thermoplastic resin member 105 is not particularly limited, and examples thereof include a flat surface and a curved surface.

表面粗化金属部材103は、金属材料を切断、プレス等による塑性加工、打ち抜き加工、切削、研磨、放電加工等の除肉加工によって上述した所定の形状に加工された後に、後述する粗化処理がなされたものが好ましい。要するに、種々の加工法により、必要な形状に加工されたものを用いることが好ましい。   The surface roughened metal member 103 is processed into a predetermined shape as described above by metal removal such as cutting, plastic working with a press, punching, cutting, polishing, electric discharge machining, etc. Those made of are preferred. In short, it is preferable to use a material processed into a necessary shape by various processing methods.

(0)前処理工程
まず、後述する粗化処理水溶液(Z)により粗化する工程(1)の前に、少なくとも金属部材の接合部表面に対して前処理をおこない、金属部材の表面に付着した油脂や、酸化被膜を除去することが好ましい。
このような前処理としては、例えば、ブラスト処理やローレット加工等の物理的処理;レーザースキャニング加工等のレーザー処理;侵食性水溶液または侵食性懸濁液による洗浄処理等が挙げられる。これらの方法の中でも、侵食性水溶液として酸性水溶液および/または塩基性水溶液を用いる洗浄処理が好んで採用される。
(0) Pretreatment step First, before the step (1) of roughening with a roughening aqueous solution (Z) to be described later, at least the surface of the joint portion of the metal member is pretreated and adhered to the surface of the metal member. It is preferable to remove the oil and fat and the oxide film.
Examples of such pretreatment include physical treatment such as blast treatment and knurling; laser treatment such as laser scanning; cleaning treatment with an erodible aqueous solution or an erodible suspension. Among these methods, a washing treatment using an acidic aqueous solution and / or a basic aqueous solution as the erodible aqueous solution is preferably employed.

酸性水溶液および/または塩基性水溶液による洗浄処理は、例えば、以下の手順でおこなうことができる。
まず、金属部材を市販の金属部材用脱脂剤の水溶液に、例えば、30〜80℃で1〜10分間浸漬し、その後、金属部材を水洗する。
つづいて、濃度が0.1〜5質量%の酸性水溶液に金属部材を、例えば、30〜80℃で0.1〜10分間浸漬し、その後、金属部材を水洗する。酸性水溶液を使用する目的は主に酸化被膜の除去である。この目的に合う酸性水溶液であれば特に限定されず、例えば、塩酸、硫酸、酢酸、炭酸等が挙げられる。
次いで、濃度が0.1〜3質量%の塩基性水溶液に金属部材を、例えば、30〜80℃で1〜10分間浸漬し、その後、金属部材を水洗する。塩基性水溶液に使う塩基としては、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ金属類の水酸化物、これらが含まれた安価な材料であるソーダ灰(NaCO、無水炭酸ナトリウム)等が挙げられる。また、水酸化アルカリ土類金属(Ca、Sr、Ba、Ra)類も使用できる。塩基性水溶液に浸漬することにより、金属部材の表面は水素を放ちつつイオンになって溶解し、金属部材の表面は微細なエッチング面になる。
次いで、濃度が0.1〜5質量%の酸性水溶液に金属部材を、例えば、30〜80℃で0.1〜10分間浸漬し、その後、金属部材を水洗する。酸性水溶液を使用する目的はスマット除去ならびに中和である。塩基が金属部材表面に残存すると、本工程に続く粗化処理工程における処理液のpH調整が煩雑になる場合があるので中和が必要となる。また、金属部材内に固溶していた金属が塩基性水溶液の前工程では完全溶解せずに表面近傍に水酸化物その他の組成物となって存在している場合、酸性水溶液に浸漬することでこれらを取り除くこともできる。この目的に合う酸性水溶液であれば特に限定されず、例えば、硝酸、塩酸、硫酸、フッ化水素酸等が挙げられる。
The washing treatment with the acidic aqueous solution and / or the basic aqueous solution can be performed, for example, by the following procedure.
First, a metal member is immersed in a commercially available aqueous solution of a degreasing agent for metal members, for example, at 30 to 80 ° C. for 1 to 10 minutes, and then the metal member is washed with water.
Subsequently, the metal member is immersed in an acidic aqueous solution having a concentration of 0.1 to 5% by mass, for example, at 30 to 80 ° C. for 0.1 to 10 minutes, and then the metal member is washed with water. The purpose of using the acidic aqueous solution is mainly to remove the oxide film. The aqueous solution is not particularly limited as long as it is an acidic aqueous solution suitable for this purpose.
Next, the metal member is immersed in a basic aqueous solution having a concentration of 0.1 to 3% by mass, for example, at 30 to 80 ° C. for 1 to 10 minutes, and then the metal member is washed with water. Bases used in the basic aqueous solution include hydroxides of alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and soda ash (Na 2 CO 3 , anhydrous sodium carbonate) which is an inexpensive material containing these hydroxides. Etc. Further, alkaline earth metal hydroxides (Ca, Sr, Ba, Ra) can also be used. By immersing in the basic aqueous solution, the surface of the metal member dissolves as ions while releasing hydrogen, and the surface of the metal member becomes a fine etched surface.
Next, the metal member is immersed in an acidic aqueous solution having a concentration of 0.1 to 5% by mass, for example, at 30 to 80 ° C. for 0.1 to 10 minutes, and then the metal member is washed with water. The purpose of using an acidic aqueous solution is for smut removal and neutralization. If the base remains on the surface of the metal member, the pH adjustment of the treatment liquid in the roughening treatment step subsequent to this step may be complicated, and thus neutralization is necessary. Also, if the metal dissolved in the metal member is not completely dissolved in the previous step of the basic aqueous solution and is present in the vicinity of the surface as a hydroxide or other composition, it should be immersed in an acidic aqueous solution. You can also remove them. There is no particular limitation as long as it is an acidic aqueous solution suitable for this purpose, and examples thereof include nitric acid, hydrochloric acid, sulfuric acid, and hydrofluoric acid.

(1)粗化処理水溶液(Z)により粗化する工程
本実施形態においては、粗化処理は後述する粗化処理水溶液(Z)によって行われる。本実施形態における粗化処理水溶液(Z)とは、金属部材の浸漬を全く受けていないフレッシュな粗化処理水溶液(後述の説明ではバージン液と呼称する場合がある)のみならず、金属部材の浸漬処理を受けた後の水溶液(後述の説明では回収液と呼称する場合がある)をも指す用語として定義される。
(1) Roughening process with roughening aqueous solution (Z) In this embodiment, a roughening process is performed by the roughening aqueous solution (Z) mentioned later. The roughening treatment aqueous solution (Z) in this embodiment is not only a fresh roughening treatment aqueous solution (which may be referred to as virgin liquid in the following description) that has not been immersed in the metal member, but also a metal member. It is defined as a term that also refers to an aqueous solution after being subjected to an immersion treatment (sometimes referred to as a recovered solution in the following description).

粗化処理工程(1)では、少なくとも金属部材の熱可塑性樹脂部材105との接合部表面104に、例えば、分子内に窒素原子を有する化合物(A)を含有する粗化処理水溶液(Z)を接触させることにより、接合部表面104の粗化処理をおこなう。
本実施形態においては、粗化処理水溶液(Z)のpH値は、バージン液では高い値を示し、粗化処理を繰り返して金属部材の浸漬回数の多い回収液ほどpH値が漸減する傾向を示す。
粗化処理水溶液(Z)の25℃における水素イオン濃度指数(pH)は、表面粗化金属部材103と熱可塑性樹脂部材105との接合強度をより向上させる観点から、9.0以上11.0以下の範囲が好ましく、9.2以上10.9以下の範囲がより好ましい。
In the roughening treatment step (1), a roughening aqueous solution (Z) containing, for example, a compound (A) having a nitrogen atom in the molecule is applied to at least the joint surface 104 of the metal member with the thermoplastic resin member 105. By bringing them into contact with each other, the surface of the joint 104 is roughened.
In the present embodiment, the pH value of the aqueous solution for roughening treatment (Z) shows a high value in the virgin solution, and the pH value tends to gradually decrease as the recovered liquid has a large number of immersions of the metal member by repeating the roughening treatment. .
The hydrogen ion concentration index (pH) at 25 ° C. of the roughened aqueous solution (Z) is 9.0 or more and 11.0 from the viewpoint of further improving the bonding strength between the surface roughened metal member 103 and the thermoplastic resin member 105. The following range is preferable, and the range of 9.2 to 10.9 is more preferable.

また、金属部材表面をより均一に粗化できる観点から、粗化処理水溶液(Z)中の分子内に窒素原子を有する化合物(A)の含有量は、0.01質量%以上20質量%以下が好ましく、0.1質量%以上12質量%以下がより好ましく、0.5質量%以上7質量%以下がさらに好ましく、1質量%以上6質量%以下がさらにより好ましい。
上記分子内に窒素原子を有する化合物(A)の含有量が上記下限値以上であれば、金属部材の粗化速度(溶解速度)の低下を防ぐことができる。一方、上記分子内に窒素原子を有する化合物(A)の含有量が上記上限値以下であれば、粗化速度をより適正に維持することができるため、表面粗化金属部材103と熱可塑性樹脂部材105との間の接合強度向上により適した均一な粗化が可能になる。
Further, from the viewpoint of more uniformly roughening the surface of the metal member, the content of the compound (A) having a nitrogen atom in the molecule in the roughening aqueous solution (Z) is 0.01% by mass or more and 20% by mass or less. Is preferable, 0.1 mass% or more and 12 mass% or less is more preferable, 0.5 mass% or more and 7 mass% or less is further more preferable, and 1 mass% or more and 6 mass% or less is further more preferable.
If content of the compound (A) which has a nitrogen atom in the said molecule | numerator is more than the said lower limit, the fall of the roughening rate (dissolution rate) of a metal member can be prevented. On the other hand, if the content of the compound (A) having a nitrogen atom in the molecule is not more than the above upper limit value, the roughening rate can be more appropriately maintained, so that the surface roughened metal member 103 and the thermoplastic resin can be maintained. A suitable uniform roughening can be achieved by improving the bonding strength with the member 105.

上記粗化処理水溶液(Z)を用いて粗化処理する方法としては、浸漬、スプレー等による処理方法が挙げられる。金属部材表面をより均一に粗化できる観点から、処理温度は、粗化処理水溶液(Z)のpH値および粗化処理時間にもよるが、通常20〜80℃である。この際の処理時間は通常、1〜15分間、好ましくは2〜10分間程度である。
本実施形態においては、粗化処理水溶液(Z)のpHが低い、すなわち粗化処理水溶液(Z)中の上記分子内に窒素原子を有する化合物(A)の濃度が低い場合は、処理温度を高めるか処理時間を延ばす等の方法がとられ、逆に水溶液(Z)のpHが高い、すなわち化合物(A)の濃度が高い場合には処理温度を低くする、処理時間を短くする等の方法が採用される。
Examples of the method for roughening using the aqueous solution for roughening treatment (Z) include treatment methods such as immersion and spraying. From the viewpoint of more uniformly roughening the surface of the metal member, the treatment temperature is usually 20 to 80 ° C., although it depends on the pH value of the roughening aqueous solution (Z) and the roughening treatment time. The treatment time at this time is usually about 1 to 15 minutes, preferably about 2 to 10 minutes.
In this embodiment, when the pH of the roughening aqueous solution (Z) is low, that is, when the concentration of the compound (A) having a nitrogen atom in the molecule in the roughening aqueous solution (Z) is low, the processing temperature is A method such as increasing the treatment time or extending the treatment time is taken. Conversely, when the pH of the aqueous solution (Z) is high, that is, when the concentration of the compound (A) is high, the treatment temperature is lowered or the treatment time is shortened. Is adopted.

上記粗化処理水溶液(Z)を用いた粗化処理によって、金属部材の表面が微細凹凸構造に粗化される。
なお、本実施形態では、上記粗化処理水溶液(Z)を用いて金属部材を粗化処理する際、金属部材表面の全面を粗化処理してもよく、熱可塑性樹脂部材105が接合される面だけを部分的に粗化処理してもよい。
By the roughening treatment using the roughening treatment aqueous solution (Z), the surface of the metal member is roughened into a fine concavo-convex structure.
In the present embodiment, when the metal member is roughened using the roughening aqueous solution (Z), the entire surface of the metal member may be roughened, and the thermoplastic resin member 105 is bonded. Only the surface may be partially roughened.

(分子内に窒素原子を有する化合物(A))
以下、本実施形態で使用できる分子内に窒素原子を有する化合物(A)について説明する。
上記分子内に窒素原子を有する化合物(A)としては、熱可塑性樹脂部材105との接合強度により優れた接合部表面104を形成できる観点から、ヒドラジン、分子内に酸素官能基を有するアミン(A1)、アンモニウム塩(A2)およびアミン塩(A3)から選択される一種または二種以上を含むことが好ましく、安全性に優れ、かつ、熱可塑性樹脂部材105との接合強度により優れた接合部表面104を形成できる観点から、分子内に酸素官能基を有するアミン(A1)、アンモニウム塩(A2)およびアミン塩(A3)から選択される一種または二種以上を含むことが好ましい。
(Compound having a nitrogen atom in the molecule (A))
Hereinafter, the compound (A) having a nitrogen atom in the molecule that can be used in the present embodiment will be described.
As the compound (A) having a nitrogen atom in the molecule, hydrazine and an amine having an oxygen functional group in the molecule (A1) can be formed from the viewpoint of forming a bonding surface 104 that is superior in bonding strength with the thermoplastic resin member 105. ), An ammonium salt (A2) and an amine salt (A3), preferably one or two or more kinds selected from the above, excellent in safety, and excellent in bonding strength with the thermoplastic resin member 105 From the viewpoint of forming 104, it is preferable to include one or more selected from amine (A1), ammonium salt (A2) and amine salt (A3) having an oxygen functional group in the molecule.

・酸素官能基を有するアミン(A1)
上記酸素官能基を有するアミン(A1)は、エーテル基や水酸基、エステル基、カルボキシル基等の酸素官能基を有するアミン(A1)であれば特に限定されないが、安全性に優れ、かつ、熱可塑性樹脂部材105との接合強度により優れた接合部表面104を形成できる観点から、下記式(1)により示されるモルホリン系化合物および下記式(2)により示されるアルカノールアミン系化合物等から選択される少なくとも一種を含むことが好ましい。また、表面粗化金属部材103と熱可塑性樹脂部材105との間の接合強度向上により適した均一な粗化が可能になり、接合強度のバラツキが少ない金属/樹脂複合構造体106を得ることができる観点から、下記式(2)により示されるアルカノールアミン系化合物が特に好ましい。
・ Amine having oxygen functional group (A1)
The amine (A1) having an oxygen functional group is not particularly limited as long as it is an amine (A1) having an oxygen functional group such as an ether group, a hydroxyl group, an ester group, or a carboxyl group, but is excellent in safety and thermoplastic. From the viewpoint of being able to form a bonding portion surface 104 that is superior in bonding strength with the resin member 105, at least selected from a morpholine compound represented by the following formula (1) and an alkanolamine compound represented by the following formula (2). It is preferable to include one kind. Further, it is possible to obtain a uniform roughening suitable for improving the bonding strength between the surface roughened metal member 103 and the thermoplastic resin member 105, and to obtain the metal / resin composite structure 106 with less variation in the bonding strength. From the viewpoint of being possible, an alkanolamine compound represented by the following formula (2) is particularly preferable.

Figure 2017218614
(式(1)中、Rは水素原子または炭素数1以上10以下の炭化水素基である)
Figure 2017218614
(式(2)中、R〜Rは、それぞれ独立して水素原子、アルキル基、または1つのヒドロキシ基を有する脂肪族飽和炭化水素基であり、R〜Rの少なくとも1つが、1つのヒドロキシ基を有する脂肪族飽和炭化水素基である)
Figure 2017218614
(In the formula (1), R is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms)
Figure 2017218614
(In formula (2), R 1 to R 3 are each independently a hydrogen atom, an alkyl group, or an aliphatic saturated hydrocarbon group having one hydroxy group, and at least one of R 1 to R 3 is (It is an aliphatic saturated hydrocarbon group having one hydroxy group)

上記式(1)により示されるモルホリン系化合物としては、例えば、モルホリン、N−メチルモルホリン、N−エチルモルホリン、N−n−プロピルモルホリン、N−イソプロピルモルホリン、N−n−ブチルモルホリン、N−sec−ブチルモルホリン、N−tert−ブチルモルホリン等が挙げられる。これらの中でも、安全性および入手容易性により優れる観点から、N−エチルモルホリン、N−メチルモルホリンおよびN−n−プロピルモルホリンから選択される少なくとも一種を含むことが好ましい。   Examples of the morpholine compound represented by the above formula (1) include morpholine, N-methylmorpholine, N-ethylmorpholine, Nn-propylmorpholine, N-isopropylmorpholine, Nn-butylmorpholine, N-sec. -Butyl morpholine, N-tert-butyl morpholine, etc. are mentioned. Among these, it is preferable to include at least one selected from N-ethylmorpholine, N-methylmorpholine, and Nn-propylmorpholine from the viewpoint of superior safety and availability.

上記式(2)により示されるアルカノールアミン系化合物としては、例えば、トリエタノールアミン、プロパノールアミン、イソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、ブタノールアミン、N−メチルエタノールアミン、N−メチルジエタノールアミン、N,N−ジメチルエタノールアミン、N−エチルエタノールアミン、N−エチルジエタノールアミン、N,N−ジエチルエタノールアミン、N−n−ブチルエタノールアミン、N−n−ブチルジエタノールアミン、2−(2−アミノエトキシ)エタノール等が挙げられる。
これらの中でも、表面粗化金属部材103と熱可塑性樹脂部材105との間の接合強度向上により適した均一な粗化が可能になるとともに、安全性および入手容易性にも優れる観点から、トリエタノールアミンおよびN,N−ジエチルエタノールアミンから選ばれる1種以上を含むことが好ましい。
Examples of the alkanolamine compound represented by the above formula (2) include triethanolamine, propanolamine, isopropanolamine, diisopropanolamine, triisopropanolamine, butanolamine, N-methylethanolamine, N-methyldiethanolamine, N , N-dimethylethanolamine, N-ethylethanolamine, N-ethyldiethanolamine, N, N-diethylethanolamine, Nn-butylethanolamine, Nn-butyldiethanolamine, 2- (2-aminoethoxy) ethanol Etc.
Among these, triethanol is suitable from the viewpoint of being able to perform uniform roughening more suitable for improving the bonding strength between the surface roughened metal member 103 and the thermoplastic resin member 105, and being excellent in safety and availability. It is preferable to include one or more selected from amines and N, N-diethylethanolamine.

・アンモニウム塩(A2)
上記アンモニウム塩(A2)としては、例えば、アンモニア、重炭酸アンモニウム、四ホウ酸アンモニウム、フッ化アンモニウム、臭化アンモニウム、ヨウ化アンモニウム、塩化アンモニウム、リン酸−水素二アンモニウム、リン酸二水素アンモニウム、硫酸水素アンモニウム、酒石酸アンモニウム、硫酸アンモニウム、硝酸アンモニウム、チオ硫酸アンモニウム、チオシアン酸アンモニウム、ギ酸アンモニウム、乳酸アンモニウム、酢酸アンモニウム、プロピオン酸アンモニウム、酪酸アンモニウム、ペンタン酸アンモニウム、クエン酸アンモニウム、シュウ酸アンモニウム、炭酸アンモニウム、五ホウ酸アンモニウム、亜硫酸アンモニウム、安息香酸アンモニウム、シュウ酸水素アンモニウム、クエン酸水素アンモニウム、メチル硫酸アンモニウム、テトラフルオロホウ酸アンモニウム等から選択される一種または二種以上が挙げられる。これらの中でも、安全性および入手容易性により優れる観点から、アンモニア、塩化アンモニウムおよび硝酸アンモニウムから選択される少なくとも一種を含むことが好ましい。上記アンモニウム塩(A2)は、通常アンモニアを含み、アンモニウム塩(A2)とアンモニアの比率は、後述するように混合物の25℃における水素イオン濃度指数(pH)が9.0以上11.0以下の範囲になるように適宜決められる。
・ Ammonium salt (A2)
Examples of the ammonium salt (A2) include ammonia, ammonium bicarbonate, ammonium tetraborate, ammonium fluoride, ammonium bromide, ammonium iodide, ammonium chloride, phosphoric acid-diammonium hydrogen phosphate, ammonium dihydrogen phosphate, Ammonium hydrogen sulfate, ammonium tartrate, ammonium sulfate, ammonium nitrate, ammonium thiosulfate, ammonium thiocyanate, ammonium formate, ammonium lactate, ammonium acetate, ammonium propionate, ammonium butyrate, ammonium pentanoate, ammonium citrate, ammonium oxalate, ammonium carbonate, five Ammonium borate, ammonium sulfite, ammonium benzoate, ammonium hydrogen oxalate, ammonium hydrogen citrate, methyl sulfate Moniumu, one or more selected from ammonium tetrafluoroborate, and the like. Among these, it is preferable to include at least one selected from ammonia, ammonium chloride, and ammonium nitrate from the viewpoint of superior safety and availability. The ammonium salt (A2) usually contains ammonia, and the ratio of the ammonium salt (A2) and ammonia is such that the hydrogen ion concentration index (pH) at 25 ° C. of the mixture is 9.0 or more and 11.0 or less as described later. It is determined appropriately so as to be within the range.

・アミン塩(A3)
上記アミン塩(A3)としては、例えば、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、エタノールアミン、アリルアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、アニリン、その他のアミン類等から選択される一種または二種以上の水溶性アミンの中和塩等が挙げられる。
水溶性アミンの中和塩としては、例えば、重炭酸アミン塩、四ホウ酸アミン塩、フッ化アミン塩、臭化アミン塩、ヨウ化アミン塩、塩化アミン塩、リン酸−水素二アミン塩、リン酸二水素アミン塩、硫酸水素アミン塩、酒石酸アミン塩、硫酸アミン塩、硝酸アミン塩、チオ硫酸アミン塩、チオシアン酸アミン塩、ギ酸アミン塩、乳酸アミン塩、酢酸アミン塩、プロピオン酸アミン塩、酪酸アミン塩、ペンタン酸アミン塩、クエン酸アミン塩、シュウ酸アミン塩、炭酸アミン塩、五ホウ酸アミン塩、亜硫酸アミン塩、安息香酸アミン塩、シュウ酸水素アミン塩、クエン酸水素アミン塩、メチル硫酸アミン塩、テトラフルオロホウ酸アミン塩等が挙げられる。
これらの中でも、上記アミン塩(A3)としては、安全性および入手容易性により優れる観点から、塩化アミン塩を含むことが好ましい。上記のアミン塩(A3)は、通常、対応する裸のアミンを含み、アミン塩(A3)と裸のアミンとの比率は、後述するように混合物の25℃における水素イオン濃度指数(pH)が9.0以上11.0以下の範囲になるように適宜決められる。
・ Amine salt (A3)
The amine salt (A3) is selected from, for example, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, ethanolamine, allylamine, ethanolamine, diethanolamine, triethanolamine, aniline, and other amines. And neutralized salts of one or more water-soluble amines.
Examples of neutralized salts of water-soluble amines include bicarbonate amine salts, tetraborate amine salts, fluorinated amine salts, brominated amine salts, iodinated amine salts, chlorinated amine salts, phosphoric acid-hydrogen diamine salts, Dihydrogen phosphate amine salt, hydrogen sulfate amine salt, tartrate amine salt, sulfate amine salt, nitrate nitrate salt, thiosulfate amine salt, thiocyanate amine salt, formate amine salt, lactate amine salt, acetate amine salt, propionate amine salt , Butyric acid amine salt, pentanoic acid amine salt, citric acid amine salt, oxalic acid amine salt, carbonate amine salt, pentaboric acid amine salt, sulfite amine salt, benzoic acid amine salt, hydrogen oxalate amine salt, hydrogen citrate amine salt , Methylsulfuric acid amine salt, tetrafluoroboric acid amine salt and the like.
Among these, the amine salt (A3) preferably includes an amine chloride salt from the viewpoint of superior safety and availability. The above-mentioned amine salt (A3) usually contains the corresponding naked amine, and the ratio of the amine salt (A3) to the naked amine is such that the hydrogen ion concentration index (pH) at 25 ° C. of the mixture is as described later. It is appropriately determined so as to be in the range of 9.0 to 11.0.

本実施形態の粗化処理水溶液(Z)は、上記の各成分をイオン交換水等に溶解させ、各成分の濃度や酸塩基を添加して、必要に応じて、25℃における水素イオン濃度指数(pH)を9.0以上11.0以下の範囲に調整することにより容易に調製することができる。   In the roughening aqueous solution (Z) of the present embodiment, each of the above components is dissolved in ion-exchanged water or the like, the concentration of each component or acid-base is added, and the hydrogen ion concentration index at 25 ° C. is added as necessary. It can be easily prepared by adjusting (pH) to a range of 9.0 or more and 11.0 or less.

(2)温水処理工程
つづいて、工程(1)の粗化処理をおこなった金属部材の少なくとも接合部表面104に対して温水を接触させることにより、接合部表面104の温水処理をおこなう。
温水処理における温水の温度は特に限定されないが、40℃以上90℃以下であることが好ましく、50℃以上90℃以下がより好ましく、60℃以上90℃以下がさらに好ましい。この際の処理時間は通常、5秒〜30分間、好ましくは10秒〜15分間程度である。
(2) Hot water treatment process Subsequently, the hot water treatment of the joint surface 104 is performed by bringing warm water into contact with at least the joint surface 104 of the metal member subjected to the roughening treatment in the step (1).
The temperature of the hot water in the hot water treatment is not particularly limited, but is preferably 40 ° C or higher and 90 ° C or lower, more preferably 50 ° C or higher and 90 ° C or lower, and further preferably 60 ° C or higher and 90 ° C or lower. The treatment time at this time is usually about 5 seconds to 30 minutes, preferably about 10 seconds to 15 minutes.

温水処理に使用する温水は、イオン交換水、純水、または蒸留水であることが好ましい。このような水は溶解しているイオンの量が少ないため、良質な水酸基含有皮膜を形成することができる。   The warm water used for the warm water treatment is preferably ion exchange water, pure water, or distilled water. Since such water has a small amount of dissolved ions, a high-quality hydroxyl-containing film can be formed.

温水処理する方法としては、温水中への浸漬や温水のスプレー、水蒸気の噴霧等による処理方法が挙げられる。
このような温水処理により、金属の表面に5nm〜100nm程度の厚さの微多孔質の水酸基含有皮膜が形成される。温水の温度が高いほど処理時間を短くし、温水の温度が低いほど処理時間を長くして、所望の膜厚が得られるように調整することができる。
ここで、水酸基含有皮膜は、金属の表面に温水処理を施すことにより形成でき、水酸化皮膜および/または水和皮膜ということもでき、例えば、金属の水酸化物および/または水和酸化物を含む皮膜である。
Examples of the method for performing the warm water treatment include a treatment method by immersion in warm water, spray of warm water, spray of water vapor, and the like.
By such warm water treatment, a microporous hydroxyl group-containing film having a thickness of about 5 nm to 100 nm is formed on the metal surface. The treatment time can be shortened as the temperature of the warm water is higher, and the treatment time can be lengthened as the temperature of the warm water is lowered so that a desired film thickness can be obtained.
Here, the hydroxyl group-containing film can be formed by subjecting a metal surface to hot water treatment, and can also be referred to as a hydroxide film and / or a hydrated film. For example, a metal hydroxide and / or hydrated oxide can be used. It is a film containing.

この温水処理工程を実施することによって、粗化処理水溶液(Z)により粗化する工程(1)のみでは得られなかった、酸化被膜形成処理後の熱可塑性樹脂部材105との接合力を向上させることができる。   By carrying out this warm water treatment step, the bonding strength with the thermoplastic resin member 105 after the oxide film formation treatment, which was not obtained only by the step (1) of roughening with the roughening aqueous solution (Z), is improved. be able to.

本発明者らは、この理由を以下のように推測している。すなわち、温水処理工程を実施することによって、粗化処理水溶液(Z)により粗化する工程(1)で金属部材表面に生成した微細凹凸構造の表面に水酸基含有皮膜が形成される。このような水酸基含有皮膜は酸化被膜形成処理後も安定しているため、酸化被膜形成処理後の金属/樹脂複合構造体106における表面粗化金属部材103と熱可塑性樹脂部材105との接合力を向上させることができると推察される。   The present inventors presume this reason as follows. That is, by carrying out the warm water treatment step, a hydroxyl group-containing film is formed on the surface of the fine concavo-convex structure generated on the surface of the metal member in the step (1) of roughening with the roughening aqueous solution (Z). Since such a hydroxyl group-containing film is stable after the oxide film forming process, the bonding strength between the surface roughened metal member 103 and the thermoplastic resin member 105 in the metal / resin composite structure 106 after the oxide film forming process is increased. It is speculated that it can be improved.

温水処理工程(2)の後には必要に応じて乾燥が行われる。   After the hot water treatment step (2), drying is performed as necessary.

[金属/樹脂複合構造体の製造方法]
つづいて、本実施形態に係る金属/樹脂複合構造体106の製造方法について説明する。
金属/樹脂複合構造体106の製造方法は特に限定されないが、少なくとも以下の工程(A)および(B)を含むことが好ましく、必要に応じて以下の工程(C)を含む。
(A)前述した本実施形態に係る表面粗化金属部材103の製造方法により表面粗化金属部材103を作製する工程
(B)表面粗化金属部材103の接合部表面104に接するように、熱可塑性樹脂(P1)または熱可塑性樹脂(P1)を含む樹脂組成物(P2)により構成された熱可塑性樹脂部材105を成形し、表面粗化金属部材103と熱可塑性樹脂部材105を接合させる工程
(C)工程(B)の後に、得られた金属/樹脂複合構造体106を構成する金属部材の表面に酸化被膜を形成する工程
すなわち、表面粗化金属部材103に対して、熱可塑性樹脂(P1)または樹脂組成物(P2)を所望の熱可塑性樹脂部材105の形状になるように成形しながら接合させることにより、本実施形態に係る金属/樹脂複合構造体106が得られる。上記(A)の工程については、前述した本実施形態に係る表面粗化金属部材103の製造方法で述べたため、ここでは説明を省略する。
[Method for producing metal / resin composite structure]
Next, a method for manufacturing the metal / resin composite structure 106 according to this embodiment will be described.
Although the manufacturing method of the metal / resin composite structure 106 is not particularly limited, it preferably includes at least the following steps (A) and (B), and includes the following step (C) as necessary.
(A) The process of producing the surface roughening metal member 103 by the manufacturing method of the surface roughening metal member 103 which concerns on this embodiment mentioned above (B) A step of molding the thermoplastic resin member 105 made of the resin composition (P2) containing the plastic resin (P1) or the thermoplastic resin (P1), and bonding the surface roughened metal member 103 and the thermoplastic resin member 105. C) Step of forming an oxide film on the surface of the metal member constituting the obtained metal / resin composite structure 106 after the step (B). That is, the thermoplastic resin (P1) is applied to the surface roughened metal member 103. ) Or the resin composition (P2) while being molded so as to have a desired shape of the thermoplastic resin member 105, the metal / resin composite structure 106 according to the present embodiment is obtained. It is. The step (A) has been described in the method for manufacturing the roughened metal member 103 according to the above-described embodiment, and thus the description thereof is omitted here.

熱可塑性樹脂部材105の成形方法としては、射出成形、押出成形、加熱プレス成形、圧縮成形、トランスファーモールド成形、注型成形、レーザー溶着成形、反応射出成形(RIM成形)、リム成形(LIM成形)、溶射成形等の樹脂成形方法を採用できる。   The molding method of the thermoplastic resin member 105 includes injection molding, extrusion molding, heat press molding, compression molding, transfer molding, casting molding, laser welding molding, reaction injection molding (RIM molding), and rim molding (LIM molding). A resin molding method such as thermal spray molding can be employed.

また、表面粗化金属部材103に熱可塑性樹脂(P1)または樹脂組成物(P2)皮膜をコーティングした金属部材−熱可塑性樹脂皮膜からなる複合体を製造する場合は、熱可塑性樹脂(P1)または樹脂組成物(P2)を溶剤に溶解または分散させて樹脂ワニスを調製し、その樹脂ワニスを表面粗化金属部材103に塗布するコーティング法や、その他の各種塗装方法を採用できる。その他の塗装方法としては、焼き付け塗装、電着塗装、静電塗装、粉体塗装、紫外線硬化塗装等を例示できる。   Moreover, when manufacturing the composite body which consists of a metal member-thermoplastic resin film which coat | covered the thermoplastic resin (P1) or the resin composition (P2) film | membrane to the surface roughening metal member 103, a thermoplastic resin (P1) or A coating method in which the resin varnish is prepared by dissolving or dispersing the resin composition (P2) in a solvent and the resin varnish is applied to the surface roughened metal member 103, and other various coating methods can be employed. Examples of other coating methods include baking coating, electrodeposition coating, electrostatic coating, powder coating, and ultraviolet curable coating.

これらの中でも、熱可塑性樹脂部材105の成形方法としては、射出成形法が好ましく、具体的には、表面粗化金属部材103を射出成形金型のキャビティ部にインサートし、熱可塑性樹脂(P1)または樹脂組成物(P2)を金型に射出する射出成形法により製造することが好ましい。具体的には、以下の(i)〜(iii)の工程を含む方法が好ましい。
(i)熱可塑性樹脂(P1)を準備する工程、または樹脂組成物(P2)を製造する工程
(ii)表面粗化金属部材103を射出成形用の金型内に設置する工程
(iii)熱可塑性樹脂(P1)または樹脂組成物(P2)を、表面粗化金属部材103の少なくとも一部と接するように、上記金型内に射出成形し、熱可塑性樹脂部材105を成形する工程
以下、各工程について説明する。
Among these, as a molding method of the thermoplastic resin member 105, an injection molding method is preferable. Specifically, the surface-roughened metal member 103 is inserted into the cavity portion of the injection mold, and the thermoplastic resin (P1). Or it is preferable to manufacture by the injection molding method which injects a resin composition (P2) to a metal mold | die. Specifically, a method including the following steps (i) to (iii) is preferable.
(I) Step of preparing thermoplastic resin (P1) or step of manufacturing resin composition (P2) (ii) Step of placing surface roughened metal member 103 in a mold for injection molding (iii) Heat A step of injection-molding the thermoplastic resin (P1) or the resin composition (P2) into the mold so as to be in contact with at least a part of the surface roughened metal member 103, and molding the thermoplastic resin member 105. The process will be described.

(i)樹脂組成物(P2)を製造する工程については、上述の樹脂組成物(P2)の製造方法の通りである。   (I) About the process of manufacturing resin composition (P2), it is as the manufacturing method of the above-mentioned resin composition (P2).

次いで、(ii)、(iii)の工程による射出成形方法について説明する。   Next, an injection molding method according to steps (ii) and (iii) will be described.

まず、射出成形用の金型を用意し、その金型を開いてそのキャビティ部(空間部)に表面粗化金属部材103を設置する。その後、金型を閉じ、樹脂組成物(P2)の少なくとも一部が表面粗化金属部材103の微細凹凸構造を形成した面に接するように、上記金型内に熱可塑性樹脂(P1)または樹脂組成物(P2)を射出して固化する。その後、金型を開き離型することにより、金属/樹脂複合構造体106を得ることができる。   First, a mold for injection molding is prepared, the mold is opened, and the surface roughened metal member 103 is installed in the cavity (space). Thereafter, the mold is closed and the thermoplastic resin (P1) or resin is placed in the mold so that at least a part of the resin composition (P2) is in contact with the surface of the surface roughened metal member 103 on which the fine uneven structure is formed. The composition (P2) is injected and solidified. Thereafter, the metal / resin composite structure 106 can be obtained by opening the mold and releasing the mold.

また、上記(ii)〜(iii)の工程による射出成形にあわせて、射出発泡成形や、金型を急速に加熱冷却する高速ヒートサイクル成形(RHCM、ヒート&クール成形)を併用してもよい。
射出発泡成形の方法として、化学発泡剤を樹脂に添加する方法や、射出成形機のシリンダー部に直接、窒素ガスや炭酸ガスを注入する方法、あるいは、窒素ガスや炭酸ガスを超臨界状態で射出成形機のシリンダー部に注入するMuCell射出発泡成形法があるが、いずれの方法でも樹脂部材が発泡体である金属/樹脂複合構造体106を得ることができる。また、いずれの方法でも、金型の制御方法として、カウンタープレッシャーを使用したり、成形品の形状によってはコアバックを利用したりすることも可能である。
高速ヒートサイクル成形は、急速加熱冷却装置を金型に接続することにより、実施することができる。急速加熱冷却装置は、一般的に使用されている方式で構わない。加熱方法として、蒸気式、加圧熱水式、熱水式、熱油式、電気ヒータ式、電磁誘導過熱式のいずれか1方式またはそれらを複数組み合わせた方式でよい。
冷却方法としては、冷水式、冷油式のいずれか1方式またはそれらを組み合わせた方式でよい。高速ヒートサイクル成形法の条件としては、例えば、射出成形金型を100℃以上250℃以下の温度に加熱し、熱可塑性樹脂(P1)または樹脂組成物(P2)の射出が完了した後、上記射出成形金型を冷却することが望ましい。
金型を加熱する温度は、熱可塑性樹脂(P1)または樹脂組成物(P2)を構成する熱可塑性樹脂(P1)によって好ましい範囲が異なり、結晶性樹脂で融点が200℃未満の樹脂であれば、100℃以上150℃以下が好ましく、結晶性樹脂で融点が200℃以上の樹脂であれば、140℃以上250℃以下が望ましい。非晶性樹脂については、50℃以上250℃以下が望ましく、100℃以上180℃以下がより望ましい。
Further, in combination with the injection molding by the above steps (ii) to (iii), injection foam molding or high-speed heat cycle molding (RHCM, heat & cool molding) for rapidly heating and cooling the mold may be used in combination. .
Injection foaming methods include adding a chemical foaming agent to the resin, injecting nitrogen gas or carbon dioxide directly into the cylinder of the injection molding machine, or injecting nitrogen gas or carbon dioxide in a supercritical state. Although there is a MuCell injection foam molding method in which it is injected into a cylinder part of a molding machine, the metal / resin composite structure 106 in which the resin member is a foam can be obtained by any method. In any method, a counter pressure can be used as a mold control method, or a core back can be used depending on the shape of a molded product.
High-speed heat cycle molding can be carried out by connecting a rapid heating / cooling device to a mold. The rapid heating / cooling apparatus may be a generally used system. As a heating method, any one of a steam type, a pressurized hot water type, a hot water type, a hot oil type, an electric heater type, an electromagnetic induction overheating type, or a combination of them may be used.
As a cooling method, any one of a cold water type and a cold oil type or a combination thereof may be used. As conditions for the high-speed heat cycle molding method, for example, the injection mold is heated to a temperature of 100 ° C. or more and 250 ° C. or less, and after the injection of the thermoplastic resin (P1) or the resin composition (P2) is completed, It is desirable to cool the injection mold.
The temperature at which the mold is heated varies depending on the thermoplastic resin (P1) constituting the thermoplastic resin (P1) or the resin composition (P2), and is a crystalline resin having a melting point of less than 200 ° C. 100 ° C. or higher and 150 ° C. or lower is preferable, and 140 ° C. or higher and 250 ° C. or lower is desirable for a crystalline resin having a melting point of 200 ° C. About an amorphous resin, 50 to 250 degreeC is desirable and 100 to 180 degreeC is more desirable.

次に、表面粗化金属部材103への塗膜の形成方法について説明する。
表面粗化金属部材103への塗膜の形成方法としては、従来用いられている塗膜の形成方法を制限なく利用することができる。
Next, a method for forming a coating film on the surface roughened metal member 103 will be described.
As a method of forming a coating film on the surface roughened metal member 103, a conventionally used coating film forming method can be used without limitation.

例えば、エアスプレー、エアレススプレー等のスプレー塗装、ディップ塗装、刷毛塗り、ローラー塗り、コーター塗り等の方法によって、上記各種塗料を表面粗化金属部材103の表面に塗布することで行うことができる。   For example, the coating can be performed by applying the various coating materials to the surface of the surface roughened metal member 103 by a method such as spray coating such as air spray or airless spray, dip coating, brush coating, roller coating, or coater coating.

本実施形態に係る金属/樹脂複合構造体106は、熱可塑性樹脂部材105を構成する熱可塑性樹脂(P1)または樹脂組成物(P2)が、表面粗化金属部材103の表面110に形成された微細凹凸構造に進入して表面粗化金属部材103と熱可塑性樹脂部材105が接合し、金属―樹脂界面を形成することにより得られる。   In the metal / resin composite structure 106 according to this embodiment, the thermoplastic resin (P1) or the resin composition (P2) constituting the thermoplastic resin member 105 is formed on the surface 110 of the surface roughened metal member 103. It is obtained by entering the fine concavo-convex structure and joining the surface roughened metal member 103 and the thermoplastic resin member 105 to form a metal-resin interface.

すなわち、表面粗化金属部材103の表面110には、表面粗化金属部材103と熱可塑性樹脂部材105との間の接合強度向上に適した微細凹凸構造が形成されているため、接着剤を使用せずに表面粗化金属部材103と熱可塑性樹脂部材105との間の接合性確保が可能となる。
具体的には、表面粗化金属部材103の表面110の微細凹凸構造の中に熱可塑性樹脂(P1)または樹脂組成物(P2)が進入することによって、表面粗化金属部材103と熱可塑性樹脂部材105との間に物理的な抵抗力(アンカー効果)が効果的に発現し、通常では接合が困難な表面粗化金属部材103と、熱可塑性樹脂(P1)または樹脂組成物(P2)により構成された熱可塑性樹脂部材105と、を強固に接合することが可能になったものと考えられる。
That is, since the surface 110 of the surface roughened metal member 103 has a fine uneven structure suitable for improving the bonding strength between the surface roughened metal member 103 and the thermoplastic resin member 105, an adhesive is used. Without this, it becomes possible to ensure the bondability between the surface roughened metal member 103 and the thermoplastic resin member 105.
Specifically, when the thermoplastic resin (P1) or the resin composition (P2) enters the fine concavo-convex structure on the surface 110 of the surface roughened metal member 103, the surface roughened metal member 103 and the thermoplastic resin. A physical resistance force (anchor effect) is effectively expressed between the member 105 and the surface roughened metal member 103, which is usually difficult to join, and the thermoplastic resin (P1) or the resin composition (P2). It is considered that the thermoplastic resin member 105 thus configured can be firmly bonded.

このようにして得られた金属/樹脂複合構造体106は、表面粗化金属部材103と熱可塑性樹脂部材105との界面への水分や湿気の浸入を防ぐこともできる。つまり、金属/樹脂複合構造体106の付着界面における気密性や水密性を向上させることもできる。   The thus obtained metal / resin composite structure 106 can also prevent moisture and moisture from entering the interface between the surface roughened metal member 103 and the thermoplastic resin member 105. That is, the air tightness and water tightness at the adhesion interface of the metal / resin composite structure 106 can be improved.

本実施形態に係る金属/樹脂複合構造体106の製造方法では、工程(B)の後に、得られた金属/樹脂複合構造体106を構成する金属部材の表面に酸化被膜を形成する工程をさらにおこなってもよい。この場合、熱可塑性樹脂部材105との接合部以外の表面粗化金属部材103の表面に酸化被膜が形成される。これにより、金属/樹脂複合構造体106の耐食性や耐摩耗性、耐傷性等を向上させることができる。
酸化被膜を形成する方法としては特に限定されないが、例えば、アルマイト加工処理等の陽極酸化皮膜処理が挙げられる。陽極酸化皮膜処理で用いる陽極酸化溶液としては、例えば、硫酸、シュウ酸、ホウ酸、クロム酸等を用いることができる。
In the manufacturing method of the metal / resin composite structure 106 according to the present embodiment, a step of forming an oxide film on the surface of the metal member constituting the obtained metal / resin composite structure 106 is further performed after the step (B). You may do it. In this case, an oxide film is formed on the surface of the roughened metal member 103 other than the joint portion with the thermoplastic resin member 105. Thereby, the corrosion resistance, wear resistance, scratch resistance and the like of the metal / resin composite structure 106 can be improved.
Although it does not specifically limit as a method of forming an oxide film, For example, anodic oxide film processing, such as alumite processing, is mentioned. As an anodic oxidation solution used in the anodic oxide film treatment, for example, sulfuric acid, oxalic acid, boric acid, chromic acid, or the like can be used.

[金属/樹脂複合構造体の用途]
本実施形態に係る金属/樹脂複合構造体106は、生産性が高く、形状制御の自由度も高いので、様々な用途に展開することが可能である。
さらに、本実施形態に係る金属/樹脂複合構造体106は、高い気密性、水密性が発現するので、これらの特性に応じた用途に好適に用いられる。
[Use of metal / resin composite structure]
Since the metal / resin composite structure 106 according to the present embodiment has high productivity and high degree of freedom in shape control, it can be developed for various applications.
Furthermore, since the metal / resin composite structure 106 according to the present embodiment exhibits high airtightness and watertightness, it is preferably used for applications according to these characteristics.

例えば、車両用構造部品、車両搭載用品、電子機器の筐体、家電機器の筐体、構造用部品、機械部品、種々の自動車用部品、電子機器用部品、家具、台所用品等の家財向け用途、医療機器、建築資材の部品、その他の構造用部品や外装用部品等が挙げられる。   For example, use for household goods such as structural parts for vehicles, on-vehicle equipment, housing for electronic equipment, housing for home appliances, structural parts, mechanical parts, various automotive parts, electronic equipment parts, furniture, kitchenware, etc. , Medical equipment, building material parts, other structural parts and exterior parts.

より具体的には、樹脂だけでは強度が足りない部分を金属がサポートする様にデザインされた次のような部品である。車両関係では、インスツルメントパネル、コンソールボックス、ドアノブ、ドアトリム、シフトレバー、ペダル類、グローブボックス、バンパー、ボンネット、フェンダー、トランク、ドア、ルーフ、ピラー、座席シート、ラジエータ、オイルパン、ステアリングホイール、ECUボックス、電装部品等が挙げられる。また、建材や家具類として、ガラス窓枠、手すり、カーテンレール、たんす、引き出し、クローゼット、書棚、机、椅子等が挙げられる。また、精密電子部品類として、コネクタ、リレー、ギヤ等が挙げられる。また、輸送容器として、輸送コンテナ、スーツケース、トランク等が挙げられる。   More specifically, the following parts are designed so that the metal supports a portion where the strength is insufficient with the resin alone. For vehicles, instrument panels, console boxes, door knobs, door trims, shift levers, pedals, glove boxes, bumpers, bonnets, fenders, trunks, doors, roofs, pillars, seats, radiators, oil pans, steering wheels, An ECU box, an electrical component, etc. are mentioned. Examples of building materials and furniture include glass window frames, handrails, curtain rails, chests, drawers, closets, bookcases, desks, chairs, and the like. Examples of precision electronic components include connectors, relays, and gears. Moreover, a transport container, a suitcase, a trunk, etc. are mentioned as a transport container.

また、表面粗化金属部材103の高い熱伝導率と、熱可塑性樹脂部材105の断熱的性質とを組み合わせ、ヒートマネージメントを最適に設計する機器に使用される部品用途、例えば、各種家電にも用いることができる。具体的には、冷蔵庫、洗濯機、掃除機、電子レンジ、エアコン、照明機器、電気湯沸かし器、テレビ、時計、換気扇、プロジェクター、スピーカー等の家電製品類、パソコン、携帯電話、スマートフォン、デジタルカメラ、タブレット型PC、携帯音楽プレーヤー、携帯ゲーム機、充電器、電池等電子情報機器等が挙げられる。   In addition, a combination of the high thermal conductivity of the surface roughened metal member 103 and the adiabatic property of the thermoplastic resin member 105 is used for parts used in equipment for optimally designing heat management, for example, various home appliances. be able to. Specifically, household appliances such as refrigerators, washing machines, vacuum cleaners, microwave ovens, air conditioners, lighting equipment, electric water heaters, televisions, clocks, ventilation fans, projectors, speakers, personal computers, mobile phones, smartphones, digital cameras, tablets Electronic information devices such as type PCs, portable music players, portable game machines, chargers, and batteries.

これらについては、金属部材の表面を粗化することによって表面積が増加するため、表面粗化金属部材103と熱可塑性樹脂部材105との間の接触面積が増加し、接触界面の熱抵抗を低減させることができることに由来する。   For these, since the surface area is increased by roughening the surface of the metal member, the contact area between the surface roughened metal member 103 and the thermoplastic resin member 105 is increased, and the thermal resistance of the contact interface is reduced. It comes from being able to.

その他の用途として、玩具、スポーツ用具、靴、サンダル、鞄、フォークやナイフ、スプーン、皿等の食器類、ボールペンやシャープペン、ファイル、バインダー等の文具類、フライパンや鍋、やかん、フライ返し、おたま、穴杓子、泡だて器、トング等の調理器具、リチウムイオン2次電池用部品、ロボット等が挙げられる。   Other applications include toys, sports equipment, shoes, sandals, bags, forks and knives, spoons, dishes such as dishes, ballpoint pens and mechanical pencils, files, binders and other stationery, frying pans and pans, kettles, frying, Examples include a ladle, a hole insulator, a whisk, a cooking tool such as a tongue, a lithium ion secondary battery component, a robot, and the like.

以上、本発明の金属/樹脂複合構造体の用途について述べたが、これらは本発明の用途の例示であり、上記以外の様々な用途に用いることもできる。   As mentioned above, although the use of the metal / resin composite structure of this invention was described, these are the illustrations of the use of this invention, and can also be used for various uses other than the above.

以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。   As mentioned above, although embodiment of this invention was described, these are illustrations of this invention and various structures other than the above are also employable.

以下、本実施形態を、実施例・比較例を参照して詳細に説明する。なお、本実施形態は、これらの実施例の記載に何ら限定されるものではない。   Hereinafter, the present embodiment will be described in detail with reference to examples and comparative examples. In addition, this embodiment is not limited to description of these Examples at all.

なお、図1、2は各実施例の共通の図として使用する。
図1は、表面粗化金属部材103と熱可塑性樹脂部材105との金属/樹脂複合構造体106の構造の一例を模式的に示した外観図である。
図2は、表面粗化金属部材103と熱可塑性樹脂部材105との金属/樹脂複合構造体106を製造する過程の一例を模式的に示した構成図である。具体的には所定形状に加工され、表面に微細凹凸構造を有する接合部表面(表面処理領域)104が形成された表面粗化金属部材103を射出成形用の金型102内に設置し、射出成形機101により、熱可塑性樹脂(P1)または樹脂組成物(P2)をゲート/ランナー107を通して射出し、微細凹凸構造が形成された表面粗化金属部材103と熱可塑性樹脂部材105とが一体化された金属/樹脂複合構造体106を製造する過程を模式的に示している。
Note that FIGS. 1 and 2 are used as a common view of each embodiment.
FIG. 1 is an external view schematically showing an example of the structure of the metal / resin composite structure 106 of the surface roughened metal member 103 and the thermoplastic resin member 105.
FIG. 2 is a configuration diagram schematically showing an example of a process of manufacturing the metal / resin composite structure 106 of the surface roughened metal member 103 and the thermoplastic resin member 105. Specifically, a surface roughened metal member 103 which is processed into a predetermined shape and has a surface (surface treatment region) 104 having a fine concavo-convex structure formed on the surface is placed in an injection mold 102 and injected. The molding machine 101 injects the thermoplastic resin (P1) or the resin composition (P2) through the gate / runner 107, and the surface roughened metal member 103 and the thermoplastic resin member 105 on which the fine uneven structure is formed are integrated. The process for manufacturing the metal / resin composite structure 106 is schematically shown.

(接合強度の評価方法)
引っ張り試験機「モデル1323(アイコーエンジニヤリング社製)」を使用し、引張試験機に専用の治具を取り付け、室温(23℃)にて、チャック間距離60mm、引張速度10mm/minの条件にて測定をおこなった。破断荷重(N)を金属/樹脂接合部分の面積で除することにより接合強度(MPa)を得た。
(Evaluation method of bonding strength)
Using a tensile tester “Model 1323 (manufactured by Aiko Engineering Co., Ltd.)”, a dedicated jig is attached to the tensile tester, and at room temperature (23 ° C.), the distance between chucks is 60 mm and the tensile speed is 10 mm / min And measured. The joint strength (MPa) was obtained by dividing the breaking load (N) by the area of the metal / resin joint.

(金属部材の表面粗化処理)
[調製例1]
(前処理)
JIS H4000に規定された合金番号6063のアルミニウム板材(厚み:1.6mm)を、長さ45mm、幅18mmの形状になるように切断した。次いで任意の20枚のアルミニウム板材について、特開2012−066383号の実験例1に記載の方法に準拠して表面処理した。
すなわち、第一の1Lのビーカーに市販アルミニウム合金用脱脂剤NE−6(メルテックス社製)と水を投入して60℃、アルミニウム合金用脱脂剤の濃度が7.5質量%の水溶液600mlとした。これにアルミニウム板材20枚を重ならないように7分間浸漬した。浸漬後はよく水洗した。
つづいて、第二の1Lのビーカーに40℃とした1質量%濃度の塩酸水溶液600mlを用意し、これに上記のアルミニウム板材20枚を重ならないように1分間浸漬した。浸漬後はよく水洗した。次いで第三の1Lのビーカーに40℃とした1.5質量%濃度の水酸化ナトリウム水溶液600mlを用意し、水洗後のアルミニム板20枚を重ならないように4分間浸漬した。浸漬後はよく水洗した。次いで、第四の1Lのビーカーに40℃とした3質量%濃度の硝酸水溶液を600ml用意し、これにアルミニウム板材20枚を重ならないように1分間浸漬した。浸漬後はよく水洗した。以上の手順により、前処理アルミニウム板材を得た。
(Surface roughening treatment of metal members)
[Preparation Example 1]
(Preprocessing)
An aluminum plate material (thickness: 1.6 mm) of alloy number 6063 defined in JIS H4000 was cut into a shape having a length of 45 mm and a width of 18 mm. Next, any 20 aluminum sheets were subjected to a surface treatment in accordance with the method described in Experimental Example 1 of JP2012-066383A.
That is, a commercially available aluminum alloy degreasing agent NE-6 (manufactured by Meltex Co.) and water were charged into a first 1 L beaker, and 600 ml of an aqueous solution having a degreasing agent concentration of 7.5% by mass at 60 ° C. did. 20 aluminum plate members were immersed in this for 7 minutes so as not to overlap. After soaking, it was washed thoroughly with water.
Subsequently, 600 ml of a 1 mass% hydrochloric acid aqueous solution adjusted to 40 ° C. was prepared in a second 1 L beaker and immersed in the aluminum plate for 20 minutes so as not to overlap. After soaking, it was washed thoroughly with water. Next, 600 ml of a 1.5% strength by weight sodium hydroxide aqueous solution adjusted to 40 ° C. was prepared in a third 1 L beaker, and the 20 washed aluminum plates were immersed for 4 minutes so as not to overlap. After soaking, it was washed thoroughly with water. Next, 600 ml of a 3 mass% nitric acid aqueous solution adjusted to 40 ° C. was prepared in a fourth 1 L beaker, and 20 aluminum sheets were immersed in the beaker for 1 minute so as not to overlap. After soaking, it was washed thoroughly with water. A pretreated aluminum sheet was obtained by the above procedure.

(N−エチルモルホリン水溶液による表面粗化処理)
次いで、上記の前処理アルミニウム板材から任意の1枚を選び、N−エチルモルホリン(東京化成社製)の3.5質量%水溶液200mlの中に、板が容器壁に触れないように40℃下で8分間浸漬しながら揺動させることによって前処理アルミニウム板材の表面をエッチングした。なお、N−エチルモルホリンの3.5質量%水溶液の25℃におけるpHは10.5であった。次いで、流水で超音波洗浄(水中、1分間)を行い、乾燥させることにより金属部材1を得た。以下の説明では、前処理に続く表面粗化処理を本処理と呼ぶ場合がある。
(Surface roughening treatment with N-ethylmorpholine aqueous solution)
Next, an arbitrary one of the above pretreated aluminum plate materials was selected, and the solution was placed at 40 ° C. in 200 ml of a 3.5% by weight aqueous solution of N-ethylmorpholine (manufactured by Tokyo Chemical Industry Co., Ltd.) so that the plate did not touch the container wall. The surface of the pretreated aluminum plate was etched by rocking while being immersed for 8 minutes. In addition, pH at 25 degreeC of the 3.5 mass% aqueous solution of N-ethylmorpholine was 10.5. Next, ultrasonic cleaning (in water, 1 minute) was performed with running water, and the metal member 1 was obtained by drying. In the following description, the surface roughening treatment following the pretreatment may be referred to as the main treatment.

[調製例2](トリエタノールアミン水溶液による表面粗化処理)
調製例1で調製した前処理アルミニウム板材1枚を、トリエタノールアミン(東京化成社製)の2.0質量%水溶液200mlの中に40℃下で8分間浸漬しながら揺動させることによって前処理アルミニウム板材の表面をエッチングした。なお、上記の水溶液の25℃におけるpHは10.5であった。次いで、流水で超音波洗浄(水中、1分間)を行い、乾燥させることにより金属部材2を得た。
[Preparation Example 2] (Surface roughening treatment with aqueous triethanolamine solution)
Pretreatment is performed by oscillating one pretreated aluminum sheet prepared in Preparation Example 1 while being immersed in 200 ml of a 2.0 mass% aqueous solution of triethanolamine (manufactured by Tokyo Chemical Industry Co., Ltd.) at 40 ° C. for 8 minutes. The surface of the aluminum plate was etched. In addition, pH at 25 degreeC of said aqueous solution was 10.5. Next, ultrasonic cleaning (in water, 1 minute) was performed with running water, and the metal member 2 was obtained by drying.

[実施例1]
金属部材1を70℃の温水(イオン交換水)に30秒間浸漬した。得られた金属部材を金属部材3と呼ぶ。
日本製鋼所社製のJ85AD110Hに小型ダンベル金属インサート金型102を装着し、金型102内に金属部材3(103)を設置した。次いで、その金型102内に熱可塑性樹脂(P1)として、市販のPBT樹脂(長春社製)を、シリンダー温度250℃、金型温度120℃、射出速度25mm/sec、保圧80MPa、保圧時間10秒の条件にて射出成形を行い、金属/樹脂複合構造体106を得た。
また、得られた金属/樹脂複合構造体106をアルカリ脱脂後、50℃の2.0質量%水酸化ナトリウム水溶液に1分間浸漬し、その後、6.0質量%の希硝酸により中和した(常温、30秒間)。次いで90質量%リン酸/10質量%硫酸系で86℃、2分間の化学研磨を行った後、6.0質量%希硝酸によってデスマットした。このように前処理された成形体を陽極酸化処理(18質量%硫酸、18℃、39分、1A/dm)した後、染色(奥野製薬社製Red染料、50℃、8分間)し、Ni封孔(95℃、15分間)、純水湯洗、エアーブローを行うことによって、金属/樹脂複合構造体106の表面に酸化被膜を形成した。
酸化被膜形成前の金属/樹脂複合構造体106および酸化被膜形成後の金属/樹脂複合構造体106についてそれぞれ接合強度を測定した。得られた接合強度の評価結果を表1に示す。
[Example 1]
The metal member 1 was immersed in warm water (ion exchange water) at 70 ° C. for 30 seconds. The obtained metal member is referred to as a metal member 3.
A small dumbbell metal insert mold 102 was attached to J85AD110H manufactured by Nippon Steel Works, and a metal member 3 (103) was installed in the mold 102. Next, as a thermoplastic resin (P1) in the mold 102, a commercially available PBT resin (manufactured by Changchun Co., Ltd.) is used. Injection molding was performed under conditions of a time of 10 seconds to obtain a metal / resin composite structure 106.
Further, the obtained metal / resin composite structure 106 was degreased with alkali, then immersed in a 2.0 mass% sodium hydroxide aqueous solution at 50 ° C for 1 minute, and then neutralized with 6.0 mass% dilute nitric acid ( Room temperature for 30 seconds). Next, chemical polishing was performed at 90 ° C. for 2 minutes in a 90 mass% phosphoric acid / 10 mass% sulfuric acid system, and then desmutted with 6.0 mass% diluted nitric acid. After the anodizing treatment (18% by mass sulfuric acid, 18 ° C., 39 minutes, 1 A / dm 2 ), the pre-processed molded body was dyed (Red dye manufactured by Okuno Pharmaceutical Co., Ltd., 50 ° C., 8 minutes), An oxide film was formed on the surface of the metal / resin composite structure 106 by performing Ni sealing (95 ° C., 15 minutes), washing with pure water, and air blowing.
The bonding strength was measured for each of the metal / resin composite structure 106 before forming the oxide film and the metal / resin composite structure 106 after forming the oxide film. Table 1 shows the evaluation results of the obtained bonding strength.

[実施例2]
金属部材1を70℃の温水(イオン交換水)に60秒間浸漬した。得られた金属部材を金属部材4と呼ぶ。
実施例1において、金属部材3の代わりに金属部材4を用いた以外は実施例1と同様に射出成形を行い、金属/樹脂複合構造体106を得た。また、実施例1と同様に金属/樹脂複合構造体106の表面に酸化被膜を形成した。
酸化被膜形成前の金属/樹脂複合構造体106および酸化被膜形成後の金属/樹脂複合構造体106についてそれぞれ接合強度を測定した。得られた接合強度の評価結果を表1に示す。
[Example 2]
The metal member 1 was immersed in warm water (ion exchange water) at 70 ° C. for 60 seconds. The obtained metal member is referred to as a metal member 4.
In Example 1, except that the metal member 4 was used instead of the metal member 3, injection molding was performed in the same manner as in Example 1 to obtain a metal / resin composite structure 106. Further, as in Example 1, an oxide film was formed on the surface of the metal / resin composite structure 106.
The bonding strength was measured for each of the metal / resin composite structure 106 before forming the oxide film and the metal / resin composite structure 106 after forming the oxide film. Table 1 shows the evaluation results of the obtained bonding strength.

[比較例1]
実施例1において、金属部材3の代わりに金属部材1を用いた以外は実施例1と同様に射出成形を行い、金属/樹脂複合構造体106を得た。また、実施例1と同様に金属/樹脂複合構造体106の表面に酸化被膜を形成した。
酸化被膜形成前の金属/樹脂複合構造体106および酸化被膜形成後の金属/樹脂複合構造体106についてそれぞれ接合強度を測定した。得られた接合強度の評価結果を表1に示す。
[Comparative Example 1]
In Example 1, except that the metal member 1 was used instead of the metal member 3, injection molding was performed in the same manner as in Example 1 to obtain a metal / resin composite structure 106. Further, as in Example 1, an oxide film was formed on the surface of the metal / resin composite structure 106.
The bonding strength was measured for each of the metal / resin composite structure 106 before forming the oxide film and the metal / resin composite structure 106 after forming the oxide film. Table 1 shows the evaluation results of the obtained bonding strength.

[比較例2]
実施例1において、金属部材3の代わりに金属部材2を用いた以外は実施例1と同様に射出成形を行い、金属/樹脂複合構造体106を得た。また、実施例1と同様に金属/樹脂複合構造体106の表面に酸化被膜を形成した。
酸化被膜形成前の金属/樹脂複合構造体106および酸化被膜形成後の金属/樹脂複合構造体106についてそれぞれ接合強度を測定した。得られた接合強度の評価結果を表1に示す。
[Comparative Example 2]
In Example 1, a metal / resin composite structure 106 was obtained by performing injection molding in the same manner as in Example 1 except that the metal member 2 was used instead of the metal member 3. Further, as in Example 1, an oxide film was formed on the surface of the metal / resin composite structure 106.
The bonding strength was measured for each of the metal / resin composite structure 106 before forming the oxide film and the metal / resin composite structure 106 after forming the oxide film. Table 1 shows the evaluation results of the obtained bonding strength.

Figure 2017218614
Figure 2017218614

101 射出成形機
102 金型
103 表面粗化金属部材
104 接合部表面
105 熱可塑性樹脂部材
106 金属/樹脂複合構造体
107 ゲート/ランナー
110 表面粗化金属部材の表面
101 Injection Molding Machine 102 Mold 103 Surface Roughened Metal Member 104 Joint Surface 105 Thermoplastic Resin Member 106 Metal / Resin Composite Structure 107 Gate / Runner 110 Surface of Surface Roughened Metal Member

Claims (14)

熱可塑性樹脂または前記熱可塑性樹脂を含む樹脂組成物により構成された熱可塑性樹脂部材との接合のために用いられる表面粗化金属部材を製造するための製造方法であって、
少なくとも金属部材の前記熱可塑性樹脂部材との接合部表面を、分子内に窒素原子を有する化合物(A)を含有する粗化処理水溶液(Z)により粗化する工程(1)と、
前記工程(1)の後に、少なくとも前記金属部材の前記接合部表面を温水に接触させる工程(2)と、
を含む表面粗化金属部材の製造方法。
A production method for producing a surface roughened metal member used for joining with a thermoplastic resin or a thermoplastic resin member constituted by a resin composition containing the thermoplastic resin,
A step (1) of roughening at least a surface of a joint portion between the metal member and the thermoplastic resin member with a roughening aqueous solution (Z) containing a compound (A) having a nitrogen atom in the molecule;
After the step (1), at least the step (2) of bringing the surface of the metal member into contact with warm water;
The manufacturing method of the surface roughening metal member containing this.
請求項1に記載の表面粗化金属部材の製造方法において、
前記化合物(A)が分子内に酸素官能基を有するアミン(A1)、アンモニウム塩(A2)およびアミン塩(A3)から選択される一種または二種以上を含む表面粗化金属部材の製造方法。
In the manufacturing method of the surface roughening metal member of Claim 1,
The manufacturing method of the surface roughening metal member in which the said compound (A) contains 1 type, or 2 or more types selected from the amine (A1) which has an oxygen functional group in a molecule | numerator, ammonium salt (A2), and amine salt (A3).
請求項1または2に記載の表面粗化金属部材の製造方法において、
前記表面粗化金属部材は鉄、鉄鋼材、ステンレス、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、銅、銅合金、亜鉛、亜鉛合金、スズ、スズ合金、チタンおよびチタン合金から選択される一種または二種以上の金属材料により構成されたものである表面粗化金属部材の製造方法。
In the manufacturing method of the surface roughening metal member of Claim 1 or 2,
The surface roughened metal member is one or two selected from iron, steel, stainless steel, aluminum, aluminum alloy, magnesium, magnesium alloy, copper, copper alloy, zinc, zinc alloy, tin, tin alloy, titanium and titanium alloy. The manufacturing method of the surface roughening metal member which is comprised with the metal material more than a seed | species.
請求項1乃至3のいずれか一項に記載の表面粗化金属部材の製造方法において、
少なくとも前記金属部材の前記接合部表面を酸性水溶液および/または塩基性水溶液により洗浄する工程(0)の後に、前記工程(1)をおこなう表面粗化金属部材の製造方法。
In the manufacturing method of the surface roughening metal member as described in any one of Claims 1 thru | or 3,
The manufacturing method of the surface roughening metal member which performs the said process (1) after the process (0) which wash | cleans the said junction part surface of the said metal member at least with acidic aqueous solution and / or basic aqueous solution.
請求項1乃至4のいずれか一項に記載の表面粗化金属部材の製造方法において、
前記化合物(A)が分子内に酸素官能基を有するアミン(A1)を含み、
前記分子内に酸素官能基を有するアミン(A1)が、下記式(1)により示されるモルホリン系化合物および下記式(2)により示されるアルカノールアミン系化合物から選択される少なくとも一種を含む表面粗化金属部材の製造方法。
Figure 2017218614
(前記式(1)中、Rは水素原子または炭素数1以上10以下の炭化水素基である)
Figure 2017218614
(前記式(2)中、R〜Rは、それぞれ独立して水素原子、アルキル基、または1つのヒドロキシ基を有する脂肪族飽和炭化水素基であり、R〜Rの少なくとも1つが、1つのヒドロキシ基を有する脂肪族飽和炭化水素基である)
In the manufacturing method of the surface roughening metal member as described in any one of Claims 1 thru | or 4,
The compound (A) includes an amine (A1) having an oxygen functional group in the molecule,
Surface roughening wherein the amine (A1) having an oxygen functional group in the molecule contains at least one selected from a morpholine compound represented by the following formula (1) and an alkanolamine compound represented by the following formula (2): A method for producing a metal member.
Figure 2017218614
(In the formula (1), R is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms)
Figure 2017218614
(In the formula (2), R 1 to R 3 are each independently a hydrogen atom, an alkyl group, or an aliphatic saturated hydrocarbon group having one hydroxy group, and at least one of R 1 to R 3 is An aliphatic saturated hydrocarbon group having one hydroxy group)
請求項5に記載の表面粗化金属部材の製造方法において、
前記モルホリン系化合物がN−エチルモルホリン、N−メチルモルホリンおよびN−n−プロピルモルホリンから選択される少なくとも一種を含む表面粗化金属部材の製造方法。
In the manufacturing method of the surface roughening metal member of Claim 5,
A method for producing a surface-roughened metal member, wherein the morpholine-based compound contains at least one selected from N-ethylmorpholine, N-methylmorpholine, and Nn-propylmorpholine.
請求項5に記載の表面粗化金属部材の製造方法において、
前記アルカノールアミン系化合物がトリエタノールアミンおよびN,N−ジエチルエタノールアミンから選択される少なくとも一種を含む表面粗化金属部材の製造方法。
In the manufacturing method of the surface roughening metal member of Claim 5,
The manufacturing method of the surface roughening metal member in which the said alkanolamine type compound contains at least 1 type selected from a triethanolamine and N, N-diethylethanolamine.
請求項1乃至4のいずれか一項に記載の表面粗化金属部材の製造方法において、
前記化合物(A)がアンモニウム塩(A2)を含み、
前記アンモニウム塩(A2)が、アンモニア、塩化アンモニウムおよび硝酸アンモニウムから選択される少なくとも一種を含む表面粗化金属部材の製造方法。
In the manufacturing method of the surface roughening metal member as described in any one of Claims 1 thru | or 4,
The compound (A) includes an ammonium salt (A2),
The manufacturing method of the surface roughening metal member in which the said ammonium salt (A2) contains at least 1 type selected from ammonia, ammonium chloride, and ammonium nitrate.
請求項1乃至8のいずれか一項に記載の表面粗化金属部材の製造方法において、
前記温水が、イオン交換水、純水、または蒸留水である表面粗化金属部材の製造方法。
In the manufacturing method of the surface roughening metal member according to any one of claims 1 to 8,
The manufacturing method of the surface roughening metal member whose said warm water is ion-exchange water, a pure water, or distilled water.
請求項1乃至9のいずれか一項に記載の表面粗化金属部材の製造方法において、
前記温水の温度が40℃以上90℃以下である表面粗化金属部材の製造方法。
In the manufacturing method of the surface roughening metal member according to any one of claims 1 to 9,
The manufacturing method of the surface roughening metal member whose temperature of the said warm water is 40 degreeC or more and 90 degrees C or less.
請求項1乃至10のいずれか一項に記載の表面粗化金属部材の製造方法において、
前記粗化処理水溶液(Z)の25℃における水素イオン濃度指数(pH)が9.0以上11.0以下である表面粗化金属部材の製造方法。
In the manufacturing method of the surface roughening metal member according to any one of claims 1 to 10,
The manufacturing method of the surface roughening metal member whose hydrogen ion concentration index (pH) in 25 degreeC of the said roughening process aqueous solution (Z) is 9.0 or more and 11.0 or less.
請求項1乃至11のいずれか一項に記載の表面粗化金属部材の製造方法により表面粗化金属部材を作製する工程(A)と、
前記表面粗化金属部材の前記接合部表面に接するように、熱可塑性樹脂または前記熱可塑性樹脂を含む樹脂組成物により構成された熱可塑性樹脂部材を成形し、前記表面粗化金属部材と前記熱可塑性樹脂部材を接合させる工程(B)と、
を含む金属/樹脂複合構造体の製造方法。
A step (A) of producing a surface roughened metal member by the method for producing a surface roughened metal member according to any one of claims 1 to 11,
A thermoplastic resin member composed of a thermoplastic resin or a resin composition containing the thermoplastic resin is molded so as to contact the surface of the joint portion of the surface roughened metal member, and the surface roughened metal member and the heat A step (B) of joining the plastic resin member;
The manufacturing method of the metal / resin composite structure containing this.
請求項12に記載の金属/樹脂複合構造体の製造方法において、
前記熱可塑性樹脂が、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリフェニレンサルファイド樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリイミド樹脂、ポリエーテルスルホン樹脂、ポリスチレン樹脂、ポリアクリロニトリル樹脂、スチレン−アクリロニトリル共重合体樹脂、アクリロニトリル−ブタジエン−スチレン共重合体樹脂、(メタ)アクリル系樹脂、およびポリアセタール樹脂から選択される一種または二種以上を含む金属/樹脂複合構造体の製造方法。
In the manufacturing method of the metal / resin composite structure of Claim 12,
The thermoplastic resin is polyolefin resin, polyester resin, polyamide resin, polyphenylene sulfide resin, polycarbonate resin, polyether ether ketone resin, polyether ketone resin, polyimide resin, polyether sulfone resin, polystyrene resin, polyacrylonitrile resin. , A styrene-acrylonitrile copolymer resin, an acrylonitrile-butadiene-styrene copolymer resin, a (meth) acrylic resin, and a metal / resin composite structure containing one or more selected from polyacetal resins.
請求項12または13に記載の金属/樹脂複合構造体の製造方法において、
前記工程(B)の後に、得られた金属/樹脂複合構造体を構成する金属部材の表面に酸化被膜を形成する工程(C)をさらに含む金属/樹脂複合構造体の製造方法。
In the manufacturing method of the metal / resin composite structure of Claim 12 or 13,
The method for producing a metal / resin composite structure further comprising a step (C) of forming an oxide film on the surface of the metal member constituting the obtained metal / resin composite structure after the step (B).
JP2016112166A 2016-06-03 2016-06-03 Method for manufacturing surface roughened metal member and method for manufacturing metal / resin composite structure Active JP6803155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016112166A JP6803155B2 (en) 2016-06-03 2016-06-03 Method for manufacturing surface roughened metal member and method for manufacturing metal / resin composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016112166A JP6803155B2 (en) 2016-06-03 2016-06-03 Method for manufacturing surface roughened metal member and method for manufacturing metal / resin composite structure

Publications (2)

Publication Number Publication Date
JP2017218614A true JP2017218614A (en) 2017-12-14
JP6803155B2 JP6803155B2 (en) 2020-12-23

Family

ID=60657271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016112166A Active JP6803155B2 (en) 2016-06-03 2016-06-03 Method for manufacturing surface roughened metal member and method for manufacturing metal / resin composite structure

Country Status (1)

Country Link
JP (1) JP6803155B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551711A (en) * 1991-08-23 1993-03-02 Honda Motor Co Ltd Production of high temperature-worked product of aluminum alloy
JP2011067971A (en) * 2009-09-24 2011-04-07 Fujifilm Corp Original plate of lithographic printing plate
WO2014157289A1 (en) * 2013-03-26 2014-10-02 日本軽金属株式会社 Metal-resin bonded body, and production method therefor
JP2017001378A (en) * 2015-06-12 2017-01-05 日本軽金属株式会社 Metal resin composite molded body and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551711A (en) * 1991-08-23 1993-03-02 Honda Motor Co Ltd Production of high temperature-worked product of aluminum alloy
JP2011067971A (en) * 2009-09-24 2011-04-07 Fujifilm Corp Original plate of lithographic printing plate
WO2014157289A1 (en) * 2013-03-26 2014-10-02 日本軽金属株式会社 Metal-resin bonded body, and production method therefor
JP2017001378A (en) * 2015-06-12 2017-01-05 日本軽金属株式会社 Metal resin composite molded body and method for producing the same

Also Published As

Publication number Publication date
JP6803155B2 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
JP7042740B2 (en) Metal / resin composite structure, metal member and method for manufacturing metal member
KR101548108B1 (en) Metal/resin composite structure and metal member
JP5969053B2 (en) Aluminum alloy resin composite and preparation method thereof
JP2015509557A (en) Method for preparing aluminum alloy resin composite and aluminum alloy resin composite obtained thereby
JP2018144475A (en) Aluminum-based metal/resin composite structure, aluminum-based metallic member, production method of aluminum-based metallic member and production method of aluminum-based metal/resin composition structure
JP6810538B2 (en) Method for manufacturing surface roughened metal member and method for manufacturing metal / resin composite structure
US20220097311A1 (en) Aluminum-based metal-resin composite structure, aluminum-based metal member, method for manufacturing aluminum-based metal member, and method for manufacturing aluminum-based metal-resin composite structure
JP6612512B2 (en) Metal / resin composite structure and method for producing metal / resin composite structure
JP6867814B2 (en) Metal / resin composite structure, manufacturing method of metal / resin composite structure, manufacturing method of nickel-plated steel member and nickel-plated steel member
JP6482417B2 (en) Metal / resin composite structure and method for producing metal / resin composite structure
JP6001232B1 (en) Method for producing metal / resin composite structure and method for producing surface roughened steel member
TWI681863B (en) Method for producing metal-resin composite structure and method for producing surface roughed steel member
JP6491740B2 (en) Metal / resin composite structure and method for producing metal / resin composite structure
JP2016190412A (en) Metal/resin composite structure and method for producing metal/resin composite structure
JP6882855B2 (en) Method for manufacturing surface-roughened metal member and method for manufacturing metal / resin composite structure
JP2016117228A (en) Metal/resin composite structure, sliding component and method for producing metal/resin composite structure
JP6803155B2 (en) Method for manufacturing surface roughened metal member and method for manufacturing metal / resin composite structure
JP6422751B2 (en) Metal / resin composite structure and method for producing metal / resin composite structure
JP6941953B2 (en) Metal / resin composite structure and method for manufacturing metal / resin composite structure
JP6482416B2 (en) Metal / resin composite structure and method for producing metal / resin composite structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201130

R150 Certificate of patent or registration of utility model

Ref document number: 6803155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250