WO2014157202A1 - Dehydrogenation catalyst for naphthenic hydrocarbons, method for producing dehydrogenation catalyst for naphthenic hydrocarbons, system for producing hydrogen, and method for producing hydrogen - Google Patents

Dehydrogenation catalyst for naphthenic hydrocarbons, method for producing dehydrogenation catalyst for naphthenic hydrocarbons, system for producing hydrogen, and method for producing hydrogen Download PDF

Info

Publication number
WO2014157202A1
WO2014157202A1 PCT/JP2014/058281 JP2014058281W WO2014157202A1 WO 2014157202 A1 WO2014157202 A1 WO 2014157202A1 JP 2014058281 W JP2014058281 W JP 2014058281W WO 2014157202 A1 WO2014157202 A1 WO 2014157202A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum
dehydrogenation
dehydrogenation catalyst
group
metal
Prior art date
Application number
PCT/JP2014/058281
Other languages
French (fr)
Japanese (ja)
Inventor
倫視 中泉
智史 古田
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2015508544A priority Critical patent/JP6297538B2/en
Priority to CN201480019009.5A priority patent/CN105102120A/en
Priority to US14/778,753 priority patent/US20160045899A1/en
Priority to EP14775297.6A priority patent/EP2979756A4/en
Publication of WO2014157202A1 publication Critical patent/WO2014157202A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • B01J35/392
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/367Formation of an aromatic six-membered ring from an existing six-membered ring, e.g. dehydrogenation of ethylcyclohexane to ethylbenzene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/68Aromatisation of hydrocarbon oil fractions
    • C10G45/70Aromatisation of hydrocarbon oil fractions with catalysts containing platinum group metals or compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/63Platinum group metals with rare earths or actinides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a dehydrogenation catalyst for naphthenic hydrocarbons, a method for producing the dehydrogenation catalyst, a hydrogen production system using the dehydrogenation catalyst, and a method for producing hydrogen.
  • Naphthenic hydrocarbons (cyclic hydrocarbons) are used in the process of transporting, storing and supplying hydrogen.
  • naphthenic hydrocarbons are generated by hydrogenation of aromatic hydrocarbons.
  • This naphthenic hydrocarbon is transported to a hydrogen consumption area or stored in the consumption area.
  • hydrogen and aromatic hydrocarbons are generated by dehydrogenation of naphthenic hydrocarbons.
  • This hydrogen is supplied to the fuel cell.
  • Naphthenic hydrocarbons are liquid at room temperature, have a smaller volume than hydrogen gas, are less reactive than hydrogen gas, and are safe. Therefore, naphthenic hydrocarbons are more suitable for transportation and storage than hydrogen gas.
  • Non-Patent Document 1 As a dehydrogenation catalyst for naphthenic hydrocarbons, a catalyst in which a platinum-rhenium bimetal is supported on an alumina carrier is known (see Non-Patent Document 1 below).
  • An object of the present invention is to provide a dehydrogenation catalyst for naphthenic hydrocarbons having excellent dehydrogenation activity, a method for producing the dehydrogenation catalyst, a system for producing hydrogen using the dehydrogenation catalyst, and a method for producing hydrogen.
  • the dehydrogenation catalyst for naphthenic hydrocarbons includes a support containing aluminum oxide, platinum, and a Group 3 metal.
  • the supported amount of the Group 3 metal is 0.1 to 5.0% by mass with respect to the total mass of aluminum oxide in terms of Group 3 metal oxide. It may be.
  • the supported amount of platinum is m P mass% with respect to the total mass of aluminum oxide in terms of simple platinum, and the supported amount of the Group 3 metal is In terms of Group 3 metal oxide, m 3 / m P may be (10/3) to 4 when m 3 mass% with respect to the total mass of aluminum oxide.
  • a method for producing a dehydrogenation catalyst for naphthenic hydrocarbons includes a step of producing a carrier containing aluminum oxide and carrying a Group 3 metal, and carrying a platinum compound solution on the carrier. And firing the carrier.
  • the platinum compound may contain an amine or ammonia.
  • a pseudo-boehmite state aluminum hydroxide, a Group 3 metal nitrate aqueous solution, and nitric acid are kneaded to prepare a kneaded product.
  • the carrier may be produced by producing pellets by extrusion molding and firing the pellets.
  • a hydrogen production system includes a dehydrogenation reactor that includes the dehydrogenation catalyst and generates hydrogen by dehydrogenation of a naphthenic hydrocarbon using the dehydrogenation catalyst.
  • the hydrogen production method includes a step of generating hydrogen by dehydrogenation of a naphthenic hydrocarbon using the dehydrogenation catalyst.
  • a dehydrogenation catalyst for naphthenic hydrocarbons excellent in dehydrogenation activity a method for producing the dehydrogenation catalyst, a hydrogen production system and a method for producing hydrogen using the dehydrogenation catalyst.
  • FIG. 1 is a diagram showing the relationship between the type of Group 3 metal contained in the dehydrogenation catalyst and the platinum surface area.
  • FIG. 2 is a diagram showing the relationship between the elapsed time of the dehydrogenation reaction of methylcyclohexane (MCH) using a dehydrogenation catalyst containing scandium and the conversion rate of MCH.
  • FIG. 3 is a graph showing the relationship between the elapsed time of the dehydrogenation reaction of methylcyclohexane (MCH) using a dehydrogenation catalyst containing cerium and the conversion rate of MCH.
  • FIG. 4 is a graph showing the relationship between the amount of cerium supported in the dehydrogenation catalyst and the platinum surface area.
  • FIG. 5 is a schematic view showing an embodiment of a hydrogen production system according to the present invention.
  • FIG. 6 is a diagram showing the relationship between the amount of cerium oxide supported and the platinum surface area in the dehydrogenation catalyst according to the present invention.
  • FIG. 7 is a graph showing the relationship between the supported amount of platinum, the degree of platinum dispersion, and the relative reaction rate of the dehydrogenation reaction in the dehydrogenation catalyst according to the present invention.
  • FIG. 8 is a diagram showing the relationship between the molar ratio of the Group 3 metal and platinum in the dehydrogenation catalyst according to the present invention and the molar ratio of CO adsorbed on platinum.
  • the dehydrogenation catalyst for naphthenic hydrocarbons includes a support containing aluminum oxide, platinum (Pt), and a Group 3 metal.
  • Platinum is supported on the carrier as a large number of atoms, clusters or fine particles. That is, platinum is present on the surface of aluminum oxide contained in the carrier.
  • the surface is a portion where the active metal is substantially supported and the catalytic reaction proceeds, and the thickness thereof may be a single molecule or more of aluminum oxide.
  • the particle size of the platinum fine particles supported on the carrier is not particularly limited, but may be, for example, 10 nm or less.
  • the Group 3 metal is also supported on the support in the same manner as platinum. That is, the Group 3 metal is present on the surface of the aluminum oxide. Further, the Group 3 metal may be contained in the aluminum oxide. In other words, in the crystal structure of aluminum oxide, a part of aluminum (Al) may be replaced by a Group 3 metal, and a part of the carrier may be an oxide of a Group 3 metal (for example, cerium oxide).
  • the dehydrogenation activity is evaluated based on, for example, the conversion C (unit: mol%) of a naphthene hydrocarbon defined by the following formula (1).
  • a high conversion C means that the dehydrogenation activity of the dehydrogenation catalyst is high.
  • M1 is the number of moles of naphthenic hydrocarbon supplied to the reaction vessel in which the dehydrogenation catalyst is arranged.
  • M2 is the number of moles of aromatic hydrocarbons contained in the product of the dehydrogenation reaction.
  • M3 is the number of moles of naphthenic hydrocarbon remaining after the dehydrogenation reaction.
  • the conversion rate C is the conversion rate of methylcyclohexane
  • M1 and M3 are the number of moles of methylcyclohexane
  • M2 is the number of moles of toluene.
  • the Group 3 metal adheres to the aluminum oxide or is contained inside the aluminum oxide, a part of oxygen constituting the oxide of the aluminum oxide or the Group 3 metal is reduced in the reducing atmosphere. In this case, a large number of lattice defects are formed on the carrier.
  • the platinum is fixed to the carrier by fitting the platinum into the lattice defect. As a result, platinum is more highly dispersed by heating during the dehydrogenation reaction, and movement and aggregation of platinum on the support surface are suppressed.
  • the platinum surface area during the dehydrogenation reaction is increased and the aggregation of platinum is suppressed, so that the dehydrogenation activity and durability are improved. improves.
  • the dehydrogenation catalyst contains cerium (Ce) as a Group 3 metal. Formation of lattice defects due to the Group 3 metal is confirmed, for example, by observing the chemical shift of the peak derived from the Group 3 metal constituting the oxide in the photoelectron spectroscopy (XPS) spectrum of the dehydrogenation catalyst. be able to.
  • the dehydrogenation activity of a dehydrogenation catalyst that does not contain a Group 3 metal continues to decrease as the reaction time elapses. That is, in this embodiment, the catalyst life is improved as compared with a dehydrogenation catalyst not containing a Group 3 metal.
  • the dehydrogenation catalyst contains a Group 3 metal, its dehydrogenation activity is improved, so that the supported amount of platinum is the same as that of a conventional dehydrogenation catalyst not containing a Group 3 metal.
  • the present embodiment has a decatalytic activity equivalent to that of a conventional dehydrogenation catalyst even when the amount of platinum supported is smaller than that of a conventional dehydrogenation catalyst not including a Group 3 metal. Is possible. Therefore, in the present embodiment, it is possible to reduce the amount of expensive platinum supported without sacrificing the dehydrogenation activity.
  • the above-mentioned effect due to the Group 3 metal was confirmed for the first time by a combination of aluminum oxide and platinum.
  • the Group 3 metal increases the platinum surface area as described above, the Group 3 metal itself does not function as an active point of the dehydrogenation catalyst. Therefore, even if only the Group 3 metal among platinum and the Group 3 metal is supported on the carrier, the catalyst cannot have a high dehydrogenation activity.
  • naphthene hydrocarbon examples include one or more selected from the group consisting of cyclohexane, methylcyclohexane, dimethylcyclohexane, decalin, 1-methyldecalin, 2-methyldecalin and 2-ethyldecalin. Use it. These compounds are called organic hydrides.
  • the surface of the support may be composed of porous aluminum oxide.
  • the carrier has any of the following functions. Helps the main catalyst to increase its catalytic activity or selectivity. Increase the dispersibility of the active metal. Extend catalyst life. Increase the mechanical strength of the catalyst structure. Solidify the catalyst. Enables catalyst molding. A structure that substantially carries an active metal.
  • the type of aluminum oxide is not limited, but specific examples of aluminum oxide include ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and alumite.
  • the specific surface area of aluminum oxide is not particularly limited, but is approximately in the range of 100 to 500 m 2 / g.
  • the shape of the carrier is not particularly limited.
  • the carrier may be in the form of pellets, a plate, or a honeycomb.
  • the dehydrogenation catalyst can have a remarkably high dehydrogenation activity by containing cerium.
  • the amount of platinum supported on the dehydrogenation catalyst is not particularly limited, but is 0.1 to 5.0% by mass or 0.2 to 1.0% by mass with respect to the total mass of aluminum oxide in terms of platinum alone. It may be.
  • the amount of platinum supported is not less than the above lower limit, the dehydrogenation activity is further improved.
  • the supported amount of platinum is equal to or more than the above upper limit value, the degree of improvement in the catalytic activity accompanying the increase in the supported amount of platinum becomes moderate.
  • the price of platinum is very high, the amount of platinum supported is limited for practical use of the dehydrogenation catalyst. Note that the effect of the present invention can be achieved even when the supported amount of platinum is outside the above numerical range.
  • the amount of Group 3 metal supported in the dehydrogenation catalyst is not particularly limited, but may be 0.1 to 5.0% by mass with respect to the total mass of aluminum oxide in terms of Group 3 metal oxide. .
  • the amount of the Group 3 metal supported is not less than the above lower limit, the platinum surface area is further increased and the dehydrogenation activity is further improved.
  • the amount of the Group 3 metal supported is not more than the above upper limit value, it is easy to increase the platinum surface area while maintaining the mechanical strength of the dehydrogenation catalyst. Further, when the amount of the Group 3 metal supported is not more than the above upper limit value, the carrier can be easily molded in the production process.
  • the amount of the Group 3 metal supported in the dehydrogenation catalyst may be greater than 0% by mass and 20% by mass or less in terms of Group 3 metal oxide.
  • the supported amount of the Group 3 metal in the dehydrogenation catalyst may be greater than 0% by mass and 10% by mass or less in terms of Group 3 metal oxide.
  • the amount of Group 3 metal supported in the dehydrogenation catalyst may be 0.3 to 5.0% by mass or 2.0 to 3.0% by mass in terms of Group 3 metal oxide. When the amount of Group 3 metal supported is 2.0 to 3.0% by mass in terms of Group 3 metal oxide, the platinum surface area tends to increase particularly easily.
  • the supported amount of platinum is m P mass% with respect to the total mass of aluminum oxide in terms of platinum alone, and the supported amount of group 3 metal is the total amount of aluminum oxide in terms of oxide of group 3 metal.
  • m 3 mass% with respect to mass m 3 / m P may be (10/3) to 4.
  • M 3 / m P may be 2.78 to 3.64 because the platinum dispersity is high and the reaction rate of the dehydrogenation reaction tends to be high.
  • the dehydrogenation catalyst according to the present embodiment is produced, for example, by a method including a Group 3 metal supporting step and a subsequent platinum supporting step as follows.
  • a carrier containing aluminum oxide and supporting the group 3 metal is prepared.
  • a platinum compound solution is supported on a carrier and the carrier is fired.
  • a solution (for example, an aqueous solution) of a Group 3 metal compound is supported on a support (for example, a porous aluminum oxide support).
  • a support for example, a porous aluminum oxide support.
  • the supporting method include an incipient wetness method, a pore filling method, an adsorption method, an immersion method, an evaporation to dryness method, a spray method, an ion exchange method, a liquid phase reduction method, and the like.
  • a Group 3 metal salt is attached to the surface of the support.
  • the amount of Group 3 metal supported in the dehydrogenation catalyst may be adjusted by the concentration or amount of the Group 3 metal compound.
  • Group 3 metal compound for example, nitrate, sulfate, carbonate, acetate, phosphate, oxalate, borate, chloride, alkoxide, acetylacetonate, etc. may be used.
  • the group 3 metal is supported on the carrier by firing the carrier on which the salt of the group 3 metal is adhered and decomposing the salt.
  • the firing temperature may be any temperature at which the thermal decomposition of the salt proceeds, for example, about 300 to 600 ° C.
  • a method of forming a mixture having a porous structure by mixing a Group 3 metal compound with aluminum oxide or a precursor thereof before having a stable porous structure.
  • a method of such a method include a kneading method, a sol-gel method, and a coprecipitation method.
  • aluminum oxide and Group 3 metal oxide may be physically mixed.
  • the Group 3 metal may be added to the support by molding a mixture of the raw material powder of the support and the Group 3 metal compound and firing the molded body.
  • the carrier raw material powder for example, boehmite, which is a raw material of ⁇ -alumina, may be used.
  • the firing temperature in this case may be a temperature at which the pyrolysis of the Group 3 metal compound proceeds and ⁇ -alumina is produced by the boehmite sintering.
  • a firing temperature is, for example, about 300 to 600 ° C.
  • a carrier may be prepared.
  • the Group 3 metal is easily dispersed in the carrier.
  • the platinum surface area tends to be large, and high dehydration activity is likely to be obtained.
  • the hydroxide of the pseudoboehmite state aluminum for example, represented by the composition formula of AlOOH or Al 2 O 3 ⁇ H 2 O .
  • the kneaded product is also called a dough.
  • the pH of the kneaded material may be adjusted to 3-7. By adjusting the pH, the kneaded product has an appropriate viscosity, and the kneaded product is easily molded.
  • the pH of the kneaded product varies depending on the amount of nitric acid added. You may adjust pH of a kneaded material by adding ammonia water to a kneaded material.
  • a platinum compound solution (for example, an aqueous solution) is supported on a carrier on which a Group 3 metal is supported.
  • the supporting method include an incipient wetness method, a pore filling method, an adsorption method, an immersion method, an evaporation to dryness method, a spray method, an ion exchange method, and a liquid phase reduction method.
  • the platinum compound is attached to the surface of the carrier.
  • the amount of platinum supported in the dehydrogenation catalyst may be adjusted by the concentration or amount of the platinum compound.
  • the platinum compound is not particularly limited, but is required to be soluble in a liquid solvent.
  • tetrachloroplatinic acid potassium tetrachloroplatinate, ammonium tetrachloroplatinate, sodium tetrachloroplatinate, bis (acetylacetonato) platinum, diamminedichloroplatinum, dinitrodiammine platinum, dinitrodiammine platinum nitrate, dinitrodiammine platinum ammonia Solution
  • ethanolamine platinum tetraammine platinum dichloride, tetraammine platinum hydrochloride, tetraammine platinum nitrate, tetraammine platinum acetate, tetraammine platinum carbonate, tetraammine platinum phosphate, hexaammine platinum tetrachloride, hexaammine platinum hydrochloride, hexa Ammine platinum hydrochloride, bis (ethanolammonium) hexahydrox
  • the platinum compound preferably contains an amine or ammonia.
  • the platinum compound containing amine or ammonia is dinitrodiammine platinum nitrate, which may be at least one selected from the group consisting of dinitrodiammine platinum nitrate, dinitrodiammine platinum ammonia solution, ethanolamine platinum, and hexaammine platinum hydrochloride.
  • dinitrodiammine platinum ammonia solution platinum is easily dispersed uniformly on the support, and the platinum surface area is likely to increase.
  • platinum compound is ethanolamine platinum, platinum is likely to be selectively distributed to the outer shell portion (near the outer surface) of the carrier, and the platinum surface area is likely to increase.
  • the carrier carrying the platinum compound is baked to decompose the platinum compound, whereby the platinum is carried on the carrier and the dehydrogenation catalyst according to the present embodiment is completed.
  • the firing temperature may be a temperature at which the decomposition of the platinum compound proceeds, for example, about 200 to 500 ° C. In particular, when calcined at 350 ° C. or lower, the aggregation of platinum during calcination hardly occurs, and the platinum surface area in the dehydrogenation catalyst tends to increase.
  • the Group 3 metal when the Group 3 metal is supported on the carrier, it is preferable to perform firing at a high temperature at which the Group 3 metal compound is decomposed.
  • platinum when platinum is supported on a carrier, it is preferable to perform the firing at a low temperature at which platinum aggregation hardly occurs.
  • the Group 3 metal and platinum are not supported on the support at the same time, and both metals are individually supported on the support in the above two steps having different firing temperatures. Thereby, the dehydrogenation catalyst excellent in dehydrogenation activity can be manufactured easily.
  • the hydrogen production system 100 is a hydrogen production system in a hydrogen station for supplying hydrogen gas as fuel to a fuel cell vehicle, for example.
  • the hydrogen production system 100 includes at least a dehydrogenation reactor 2, a first gas-liquid separator 4, a hydrogen purifier 6, and a tank 16.
  • the dehydrogenation reactor 2 includes the dehydrogenation catalyst according to the present embodiment, and hydrogen and organic compounds (aromatic hydrocarbons, etc.) are obtained by dehydrogenation of naphthenic hydrocarbon (organic hydride) using the dehydrogenation catalyst. ) Is generated. That is, the method for producing hydrogen according to the present embodiment includes a step (dehydrogenation step) of generating hydrogen and an organic compound by dehydrogenation of a naphthenic hydrocarbon using the dehydrogenation catalyst according to the present embodiment.
  • the dehydrogenation step naphthenic hydrocarbons are supplied into the dehydrogenation reactor 2.
  • the dehydrogenation catalyst according to the present embodiment is installed in the dehydrogenation reactor 2.
  • the inside of the dehydrogenation reactor is a reducing atmosphere.
  • the naphthenic hydrocarbon comes into contact with the dehydrogenation catalyst in the dehydrogenation reactor 2, a dehydrogenation reaction occurs, and at least a pair of hydrogen atoms are extracted from the naphthenic hydrocarbon, and a hydrogen molecule and an organic such as an aromatic hydrocarbon are obtained. A compound is formed.
  • the dehydrogenation reaction is a gas phase reaction.
  • the product (hydrogen molecule and organic compound) of the dehydrogenation reaction is supplied from the dehydrogenation reactor 2 into the first gas-liquid separator 4.
  • the temperature in the first gas-liquid separator 4 is not lower than the melting point of the organic compound and lower than the boiling point of the organic compound.
  • the pressure in the first gas-liquid separator 4 is normal pressure (substantially atmospheric pressure). Therefore, the hydrogen molecules in the first gas-liquid separator 4 are gases, and the organic compounds in the first gas-liquid separator 4 are liquids. That is, in the first gas-liquid separator 4, the product of the dehydrogenation reaction is separated into hydrogen gas (gas phase, gas layer) and organic compound liquid (liquid phase, liquid layer).
  • the gas phase (hydrogen-containing gas) in the first gas-liquid separator 4 is supplied to the hydrogen purifier 6.
  • the liquid phase (organic compound liquid) in the first gas-liquid separator 4 is supplied to the tank 16. Note that an organic compound vapor may be mixed in the gas phase.
  • the partial pressure of the organic compound in the gas phase is at most about the saturated vapor pressure of the organic compound.
  • a part of hydrogen generated by dehydrogenation (a trace amount of hydrogen gas) is dissolved in the liquid phase.
  • organic hydride that has not been dehydrogenated may remain in the liquid phase.
  • the manufacturing system 100 may further include a second gas-liquid separator.
  • the liquid phase (organic compound liquid) in the first gas-liquid separator 4 may be supplied to the second gas-liquid separator instead of being supplied to the fuel cell vehicle.
  • a 2nd gas-liquid separator is described as the deaeration apparatus 8.
  • FIG. The degassing device 8 may be used to separate the hydrogen gas dissolved in the organic compound liquid from the liquid.
  • the deaeration device 8 may include, for example, a separation membrane that selectively allows only hydrogen gas among hydrogen gas and organic compounds to permeate. Using this separation membrane, hydrogen gas is separated from the organic compound.
  • the separation membrane is, for example, a metal membrane (such as a PbAg-based membrane, a PdCu-based membrane, or an Nb-based membrane), an inorganic membrane (such as a silica membrane, a zeolite membrane, or a carbon membrane), or a polymer membrane (a fluororesin membrane or polyimide).
  • a metal membrane such as a PbAg-based membrane, a PdCu-based membrane, or an Nb-based membrane
  • an inorganic membrane such as a silica membrane, a zeolite membrane, or a carbon membrane
  • a polymer membrane a fluororesin membrane or polyimide.
  • a membrane A membrane.
  • the deaeration apparatus 8 is not limited to an apparatus provided with a separation membrane.
  • the deaeration device 8 may be a device that changes the gas solubility in the liquid by changing the pressure or temperature and performs a method of deaeration.
  • the hydrogen gas separated from the organic compound by the deaerator 8 is supplied to the low-pressure compressor 12 via the vacuum pump 10 and compressed.
  • the hydrogen gas compressed by the low-pressure compressor 12 is further compressed by the high-pressure compressor 14 and then used as fuel for the fuel cell.
  • the liquid of the organic compound separated from the hydrogen gas by the deaeration device 8 is supplied into the tank 16.
  • the organic compound in the tank 16 may be reused as an organic hydride by being hydrogenated.
  • hydrogen gas is separated from the liquid phase (organic compound liquid).
  • the hydrogen production system 100 may not include the deaeration device 8, the vacuum pump 10, the low-pressure compressor 12, and the high-pressure compressor 14.
  • the hydrogen-containing gas supplied from the first gas-liquid separator 4 to the hydrogen purifier 6 is purified in the hydrogen purifier 6.
  • the hydrogen purifier 6 may include, for example, a separation membrane that selectively allows only hydrogen gas among hydrogen gas and organic compounds to permeate.
  • the separation membrane is, for example, a metal membrane (such as a PbAg-based membrane, a PdCu-based membrane, or an Nb-based membrane), an inorganic membrane (such as a silica membrane, a zeolite membrane, or a carbon membrane), or a polymer membrane (a fluororesin membrane or polyimide).
  • a membrane A membrane).
  • the hydrogen gas permeates through the separation membrane, thereby increasing the purity of the hydrogen gas.
  • an organic compound (such as unreacted organic hydride) in the hydrogen-containing gas cannot permeate the separation membrane. Therefore, the organic compound is separated from the hydrogen-containing gas, and high-purity hydrogen gas is purified.
  • the purified high-purity hydrogen gas may be used as fuel for the fuel cell without passing through the high-pressure compressor 14, or may be used as fuel for the fuel cell after being compressed by the high-pressure compressor 14. Note that not only an organic compound but also a trace amount of hydrogen gas may not permeate the carbon film. Hydrogen gas that has not permeated the carbon membrane may be recovered together with the organic hydride and supplied as an off-gas into the dehydrogenation reactor 2. Alternatively, the organic compound that has not permeated the carbon film may be collected into the tank 16.
  • the hydrogen purification apparatus 6 is not limited to an apparatus provided with a separation membrane.
  • the hydrogen purifier 6 is selected from the group consisting of, for example, a pressure swing adsorption (PSA) method, a thermal swing adsorption (TSA) method (temperature swing adsorption method), a temperature pressure swing adsorption (TPSA) method, and a cryogenic separation method.
  • PSA pressure swing adsorption
  • TSA thermal swing adsorption
  • TPSA temperature pressure swing adsorption
  • An apparatus that performs at least one method may be used. These apparatuses may be used to purify the hydrogen-containing gas, supply the off-gas generated along with the purification into the dehydrogenation reactor 2, and supply the organic compound separated from the hydrogen-containing gas to the tank 16.
  • the effect of the present invention is achieved only by a combination of aluminum oxide, platinum and a Group 3 metal, and is difficult to achieve without aluminum oxide.
  • the carrier may contain other components such as silica (SiO 2 ) or titania (TiO 2 ) in addition to aluminum oxide as long as the effect of the present invention is not impaired.
  • the effect of the present invention is difficult to achieve without platinum.
  • other components such as palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), etc. are supported on the carrier in addition to platinum. It may be.
  • Example 1 [Group 3 metal loading process] A molded body made of porous ⁇ -alumina was used as the carrier. The particle size of the molded body was about 1 to 2 mm. An aqueous scandium nitrate solution was supported on 5.18 g of the carrier by a pore filling method. Subsequently, after the support was dried at 100 ° C. overnight, it was fired in air at 550 ° C. for 3 hours to decompose scandium nitrate, thereby supporting scandium on the support.
  • the dehydrogenation catalyst of Example 1 was created through the above steps.
  • the dehydrogenation catalyst of Example 1 includes a support made of ⁇ -alumina, scandium supported on the support, and platinum supported on the support.
  • the amount of scandium supported on the dehydrogenation catalyst was 0.3% by mass relative to the total mass of the carrier ( ⁇ -alumina).
  • the amount of platinum supported on the dehydrogenation catalyst was 0.3% by mass relative to the total mass of the carrier ( ⁇ -alumina).
  • Example 2 A dehydrogenation catalyst of Example 2 was prepared in the same manner as in Example 1 except that an aqueous solution of yttrium nitrate was used instead of the aqueous solution of scandium nitrate.
  • the dehydrogenation catalyst of Example 2 includes a carrier made of ⁇ -alumina, yttrium supported on the carrier, and platinum supported on the carrier.
  • the amount of yttrium supported on the dehydrogenation catalyst was 0.4% by mass relative to the total mass of the carrier ( ⁇ -alumina).
  • the amount of platinum supported on the dehydrogenation catalyst was 0.3% by mass relative to the total mass of the carrier ( ⁇ -alumina).
  • Example 3 A dehydrogenation catalyst of Example 3 was prepared in the same manner as in Example 1 except that an aqueous solution of lanthanum nitrate was used instead of the aqueous solution of scandium nitrate.
  • the dehydrogenation catalyst of Example 3 includes a support made of ⁇ -alumina, lanthanum supported on the support, and platinum supported on the support.
  • the amount of La supported on the dehydrogenation catalyst was 0.5% by mass relative to the total mass of the carrier ( ⁇ -alumina).
  • the amount of platinum supported on the dehydrogenation catalyst was 0.3% by mass relative to the total mass of the carrier ( ⁇ -alumina).
  • Example 4 A dehydrogenation catalyst of Example 4 was prepared in the same manner as in Example 1 except that an aqueous solution of cerium nitrate was used instead of the aqueous solution of scandium nitrate.
  • the dehydrogenation catalyst of Example 4 includes a support made of ⁇ -alumina, cerium supported on the support, and platinum supported on the support.
  • the amount of cerium supported in the dehydrogenation catalyst was 0.5% by mass relative to the total mass of the carrier ( ⁇ -alumina).
  • the amount of platinum supported on the dehydrogenation catalyst was 0.3% by mass relative to the total mass of the carrier ( ⁇ -alumina).
  • Example 5 A dehydrogenation catalyst of Example 5 was prepared in the same manner as in Example 4 except that the amount of cerium supported was changed in the Group 3 metal loading step.
  • the dehydrogenation catalyst of Example 5 includes a carrier made of ⁇ -alumina, cerium supported on the carrier, and platinum supported on the carrier.
  • the amount of cerium supported in the dehydrogenation catalyst was 0.3% by mass relative to the total mass of the carrier ( ⁇ -alumina).
  • the amount of platinum supported on the dehydrogenation catalyst was 0.3% by mass relative to the total mass of the carrier ( ⁇ -alumina).
  • Example 6 A dehydrogenation catalyst of Example 6 was prepared in the same manner as in Example 4 except that the amount of cerium supported was changed in the Group 3 metal loading process.
  • the dehydrogenation catalyst of Example 6 includes a support made of ⁇ -alumina, cerium supported on the support, and platinum supported on the support.
  • the amount of cerium supported on the dehydrogenation catalyst was 1.0% by mass relative to the total mass of the carrier ( ⁇ -alumina).
  • the amount of platinum supported on the dehydrogenation catalyst was 0.3% by mass relative to the total mass of the carrier ( ⁇ -alumina).
  • a dehydrogenation catalyst of Comparative Example 1 was prepared in the same manner as in Example 1 except that the Group 3 metal loading step was not performed.
  • the dehydrogenation catalyst of Comparative Example 1 includes a carrier made of ⁇ -alumina and platinum supported on the carrier.
  • the dehydrogenation catalyst of Comparative Example 1 does not contain a Group 3 metal.
  • the amount of platinum supported on the dehydrogenation catalyst was 0.3% by mass relative to the total mass of the carrier ( ⁇ -alumina).
  • Example 1 The platinum surface area contained in the dehydrogenation catalyst of Example 1 was determined using a chemical adsorption method.
  • carbon monoxide (CO) was supplied into a container in which the dehydrogenation catalyst of Example 1 was installed. Based on the difference between the volume of CO supplied into the container and the volume of CO discharged outside the container without being adsorbed by the dehydrogenation catalyst in the container, the CO per unit mass of platinum at 40 ° C.
  • the adsorption amount (unit: cm 3 / g) was calculated.
  • Example 1 Based on the amount of CO adsorbed, the amount of platinum existing on the catalyst surface per unit mass of platinum and acting as an active site, that is, the platinum surface area (unit: m 2 / g) was calculated. Table 1 shows the CO adsorption amount and platinum surface area of Example 1.
  • Example 1 ⁇ Examples 2 to 6, Comparative Example 1> In the same manner as in Example 1, the CO adsorption amount and platinum surface area of other Examples and Comparative Example 1 were determined. Table 1 shows the CO adsorption amount and platinum surface area of other examples and comparative example 1.
  • Example 1 The dehydrogenation catalyst of Example 1 was charged into a fixed bed flow type reactor. While supplying methylcyclohexane into the reactor, the temperature of the central portion of the catalyst layer was maintained at 330 ° C., and the dehydrogenation reaction of methylcyclohexane was continued in the reactor. The liquid space velocity (LHSV) of methylcyclohexane fed into the reactor was maintained at 11 h- 1 . When 3 hours had elapsed from the start of the reaction, the gas discharged from the reactor was recovered and cooled to obtain a product oil. The product oil was analyzed with a gas chromatograph-flame ionization detector (GC-FID).
  • GC-FID gas chromatograph-flame ionization detector
  • Examples 4 to 6, Comparative Example 1 In the same manner as in Example 1, the conversion rate of methylcyclohexane when the dehydrogenation catalysts of Examples 4 to 6 and Comparative Example 1 were used alone was calculated. Table 1 shows the conversion rates of methylcyclohexane of Examples 4 to 6 and Comparative Example 1. In all cases of Examples 1, 4 to 6 and Comparative Example 1, the volume of the dehydrogenation catalyst installed in the reactor was the same.
  • FIG. 1 The platinum surface areas in the dehydrogenation catalysts of Examples 1 to 4 and Comparative Example 1 are shown in FIG. In FIG. 1, “None” corresponds to Comparative Example 1. “Sc” corresponds to Example 1. “Y” corresponds to Example 2. “La” corresponds to Example 3. “Ce” corresponds to Example 4. Table 1 and FIG. 1 show that the platinum surface area is increased by adding a Group 3 metal to ⁇ -alumina supporting platinum.
  • FIG. 2 The conversion rate of methylcyclohexane at each time point of the dehydrogenation reaction of Example 1 and Comparative Example 1 is shown in FIG. In FIG. 2, “No addition” corresponds to Comparative Example 1. “Sc addition” corresponds to Example 1. Table 2 and FIG. 2 show that the dehydrogenation activity is improved by adding scandium to ⁇ -alumina supporting platinum.
  • Example 6 The platinum surface areas in the dehydrogenation catalysts of Examples 4 to 6 and Comparative Example 1 are shown in FIG. In FIG. 4, “None” corresponds to Comparative Example 1. “0.3% -Ce” corresponds to Example 5. “0.5% -Ce” corresponds to Example 4. ““ 1.0% -Ce ”corresponds to Example 6. Table 1 and FIG. 4 show that in the range where the amount of cerium added is 0.3 to 1.0%, the surface area of platinum increases with the addition of cerium regardless of the amount of cerium added to the ⁇ -alumina supporting platinum. It is shown that.
  • Example 11 to 15 A predetermined amount of water, an aqueous solution of cerium nitrate and dilute nitric acid were added to the aluminum hydroxide powder in a pseudo boehmite state and kneaded. The pH of the kneaded product was adjusted to about 3 to 7 by adding dilute nitric acid. Pellets were produced by extrusion molding of the kneaded product. The pellet was dried at 100 to 150 ° C. for 2 hours and then calcined at 550 ° C. for 2 hours to produce a pellet made of ⁇ -alumina supporting C 2 O 3 . After the calcined pellet was supported with an aqueous solution of ethanolamine platinum, the pellet was dried. The dried pellets were fired at 330 ° C. for 2 hours.
  • dehydrogenation catalysts of Examples 11 to 15 including ⁇ -alumina (support), platinum, and cerium oxide (Ce 2 O 3 ) were produced.
  • the amount of platinum supported on the dehydrogenation catalysts of Examples 11 to 15 was adjusted to 0.3% by mass with respect to the total mass of ⁇ -alumina in terms of platinum alone.
  • the amount of Ce 2 O 3 supported on the dehydrogenation catalysts of Examples 11 to 15 was adjusted to the values shown in Table 3 below.
  • the supported amount of Ce 2 O 3 shown in Table 3 below is a ratio to the total mass of ⁇ -alumina.
  • Example 2 In the same manner as in Example 1, the platinum surface area in the dehydrogenation catalysts of Examples 11 to 15 was determined.
  • the platinum surface area of each example is shown in Table 3 below.
  • FIG. 6 shows the relationship between the amount of Ce 2 O 3 supported on the dehydrogenation catalysts of Examples 11 to 15 and the platinum surface area.
  • Example 21 to 24 In the preparation of the dehydrogenation catalysts of Examples 21 to 24, the supported amount of platinum with respect to the total mass of ⁇ -alumina was adjusted to the value shown in Table 4 below, and the supported amount of Ce 2 O 3 with respect to the total mass of ⁇ -alumina was adjusted. It adjusted to 2.0 mass%. Except these matters, the dehydrogenation catalysts of Examples 21 to 24 were produced in the same manner as in Examples 11 to 15. Each of the dehydrogenation catalysts of Examples 21 to 24 was provided with ⁇ -alumina (support), platinum, and cerium oxide (Ce 2 O 3 ). The platinum dispersion degree in the dehydrogenation catalysts of Examples 21 to 24 was determined based on the following formula 2.
  • Dm V chem ⁇ (SF / 22414) ⁇ Mw ⁇ (1 / c) ⁇ 100
  • Dm is a platinum dispersity (unit:%).
  • V chem is the amount of CO adsorption (unit: cm 3 ) in the dehydrogenation catalyst.
  • SF is the stoichiometric ratio of CO adsorption and is 1.
  • Mw is the atomic weight of platinum (unit: g / mol).
  • the reaction rate r 300 of dehydrogenation of methylcyclohexane using each dehydrogenation catalyst by dividing the reaction rate r 300 in the case of using the dehydrogenation catalyst of Example 21, methylcyclohexane using each dehydrogenated catalyst
  • the relative reaction rate of the dehydrogenation reaction was determined.
  • the relative reaction rates when each dehydrogenation catalyst is used are shown in Table 4 below.
  • Table 4 below shows the ratio m 3 / m P of the supported amount of platinum (m P mass%) and the supported amount of Ce 2 O 3 (m 3 mass%) in each dehydrogenation catalyst.
  • FIG. 7 shows the platinum dispersion degree of each dehydrogenation catalyst and the relative reaction rate when each dehydrogenation catalyst is used. The circles in FIG. 7 indicate the degree of platinum dispersion, and the triangles indicate the relative reaction rate.
  • Examples 31 to 37 Comparative Example 31
  • the water absorption rate of a commercially available ⁇ -alumina support was measured. Based on this water absorption, an aqueous solution containing a group III metal nitrate shown in Table 5 below at a predetermined concentration was prepared, and the aqueous solution was supported on ⁇ -alumina. Subsequently, the support was dried at 100 ° C. for 8 hours and then calcined at 500 ° C. for 2 hours. An aqueous solution of a platinum compound was supported on the carrier after firing. Subsequently, the support was dried and calcined at 330 ° C. for 2 hours. Through the above steps, dehydrogenation catalysts of Examples 31 to 37 were produced.
  • the amount of Group 3 metal oxide supported on each dehydrogenation catalyst was adjusted to the values shown in Table 5 below.
  • the amount of platinum supported on each dehydrogenation catalyst was adjusted to the values shown in Table 5 below.
  • the number of moles of Group 3 metal oxide and the number of moles of platinum in each dehydrogenation catalyst were the values shown in Table 5 below.
  • the ratio of the number of moles of Group 3 metal oxide to the number of moles of platinum in each dehydrogenation catalyst (Metal / Pt) was the value shown in Table 5 below.
  • the step of supporting an aqueous solution of a Group 3 metal nitrate on ⁇ -alumina was not performed, and only platinum was supported on ⁇ -alumina.
  • the supported amount of platinum in the dehydrogenation catalyst of Comparative Example 31 was adjusted to the values shown in Table 5 below.
  • the number of moles of platinum in the dehydrogenation catalyst of Comparative Example 31 was the value shown in Table 5 below.
  • Example 2 Using the same chemical adsorption method as in Example 1, the ratio of the number of moles of CO adsorbed to platinum to the number of moles of platinum in each dehydrogenation catalyst (CO / Pt) was determined.
  • the CO / Pt for each dehydrogenation catalyst is shown in Table 5 below.
  • FIG. 8 shows the relationship between Metal / Pt and CO / Pt in each dehydrogenation catalyst.
  • Example 41 to 45 In the preparation of the dehydrogenation catalysts of Examples 41 to 45, a predetermined amount of water, an aqueous solution of cerium nitrate and dilute nitric acid were added to an aluminum hydroxide powder in a pseudo boehmite state, and these were kneaded. The pH of the kneaded product was adjusted to about 3 to 7 by adding dilute nitric acid. Pellets were produced by extrusion molding of the kneaded product. The pellet was dried at 100 to 150 ° C. for 2 hours and then calcined at 550 ° C. for 2 hours to produce a pellet made of ⁇ -alumina supporting C 2 O 3 . After carrying
  • dehydrogenation catalysts of Examples 41 to 45 including ⁇ -alumina (support), platinum, and cerium oxide (Ce 2 O 3 ) were produced. It was confirmed that all of the dehydrogenation catalysts of Examples 41 to 45 were dark brown. The amount of Ce 2 O 3 supported on each dehydrogenation catalyst was adjusted to 2% by mass with respect to the total mass of ⁇ -alumina. The concentration of the aqueous solution of each platinum compound used in Examples 41 to 45 was adjusted to the values shown in Table 6 below. The pH of each platinum compound aqueous solution used in Examples 41 to 45 was adjusted to the values shown in Table 6 below. The valence of platinum in each platinum compound used in Examples 41 to 45 was a value shown in Table 6 below. In the same manner as in Example 1, the platinum surface area in the dehydrogenation catalysts of Examples 41 to 45 was determined. The platinum surface area of each dehydrogenation catalyst is shown in Table 6 below.
  • the hydrogen gas obtained by the dehydrogenation reaction of naphthenic hydrocarbons using the dehydrogenation catalyst according to the present invention is used as fuel for fuel cells, for example.

Abstract

Provided is a dehydrogenation catalyst for naphthenic hydrocarbons, which has excellent dehydrogenation activity. One embodiment of the dehydrogenation catalyst for naphthenic hydrocarbons according to the present invention is provided with: a carrier that contains aluminum oxide; platinum; and a group 3 metal.

Description

ナフテン系炭化水素用の脱水素触媒、ナフテン系炭化水素用の脱水素触媒の製造方法、水素の製造システム、及び水素の製造方法Dehydrogenation catalyst for naphthenic hydrocarbons, method for producing dehydrogenation catalyst for naphthenic hydrocarbons, system for producing hydrogen, and method for producing hydrogen
 本発明は、ナフテン系炭化水素用の脱水素触媒、当該脱水素触媒の製造方法、当該脱水素触媒を用いた水素の製造システム及び水素の製造方法に関する。 The present invention relates to a dehydrogenation catalyst for naphthenic hydrocarbons, a method for producing the dehydrogenation catalyst, a hydrogen production system using the dehydrogenation catalyst, and a method for producing hydrogen.
 近年、環境負荷の小さい水素を燃料とする燃料電池を、自動車等の動力源に用いることが期待されている。水素の輸送、貯蔵及び供給の過程では、ナフテン系炭化水素(環状炭化水素)が利用される。例えば、水素の製造施設において、芳香族炭化水素の水素化により、ナフテン系炭化水素を生成させる。このナフテン系炭化水素を、水素の消費地へ輸送したり、消費地で貯蔵したりする。消費地において、ナフテン系炭化水素の脱水素により、水素と芳香族炭化水素とを生成させる。この水素を燃料電池へ供給する。ナフテン系炭化水素は、常温において液体であり、水素ガスよりも体積が小さく、水素ガスよりも反応性が低く安全である。そのため、ナフテン系炭化水素は水素ガスよりも輸送及び貯蔵に適している。 In recent years, it is expected that a fuel cell using hydrogen with a low environmental load as a fuel will be used as a power source for automobiles and the like. Naphthenic hydrocarbons (cyclic hydrocarbons) are used in the process of transporting, storing and supplying hydrogen. For example, in a hydrogen production facility, naphthenic hydrocarbons are generated by hydrogenation of aromatic hydrocarbons. This naphthenic hydrocarbon is transported to a hydrogen consumption area or stored in the consumption area. In the consumption area, hydrogen and aromatic hydrocarbons are generated by dehydrogenation of naphthenic hydrocarbons. This hydrogen is supplied to the fuel cell. Naphthenic hydrocarbons are liquid at room temperature, have a smaller volume than hydrogen gas, are less reactive than hydrogen gas, and are safe. Therefore, naphthenic hydrocarbons are more suitable for transportation and storage than hydrogen gas.
 ナフテン系炭化水素用の脱水素触媒としては、白金‐レニウムのバイメタルをアルミナ担体に担持させた触媒が知られている(下記非特許文献1参照。)。 As a dehydrogenation catalyst for naphthenic hydrocarbons, a catalyst in which a platinum-rhenium bimetal is supported on an alumina carrier is known (see Non-Patent Document 1 below).
 本発明は、脱水素活性に優れたナフテン系炭化水素用の脱水素触媒、当該脱水素触媒の製造方法、当該脱水素触媒を用いた水素の製造システム及び水素の製造方法を提供することを目的とする。 An object of the present invention is to provide a dehydrogenation catalyst for naphthenic hydrocarbons having excellent dehydrogenation activity, a method for producing the dehydrogenation catalyst, a system for producing hydrogen using the dehydrogenation catalyst, and a method for producing hydrogen. And
 本発明の一側面に係るナフテン系炭化水素用の脱水素触媒は、酸化アルミニウムを含む担体と、白金と、第3族金属と、を備える。 The dehydrogenation catalyst for naphthenic hydrocarbons according to one aspect of the present invention includes a support containing aluminum oxide, platinum, and a Group 3 metal.
 本発明の一側面に係る上記脱水素触媒では、第3族金属の担持量が、第3族金属の酸化物換算で、酸化アルミニウムの全質量に対して、0.1~5.0質量%であってよい。 In the dehydrogenation catalyst according to one aspect of the present invention, the supported amount of the Group 3 metal is 0.1 to 5.0% by mass with respect to the total mass of aluminum oxide in terms of Group 3 metal oxide. It may be.
 本発明の一側面に係る上記脱水素触媒では、白金の担持量が、白金単体換算で、酸化アルミニウムの全質量に対して、m質量%であり、第3族金属の担持量が、第3族金属の酸化物換算で、酸化アルミニウムの全質量に対して、m質量%であるとき、m/mが、(10/3)~4であってよい。 In the dehydrogenation catalyst according to one aspect of the present invention, the supported amount of platinum is m P mass% with respect to the total mass of aluminum oxide in terms of simple platinum, and the supported amount of the Group 3 metal is In terms of Group 3 metal oxide, m 3 / m P may be (10/3) to 4 when m 3 mass% with respect to the total mass of aluminum oxide.
 本発明の一側面に係るナフテン系炭化水素用の脱水素触媒の製造方法は、酸化アルミニウムを含み、第3族金属が担持された担体を作製する工程と、白金化合物の溶液を担体に担持して、担体を焼成する工程と、を備える。 A method for producing a dehydrogenation catalyst for naphthenic hydrocarbons according to one aspect of the present invention includes a step of producing a carrier containing aluminum oxide and carrying a Group 3 metal, and carrying a platinum compound solution on the carrier. And firing the carrier.
 本発明の一側面に係る上記脱水素触媒の製造方法では、白金化合物が、アミン又はアンモニアを含んでよい。 In the method for producing a dehydrogenation catalyst according to one aspect of the present invention, the platinum compound may contain an amine or ammonia.
 本発明の一側面に係る上記脱水素触媒の製造方法では、擬ベーマイト状態のアルミニウムの水酸化物、第3族金属の硝酸塩の水溶液、及び硝酸を混練して、混練物を調製し、混練物の押出し成形によってペレットを作製し、ペレットを焼成することにより、担体を作製してよい。 In the method for producing a dehydrogenation catalyst according to one aspect of the present invention, a pseudo-boehmite state aluminum hydroxide, a Group 3 metal nitrate aqueous solution, and nitric acid are kneaded to prepare a kneaded product. The carrier may be produced by producing pellets by extrusion molding and firing the pellets.
 本発明の一側面に係る水素の製造システムは、上記脱水素触媒を有し、上記脱水素触媒を用いたナフテン系炭化水素の脱水素により、水素を生成させる脱水素反応器を備える。 A hydrogen production system according to one aspect of the present invention includes a dehydrogenation reactor that includes the dehydrogenation catalyst and generates hydrogen by dehydrogenation of a naphthenic hydrocarbon using the dehydrogenation catalyst.
 本発明の一側面に係る水素の製造方法は、上記脱水素触媒を用いたナフテン系炭化水素の脱水素により、水素を生成させる工程を備える。 The hydrogen production method according to one aspect of the present invention includes a step of generating hydrogen by dehydrogenation of a naphthenic hydrocarbon using the dehydrogenation catalyst.
 本発明によれば、脱水素活性に優れたナフテン系炭化水素用の脱水素触媒、当該脱水素触媒の製造方法、当該脱水素触媒を用いた水素の製造システム及び水素の製造方法を提供することができる。 According to the present invention, there are provided a dehydrogenation catalyst for naphthenic hydrocarbons excellent in dehydrogenation activity, a method for producing the dehydrogenation catalyst, a hydrogen production system and a method for producing hydrogen using the dehydrogenation catalyst. Can do.
図1は、脱水素触媒が含有する第3族金属の種類と白金表面積との関係を示す図である。FIG. 1 is a diagram showing the relationship between the type of Group 3 metal contained in the dehydrogenation catalyst and the platinum surface area. 図2は、スカンジウムを含有する脱水素触媒を用いたメチルシクロヘキサン(MCH)の脱水素反応の経過時間とMCHの転化率との関係を示す図である。FIG. 2 is a diagram showing the relationship between the elapsed time of the dehydrogenation reaction of methylcyclohexane (MCH) using a dehydrogenation catalyst containing scandium and the conversion rate of MCH. 図3は、セリウムを含有する脱水素触媒を用いたメチルシクロヘキサン(MCH)の脱水素反応の経過時間とMCHの転化率との関係を示す図である。FIG. 3 is a graph showing the relationship between the elapsed time of the dehydrogenation reaction of methylcyclohexane (MCH) using a dehydrogenation catalyst containing cerium and the conversion rate of MCH. 図4は、脱水素触媒におけるセリウムの担持量と白金表面積との関係を示す図である。FIG. 4 is a graph showing the relationship between the amount of cerium supported in the dehydrogenation catalyst and the platinum surface area. 図5は、本発明に係る水素の製造システムの一実施形態を示す模式図である。FIG. 5 is a schematic view showing an embodiment of a hydrogen production system according to the present invention. 図6は、本発明に係る脱水素触媒におけるセリウム酸化物の担持量と、白金表面積と、の関係を示す図である。FIG. 6 is a diagram showing the relationship between the amount of cerium oxide supported and the platinum surface area in the dehydrogenation catalyst according to the present invention. 図7は、本発明に係る脱水素触媒における白金の担持量、白金分散度、及び脱水素反応の相対反応速度の関係を示す図である。FIG. 7 is a graph showing the relationship between the supported amount of platinum, the degree of platinum dispersion, and the relative reaction rate of the dehydrogenation reaction in the dehydrogenation catalyst according to the present invention. 図8は、本発明に係る脱水素触媒における第3族金属及び白金のモル比と、白金に吸着するCOのモル比と、の関係を示す図である。FIG. 8 is a diagram showing the relationship between the molar ratio of the Group 3 metal and platinum in the dehydrogenation catalyst according to the present invention and the molar ratio of CO adsorbed on platinum.
 以下、本発明の好適な実施形態について説明する。ただし、本発明は下記実施形態に何ら限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described. However, the present invention is not limited to the following embodiment.
 (ナフテン系炭化水素用の脱水素触媒)
 本実施形態に係るナフテン系炭化水素用の脱水素触媒は、酸化アルミニウムを含む担体と、白金(Pt)と、第3族金属と、を備える。
(Dehydrogenation catalyst for naphthenic hydrocarbons)
The dehydrogenation catalyst for naphthenic hydrocarbons according to this embodiment includes a support containing aluminum oxide, platinum (Pt), and a Group 3 metal.
 白金は、多数の原子、クラスター又は微粒子として、担体に担持されている。つまり白金は、担体に含まれる酸化アルミニウムの表面に存在している。表面とは、実質的に活性金属が担持され触媒反応が進行する部分であり、その厚みは酸化アルミニウムの単分子以上であれば良い。担体に担持された白金の微粒子の粒径は、特に限定されないが、例えば10nm以下であればよい。第3族金属も白金と同様に担体に担持されている。つまり第3族金属は、酸化アルミニウムの表面に存在している。また、第3族金属は酸化アルミニウムの内部に含有されていてもよい。換言すれば、酸化アルミニウムの結晶構造において、アルミニウム(Al)の一部が第3族金属によって置換されて、担体の一部が第3族金属の酸化物(例えば酸化セリウム)であってよい。 Platinum is supported on the carrier as a large number of atoms, clusters or fine particles. That is, platinum is present on the surface of aluminum oxide contained in the carrier. The surface is a portion where the active metal is substantially supported and the catalytic reaction proceeds, and the thickness thereof may be a single molecule or more of aluminum oxide. The particle size of the platinum fine particles supported on the carrier is not particularly limited, but may be, for example, 10 nm or less. The Group 3 metal is also supported on the support in the same manner as platinum. That is, the Group 3 metal is present on the surface of the aluminum oxide. Further, the Group 3 metal may be contained in the aluminum oxide. In other words, in the crystal structure of aluminum oxide, a part of aluminum (Al) may be replaced by a Group 3 metal, and a part of the carrier may be an oxide of a Group 3 metal (for example, cerium oxide).
 還元雰囲気において、ナフテン系炭化水素が脱水素触媒に接触すると、活性点である白金がナフテン系炭化水素から少なくとも一対の水素原子を引き抜いて、水素分子と不飽和炭化水素(例えば芳香族炭化水素)が生成する。このような脱水素反応を促進する触媒の活性を、脱水素活性という。 In a reducing atmosphere, when a naphthenic hydrocarbon comes into contact with a dehydrogenation catalyst, platinum as an active site extracts at least a pair of hydrogen atoms from the naphthenic hydrocarbon, and a hydrogen molecule and an unsaturated hydrocarbon (for example, an aromatic hydrocarbon). Produces. The activity of the catalyst that promotes such a dehydrogenation reaction is called dehydrogenation activity.
 脱水素活性は、例えば、下記数式(1)で定義されるナフテン系炭化水素の転化率C(単位:mol%)に基づいて評価される。転化率Cが高いことは、脱水素触媒の脱水素活性が高いことを意味する。
転化率C=(M2/M1)×100={M2/(M2+M3)}×100   (1)
数式(1)中、M1とは、脱水素触媒が配置された反応容器へ供給されるナフテン系炭化水素のモル数である。M2とは、脱水素反応の生成物中に含まれる芳香族炭化水素のモル数である。M3とは、脱水素反応後に残存するナフテン系炭化水素のモル数である。例えば、転化率Cがメチルシクロヘキサンの転化率であるとき、M1、M3はメチルシクロヘキサンのモル数であり、M2はトルエンのモル数である。
The dehydrogenation activity is evaluated based on, for example, the conversion C (unit: mol%) of a naphthene hydrocarbon defined by the following formula (1). A high conversion C means that the dehydrogenation activity of the dehydrogenation catalyst is high.
Conversion C = (M2 / M1) × 100 = {M2 / (M2 + M3)} × 100 (1)
In Formula (1), M1 is the number of moles of naphthenic hydrocarbon supplied to the reaction vessel in which the dehydrogenation catalyst is arranged. M2 is the number of moles of aromatic hydrocarbons contained in the product of the dehydrogenation reaction. M3 is the number of moles of naphthenic hydrocarbon remaining after the dehydrogenation reaction. For example, when the conversion rate C is the conversion rate of methylcyclohexane, M1 and M3 are the number of moles of methylcyclohexane, and M2 is the number of moles of toluene.
 本発明では、セリウムを酸化アルミニウムに添加すると、その物理的、電子的又は化学的な作用により、触媒表面で活性点として作用する白金が増加したり、または活性点としての白金の機能が増大したりする、と本発明者らは考える。また、本発明者らは、本発明の効果が達成されるより具体的な理由の一つは以下の通りである、と考える。ただし、本発明の効果が達成される具体的な理由は以下に限定されない。 In the present invention, when cerium is added to aluminum oxide, platinum acting as an active site on the catalyst surface increases or the function of platinum as an active site increases due to its physical, electronic or chemical action. The present inventors think that. In addition, the inventors consider that one of the more specific reasons for achieving the effect of the present invention is as follows. However, the specific reason why the effect of the present invention is achieved is not limited to the following.
 本実施形態では、第3族金属が酸化アルミニウムに付着したり、酸化アルミニウムの内部に含まれたりしているため、酸化アルミニウム又は第3族金属の酸化物を構成する酸素の一部が還元雰囲気において担体から脱離して、担体に多数の格子欠陥が形成される。この格子欠陥に白金が嵌り込むことにより、白金が担体に固定される。その結果、脱水素反応時の加熱によって白金がより高分散な状態となり、かつ白金の担体表面における移動及び凝集が抑制される。つまり、本実施形態では、第3族金属を含まない従来の脱水素触媒に比べて、脱水素反応中の白金表面積が増大し、白金の凝集が抑制されるため、脱水素活性及び耐久性が向上する。このような効果は、脱水素触媒が第3族金属としてセリウム(Ce)を含む場合に顕著である。第3族金属に起因する格子欠陥の形成は、例えば、脱水素触媒の光電子分光(XPS)のスペクトルにおいて酸化物を構成する第3族金属に由来するピークの化学シフトを観察することによって確認することができる。 In this embodiment, since the Group 3 metal adheres to the aluminum oxide or is contained inside the aluminum oxide, a part of oxygen constituting the oxide of the aluminum oxide or the Group 3 metal is reduced in the reducing atmosphere. In this case, a large number of lattice defects are formed on the carrier. The platinum is fixed to the carrier by fitting the platinum into the lattice defect. As a result, platinum is more highly dispersed by heating during the dehydrogenation reaction, and movement and aggregation of platinum on the support surface are suppressed. That is, in this embodiment, compared with a conventional dehydrogenation catalyst not containing a Group 3 metal, the platinum surface area during the dehydrogenation reaction is increased and the aggregation of platinum is suppressed, so that the dehydrogenation activity and durability are improved. improves. Such an effect is remarkable when the dehydrogenation catalyst contains cerium (Ce) as a Group 3 metal. Formation of lattice defects due to the Group 3 metal is confirmed, for example, by observing the chemical shift of the peak derived from the Group 3 metal constituting the oxide in the photoelectron spectroscopy (XPS) spectrum of the dehydrogenation catalyst. be able to.
 また本実施形態では、第3族金属を含まない脱水素触媒に比べて、脱水素反応中の白金の凝集が抑制されるため、脱水素反応に伴う経時的な失活が抑制され、反応時間の経過とともに脱水素活性が略一定に維持され易い。一方、第3族金属を含まない脱水素触媒の脱水素活性は、反応時間の経過に伴い減少し続ける。つまり、本実施形態では、第3族金属を含まない脱水素触媒に比べて、触媒寿命が向上する。 Further, in this embodiment, since the aggregation of platinum during the dehydrogenation reaction is suppressed as compared with the dehydrogenation catalyst not containing a Group 3 metal, the deactivation over time associated with the dehydrogenation reaction is suppressed, and the reaction time is reduced. As time passes, the dehydrogenation activity tends to be maintained substantially constant. On the other hand, the dehydrogenation activity of a dehydrogenation catalyst that does not contain a Group 3 metal continues to decrease as the reaction time elapses. That is, in this embodiment, the catalyst life is improved as compared with a dehydrogenation catalyst not containing a Group 3 metal.
 さらに本実施形態では、脱水素触媒が第3族金属を含むことにより、その脱水素活性が向上するため、その白金の担持量が第3族金属を含まない従来の脱水素触媒と同じであっても、従来の脱水素触媒よりも優れた脱触媒活性を有することが可能である。換言すれば、本実施形態では、その白金の担持量が第3族金属を含まない従来の脱水素触媒よりも少ない場合であっても、従来の脱水素触媒と同等の脱触媒活性を有することが可能である。したがって、本実施形態では、脱水素活性を犠牲にすることなく、高価な白金の担持量を低減することが可能となる。第3族金属に起因する上記の効果は、酸化アルミニウムと白金との組合せによってはじめて確認されたものである。 Furthermore, in this embodiment, since the dehydrogenation catalyst contains a Group 3 metal, its dehydrogenation activity is improved, so that the supported amount of platinum is the same as that of a conventional dehydrogenation catalyst not containing a Group 3 metal. However, it is possible to have a decatalytic activity superior to that of conventional dehydrogenation catalysts. In other words, the present embodiment has a decatalytic activity equivalent to that of a conventional dehydrogenation catalyst even when the amount of platinum supported is smaller than that of a conventional dehydrogenation catalyst not including a Group 3 metal. Is possible. Therefore, in the present embodiment, it is possible to reduce the amount of expensive platinum supported without sacrificing the dehydrogenation activity. The above-mentioned effect due to the Group 3 metal was confirmed for the first time by a combination of aluminum oxide and platinum.
 第3族金属は上記のように白金表面積を増大させるが、第3族金属自体が脱水素触媒の活性点として機能するわけではない。したがって、白金及び第3族金属のうち第3族金属のみが担体に担持されたとしても、触媒は高い脱水素活性を有することができない。 Although the Group 3 metal increases the platinum surface area as described above, the Group 3 metal itself does not function as an active point of the dehydrogenation catalyst. Therefore, even if only the Group 3 metal among platinum and the Group 3 metal is supported on the carrier, the catalyst cannot have a high dehydrogenation activity.
 ナフテン系炭化水素(環状炭化水素)としては、例えば、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、デカリン、1-メチルデカリン、2-メチルデカリン及び2-エチルデカリンからなる群より選ばれる1種又は複数種を用いればよい。これらの化合物は、有機ハイドライドと呼ばれる。 Examples of the naphthene hydrocarbon (cyclic hydrocarbon) include one or more selected from the group consisting of cyclohexane, methylcyclohexane, dimethylcyclohexane, decalin, 1-methyldecalin, 2-methyldecalin and 2-ethyldecalin. Use it. These compounds are called organic hydrides.
 担体の表面は、多孔質の酸化アルミニウムから構成されていてよい。なお、担体とは、以下のいずれかの機能を有するものである。
主触媒を助けてその触媒活性または選択性を増大させる。
活性金属の分散性を増大させる。
触媒寿命を延長させる。
触媒の構造体としての機械的強度を増大させる。
触媒を固体化する。
触媒の成型を可能にする。
実質的に活性金属を担持する構造体である。
The surface of the support may be composed of porous aluminum oxide. The carrier has any of the following functions.
Helps the main catalyst to increase its catalytic activity or selectivity.
Increase the dispersibility of the active metal.
Extend catalyst life.
Increase the mechanical strength of the catalyst structure.
Solidify the catalyst.
Enables catalyst molding.
A structure that substantially carries an active metal.
 酸化アルミニウムの種類は限定されないが、酸化アルミニウムの具体例としては、α-アルミナ、δ-アルミナ、θ-アルミナ、γ-アルミナ又はアルマイトが挙げられる。酸化アルミニウムの比表面積は、特に限定されないが、おおよそ100~500m/gの範囲内に収まる。 The type of aluminum oxide is not limited, but specific examples of aluminum oxide include α-alumina, δ-alumina, θ-alumina, γ-alumina, and alumite. The specific surface area of aluminum oxide is not particularly limited, but is approximately in the range of 100 to 500 m 2 / g.
 担体の形状は、特に限定されない。例えば、担体はペレット状であってよく、プレート状であってもよく、ハニカム状であってもよい。 The shape of the carrier is not particularly limited. For example, the carrier may be in the form of pellets, a plate, or a honeycomb.
 第3族金属としては、スカンジウム(Sc)、イットリウム(Y)、ランタノイド及びアクチノイドから選ばれる一種又は複数種を用いればよい。ランタノイドとしては、例えば、ランタン(La)又はセリウム(Ce)が挙げられる。これらの第3族金属のうち、セリウムが最も好ましい。上記のように、脱水素触媒は、セリウムを含むことにより、顕著に高い脱水素活性を有することが可能となる。 As the Group 3 metal, one or more selected from scandium (Sc), yttrium (Y), lanthanoid and actinoid may be used. Examples of the lanthanoid include lanthanum (La) and cerium (Ce). Of these Group 3 metals, cerium is most preferred. As described above, the dehydrogenation catalyst can have a remarkably high dehydrogenation activity by containing cerium.
 脱水素触媒における白金の担持量は、特に限定されないが、白金単体換算で、酸化アルミニウムの全質量に対して、0.1~5.0質量%、又は0.2~1.0質量%であってよい。白金の担持量が上記の下限値以上であることにより、脱水素活性がより向上する。白金の担持量が上記の上限値以上である場合、白金の担持量の増加に伴う触媒活性の向上の程度が緩やかになる。また白金の価格は非常に高いため、脱水素触媒の実用化のためには白金の担持量が限られる。なお、白金の担持量が上記数値範囲を外れる場合であっても、本発明の効果は達成される。 The amount of platinum supported on the dehydrogenation catalyst is not particularly limited, but is 0.1 to 5.0% by mass or 0.2 to 1.0% by mass with respect to the total mass of aluminum oxide in terms of platinum alone. It may be. When the amount of platinum supported is not less than the above lower limit, the dehydrogenation activity is further improved. When the supported amount of platinum is equal to or more than the above upper limit value, the degree of improvement in the catalytic activity accompanying the increase in the supported amount of platinum becomes moderate. Moreover, since the price of platinum is very high, the amount of platinum supported is limited for practical use of the dehydrogenation catalyst. Note that the effect of the present invention can be achieved even when the supported amount of platinum is outside the above numerical range.
 脱水素触媒における第3族金属の担持量は、特に限定されないが、第3族金属の酸化物換算で、酸化アルミニウムの全質量に対して、0.1~5.0質量%であってよい。第3族金属の担持量が上記の下限値以上であることにより、白金表面積がより増加して、脱水素活性がより向上する。第3族金属の担持量が上記の上限値以下であることにより、脱水素触媒の機械的強度を維持しつつ、白金表面積を増加させ易くなる。また、第3族金属の担持量が上記の上限値以下であることにより、製造過程における担体の成形が容易になる。第3族金属の担持量が上記の上限値を大きく超えた場合、担体の性能が低下して、白金表面積が減少する傾向がある。しかし、第3族金属の担持量が上記数値範囲を外れる場合であっても、本発明の効果は達成される。例えば、脱水素触媒における第3族金属の担持量は、第3族金属の酸化物換算で、0質量%より大きく20質量%以下であってもよい。脱水素触媒における第3族金属の担持量は、第3族金属の酸化物換算で、0質量%より大きく10質量%以下であってもよい。脱水素触媒における第3族金属の担持量は、第3族金属の酸化物換算で、0.3~5.0質量%、又は2.0~3.0質量%であってもよい。第3族金属の担持量が、第3族金属の酸化物換算で、2.0~3.0質量%である場合、白金表面積が特に増大し易い傾向がある。 The amount of Group 3 metal supported in the dehydrogenation catalyst is not particularly limited, but may be 0.1 to 5.0% by mass with respect to the total mass of aluminum oxide in terms of Group 3 metal oxide. . When the amount of the Group 3 metal supported is not less than the above lower limit, the platinum surface area is further increased and the dehydrogenation activity is further improved. When the amount of the Group 3 metal supported is not more than the above upper limit value, it is easy to increase the platinum surface area while maintaining the mechanical strength of the dehydrogenation catalyst. Further, when the amount of the Group 3 metal supported is not more than the above upper limit value, the carrier can be easily molded in the production process. When the loading amount of the Group 3 metal greatly exceeds the above upper limit value, the performance of the support is lowered and the platinum surface area tends to decrease. However, the effect of the present invention can be achieved even when the loading amount of the Group 3 metal is out of the above numerical range. For example, the amount of the Group 3 metal supported in the dehydrogenation catalyst may be greater than 0% by mass and 20% by mass or less in terms of Group 3 metal oxide. The supported amount of the Group 3 metal in the dehydrogenation catalyst may be greater than 0% by mass and 10% by mass or less in terms of Group 3 metal oxide. The amount of Group 3 metal supported in the dehydrogenation catalyst may be 0.3 to 5.0% by mass or 2.0 to 3.0% by mass in terms of Group 3 metal oxide. When the amount of Group 3 metal supported is 2.0 to 3.0% by mass in terms of Group 3 metal oxide, the platinum surface area tends to increase particularly easily.
 白金の担持量が、白金単体換算で、酸化アルミニウムの全質量に対して、m質量%であり、第3族金属の担持量が、第3族金属の酸化物換算で、酸化アルミニウムの全質量に対して、m質量%であるとき、m/mが、(10/3)~4であってよい。この場合、白金分散度が高く、脱水素反応の反応速度が高い傾向がある。白金分散度が高く、脱水素反応の反応速度が高い傾向があるという理由から、m/mが2.78~3.64であってもよい。 The supported amount of platinum is m P mass% with respect to the total mass of aluminum oxide in terms of platinum alone, and the supported amount of group 3 metal is the total amount of aluminum oxide in terms of oxide of group 3 metal. When m 3 mass% with respect to mass, m 3 / m P may be (10/3) to 4. In this case, the degree of platinum dispersion is high and the reaction rate of the dehydrogenation reaction tends to be high. M 3 / m P may be 2.78 to 3.64 because the platinum dispersity is high and the reaction rate of the dehydrogenation reaction tends to be high.
 (脱水素触媒の製造方法)
 本実施形態に係る脱水素触媒は、例えば、以下のように、第3族金属の担持工程と、これに続く白金の担持工程と、を備える方法によって製造される。3族金属の担持工程では、酸化アルミニウムを含み、第3族金属が担持された担体を作製する。白金の担持工程では、白金化合物の溶液を担体に担持して、担体を焼成する。
(Method for producing dehydrogenation catalyst)
The dehydrogenation catalyst according to the present embodiment is produced, for example, by a method including a Group 3 metal supporting step and a subsequent platinum supporting step as follows. In the group 3 metal supporting step, a carrier containing aluminum oxide and supporting the group 3 metal is prepared. In the platinum supporting step, a platinum compound solution is supported on a carrier and the carrier is fired.
 [第3族金属の担持工程]
 担体(例えば多孔質の酸化アルミニウム担体)に、第3族金属化合物の溶液(例えば水溶液)を担持する。担持方法としては、例えばincipient wetness法、pore filling法、吸着法、浸漬法、蒸発乾固法、噴霧法、イオン交換法、液相還元法等が挙げられる。これらの方法により、担体の表面に第3族金属の塩を付着させる。脱水素触媒における第3族金属の担持量は、第3族金属化合物の濃度又は量によって調整すればよい。
[Group 3 metal loading process]
A solution (for example, an aqueous solution) of a Group 3 metal compound is supported on a support (for example, a porous aluminum oxide support). Examples of the supporting method include an incipient wetness method, a pore filling method, an adsorption method, an immersion method, an evaporation to dryness method, a spray method, an ion exchange method, a liquid phase reduction method, and the like. By these methods, a Group 3 metal salt is attached to the surface of the support. The amount of Group 3 metal supported in the dehydrogenation catalyst may be adjusted by the concentration or amount of the Group 3 metal compound.
 第3族金属化合物としては、例えば硝酸塩、硫酸塩、炭酸塩、酢酸塩、リン酸塩、シュウ酸塩、ホウ酸塩、塩化物、アルコキシド、アセチルアセトナート等を用いればよい。 As the Group 3 metal compound, for example, nitrate, sulfate, carbonate, acetate, phosphate, oxalate, borate, chloride, alkoxide, acetylacetonate, etc. may be used.
 第3族金属の塩が付着した担体を焼成して塩を分解することにより、第3族金属が担体に担持される。焼成温度は、塩の熱分解が進行する温度であればよく、例えば300~600℃程度であればよい。 The group 3 metal is supported on the carrier by firing the carrier on which the salt of the group 3 metal is adhered and decomposing the salt. The firing temperature may be any temperature at which the thermal decomposition of the salt proceeds, for example, about 300 to 600 ° C.
 上記の担持工程の代わりに、安定な多孔質構造を有する前の酸化アルミニウム又はその前駆体に第3族金属化合物を混合し、多孔質構造を有する混合物を形成する方法もある。このような方法として、例えば、混練法、ゾルゲル法、共沈法などが挙げられる。または酸化アルミニウムと第3族金属の酸化物を物理的に混合してもよい。担体の原料粉末と第3族金属化合物との混合物を成型し、成型体を焼成する工程により、第3族金属を担体に添加してもよい。担体の原料粉末としては、例えばγ-アルミナの原料であるベーマイト(Boehmite)を用いればよい。この場合の焼成温度は、第3族金属化合物の熱分解が進行し、且つベーマイトの焼結によりγ-アルミナが生成する温度であればよい。このような焼成温度は、例えば300~600℃程度である。 In place of the above-described supporting step, there is also a method of forming a mixture having a porous structure by mixing a Group 3 metal compound with aluminum oxide or a precursor thereof before having a stable porous structure. Examples of such a method include a kneading method, a sol-gel method, and a coprecipitation method. Alternatively, aluminum oxide and Group 3 metal oxide may be physically mixed. The Group 3 metal may be added to the support by molding a mixture of the raw material powder of the support and the Group 3 metal compound and firing the molded body. As the carrier raw material powder, for example, boehmite, which is a raw material of γ-alumina, may be used. The firing temperature in this case may be a temperature at which the pyrolysis of the Group 3 metal compound proceeds and γ-alumina is produced by the boehmite sintering. Such a firing temperature is, for example, about 300 to 600 ° C.
 擬ベーマイト状態のアルミニウムの水酸化物、第3族金属の硝酸塩の水溶液、及び稀硝酸を混練して、混練物を調製し、混練物の押出し成形によってペレットを作製し、ペレットを焼成することにより、担体を作製してもよい。このような方法によって担体を作製することにより、担体において第3族金属が分散し易い。このような担体を用いて作製された脱水素触媒では、白金表面積が大きくなり易く、高い脱水活性が得られ易い。擬ベーマイト状態のアルミニウムの水酸化物とは、例えば、AlOOH又はAl・HOという組成式で表される。混練物は、ドウ(dough)とも呼ばれる。混練物のpHは、3~7に調整すればよい。pHの調整により、混練物が適度な粘度を有し、混練物を成形し易くなる。混練物のpHは、硝酸の添加量によって変動する。混練物にアンモニア水を添加することにより、混練物のpHを調整してもよい。 By kneading aluminum hydroxide in a pseudo-boehmite state, an aqueous solution of a nitrate of Group 3 metal, and dilute nitric acid, preparing a kneaded material, producing pellets by extrusion molding of the kneaded material, and firing the pellets A carrier may be prepared. By producing the carrier by such a method, the Group 3 metal is easily dispersed in the carrier. In a dehydrogenation catalyst produced using such a carrier, the platinum surface area tends to be large, and high dehydration activity is likely to be obtained. The hydroxide of the pseudoboehmite state aluminum, for example, represented by the composition formula of AlOOH or Al 2 O 3 · H 2 O . The kneaded product is also called a dough. The pH of the kneaded material may be adjusted to 3-7. By adjusting the pH, the kneaded product has an appropriate viscosity, and the kneaded product is easily molded. The pH of the kneaded product varies depending on the amount of nitric acid added. You may adjust pH of a kneaded material by adding ammonia water to a kneaded material.
 [白金の担持工程]
 第3族金属が担持された担体に、白金化合物の溶液(例えば水溶液)を担持する。担持方法としては、例えばincipient wetness法、pore filling法、吸着法、浸漬法、蒸発乾固法、噴霧法、イオン交換法、液相還元法などが挙げられる。これらの方法により、白金化合物を担体の表面に付着させる。脱水素触媒における白金の担持量は、白金化合物の濃度又は量によって調整すればよい。
[Platinum loading process]
A platinum compound solution (for example, an aqueous solution) is supported on a carrier on which a Group 3 metal is supported. Examples of the supporting method include an incipient wetness method, a pore filling method, an adsorption method, an immersion method, an evaporation to dryness method, a spray method, an ion exchange method, and a liquid phase reduction method. By these methods, the platinum compound is attached to the surface of the carrier. The amount of platinum supported in the dehydrogenation catalyst may be adjusted by the concentration or amount of the platinum compound.
 白金化合物は、特に限定されないが、液体の溶媒に可溶であることが求められる。例えば、テトラクロロ白金酸、テトラクロロ白金酸カリウム、テトラクロロ白金酸アンモニウム、テトラクロロ白金酸ナトリウム、ビス(アセチルアセトナート)白金、ジアンミンジクロロ白金、ジニトロジアンミン白金、ジニトロジアンミン白金硝酸塩、ジニトロジアンミン白金アンモニア溶液、エタノールアミン白金、テトラアンミン白金ジクロライド、テトラアンミン白金水酸塩、テトラアンミン白金硝酸塩、テトラアンミン白金酢酸塩、テトラアンミン白金炭酸塩、テトラアンミン白金リン酸塩、ヘキサアンミン白金テトラクロライド、ヘキサアンミン白金水酸塩、ヘキサアンミン白金水酸塩、ビス(エタノールアンモニウム)ヘキサヒドロキソ白金(IV)、ヘキサヒドロキソ白金(IV)酸ナトリウム、ヘキサヒドロキソ白金(IV)酸カリウム、硝酸白金、硫酸白金等を用いればよい。白金化合物は、アミン又はアンモニアを含むことが好ましい。この場合、脱水素触媒における白金表面積が増大し易い。アミン又はアンモニアを含む白金化合物は、ジニトロジアンミン白金硝酸塩、ジニトロジアンミン白金アンモニア溶液、エタノールアミン白金、及びヘキサアンミン白金水酸塩からなる群より選ばれる少なくとも一種であってよい白金化合物がジニトロジアンミン白金硝酸塩又はジニトロジアンミン白金アンモニア溶液である場合、白金が担体に均一に分散し易く、白金表面積が増大し易い。白金化合物がエタノールアミン白金である場合、白金が担体の外殻部(外表面近傍)へ選択的に分布し易く、白金表面積が増大し易い。 The platinum compound is not particularly limited, but is required to be soluble in a liquid solvent. For example, tetrachloroplatinic acid, potassium tetrachloroplatinate, ammonium tetrachloroplatinate, sodium tetrachloroplatinate, bis (acetylacetonato) platinum, diamminedichloroplatinum, dinitrodiammine platinum, dinitrodiammine platinum nitrate, dinitrodiammine platinum ammonia Solution, ethanolamine platinum, tetraammine platinum dichloride, tetraammine platinum hydrochloride, tetraammine platinum nitrate, tetraammine platinum acetate, tetraammine platinum carbonate, tetraammine platinum phosphate, hexaammine platinum tetrachloride, hexaammine platinum hydrochloride, hexa Ammine platinum hydrochloride, bis (ethanolammonium) hexahydroxoplatinum (IV), sodium hexahydroxoplatinum (IV), hexahydroxoplatinum ( Potassium V) acid, platinum nitrate, may be used sulfuric platinum. The platinum compound preferably contains an amine or ammonia. In this case, the platinum surface area in the dehydrogenation catalyst tends to increase. The platinum compound containing amine or ammonia is dinitrodiammine platinum nitrate, which may be at least one selected from the group consisting of dinitrodiammine platinum nitrate, dinitrodiammine platinum ammonia solution, ethanolamine platinum, and hexaammine platinum hydrochloride. Alternatively, in the case of a dinitrodiammine platinum ammonia solution, platinum is easily dispersed uniformly on the support, and the platinum surface area is likely to increase. When the platinum compound is ethanolamine platinum, platinum is likely to be selectively distributed to the outer shell portion (near the outer surface) of the carrier, and the platinum surface area is likely to increase.
 白金化合物を担持した担体を焼成して白金化合物を分解することにより、白金が担体に担持され、本実施形態に係る脱水素触媒が完成する。焼成温度は、白金化合物の分解が進行する温度であればよく、例えば200~500℃程度であればよい。特に350℃以下で焼成することにより、焼成中の白金の凝集が起こり難く、脱水素触媒における白金表面積が増加し易くなる。 The carrier carrying the platinum compound is baked to decompose the platinum compound, whereby the platinum is carried on the carrier and the dehydrogenation catalyst according to the present embodiment is completed. The firing temperature may be a temperature at which the decomposition of the platinum compound proceeds, for example, about 200 to 500 ° C. In particular, when calcined at 350 ° C. or lower, the aggregation of platinum during calcination hardly occurs, and the platinum surface area in the dehydrogenation catalyst tends to increase.
 上記のように、第3族金属を担体に担持する際には、第3族金属化合物が分解する程度の高温で焼成を行うことが好ましい。一方、白金を担体に担持する際には、白金の凝集が起こり難い程度の低温で焼成を行うことが好ましい。これらの相反する条件を両立するために、本実施形態では、第3族金属と白金とを同時に担体に担持せず、焼成温度が異なる上記2つの工程において両金属を個別に担体に担持させる。これにより、脱水素活性に優れた脱水素触媒を容易に製造することができる。 As described above, when the Group 3 metal is supported on the carrier, it is preferable to perform firing at a high temperature at which the Group 3 metal compound is decomposed. On the other hand, when platinum is supported on a carrier, it is preferable to perform the firing at a low temperature at which platinum aggregation hardly occurs. In order to make these contradictory conditions compatible, in the present embodiment, the Group 3 metal and platinum are not supported on the support at the same time, and both metals are individually supported on the support in the above two steps having different firing temperatures. Thereby, the dehydrogenation catalyst excellent in dehydrogenation activity can be manufactured easily.
 (水素の製造システム、及び水素の製造法)
 本実施形態では、図5に示す水素の製造システム100を用いて、水素を製造する。なお、水素の製造システム100とは、例えば燃料電池車に燃料として水素ガスを供給するための水素ステーションにおける水素製造システムである。
(Hydrogen production system and hydrogen production method)
In the present embodiment, hydrogen is produced using the hydrogen production system 100 shown in FIG. The hydrogen production system 100 is a hydrogen production system in a hydrogen station for supplying hydrogen gas as fuel to a fuel cell vehicle, for example.
 本実施形態に係る水素の製造システム100は、少なくとも脱水素反応器2、第一気液分離器4、水素精製装置6及びタンク16を備える。脱水素反応器2は、上記本実施形態に係る脱水素触媒を有し、当該脱水素触媒を用いたナフテン系炭化水素(有機ハイドライド)の脱水素により、水素及び有機化合物(芳香族炭化水素等)を生成させる。つまり、本実施形態に係る水素の製造方法は、上記本実施形態に係る脱水素触媒を用いたナフテン系炭化水素の脱水素により、水素及び有機化合物を生成させる工程(脱水素工程)を備える。 The hydrogen production system 100 according to this embodiment includes at least a dehydrogenation reactor 2, a first gas-liquid separator 4, a hydrogen purifier 6, and a tank 16. The dehydrogenation reactor 2 includes the dehydrogenation catalyst according to the present embodiment, and hydrogen and organic compounds (aromatic hydrocarbons, etc.) are obtained by dehydrogenation of naphthenic hydrocarbon (organic hydride) using the dehydrogenation catalyst. ) Is generated. That is, the method for producing hydrogen according to the present embodiment includes a step (dehydrogenation step) of generating hydrogen and an organic compound by dehydrogenation of a naphthenic hydrocarbon using the dehydrogenation catalyst according to the present embodiment.
 脱水素工程では、ナフテン系炭化水素を脱水素反応器2内へ供給する。脱水素反応器2内には、上記本実施形態に係る脱水素触媒が設置されている。脱水素反応器内は還元雰囲気である。脱水素反応器2内においてナフテン系炭化水素が脱水素触媒に接触すると、脱水素反応が起こり、少なくとも一対の水素原子がナフテン系炭化水素から引き抜かれ、水素分子と、芳香族炭化水素等の有機化合物と、が生成する。このように、脱水素反応は気相反応である。 In the dehydrogenation step, naphthenic hydrocarbons are supplied into the dehydrogenation reactor 2. In the dehydrogenation reactor 2, the dehydrogenation catalyst according to the present embodiment is installed. The inside of the dehydrogenation reactor is a reducing atmosphere. When the naphthenic hydrocarbon comes into contact with the dehydrogenation catalyst in the dehydrogenation reactor 2, a dehydrogenation reaction occurs, and at least a pair of hydrogen atoms are extracted from the naphthenic hydrocarbon, and a hydrogen molecule and an organic such as an aromatic hydrocarbon are obtained. A compound is formed. Thus, the dehydrogenation reaction is a gas phase reaction.
 脱水素反応の生成物(水素分子及び有機化合物)は、脱水素反応器2から第一気液分離器4内へ供給される。第一気液分離器4内の温度は、有機化合物の融点以上有機化合物の沸点未満である。第一気液分離器4内の圧力は常圧(略大気圧)である。したがって、第一気液分離器4内の水素分子は気体であり、第一気液分離器4内の有機化合物は液体である。つまり、第一気液分離器4内において、脱水素反応の生成物は、水素ガス(気相、気層)と、有機化合物の液体(液相、液層)と、に分離する。第一気液分離器4内の気相(水素含有ガス)は、は水素精製装置6へ供給される。第一気液分離器4内の液相(有機化合物の液体)は、タンク16へ供給される。なお、気相には、有機化合物の蒸気が混入している場合がある。気相における有機化合物の分圧は最大で有機化合物の飽和蒸気圧程度である。一方、液相には、脱水素によって生成した水素の一部(微量の水素ガス)が溶存している。また、液相には、脱水素されなかった有機ハイドライドが残存する場合がある。 The product (hydrogen molecule and organic compound) of the dehydrogenation reaction is supplied from the dehydrogenation reactor 2 into the first gas-liquid separator 4. The temperature in the first gas-liquid separator 4 is not lower than the melting point of the organic compound and lower than the boiling point of the organic compound. The pressure in the first gas-liquid separator 4 is normal pressure (substantially atmospheric pressure). Therefore, the hydrogen molecules in the first gas-liquid separator 4 are gases, and the organic compounds in the first gas-liquid separator 4 are liquids. That is, in the first gas-liquid separator 4, the product of the dehydrogenation reaction is separated into hydrogen gas (gas phase, gas layer) and organic compound liquid (liquid phase, liquid layer). The gas phase (hydrogen-containing gas) in the first gas-liquid separator 4 is supplied to the hydrogen purifier 6. The liquid phase (organic compound liquid) in the first gas-liquid separator 4 is supplied to the tank 16. Note that an organic compound vapor may be mixed in the gas phase. The partial pressure of the organic compound in the gas phase is at most about the saturated vapor pressure of the organic compound. On the other hand, a part of hydrogen generated by dehydrogenation (a trace amount of hydrogen gas) is dissolved in the liquid phase. In addition, organic hydride that has not been dehydrogenated may remain in the liquid phase.
 製造システム100は、さらに第二気液分離器を備えてよい。第一気液分離器4内の液相(有機化合物の液体)は、燃料電池車へ供給される代わりに、第二気液分離器へ供給されてもよい。以下では、第二気液分離器を脱気装置8と記す。脱気装置8を用いて、有機化合物の液体中に溶存する水素ガスを液体から分離してよい。脱気装置8は、例えば、水素ガス及び有機化合物のうち水素ガスのみが選択的に透過する分離膜を備えてよい。この分離膜を用いて、水素ガスを有機化合物から分離する。分離膜は、例えば、金属膜(PbAg系膜、PdCu系膜、若しくはNb系膜など)、無機膜(シリカ膜、ゼオライト膜、若しくは炭素膜など)、又は高分子膜(フッ素樹脂膜、若しくはポリイミド膜など)であってよい。なお、脱気装置8は、分離膜を備える装置に限定されない。脱気装置8は、圧力や温度を変化させることにより液体中のガス溶解度を変化させ、脱気する方法を実施する装置であってもよい。 The manufacturing system 100 may further include a second gas-liquid separator. The liquid phase (organic compound liquid) in the first gas-liquid separator 4 may be supplied to the second gas-liquid separator instead of being supplied to the fuel cell vehicle. Below, a 2nd gas-liquid separator is described as the deaeration apparatus 8. FIG. The degassing device 8 may be used to separate the hydrogen gas dissolved in the organic compound liquid from the liquid. The deaeration device 8 may include, for example, a separation membrane that selectively allows only hydrogen gas among hydrogen gas and organic compounds to permeate. Using this separation membrane, hydrogen gas is separated from the organic compound. The separation membrane is, for example, a metal membrane (such as a PbAg-based membrane, a PdCu-based membrane, or an Nb-based membrane), an inorganic membrane (such as a silica membrane, a zeolite membrane, or a carbon membrane), or a polymer membrane (a fluororesin membrane or polyimide). A membrane). In addition, the deaeration apparatus 8 is not limited to an apparatus provided with a separation membrane. The deaeration device 8 may be a device that changes the gas solubility in the liquid by changing the pressure or temperature and performs a method of deaeration.
 脱気装置8よって有機化合物と分離された水素ガスは、真空ポンプ10を介して、低圧コンプレッサー12へ供給され、圧縮される。低圧コンプレッサー12で圧縮された水素ガスは、高圧コンプレッサー14において更に圧縮された後、燃料電池の燃料として用いられる。一方、脱気装置8によって水素ガスと分離された有機化合物の液体は、タンク16内へ供給される。タンク16内の有機化合物は、水素化されることにより、有機ハイドライドとして再利用されてもよい。以上の方法により、水素ガスが液相(有機化合物の液体)から分離される。ただし、水素の製造システム100は、脱気装置8、真空ポンプ10、低圧コンプレッサー12及び高圧コンプレッサー14を備えなくてもよい。 The hydrogen gas separated from the organic compound by the deaerator 8 is supplied to the low-pressure compressor 12 via the vacuum pump 10 and compressed. The hydrogen gas compressed by the low-pressure compressor 12 is further compressed by the high-pressure compressor 14 and then used as fuel for the fuel cell. On the other hand, the liquid of the organic compound separated from the hydrogen gas by the deaeration device 8 is supplied into the tank 16. The organic compound in the tank 16 may be reused as an organic hydride by being hydrogenated. By the above method, hydrogen gas is separated from the liquid phase (organic compound liquid). However, the hydrogen production system 100 may not include the deaeration device 8, the vacuum pump 10, the low-pressure compressor 12, and the high-pressure compressor 14.
 第一気液分離器4から水素精製装置6へ供給された水素含有ガスは、水素精製装置6において精製される。水素精製装置6は、例えば、水素ガス及び有機化合物のうち水素ガスのみが選択的に透過する分離膜を備えてよい。分離膜は、例えば、金属膜(PbAg系膜、PdCu系膜、若しくはNb系膜など)、無機膜(シリカ膜、ゼオライト膜、若しくは炭素膜など)、又は高分子膜(フッ素樹脂膜、若しくはポリイミド膜など)であってよい。水素ガスが分離膜を透過することにより、水素ガスの純度が高まる。一方、水素含有ガス中の有機化合物(未反応の有機ハイドライド等。)は、分離膜を透過することができない。したがって、有機化合物が水素含有ガスから分離され、高純度の水素ガスが精製される。精製された高純度の水素ガスは、高圧コンプレッサー14を経ることなく、燃料電池の燃料として用いられてもよく、高圧コンプレッサー14において圧縮された後、燃料電池の燃料として用いられてもよい。なお、有機化合物のみならず、微量の水素ガスも炭素膜を透過しない場合がある。炭素膜を透過しなかった水素ガスを、有機ハイドライドと共に回収して、オフガスとして、脱水素反応器2内へ供給してもよい。または、炭素膜を透過しなかった有機化合物を、タンク16内へ回収してもよい。水素精製装置6は、分離膜を備える装置に限定されない。水素精製装置6は、例えば、圧力スイング吸着(PSA)法、熱スイング吸着(TSA)法(温度スイング吸着法)、温度圧力スイング吸着(TPSA)法、及び深冷分離法からなる群より選ばれる少なくとも一種の方法を実施する装置であってもよい。これらの装置を用いて、水素含有ガスを精製し、精製に伴って生じたオフガスを脱水素反応器2内へ供給し、水素含有ガスから分離された有機化合物をタンク16へ供給してよい。 The hydrogen-containing gas supplied from the first gas-liquid separator 4 to the hydrogen purifier 6 is purified in the hydrogen purifier 6. The hydrogen purifier 6 may include, for example, a separation membrane that selectively allows only hydrogen gas among hydrogen gas and organic compounds to permeate. The separation membrane is, for example, a metal membrane (such as a PbAg-based membrane, a PdCu-based membrane, or an Nb-based membrane), an inorganic membrane (such as a silica membrane, a zeolite membrane, or a carbon membrane), or a polymer membrane (a fluororesin membrane or polyimide). A membrane). The hydrogen gas permeates through the separation membrane, thereby increasing the purity of the hydrogen gas. On the other hand, an organic compound (such as unreacted organic hydride) in the hydrogen-containing gas cannot permeate the separation membrane. Therefore, the organic compound is separated from the hydrogen-containing gas, and high-purity hydrogen gas is purified. The purified high-purity hydrogen gas may be used as fuel for the fuel cell without passing through the high-pressure compressor 14, or may be used as fuel for the fuel cell after being compressed by the high-pressure compressor 14. Note that not only an organic compound but also a trace amount of hydrogen gas may not permeate the carbon film. Hydrogen gas that has not permeated the carbon membrane may be recovered together with the organic hydride and supplied as an off-gas into the dehydrogenation reactor 2. Alternatively, the organic compound that has not permeated the carbon film may be collected into the tank 16. The hydrogen purification apparatus 6 is not limited to an apparatus provided with a separation membrane. The hydrogen purifier 6 is selected from the group consisting of, for example, a pressure swing adsorption (PSA) method, a thermal swing adsorption (TSA) method (temperature swing adsorption method), a temperature pressure swing adsorption (TPSA) method, and a cryogenic separation method. An apparatus that performs at least one method may be used. These apparatuses may be used to purify the hydrogen-containing gas, supply the off-gas generated along with the purification into the dehydrogenation reactor 2, and supply the organic compound separated from the hydrogen-containing gas to the tank 16.
 以上、本発明の一態様について説明したが、本発明は上記実施形態に何ら限定されるものではない。 Although one aspect of the present invention has been described above, the present invention is not limited to the above-described embodiment.
 本発明の効果は、酸化アルミニウム、白金及び第3族金属の組合せによりはじめて達成されるものであり、酸化アルミニウムなしでは達成困難なものである。ただし、本発明の効果を阻害しない程度の少量であれば、担体が、酸化アルミニウムに加えて他の成分、例えばシリカ(SiO)又はチタニア(TiO)等を含んでもよい。また本発明の効果は白金なしでは達成困難なものである。ただし、本発明の効果を阻害しない程度の少量であれば、白金に加えて他の成分、例えばパラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)又はルテニウム(Ru)等が担体に担持されていてもよい。 The effect of the present invention is achieved only by a combination of aluminum oxide, platinum and a Group 3 metal, and is difficult to achieve without aluminum oxide. However, the carrier may contain other components such as silica (SiO 2 ) or titania (TiO 2 ) in addition to aluminum oxide as long as the effect of the present invention is not impaired. The effect of the present invention is difficult to achieve without platinum. However, if the amount is small enough not to inhibit the effect of the present invention, other components such as palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), etc. are supported on the carrier in addition to platinum. It may be.
 以下、本発明の内容を実施例及び比較例を用いてより詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the content of the present invention will be described in more detail using examples and comparative examples, but the present invention is not limited to the following examples.
 (実施例1)
 [第3族金属の担持工程]
 担体として、多孔質のγ-アルミナからなる成型体を用いた。成型体の粒径は約1~2mmであった。この担体5.18gに硝酸スカンジウム水溶液をpore filling法で担持した。続いて、担体を100℃で一晩乾燥した後、空気中において550℃で3時間焼成して、硝酸スカンジウムを分解することにより、スカンジウムが担体に担持された。
(Example 1)
[Group 3 metal loading process]
A molded body made of porous γ-alumina was used as the carrier. The particle size of the molded body was about 1 to 2 mm. An aqueous scandium nitrate solution was supported on 5.18 g of the carrier by a pore filling method. Subsequently, after the support was dried at 100 ° C. overnight, it was fired in air at 550 ° C. for 3 hours to decompose scandium nitrate, thereby supporting scandium on the support.
 [白金の担持工程]
 スカンジウムが担持された担体にビス(エタノールアンモニウム)ヘキサヒドロキソ白金酸水溶液をpore filling法で担持した。続いて、担体を100℃で一晩乾燥した後、空気中において330℃で2時間焼成して、ビス(エタノールアンモニウム)ヘキサヒドロキソ白金を分解した。
[Platinum loading process]
A bis (ethanolammonium) hexahydroxoplatinic acid aqueous solution was supported on a support on which scandium was supported by a pore filling method. Subsequently, the support was dried at 100 ° C. overnight and then calcined in air at 330 ° C. for 2 hours to decompose bis (ethanolammonium) hexahydroxoplatinum.
 以上の工程によって、実施例1の脱水素触媒を作成した。実施例1の脱水素触媒は、γ-アルミナからなる担体と、担体に担持されたスカンジウムと、担体に担持された白金と、を備える。脱水素触媒におけるスカンジウムの担持量は、担体(γ-アルミナ)の全質量に対して0.3質量%であった。脱水素触媒における白金の担持量は、担体(γ-アルミナ)の全質量に対して0.3質量%であった。 The dehydrogenation catalyst of Example 1 was created through the above steps. The dehydrogenation catalyst of Example 1 includes a support made of γ-alumina, scandium supported on the support, and platinum supported on the support. The amount of scandium supported on the dehydrogenation catalyst was 0.3% by mass relative to the total mass of the carrier (γ-alumina). The amount of platinum supported on the dehydrogenation catalyst was 0.3% by mass relative to the total mass of the carrier (γ-alumina).
 (実施例2)
 硝酸スカンジウムの水溶液の代わりに、硝酸イットリウムの水溶液を用いたこと以外は実施例1と同様の方法で、実施例2の脱水素触媒を作成した。実施例2の脱水素触媒は、γ-アルミナからなる担体と、担体に担持されたイットリウムと、担体に担持された白金と、を備える。脱水素触媒におけるイットリウムの担持量は、担体(γ-アルミナ)の全質量に対して0.4質量%であった。脱水素触媒における白金の担持量は、担体(γ-アルミナ)の全質量に対して0.3質量%であった。
(Example 2)
A dehydrogenation catalyst of Example 2 was prepared in the same manner as in Example 1 except that an aqueous solution of yttrium nitrate was used instead of the aqueous solution of scandium nitrate. The dehydrogenation catalyst of Example 2 includes a carrier made of γ-alumina, yttrium supported on the carrier, and platinum supported on the carrier. The amount of yttrium supported on the dehydrogenation catalyst was 0.4% by mass relative to the total mass of the carrier (γ-alumina). The amount of platinum supported on the dehydrogenation catalyst was 0.3% by mass relative to the total mass of the carrier (γ-alumina).
 (実施例3)
 硝酸スカンジウムの水溶液の代わりに、硝酸ランタンの水溶液を用いたこと以外は実施例1と同様の方法で、実施例3の脱水素触媒を作成した。実施例3の脱水素触媒は、γ-アルミナからなる担体と、担体に担持されたランタンと、担体に担持された白金と、を備える。脱水素触媒におけるLaの担持量は、担体(γ-アルミナ)の全質量に対して0.5質量%であった。脱水素触媒における白金の担持量は、担体(γ-アルミナ)の全質量に対して0.3質量%であった。
(Example 3)
A dehydrogenation catalyst of Example 3 was prepared in the same manner as in Example 1 except that an aqueous solution of lanthanum nitrate was used instead of the aqueous solution of scandium nitrate. The dehydrogenation catalyst of Example 3 includes a support made of γ-alumina, lanthanum supported on the support, and platinum supported on the support. The amount of La supported on the dehydrogenation catalyst was 0.5% by mass relative to the total mass of the carrier (γ-alumina). The amount of platinum supported on the dehydrogenation catalyst was 0.3% by mass relative to the total mass of the carrier (γ-alumina).
 (実施例4)
 硝酸スカンジウムの水溶液の代わりに、硝酸セリウムの水溶液を用いたこと以外は実施例1と同様の方法で、実施例4の脱水素触媒を作成した。実施例4の脱水素触媒は、γ-アルミナからなる担体と、担体に担持されたセリウムと、担体に担持された白金と、を備える。脱水素触媒におけるセリウムの担持量は、担体(γ-アルミナ)の全質量に対して0.5質量%であった。脱水素触媒における白金の担持量は、担体(γ-アルミナ)の全質量に対して0.3質量%であった。
Example 4
A dehydrogenation catalyst of Example 4 was prepared in the same manner as in Example 1 except that an aqueous solution of cerium nitrate was used instead of the aqueous solution of scandium nitrate. The dehydrogenation catalyst of Example 4 includes a support made of γ-alumina, cerium supported on the support, and platinum supported on the support. The amount of cerium supported in the dehydrogenation catalyst was 0.5% by mass relative to the total mass of the carrier (γ-alumina). The amount of platinum supported on the dehydrogenation catalyst was 0.3% by mass relative to the total mass of the carrier (γ-alumina).
 (実施例5)
 第3族金属の担持工程においてセリウムの担持量を変更したこと以外は実施例4と同様の方法で、実施例5の脱水素触媒を作成した。実施例5の脱水素触媒は、γ-アルミナからなる担体と、担体に担持されたセリウムと、担体に担持された白金と、を備える。脱水素触媒におけるセリウムの担持量は、担体(γ-アルミナ)の全質量に対して0.3質量%であった。脱水素触媒における白金の担持量は、担体(γ-アルミナ)の全質量に対して0.3質量%であった。
(Example 5)
A dehydrogenation catalyst of Example 5 was prepared in the same manner as in Example 4 except that the amount of cerium supported was changed in the Group 3 metal loading step. The dehydrogenation catalyst of Example 5 includes a carrier made of γ-alumina, cerium supported on the carrier, and platinum supported on the carrier. The amount of cerium supported in the dehydrogenation catalyst was 0.3% by mass relative to the total mass of the carrier (γ-alumina). The amount of platinum supported on the dehydrogenation catalyst was 0.3% by mass relative to the total mass of the carrier (γ-alumina).
 (実施例6)
 第3族金属の担持工程においてセリウムの担持量を変更したこと以外は実施例4と同様の方法で、実施例6の脱水素触媒を作成した。実施例6の脱水素触媒は、γ-アルミナからなる担体と、担体に担持されたセリウムと、担体に担持された白金と、を備える。脱水素触媒におけるセリウムの担持量は、担体(γ-アルミナ)の全質量に対して1.0質量%であった。脱水素触媒における白金の担持量は、担体(γ-アルミナ)の全質量に対して0.3質量%であった。
(Example 6)
A dehydrogenation catalyst of Example 6 was prepared in the same manner as in Example 4 except that the amount of cerium supported was changed in the Group 3 metal loading process. The dehydrogenation catalyst of Example 6 includes a support made of γ-alumina, cerium supported on the support, and platinum supported on the support. The amount of cerium supported on the dehydrogenation catalyst was 1.0% by mass relative to the total mass of the carrier (γ-alumina). The amount of platinum supported on the dehydrogenation catalyst was 0.3% by mass relative to the total mass of the carrier (γ-alumina).
 (比較例1)
 第3族金属の担持工程を実施しなかったこと以外は実施例1と同様の方法で、比較例1の脱水素触媒を作成した。比較例1の脱水素触媒は、γ-アルミナからなる担体と、担体に担持された白金と、を備える。比較例1の脱水素触媒は、第3族金属を含有しない。脱水素触媒における白金の担持量は、担体(γ-アルミナ)の全質量に対して0.3質量%であった。
(Comparative Example 1)
A dehydrogenation catalyst of Comparative Example 1 was prepared in the same manner as in Example 1 except that the Group 3 metal loading step was not performed. The dehydrogenation catalyst of Comparative Example 1 includes a carrier made of γ-alumina and platinum supported on the carrier. The dehydrogenation catalyst of Comparative Example 1 does not contain a Group 3 metal. The amount of platinum supported on the dehydrogenation catalyst was 0.3% by mass relative to the total mass of the carrier (γ-alumina).
 [白金表面積の評価]
 <実施例1>
 化学吸着法を用いて実施例1の脱水素触媒に含まれる白金表面積を求めた。化学吸着法では、実施例1の脱水素触媒が設置された容器内に一酸化炭素(CO)を供給した。容器内に供給されたCOの体積と、容器内の脱水素触媒に吸着されることなく容器外へ排出されたCOの体積との差に基づいて、40℃における白金の単位質量当たりのCOの吸着量(単位:cm/g)を算出した。このCOの吸着量に基づいて、白金の単位質量当たりの触媒表面に存在して活性点として作用する白金の量、すなわち白金表面積(単位:m/g)を算出した。実施例1のCOの吸着量、及び白金表面積を表1に示す。
[Evaluation of platinum surface area]
<Example 1>
The platinum surface area contained in the dehydrogenation catalyst of Example 1 was determined using a chemical adsorption method. In the chemical adsorption method, carbon monoxide (CO) was supplied into a container in which the dehydrogenation catalyst of Example 1 was installed. Based on the difference between the volume of CO supplied into the container and the volume of CO discharged outside the container without being adsorbed by the dehydrogenation catalyst in the container, the CO per unit mass of platinum at 40 ° C. The adsorption amount (unit: cm 3 / g) was calculated. Based on the amount of CO adsorbed, the amount of platinum existing on the catalyst surface per unit mass of platinum and acting as an active site, that is, the platinum surface area (unit: m 2 / g) was calculated. Table 1 shows the CO adsorption amount and platinum surface area of Example 1.
 <実施例2~6、比較例1>
 実施例1と同様の方法で、他の実施例及び比較例1のCOの吸着量、及び白金表面積を求めた。他の実施例及び比較例1のCOの吸着量、及び白金表面積を表1に示す。
<Examples 2 to 6, Comparative Example 1>
In the same manner as in Example 1, the CO adsorption amount and platinum surface area of other Examples and Comparative Example 1 were determined. Table 1 shows the CO adsorption amount and platinum surface area of other examples and comparative example 1.
 [脱水素活性の評価]
 <実施例1>
 実施例1の脱水素触媒を固定床流通式の反応器内に充填した。メチルシクロヘキサンを反応器内へ供給しながら、触媒層の中央部の温度を330℃に維持して、反応器内でメチルシクロヘキサンの脱水素反応を継続させた。反応器内へ供給するメチルシクロヘキサンの液空間速度(LHSV)を11h-1に維持した。反応開始から3時間が経過した時点で反応器から排出されたガスを回収して冷却し、生成油を得た。生成油をガスクロマトグラフ-水素炎イオン化検出器(GC-FID)で分析し、生成油に含まれるメチルシクロヘキサンのGC面積(ピーク面積)と、液体に含まれるトルエンのGC面積との比率から、メチルシクロヘキサンの転化率(単位:mol%)を算出した(上記数式(1)参照。)。実施例1のメチルシクロヘキサンの転化率を表1に示す。なお、表1に記載の「MCH」とはメチルシクロヘキサンを意味する。
[Evaluation of dehydrogenation activity]
<Example 1>
The dehydrogenation catalyst of Example 1 was charged into a fixed bed flow type reactor. While supplying methylcyclohexane into the reactor, the temperature of the central portion of the catalyst layer was maintained at 330 ° C., and the dehydrogenation reaction of methylcyclohexane was continued in the reactor. The liquid space velocity (LHSV) of methylcyclohexane fed into the reactor was maintained at 11 h- 1 . When 3 hours had elapsed from the start of the reaction, the gas discharged from the reactor was recovered and cooled to obtain a product oil. The product oil was analyzed with a gas chromatograph-flame ionization detector (GC-FID). From the ratio of the GC area (peak area) of methylcyclohexane contained in the product oil to the GC area of toluene contained in the liquid, methyl The conversion rate (unit: mol%) of cyclohexane was calculated (see the above formula (1)). The conversion rate of methylcyclohexane of Example 1 is shown in Table 1. In addition, “MCH” described in Table 1 means methylcyclohexane.
 <実施例4~6、比較例1>
 実施例1と同様の方法で、実施例4~6及び比較例1の脱水素触媒を単独で用いたときのメチルシクロヘキサンの転化率を算出した。実施例4~6及び比較例1のメチルシクロヘキサンの転化率を表1に示す。なお、実施例1、4~6及び比較例1のいずれの場合においても、反応器内に設置した脱水素触媒の体積は同じであった。
<Examples 4 to 6, Comparative Example 1>
In the same manner as in Example 1, the conversion rate of methylcyclohexane when the dehydrogenation catalysts of Examples 4 to 6 and Comparative Example 1 were used alone was calculated. Table 1 shows the conversion rates of methylcyclohexane of Examples 4 to 6 and Comparative Example 1. In all cases of Examples 1, 4 to 6 and Comparative Example 1, the volume of the dehydrogenation catalyst installed in the reactor was the same.
 実施例1、4及び比較例1の脱水素活性の評価では、反応開始からの経過時間が2時間、3時間、4時間及び5時間である各時点において、メチルシクロヘキサンの転化率(単位:mol%)を算出した。実施例1、4及び比較例1の脱水素反応の各時点におけるメチルシクロヘキサンの転化率を表2に示す。 In the evaluation of the dehydrogenation activity of Examples 1 and 4 and Comparative Example 1, the conversion rate (unit: mol) of methylcyclohexane at each time point when the elapsed time from the start of the reaction was 2 hours, 3 hours, 4 hours and 5 hours. %) Was calculated. Table 2 shows the conversion ratio of methylcyclohexane at each time point of the dehydrogenation reactions of Examples 1 and 4 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~4及び比較例1の脱水素触媒における白金表面積を図1に示す。図1において、「なし」は比較例1に対応する。「Sc」は実施例1に対応する。「Y」は実施例2に対応する。「La」は実施例3に対応する。「Ce」は実施例4に対応する。表1及び図1は、白金を担持したγ-アルミナに第3族金属を添加することによって白金表面積が増加することを示している。 The platinum surface areas in the dehydrogenation catalysts of Examples 1 to 4 and Comparative Example 1 are shown in FIG. In FIG. 1, “None” corresponds to Comparative Example 1. “Sc” corresponds to Example 1. “Y” corresponds to Example 2. “La” corresponds to Example 3. “Ce” corresponds to Example 4. Table 1 and FIG. 1 show that the platinum surface area is increased by adding a Group 3 metal to γ-alumina supporting platinum.
 実施例1及び比較例1の脱水素反応の各時点におけるメチルシクロヘキサンの転化率を図2に示す。図2において、「添加無し」は比較例1に対応する。「Sc添加」は実施例1に対応する。表2及び図2は、白金を担持したγ-アルミナにスカンジウムを添加することによって脱水素活性が向上することを示している。 The conversion rate of methylcyclohexane at each time point of the dehydrogenation reaction of Example 1 and Comparative Example 1 is shown in FIG. In FIG. 2, “No addition” corresponds to Comparative Example 1. “Sc addition” corresponds to Example 1. Table 2 and FIG. 2 show that the dehydrogenation activity is improved by adding scandium to γ-alumina supporting platinum.
 実施例4及び比較例1の脱水素反応の各時点におけるメチルシクロヘキサンの転化率を図3に示す。図3において、「添加無し」は比較例1に対応する。「Ce添加」は実施例4に対応する。表2及び図3は、白金を担持したγ-アルミナにセリウムを添加することによって脱水素活性が向上することを示している。 The conversion rate of methylcyclohexane at each time point of the dehydrogenation reaction of Example 4 and Comparative Example 1 is shown in FIG. In FIG. 3, “No addition” corresponds to Comparative Example 1. “Ce addition” corresponds to Example 4. Table 2 and FIG. 3 show that dehydrogenation activity is improved by adding cerium to γ-alumina supporting platinum.
 実施例4~6及び比較例1の脱水素触媒における白金表面積を図4に示す。図4において、「なし」は比較例1に対応する。「0.3%-Ce」は実施例5に対応する。「0.5%-Ce」は実施例4に対応する。「「1.0%-Ce」は実施例6に対応する。表1及び図4は、セリウムの添加量が0.3~1.0%である範囲では、白金を担持したγ-アルミナに対するセリウムの添加量によらず、セリウムの添加によって白金表面積が増加することを示している。 The platinum surface areas in the dehydrogenation catalysts of Examples 4 to 6 and Comparative Example 1 are shown in FIG. In FIG. 4, “None” corresponds to Comparative Example 1. “0.3% -Ce” corresponds to Example 5. “0.5% -Ce” corresponds to Example 4. ““ 1.0% -Ce ”corresponds to Example 6. Table 1 and FIG. 4 show that in the range where the amount of cerium added is 0.3 to 1.0%, the surface area of platinum increases with the addition of cerium regardless of the amount of cerium added to the γ-alumina supporting platinum. It is shown that.
 (実施例11~15)
 擬ベーマイト状態のアルミニウムの水酸化物の粉末に、所定量の水、硝酸セリウムの水溶液及び稀硝酸を添加して、これら混練した。稀硝酸の添加により、混練物のpHを3~7程度に調整した。混練物の押し出し成型により、ペレットを作製した。ペレットを100~150℃で2時間乾燥した後、550℃で2時間焼成することにより、Cが担持されたγアルミナならなるペレットを作製した。焼成後のペレットにエタノールアミン白金の水溶液を担持した後、ペレットを乾燥した。乾燥後のペレットを330℃で2時間焼成した。
(Examples 11 to 15)
A predetermined amount of water, an aqueous solution of cerium nitrate and dilute nitric acid were added to the aluminum hydroxide powder in a pseudo boehmite state and kneaded. The pH of the kneaded product was adjusted to about 3 to 7 by adding dilute nitric acid. Pellets were produced by extrusion molding of the kneaded product. The pellet was dried at 100 to 150 ° C. for 2 hours and then calcined at 550 ° C. for 2 hours to produce a pellet made of γ-alumina supporting C 2 O 3 . After the calcined pellet was supported with an aqueous solution of ethanolamine platinum, the pellet was dried. The dried pellets were fired at 330 ° C. for 2 hours.
 以上の工程により、γ-アルミナ(担体)と、白金と、酸化セリウム(Ce)と、を備える実施例11~15の脱水素触媒を作製した。実施例11~15の脱水素触媒における白金の担持量は、白金単体換算で、γ-アルミナの全質量に対して0.3質量%に調整した。実施例11~15の脱水素触媒におけるCeの担持量は、下記表3に示す値に調整した。下記表3に示すCeの担持量は、γ-アルミナの全質量に対する比率である。 Through the above steps, dehydrogenation catalysts of Examples 11 to 15 including γ-alumina (support), platinum, and cerium oxide (Ce 2 O 3 ) were produced. The amount of platinum supported on the dehydrogenation catalysts of Examples 11 to 15 was adjusted to 0.3% by mass with respect to the total mass of γ-alumina in terms of platinum alone. The amount of Ce 2 O 3 supported on the dehydrogenation catalysts of Examples 11 to 15 was adjusted to the values shown in Table 3 below. The supported amount of Ce 2 O 3 shown in Table 3 below is a ratio to the total mass of γ-alumina.
 実施例1と同様の方法で、実施例11~15の脱水素触媒における白金表面積を求めた。各実施例の白金表面積を下記表3に示す。実施例11~15の脱水素触媒におけるCeの担持量と白金表面積との関係を、図6に示す。 In the same manner as in Example 1, the platinum surface area in the dehydrogenation catalysts of Examples 11 to 15 was determined. The platinum surface area of each example is shown in Table 3 below. FIG. 6 shows the relationship between the amount of Ce 2 O 3 supported on the dehydrogenation catalysts of Examples 11 to 15 and the platinum surface area.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3及び図6に示すように、Ceの担持量が2.0~3.0質量%である場合、白金表面積が特に大きいことが確認された。 As shown in Table 3 and FIG. 6, it was confirmed that the platinum surface area was particularly large when the amount of Ce 2 O 3 supported was 2.0 to 3.0 mass%.
 (実施例21~24)
 実施例21~24の脱水素触媒の作製では、γ-アルミナの全質量に対する白金の担持量を下記表4に示す値に調整し、γ-アルミナの全質量に対するCeの担持量を2.0質量%に調整した。これらの事項以外は実施例11~15と同様の方法で、実施例21~24の脱水素触媒を作製した。実施例21~24の脱水素触媒のいずれも、γ-アルミナ(担体)と、白金と、酸化セリウム(Ce)と、を備えていた。実施例21~24の脱水素触媒における白金分散度を、下記式2に基づき、求めた。各実施例の白金分散度を下記表4に示す。
Dm=Vchem×(SF/22414)×Mw×(1/c)×100   (2)
Dmは、白金分散度(単位:%)である。Vchemは、脱水素触媒におけるCOの吸着量(単位:cm)である。SFは、CO吸着の化学量論比であり、1である。Mwは、白金の原子量(単位:g/mоl)である。
(Examples 21 to 24)
In the preparation of the dehydrogenation catalysts of Examples 21 to 24, the supported amount of platinum with respect to the total mass of γ-alumina was adjusted to the value shown in Table 4 below, and the supported amount of Ce 2 O 3 with respect to the total mass of γ-alumina was adjusted. It adjusted to 2.0 mass%. Except these matters, the dehydrogenation catalysts of Examples 21 to 24 were produced in the same manner as in Examples 11 to 15. Each of the dehydrogenation catalysts of Examples 21 to 24 was provided with γ-alumina (support), platinum, and cerium oxide (Ce 2 O 3 ). The platinum dispersion degree in the dehydrogenation catalysts of Examples 21 to 24 was determined based on the following formula 2. The platinum dispersion of each example is shown in Table 4 below.
Dm = V chem × (SF / 22414) × Mw × (1 / c) × 100 (2)
Dm is a platinum dispersity (unit:%). V chem is the amount of CO adsorption (unit: cm 3 ) in the dehydrogenation catalyst. SF is the stoichiometric ratio of CO adsorption and is 1. Mw is the atomic weight of platinum (unit: g / mol).
 270℃、280℃、290℃、300℃及び310℃の5通りの反応温度で、実施例21~24の各脱水素触媒を用いたメチルシクロヘキサンの脱水素反応を行った。反応温度以外は、実施例1と同様の方法で、実施例21~24の各脱水素触媒を用いた脱水素反応を行った。下記式3に基づき、Arrhenius plоt(lnk vs. 1/T)を作成した。
lnk=ln[SV×1n{1/(1-conv.)}]
=lnA-E/RT   (3)
lnは、自然対数である。kは、脱水反応の速度定数である。Tは、各反応温度である。conv.は、各反応温度Tでの脱水素反応におけるメチルシクロヘキサンの転化率である。SVは、各脱水素反応において反応器内へ供給したメチルシクロヘキサンの液空間速度である。
The methylcyclohexane was dehydrogenated using the dehydrogenation catalysts of Examples 21 to 24 at five reaction temperatures of 270 ° C., 280 ° C., 290 ° C., 300 ° C. and 310 ° C. Except for the reaction temperature, the dehydrogenation reaction was carried out using the dehydrogenation catalysts of Examples 21 to 24 in the same manner as in Example 1. Based on the following formula 3, Arrhenius plait (lnk vs. 1 / T) was created.
lnk = ln [SV × 1n {1 / (1-conv.)}]
= InA-E / RT (3)
In is a natural logarithm. k is the rate constant of the dehydration reaction. T is each reaction temperature. conv. Is the conversion of methylcyclohexane in the dehydrogenation reaction at each reaction temperature T. SV is the liquid space velocity of methylcyclohexane fed into the reactor in each dehydrogenation reaction.
 続いて、Arrhenius plotの切片から頻度因子Aを求め、Arrhenius式から、反応温度が300Kであるときの速度定数k300を求めた。速度定数k300は、下記式4で表される。
300=A×e-E/RT   (4)
Subsequently, the frequency factor A was determined from the intercept of the Arrhenius plot, and the rate constant k 300 when the reaction temperature was 300 K was determined from the Arrhenius equation. The speed constant k 300 is expressed by the following formula 4.
k 300 = A × e −E / RT (4)
 続いて、白金量及び通油量に基づく規格化により、300℃での反応速度r300を求めた。反応速度r300は、下記式5で表される。
300=-k300×{(1-conv.)/w(Pt)}   (5)
Subsequently, the normalized based on the amount of platinum and Tsuyu amount was determined and the reaction rate r 300 at 300 ° C.. The reaction rate r 300 is expressed by the following formula 5.
r 300 = −k 300 × {(1-conv.) / w (Pt)} (5)
 各脱水素触媒を用いたメチルシクロヘキサンの脱水素反応の反応速度r300を、実施例21の脱水素触媒を用いた場合の反応速度r300で割ることにより、各脱水素触媒を用いたメチルシクロヘキサンの脱水素反応の相対反応速度を求めた。各脱水素触媒を用いた場合の相対反応速度を、下記表4に示す。また、各脱水素触媒における白金の担持量(m質量%)及びCeの担持量(m質量%)の比m/mを、下記表4に示す。各脱水素触媒の白金分散度と、各脱水素触媒を用いた場合の相対反応速度とを図7に示す。図7中の丸印は白金分散度を示し、三角印は相対反応速度を示す。 The reaction rate r 300 of dehydrogenation of methylcyclohexane using each dehydrogenation catalyst, by dividing the reaction rate r 300 in the case of using the dehydrogenation catalyst of Example 21, methylcyclohexane using each dehydrogenated catalyst The relative reaction rate of the dehydrogenation reaction was determined. The relative reaction rates when each dehydrogenation catalyst is used are shown in Table 4 below. Table 4 below shows the ratio m 3 / m P of the supported amount of platinum (m P mass%) and the supported amount of Ce 2 O 3 (m 3 mass%) in each dehydrogenation catalyst. FIG. 7 shows the platinum dispersion degree of each dehydrogenation catalyst and the relative reaction rate when each dehydrogenation catalyst is used. The circles in FIG. 7 indicate the degree of platinum dispersion, and the triangles indicate the relative reaction rate.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4及び図7に示すように、白金の担持量が約0.5~0.6質量%である場合(m/mが、(10/3)~4である場合)、白金が効率よく機能することが分かった。 As shown in Table 4 and FIG. 7, when the supported amount of platinum is about 0.5 to 0.6 mass% (when m 3 / m P is (10/3) to 4), platinum is It turns out to function efficiently.
 (実施例31~37、比較例31)
 実施例31~37の脱水素触媒の作製では、市販のγ-アルミナ担体の吸水率を測定した。この吸水率に基づいて、下記表5に示す第3族金属の硝酸塩を所定の濃度で含む水溶液を調製して、水溶液をγ-アルミナに担持した。続いて、担体を100℃で8時間乾燥した後、500℃で2時間焼成した。焼成後の担体に白金化合物の水溶液を担持した。続いて、担体を乾燥して、330℃で2時間焼成した。以上の工程により、実施例31~37の脱水素触媒を作製した。
(Examples 31 to 37, Comparative Example 31)
In the preparation of the dehydrogenation catalysts of Examples 31 to 37, the water absorption rate of a commercially available γ-alumina support was measured. Based on this water absorption, an aqueous solution containing a group III metal nitrate shown in Table 5 below at a predetermined concentration was prepared, and the aqueous solution was supported on γ-alumina. Subsequently, the support was dried at 100 ° C. for 8 hours and then calcined at 500 ° C. for 2 hours. An aqueous solution of a platinum compound was supported on the carrier after firing. Subsequently, the support was dried and calcined at 330 ° C. for 2 hours. Through the above steps, dehydrogenation catalysts of Examples 31 to 37 were produced.
 各脱水素触媒における第3族金属の酸化物の担持量は、下記表5に示す値に調整した。各脱水素触媒における白金の担持量は、下記表5に示す値に調整した。各脱水素触媒における第3族金属の酸化物のモル数及び白金のモル数は、下記表5に示す値であった。各脱水素触媒における白金のモル数に対する第3族金属の酸化物のモル数の比率(Metal/Pt)は、下記表5に示す値であった。 The amount of Group 3 metal oxide supported on each dehydrogenation catalyst was adjusted to the values shown in Table 5 below. The amount of platinum supported on each dehydrogenation catalyst was adjusted to the values shown in Table 5 below. The number of moles of Group 3 metal oxide and the number of moles of platinum in each dehydrogenation catalyst were the values shown in Table 5 below. The ratio of the number of moles of Group 3 metal oxide to the number of moles of platinum in each dehydrogenation catalyst (Metal / Pt) was the value shown in Table 5 below.
 比較例31の脱水素触媒の作製では、第3族金属の硝酸塩の水溶液をγ-アルミナに担持する工程を実施せず、白金のみをγ-アルミナに担持した。比較例31の脱水素触媒における白金の担持量は、下記表5に示す値に調整した。比較例31の脱水素触媒における白金のモル数は、下記表5に示す値であった。 In the preparation of the dehydrogenation catalyst of Comparative Example 31, the step of supporting an aqueous solution of a Group 3 metal nitrate on γ-alumina was not performed, and only platinum was supported on γ-alumina. The supported amount of platinum in the dehydrogenation catalyst of Comparative Example 31 was adjusted to the values shown in Table 5 below. The number of moles of platinum in the dehydrogenation catalyst of Comparative Example 31 was the value shown in Table 5 below.
 実施例1と同様の化学吸着法を用いて、各脱水素触媒における白金のモル数に対する、白金に吸着したCOのモル数の比率(CO/Pt)を求めた。各脱水素触媒におけるCO/Ptを下記表5に示す。各脱水素触媒におけるMetal/PtとCO/Ptとの関係を図8に示す。 Using the same chemical adsorption method as in Example 1, the ratio of the number of moles of CO adsorbed to platinum to the number of moles of platinum in each dehydrogenation catalyst (CO / Pt) was determined. The CO / Pt for each dehydrogenation catalyst is shown in Table 5 below. FIG. 8 shows the relationship between Metal / Pt and CO / Pt in each dehydrogenation catalyst.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 第3族金属の酸化物を備える実施例31~37の脱水素触媒では、比較例31に比べて、CO/Ptが大きく、白金比表面積が大きいことが確認された。 It was confirmed that the dehydrogenation catalysts of Examples 31 to 37 having Group 3 metal oxides had higher CO / Pt and a higher platinum specific surface area than Comparative Example 31.
 (実施例41~45)
 実施例41~45の脱水素触媒を作製では、擬ベーマイト状態のアルミニウムの水酸化物の粉末に、所定量の水、硝酸セリウムの水溶液及び稀硝酸を添加して、これら混練した。稀硝酸の添加により、混練物のpHを3~7程度に調整した。混練物の押し出し成型により、ペレットを作製した。ペレットを100~150℃で2時間乾燥した後、550℃で2時間焼成することにより、Cが担持されたγアルミナならなるペレットを作製した。焼成後のペレットに下記表6に示す白金化合物の水溶液を担持した後、ペレットを乾燥した。乾燥後のペレットを330℃で2時間焼成した。
(Examples 41 to 45)
In the preparation of the dehydrogenation catalysts of Examples 41 to 45, a predetermined amount of water, an aqueous solution of cerium nitrate and dilute nitric acid were added to an aluminum hydroxide powder in a pseudo boehmite state, and these were kneaded. The pH of the kneaded product was adjusted to about 3 to 7 by adding dilute nitric acid. Pellets were produced by extrusion molding of the kneaded product. The pellet was dried at 100 to 150 ° C. for 2 hours and then calcined at 550 ° C. for 2 hours to produce a pellet made of γ-alumina supporting C 2 O 3 . After carrying | supporting the platinum compound aqueous solution shown in following Table 6 to the pellet after baking, the pellet was dried. The dried pellets were fired at 330 ° C. for 2 hours.
 以上の工程により、γ-アルミナ(担体)と、白金と、酸化セリウム(Ce)と、を備える実施例41~45の脱水素触媒を作製した。実施例41~45の脱水素触媒はいずれも、濃淡のある褐色であることが確認された。各脱水素触媒におけるCeの担持量は、γ-アルミナの全質量に対して2質量%に調整した。実施例41~45で用いた各白金化合物の水溶液の濃度は、下記表6に示す値に調整した。実施例41~45で用いた各白金化合物の水溶液のpHは、下記表6に示す値に調整した。実施例41~45で用いた各白金化合物における白金の価数は下記表6に示す値であった。実施例1と同様の方法で、実施例41~45の脱水素触媒における白金表面積を求めた。各脱水素触媒の白金表面積を下記表6に示す。 Through the above steps, dehydrogenation catalysts of Examples 41 to 45 including γ-alumina (support), platinum, and cerium oxide (Ce 2 O 3 ) were produced. It was confirmed that all of the dehydrogenation catalysts of Examples 41 to 45 were dark brown. The amount of Ce 2 O 3 supported on each dehydrogenation catalyst was adjusted to 2% by mass with respect to the total mass of γ-alumina. The concentration of the aqueous solution of each platinum compound used in Examples 41 to 45 was adjusted to the values shown in Table 6 below. The pH of each platinum compound aqueous solution used in Examples 41 to 45 was adjusted to the values shown in Table 6 below. The valence of platinum in each platinum compound used in Examples 41 to 45 was a value shown in Table 6 below. In the same manner as in Example 1, the platinum surface area in the dehydrogenation catalysts of Examples 41 to 45 was determined. The platinum surface area of each dehydrogenation catalyst is shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、実施例41~43及び45の白金表面積は、実施例44に比べて大きいことが確認された。 As shown in Table 6, it was confirmed that the platinum surface areas of Examples 41 to 43 and 45 were larger than those of Example 44.
 本発明に係る脱水素触媒を用いたナフテン系炭化水素の脱水素反応によって得られた水素ガスは、例えば燃料電池の燃料に利用される。 The hydrogen gas obtained by the dehydrogenation reaction of naphthenic hydrocarbons using the dehydrogenation catalyst according to the present invention is used as fuel for fuel cells, for example.
 2…脱水素反応器、4…第一気液分離器、6…水素精製装置、8…第二気液分離器(脱気装置)、10…真空ポンプ、12…低圧コンプレッサー、14…高圧コンプレッサー、16…タンク、100…水素の製造システム。 DESCRIPTION OF SYMBOLS 2 ... Dehydrogenation reactor, 4 ... 1st gas-liquid separator, 6 ... Hydrogen purification apparatus, 8 ... 2nd gas-liquid separator (degassing apparatus), 10 ... Vacuum pump, 12 ... Low pressure compressor, 14 ... High pressure compressor , 16 ... tank, 100 ... hydrogen production system.

Claims (8)

  1.  酸化アルミニウムを含む担体と、白金と、第3族金属と、を備える、
     ナフテン系炭化水素用の脱水素触媒。
    A carrier comprising aluminum oxide, platinum, and a Group 3 metal,
    Dehydrogenation catalyst for naphthenic hydrocarbons.
  2.  前記第3族金属の担持量が、前記第3族金属の酸化物換算で、前記酸化アルミニウムの全質量に対して、0.1~5.0質量%である、
     請求項1に記載の脱水素触媒。
    The amount of the Group 3 metal supported is 0.1 to 5.0% by mass with respect to the total mass of the aluminum oxide in terms of the oxide of the Group 3 metal.
    The dehydrogenation catalyst according to claim 1.
  3.  前記白金の担持量が、白金単体換算で、前記酸化アルミニウムの全質量に対して、m質量%であり、
     前記第3族金属の担持量が、前記第3族金属の酸化物換算で、前記酸化アルミニウムの全質量に対して、m質量%であるとき、
     m/mが、(10/3)~4である、
     請求項1又は2に記載の脱水素触媒。
    The amount of platinum supported is m P mass% with respect to the total mass of the aluminum oxide in terms of platinum alone,
    When the supported amount of the Group 3 metal is m 3 % by mass with respect to the total mass of the aluminum oxide in terms of the oxide of the Group 3 metal,
    m 3 / m P is (10/3) to 4,
    The dehydrogenation catalyst according to claim 1 or 2.
  4.  酸化アルミニウムを含み、第3族金属が担持された担体を作製する工程と、
     白金化合物の溶液を前記担体に担持して、前記担体を焼成する工程と、
    を備える、
     ナフテン系炭化水素用の脱水素触媒の製造方法。
    Producing a carrier comprising aluminum oxide and carrying a Group 3 metal;
    Carrying a platinum compound solution on the carrier and firing the carrier;
    Comprising
    A method for producing a dehydrogenation catalyst for naphthenic hydrocarbons.
  5.  前記白金化合物が、アミン又はアンモニアを含む、
     請求項4に記載の脱水素触媒の製造方法。
    The platinum compound includes an amine or ammonia;
    The manufacturing method of the dehydrogenation catalyst of Claim 4.
  6.  擬ベーマイト状態のアルミニウムの水酸化物、前記第3族金属の硝酸塩の水溶液、及び硝酸を混練して、混練物を調製し、前記混練物の押出し成形によってペレットを作製し、前記ペレットを焼成することにより、前記担体を作製する、
     請求項4又は5に記載の脱水素触媒の製造方法。
    Pseudoboehmite-state aluminum hydroxide, Group 3 metal nitrate aqueous solution, and nitric acid are kneaded to prepare a kneaded product, pellets are produced by extrusion molding of the kneaded product, and the pellets are fired To produce the carrier,
    The method for producing a dehydrogenation catalyst according to claim 4 or 5.
  7.  請求項1~3のいずれ一項に記載の脱水素触媒を有し、前記脱水素触媒を用いたナフテン系炭化水素の脱水素により、水素及を生成させる脱水素反応器を備える、
     水素の製造システム。
    A dehydrogenation reactor comprising the dehydrogenation catalyst according to any one of claims 1 to 3 and generating hydrogen and the like by dehydrogenation of a naphthenic hydrocarbon using the dehydrogenation catalyst,
    Hydrogen production system.
  8.  請求項1~3のいずれ一項に記載の脱水素触媒を用いたナフテン系炭化水素の脱水素により、水素を生成させる工程を備える、
     水素の製造方法。
    Comprising a step of generating hydrogen by dehydrogenation of a naphthenic hydrocarbon using the dehydrogenation catalyst according to any one of claims 1 to 3.
    A method for producing hydrogen.
PCT/JP2014/058281 2013-03-28 2014-03-25 Dehydrogenation catalyst for naphthenic hydrocarbons, method for producing dehydrogenation catalyst for naphthenic hydrocarbons, system for producing hydrogen, and method for producing hydrogen WO2014157202A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015508544A JP6297538B2 (en) 2013-03-28 2014-03-25 Dehydrogenation catalyst for naphthenic hydrocarbons, method for producing dehydrogenation catalyst for naphthenic hydrocarbons, system for producing hydrogen, and method for producing hydrogen
CN201480019009.5A CN105102120A (en) 2013-03-28 2014-03-25 Dehydrogenation catalyst for naphthenic hydrocarbons, method for producing dehydrogenation catalyst for naphthenic hydrocarbons, system for producing hydrogen, and method for producing hydrogen
US14/778,753 US20160045899A1 (en) 2013-03-28 2014-03-25 Dehydrogenation catalyst for naphthenic hydrocarbons, method for producing dehydrogenation catalyst for naphthenic hydrocarbons, system for producing hydrogen, and method for producing hydrogen
EP14775297.6A EP2979756A4 (en) 2013-03-28 2014-03-25 Dehydrogenation catalyst for naphthenic hydrocarbons, method for producing dehydrogenation catalyst for naphthenic hydrocarbons, system for producing hydrogen, and method for producing hydrogen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-068638 2013-03-28
JP2013068638 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014157202A1 true WO2014157202A1 (en) 2014-10-02

Family

ID=51624171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058281 WO2014157202A1 (en) 2013-03-28 2014-03-25 Dehydrogenation catalyst for naphthenic hydrocarbons, method for producing dehydrogenation catalyst for naphthenic hydrocarbons, system for producing hydrogen, and method for producing hydrogen

Country Status (5)

Country Link
US (1) US20160045899A1 (en)
EP (1) EP2979756A4 (en)
JP (1) JP6297538B2 (en)
CN (1) CN105102120A (en)
WO (1) WO2014157202A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016209786A (en) * 2015-04-30 2016-12-15 Jxエネルギー株式会社 Dehydrogenation catalyst, production system of hydrogen and method for producing hydrogen
JP2017012993A (en) * 2015-06-30 2017-01-19 Jxエネルギー株式会社 Dehydrogenation catalyst for hydrocarbon, hydrogen production system and hydrogen production method
JP2017012992A (en) * 2015-06-30 2017-01-19 Jxエネルギー株式会社 Dehydrogenation catalyst for hydrocarbon, hydrogen production system and hydrogen production method
JP2019042705A (en) * 2017-09-05 2019-03-22 Jxtgエネルギー株式会社 Dehydrogenation catalyst, hydrogen production system, and hydrogen production method
JP2020070485A (en) * 2018-11-02 2020-05-07 千代田化工建設株式会社 Electric field catalytic reaction apparatus and electric field catalytic reaction method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111054382B (en) * 2018-10-16 2022-12-09 中国石油化工股份有限公司 Catalyst for dehydrogenation of organic liquid hydrogen storage materials
JP2021155273A (en) * 2020-03-27 2021-10-07 Eneos株式会社 Hydrogen supply system
JP2021156427A (en) * 2020-03-30 2021-10-07 Eneos株式会社 Storage body and transport method
CN111686718B (en) * 2020-06-23 2023-04-28 中国天辰工程有限公司 Cyclohexane dehydrogenation catalyst and preparation method thereof
CN114054089B (en) * 2020-08-05 2023-12-19 苏州倍友环保科技有限公司 Hydrogenation and dehydrogenation catalyst and preparation method and application thereof
CN113070058B (en) * 2021-03-04 2023-02-28 青岛创启新能催化科技有限公司 Composite carrier single-atom catalyst for organic hydrogen storage medium dehydrogenation and preparation method thereof
CN113070061B (en) * 2021-03-15 2023-02-28 青岛创启新能催化科技有限公司 Rare earth element doped monatomic catalyst for organic hydrogen storage medium dehydrogenation and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11507685A (en) * 1995-06-16 1999-07-06 アンスティテュー フランセ デュ ペトロール Method for catalytic conversion of hydrocarbons to aromatic compounds over silicon-containing catalysts
JP2007069151A (en) * 2005-09-08 2007-03-22 Jgc Corp Catalyst for catalytic partial oxidation of hydrocarbon and manufacturing method of synthetic gas
JP2009125699A (en) * 2007-11-27 2009-06-11 Jgc Catalysts & Chemicals Ltd Method for manufacturing oxychlorination catalyst
JP2011088066A (en) * 2009-10-22 2011-05-06 Jx Nippon Oil & Energy Corp Reforming catalyst, reformer, and hydrogen production apparatus
JP2012210620A (en) * 2011-03-22 2012-11-01 Jx Nippon Oil & Energy Corp Reforming catalyst for producing hydrogen, hydrogen producing apparatus using the catalyst and fuel cell system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2060274A1 (en) * 1969-09-25 1971-06-18 V Nauchno Issle Hydrocarbons aromatisation process
JPS5027794A (en) * 1973-06-01 1975-03-22
US4235755A (en) * 1979-02-21 1980-11-25 Uop Inc. Hydrocarbon dehydrogenation method and nonacidic multimetallic catalytic composite for use therein
CN1053690A (en) * 1990-01-24 1991-08-07 沈阳工业学院 Bar-code entering method of chinese characters
IT1254988B (en) * 1992-06-23 1995-10-11 Eniricerche Spa Process for the dehydrogenation of light paraffins in a fluidised bed reactor
DE102005044926B3 (en) * 2005-09-20 2007-01-25 Eads Deutschland Gmbh Apparatus for producing hydrogen by dehydrogenating a hydrocarbon fuel, especially on board aircraft, comprises a heat exchanger between a fuel inlet pipe and a residual fuel outlet pipe
CN101164690A (en) * 2006-10-20 2008-04-23 中国科学院大连化学物理研究所 Supported platinum based three-way catalyst and preparing method and use
CN101015802B (en) * 2007-02-09 2010-09-15 东南大学 Catalyst for preparing propylene by propane dehydrogenation and its preparation method
ATE505266T1 (en) * 2007-02-23 2011-04-15 Basf Se METHOD FOR THE SELECTIVE METHANIZATION OF CARBON MONOXIDE
CN102247843A (en) * 2010-05-19 2011-11-23 中国科学院大连化学物理研究所 Improvement method for stability of platinum-based catalyst for cycloparaffin dehydrogenation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11507685A (en) * 1995-06-16 1999-07-06 アンスティテュー フランセ デュ ペトロール Method for catalytic conversion of hydrocarbons to aromatic compounds over silicon-containing catalysts
JP2007069151A (en) * 2005-09-08 2007-03-22 Jgc Corp Catalyst for catalytic partial oxidation of hydrocarbon and manufacturing method of synthetic gas
JP2009125699A (en) * 2007-11-27 2009-06-11 Jgc Catalysts & Chemicals Ltd Method for manufacturing oxychlorination catalyst
JP2011088066A (en) * 2009-10-22 2011-05-06 Jx Nippon Oil & Energy Corp Reforming catalyst, reformer, and hydrogen production apparatus
JP2012210620A (en) * 2011-03-22 2012-11-01 Jx Nippon Oil & Energy Corp Reforming catalyst for producing hydrogen, hydrogen producing apparatus using the catalyst and fuel cell system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R. W. COUGHLIN; K. KAWAKAMI; AKRAM HASAN, JOURNAL OF CATALYSIS, vol. 88, 1984, pages 150 - 162
See also references of EP2979756A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016209786A (en) * 2015-04-30 2016-12-15 Jxエネルギー株式会社 Dehydrogenation catalyst, production system of hydrogen and method for producing hydrogen
JP2017012993A (en) * 2015-06-30 2017-01-19 Jxエネルギー株式会社 Dehydrogenation catalyst for hydrocarbon, hydrogen production system and hydrogen production method
JP2017012992A (en) * 2015-06-30 2017-01-19 Jxエネルギー株式会社 Dehydrogenation catalyst for hydrocarbon, hydrogen production system and hydrogen production method
JP2019042705A (en) * 2017-09-05 2019-03-22 Jxtgエネルギー株式会社 Dehydrogenation catalyst, hydrogen production system, and hydrogen production method
JP2020070485A (en) * 2018-11-02 2020-05-07 千代田化工建設株式会社 Electric field catalytic reaction apparatus and electric field catalytic reaction method
JP7198048B2 (en) 2018-11-02 2022-12-28 千代田化工建設株式会社 Dehydrogenation reaction method

Also Published As

Publication number Publication date
CN105102120A (en) 2015-11-25
JPWO2014157202A1 (en) 2017-02-16
EP2979756A1 (en) 2016-02-03
US20160045899A1 (en) 2016-02-18
EP2979756A4 (en) 2016-12-28
JP6297538B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
JP6297538B2 (en) Dehydrogenation catalyst for naphthenic hydrocarbons, method for producing dehydrogenation catalyst for naphthenic hydrocarbons, system for producing hydrogen, and method for producing hydrogen
US20020147103A1 (en) Enhanced stability water-gas shift reaction catalysts
Parinyaswan et al. Catalytic performances of Pt–Pd/CeO2 catalysts for selective CO oxidation
EP3208232A1 (en) Catalyst and process for thermo-neutral reforming of liquid hydrocarbons
WO2002038268A1 (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JP5094028B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
Sun et al. Ni/CeO2 nanoparticles promoted by yttrium doping as catalysts for CO2 methanation
JP5354142B2 (en) Steam reforming catalyst and reaction gas production method
WO2003092888A1 (en) Catalyst for partial oxidation of hydrocarbon, process for producing the same, process for producing hydrogen-containing gas with the use of the catalyst and method of using hydrogen-containing gas produced with the use of the catalyst
WO2006125698A1 (en) Goldcatalyst on ceria-containing support
JP2007252989A (en) Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
JP4864688B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
JP4772659B2 (en) Catalyst for removing carbon monoxide and method for producing the same
Jiang et al. Highly stable and selective CoxNiyTiO3 for CO2 methanation: Electron transfer and interface interaction
JP4890194B2 (en) Method for producing carbon monoxide removal catalyst
JP4991176B2 (en) Hydrogen production equipment
JP5593106B2 (en) Hydrogen production method, hydrogen production apparatus and fuel cell system
JP2016209786A (en) Dehydrogenation catalyst, production system of hydrogen and method for producing hydrogen
JP6792550B2 (en) Dehydrogenation catalyst for hydrocarbons, hydrogen production system and hydrogen production method
KR101392996B1 (en) Mesoporous nickel-alumina-zirconia xerogel catalyst and production method of hydrogen by steam reforming of ethanol using said catalyst
JP4120862B2 (en) Catalyst for CO shift reaction
JP6574349B2 (en) Method for producing dehydrogenation catalyst for naphthenic hydrocarbon, method for producing hydrogen production system, and method for producing hydrogen
JP2017081774A (en) Dehydrogenation catalyst, manufacturing method of dehydrogenation catalyst, dehydrogenation reactor, manufacturing method of dehydrogenation reactor, manufacturing system of hydrogen and manufacturing method of hydrogen
US11358128B2 (en) High activity reforming catalyst formulation and process for low temperature steam reforming of hydrocarbons to produce hydrogen
Lv et al. Catalytic oxidation of ethyl acetate over Y (Y= Cu, Mn, Co)-modified CeO2 derived from Ce-MOF

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019009.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508544

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14778753

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014775297

Country of ref document: EP