WO2014156799A1 - Variable-capacity swash plate-type compressor - Google Patents

Variable-capacity swash plate-type compressor Download PDF

Info

Publication number
WO2014156799A1
WO2014156799A1 PCT/JP2014/057236 JP2014057236W WO2014156799A1 WO 2014156799 A1 WO2014156799 A1 WO 2014156799A1 JP 2014057236 W JP2014057236 W JP 2014057236W WO 2014156799 A1 WO2014156799 A1 WO 2014156799A1
Authority
WO
WIPO (PCT)
Prior art keywords
swash plate
arm
chamber
cylinder bore
drive shaft
Prior art date
Application number
PCT/JP2014/057236
Other languages
French (fr)
Japanese (ja)
Inventor
山本 真也
雅樹 太田
隆容 鈴木
和也 本田
秀晴 山下
圭 西井
佑介 山▲崎▼
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013067086A external-priority patent/JP6083291B2/en
Priority claimed from JP2014034820A external-priority patent/JP5983657B2/en
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to CN201480018508.2A priority Critical patent/CN105102815B/en
Priority to KR1020157030638A priority patent/KR101793357B1/en
Priority to US14/780,000 priority patent/US20160032910A1/en
Priority to DE112014001700.0T priority patent/DE112014001700B4/en
Publication of WO2014156799A1 publication Critical patent/WO2014156799A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1009Distribution members
    • F04B27/1027Conical distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1045Cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/26Control
    • F04B1/28Control of machines or pumps with stationary cylinders
    • F04B1/29Control of machines or pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B1/295Control of machines or pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block by changing the inclination of the swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1054Actuating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1081Casings, housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1813Crankcase pressure

Definitions

  • the present invention relates to a variable capacity swash plate compressor.
  • Patent Document 1 discloses a conventional variable displacement swash plate compressor (hereinafter referred to as a compressor).
  • a housing is formed by a front housing, a cylinder block, and a rear housing.
  • a suction chamber and a discharge chamber are formed in the front housing and the rear housing, respectively.
  • a swash plate chamber and a plurality of cylinder bores are formed in the cylinder block.
  • a drive shaft is rotatably supported by the housing.
  • In the swash plate chamber there is provided a swash plate that can be rotated by rotation of the drive shaft.
  • a link mechanism is provided between the drive shaft and the swash plate. The link mechanism allows a change in the inclination angle of the swash plate.
  • the inclination angle is an angle of the swash plate with respect to a direction orthogonal to the drive axis of the drive shaft.
  • a piston is accommodated so as to be able to reciprocate.
  • the pair of shoes for each piston as a conversion mechanism, reciprocates each piston within the cylinder bore with a stroke corresponding to the inclination angle by the rotation of the swash plate.
  • the actuator has a moving body and a control pressure chamber. This actuator can change the inclination angle by changing the volume of the control pressure chamber.
  • the control mechanism controls the actuator.
  • the swash plate is formed with a pair of first arms extending toward the front housing side and a pair of second arms extending toward the rear housing side.
  • a lug arm is fixed to the drive shaft.
  • each 1st arm and lug arm are connected by the 1st pin.
  • each 2nd arm and the mobile body are connected by the 2nd pin.
  • a link mechanism is formed by the first and second arms, the lug arm, the movable body and the first and second pins.
  • the control mechanism increases the pressure in the control pressure chamber by the pressure of the refrigerant in the discharge chamber, and increases the inclination angle of the swash plate through the link mechanism.
  • the moving body presses the swash plate through each second arm.
  • the swash plate pressed by the moving body presses the lug arm through each first arm.
  • the axial length of the link mechanism in the direction of the drive axis is shortened, so that the inclination angle of the swash plate is increased.
  • the discharge capacity per rotation of the drive shaft is increased.
  • the conventional compressor it is conceivable to increase the size of the moving body in the radial direction in order to reliably increase the discharge capacity by increasing the pressure in the control pressure chamber.
  • the swash plate chamber is increased in size, and consequently the compressor is increased in size.
  • the present invention has been made in view of the above-described conventional situation, and solves the problem of providing a compressor that can achieve downsizing while exhibiting high controllability in a compressor that changes the discharge capacity by an actuator. It is an issue that should be done.
  • the capacity-variable swash plate compressor of the present invention includes a housing in which a suction chamber, a discharge chamber, a swash plate chamber and a cylinder bore are formed, a drive shaft rotatably supported by the housing, and rotation of the drive shaft.
  • a swash plate rotatable within a plate chamber, and a link mechanism provided between the drive shaft and the swash plate and allowing a change in the inclination angle of the swash plate with respect to a direction perpendicular to the drive axis of the drive shaft;
  • a piston housed reciprocally in the cylinder bore, a conversion mechanism for reciprocating the piston in the cylinder bore with a stroke corresponding to the inclination angle by rotation of the swash plate, and disposed in the swash plate chamber
  • An actuator that can change the tilt angle, and a control mechanism that controls the actuator,
  • the suction chamber and the swash plate chamber communicate with each other,
  • the actuator is connected to the partition provided on the drive shaft, the swash plate via a connection mechanism, and a movable body that is movable in the drive axis direction and movable relative to the partition.
  • a control pressure chamber that is partitioned by the partition body and the moving body and moves the moving body by introducing a refrigerant from the discharge chamber;
  • the moving body is arranged to pull the swash plate and increase the inclination angle when the pressure in the control pressure chamber increases.
  • the link mechanism has a connecting portion connected to the swash plate,
  • the coupling mechanism has a first arm and a second arm that are disposed on the opposite side of the coupling portion with respect to the drive shaft and are provided on the movable body across the drive shaft center.
  • the moving body pulls the swash plate. That is, in this compressor, when the swash plate is displaced in the direction of increasing the inclination angle, the moving body is remote from the swash plate. For this reason, in this compressor, even when the size of the movable body is increased in order to reliably increase the discharge capacity due to the pressure increase in the control pressure chamber, interference between the movable body and the swash plate does not occur. Thereby, in this compressor, it becomes possible to suppress the enlargement of a swash plate chamber.
  • the moving body is connected to the swash plate through a connecting mechanism. For this reason, when increasing the inclination angle of the swash plate, the moving body applies a traction force to the swash plate through the coupling mechanism.
  • the inclination angle is increased by pulling the swash plate, it is less affected by the compression reaction force or the suction reaction force than when the inclination angle is increased by pressing the swash plate. For this reason, this compressor does not require a large traction force to increase the inclination angle of the swash plate.
  • the coupling mechanism has a first arm and a second arm.
  • the first arm and the second arm are provided on the moving body across the drive axis.
  • tractive force can be provided in these 1st arms and 2nd arms.
  • the tractive force which a 1st arm and a 2nd arm individually provide with respect to a swash plate is made small. be able to.
  • the moving body presses the swash plate through the first and second arms, but the pressing force at that time is not so large. This is because centrifugal force acts on the rotating body including the swash plate and the moving body in the direction of decreasing the inclination angle.
  • the compressor of the present invention it is possible to achieve downsizing while exhibiting high controllability in the compressor whose discharge capacity is changed by the actuator.
  • the cylinder bore may be at least a first cylinder bore, a second cylinder bore, and a third cylinder bore.
  • the first cylinder bore, the second cylinder bore, and the third cylinder bore may be arranged in the housing at equiangular intervals concentrically around the drive shaft center.
  • the swash plate chamber is partitioned by a first tangent drawn from the drive shaft to the second cylinder bore side of the first cylinder bore and a second tangent drawn from the drive shaft to the first cylinder bore side of the second cylinder bore.
  • a first imaginary region is set, and a third tangent drawn from the drive axis to the third cylinder bore side of the second cylinder bore and a fourth tangent drawn from the drive axis to the second cylinder bore side of the third cylinder bore
  • a second virtual area partitioned by can be set.
  • the first arm is preferably located in the first virtual area, and the second arm is preferably located in the second virtual area.
  • the first arm and the second arm do not interfere with the piston that reciprocates in the first to third cylinder bores. For this reason, it becomes possible to reliably reduce the size of the compressor.
  • the swash plate may be provided with a towed portion that protrudes between the first arm and the second arm. And it is preferable that a driving force is transmitted between a 1st arm, a 2nd arm, and a towed part.
  • the moving body rotates stably together with the drive shaft, and the swash plate also rotates stably together with the moving body and eventually the drive shaft.
  • the first arm and the towed part, and the second arm and the towed part can be connected by separate pins or the like.
  • a pin extending in a direction orthogonal to the drive axis is inserted through the first arm, the to-be-drawn portion, and the second arm.
  • the first arm, the towed portion, and the second arm can be easily connected.
  • the number of parts can be reduced as compared with the case where the first arm and the towed part are connected to the second arm and the towed part by separate pins or the like. Manufacturing can be facilitated.
  • the pin is difficult to be removed from the first and second arms and the towed portion, and the reliability can be increased.
  • the compressor of the present invention it is possible to reduce the size of the compressor whose discharge capacity is changed by an actuator while exhibiting high controllability.
  • FIG. 3 is a cross-sectional view of the compressor according to the embodiment, as viewed from the direction of arrows III-III in FIG. It is the front view and sectional view which show the swash plate concerning the compressor of an Example.
  • FIG. 1A shows a front view of the swash plate.
  • FIG. (B) shows a cross-sectional view of the swash plate. It is sectional drawing at the time of the minimum capacity
  • the compressor of the embodiment is a variable capacity double-head swash plate compressor. This compressor is mounted on a vehicle and constitutes a refrigeration circuit of a vehicle air conditioner.
  • the compressor according to the first embodiment includes a housing 1, a drive shaft 3, a swash plate 5, a link mechanism 7, a plurality of pistons 9, a pair of shoes 11 a and 11 b, and an actuator 13. And a control mechanism 15 shown in FIG.
  • the housing 1 includes a rear housing 17 located behind the compressor, a front housing 19 located in front of the compressor, and a first housing located between the front housing 17 and the rear housing 19. 2 cylinder blocks 21 and 23 and first and second valve forming plates 39 and 41.
  • the rear housing 17 is provided with the control mechanism 15 described above.
  • a first suction chamber 27a, a first discharge chamber 29a, and a pressure adjustment chamber 31 are formed in the rear housing 17.
  • the pressure adjustment chamber 31 is located in the center portion of the rear housing 17.
  • the first suction chamber 27 a is formed in an annular shape, and is located on the outer peripheral side of the pressure adjustment chamber 31 in the rear housing 17.
  • the first discharge chamber 29a is also formed in an annular shape, and is located on the outer peripheral side of the first suction chamber 27a in the rear housing 17.
  • the rear housing 17 is formed with a first rear communication path 18a.
  • the rear end side of the first rear communication path 18 a communicates with the first discharge chamber 29 a, and the front end side opens at the front end of the rear housing 17.
  • the front housing 19 is formed with a boss 19a protruding forward.
  • a shaft seal device 25 is provided in the boss 19a.
  • a second suction chamber 27b and a second discharge chamber 29b are formed in the front housing 19.
  • the second suction chamber 27 b is located on the inner peripheral side of the front housing 19.
  • the second discharge chamber 29 b is formed in an annular shape, and is located on the outer peripheral side of the second suction chamber 27 b in the front housing 19.
  • the front housing 19 is formed with a first front communication path 20a.
  • the first front communication passage 20 a has a front end communicating with the second discharge chamber 29 b and a rear end opened at the rear end of the front housing 19.
  • a swash plate chamber 33 is formed between the first cylinder block 21 and the second cylinder block 23.
  • the swash plate chamber 33 is located at the approximate center of the housing 1 in the front-rear direction.
  • the first cylinder block 21 has first to fifth rear cylinder bores 21a to 21e formed in parallel in the circumferential direction at equal angular intervals.
  • the first cylinder block 21 has a first shaft hole 211 through which the drive shaft 3 is inserted.
  • the first shaft hole 211 communicates with the pressure adjustment chamber 31 on the rear end side.
  • a first sliding bearing 22a is provided in the first shaft hole 211. Note that a rolling bearing may be provided instead of the first sliding bearing 22a.
  • the first cylinder block 21 is formed with a first recess 212 that communicates with the first shaft hole 211 and is coaxial with the first shaft hole 211.
  • the first recess 212 communicates with the swash plate chamber 33 and is a part of the swash plate chamber 33.
  • the 1st recessed part 212 is made into the shape which diameter-reduces to a step shape toward a rear end.
  • a first thrust bearing 35 a is provided at the rear end of the first recess 212.
  • the first cylinder block 21 is formed with five communication paths 37a that communicate the swash plate chamber 33 and the first suction chamber 27a.
  • Each communication passage 37a is formed at equiangular intervals in the circumferential direction so as to be disposed between the first to fifth rear cylinder bores 21a to 21e.
  • the first cylinder block 21 is provided with a first retainer groove 213 that restricts the maximum opening of each first suction reed valve 391 a described later.
  • a discharge port 160, a merged discharge chamber 161, a third front side communication path 20c, a second rear side communication path 18b, and a suction port 330 are formed in the first cylinder block 21, a discharge port 160, a merged discharge chamber 161, a third front side communication path 20c, a second rear side communication path 18b, and a suction port 330 are formed.
  • the second rear side communication passage 18 b has a front end communicating with the merging / discharging chamber 161 and a rear end opening at the rear end of the first cylinder block 21.
  • the discharge port 160 and the merge discharge chamber 161 are in communication with each other.
  • the merging / discharging chamber 161 is connected via a discharge port 160 to a condenser (not shown) constituting a pipe line.
  • the front end side of the third front side communication path 20 c is open to the front end of the first cylinder block 21, and the rear end side communicates with the merged discharge chamber 161.
  • the suction port 330 communicates with the swash plate chamber 33.
  • the suction port 330 is connected to an evaporator (not shown) that constitutes a pipe line.
  • the second cylinder block 23 has a first front cylinder bore 23a corresponding to the first rear cylinder bore 21a.
  • first rear cylinder bore 21a and the first front cylinder bore 23a are paired in the front-rear direction.
  • the first rear cylinder bore 21a and the first front cylinder bore 23a have the same diameter.
  • the second cylinder block 23 is formed with second to fifth front cylinder bores (not shown) corresponding to the second to fifth rear cylinder bores 21b to 21e, respectively.
  • the second cylinder block 23 is formed with a second shaft hole 23b through which the drive shaft 3 is inserted.
  • a second sliding bearing 22b is provided in the second shaft hole 23.
  • a rolling bearing may be provided instead of the second sliding bearing 22b.
  • the second cylinder block 23 is formed with a second recess 23c that communicates with the second shaft hole 23b and is coaxial with the second shaft hole 23b.
  • the second recess 23 c is also in communication with the swash plate chamber 33 and is a part of the swash plate chamber 33.
  • the second shaft hole 23b communicates with the swash plate chamber 33 on the rear end side.
  • the 2nd recessed part 23c is made into the shape which diameter-reduces in steps toward the front end.
  • a second thrust bearing 35b is provided at the front end of the second recess 23c.
  • the second cylinder block 23 is formed with a plurality of communication paths 37b that communicate the swash plate chamber 33 and the second suction chamber 27b.
  • the second cylinder block 23 is provided with a second retainer groove 23e that restricts the maximum opening degree of each second suction reed valve 411a described later.
  • a second front communication path 20b is formed in the second cylinder block 23.
  • the front end of the second front side communication path 20 b is open to the front end side of the second cylinder block 23, and the rear end is open to the rear end side of the second cylinder block 23.
  • the second front communication path 20b communicates with the front end side of the third front communication path 20b by joining the first cylinder block 21 and the second cylinder block 23 together.
  • the first valve forming plate 39 is provided between the rear housing 17 and the first cylinder block 21.
  • the second valve forming plate 41 is provided between the front housing 19 and the second cylinder block 23.
  • the first valve forming plate 39 includes a first valve plate 390, a first suction valve plate 391, a first discharge valve plate 392, and a first retainer plate 393.
  • the first valve plate 390, the first discharge valve plate 392, and the first retainer plate 393 are formed with a plurality of first suction holes 390a respectively corresponding to the first to fifth rear cylinder bores 21a to 21e.
  • the first valve plate 390 and the first intake valve plate 391 are formed with a plurality of first discharge holes 390b corresponding respectively to the first to fifth rear cylinder bores 21a to 21e.
  • a first suction communication hole 390c is formed in the first valve plate 390, the first suction valve plate 391, the first discharge valve plate 392, and the first retainer plate 393.
  • the first valve plate 390 and the first suction valve plate 391 are formed with a first discharge communication hole 390d.
  • the first to fifth rear cylinder bores 21a to 21e communicate with the first suction chamber 27a through the first suction holes 390a, respectively.
  • the first to fifth rear cylinder bores 21a to 21e communicate with the first discharge chamber 29a through the first discharge holes 390b.
  • the first suction chamber 27a and each communication path 37a communicate with each other through the first suction communication hole 390c.
  • the first rear communication passage 18a and the second rear communication passage 18b communicate with each other through the first discharge communication hole 390d.
  • the first intake valve plate 391 is provided on the front surface of the first valve plate 390.
  • the first suction valve plate 391 has the same number of first suction reed valves 391a as the first suction holes 390a that can open and close the first suction holes 390a by elastic deformation.
  • the first discharge valve plate 392 is provided on the rear surface of the first valve plate 390.
  • the first discharge valve plate 392 is formed with the same number of first discharge reed valves 392a as the first discharge holes 390b that can open and close the first discharge holes 390b by elastic deformation.
  • the first retainer plate 393 is provided on the rear surface of the first discharge valve plate 392. The first retainer plate 393 regulates the maximum opening degree of each first discharge reed valve 392a.
  • the second valve forming plate 41 includes a second valve plate 410, a second suction valve plate 411, a second discharge valve plate 412, and a second retainer plate 413.
  • the second valve plate 410, the second discharge valve plate 412, and the second retainer plate 413 are formed with the same number of second suction holes 410a as the first to fifth front cylinder bores 23a.
  • the second valve plate 410 and the second intake valve plate 411 are formed with the same number of second discharge holes 410b as the first to fifth front cylinder bores 23a.
  • a second suction communication hole 410c is formed in the second valve plate 410, the second suction valve plate 411, the second discharge valve plate 412 and the second retainer plate 413.
  • the second discharge communication hole 410d is formed in the second valve plate 410 and the second suction valve plate 411.
  • the first to fifth front cylinder bores 23a communicate with the second suction chamber 27b through the second suction holes 410a.
  • the first to fifth front cylinder bores 23a communicate with the second discharge chamber 29b through the second discharge holes 410b.
  • the second suction chamber 27b and each communication path 37b communicate with each other through the second suction communication hole 410c.
  • the first front communication path 20a and the second front communication path 20b communicate with each other through the second discharge communication hole 410d.
  • the second suction valve plate 411 is provided on the rear surface of the second valve plate 410.
  • the second suction valve plate 411 has the same number of second suction reed valves 411a as the second suction holes 410a that can open and close the second suction holes 410a by elastic deformation.
  • the second discharge valve plate 412 is provided on the front surface of the second valve plate 410.
  • the second discharge valve plate 412 has the same number of second discharge reed valves 412a as the second discharge holes 410b that can open and close the second discharge holes 410b by elastic deformation.
  • the second retainer plate 413 is provided on the front surface of the second discharge valve plate 412. The second retainer plate 413 regulates the maximum opening degree of each second discharge reed valve 412a.
  • the first discharge communication path 18 is formed by the first rear communication path 18a, the first discharge communication hole 390d, and the second rear communication path 18b.
  • the second front discharge passage 20 is formed by the first front communication passage 20a, the second discharge communication hole 410d, the second front communication passage 20b, and the third front communication passage 20c.
  • the first and second suction chambers 27a and 27b and the swash plate chamber 33 communicate with each other through the communication paths 37a and 37b and the first and second suction communication holes 390c and 410c. Therefore, the pressures in the first and second suction chambers 27a and 27b and the swash plate chamber 33 are substantially equal. Since the low-pressure refrigerant gas that has passed through the evaporator flows into the swash plate chamber 33 through the suction port 330, each pressure in the swash plate chamber 33 and the first and second suction chambers 27a and 27b is the first and second pressure chambers. The pressure is lower than in the discharge chambers 29a and 29b.
  • the drive shaft 3 includes a drive shaft main body 30, a first support member 43a, and a second support member 43b.
  • a first small diameter portion 30 a is formed on the rear end side of the drive shaft main body 30, and a second small diameter portion 30 b is formed on the front end side of the drive shaft main body 30.
  • the drive shaft main body 30 extends from the front side to the rear side of the housing 1, is inserted rearward from the boss 19 a, and is inserted into the first and second sliding bearings 22 a and 22 b.
  • the drive shaft main body 30 and thus the drive shaft 3 are pivotally supported by the housing 1 so as to be rotatable around the drive shaft center O.
  • the front end of the drive shaft body 30 is located in the boss 19 a and the rear end protrudes into the pressure adjustment chamber 31.
  • the drive shaft body 30 is provided with a swash plate 5, a link mechanism 7, and an actuator 13.
  • the swash plate 5, the link mechanism 7, and the actuator 13 are respectively disposed in the swash plate chamber 33.
  • the first support member 43 a is press-fitted to the rear end side of the first small diameter portion 30 a of the drive shaft main body 30 and is positioned in the first shaft hole 211.
  • a flange 430 is formed at the front end of the first support member 43a.
  • the flange 430 protrudes into the second recess 23c and is in contact with the first thrust bearing 35a.
  • the rear end of the first support member 43 a protrudes into the pressure adjustment chamber 31.
  • a resin-made first sliding member 431 and a second sliding member 432 are provided at a position on the rear end side of the flange 430 in the first support member 43a. These first and second sliding members 431 and 432 can be in sliding contact with the inner peripheral surface of the first shaft hole 211.
  • the second support member 43b is press-fitted into the second small diameter portion 30b of the drive shaft main body 30, and is positioned between the second sliding bearing 22b in the second shaft hole 23b.
  • the second support member 43b is formed with a flange 433 that contacts the second thrust bearing 35b and an attachment portion (not shown) through which a second pin 47b described later is inserted.
  • the front end of the first return spring 44a is fixed to the second support member 43b.
  • the first return spring 44a extends in the direction of the drive axis O from the second support member 43b side toward the swash plate chamber 33 side.
  • the swash plate 5 has an annular flat plate shape and has a front surface 5a and a rear surface 5b.
  • the front surface 5 a faces the front of the compressor in the swash plate chamber 33.
  • the rear surface 5 b faces the rear of the compressor in the swash plate chamber 33.
  • the swash plate 5 has a ring plate 45. As shown in FIG. 4, the ring plate 45 is formed in an annular flat plate shape, and an insertion hole 45a is formed at the center.
  • the swash plate 5 is attached to the drive shaft 3 by inserting the drive shaft main body 30 through the insertion hole 45a in the swash plate chamber 33 (see FIG. 1).
  • a groove 45b is formed on one end side of the ring plate 45, and a towed portion 45c is formed on the other end side of the ring plate 45.
  • the groove 45b penetrates from the front surface 5a to the rear surface 5b of the swash plate 5.
  • the towed portion 45c protrudes from the rear surface 5b toward the rear of the swash plate 5 so as to be positioned between first and second arms 132 and 133 described later.
  • a pin hole 450 is formed in the pulled portion 45c.
  • the link mechanism 7 has a lug arm 49.
  • the lug arm 49 is disposed in front of the swash plate 5 in the swash plate chamber 33, and is located between the swash plate 5 and the second support member 43b.
  • the lug arm 49 is formed to be substantially L-shaped from the front end side toward the rear end side.
  • a weight portion 49 a is formed on the rear end side of the lug arm 49.
  • the weight portion 49a extends approximately half a circumference in the circumferential direction of the actuator 13.
  • the shape of the weight portion 49a can be designed as appropriate.
  • the rear end side of the lug arm 49 is connected to one end side of the ring plate 45 by the first pin 47a.
  • the first pin 47a corresponds to the connecting portion in the present invention.
  • the front end side of the lug arm 49 is arranged around the first swing axis M1 with respect to one end side of the ring plate 45, that is, the swash plate 5, with the axis of the first pin 47a as the first swing axis M1. It is supported so that it can swing.
  • the first swing axis M1 extends in a direction orthogonal to the drive axis O of the drive shaft 3.
  • the front end side of the lug arm 49 is connected to the second support member 43b by the second pin 47b.
  • the front end side of the lug arm 49 swings around the second swing axis M2 with respect to the second support member 43b, that is, the drive shaft 3, with the second pivot 47b as the second swing axis M2. It is supported movably.
  • the second swing axis M2 extends in parallel with the first swing axis M1.
  • the first and second arms 132 and 133 and the third pin 47c which will be described later, constitute the link mechanism 7 in the present invention.
  • the weight portion 49a is provided to extend on the rear end side of the lug arm 49, that is, on the opposite side of the second swing axis M2 with respect to the first swing axis M1. For this reason, the lug arm 49 is supported by the ring plate 45 by the first pin 47 a, so that the weight portion 49 a passes through the groove portion 45 b of the ring plate 45 and faces the rear surface of the ring plate 45, that is, the rear surface 5 b side of the swash plate 5. To position. The centrifugal force generated when the swash plate 5 rotates around the drive axis O also acts on the weight portion 49a on the rear surface 5b side of the swash plate 5.
  • the swash plate 5 and the drive shaft 3 are connected by the link mechanism 7 so that the swash plate 5 can rotate together with the drive shaft 3. Further, the both ends of the lug arm 49 swing around the first swing axis M1 and the second swing axis M2, respectively, so that the inclination angle of the swash plate 5 can be changed.
  • Each piston 9 has a first head 9a on the rear end side and a second head 9b on the front end side.
  • Each of the first heads 9a is housed so as to be capable of reciprocating in each of the first to fifth rear cylinder bores 21a to 21e.
  • the first compression chambers 210 are defined in the first to fifth rear cylinder bores 21a to 21e by the first heads 9a and the first valve forming plate 39, respectively.
  • Each of the second heads 9b is housed so as to be able to reciprocate within the first to fifth front cylinder bores 23a.
  • the second compression chambers 230 are defined in the first to fifth front cylinder bores 23a by the second heads 9b and the second valve forming plate 41, respectively.
  • each first head 9a can reciprocate within the first to fifth rear cylinder bores 21a to 21f with a stroke corresponding to the inclination angle of the swash plate 5, and each second head.
  • the portions 9b can reciprocate in the first to fifth front cylinder bores 23a.
  • the top dead center positions of the first head 9a and the second head 9b move as the stroke of the piston 9 changes in accordance with the change of the inclination angle of the swash plate 5. Specifically, as shown in FIG. 5, the top dead center position of the first head 9a moves more greatly than the top dead center position of the second head 9b as the inclination angle of the swash plate 5 decreases. To do.
  • the actuator 13 is disposed in the swash plate chamber 33.
  • the actuator 13 is located behind the swash plate 5 in the swash plate chamber 33, and can enter the first recess 212.
  • the actuator 13 includes a moving body 13a, a partition body 13b, and a control pressure chamber 13c.
  • the control pressure chamber 13c is formed between the movable body 13a and the partition body 13b.
  • the moving body 13 a includes a rear wall 130, a peripheral wall 131, a first arm 132, and a coupling mechanism 14.
  • the rear wall 130 is located behind the movable body 13a and extends in the radial direction in a direction away from the drive axis O.
  • the rear wall 130 is provided with an insertion hole 130a through which the second small diameter portion 30b of the drive shaft main body 30 is inserted.
  • the peripheral wall 131 is continuous with the outer peripheral edge of the rear wall 130 and extends toward the front of the moving body 13a.
  • the movable body 13a has a bottomed cylindrical shape due to the rear wall 130, the peripheral wall 131, and the coupling mechanism 14.
  • the connecting mechanism 14 has a first arm 132 and a second arm 133.
  • the first arm 132 and the second arm 133 are both formed at the front end of the peripheral wall 131 and project toward the front of the movable body 13a.
  • the first arm 132 is formed on the left side of the front end of the peripheral wall 131
  • the second arm 133 is formed on the right side of the front end of the peripheral wall 131.
  • the first arm 132 and the second arm 133 protrude toward the front of the movable body 13a, the first arm 132 and the first arm 132 are formed by the first and second arms 132 and 133 and the front end surface of the peripheral wall 131.
  • a recess 134 is formed between the second arm 133 and the second arm 133.
  • a first traction point 132 a is set on the first arm 132, and a second traction point 133 a is set on the second arm 133.
  • These first and second traction points 132a and 133a also function as pin holes through which the third pin 47 is inserted.
  • the first arm 132 and the second arm 133 have a symmetrical shape and are disposed across the drive axis O. More specifically, the first arm 132 and the second arm 133 have a virtual plane X determined by the drive axis O, the top dead center position of the swash plate 5, and the bottom dead center position of the swash plate 5. Are arranged on both sides of each other and face each other. Thereby, in the moving body 13a, the first traction point 132a and the second traction point 133a are also arranged across the virtual plane X, respectively.
  • the shapes of the first and second arms 132, 133, etc. are simplified for easy explanation.
  • the partition 13b is formed in a disk shape having substantially the same diameter as the inner diameter of the movable body 13a.
  • a second return spring 44b is provided between the partition 13b and the ring plate 45. Specifically, the rear end of the second return spring 44b is fixed to the partition 13b, and the front end of the second return spring 44b is fixed to the other end side of the ring plate 45.
  • the first small diameter portion 30a of the drive shaft main body 30 is inserted through the movable body 13a and the partitioning body 13b.
  • the movable body 13a is assembled to the drive shaft main body 30 in a state in which the movable body 13a can be stored in the first storage chamber 21c, and is disposed in a state of facing the link mechanism 7 with the swash plate 5 interposed therebetween.
  • the partition 13b is disposed in the moving body 13a behind the swash plate 5, and the periphery thereof is surrounded by the peripheral wall 131.
  • the control pressure chamber 13c is formed between the movable body 13a and the partition body 13b.
  • the control pressure chamber 13c is partitioned from the swash plate chamber 33 by the rear wall 130, the peripheral wall 131, and the partition body 13b of the movable body 13a.
  • the first small-diameter portion 30a is inserted so that the movable body 13a can rotate together with the drive shaft 3, and in the swash plate chamber 33, in the direction of the drive axis O of the drive shaft 3. It is possible to move.
  • the division body 13b is being fixed to the 2nd small diameter part 30a in the state penetrated by the 1st small diameter part 30a. Thereby, the partition 13b can only rotate together with the drive shaft 3, and cannot move like the movable body 13a.
  • the moving body 13a moves in the direction of the drive axis O, it moves relative to the partitioning body 13b.
  • the swash plate chamber 33 has a first tangent line L1 drawn from the drive axis O to the second rear cylinder bore 21b side of the first rear cylinder bore 21a, and the drive axis O.
  • a first virtual region S1 defined by a second tangent line L2 drawn to the first rear cylinder bore 21a side in the second rear cylinder bore 21b is set.
  • the swash plate chamber 33 includes a third tangent line L3 drawn from the drive axis O toward the third rear cylinder bore 21c in the second rear cylinder bore 21b, and a third tangent L3 in the third rear cylinder bore 21c from the drive axis O.
  • a second virtual region S2 is set that is partitioned by a fourth tangent line L4 drawn toward the two rear cylinder bores 21b.
  • first and second arms 132 and 133 are formed, respectively.
  • the shapes of the first and second arms 132 and 133 are simplified for easy explanation.
  • the first and second arms 132 and 133 and the swash plate 5 are connected by a third pin 47c.
  • the first and second arms 132 and 133 and the to-be-towed portion 45c are connected by one third pin 47c while the to-be-towed portion 45c shown in FIG. 4 is fitted to the recess 134 of the moving body 13a. is doing.
  • the coupling mechanism 14 is disposed on the side opposite to the first pin 47a with respect to the drive shaft 3, that is, the drive axis O.
  • This third pin 47c extends from the first traction point 132a side to the second traction point 133a through the pin hole 450 of the to-be-towed part 45c in the direction orthogonal to the drive axis O.
  • the swash plate 5 is supported by the movable body 13a so as to be swingable around the action axis M3 with the axis of the third pin 47c as the action axis M3.
  • the action axis M3 extends in parallel with the first and second oscillation axes M1 and M2.
  • the moving body 13a is connected to the swash plate 5.
  • an axial path 3a extending in the direction of the drive axis O from the rear end toward the front, and extending in the radial direction from the front end of the axial path 3a and opening to the outer peripheral surface of the drive shaft main body 30.
  • a path 3b is formed.
  • the rear end of the axis 3 a is open to the pressure adjustment chamber 31.
  • the path 3b is open to the control pressure chamber 13c.
  • the control pressure chamber 13c communicates with the pressure adjustment chamber 31 through the radial path 3b and the axial path 3a.
  • Threaded portion 3d is formed at the tip of drive shaft body 30.
  • the drive shaft 3 is connected to a pulley or an electromagnetic clutch (not shown) via the screw portion 3d.
  • control mechanism 15 includes a low pressure passage 15a, a high pressure passage 15b, a control valve 15c, an orifice 15d, an axial path 3a, and a radial path 3b.
  • the low pressure passage 15a is connected to the pressure adjusting chamber 31 and the first suction chamber 27a.
  • the control pressure chamber 13c, the pressure adjustment chamber 31, and the first suction chamber 27a communicate with each other by the low pressure passage 15a, the axial path 3a, and the radial path 3b.
  • the high pressure passage 15b is connected to the pressure adjustment chamber 31 and the first discharge chamber 29a.
  • the control pressure chamber 13c, the pressure adjustment chamber 31, and the first discharge chamber 29a communicate with each other by the high pressure passage 15b, the axial path 3a, and the radial path 3b. Further, an orifice 15d is provided in the high-pressure passage 15b.
  • the control valve 15c is provided in the low pressure passage 15a.
  • the control valve 15c can adjust the opening of the low pressure passage 15a based on the pressure in the first suction chamber 27a.
  • a pipe connected to the evaporator is connected to the suction port 330 shown in FIG. 1, and a pipe connected to the condenser is connected to the discharge port 160.
  • the condenser is connected to the evaporator via a pipe and an expansion valve.
  • the discharge stroke and the like in which the refrigerant gas is discharged into the first and second discharge chambers 29a and 29b are repeatedly performed.
  • the refrigerant gas discharged into the first discharge chamber 29 a reaches the merged discharge chamber 161 through the first discharge communication path 18.
  • the refrigerant gas discharged into the second discharge chamber 29 b reaches the merged discharge chamber 161 through the second discharge communication path 20. Then, the refrigerant gas reaching the merged discharge chamber 161 is discharged from the discharge port 160 to the condenser.
  • a piston compression force that reduces the inclination angle of the swash plate 5 acts on the rotating body including the swash plate 5, the ring plate 45, the lug arm 49, and the first pin 47a. If the inclination angle of the swash plate 5 is changed, it is possible to perform capacity control by increasing or decreasing the stroke of the piston 9.
  • control mechanism 15 if the control valve 15c shown in FIG. 2 increases the opening of the low-pressure passage 15a, the pressure in the pressure adjusting chamber 31 and thus the pressure in the control pressure chamber 13c are changed to the first suction chamber. It becomes substantially equal to the pressure in 27a. Therefore, due to the piston compression force acting on the swash plate 5, the moving body 13 a moves toward the front side of the swash plate chamber 33 in the actuator 13 as shown in FIG. 4.
  • the moving body 13a moves the other end of the swash plate 5 through the first and second traction points 132a and 133a of the first and second arms 132 and 133 at the operating axis M3. It will be in the state pressed to the front side. For this reason, in this compressor, the other end side of the ring plate 45, that is, the other end side of the swash plate 5 oscillates clockwise around the action axis M3 while resisting the biasing force of the second return spring 44b. To do.
  • the rear end of the lug arm 49 swings clockwise around the first swing axis M1, and the front end of the lug arm 49 swings counterclockwise around the second swing axis M2.
  • the lug arm 49 approaches the flange 431 of the second support member 43b.
  • the swash plate 5 swings with the operating axis M3 as the operating point and the first swinging axis M1 as the fulcrum.
  • the inclination angle of the swash plate 5 with respect to the drive shaft center O of the drive shaft 3 decreases, and the stroke of the piston 9 decreases.
  • the discharge capacity per one rotation of the drive shaft 3 becomes small.
  • the inclination angle of the swash plate 5 shown in FIG. 5 is the minimum value in this compressor.
  • the ring plate 45 contacts the rear end of the first return spring 44a.
  • the first return spring 44a is elastically deformed, and the rear end of the first return spring 44a approaches the second support member 43b.
  • the moving body 13a moves the other end of the swash plate 5 through the first and second traction points 132a and 133a of the first and second arms 132 and 133 at the operating axis M3. Pull backwards.
  • the other end side of the swash plate 5 swings counterclockwise around the action axis M3.
  • the rear end of the lug arm 49 swings counterclockwise around the first swing axis M1
  • the front end of the lug arm 49 swings clockwise around the second swing axis M2.
  • the lug arm 49 is separated from the flange 431 of the second support member 43b.
  • the swash plate 5 oscillates in the opposite direction to the case where the inclination angle becomes smaller with the action axis M3 and the first oscillation axis M1 as the action point and the fulcrum, respectively. For this reason, the inclination angle of the swash plate 5 with respect to the drive axis O of the drive shaft 3 increases, and the stroke of the piston 9 increases. For this reason, in this compressor, the discharge capacity per one rotation of the drive shaft 3 becomes large.
  • the inclination angle of the swash plate 5 shown in FIG. 1 is the maximum value in this compressor. Further, in this state where the inclination angle of the swash plate 5 is at the maximum value, the rear wall 130 of the moving body 13a contacts the first flange 430.
  • this compressor when the inclination angle of the swash plate 5 is increased, the moving body 13a pulls the swash plate 5 through the first and second pulling points 132a and 133a of the first and second arms 132 and 133. That is, in this compressor, the movable body 13a is remote from the swash plate 5 when the swash plate 5 is displaced in the direction of increasing the inclination angle. For this reason, in this compressor, even if the rear wall 130 and the peripheral wall 131 are enlarged in order to reliably increase the discharge capacity by the pressure increase in the control pressure chamber 13c, the interference between the peripheral wall 131 and the swash plate 5 does not occur. Thereby, in this compressor, it is possible to suppress an increase in the size of the swash plate chamber 33 while increasing the size of the rear wall 130 and the peripheral wall 131 of the movable body 13a.
  • the coupling mechanism 14 has first and second arms 132 and 133.
  • the first arm 132 is provided with a first traction point 132a for applying a traction force to the swash plate 5
  • the second arm 133 is provided with a second traction point 133a for applying a traction force to the swash plate 5.
  • the first arm 132 and the second arm 133 have a virtual plane X determined by the drive axis O, the top dead center position of the swash plate 5 and the bottom dead center position of the swash plate 5. It is set across.
  • a first traction point 132a and a second traction point 133a are set on the first arm 132 and the second arm 133, respectively.
  • the 1st arm 132 and the 2nd arm 133 can give tractive force in two places, these 1st traction points 132a and 2nd traction points 133a. Therefore, in this compressor, for example, the first arm 132 and the second arm 133 are individually applied to the swash plate 5 as compared with the case where the coupling mechanism 14 has only a single arm.
  • Traction force can be reduced.
  • the moving body 13a presses the swash plate 5 through the first and second arms 132 and 133, but the pressing force at that time is not much. Not the size of. This is because centrifugal force acts on the rotating body including the swash plate 5 and the moving body 13a in the direction of decreasing the inclination angle.
  • a first virtual area S1 and a second virtual area S2 are set for the swash plate chamber 33.
  • the first arm 132 is located in the first virtual area S1
  • the second arm 133 is located in the second virtual area S2. Therefore, in this compressor, the first arm 132 and the second arm 133 do not interfere with the pistons 9 that reciprocate within the first to fifth rear cylinder bores 21a to 21e and the first to fifth front cylinder bores 23a. .
  • first arm 132 and the second arm 133, the first to fifth rear cylinder bores 21a to 21e and the first to fifth front cylinder bores 23a, that is, the first arm 132 and the second arm 133, and each piston 9 Can be arranged close to each other.
  • the compressor of the embodiment the compressor whose discharge capacity is changed by the actuator 13 can be downsized while exhibiting high controllability.
  • the swash plate 5 is provided with a towed portion 45 c protruding between the first arm 132 and the second arm 133. And the 1st, 2nd arms 132 and 133 and the swash plate 5 are connected, fitting the to-be-towed part 45c with the recessed part 134 of the moving body 13a.
  • a third pin 47c extending in a direction orthogonal to the drive axis O is inserted through the first arm 132, the to-be-towed portion 45c, and the second arm 133.
  • this compressor it is possible to easily connect the first arm 132, the towed portion 45c, and the second arm 133.
  • the number of parts can be reduced, and the manufacturing can be performed. Can be facilitated.
  • a cylinder bore may be formed only in one of the first cylinder block 21 and the second cylinder block 23 to configure a variable displacement single-head swash plate compressor.
  • control mechanism 15 may be configured such that a control valve 15c is provided for the high pressure passage 15b and an orifice 15d is provided for the low pressure passage 15a.
  • the opening of the high-pressure passage 15b can be adjusted by the control valve 15c. Accordingly, the control pressure chamber 13b can be quickly increased in pressure by the pressure of the refrigerant gas in the first discharge chamber 29a, and the discharge capacity can be quickly increased.
  • the present invention can be used for an air conditioner or the like.
  • Towed part 47a ... 1st pin (connection part) 47c ... Third pin (pin) 132 ... 1st arm 133 ... 2nd arm 210 ... 1st compression chamber 230 ... 2nd compression chamber L1 ... 1st tangent L2 ... 2nd tangent L3 ... 3rd tangent L4 ... 4th tangent O ... Drive shaft center S1 ... 1st 1 virtual area S2 ... 2nd virtual area

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

Provided is a compressor in which discharge capacity is changed by an actuator, wherein high controllability is exhibited and compactness can be achieved. In this compressor, a mobile body (13a) has a back wall (130), a peripheral wall (131), and a joining mechanism (14). The joining mechanism (14) has a first arm (132) on which a first pulling point (132a) is set, and a second arm (133) on which a second pulling point (133a) is set. In the compressor, when the angle of incline of a swash plate (5) is increased, the mobile body (13a) pulls the swash plate via the first and second arms (132, 133). At this time, in the compressor, pulling force can be imparted at two points, the first pulling point (132a) and the second pulling point (133a). Consequently, in the compressor, even if the back wall (130) and the peripheral wall (131) are made larger, the rigidity of the first and second arms (132, 133) can be made lower.

Description

容量可変型斜板式圧縮機Variable capacity swash plate compressor
 本発明は容量可変型斜板式圧縮機に関する。 The present invention relates to a variable capacity swash plate compressor.
 特許文献1に従来の容量可変型斜板式圧縮機(以下、圧縮機という。)が開示されている。この圧縮機では、フロントハウジングとシリンダブロックとリヤハウジングとによってハウジングが形成されている。フロントハウジングとリヤハウジングとには、吸入室と吐出室とがそれぞれ形成されている。シリンダブロックには、斜板室及び複数個のシリンダボアが形成されている。ハウジングには、駆動軸が回転可能に支持されている。斜板室内には、駆動軸の回転によって回転可能な斜板が設けられている。駆動軸と斜板との間には、リンク機構が設けられている。リンク機構は、斜板の傾斜角度の変更を許容する。ここで、傾斜角度とは、駆動軸の駆動軸心に直交する方向に対する斜板の角度である。各シリンダボアには、ピストンが往復動可能に収納されている。ピストン毎に対をなすシューは、変換機構として、斜板の回転により、傾斜角度に応じたストロークで各ピストンをシリンダボア内で往復動させる。アクチュエータは、移動体と制御圧室とを有している。このアクチュエータは、制御圧室の容積を変更することにより、傾斜角度を変更可能である。制御機構はアクチュエータを制御する。 Patent Document 1 discloses a conventional variable displacement swash plate compressor (hereinafter referred to as a compressor). In this compressor, a housing is formed by a front housing, a cylinder block, and a rear housing. A suction chamber and a discharge chamber are formed in the front housing and the rear housing, respectively. A swash plate chamber and a plurality of cylinder bores are formed in the cylinder block. A drive shaft is rotatably supported by the housing. In the swash plate chamber, there is provided a swash plate that can be rotated by rotation of the drive shaft. A link mechanism is provided between the drive shaft and the swash plate. The link mechanism allows a change in the inclination angle of the swash plate. Here, the inclination angle is an angle of the swash plate with respect to a direction orthogonal to the drive axis of the drive shaft. In each cylinder bore, a piston is accommodated so as to be able to reciprocate. The pair of shoes for each piston, as a conversion mechanism, reciprocates each piston within the cylinder bore with a stroke corresponding to the inclination angle by the rotation of the swash plate. The actuator has a moving body and a control pressure chamber. This actuator can change the inclination angle by changing the volume of the control pressure chamber. The control mechanism controls the actuator.
 斜板には、フロントハウジング側に向かって延びる一対の第1アームと、リヤハウジング側に向かって延びる一対の第2アームとが形成されている。また、駆動軸には、ラグアームが固定されている。そして、各第1アームとラグアームとは、第1ピンによって連結されている。また、各第2アームと移動体とは、第2ピンによって連結されている。これら第1、2アーム、ラグアーム、移動体及び第1、2ピンによってリンク機構が形成されている。 The swash plate is formed with a pair of first arms extending toward the front housing side and a pair of second arms extending toward the rear housing side. A lug arm is fixed to the drive shaft. And each 1st arm and lug arm are connected by the 1st pin. Moreover, each 2nd arm and the mobile body are connected by the 2nd pin. A link mechanism is formed by the first and second arms, the lug arm, the movable body and the first and second pins.
 この圧縮機では、制御機構が吐出室内の冷媒の圧力によって制御圧室内の圧力を上昇させ、リンク機構を通じて斜板の傾斜角度を増大させる。この際、移動体は、各第2アームを通じて斜板を押圧する。また、移動体によって押圧された斜板は、各第1アームを通じてラグアームを押圧する。これらにより、リンク機構における駆動軸心方向の軸長が短くなることにより、斜板の傾斜角度が増大する。こうして、この圧縮機では、駆動軸の1回転当たりの吐出容量を増大させる。 In this compressor, the control mechanism increases the pressure in the control pressure chamber by the pressure of the refrigerant in the discharge chamber, and increases the inclination angle of the swash plate through the link mechanism. At this time, the moving body presses the swash plate through each second arm. The swash plate pressed by the moving body presses the lug arm through each first arm. As a result, the axial length of the link mechanism in the direction of the drive axis is shortened, so that the inclination angle of the swash plate is increased. Thus, in this compressor, the discharge capacity per rotation of the drive shaft is increased.
特開平5-172052号公報JP-A-5-172052
 ところで、上記のようにアクチュエータによって吐出容量を変更する圧縮機では、より高い制御性が要求され得る。 By the way, in the compressor that changes the discharge capacity by the actuator as described above, higher controllability may be required.
 そこで、上記従来の圧縮機において、制御圧室の圧力上昇によって吐出容量を確実に増大させるために、移動体を径方向に大型化することが考えられる。しかし、この場合には、移動体と傾斜角度が増大した斜板とが干渉してしまうことを回避するために、斜板室が大型化し、ひいては圧縮機が大型化する。 Therefore, in the conventional compressor, it is conceivable to increase the size of the moving body in the radial direction in order to reliably increase the discharge capacity by increasing the pressure in the control pressure chamber. However, in this case, in order to avoid the interference between the moving body and the swash plate having an increased inclination angle, the swash plate chamber is increased in size, and consequently the compressor is increased in size.
 また、この圧縮機では、移動体が斜板を押圧することによって傾斜角度を増大させるため、移動体は、増加傾向にある圧縮反力や吸入反力に抗するように、大きな押圧力によって斜板を押圧する必要がある。このため、この圧縮機では、傾斜角度を増大させる際に各第2アームには大きな押圧力が作用する。そこで、このような押圧力の負荷に耐え得るように各第2アームに高い剛性を確保しようとすれば、各第2アームが大型化してしまう。各第1アームについても同様である。ここで、上記のように移動体を径方向に大型化した場合には、各第1、2アームに作用する押圧力がより大きくなるため、各第1、2アームに対して、より高い剛性が必要となる。このような第1、2アームの大型化によっても斜板室が大型化することとなる。 In this compressor, since the moving body presses the swash plate to increase the inclination angle, the moving body is inclined by a large pressing force so as to resist the increasing compression reaction force and suction reaction force. It is necessary to press the plate. For this reason, in this compressor, when the inclination angle is increased, a large pressing force acts on each second arm. Then, if it is going to ensure high rigidity in each 2nd arm so that it can endure such a load of pressing force, each 2nd arm will enlarge. The same applies to each first arm. Here, when the moving body is enlarged in the radial direction as described above, since the pressing force acting on each of the first and second arms becomes larger, the rigidity of each of the first and second arms is higher. Is required. The increase in the size of the first and second arms also increases the size of the swash plate chamber.
 本発明は、上記従来の実情に鑑みてなされたものであって、アクチュエータによって吐出容量を変更する圧縮機において、高い制御性を発揮しつつ小型化も実現可能な圧縮機を提供することを解決すべき課題としている。 The present invention has been made in view of the above-described conventional situation, and solves the problem of providing a compressor that can achieve downsizing while exhibiting high controllability in a compressor that changes the discharge capacity by an actuator. It is an issue that should be done.
 本発明の容量可変型斜板式圧縮機は、吸入室、吐出室、斜板室及びシリンダボアが形成されたハウジングと、前記ハウジングに回転可能に支持された駆動軸と、前記駆動軸の回転によって前記斜板室内で回転可能な斜板と、前記駆動軸と前記斜板との間に設けられ、前記駆動軸の駆動軸心に直交する方向に対する前記斜板の傾斜角度の変更を許容するリンク機構と、前記シリンダボアに往復動可能に収納されたピストンと、前記斜板の回転により、前記傾斜角度に応じたストロークで前記ピストンを前記シリンダボア内で往復動させる変換機構と、前記斜板室内に配置され、前記傾斜角度を変更可能なアクチュエータと、前記アクチュエータを制御する制御機構とを備え、
 前記吸入室と前記斜板室とは連通し、
 前記アクチュエータは、前記駆動軸に設けられる区画体と、連結機構を介して前記斜板と連結されると共に、前記駆動軸心方向に移動して前記区画体に対して移動可能な移動体と、前記区画体と前記移動体とにより区画され、前記吐出室からの冷媒を導入することによって前記移動体を移動させる制御圧室とを有し、
 前記移動体は、前記制御圧室内の圧力が高くなることにより、前記斜板を牽引して前記傾斜角度を増大するように配置され、
 前記リンク機構は前記斜板に連結される連結部を有し、
 前記連結機構は、前記駆動軸に対して前記連結部と反対側に配置されると共に、前記駆動軸心を跨いで前記移動体に設けられる第1アーム及び第2アームを有していることを特徴とする。
The capacity-variable swash plate compressor of the present invention includes a housing in which a suction chamber, a discharge chamber, a swash plate chamber and a cylinder bore are formed, a drive shaft rotatably supported by the housing, and rotation of the drive shaft. A swash plate rotatable within a plate chamber, and a link mechanism provided between the drive shaft and the swash plate and allowing a change in the inclination angle of the swash plate with respect to a direction perpendicular to the drive axis of the drive shaft; A piston housed reciprocally in the cylinder bore, a conversion mechanism for reciprocating the piston in the cylinder bore with a stroke corresponding to the inclination angle by rotation of the swash plate, and disposed in the swash plate chamber An actuator that can change the tilt angle, and a control mechanism that controls the actuator,
The suction chamber and the swash plate chamber communicate with each other,
The actuator is connected to the partition provided on the drive shaft, the swash plate via a connection mechanism, and a movable body that is movable in the drive axis direction and movable relative to the partition. A control pressure chamber that is partitioned by the partition body and the moving body and moves the moving body by introducing a refrigerant from the discharge chamber;
The moving body is arranged to pull the swash plate and increase the inclination angle when the pressure in the control pressure chamber increases.
The link mechanism has a connecting portion connected to the swash plate,
The coupling mechanism has a first arm and a second arm that are disposed on the opposite side of the coupling portion with respect to the drive shaft and are provided on the movable body across the drive shaft center. Features.
 本発明の圧縮機では、斜板の傾斜角度を増大する際、移動体が斜板を牽引する。つまり、この圧縮機では、斜板が傾斜角度を増大する方向へと変位する際、移動体は斜板から遠隔する。このため、この圧縮機では、制御圧室の圧力上昇によって吐出容量を確実に増大させるために移動体本体を大型化した場合であっても、移動体本体と斜板との干渉が生じない。これにより、この圧縮機では、斜板室の大型化を抑制することが可能となる。 In the compressor of the present invention, when the inclination angle of the swash plate is increased, the moving body pulls the swash plate. That is, in this compressor, when the swash plate is displaced in the direction of increasing the inclination angle, the moving body is remote from the swash plate. For this reason, in this compressor, even when the size of the movable body is increased in order to reliably increase the discharge capacity due to the pressure increase in the control pressure chamber, interference between the movable body and the swash plate does not occur. Thereby, in this compressor, it becomes possible to suppress the enlargement of a swash plate chamber.
 そして、この圧縮機では、移動体が連結機構を介して斜板と連結している。このため、斜板の傾斜角度を増大するに当たって、移動体は、連結機構を通じて斜板に牽引力を付与する。ここで、斜板を牽引することによって傾斜角度を増大させる場合には、斜板を押圧することによって傾斜角度を増大させる場合と比較して、圧縮反力や吸入反力の影響を受け難い。このため、この圧縮機では、斜板の傾斜角度を増大させるに当たって、大きな牽引力を必要としない。 In this compressor, the moving body is connected to the swash plate through a connecting mechanism. For this reason, when increasing the inclination angle of the swash plate, the moving body applies a traction force to the swash plate through the coupling mechanism. Here, when the inclination angle is increased by pulling the swash plate, it is less affected by the compression reaction force or the suction reaction force than when the inclination angle is increased by pressing the swash plate. For this reason, this compressor does not require a large traction force to increase the inclination angle of the swash plate.
 さらに、この圧縮機では、連結機構が第1アームと第2アームとを有している。そして、これらの第1アームと第2アームとは、駆動軸心を跨いで移動体に設けられている。これにより、これらの第1アームと第2アームとにおいて牽引力を付与することができる。このため、この圧縮機では、例えば連結機構が単一のアームのみを有している場合と比較して、第1アームと第2アームとが斜板に対して個々に付与する牽引力を小さくすることができる。なお、この圧縮機では、斜板の傾斜角度を減少する際、移動体は第1、2アームを通じて斜板を押圧することにはなるが、その際の押圧力はさほどの大きさではない。斜板及び移動体を含む回転体には、傾斜角度を小さくする方向に遠心力が作用するからである。 Furthermore, in this compressor, the coupling mechanism has a first arm and a second arm. The first arm and the second arm are provided on the moving body across the drive axis. Thereby, tractive force can be provided in these 1st arms and 2nd arms. For this reason, in this compressor, compared with the case where a connection mechanism has only a single arm, for example, the tractive force which a 1st arm and a 2nd arm individually provide with respect to a swash plate is made small. be able to. In this compressor, when the inclination angle of the swash plate is decreased, the moving body presses the swash plate through the first and second arms, but the pressing force at that time is not so large. This is because centrifugal force acts on the rotating body including the swash plate and the moving body in the direction of decreasing the inclination angle.
 これらのため、この圧縮機では、上記のように、移動体本体を大型化した場合であっても、それによって要求される第1アーム及び第2アームの剛性を小さくすることができる。このため、この圧縮機では、連結機構の大型化を抑制することが可能となる。 For these reasons, in this compressor, even when the movable body is enlarged as described above, the required rigidity of the first arm and the second arm can be reduced. For this reason, in this compressor, it becomes possible to suppress the enlargement of a connection mechanism.
 したがって、本発明の圧縮機によれば、アクチュエータによって吐出容量を変更する圧縮機において、高い制御性を発揮しつつ小型化も実現可能である。 Therefore, according to the compressor of the present invention, it is possible to achieve downsizing while exhibiting high controllability in the compressor whose discharge capacity is changed by the actuator.
 本発明の圧縮機において、シリンダボアは、少なくとも第1シリンダボア、第2シリンダボア及び第3シリンダボアであり得る。第1シリンダボア、第2シリンダボア及び第3シリンダボアは、駆動軸心を中心とする同心円状に等角度間隔で前記ハウジングに配置され得る。斜板室には、駆動軸心から第1シリンダボアにおける第2シリンダボア側に引かれた第1接線と、駆動軸心から第2シリンダボアにおける第1シリンダボア側に引かれた第2接線とによって区画される第1仮想領域が設定されるとともに、駆動軸心から第2シリンダボアにおける第3シリンダボア側に引かれた第3接線と、駆動軸心から第3シリンダボアにおける第2シリンダボア側に引かれた第4接線とによって区画される第2仮想領域が設定され得る。そして、第1アームは第1仮想領域内に位置し、第2アームは第2仮想領域内に位置していることが好ましい。 In the compressor of the present invention, the cylinder bore may be at least a first cylinder bore, a second cylinder bore, and a third cylinder bore. The first cylinder bore, the second cylinder bore, and the third cylinder bore may be arranged in the housing at equiangular intervals concentrically around the drive shaft center. The swash plate chamber is partitioned by a first tangent drawn from the drive shaft to the second cylinder bore side of the first cylinder bore and a second tangent drawn from the drive shaft to the first cylinder bore side of the second cylinder bore. A first imaginary region is set, and a third tangent drawn from the drive axis to the third cylinder bore side of the second cylinder bore and a fourth tangent drawn from the drive axis to the second cylinder bore side of the third cylinder bore A second virtual area partitioned by can be set. The first arm is preferably located in the first virtual area, and the second arm is preferably located in the second virtual area.
 この場合には、第1アーム及び第2アームが第1~3シリンダボア内を往復動するピストンの邪魔とならない。このため、圧縮機を確実に小型化することが可能となる。 In this case, the first arm and the second arm do not interfere with the piston that reciprocates in the first to third cylinder bores. For this reason, it becomes possible to reliably reduce the size of the compressor.
 また、斜板には、第1アームと第2アームとの間に突出する被牽引部が設けられ得る。そして、第1アーム及び第2アームと被牽引部との間で駆動力が伝達されることが好ましい。この場合には、移動体が駆動軸と共に安定して回転するとともに、斜板についても移動体、ひいては駆動軸と共に安定して回転する。 Also, the swash plate may be provided with a towed portion that protrudes between the first arm and the second arm. And it is preferable that a driving force is transmitted between a 1st arm, a 2nd arm, and a towed part. In this case, the moving body rotates stably together with the drive shaft, and the swash plate also rotates stably together with the moving body and eventually the drive shaft.
 本発明の圧縮機において、例えば、第1アーム及び被牽引部と、第2アーム及び被牽引部とをそれぞれ別々ピン等によって連結することが可能である。 In the compressor according to the present invention, for example, the first arm and the towed part, and the second arm and the towed part can be connected by separate pins or the like.
 特に、第1アーム、被牽引部及び第2アームには、駆動軸心と直交する方向に延びるピンが挿通されていることが好ましい。この場合には、第1アーム、被牽引部及び第2アームを容易に連結することが可能となる。また、この場合には、上記のように、第1アーム及び被牽引部と、第2アーム及び被牽引部とをそれぞれ別々のピン等によって連結する場合と比較して、部品点数を削減することができ、製造を容易化することができる。さらに、この場合には、第1、2アームや被牽引部からピンが抜け難くなり、信頼性を高くすることができる。 In particular, it is preferable that a pin extending in a direction orthogonal to the drive axis is inserted through the first arm, the to-be-drawn portion, and the second arm. In this case, the first arm, the towed portion, and the second arm can be easily connected. Further, in this case, as described above, the number of parts can be reduced as compared with the case where the first arm and the towed part are connected to the second arm and the towed part by separate pins or the like. Manufacturing can be facilitated. Further, in this case, the pin is difficult to be removed from the first and second arms and the towed portion, and the reliability can be increased.
 本発明の圧縮機によれば、アクチュエータによって吐出容量を変更する圧縮機において、高い制御性を発揮しつつ小型化も実現可能である。 According to the compressor of the present invention, it is possible to reduce the size of the compressor whose discharge capacity is changed by an actuator while exhibiting high controllability.
実施例の圧縮機における最大容量時の断面図である。It is sectional drawing at the time of the maximum capacity | capacitance in the compressor of an Example. 実施例の圧縮機に係り、制御機構を示す模式図である。It is a schematic diagram which shows the control mechanism in connection with the compressor of an Example. 実施例の圧縮機に係り、図1におけるIII-III方向からの矢視断面図である。FIG. 3 is a cross-sectional view of the compressor according to the embodiment, as viewed from the direction of arrows III-III in FIG. 実施例の圧縮機に係り、斜板を示す正面図及び断面図である。図(A)は斜板の正面図を示している。図(B)は斜板の断面図を示している。It is the front view and sectional view which show the swash plate concerning the compressor of an Example. FIG. 1A shows a front view of the swash plate. FIG. (B) shows a cross-sectional view of the swash plate. 実施例の圧縮機における最小容量時の断面図である。It is sectional drawing at the time of the minimum capacity | capacitance in the compressor of an Example. 実施例の圧縮機に係り、移動体を示す後方からの斜視図である。It is a perspective view from the back which shows the compressor concerning an example and shows a mobile. 実施例の圧縮機に係り、移動体を示す模式上面図である。It is a schematic top view which shows the moving body in connection with the compressor of an Example.
 以下、本発明を具体化した実施例を図面を参照しつつ説明する。実施例の圧縮機は容量可変型両頭斜板式圧縮機である。この圧縮機は、車両に搭載されており、車両用空調装置の冷凍回路を構成している。 Hereinafter, embodiments embodying the present invention will be described with reference to the drawings. The compressor of the embodiment is a variable capacity double-head swash plate compressor. This compressor is mounted on a vehicle and constitutes a refrigeration circuit of a vehicle air conditioner.
 図1に示すように、実施例1の圧縮機は、ハウジング1と、駆動軸3と、斜板5と、リンク機構7と、複数のピストン9と、一対のシュー11a、11bと、アクチュエータ13と、図2に示す制御機構15とを備えている。 As shown in FIG. 1, the compressor according to the first embodiment includes a housing 1, a drive shaft 3, a swash plate 5, a link mechanism 7, a plurality of pistons 9, a pair of shoes 11 a and 11 b, and an actuator 13. And a control mechanism 15 shown in FIG.
 図1に示すように、ハウジング1は、圧縮機の後方に位置するリヤハウジング17と、圧縮機の前方に位置するフロントハウジング19と、フロントハウジング17とリヤハウジング19との間に位置する第1、2シリンダブロック21、23と、第1、2弁形成プレート39、41とを有している。 As shown in FIG. 1, the housing 1 includes a rear housing 17 located behind the compressor, a front housing 19 located in front of the compressor, and a first housing located between the front housing 17 and the rear housing 19. 2 cylinder blocks 21 and 23 and first and second valve forming plates 39 and 41.
 リヤハウジング17には、上記の制御機構15が設けられている。また、リヤハウジング17には、第1吸入室27a、第1吐出室29a及び圧力調整室31が形成されている。圧力調整室31はリヤハウジング17の中心部分に位置している。第1吸入室27aは環状に形成されており、リヤハウジング17において、圧力調整室31の外周側に位置している。第1吐出室29aも環状に形成されており、リヤハウジング17において、第1吸入室27aの外周側に位置している。 The rear housing 17 is provided with the control mechanism 15 described above. In the rear housing 17, a first suction chamber 27a, a first discharge chamber 29a, and a pressure adjustment chamber 31 are formed. The pressure adjustment chamber 31 is located in the center portion of the rear housing 17. The first suction chamber 27 a is formed in an annular shape, and is located on the outer peripheral side of the pressure adjustment chamber 31 in the rear housing 17. The first discharge chamber 29a is also formed in an annular shape, and is located on the outer peripheral side of the first suction chamber 27a in the rear housing 17.
 さらに、リヤハウジング17には、第1リヤ側連通路18aが形成されている。この第1リヤ側連通路18aは、後端側が第1吐出室29aに連通しており、前端側がリヤハウジング17の前端に開いている。 Furthermore, the rear housing 17 is formed with a first rear communication path 18a. The rear end side of the first rear communication path 18 a communicates with the first discharge chamber 29 a, and the front end side opens at the front end of the rear housing 17.
 フロントハウジング19には、前方に向かって突出するボス19aが形成されている。このボス19a内には軸封装置25が設けられている。また、フロントハウジング19内には、第2吸入室27b及び第2吐出室29bが形成されている。第2吸入室27bはフロントハウジング19の内周側に位置している。第2吐出室29bは環状に形成されており、フロントハウジング19において、第2吸入室27bの外周側に位置している。 The front housing 19 is formed with a boss 19a protruding forward. A shaft seal device 25 is provided in the boss 19a. In the front housing 19, a second suction chamber 27b and a second discharge chamber 29b are formed. The second suction chamber 27 b is located on the inner peripheral side of the front housing 19. The second discharge chamber 29 b is formed in an annular shape, and is located on the outer peripheral side of the second suction chamber 27 b in the front housing 19.
 さらに、フロントハウジング19には、第1フロント側連通路20aが形成されている。この第1フロント側連通路20aは、前端側が第2吐出室29bに連通しており、後端側がフロントハウジング19の後端に開いている。 Furthermore, the front housing 19 is formed with a first front communication path 20a. The first front communication passage 20 a has a front end communicating with the second discharge chamber 29 b and a rear end opened at the rear end of the front housing 19.
 第1シリンダブロック21と第2シリンダブロック23との間には、斜板室33が形成されている。この斜板室33は、ハウジング1における前後方向の略中央に位置している。 A swash plate chamber 33 is formed between the first cylinder block 21 and the second cylinder block 23. The swash plate chamber 33 is located at the approximate center of the housing 1 in the front-rear direction.
 図3に示すように、第1シリンダブロック21には、第1~5リヤ側シリンダボア21a~21eが周方向に等角度間隔でそれぞれ平行に形成されている。また、図1に示すように、第1シリンダブロック21には、駆動軸3を挿通させる第1軸孔211が形成されている。第1軸孔211は後端側で圧力調整室31と連通している。この第1軸孔211内には、第1滑り軸受22aが設けられている。なお、第1滑り軸受22aに換えて、転がり軸受を設けても良い。 As shown in FIG. 3, the first cylinder block 21 has first to fifth rear cylinder bores 21a to 21e formed in parallel in the circumferential direction at equal angular intervals. As shown in FIG. 1, the first cylinder block 21 has a first shaft hole 211 through which the drive shaft 3 is inserted. The first shaft hole 211 communicates with the pressure adjustment chamber 31 on the rear end side. A first sliding bearing 22a is provided in the first shaft hole 211. Note that a rolling bearing may be provided instead of the first sliding bearing 22a.
 さらに、第1シリンダブロック21には、第1軸孔211と連通して第1軸孔211と同軸をなす第1凹部212が形成されている。第1凹部212は斜板室33と連通しており、斜板室33の一部となっている。第1凹部212は、後端に向かって段状に縮径する形状とされている。第1凹部212の後端には、第1スラスト軸受35aが設けられている。さらに、図3に示すように、第1シリンダブロック21には、斜板室33と第1吸入室27aとを連通する五つの連絡路37aが形成されている。各連通路37aは、各々が第1~5リヤ側シリンダボア21a~21eの間に配置されるように周方向に等角度間隔で形成されている。また、図1に示すように、第1シリンダブロック21には、後述する各第1吸入リード弁391aの最大開度を規制する第1リテーナ溝213が凹設されている。 Further, the first cylinder block 21 is formed with a first recess 212 that communicates with the first shaft hole 211 and is coaxial with the first shaft hole 211. The first recess 212 communicates with the swash plate chamber 33 and is a part of the swash plate chamber 33. The 1st recessed part 212 is made into the shape which diameter-reduces to a step shape toward a rear end. A first thrust bearing 35 a is provided at the rear end of the first recess 212. Further, as shown in FIG. 3, the first cylinder block 21 is formed with five communication paths 37a that communicate the swash plate chamber 33 and the first suction chamber 27a. Each communication passage 37a is formed at equiangular intervals in the circumferential direction so as to be disposed between the first to fifth rear cylinder bores 21a to 21e. As shown in FIG. 1, the first cylinder block 21 is provided with a first retainer groove 213 that restricts the maximum opening of each first suction reed valve 391 a described later.
 第1シリンダブロック21には、吐出ポート160と、合流吐出室161と、第3フロント側連通路20cと、第2リヤ側連通路18bと、吸入ポート330とが形成されている。第2リヤ側連通路18bは、前端側が合流吐出室161に連通しており、後端側が第1シリンダブロック21の後端に開いている。吐出ポート160と合流吐出室161とは、互いに連通している。この合流吐出室161は、吐出ポート160を介して管路を構成する図示しない凝縮器と接続している。また、第3フロント側連通路20cは、前端側が第1シリンダブロック21の前端に開いており、後端側が合流吐出室161に連通している。吸入ポート330は斜板室33と連通している。この吸入ポート330は、管路を構成する図示しない蒸発器と接続している。 In the first cylinder block 21, a discharge port 160, a merged discharge chamber 161, a third front side communication path 20c, a second rear side communication path 18b, and a suction port 330 are formed. The second rear side communication passage 18 b has a front end communicating with the merging / discharging chamber 161 and a rear end opening at the rear end of the first cylinder block 21. The discharge port 160 and the merge discharge chamber 161 are in communication with each other. The merging / discharging chamber 161 is connected via a discharge port 160 to a condenser (not shown) constituting a pipe line. In addition, the front end side of the third front side communication path 20 c is open to the front end of the first cylinder block 21, and the rear end side communicates with the merged discharge chamber 161. The suction port 330 communicates with the swash plate chamber 33. The suction port 330 is connected to an evaporator (not shown) that constitutes a pipe line.
 第2シリンダブロック23は、第1リヤ側シリンダボア21aに対応する第1フロント側シリンダボア23aが形成されている。これにより、第1リヤ側シリンダボア21aと第1フロント側シリンダボア23aとは前後で対になっている。第1リヤ側シリンダボア21aと第1フロント側シリンダボア23aとは同径である。また、同様に、第2シリンダブロック23には、第2~5リヤ側シリンダボア21b~21eにそれぞれ対応する第2~5フロント側シリンダボアが形成されている(図示略)。 The second cylinder block 23 has a first front cylinder bore 23a corresponding to the first rear cylinder bore 21a. As a result, the first rear cylinder bore 21a and the first front cylinder bore 23a are paired in the front-rear direction. The first rear cylinder bore 21a and the first front cylinder bore 23a have the same diameter. Similarly, the second cylinder block 23 is formed with second to fifth front cylinder bores (not shown) corresponding to the second to fifth rear cylinder bores 21b to 21e, respectively.
 また、第2シリンダブロック23には、駆動軸3を挿通させる第2軸孔23bが形成されている。また、この第2軸孔23内には、第2滑り軸受22bが設けられている。なお、第2滑り軸受22bに換えて、転がり軸受を設けても良い。 Also, the second cylinder block 23 is formed with a second shaft hole 23b through which the drive shaft 3 is inserted. A second sliding bearing 22b is provided in the second shaft hole 23. A rolling bearing may be provided instead of the second sliding bearing 22b.
 また、第2シリンダブロック23には、第2軸孔23bと連通して第2軸孔23bと同軸をなす第2凹部23cが形成されている。第2凹部23cも斜板室33と連通しており、斜板室33の一部となっている。これにより、第2軸孔23bは後端側で斜板室33と連通している。第2凹部23cは、前端に向かって段状に縮径する形状とされている。第2凹部23cの前端には、第2スラスト軸受35bが設けられている。さらに、第2シリンダブロック23には、斜板室33と第2吸入室27bとを連通する複数の連絡路37bが形成されている。また、第2シリンダブロック23には、後述する各第2吸入リード弁411aの最大開度を規制する第2リテーナ溝23eが凹設されている。 The second cylinder block 23 is formed with a second recess 23c that communicates with the second shaft hole 23b and is coaxial with the second shaft hole 23b. The second recess 23 c is also in communication with the swash plate chamber 33 and is a part of the swash plate chamber 33. Thus, the second shaft hole 23b communicates with the swash plate chamber 33 on the rear end side. The 2nd recessed part 23c is made into the shape which diameter-reduces in steps toward the front end. A second thrust bearing 35b is provided at the front end of the second recess 23c. Further, the second cylinder block 23 is formed with a plurality of communication paths 37b that communicate the swash plate chamber 33 and the second suction chamber 27b. The second cylinder block 23 is provided with a second retainer groove 23e that restricts the maximum opening degree of each second suction reed valve 411a described later.
 さらに、第2シリンダブロック23には、第2フロント側連通路20bが形成されている。この第2フロント側連通路20bは、前端が第2シリンダブロック23の前端側に開いており、後端が第2シリンダブロック23の後端側に開いている。第2フロント側連通路20bは、第1シリンダブロック21と第2シリンダブロック23とが接合することで、第3フロント側連通路20bの前端側と連通する。 Furthermore, a second front communication path 20b is formed in the second cylinder block 23. The front end of the second front side communication path 20 b is open to the front end side of the second cylinder block 23, and the rear end is open to the rear end side of the second cylinder block 23. The second front communication path 20b communicates with the front end side of the third front communication path 20b by joining the first cylinder block 21 and the second cylinder block 23 together.
 第1弁形成プレート39は、リヤハウジング17と第1シリンダブロック21との間に設けられている。また、第2弁形成プレート41は、フロントハウジング19と第2シリンダブロック23との間に設けられている。 The first valve forming plate 39 is provided between the rear housing 17 and the first cylinder block 21. The second valve forming plate 41 is provided between the front housing 19 and the second cylinder block 23.
 第1弁形成プレート39は、第1バルブプレート390と、第1吸入弁プレート391と、第1吐出弁プレート392と、第1リテーナプレート393とを有している。第1バルブプレート390、第1吐出弁プレート392及び第1リテーナプレート393には、第1~5リヤ側シリンダボア21a~21eと各々対応する複数の第1吸入孔390aが形成されている。また、第1バルブプレート390及び第1吸入弁プレート391には、第1~5リヤ側シリンダボア21a~21eと各々対応する複数の第1吐出孔390bが形成されている。さらに、第1バルブプレート390、第1吸入弁プレート391、第1吐出弁プレート392及び第1リテーナプレート393には、第1吸入連通孔390cが形成されている。また、第1バルブプレート390及び第1吸入弁プレート391には、第1吐出連通孔390dが形成されている。 The first valve forming plate 39 includes a first valve plate 390, a first suction valve plate 391, a first discharge valve plate 392, and a first retainer plate 393. The first valve plate 390, the first discharge valve plate 392, and the first retainer plate 393 are formed with a plurality of first suction holes 390a respectively corresponding to the first to fifth rear cylinder bores 21a to 21e. The first valve plate 390 and the first intake valve plate 391 are formed with a plurality of first discharge holes 390b corresponding respectively to the first to fifth rear cylinder bores 21a to 21e. Furthermore, a first suction communication hole 390c is formed in the first valve plate 390, the first suction valve plate 391, the first discharge valve plate 392, and the first retainer plate 393. The first valve plate 390 and the first suction valve plate 391 are formed with a first discharge communication hole 390d.
 第1~5リヤ側シリンダボア21a~21eは、各第1吸入孔390aを通じて第1吸入室27aとそれぞれ連通する。また、第1~5リヤ側シリンダボア21a~21eは、各第1吐出孔390bを通じて第1吐出室29aと連通する。第1吸入連通孔390cを通じて、第1吸入室27aと各連絡路37aとが連通している。第1吐出連通孔390dを通じて、第1リヤ側連通路18aと第2リヤ側連通路18bとが連通している。 The first to fifth rear cylinder bores 21a to 21e communicate with the first suction chamber 27a through the first suction holes 390a, respectively. The first to fifth rear cylinder bores 21a to 21e communicate with the first discharge chamber 29a through the first discharge holes 390b. The first suction chamber 27a and each communication path 37a communicate with each other through the first suction communication hole 390c. The first rear communication passage 18a and the second rear communication passage 18b communicate with each other through the first discharge communication hole 390d.
 第1吸入弁プレート391は、第1バルブプレート390の前面に設けられている。この第1吸入弁プレート391には、弾性変形により各第1吸入孔390aを開閉可能な第1吸入リード弁391aが第1吸入孔390aと同数形成されている。また、第1吐出弁プレート392は、第1バルブプレート390の後面に設けられている。この第1吐出弁プレート392には、弾性変形により各第1吐出孔390bを開閉可能な第1吐出リード弁392aが第1吐出孔390bと同数形成されている。第1リテーナプレート393は、第1吐出弁プレート392の後面に設けられている。この第1リテーナプレート393は、各第1吐出リード弁392aの最大開度を規制する。 The first intake valve plate 391 is provided on the front surface of the first valve plate 390. The first suction valve plate 391 has the same number of first suction reed valves 391a as the first suction holes 390a that can open and close the first suction holes 390a by elastic deformation. The first discharge valve plate 392 is provided on the rear surface of the first valve plate 390. The first discharge valve plate 392 is formed with the same number of first discharge reed valves 392a as the first discharge holes 390b that can open and close the first discharge holes 390b by elastic deformation. The first retainer plate 393 is provided on the rear surface of the first discharge valve plate 392. The first retainer plate 393 regulates the maximum opening degree of each first discharge reed valve 392a.
 第2弁形成プレート41は、第2バルブプレート410と、第2吸入弁プレート411と、第2吐出弁プレート412と、第2リテーナプレート413とを有している。第2バルブプレート410、第2吐出弁プレート412及び第2リテーナプレート413には、第1~5フロント側シリンダボア23aと同数の第2吸入孔410aが形成されている。また、第2バルブプレート410及び第2吸入弁プレート411には、第1~5フロント側シリンダボア23aと同数の第2吐出孔410bが形成されている。さらに、第2バルブプレート410、第2吸入弁プレート411、第2吐出弁プレート412及び第2リテーナプレート413には、第2吸入連通孔410cが形成されている。また、第2バルブプレート410及び第2吸入弁プレート411には、第2吐出連通孔410dが形成されている。 The second valve forming plate 41 includes a second valve plate 410, a second suction valve plate 411, a second discharge valve plate 412, and a second retainer plate 413. The second valve plate 410, the second discharge valve plate 412, and the second retainer plate 413 are formed with the same number of second suction holes 410a as the first to fifth front cylinder bores 23a. The second valve plate 410 and the second intake valve plate 411 are formed with the same number of second discharge holes 410b as the first to fifth front cylinder bores 23a. Furthermore, a second suction communication hole 410c is formed in the second valve plate 410, the second suction valve plate 411, the second discharge valve plate 412 and the second retainer plate 413. Further, the second discharge communication hole 410d is formed in the second valve plate 410 and the second suction valve plate 411.
 第1~5フロント側シリンダボア23aは、各第2吸入孔410aを通じて第2吸入室27bとそれぞれ連通する。また、第1~5フロント側シリンダボア23aは、各第2吐出孔410bを通じて第2吐出室29bとそれぞれ連通する。第2吸入連通孔410cを通じて、第2吸入室27bと各連絡路37bとが連通している。第2吐出連通孔410dを通じて、第1フロント側連通路20aと第2フロント側連通路20bとが連通している。 The first to fifth front cylinder bores 23a communicate with the second suction chamber 27b through the second suction holes 410a. The first to fifth front cylinder bores 23a communicate with the second discharge chamber 29b through the second discharge holes 410b. The second suction chamber 27b and each communication path 37b communicate with each other through the second suction communication hole 410c. The first front communication path 20a and the second front communication path 20b communicate with each other through the second discharge communication hole 410d.
 第2吸入弁プレート411は、第2バルブプレート410の後面に設けられている。この第2吸入弁プレート411には、弾性変形により各第2吸入孔410aを開閉可能な第2吸入リード弁411aが第2吸入孔410aと同数形成されている。また、第2吐出弁プレート412は、第2バルブプレート410の前面に設けられている。この第2吐出弁プレート412には、弾性変形により各第2吐出孔410bを開閉可能な第2吐出リード弁412aが第2吐出孔410bと同数形成されている。第2リテーナプレート413は、第2吐出弁プレート412の前面に設けられている。この第2リテーナプレート413は、各第2吐出リード弁412aの最大開度を規制する。 The second suction valve plate 411 is provided on the rear surface of the second valve plate 410. The second suction valve plate 411 has the same number of second suction reed valves 411a as the second suction holes 410a that can open and close the second suction holes 410a by elastic deformation. The second discharge valve plate 412 is provided on the front surface of the second valve plate 410. The second discharge valve plate 412 has the same number of second discharge reed valves 412a as the second discharge holes 410b that can open and close the second discharge holes 410b by elastic deformation. The second retainer plate 413 is provided on the front surface of the second discharge valve plate 412. The second retainer plate 413 regulates the maximum opening degree of each second discharge reed valve 412a.
 この圧縮機では、第1リヤ側連通路18a、第1吐出連通孔390d、第2リヤ側連通路18bによって、第1吐出連通路18が形成されている。また、第1フロント側連通路20a、第2吐出連通孔410d、第2フロント側連通路20b及び第3フロント側連通路20cによって、第2吐出連通路20が形成されている。 In this compressor, the first discharge communication path 18 is formed by the first rear communication path 18a, the first discharge communication hole 390d, and the second rear communication path 18b. Further, the second front discharge passage 20 is formed by the first front communication passage 20a, the second discharge communication hole 410d, the second front communication passage 20b, and the third front communication passage 20c.
 また、この圧縮機では、各連絡路37a、37b及び第1、2吸入連通孔390c、410cにより、第1、2吸入室27a、27bと斜板室33とが互いに連通している。このため、第1、2吸入室27a、27b内と斜板室33内とは、圧力がほぼ等しくなっている。そして、斜板室33には、吸入ポート330を通じて蒸発器を経た低圧の冷媒ガスが流入することから、斜板室33内及び第1、2吸入室27a、27b内の各圧力は、第1、2吐出室29a、29b内よりも低圧である。 Further, in this compressor, the first and second suction chambers 27a and 27b and the swash plate chamber 33 communicate with each other through the communication paths 37a and 37b and the first and second suction communication holes 390c and 410c. Therefore, the pressures in the first and second suction chambers 27a and 27b and the swash plate chamber 33 are substantially equal. Since the low-pressure refrigerant gas that has passed through the evaporator flows into the swash plate chamber 33 through the suction port 330, each pressure in the swash plate chamber 33 and the first and second suction chambers 27a and 27b is the first and second pressure chambers. The pressure is lower than in the discharge chambers 29a and 29b.
 駆動軸3は、駆動軸本体30と第1支持部材43aと第2支持部材43bとで構成されている。駆動軸本体30の後端側には第1小径部30aが形成されており、駆動軸本体30の前端側には第2小径部30bが形成されている。この駆動軸本体30は、ハウジング1の前方側から後方側に向かって延びており、ボス19aから後方に向かって挿通されて、第1、2滑り軸受22a、22b内に挿通されている。これにより、駆動軸本体30、ひいては、駆動軸3は、駆動軸心O周りで回転可能にハウジング1に軸支されている。駆動軸本体30の前端はボス19a内に位置しており、後端は圧力調整室31内に突出している。 The drive shaft 3 includes a drive shaft main body 30, a first support member 43a, and a second support member 43b. A first small diameter portion 30 a is formed on the rear end side of the drive shaft main body 30, and a second small diameter portion 30 b is formed on the front end side of the drive shaft main body 30. The drive shaft main body 30 extends from the front side to the rear side of the housing 1, is inserted rearward from the boss 19 a, and is inserted into the first and second sliding bearings 22 a and 22 b. As a result, the drive shaft main body 30 and thus the drive shaft 3 are pivotally supported by the housing 1 so as to be rotatable around the drive shaft center O. The front end of the drive shaft body 30 is located in the boss 19 a and the rear end protrudes into the pressure adjustment chamber 31.
 また、この駆動軸本体30には、斜板5とリンク機構7とアクチュエータ13とが設けられている。これらの斜板5とリンク機構7とアクチュエータ13とは、それぞれ斜板室33内に配置されている。 The drive shaft body 30 is provided with a swash plate 5, a link mechanism 7, and an actuator 13. The swash plate 5, the link mechanism 7, and the actuator 13 are respectively disposed in the swash plate chamber 33.
 第1支持部材43aは、駆動軸本体30の第1小径部30aの後端側に圧入されており、第1軸孔211内に位置している。第1支持部材43aの前端には、フランジ430が形成されている。このフランジ430は、第2凹部23c内に突出しており、第1スラスト軸受35aと当接している。また、第1支持部材43aの後端は、圧力調整室31内に突出している。さらに、第1支持部材43aにおいて、フランジ430よりも後端側となる位置には、樹脂製の第1摺動部材431及び第2摺動部材432が設けられている。これらの第1、2摺動部材431、432は、第1軸孔211の内周面と摺接可能となっている。 The first support member 43 a is press-fitted to the rear end side of the first small diameter portion 30 a of the drive shaft main body 30 and is positioned in the first shaft hole 211. A flange 430 is formed at the front end of the first support member 43a. The flange 430 protrudes into the second recess 23c and is in contact with the first thrust bearing 35a. The rear end of the first support member 43 a protrudes into the pressure adjustment chamber 31. Furthermore, a resin-made first sliding member 431 and a second sliding member 432 are provided at a position on the rear end side of the flange 430 in the first support member 43a. These first and second sliding members 431 and 432 can be in sliding contact with the inner peripheral surface of the first shaft hole 211.
 第2支持部材43bは、駆動軸本体30の第2小径部30bに圧入されており、第2軸孔23b内において第2滑り軸受22bとの間に位置している。また、この第2支持部材43bには、第2スラスト軸受35bと当接するフランジ433が形成されているとともに、後述する第2ピン47bが挿通される取付部(図示略)が形成されている。さらに、第2支持部材43bは、第1復帰ばね44aの前端が固定されている。この第1復帰ばね44aは、駆動軸心O方向で、第2支持部材43b側から斜板室33側に向かって延びている。 The second support member 43b is press-fitted into the second small diameter portion 30b of the drive shaft main body 30, and is positioned between the second sliding bearing 22b in the second shaft hole 23b. The second support member 43b is formed with a flange 433 that contacts the second thrust bearing 35b and an attachment portion (not shown) through which a second pin 47b described later is inserted. Further, the front end of the first return spring 44a is fixed to the second support member 43b. The first return spring 44a extends in the direction of the drive axis O from the second support member 43b side toward the swash plate chamber 33 side.
 斜板5は環状の平板形状をなしており、前面5aと後面5bとを有している。前面5aは、斜板室33内において圧縮機の前方に面している。また、後面5bは、斜板室33内において圧縮機の後方に面している。 The swash plate 5 has an annular flat plate shape and has a front surface 5a and a rear surface 5b. The front surface 5 a faces the front of the compressor in the swash plate chamber 33. The rear surface 5 b faces the rear of the compressor in the swash plate chamber 33.
 斜板5はリングプレート45を有している。図4に示すように、このリングプレート45は環状の平板形状に形成されており、中心部に挿通孔45aが形成されている。斜板5は、斜板室33内において挿通孔45aに駆動軸本体30が挿通されることにより、駆動軸3に取り付けられている(図1参照)。 The swash plate 5 has a ring plate 45. As shown in FIG. 4, the ring plate 45 is formed in an annular flat plate shape, and an insertion hole 45a is formed at the center. The swash plate 5 is attached to the drive shaft 3 by inserting the drive shaft main body 30 through the insertion hole 45a in the swash plate chamber 33 (see FIG. 1).
 また、図4(A)に示すように、リングプレート45の一端側には溝部45bが形成されており、リングプレート45の他端側には被牽引部45cが形成されている。同図の(B)に示すように、溝部45bは斜板5の前面5aから後面5bまで貫通している。一方、被牽引部45cは、後述する第1、2アーム132、133の間に位置するように、後面5bから斜板5の後方に向かって突出している。この被牽引部45cには、ピン孔450が形成されている。 Further, as shown in FIG. 4A, a groove 45b is formed on one end side of the ring plate 45, and a towed portion 45c is formed on the other end side of the ring plate 45. As shown in FIG. 5B, the groove 45b penetrates from the front surface 5a to the rear surface 5b of the swash plate 5. On the other hand, the towed portion 45c protrudes from the rear surface 5b toward the rear of the swash plate 5 so as to be positioned between first and second arms 132 and 133 described later. A pin hole 450 is formed in the pulled portion 45c.
 図1に示すように、リンク機構7はラグアーム49を有している。ラグアーム49は、斜板室33内において、斜板5よりも前方に配置されており、斜板5と第2支持部材43bとの間に位置している。ラグアーム49は、前端側から後端側に向かって略L字形状となるように形成されている。また、ラグアーム49の後端側には、ウェイト部49aが形成されている。ウェイト部49aは、アクチュエータ13の周方向におよそ半周にわたって延びている。なお、ウェイト部49aの形状は適宜設計することが可能である。 As shown in FIG. 1, the link mechanism 7 has a lug arm 49. The lug arm 49 is disposed in front of the swash plate 5 in the swash plate chamber 33, and is located between the swash plate 5 and the second support member 43b. The lug arm 49 is formed to be substantially L-shaped from the front end side toward the rear end side. Further, a weight portion 49 a is formed on the rear end side of the lug arm 49. The weight portion 49a extends approximately half a circumference in the circumferential direction of the actuator 13. The shape of the weight portion 49a can be designed as appropriate.
 ラグアーム49の後端側は、第1ピン47aによってリングプレート45の一端側と接続されている。この第1ピン47aが本発明における連結部に相当する。これにより、ラグアーム49の前端側は、第1ピン47aの軸心を第1揺動軸心M1として、リングプレート45の一端側、すなわち斜板5に対し、第1揺動軸心M1周りで揺動可能に支持されている。この第1揺動軸心M1は、駆動軸3の駆動軸心Oと直交する方向に延びている。 The rear end side of the lug arm 49 is connected to one end side of the ring plate 45 by the first pin 47a. The first pin 47a corresponds to the connecting portion in the present invention. Thereby, the front end side of the lug arm 49 is arranged around the first swing axis M1 with respect to one end side of the ring plate 45, that is, the swash plate 5, with the axis of the first pin 47a as the first swing axis M1. It is supported so that it can swing. The first swing axis M1 extends in a direction orthogonal to the drive axis O of the drive shaft 3.
 ラグアーム49の前端側は、第2ピン47bによって第2支持部材43bと接続されている。これにより、ラグアーム49の前端側は、第2ピン47bの軸心を第2揺動軸心M2として、第2支持部材43b、すなわち駆動軸3に対し、第2揺動軸心M2周りで揺動可能に支持されている。この第2揺動軸心M2は第1揺動軸心M1と平行に延びている。これらのラグアーム49、第1、2ピン47a、47bに加えて、後述する第1、2アーム132、133及び第3ピン47cによって、本発明におけるリンク機構7が構成されている。 The front end side of the lug arm 49 is connected to the second support member 43b by the second pin 47b. Thus, the front end side of the lug arm 49 swings around the second swing axis M2 with respect to the second support member 43b, that is, the drive shaft 3, with the second pivot 47b as the second swing axis M2. It is supported movably. The second swing axis M2 extends in parallel with the first swing axis M1. In addition to the lug arm 49 and the first and second pins 47a and 47b, the first and second arms 132 and 133 and the third pin 47c, which will be described later, constitute the link mechanism 7 in the present invention.
 ウェイト部49aは、ラグアーム49の後端側、つまり、第1揺動軸心M1を基準として第2揺動軸心M2とは反対側に延在して設けられている。このため、ラグアーム49が第1ピン47aによってリングプレート45に支持されることで、ウェイト部49aはリングプレート45の溝部45bを通って、リングプレート45の後面、つまり斜板5の後面5b側に位置する。そして、斜板5が駆動軸心O周りに回転することにより発生する遠心力が斜板5の後面5b側でウェイト部49aにも作用することとなる。 The weight portion 49a is provided to extend on the rear end side of the lug arm 49, that is, on the opposite side of the second swing axis M2 with respect to the first swing axis M1. For this reason, the lug arm 49 is supported by the ring plate 45 by the first pin 47 a, so that the weight portion 49 a passes through the groove portion 45 b of the ring plate 45 and faces the rear surface of the ring plate 45, that is, the rear surface 5 b side of the swash plate 5. To position. The centrifugal force generated when the swash plate 5 rotates around the drive axis O also acts on the weight portion 49a on the rear surface 5b side of the swash plate 5.
 この圧縮機では、斜板5と駆動軸3とがリンク機構7によって接続されることにより、斜板5は駆動軸3と共に回転することが可能となっている。また、ラグアーム49の両端がそれぞれ第1揺動軸心M1及び第2揺動軸心M2周りで揺動することにより、斜板5は傾斜角度を変更することが可能となっている。 In this compressor, the swash plate 5 and the drive shaft 3 are connected by the link mechanism 7 so that the swash plate 5 can rotate together with the drive shaft 3. Further, the both ends of the lug arm 49 swing around the first swing axis M1 and the second swing axis M2, respectively, so that the inclination angle of the swash plate 5 can be changed.
 各ピストン9は、それぞれ後端側に第1頭部9aを有しており、前端側に第2頭部9bを有している。各第1頭部9aは、それぞれ各第1~5リヤ側シリンダボア21a~21e内を往復動可能に収納されている。これらの各第1頭部9aと第1弁形成プレート39とにより、第1~5リヤ側シリンダボア21a~21e内にそれぞれ第1圧縮室210が区画されている。各第2頭部9bは、それぞれ第1~5フロント側シリンダボア23a内を往復動可能に収納されている。これらの各第2頭部9bと第2弁形成プレート41とにより、第1~5フロント側シリンダボア23a内にそれぞれ第2圧縮室230が区画されている。 Each piston 9 has a first head 9a on the rear end side and a second head 9b on the front end side. Each of the first heads 9a is housed so as to be capable of reciprocating in each of the first to fifth rear cylinder bores 21a to 21e. The first compression chambers 210 are defined in the first to fifth rear cylinder bores 21a to 21e by the first heads 9a and the first valve forming plate 39, respectively. Each of the second heads 9b is housed so as to be able to reciprocate within the first to fifth front cylinder bores 23a. The second compression chambers 230 are defined in the first to fifth front cylinder bores 23a by the second heads 9b and the second valve forming plate 41, respectively.
 また、各ピストン9の中央には係合部9cが形成されている。各係合部9c内には、半球状のシュー11a、11bがそれぞれ設けられている。これらのシュー11a、11bによって斜板5の回転がピストン9の往復動に変換されるようになっている。シュー11a、11bが本発明における変換機構に相当している。こうして、斜板5の傾斜角度に応じたストロークで、各第1頭部9aがそれぞれ第1~5リヤ側シリンダボア21a~21f内を往復動することが可能となっているとともに、各第2頭部9bがそれぞれ第1~5フロント側シリンダボア23a内を往復動することが可能となっている。 Further, an engaging portion 9c is formed at the center of each piston 9. In each engaging portion 9c, hemispherical shoes 11a and 11b are provided. The rotation of the swash plate 5 is converted into the reciprocating motion of the piston 9 by these shoes 11a and 11b. The shoes 11a and 11b correspond to the conversion mechanism in the present invention. In this way, each first head 9a can reciprocate within the first to fifth rear cylinder bores 21a to 21f with a stroke corresponding to the inclination angle of the swash plate 5, and each second head. The portions 9b can reciprocate in the first to fifth front cylinder bores 23a.
 ここで、この圧縮機では、斜板5の傾斜角度の変更に伴いピストン9のストロークが変化することで、第1頭部9aと第2頭部9bの各上死点位置が移動する。具体的には、図5に示すように、斜板5の傾斜角度が小さくなるに伴って、第2頭部9bの上死点位置よりも第1頭部9aの上死点位置が大きく移動する。 Here, in this compressor, the top dead center positions of the first head 9a and the second head 9b move as the stroke of the piston 9 changes in accordance with the change of the inclination angle of the swash plate 5. Specifically, as shown in FIG. 5, the top dead center position of the first head 9a moves more greatly than the top dead center position of the second head 9b as the inclination angle of the swash plate 5 decreases. To do.
 アクチュエータ13は、斜板室33内に配置されている。アクチュエータ13は、斜板室33内において、斜板5よりも後方側に位置しており、第1凹部212内に進入することが可能となっている。このアクチュエータ13は、移動体13aと区画体13bと制御圧室13cとを有している。制御圧室13cは、移動体13aと区画体13bとの間に形成されている。 The actuator 13 is disposed in the swash plate chamber 33. The actuator 13 is located behind the swash plate 5 in the swash plate chamber 33, and can enter the first recess 212. The actuator 13 includes a moving body 13a, a partition body 13b, and a control pressure chamber 13c. The control pressure chamber 13c is formed between the movable body 13a and the partition body 13b.
 図6に示すように、移動体13aは、後壁130と、周壁131と、第1アーム132と、連結機構14を有している。後壁130は、移動体13aの後方に位置しており、駆動軸心Oから離れる方向で径方向に延びている。また、後壁130には、駆動軸本体30の第2小径部30bを挿通する挿通孔130aが貫設されている。周壁131は、後壁130の外周縁と連続し、移動体13aの前方に向かって延びている。そして、これらの後壁130、周壁131及び連結機構14により、移動体13aは有底の円筒状を呈している。 As shown in FIG. 6, the moving body 13 a includes a rear wall 130, a peripheral wall 131, a first arm 132, and a coupling mechanism 14. The rear wall 130 is located behind the movable body 13a and extends in the radial direction in a direction away from the drive axis O. The rear wall 130 is provided with an insertion hole 130a through which the second small diameter portion 30b of the drive shaft main body 30 is inserted. The peripheral wall 131 is continuous with the outer peripheral edge of the rear wall 130 and extends toward the front of the moving body 13a. The movable body 13a has a bottomed cylindrical shape due to the rear wall 130, the peripheral wall 131, and the coupling mechanism 14.
 連結機構14は、第1アーム132及び第2アーム133を有している。第1アーム132及び第2アーム133は、共に周壁131の前端に形成されており、移動体13aの前方に向かって突出している。具体的には、第1アーム132は周壁131の前端左側に形成されており、第2アーム133は周壁131の前端右側に形成されている。このように、第1アーム132及び第2アーム133が移動体13aの前方に向かって突出していることから、第1、2アーム132、133と周壁131の前端面とにより、第1アーム132と第2アーム133との間に凹部134が形成されている。この第1アーム132には第1牽引点132aが設定されており、第2アーム133には第2牽引点133aが設定されている。これらの第1、2牽引点132a、133aは、第3ピン47を挿通するピン孔としても機能する。 The connecting mechanism 14 has a first arm 132 and a second arm 133. The first arm 132 and the second arm 133 are both formed at the front end of the peripheral wall 131 and project toward the front of the movable body 13a. Specifically, the first arm 132 is formed on the left side of the front end of the peripheral wall 131, and the second arm 133 is formed on the right side of the front end of the peripheral wall 131. Thus, since the first arm 132 and the second arm 133 protrude toward the front of the movable body 13a, the first arm 132 and the first arm 132 are formed by the first and second arms 132 and 133 and the front end surface of the peripheral wall 131. A recess 134 is formed between the second arm 133 and the second arm 133. A first traction point 132 a is set on the first arm 132, and a second traction point 133 a is set on the second arm 133. These first and second traction points 132a and 133a also function as pin holes through which the third pin 47 is inserted.
 図7に示すように、第1アーム132と第2アーム133とは、対称の形状であり、駆動軸心Oを跨いで配置されている。より具体的には、第1アーム132と第2アーム133とは、駆動軸心Oと、斜板5の上死点位置と、斜板5の下死点位置とで決定される仮想面Xを挟んで配置されており、互いに対向している。これにより、移動体13aにおいて、第1牽引点132aと第2牽引点133aとについても、仮想面Xを跨いでそれぞれ配置されている。なお、図7では説明を容易にするため、第1、2アーム132、133等の形状を簡略化して図示している。 As shown in FIG. 7, the first arm 132 and the second arm 133 have a symmetrical shape and are disposed across the drive axis O. More specifically, the first arm 132 and the second arm 133 have a virtual plane X determined by the drive axis O, the top dead center position of the swash plate 5, and the bottom dead center position of the swash plate 5. Are arranged on both sides of each other and face each other. Thereby, in the moving body 13a, the first traction point 132a and the second traction point 133a are also arranged across the virtual plane X, respectively. In FIG. 7, the shapes of the first and second arms 132, 133, etc. are simplified for easy explanation.
 図1に示すように、区画体13bは、移動体13aの内径とほぼ同径の円板状に形成されている。この区画体13bとリングプレート45との間には、第2復帰ばね44bが設けられている。具体的には、この第2復帰ばね44bの後端は、区画体13bに固定されており、第2復帰ばね44bの前端は、リングプレート45の他端側に固定されている。 As shown in FIG. 1, the partition 13b is formed in a disk shape having substantially the same diameter as the inner diameter of the movable body 13a. A second return spring 44b is provided between the partition 13b and the ring plate 45. Specifically, the rear end of the second return spring 44b is fixed to the partition 13b, and the front end of the second return spring 44b is fixed to the other end side of the ring plate 45.
 移動体13a及び区画体13bには、駆動軸本体30の第1小径部30aが挿通されている。これにより、移動体13aは、第1収納室21cに収納可能な状態で駆動軸本体30に組み付けられ、斜板5を挟んでリンク機構7と対向した状態で配置されている。一方、区画体13bは、斜板5よりも後方で移動体13a内に配置されており、その周囲が周壁131によって取り囲まれた状態となっている。これにより、移動体13aと区画体13bとの間に制御圧室13cが形成されている。この制御圧室13cは、移動体13aの後壁130と周壁131と区画体13bとによって斜板室33から区画されている。 The first small diameter portion 30a of the drive shaft main body 30 is inserted through the movable body 13a and the partitioning body 13b. Thereby, the movable body 13a is assembled to the drive shaft main body 30 in a state in which the movable body 13a can be stored in the first storage chamber 21c, and is disposed in a state of facing the link mechanism 7 with the swash plate 5 interposed therebetween. On the other hand, the partition 13b is disposed in the moving body 13a behind the swash plate 5, and the periphery thereof is surrounded by the peripheral wall 131. Thereby, the control pressure chamber 13c is formed between the movable body 13a and the partition body 13b. The control pressure chamber 13c is partitioned from the swash plate chamber 33 by the rear wall 130, the peripheral wall 131, and the partition body 13b of the movable body 13a.
 この圧縮機では、第1小径部30aが挿通されることにより、移動体13aは、駆動軸3と共に回転可能となっているとともに、斜板室33内において、駆動軸3の駆動軸心O方向に移動することが可能となっている。一方、区画体13bは、第1小径部30aに挿通された状態で、第2小径部30aに固定されている。これにより、区画体13bは、駆動軸3と共に回転することのみ可能となっており、移動体13aのように移動することは不可能となっている。こうして、移動体13aは、駆動軸心O方向に移動するに当たり、区画体13bに対して相対移動する。なお、区画体13bについて、駆動軸心O方向に移動可能に駆動軸本体30に設けても良い。 In this compressor, the first small-diameter portion 30a is inserted so that the movable body 13a can rotate together with the drive shaft 3, and in the swash plate chamber 33, in the direction of the drive axis O of the drive shaft 3. It is possible to move. On the other hand, the division body 13b is being fixed to the 2nd small diameter part 30a in the state penetrated by the 1st small diameter part 30a. Thereby, the partition 13b can only rotate together with the drive shaft 3, and cannot move like the movable body 13a. Thus, when the moving body 13a moves in the direction of the drive axis O, it moves relative to the partitioning body 13b. In addition, about the division body 13b, you may provide in the drive shaft main body 30 so that a movement to the drive shaft center O direction is possible.
 ここで、図3に示すように、斜板室33には、駆動軸心Oから第1リヤ側シリンダボア21aにおける第2リヤ側シリンダボア21b側に引かれた第1接線L1と、駆動軸心Oから第2リヤ側シリンダボア21bにおける第1リヤ側シリンダボア21a側に引かれた第2接線L2とによって区画される第1仮想領域S1が設定されている。また、斜板室33には、駆動軸心Oから第2リヤ側シリンダボア21bにおける第3リヤ側シリンダボア21c側に引かれた第3接線L3と、駆動軸心Oから第3リヤ側シリンダボア21cにおける第2リヤ側シリンダボア21b側に引かれた第4接線L4とによって区画される第2仮想領域S2が設定されている。 Here, as shown in FIG. 3, the swash plate chamber 33 has a first tangent line L1 drawn from the drive axis O to the second rear cylinder bore 21b side of the first rear cylinder bore 21a, and the drive axis O. A first virtual region S1 defined by a second tangent line L2 drawn to the first rear cylinder bore 21a side in the second rear cylinder bore 21b is set. The swash plate chamber 33 includes a third tangent line L3 drawn from the drive axis O toward the third rear cylinder bore 21c in the second rear cylinder bore 21b, and a third tangent L3 in the third rear cylinder bore 21c from the drive axis O. A second virtual region S2 is set that is partitioned by a fourth tangent line L4 drawn toward the two rear cylinder bores 21b.
 そして、この圧縮機では、移動体13aが駆動軸本体30に組み付けられた際、第1アーム132が第1仮想領域S1内に位置するとともに、第2アーム133が第2仮想領域S2内に位置するように、第1、2アーム132、133がそれぞれ形成されている。なお、図3では説明を容易にするため、第1、2アーム132、133の形状を簡略化して図示している。 In this compressor, when the movable body 13a is assembled to the drive shaft main body 30, the first arm 132 is located in the first virtual area S1, and the second arm 133 is located in the second virtual area S2. Thus, first and second arms 132 and 133 are formed, respectively. In FIG. 3, the shapes of the first and second arms 132 and 133 are simplified for easy explanation.
 図1に示すように、第1、2アーム132、133と、斜板5とは、第3ピン47cによって接続されている。具体的には、移動体13aの凹部134に対して図4に示す被牽引部45cを嵌め合わせつつ、第1、2アーム132、133と被牽引部45cとを一つの第3ピン47cによって接続している。これにより、連結機構14は、駆動軸3、すなわち、駆動軸心Oに対して上記の第1ピン47aと反対側に配置される。 As shown in FIG. 1, the first and second arms 132 and 133 and the swash plate 5 are connected by a third pin 47c. Specifically, the first and second arms 132 and 133 and the to-be-towed portion 45c are connected by one third pin 47c while the to-be-towed portion 45c shown in FIG. 4 is fitted to the recess 134 of the moving body 13a. is doing. Accordingly, the coupling mechanism 14 is disposed on the side opposite to the first pin 47a with respect to the drive shaft 3, that is, the drive axis O.
 この第3ピン47cは、駆動軸心Oと直交する方向において、第1牽引点132a側から被牽引部45cのピン孔450を貫通して、第2牽引点133aまで延びている。これにより、図1に示すように、斜板5は、第3ピン47cの軸心を作用軸心M3として、作用軸心M3周りで移動体13aに揺動可能に支持されている。この作用軸心M3は、第1、2揺動軸心M1、M2と平行に延びている。こうして、移動体13aは斜板5と連結された状態となっている。 This third pin 47c extends from the first traction point 132a side to the second traction point 133a through the pin hole 450 of the to-be-towed part 45c in the direction orthogonal to the drive axis O. Thereby, as shown in FIG. 1, the swash plate 5 is supported by the movable body 13a so as to be swingable around the action axis M3 with the axis of the third pin 47c as the action axis M3. The action axis M3 extends in parallel with the first and second oscillation axes M1 and M2. Thus, the moving body 13a is connected to the swash plate 5.
 また、第2小径部30b内には、後端から前方に向かって駆動軸心O方向に延びる軸路3aと、軸路3aの前端から径方向に延びて駆動軸本体30の外周面に開く径路3bとが形成されている。軸路3aの後端は圧力調整室31に開いている。一方、径路3bは、制御圧室13cに開いている。これにより、制御圧室13cは、径路3b及び軸路3aを通じて、圧力調整室31と連通している。 Further, in the second small-diameter portion 30b, an axial path 3a extending in the direction of the drive axis O from the rear end toward the front, and extending in the radial direction from the front end of the axial path 3a and opening to the outer peripheral surface of the drive shaft main body 30. A path 3b is formed. The rear end of the axis 3 a is open to the pressure adjustment chamber 31. On the other hand, the path 3b is open to the control pressure chamber 13c. Thus, the control pressure chamber 13c communicates with the pressure adjustment chamber 31 through the radial path 3b and the axial path 3a.
 駆動軸本体30の先端にはねじ部3dが形成されている。このねじ部3dを介して駆動軸3は、図示しないプーリ又は電磁クラッチと接続されている。 Threaded portion 3d is formed at the tip of drive shaft body 30. The drive shaft 3 is connected to a pulley or an electromagnetic clutch (not shown) via the screw portion 3d.
 図2に示すように、制御機構15は、低圧通路15aと高圧通路15bと制御弁15cとオリフィス15dと、軸路3aと、径路3bとを有している。 As shown in FIG. 2, the control mechanism 15 includes a low pressure passage 15a, a high pressure passage 15b, a control valve 15c, an orifice 15d, an axial path 3a, and a radial path 3b.
 低圧通路15aは、圧力調整室31と第1吸入室27aとに接続されている。この低圧通路15aと軸路3aと径路3bとによって、制御圧室13cと圧力調整室31と第1吸入室27aとが連通している。高圧通路15bは、圧力調整室31と第1吐出室29aとに接続されている。この高圧通路15bと軸路3aと径路3bとによって、制御圧室13cと圧力調整室31と第1吐出室29aとが連通している。また、高圧通路15bには、オリフィス15dが設けられている。 The low pressure passage 15a is connected to the pressure adjusting chamber 31 and the first suction chamber 27a. The control pressure chamber 13c, the pressure adjustment chamber 31, and the first suction chamber 27a communicate with each other by the low pressure passage 15a, the axial path 3a, and the radial path 3b. The high pressure passage 15b is connected to the pressure adjustment chamber 31 and the first discharge chamber 29a. The control pressure chamber 13c, the pressure adjustment chamber 31, and the first discharge chamber 29a communicate with each other by the high pressure passage 15b, the axial path 3a, and the radial path 3b. Further, an orifice 15d is provided in the high-pressure passage 15b.
 制御弁15cは低圧通路15aに設けられている。この制御弁15cは、第1吸入室27a内の圧力に基づき、低圧通路15aの開度を調整することが可能となっている。 The control valve 15c is provided in the low pressure passage 15a. The control valve 15c can adjust the opening of the low pressure passage 15a based on the pressure in the first suction chamber 27a.
 この圧縮機では、図1に示す吸入ポート330に対して蒸発器に繋がる配管が接続されるとともに、吐出ポート160に対して凝縮器に繋がる配管が接続される。凝縮器は配管及び膨張弁を介して蒸発器と接続される。これらの圧縮機、蒸発器、膨張弁、凝縮器等によって車両用空調装置の冷凍回路が構成されている。なお、蒸発器、膨張弁、凝縮器及び各配管の図示は省略する。 In this compressor, a pipe connected to the evaporator is connected to the suction port 330 shown in FIG. 1, and a pipe connected to the condenser is connected to the discharge port 160. The condenser is connected to the evaporator via a pipe and an expansion valve. These compressors, evaporators, expansion valves, condensers and the like constitute a refrigeration circuit for a vehicle air conditioner. In addition, illustration of an evaporator, an expansion valve, a condenser, and each piping is abbreviate | omitted.
 以上のように構成された圧縮機では、駆動軸3が回転することにより、斜板5が回転し、各ピストン9が第1~5リヤ側シリンダボア21a~21eや第1~5フロント側シリンダボア23a内を往復動する。このため、第1、2圧縮室210、230がピストンストロークに応じて容積変化を生じる。このため、この圧縮機では、第1、2圧縮室210、230へ冷媒ガスを吸入する吸入行程と、第1、2圧縮室210、230において冷媒ガスが圧縮される圧縮行程と、圧縮された冷媒ガスが第1、2吐出室29a、29bに吐出される吐出行程等とが繰り返し行われることとなる。 In the compressor configured as described above, when the drive shaft 3 rotates, the swash plate 5 rotates, and each piston 9 moves to the first to fifth rear cylinder bores 21a to 21e and the first to fifth front cylinder bores 23a. Reciprocates inside. For this reason, the first and second compression chambers 210 and 230 change in volume according to the piston stroke. Therefore, in this compressor, the suction stroke for sucking the refrigerant gas into the first and second compression chambers 210 and 230, the compression stroke for compressing the refrigerant gas in the first and second compression chambers 210 and 230, and the compression The discharge stroke and the like in which the refrigerant gas is discharged into the first and second discharge chambers 29a and 29b are repeatedly performed.
 第1吐出室29aに吐出された冷媒ガスは、第1吐出連通路18を経て合流吐出室161に至る。同様に、第2吐出室29bに吐出された冷媒ガスは、第2吐出連通路20を経て合流吐出室161に至る。そして、合流吐出室161に至った冷媒ガスは、吐出ポート160から凝縮器に吐出される。 The refrigerant gas discharged into the first discharge chamber 29 a reaches the merged discharge chamber 161 through the first discharge communication path 18. Similarly, the refrigerant gas discharged into the second discharge chamber 29 b reaches the merged discharge chamber 161 through the second discharge communication path 20. Then, the refrigerant gas reaching the merged discharge chamber 161 is discharged from the discharge port 160 to the condenser.
 そして、これらの吸入行程等が行われる間、斜板5、リングプレート45、ラグアーム49及び第1ピン47aからなる回転体には斜板5の傾斜角度を小さくするピストン圧縮力が作用する。そして、斜板5の傾斜角度が変更されれば、ピストン9のストロークの増減による容量制御を行うことが可能である。 During these suction strokes and the like, a piston compression force that reduces the inclination angle of the swash plate 5 acts on the rotating body including the swash plate 5, the ring plate 45, the lug arm 49, and the first pin 47a. If the inclination angle of the swash plate 5 is changed, it is possible to perform capacity control by increasing or decreasing the stroke of the piston 9.
 具体的には、制御機構15において、図2に示す制御弁15cが低圧通路15aの開度を大きくすれば、圧力調整室31内の圧力、ひいては制御圧室13c内の圧力が第1吸入室27a内の圧力とほぼ等しくなる。このため、斜板5に作用するピストン圧縮力によって、図4に示すように、アクチュエータ13では、移動体13aが斜板室33の前方側に向かって移動する。 Specifically, in the control mechanism 15, if the control valve 15c shown in FIG. 2 increases the opening of the low-pressure passage 15a, the pressure in the pressure adjusting chamber 31 and thus the pressure in the control pressure chamber 13c are changed to the first suction chamber. It becomes substantially equal to the pressure in 27a. Therefore, due to the piston compression force acting on the swash plate 5, the moving body 13 a moves toward the front side of the swash plate chamber 33 in the actuator 13 as shown in FIG. 4.
 これにより、この圧縮機では、作用軸心M3において、移動体13aは、第1、2アーム132、133の第1、2牽引点132a、133aを通じて斜板5の他端側を斜板室33の前方側へ押圧する状態となる。このため、この圧縮機では、第2復帰ばね44bの付勢力に抗しつつ、リングプレート45の他端側、すなわち、斜板5の他端側が作用軸心M3周りで時計回り方向に揺動する。また、ラグアーム49の後端が第1揺動軸心M1周りで時計回り方向に揺動するとともに、ラグアーム49の前端が第2揺動軸心M2周りで反時計回り方向に揺動する。このため、ラグアーム49が第2支持部材43bのフランジ431に接近する。これらにより、斜板5は、作用軸心M3を作用点とし、第1揺動軸心M1を支点として揺動する。このため、駆動軸3の駆動軸心Oに対する斜板5の傾斜角度が減少し、ピストン9のストロークが減少する。このため、この圧縮機では、駆動軸3の1回転当たりの吐出容量が小さくなる。なお、図5に示す斜板5の傾斜角度がこの圧縮機における最小値である。 Thus, in this compressor, the moving body 13a moves the other end of the swash plate 5 through the first and second traction points 132a and 133a of the first and second arms 132 and 133 at the operating axis M3. It will be in the state pressed to the front side. For this reason, in this compressor, the other end side of the ring plate 45, that is, the other end side of the swash plate 5 oscillates clockwise around the action axis M3 while resisting the biasing force of the second return spring 44b. To do. The rear end of the lug arm 49 swings clockwise around the first swing axis M1, and the front end of the lug arm 49 swings counterclockwise around the second swing axis M2. For this reason, the lug arm 49 approaches the flange 431 of the second support member 43b. As a result, the swash plate 5 swings with the operating axis M3 as the operating point and the first swinging axis M1 as the fulcrum. For this reason, the inclination angle of the swash plate 5 with respect to the drive shaft center O of the drive shaft 3 decreases, and the stroke of the piston 9 decreases. For this reason, in this compressor, the discharge capacity per one rotation of the drive shaft 3 becomes small. The inclination angle of the swash plate 5 shown in FIG. 5 is the minimum value in this compressor.
 ここで、この圧縮機では、ウェイト部49aに作用した遠心力も斜板5に付与される。このため、この圧縮機では、斜板5が傾斜角度を減少させる方向に変位し易くなっている。 Here, in this compressor, the centrifugal force acting on the weight portion 49a is also applied to the swash plate 5. For this reason, in this compressor, it is easy to displace the swash plate 5 in the direction to reduce the inclination angle.
 また、斜板5の傾斜角度が減少することにより、リングプレート45が第1復帰ばね44aの後端と当接する。これにより、第1復帰ばね44aが弾性変形し、第1復帰ばね44aの後端が第2支持部材43bに近接する。 Further, as the inclination angle of the swash plate 5 decreases, the ring plate 45 contacts the rear end of the first return spring 44a. As a result, the first return spring 44a is elastically deformed, and the rear end of the first return spring 44a approaches the second support member 43b.
 ここで、この圧縮機では、斜板5の傾斜角度が小さくなり、ピストン9のストロークが減少することにより、第1頭部9aの上死点位置が第1弁形成プレート39から遠隔する。このため、この圧縮機では、斜板5の傾斜角度がゼロ度に近づくことで、第2圧縮室230側では僅かに圧縮仕事が行われる一方、第1圧縮室210側では圧縮仕事が行われなくなる。 Here, in this compressor, the inclination angle of the swash plate 5 is reduced and the stroke of the piston 9 is reduced, whereby the top dead center position of the first head 9a is remote from the first valve forming plate 39. For this reason, in this compressor, when the inclination angle of the swash plate 5 approaches zero degrees, a slight compression work is performed on the second compression chamber 230 side, while a compression work is performed on the first compression chamber 210 side. Disappear.
 一方、図2に示す制御弁15cが低圧通路15aの開度を小さくすれば、第1吐出室29a内の冷媒ガスの圧力によって圧力調整室31内の圧力が上昇し、制御圧室13c内の圧力が上昇する。このため、斜板5に作用するピストン圧縮力に抗して、アクチュエータ13では、図1に示すように、移動体13aが斜板室33の後方側に向かって移動する。 On the other hand, if the control valve 15c shown in FIG. 2 reduces the opening of the low pressure passage 15a, the pressure in the pressure adjusting chamber 31 is increased by the pressure of the refrigerant gas in the first discharge chamber 29a, and the pressure in the control pressure chamber 13c is increased. Pressure increases. For this reason, against the piston compression force acting on the swash plate 5, in the actuator 13, the moving body 13 a moves toward the rear side of the swash plate chamber 33 as shown in FIG. 1.
 これにより、この圧縮機では、作用軸心M3において、移動体13aは、第1、2アーム132、133の第1、2牽引点132a、133aを通じて斜板5の他端側を斜板室33の後方側へ牽引する。このため、この圧縮機では、斜板5の他端側が作用軸心M3周りで反時計回り方向に揺動する。また、ラグアーム49の後端が第1揺動軸心M1周りで反時計回り方向に揺動するとともに、ラグアーム49の前端が第2揺動軸心M2周りで時計回り方向に揺動する。このため、ラグアーム49が第2支持部材43bのフランジ431から離間する。これらにより、斜板5は、作用軸心M3及び第1揺動軸心M1をそれぞれ作用点及び支点とし、上述の傾斜角度が小さくなる場合と反対方向に揺動する。このため、駆動軸3の駆動軸心Oに対する斜板5の傾斜角度が増大し、ピストン9のストロークが増大する。このため、この圧縮機では、駆動軸3の1回転当たりの吐出容量が大きくなる。なお、図1に示す斜板5の傾斜角度がこの圧縮機における最大値である。また、このように斜板5の傾斜角度が最大値となった状態では、移動体13aの後壁130が第1フランジ430と当接する。 Thus, in this compressor, the moving body 13a moves the other end of the swash plate 5 through the first and second traction points 132a and 133a of the first and second arms 132 and 133 at the operating axis M3. Pull backwards. For this reason, in this compressor, the other end side of the swash plate 5 swings counterclockwise around the action axis M3. In addition, the rear end of the lug arm 49 swings counterclockwise around the first swing axis M1, and the front end of the lug arm 49 swings clockwise around the second swing axis M2. For this reason, the lug arm 49 is separated from the flange 431 of the second support member 43b. As a result, the swash plate 5 oscillates in the opposite direction to the case where the inclination angle becomes smaller with the action axis M3 and the first oscillation axis M1 as the action point and the fulcrum, respectively. For this reason, the inclination angle of the swash plate 5 with respect to the drive axis O of the drive shaft 3 increases, and the stroke of the piston 9 increases. For this reason, in this compressor, the discharge capacity per one rotation of the drive shaft 3 becomes large. The inclination angle of the swash plate 5 shown in FIG. 1 is the maximum value in this compressor. Further, in this state where the inclination angle of the swash plate 5 is at the maximum value, the rear wall 130 of the moving body 13a contacts the first flange 430.
 このように、この圧縮機では、斜板5の傾斜角度を増大する際、移動体13aは第1、2アーム132、133の第1、2牽引点132a、133aを通じて斜板5を牽引する。つまり、この圧縮機では、斜板5が傾斜角度を増大する方向へと変位する際、移動体13aは斜板5から遠隔する。このため、この圧縮機では、制御圧室13cの圧力上昇によって吐出容量を確実に増大させるために後壁130及び周壁131を大型化しても、周壁131と斜板5との干渉が生じない。これにより、この圧縮機では、移動体13aの後壁130及び周壁131を大型化しつつも、斜板室33の大型化を抑制することが可能となっている。 Thus, in this compressor, when the inclination angle of the swash plate 5 is increased, the moving body 13a pulls the swash plate 5 through the first and second pulling points 132a and 133a of the first and second arms 132 and 133. That is, in this compressor, the movable body 13a is remote from the swash plate 5 when the swash plate 5 is displaced in the direction of increasing the inclination angle. For this reason, in this compressor, even if the rear wall 130 and the peripheral wall 131 are enlarged in order to reliably increase the discharge capacity by the pressure increase in the control pressure chamber 13c, the interference between the peripheral wall 131 and the swash plate 5 does not occur. Thereby, in this compressor, it is possible to suppress an increase in the size of the swash plate chamber 33 while increasing the size of the rear wall 130 and the peripheral wall 131 of the movable body 13a.
 そして、この圧縮機では、連結機構14が第1、2アーム132、133を有している。第1アーム132には、斜板5に対して牽引力を付与する第1牽引点132aが設定されており、第2アーム133には、斜板5に対して牽引力を付与する第2牽引点133aが設定されている。ここで、斜板5を牽引することによって傾斜角度を増大させる場合には、斜板5を押圧することによって傾斜角度を増大させる場合と比較して、圧縮反力や吸入反力の影響を受け難い。このため、この圧縮機では、斜板5の傾斜角度を増大させるに当たって、大きな牽引力を必要としない。 In this compressor, the coupling mechanism 14 has first and second arms 132 and 133. The first arm 132 is provided with a first traction point 132a for applying a traction force to the swash plate 5, and the second arm 133 is provided with a second traction point 133a for applying a traction force to the swash plate 5. Is set. Here, when the inclination angle is increased by pulling the swash plate 5, the inclination angle is increased by pressing the swash plate 5, compared with the case where the inclination angle is increased by pressing the swash plate 5. hard. For this reason, in this compressor, when increasing the inclination angle of the swash plate 5, a large traction force is not required.
 さらに、この圧縮機では、第1アーム132及び第2アーム133は、駆動軸心Oと、斜板5の上死点位置と、斜板5の下死点位置とで決定される仮想面Xを跨いて設定されている。第1アーム132及び第2アーム133には、それぞれ第1牽引点132a及び第2牽引点133aが設定されている。そして、第1アーム132及び第2アーム133は、これらの第1牽引点132aと第2牽引点133aとの二箇所において牽引力を付与することができる。このため、この圧縮機では、例えば連結機構14が単一のアームのみを有している場合と比較して、第1アーム132と第2アーム133とが斜板5に対して個々に付与する牽引力を小さくすることができる。なお、この圧縮機では、斜板5の傾斜角度を減少する際、移動体13aは第1、2アーム132、133を通じて斜板5を押圧することにはなるが、その際の押圧力はさほどの大きさではない。斜板5及び移動体13aを含む回転体には、傾斜角度を小さくする方向に遠心力が作用するからである。 Further, in this compressor, the first arm 132 and the second arm 133 have a virtual plane X determined by the drive axis O, the top dead center position of the swash plate 5 and the bottom dead center position of the swash plate 5. It is set across. A first traction point 132a and a second traction point 133a are set on the first arm 132 and the second arm 133, respectively. And the 1st arm 132 and the 2nd arm 133 can give tractive force in two places, these 1st traction points 132a and 2nd traction points 133a. Therefore, in this compressor, for example, the first arm 132 and the second arm 133 are individually applied to the swash plate 5 as compared with the case where the coupling mechanism 14 has only a single arm. Traction force can be reduced. In this compressor, when the inclination angle of the swash plate 5 is decreased, the moving body 13a presses the swash plate 5 through the first and second arms 132 and 133, but the pressing force at that time is not much. Not the size of. This is because centrifugal force acts on the rotating body including the swash plate 5 and the moving body 13a in the direction of decreasing the inclination angle.
 これらのため、この圧縮機では、上記のように、後壁130及び周壁131を大型化した場合であっても、それによって要求される第1、2アーム132、133の剛性を小さくすることができる。このため、この圧縮機では、第1、2アーム132、133の大型化、すなわち、連結機構14の大型化を抑制することが可能となっている。 Therefore, in this compressor, even if the rear wall 130 and the peripheral wall 131 are enlarged as described above, the rigidity of the first and second arms 132 and 133 required thereby can be reduced. it can. For this reason, in this compressor, it is possible to suppress the enlargement of the first and second arms 132 and 133, that is, the enlargement of the coupling mechanism 14.
 また、この圧縮機では、斜板室33に対して第1仮想領域S1と第2仮想領域S2とが設定されている。そして、駆動軸本体30に移動体13aが組み付けられた際、第1アーム132は第1仮想領域S1内に位置し、第2アーム133は第2仮想領域S2内に位置している。このため、この圧縮機では、第1アーム132及び第2アーム133が第1~5リヤ側シリンダボア21a~21e内や第1~5フロント側シリンダボア23a内を往復動する各ピストン9の邪魔とならない。これにより、第1アーム132及び第2アーム133と、第1~5リヤ側シリンダボア21a~21e及び第1~5フロント側シリンダボア23a、すなわち、第1アーム132及び第2アーム133と、各ピストン9とを近接させて配置することが可能となっている。 In this compressor, a first virtual area S1 and a second virtual area S2 are set for the swash plate chamber 33. When the movable body 13a is assembled to the drive shaft main body 30, the first arm 132 is located in the first virtual area S1, and the second arm 133 is located in the second virtual area S2. Therefore, in this compressor, the first arm 132 and the second arm 133 do not interfere with the pistons 9 that reciprocate within the first to fifth rear cylinder bores 21a to 21e and the first to fifth front cylinder bores 23a. . Thus, the first arm 132 and the second arm 133, the first to fifth rear cylinder bores 21a to 21e and the first to fifth front cylinder bores 23a, that is, the first arm 132 and the second arm 133, and each piston 9 Can be arranged close to each other.
 したがって、実施例の圧縮機によれば、アクチュエータ13によって吐出容量を変更する圧縮機において、高い制御性を発揮しつつ小型化も実現可能である。 Therefore, according to the compressor of the embodiment, the compressor whose discharge capacity is changed by the actuator 13 can be downsized while exhibiting high controllability.
 特に、この圧縮機では、斜板5には、第1アーム132と第2アーム133との間に突出する被牽引部45cが設けられている。そして、移動体13aの凹部134に対して被牽引部45cを嵌め合わせつつ、第1、2アーム132、133と、斜板5とを接続している。これにより、この圧縮機では、駆動軸3と共に移動体13aが回転する際、第1アーム132及び第2アーム133と被牽引部45cとの間で駆動力が伝達される。このため、この圧縮機では、移動体13aが駆動軸3と共に安定して回転するとともに、斜板5についても移動体13a、ひいては駆動軸3と共に安定して回転する。 In particular, in this compressor, the swash plate 5 is provided with a towed portion 45 c protruding between the first arm 132 and the second arm 133. And the 1st, 2nd arms 132 and 133 and the swash plate 5 are connected, fitting the to-be-towed part 45c with the recessed part 134 of the moving body 13a. Thereby, in this compressor, when the moving body 13a rotates with the drive shaft 3, a driving force is transmitted between the 1st arm 132, the 2nd arm 133, and the towed part 45c. For this reason, in this compressor, the moving body 13 a rotates stably with the drive shaft 3, and the swash plate 5 also rotates stably with the moving body 13 a and thus the drive shaft 3.
 また、第1アーム132、被牽引部45c及び第2アーム133には、駆動軸心Oと直交する方向に延びる第3ピン47cが挿通されている。このため、この圧縮機では、第1アーム132、被牽引部45c及び第2アーム133を容易に連結することが可能となっている。また、例えば、第1アーム132及び被牽引部45cと、第2アーム133及び被牽引部45cとをそれぞれ別々のピンによって連結する場合と比較して、部品点数を削減することができ、製造を容易化することができる。さらに、この圧縮機では、第1、2アーム132、133や被牽引部45cから第3ピン47cが抜け難くなっており、信頼性が高くなっている。 Further, a third pin 47c extending in a direction orthogonal to the drive axis O is inserted through the first arm 132, the to-be-towed portion 45c, and the second arm 133. For this reason, in this compressor, it is possible to easily connect the first arm 132, the towed portion 45c, and the second arm 133. In addition, for example, compared to the case where the first arm 132 and the towed part 45c and the second arm 133 and the towed part 45c are connected by separate pins, the number of parts can be reduced, and the manufacturing can be performed. Can be facilitated. Furthermore, in this compressor, it is difficult for the third pin 47c to come off from the first and second arms 132 and 133 and the to-be-towed portion 45c, and the reliability is high.
 以上において、本発明を実施例に即して説明したが、本発明は上記実施例に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。 In the above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to the above-described embodiments, and it is needless to say that the present invention can be appropriately modified and applied without departing from the spirit thereof.
 例えば、第1シリンダブロック21又は第2シリンダブロック23のいずれか一方のみにシリンダボアを形成して、容量可変型片頭斜板式圧縮機として構成しても良い。 For example, a cylinder bore may be formed only in one of the first cylinder block 21 and the second cylinder block 23 to configure a variable displacement single-head swash plate compressor.
 また、制御機構15について、高圧通路15bに対して制御弁15cを設けるとともに、低圧通路15aにオリフィス15dを設ける構成としても良い。この場合には、制御弁15cによって、高圧通路15b開度を調整することが可能となる。これにより、第1吐出室29a内の冷媒ガスの圧力によって制御圧室13bを迅速に高圧とすることができ、迅速に吐出容量を増大させることが可能となる。 Further, the control mechanism 15 may be configured such that a control valve 15c is provided for the high pressure passage 15b and an orifice 15d is provided for the low pressure passage 15a. In this case, the opening of the high-pressure passage 15b can be adjusted by the control valve 15c. Accordingly, the control pressure chamber 13b can be quickly increased in pressure by the pressure of the refrigerant gas in the first discharge chamber 29a, and the discharge capacity can be quickly increased.
 本発明は空調装置等に利用可能である。 The present invention can be used for an air conditioner or the like.
 1…ハウジング
 3…駆動軸
 5…斜板
 7…リンク機構
 9…ピストン
 11a、11b…シュー(変換機構)
 13…アクチュエータ
 13a…移動体
 13b…区画体
 13c…制御圧室
 14…連結機構
 15…制御機構
 21a…第1リヤ側シリンダボア(第1シリンダボア)
 21b…第2リヤ側シリンダボア(第2シリンダボア)
 21c…第3リヤ側シリンダボア(第3シリンダボア)
 27a…第1吸入室
 27b…第2吸入室
 29a…第1吐出室
 29b…第2吐出室
 33…斜板室
 45c…被牽引部
 47a…第1ピン(連結部)
 47c…第3ピン(ピン)
 132…第1アーム
 133…第2アーム
 210…第1圧縮室
 230…第2圧縮室
 L1…第1接線
 L2…第2接線
 L3…第3接線
 L4…第4接線
 O…駆動軸心
 S1…第1仮想領域
 S2…第2仮想領域
DESCRIPTION OF SYMBOLS 1 ... Housing 3 ... Drive shaft 5 ... Swash plate 7 ... Link mechanism 9 ... Piston 11a, 11b ... Shoe (conversion mechanism)
DESCRIPTION OF SYMBOLS 13 ... Actuator 13a ... Moving body 13b ... Partition body 13c ... Control pressure chamber 14 ... Connection mechanism 15 ... Control mechanism 21a ... 1st rear side cylinder bore (1st cylinder bore)
21b ... Second rear cylinder bore (second cylinder bore)
21c ... Third rear cylinder bore (third cylinder bore)
27a ... 1st suction chamber 27b ... 2nd suction chamber 29a ... 1st discharge chamber 29b ... 2nd discharge chamber 33 ... Swash plate chamber 45c ... Towed part 47a ... 1st pin (connection part)
47c ... Third pin (pin)
132 ... 1st arm 133 ... 2nd arm 210 ... 1st compression chamber 230 ... 2nd compression chamber L1 ... 1st tangent L2 ... 2nd tangent L3 ... 3rd tangent L4 ... 4th tangent O ... Drive shaft center S1 ... 1st 1 virtual area S2 ... 2nd virtual area

Claims (4)

  1.  吸入室、吐出室、斜板室及びシリンダボアが形成されたハウジングと、前記ハウジングに回転可能に支持された駆動軸と、前記駆動軸の回転によって前記斜板室内で回転可能な斜板と、前記駆動軸と前記斜板との間に設けられ、前記駆動軸の駆動軸心に直交する方向に対する前記斜板の傾斜角度の変更を許容するリンク機構と、前記シリンダボアに往復動可能に収納されたピストンと、前記斜板の回転により、前記傾斜角度に応じたストロークで前記ピストンを前記シリンダボア内で往復動させる変換機構と、前記斜板室内に配置され、前記傾斜角度を変更可能なアクチュエータと、前記アクチュエータを制御する制御機構とを備え、
     前記吸入室と前記斜板室とは連通し、
     前記アクチュエータは、前記駆動軸に設けられる区画体と、連結機構を介して前記斜板と連結されると共に、前記駆動軸心方向に移動して前記区画体に対して移動可能な移動体と、前記区画体と前記移動体とにより区画され、前記吐出室からの冷媒を導入することによって前記移動体を移動させる制御圧室とを有し、
     前記移動体は、前記制御圧室内の圧力が高くなることにより、前記斜板を牽引して前記傾斜角度を増大するように配置され、
     前記リンク機構は前記斜板に連結される連結部を有し、
     前記連結機構は、前記駆動軸に対して前記連結部と反対側に配置されると共に、前記駆動軸心を跨いで前記移動体に設けられる第1アーム及び第2アームを有していることを特徴とする容量可変型斜板式圧縮機。
    A housing in which a suction chamber, a discharge chamber, a swash plate chamber and a cylinder bore are formed; a drive shaft rotatably supported by the housing; a swash plate rotatable in the swash plate chamber by rotation of the drive shaft; and the drive A link mechanism that is provided between the shaft and the swash plate and allows the inclination angle of the swash plate to be changed with respect to a direction orthogonal to the drive axis of the drive shaft; and a piston that is housed in the cylinder bore so as to be reciprocally movable And a conversion mechanism for reciprocating the piston in the cylinder bore with a stroke corresponding to the tilt angle by rotation of the swash plate, an actuator disposed in the swash plate chamber and capable of changing the tilt angle, A control mechanism for controlling the actuator,
    The suction chamber and the swash plate chamber communicate with each other,
    The actuator is connected to the partition provided on the drive shaft, the swash plate via a connection mechanism, and a movable body that is movable in the drive axis direction and movable relative to the partition. A control pressure chamber that is partitioned by the partition body and the moving body and moves the moving body by introducing a refrigerant from the discharge chamber;
    The moving body is arranged to pull the swash plate and increase the inclination angle when the pressure in the control pressure chamber increases.
    The link mechanism has a connecting portion connected to the swash plate,
    The coupling mechanism has a first arm and a second arm that are disposed on the opposite side of the coupling portion with respect to the drive shaft and are provided on the movable body across the drive shaft center. A variable capacity swash plate compressor.
  2.  前記シリンダボアは、少なくとも第1シリンダボア、第2シリンダボア及び第3シリンダボアであり、
     前記第1シリンダボア、前記第2シリンダボア及び前記第3シリンダボアは、前記駆動軸心を中心とする同心円状に等角度間隔で前記ハウジングに配置され、
     前記斜板室には、前記駆動軸心から前記第1シリンダボアにおける前記第2シリンダボア側に引かれた第1接線と、前記駆動軸心から前記第2シリンダボアにおける前記第1シリンダボア側に引かれた第2接線とによって区画される第1仮想領域が設定されるとともに、
     前記駆動軸心から前記第2シリンダボアにおける前記第3シリンダボア側に引かれた第3接線と、前記駆動軸心から前記第3シリンダボアにおける前記第2シリンダボア側に引かれた第4接線とによって区画される第2仮想領域が設定され、
     前記第1アームは前記第1仮想領域内に位置し、前記第2アームは前記第2仮想領域内に位置している請求項1記載の容量可変型斜板式圧縮機。
    The cylinder bores are at least a first cylinder bore, a second cylinder bore, and a third cylinder bore,
    The first cylinder bore, the second cylinder bore, and the third cylinder bore are disposed in the housing at equiangular intervals concentrically around the drive shaft center,
    The swash plate chamber has a first tangent line drawn from the drive shaft center to the second cylinder bore side of the first cylinder bore, and a first tangent line drawn from the drive shaft center to the first cylinder bore side of the second cylinder bore. A first virtual region partitioned by two tangents is set,
    A third tangent drawn from the drive shaft to the third cylinder bore in the second cylinder bore and a fourth tangent drawn from the drive shaft to the second cylinder bore in the third cylinder bore. A second virtual area is set,
    2. The variable displacement swash plate compressor according to claim 1, wherein the first arm is located in the first virtual area, and the second arm is located in the second virtual area.
  3.  前記斜板には、前記第1アームと前記第2アームとの間に突出する被牽引部が設けられ、
     前記第1アーム及び前記第2アームと前記被牽引部との間で駆動力が伝達される請求項1又は2記載の容量可変型斜板式圧縮機。
    The swash plate is provided with a towed portion that protrudes between the first arm and the second arm,
    3. The variable displacement swash plate compressor according to claim 1, wherein driving force is transmitted between the first arm and the second arm and the towed portion.
  4.  前記第1アーム、前記被牽引部及び前記第2アームには、前記駆動軸心と直交する方向に延びるピンが挿通されている請求項3記載の容量可変型斜板式圧縮機。 4. The variable displacement swash plate compressor according to claim 3, wherein a pin extending in a direction perpendicular to the drive shaft is inserted through the first arm, the to-be-towed portion, and the second arm.
PCT/JP2014/057236 2013-03-27 2014-03-18 Variable-capacity swash plate-type compressor WO2014156799A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480018508.2A CN105102815B (en) 2013-03-27 2014-03-18 Capacity variable type tilted-plate compressor
KR1020157030638A KR101793357B1 (en) 2013-03-27 2014-03-18 Variable-capacity swash plate-type compressor
US14/780,000 US20160032910A1 (en) 2013-03-27 2014-03-18 Variable displacement swash plate type compressor
DE112014001700.0T DE112014001700B4 (en) 2013-03-27 2014-03-18 Swashplate compressor with variable adjustment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-067086 2013-03-27
JP2013067086A JP6083291B2 (en) 2013-03-27 2013-03-27 Variable capacity swash plate compressor
JP2014034820A JP5983657B2 (en) 2014-02-26 2014-02-26 Variable capacity swash plate compressor
JP2014-034820 2014-02-26

Publications (1)

Publication Number Publication Date
WO2014156799A1 true WO2014156799A1 (en) 2014-10-02

Family

ID=51623779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057236 WO2014156799A1 (en) 2013-03-27 2014-03-18 Variable-capacity swash plate-type compressor

Country Status (5)

Country Link
US (1) US20160032910A1 (en)
KR (1) KR101793357B1 (en)
CN (1) CN105102815B (en)
DE (1) DE112014001700B4 (en)
WO (1) WO2014156799A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014001734T5 (en) * 2013-03-29 2015-12-17 Kabushiki Kaisha Toyota Jidoshokki Swash plate compressor with variable displacement
JP2016151188A (en) * 2015-02-16 2016-08-22 株式会社豊田自動織機 Variable displacement swash plate compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518355A (en) * 1991-07-15 1993-01-26 Toyota Autom Loom Works Ltd Variable capacity type compressor
JPH05172052A (en) * 1991-12-18 1993-07-09 Sanden Corp Variable displacement swash plate type compressor
JP2005188459A (en) * 2003-12-26 2005-07-14 Sanden Corp Control valve of variable displacement type compressor
JP2014092104A (en) * 2012-11-05 2014-05-19 Toyota Industries Corp Variable displacement swash plate type compressor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3062020A (en) * 1960-11-18 1962-11-06 Gen Motors Corp Refrigerating apparatus with compressor output modulating means
US3650434A (en) * 1970-04-06 1972-03-21 Republic Corp Liquid proportioning device
US3930758A (en) * 1974-03-22 1976-01-06 General Motors Corporation Means for lubricating swash plate air conditioning compressor
US4061443A (en) * 1976-12-02 1977-12-06 General Motors Corporation Variable stroke compressor
JP3911937B2 (en) * 1999-08-04 2007-05-09 株式会社豊田自動織機 Control method for air conditioner and variable capacity compressor
DE19939131A1 (en) * 1999-08-18 2001-03-08 Zexel Gmbh Axial piston engine with an infinitely adjustable piston stroke

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518355A (en) * 1991-07-15 1993-01-26 Toyota Autom Loom Works Ltd Variable capacity type compressor
JPH05172052A (en) * 1991-12-18 1993-07-09 Sanden Corp Variable displacement swash plate type compressor
JP2005188459A (en) * 2003-12-26 2005-07-14 Sanden Corp Control valve of variable displacement type compressor
JP2014092104A (en) * 2012-11-05 2014-05-19 Toyota Industries Corp Variable displacement swash plate type compressor

Also Published As

Publication number Publication date
KR101793357B1 (en) 2017-11-02
DE112014001700T5 (en) 2015-12-17
CN105102815A (en) 2015-11-25
DE112014001700B4 (en) 2017-11-02
CN105102815B (en) 2017-04-05
KR20150133285A (en) 2015-11-27
US20160032910A1 (en) 2016-02-04

Similar Documents

Publication Publication Date Title
WO2014069618A1 (en) Variable displacement swash-plate compressor
JP5983657B2 (en) Variable capacity swash plate compressor
WO2014156799A1 (en) Variable-capacity swash plate-type compressor
JP6015614B2 (en) Variable capacity swash plate compressor
WO2014157208A1 (en) Variable displacement swash-plate compressor
JP5949805B2 (en) Variable capacity swash plate compressor
KR20170060583A (en) Variable displacement type swash plate compressor
JP6179439B2 (en) Variable capacity swash plate compressor
JP2016151188A (en) Variable displacement swash plate compressor
JP2016014343A (en) Variable displacement swash plate compressor
JP2017096159A (en) Variable displacement-type swash plate compressor
WO2014157209A1 (en) Volume variable swash plate-type compressor
JP6269386B2 (en) Variable capacity swash plate compressor
JP2016160749A (en) Variable displacement swash plate compressor
JP2017096160A (en) Variable displacement-type swash plate compressor
JP2017180095A (en) Variable displacement swash plate compressor
JP6115397B2 (en) Variable capacity swash plate compressor
JP5991298B2 (en) Variable capacity swash plate compressor
JP2017166336A (en) Variable displacement swash plate compressor
JP2017096162A (en) Variable displacement-type swash plate compressor
JP2016014344A (en) Variable displacement swash plate compressor
JP2017096161A (en) Variable displacement-type swash plate compressor
JP6032228B2 (en) Variable capacity swash plate compressor
JP6107528B2 (en) Variable capacity swash plate compressor
JP2016133095A (en) Variable displacement swash plate type compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018508.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775455

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14780000

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140017000

Country of ref document: DE

Ref document number: 112014001700

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20157030638

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14775455

Country of ref document: EP

Kind code of ref document: A1