WO2014156501A1 - Automatic guided vehicle - Google Patents

Automatic guided vehicle Download PDF

Info

Publication number
WO2014156501A1
WO2014156501A1 PCT/JP2014/055380 JP2014055380W WO2014156501A1 WO 2014156501 A1 WO2014156501 A1 WO 2014156501A1 JP 2014055380 W JP2014055380 W JP 2014055380W WO 2014156501 A1 WO2014156501 A1 WO 2014156501A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
cart
carriage
automatic
laser range
Prior art date
Application number
PCT/JP2014/055380
Other languages
French (fr)
Japanese (ja)
Inventor
一登 白根
拓久哉 中
正木 良三
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to CN201480018197.XA priority Critical patent/CN105103069B/en
Publication of WO2014156501A1 publication Critical patent/WO2014156501A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay

Definitions

  • the present invention relates to an automatic transport vehicle, and more particularly to a technique that is effective when applied to a cart pulling type automatic transport vehicle that can transport by connecting a cart.
  • Patent Document 1 JP-A-2009-288931
  • Patent Document 2 JP-A-2004-98233
  • the trolley that is the object to be transported for the automated guided vehicle is considered to be motive power and power source from the viewpoint of its price, ease of structure, and degree of spread (provided in many ordinary factories). It is desirable not to have a device that requires.
  • FIG. 12 is a diagram for explaining an example of general manual conveyance.
  • FIG. 13 is a diagram for explaining an example of automatic conveyance by a general automatic conveyance vehicle.
  • FIG. 14 is a diagram for explaining an example of the size of the carriage yard and the trolley in FIG. 13, and
  • FIG. 15 is a diagram for explaining an example of the positions of the work space and the trolley yard.
  • the manual conveyance as shown in FIG. 12, there are workers in the work space 1 and the work space 2, and work is performed using the facilities of the production facility 1 and the production facility 2.
  • the articles produced in the production facility 1 are also used as materials.
  • An operator in the work space 1 places an article produced by the production facility 1 on a carriage.
  • the worker in the work space 1 places the cart in the cart yard 1.
  • the transport worker finds a cart placed in the cart yard 1, the transport worker carries the cart to the cart yard 2.
  • Work space 1 and work space 2 cannot be accessed by anyone other than the respective worker because of obstacles to work or safety issues. Further, from the viewpoint of the work efficiency of the workers in the work space 1 and the work space 2 and the efficiency on the factory space, the distance between the carriage parking place 1 and the work space 1 and between the carriage parking place 2 and the work space 2 is It is desirable to be as short as possible.
  • ⁇ B Automatic conveyance by automatic conveyance vehicle>
  • the automated transport vehicle is a cart pulling type automatic transport vehicle.
  • the conveyance sequence by the automatic conveyance vehicle is as follows. (1) In the cart yard 1, the automated guided vehicle automatically connects the carts. (2) The automated guided vehicle travels to the trolley yard 2 while being connected to the trolley. (3) In the cart yard 2, the automatic guided vehicle releases the connection with the cart.
  • ⁇ B1: Step (1) In the case of manual conveyance as shown in FIG. 12 above, the carriage yard is often set by drawing a line on the floor or applying a tape or the like. At that time, in order to prevent a person from placing an excessive positioning burden when placing the cart, as shown in FIG. 14, a margin of about 10 cm may be provided in the front, rear, left and right with respect to the size of the cart. is there.
  • the position of the carriage placed in such a carriage yard varies about ⁇ 10 cm depending on the situation.
  • some kind of jig can be installed in the trolley yard, but it may be difficult for reasons such as obstructing layout changes or obstructing pedestrians.
  • some modifications can be made to the carts, but if the number of carts is large, modification is required for all the carts, and the cost of the modification becomes a problem.
  • the automated guided vehicle can be automatically connected to a cart having a variation in position placed on the cart location without modifying the cart or the cart location.
  • Step (2) Although the cart and the automatic transport vehicle are connected via some connecting mechanism, the connection may be disconnected at an unintended place during traveling for some reason. In such a case, it is desirable that the automated guided vehicle stops traveling at that location and issues a warning by light or sound as necessary.
  • ⁇ B3 About Step (3) >> Since the automated guided vehicle is towed with a cart connected to the rear of the machine, as shown in FIG. A gap is required. Although this gap depends on the size of the automatic conveyance vehicle, even a generally known small automatic conveyance vehicle has a total length of nearly 1 m, and therefore it is required to be 1.5 m or more in consideration of travel allowance.
  • the distance between the work space and the carriage yard is close from the viewpoint of work efficiency and space efficiency, and such a gap causes a decrease in efficiency. Therefore, it is desirable to eliminate a gap between the work space and the carriage yard in order to reduce the distance between the work space and the carriage yard.
  • steps (1), (2), and (3) above are individually resolved from the viewpoints of downsizing and cost reduction of automated guided vehicles and cost reduction of the entire system. It is desirable to solve the problem by preparing one solution for the automated guided vehicle rather than preparing it.
  • the present invention has been made in view of the above-described problems, and a typical object thereof is to mount a laser range sensor on an automatic guided vehicle so as to include the rear of the own machine as a detection range. Another object of the present invention is to provide a technique for detecting one or both of the position and orientation of the carriage based on the measurement result of the laser range sensor.
  • a typical automated guided vehicle is an automated guided vehicle that can be transported by connecting carts, and has the following characteristics.
  • the automated guided vehicle includes a laser range sensor capable of measuring the rear of the machine, and the laser range sensor detects one or both of the position and orientation of the carriage.
  • the automated guided vehicle includes a laser range sensor capable of measuring the rear of the own machine, and is located behind the own machine and connected to the own machine based on a measurement result of the laser range sensor. Close to the cart that is not, and connect the cart.
  • the automated guided vehicle includes a laser range sensor capable of measuring the back of the self-machine, and travels backward in a state where the cart is connected based on a measurement result of the laser range sensor.
  • the automatic transport vehicle includes a laser range sensor capable of measuring a rear side of the own vehicle. Based on a measurement result of the laser range sensor, the cart that has been connected and disconnected is detached, When the positional relationship between the vehicle and the carriage does not correspond to the positional relationship in the connected state, the traveling is stopped.
  • a typical effect is that a laser range sensor is mounted on an automated guided vehicle so as to include the rear of the machine as a detection range, and one or both of the position and orientation of the carriage are determined by the measurement result of the laser range sensor Can be detected.
  • FIG. 1 It is a figure for demonstrating an example of a structure of the automatic conveyance vehicle and trolley
  • FIG. 1 it is the figure which looked at the automatic conveyance vehicle and the trolley
  • FIG. 1 it is a figure for demonstrating an example of the measurement range of a laser range sensor.
  • FIG. 1 it is a figure for demonstrating an example of the control method which moves an automatic conveyance vehicle.
  • FIG. 1 it is a figure for demonstrating the principle which detects the position and direction of a trolley
  • FIG. 1 it is a figure for demonstrating the relationship between the angle
  • FIG. 1 it is the figure which looked at the automatic conveyance vehicle and the trolley
  • FIG. 1 it is a figure for demonstrating an example of the measurement range of a laser range sensor.
  • FIG. 1 it is a figure for demonstrating an example of
  • FIG. 1 it is a flowchart for demonstrating an example of the control method which connects an automatic conveyance vehicle to a trolley
  • FIG. 7 it is a figure for demonstrating the positional relationship of an automatic conveyance vehicle and a trolley
  • FIG. 1 it is a figure for demonstrating the garage putting system of an automatic conveyance vehicle.
  • FIG. 1 it is a flowchart for demonstrating an example of the control method which reverse
  • FIG. 10 it is a figure for demonstrating the positional relationship of an automatic conveyance vehicle and a trolley
  • FIG. 13 It is a figure for demonstrating an example of the automatic conveyance by a general automatic conveyance vehicle.
  • FIG. 13 it is a figure for demonstrating an example of the size of a trolley
  • FIG. 13 it is a figure for demonstrating an example of the position of a work space and a truck parking place.
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently indispensable in principle. Needless to say.
  • the shape and positional relationship of components and the like when referring to the shape and positional relationship of components and the like, the shape is substantially the same unless otherwise specified and the case where it is not clearly apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
  • a typical automated guided vehicle according to the present embodiment is an automated guided vehicle (100) that can be coupled to a cart (200) and has the following characteristics.
  • the automated guided vehicle includes a laser range sensor (105) capable of measuring the rear side of the own vehicle, and the laser range sensor detects one or both of the position and orientation of the carriage (step (1)). , (2), one solution to the problem related to (3)).
  • the automatic transport vehicle includes a laser range sensor (105) capable of measuring the rear side of the own machine, is located behind the own machine based on a measurement result of the laser range sensor, and the own machine And approaching the cart not connected to the vehicle to connect the cart (solution to the problem of step (1)).
  • a laser range sensor (105) capable of measuring the rear side of the own machine
  • the automated guided vehicle includes a laser range sensor (105) capable of measuring the rear of the machine, and travels backward in a state where the cart is connected based on a measurement result of the laser range sensor ( Solution to the problem of step (3)).
  • the automated guided vehicle includes a laser range sensor (105) capable of measuring the rear of the own vehicle, and the cart that has been connected and disconnected is removed based on the measurement result of the laser range sensor, When the positional relationship between the own machine and the cart does not correspond to the positional relationship in the connected state, the traveling is stopped (solution to the problem of step (2)).
  • FIG. 1 is a diagram for explaining an example of the configuration of the automatic transport vehicle 100 and the carriage 200.
  • FIG. 2 is a view of the automatic transport vehicle 100 and the carriage 200 as viewed from above.
  • FIG. 3 is a diagram for explaining an example of a measurement range of the laser range sensor 105.
  • FIG. 4 is a diagram for explaining an example of a control method for moving the automatic transport vehicle 100.
  • FIG. 1 shows a configuration of an automated guided vehicle 100 according to the present embodiment and a carriage 200 that can be connected to and transported by the automated guided vehicle 100.
  • the automated guided vehicle 100 according to the present embodiment is a trolley pulling type automated guided vehicle capable of connecting and transporting the trolley 200.
  • the automatic transport vehicle 100 includes a moving mechanism 101, a connecting mechanism 107, a connection detection sensor 108 that detects whether the carriage 200 is connected, an external sensor 104 that measures the surroundings of the own machine, A laser range sensor 105 for measuring the rear and a control device 106 are provided.
  • the own machine in the measurement of the external sensor 104 and the laser range sensor 105 refers to the main body of the automatic transport vehicle 100.
  • the moving mechanism 101 includes a driving wheel 102 connected via a device (not shown) for generating power and a power transmission mechanism (not shown) including a direct drive system (not shown).
  • a driving wheel 102 connected via a device (not shown) for generating power
  • a power transmission mechanism including a direct drive system (not shown).
  • the caster 103 which is a driven wheel is also rotated, and the automatic conveyance vehicle 100 can be moved.
  • the driving wheel 102 is provided on the rear side and the caster 103 is provided on the front side is illustrated.
  • the configurations of the drive wheel 102 and caster 103 are not limited to this, and can be appropriately selected by those skilled in the art.
  • the connecting mechanism 107 is an arm-like mechanism attached to the rear portion of the automatic guided vehicle 100, and can be moved up and down around the root portion.
  • a hole 110 is formed at the tip of the arm 109, and the automatic conveyance vehicle 100 and the cart 200 can be connected by lowering the arm 109 and hooking the hole 110 on the pin 203 provided in the cart 200.
  • the arm 109 is raised (indicated by a two-dot chain line in FIG. 1), the automatic conveyance vehicle 100 and the carriage 200 are separated.
  • the raising and lowering of the arm 109 is not limited to this, but can be driven using, for example, a motor.
  • connection detection sensor 108 When the carriage 200 is connected to the automatic transport vehicle 100 via the connection mechanism 107, it is detected by the connection detection sensor 108 and transmitted to the control device 106.
  • the connection detection sensor 108 is not limited to this, but for example, the angle of the arm can be measured with an encoder to detect the connection state.
  • the connection detection sensor 108 may be a sensor that can detect the state of the arm 109.
  • a mechanical switch such as a limit switch may be used, or an electrical contact state may be detected.
  • the automatic transport vehicle 100 is provided with an external sensor 104 on the front surface of the automatic transport vehicle 100, the external sensor 104 detects buildings, objects, people, and the like around the automatic transport vehicle 100, and detects them. The information can be acquired and the content can be transmitted to the control device 106 for processing.
  • the external sensor 104 is not limited to this, and for example, a laser distance sensor that scans with an infrared laser and detects the distance to surrounding buildings, objects, people, and the like is used.
  • a laser range sensor 105 for measuring the rear of the own machine is also provided on the rear side of the upper surface of the automatic transport vehicle 100.
  • the laser range sensor 105 can detect a carriage 200 behind the automated guided vehicle 100 and acquire information such as the position and orientation of the carriage 200, and the contents can be transmitted to the control device 106 for processing.
  • the laser range sensor 105 is not limited to this.
  • a laser distance sensor that scans with an infrared laser and detects the distance from the carriage 200 is used.
  • control apparatus 106 controls the moving mechanism 101 so that the trolley
  • identification of the current position of the automatic guided vehicle 100 and the like are realized by a map generation and position identification function provided in the control device 106.
  • the map generation function statistically processes measurement information of the environment (such as surrounding buildings and objects) collected in advance by the external sensor 104, and creates a map of the environment in which the automated guided vehicle 100 moves.
  • the position identification function matches the measurement information measured by the external sensor 104 and a previously created map when the automated guided vehicle 100 actually moves, and the position where the measurement information and the map match ( x, y) and posture ( ⁇ ) can be calculated to identify the position of the aircraft.
  • the automated guided vehicle 100 is a trackless automated guided vehicle capable of autonomously traveling according to the situation by obtaining its own position without guidance equipment.
  • this autonomous traveling it is possible to decelerate, avoid, stop, etc. according to the distance from the obstacle by detecting the obstacle by the external sensor 104.
  • a designated target point such as a route with the shortest time, a route with no obstacles, or a route without traffic jams.
  • the cart 200 connected to the automated guided vehicle 100 according to the present embodiment can be appropriately selected by those skilled in the art.
  • the cart 200 includes two casters 201 and two universal casters 202.
  • the caster 201 is provided on the rear side and the universal caster 202 is provided on the front side is illustrated.
  • FIG. 2 is a top view of the configuration of the automatic conveyance vehicle 100 and the carriage 200 shown in FIG. 1, and shows the front direction of the laser range sensor 105 provided in the automatic conveyance vehicle 100 in the present embodiment.
  • FIG. 3 shows an example of the measurement range of the laser range sensor 105.
  • the laser range sensor 105 is attached to the rear side of the upper surface of the automated guided vehicle 100 as shown in FIG. Then, as shown in FIG. 3, the laser range sensor 105 measures a range of about 220 ° behind the automated guided vehicle 100, and in particular, a carriage 200 to be connected to the rear of the automated guided vehicle 100, Alternatively, the connected cart 200 is detected, and information such as the position and orientation of the cart 200 is acquired and transmitted to the control device 106.
  • FIG. 4 is a diagram for explaining an example of a control method for moving the automatic guided vehicle 100 shown in FIG. 1, and shows a configuration of wheels included in the automatic guided vehicle 100 in the present embodiment.
  • the moving mechanism 101 of the automatic transport vehicle 100 includes two drive wheels 102, a left drive wheel 102L and a right drive wheel 102R.
  • the left driving wheel 102L and the right driving wheel 102R are arranged in parallel with each other and fixed in the direction toward the traveling direction of the automatic guided vehicle 100.
  • the drive wheel 102 includes a drive wheel whose steering angle can be controlled in addition to a drive wheel whose direction is fixed.
  • the automatic transport vehicle 100 includes a left caster 103L and a right caster 103R as casters 103 as driven wheels.
  • the caster 103 includes a caster whose direction is fixed, a free caster whose direction is not fixed, a caster capable of controlling the rudder angle, and the like. Here, a free caster is used.
  • the rotation speed of the left driving wheel 102L and the right driving wheel 102R can be controlled independently. For example, when the rotation speeds of the left driving wheel 102L and the right driving wheel 102R are equal, the automatic transport vehicle 100 goes straight, and when the rotation speeds of the left driving wheel 102L and the right driving wheel 102R are different, the automatic transport vehicle 100 is Make a turn. In this case, the curvature of the curve is determined by the difference in rotation speed between the left drive wheel 102L and the right drive wheel 102R. Further, the straight movement and the turning are not limited to the forward movement, and the backward movement is also possible.
  • the automatic guided vehicle 100 turns rightward.
  • the rotation speed per unit time of the left drive wheel 102L is larger than the rotation speed per unit time of the right drive wheel 102R, the automatic guided vehicle 100 turns rightward.
  • the rotation speed per unit time of the left drive wheel 102L is smaller than the rotation speed per unit time of the right drive wheel 102R, the automatic guided vehicle 100 turns leftward.
  • the automatic guided vehicle 100 turns on the spot.
  • the cart 200 connected to the automatic transport vehicle 100 includes, for example, two casters 201 whose directions are fixed in the traveling direction of the cart 200 and two universal casters 202 whose directions are not fixed. Yes.
  • FIG. 5 is a diagram for explaining the principle of detecting the position and orientation of the carriage 200.
  • FIG. 6 is a diagram for explaining the relationship between the angle of the carriage 200 and the triangle by the laser range sensor 105.
  • the automated guided vehicle 100 is equipped with the laser range sensor 105 so as to include the rear side of the own machine as a detection range, and the position of the carriage 200 is determined by the measurement result of the laser range sensor 105. Or one or both of the orientations can be detected.
  • the principle of detecting the position and orientation of the carriage 200 will be described with reference to FIGS.
  • the laser beam that did not hit the front surface of the carriage 200 hits an object far from the carriage 200, and the distance to that point is measured.
  • the point to be measured is a point sufficiently far away from the cart 200, so that it can be distinguished from the front surface of the cart 200. Thereby, the corners (both ends of the front surface) of the carriage 200 can be detected.
  • the angle direction of the carriage 200 detected in (2) as seen from the laser range sensor 105 is a laser irradiation direction as shown in FIG. 6 and is known. Further, the distance to the corner of the carriage 200 is the measurement result itself by the laser range sensor 105. Thus, the position and orientation of the carriage 200 relative to the laser range sensor 105 can be detected by calculating from the relationship between the angle of the carriage 200 and the triangle by the laser range sensor 105.
  • the method of actually calculating the position and orientation of the carriage 200 from the measurement result of the laser range sensor 105 is not limited to this.
  • Step (1) is a step in which the automatic transport vehicle 100 automatically connects the cart 200 in the cart storage area.
  • the solution to the problem of step (1) is that the automatic guided vehicle 100 is automatically connected to the cart 200 with a variation in the position of the cart 200 without modifying the cart 200 or the cart location. Is to be able to do it.
  • the connecting mechanism 107 that connects the cart 200 and the automatic transport vehicle 100 is lowered by lowering the arm 109 attached to the rear portion of the automatic transport vehicle 100 and forming a hole 110 formed at the tip of the arm 109. Hook on the pin 203 provided on the carriage 200. Thereby, the automatic conveyance vehicle 100 and the trolley
  • the cart 200 is connected to the automatic transport vehicle 100, it is detected by the connection detection sensor 108 and transmitted to the control device 106.
  • FIGS. 7 is a flowchart for explaining an example of a control method for connecting the automatic guided vehicle 100 to the cart 200
  • FIG. 8 is a diagram for explaining the positional relationship between the automatic guided vehicle 100 and the cart 200 in the control method. .
  • the position and orientation of the carriage 200 are detected by the laser range sensor 105 (S301).
  • the positional relationship between the automatic transport vehicle 100 and the carriage 200 in S301 is as shown in FIG. This detection information is transmitted to the control device 106.
  • control device 106 determines whether the position and orientation of the carriage 200 have been detected (S302). If it is not detected as a result of the determination in S302, after waiting for a certain time (S303), the process returns to S301. If it is detected as a result of the determination in S302, the automatic guided vehicle 100 turns on the spot (S304). The positional relationship between the automatic transport vehicle 100 and the carriage 200 in S304 is as shown in FIG.
  • control device 106 determines whether the rear front of the own machine (automatic transport vehicle 100) is facing the direction of the target point (cart 200) (S305). If the result of determination in S305 is not suitable, the process returns to S304. As a result of the determination in S305, if the vehicle is facing, the automatic guided vehicle 100 moves straight back (S306). The positional relationship between the automatic transport vehicle 100 and the carriage 200 in S306 is as shown in FIG.
  • the control device 106 determines whether the automatic guided vehicle 100 has reached the target point (S307). As a result of the determination in S307, if not reached, the process returns to S306. As a result of the determination in S307, if the vehicle arrives, the automatic guided vehicle 100 turns on the spot (S308).
  • the positional relationship between the automatic transport vehicle 100 and the carriage 200 in S308 is as shown in FIG.
  • the control device 106 determines whether the rear front of the own machine (the automatic transport vehicle 100) faces the direction of the carriage 200 (S309). If the result of determination in S309 is not suitable, the process returns to S308. If the result of determination in S309 is that the vehicle is facing, the automatic guided vehicle 100 stops traveling (S310). And the control apparatus 106 operates the connection mechanism 107, and connects with the trolley
  • the automated guided vehicle 100 can be automatically connected to the cart 200 having a variation in the positions of the carts without changing the cart 200 or the carts.
  • Step (2) is a step in which the automated guided vehicle 100 travels to the trolley parking place in a state where it is connected to the trolley 200.
  • the solution to the problem of step (2) is that if the connection is disconnected at an unintended location during traveling, the automatic guided vehicle 100 stops traveling at that location, and an alarm by light or sound as necessary. Is to be able to emit.
  • the position of the cart 200 is relative to the automatic transport vehicle 100 in the measurement result of the laser range sensor 105. It falls within a certain range. For example, in FIG. 3 described above, the carriage 200 falls within the measurement range of the laser range sensor 105.
  • the cart 200 When the cart 200 and the automatic transport vehicle 100 are disconnected, the cart 200 is left behind because it has no power. For this reason, the position of the carriage 200 deviates from the assumed range. For example, in FIG. 3 described above, the carriage 200 deviates from the measurement range of the laser range sensor 105. In this case, the control device 106 stops the automatic conveyance vehicle 100 and issues an alarm by light or sound.
  • the automatic guided vehicle 100 can stop traveling at the location and issue an alarm by light or sound.
  • Step (3) is a step in which the automatic guided vehicle 100 releases the connection with the cart 200 in the cart storage area.
  • the solution to the problem of step (3) is to make it possible to eliminate the gap between the work space and the carriage yard in order to reduce the distance between the work space and the carriage yard.
  • FIG. 9 is a diagram for explaining a garage storage method of the automatic transport vehicle 100.
  • the carriage 200 may be inserted into the carriage parking place 2 from behind so that the automated guided vehicle 100 does not enter between the carriage parking place 2 and the work space 2.
  • the automatic guided vehicle 100 may be turned back in front of the carriage parking place 2 and moved backward. In this way, the cart 200 connected to the automatic transport vehicle 100 is put into the cart parking place 2 by the garage storage method.
  • a control method for moving the automatic guided vehicle 100 backward is, for example, a method as shown in FIGS. Conversely, when the direction of the carriage 200 relative to the own machine cannot be measured, the automatic guided vehicle 100 cannot be moved backward.
  • FIG. 10 is a flowchart for explaining an example of a control method for retracting the automatic transport vehicle 100 in a state where the cart 200 is connected.
  • FIG. 11 is a diagram for explaining the positional relationship between the automatic transport vehicle 100 and the cart 200 in the control method.
  • the position and orientation of the carriage 200 are detected by the laser range sensor 105 (S401). This detection information is transmitted to the control device 106.
  • control device 106 determines whether the position and orientation of the carriage 200 have been detected (S402). As a result of the determination in S402, if it cannot be detected, an alarm is issued (S403) and the process ends.
  • the control device 106 determines whether the directions of the carriage 200 and the own machine (automatic conveyance vehicle 100) are aligned (S404). If the result of determination in S404 is that they are complete, the automated guided vehicle 100 moves straight back (S405). The positional relationship between the automated guided vehicle 100 and the carriage 200 in S405 is as shown in FIG.
  • the control device 106 determines whether or not the automatic guided vehicle 100 has reached the target point (cart location) (S409). As a result of the determination in S409, if not reached, the process returns to S401. If the result of the determination in S409 is that it has reached, the automatic guided vehicle 100 stops traveling (S410).
  • the gap between the work space and the trolley yard can be eliminated.
  • the automated guided vehicle 100 includes a laser range sensor 105 that can measure the rear of the vehicle, and the laser range sensor 105 can detect one or both of the position and orientation of the carriage 200. .
  • the automated guided vehicle 100 includes a laser range sensor 105 that can measure the rear side of the own vehicle, so that the automated guided vehicle 100 automatically connects the cart 200 in the carriage yard. On the basis of the measurement result, the vehicle 200 can be approached and connected to the vehicle 200 that is behind the vehicle and is not connected to the vehicle.
  • the automated guided vehicle 100 includes a laser range sensor 105 that can measure the rear side of the own vehicle, so that the automated ranging vehicle 100 is disconnected from the cart 200 in the carriage yard. On the basis of the measurement result, it is possible to travel backward with the carriage 200 connected.
  • the automatic transport vehicle 100 includes a laser range sensor 105 that can measure the rear of the own vehicle, and the laser range sensor is a step in which the automatic transport vehicle 100 travels to the trolley parking place in a state of being connected to the trolley 200. Based on the measurement result of 105, when the cart 200 that has traveled in a connected manner is disconnected, and the positional relationship between the vehicle and the cart 200 does not correspond to the positional relationship in the coupled state, the travel can be stopped. .
  • the automatic transport vehicle 100 includes the control device 106 that controls the operation of the own device based on the measurement result of the laser range sensor 105, thereby controlling the travel of the own device by the control device 106 and the cart. 200 connections can be controlled.
  • control device 106 combines a plurality of operations (2) to (4) based on the result detected by the laser range sensor 105 of (1). Can be controlled.
  • the control device 106 can control the traveling of the own machine including the measurement result of the external sensor 104.
  • the control device 106 Since the automatic guided vehicle 100 includes the connection detection sensor 108 that can detect the connection between the self-machine and the cart 200, the control device 106 includes the detection result of the connection detection sensor 108 so that the self-machine travels. Can be controlled.
  • the control device 106 can control the movement of the own machine by controlling the moving mechanism 101.
  • the control device 106 controls the connection mechanism 107 to connect and disconnect the own apparatus and the carriage 200. Can be controlled.
  • the invention made by the present inventor has been specifically described based on the embodiment.
  • the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, it is possible to add, delete, and replace other configurations with respect to a part of the configuration of the above-described embodiment.
  • the automatic guided vehicle has been described.
  • the present invention is not limited to this, and can be applied to an autonomous moving body such as a robot that moves autonomously.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Disclosed is a technique in which a laser area-measurement sensor is mounted on an automatic guided vehicle in a manner so as to include the rear thereof as a detection range, and in which the position and/or orientation of a cart are/is detected on the basis of the measurement result of the laser area-measurement sensor. This automatic guided vehicle is an automatic guided vehicle (100) capable of connecting with a cart (200) and transporting the same, and comprises a laser area-measurement sensor (105) capable of measuring the rear of the vehicle. The laser area-measurement sensor (105) detects the position and/or orientation of the cart (200). Particularly, on the basis of the measurement result of the laser area-measurement sensor (105), the automatic guided vehicle: approaches a cart (200) that is in the rear of the vehicle and not yet connected thereto, and connects with said cart (200); travels rearward with the cart (200) connected thereto; or stops traveling if the cart (200) that was connected to and traveling with the vehicle gets disconnected and the positional relationship between the vehicle and the cart (200) no longer corresponds to the positional relationship in a state where the vehicle and the cart were connected.

Description

自動搬送車Automated guided vehicle
 本発明は、自動搬送車に関し、特に、台車を連結して搬送できる台車牽引型の自動搬送車に適用して有効な技術に関するものである。 The present invention relates to an automatic transport vehicle, and more particularly to a technique that is effective when applied to a cart pulling type automatic transport vehicle that can transport by connecting a cart.
 本技術分野の背景技術として、例えば、特開2009-288931号公報(特許文献1)がある。この公報には、「自機に被搬送物が連結されている場合に、障害物回避時に当該被搬送物が振られて周囲の環境に干渉することを防止する」と記載されている。また、特開2004-98233号公報(特許文献2)がある。この公報には、「最適な移動ルートを決定することを可能にする自律移動ロボットを提供する」と記載されている。 As background art in this technical field, for example, there is JP-A-2009-288931 (Patent Document 1). This publication states that “when a transported object is connected to the own machine, the transported object is prevented from being shaken and interfering with the surrounding environment when avoiding an obstacle”. There is also JP-A-2004-98233 (Patent Document 2). This publication describes that “it provides an autonomous mobile robot that makes it possible to determine an optimal travel route”.
特開2009-288931号公報JP 2009-288931 A 特開2004-98233号公報JP 2004-98233 A
 生産ラインや自動倉庫などで使用される搬送システムにおいては、自動搬送車や移動ロボットがしばしば用いられる。これらの自動搬送車や移動ロボットの制御方式としては、予めその走行軌跡を設定しておくものと、制御実行時に走行軌跡を生成しながら走行するものとがある。当然のことながら、制御実行時に走行軌跡を生成する方式の自動搬送車や移動ロボットは、予めその走行軌跡を設定しておく方式のものに比べ、障害物回避の柔軟性や経路変更時の自由度において優れている。 In transport systems used in production lines and automated warehouses, automatic transport vehicles and mobile robots are often used. As control methods for these automatic transport vehicles and mobile robots, there are a method in which the travel locus is set in advance, and a method in which the vehicle travels while generating a travel locus during control execution. Naturally, the automated guided vehicles and mobile robots that generate a travel locus at the time of control execution are more flexible in avoiding obstacles and more free when changing routes than those that set the travel locus in advance. Excellent in degree.
 一方、自動搬送車や移動ロボットを用いる搬送システムにおける搬送の効率を向上するためには、システム中の自動搬送車や移動ロボットに被搬送物として台車を連結して、牽引させる方法が多くの資材の搬送が可能であり、より有効であると考えられている。このとき、自動搬送車にとっては被搬送物となる台車は、その価格、構造の容易さ、および普及の度合い(通常の工場には多く備えられている)などの観点から考えて、動力や電源を要する装置を持たないものが望ましい。 On the other hand, in order to improve the efficiency of conveyance in a conveyance system using an automatic conveyance vehicle or a mobile robot, there are many materials that can be pulled by connecting a cart as an object to be conveyed to the automatic conveyance vehicle or mobile robot in the system. This is considered to be more effective. At this time, the trolley that is the object to be transported for the automated guided vehicle is considered to be motive power and power source from the viewpoint of its price, ease of structure, and degree of spread (provided in many ordinary factories). It is desirable not to have a device that requires.
 このような台車を自動搬送車(AGV:Automatic Guided Vehicle)で牽引する台車牽引搬送について、本発明者が検討した結果、以下のようなことが明らかとなった。例えば、工場の生産ライン間で、物品を台車に載せて搬送する場合を考えると、以下のような課題があることが分かった。図12~図15を用いて、<A:手動搬送>、<B:自動搬送車による自動搬送>の順に説明する。図12は、一般的な手動搬送の一例を説明するための図である。図13は、一般的な自動搬送車による自動搬送の一例を説明するための図である。図14は、図13において、台車置場と台車のサイズの一例を説明するための図であり、図15は、作業スペースと台車置場の位置の一例を説明するための図である。 As a result of examination by the present inventor on the trolley-to-carriage that pulls such a trolley with an automatic guided vehicle (AGV), the following has been clarified. For example, it has been found that there are the following problems when considering a case where goods are carried on a carriage between production lines in a factory. The description will be made in the order of <A: manual conveyance> and <B: automatic conveyance by an automatic conveyance vehicle> with reference to FIGS. FIG. 12 is a diagram for explaining an example of general manual conveyance. FIG. 13 is a diagram for explaining an example of automatic conveyance by a general automatic conveyance vehicle. FIG. 14 is a diagram for explaining an example of the size of the carriage yard and the trolley in FIG. 13, and FIG. 15 is a diagram for explaining an example of the positions of the work space and the trolley yard.
 <A:手動搬送>
 手動搬送では、図12に示すように、作業スペース1および作業スペース2にはそれぞれ作業者がおり、生産設備1および生産設備2の設備を用いて作業を行っている。生産設備2では、生産設備1で生産した物品も材料として使用する。作業スペース1の作業者は、生産設備1によって生産した物品を台車に載せる。台車に規定の数だけ物品が載せられると、作業スペース1の作業者はその台車を台車置場1に置く。生産設備1と生産設備2の間には搬送作業者がおり、台車置場1に置かれている台車を見つけると、搬送作業者はその台車を台車置場2まで運んで行く。
<A: Manual conveyance>
In the manual conveyance, as shown in FIG. 12, there are workers in the work space 1 and the work space 2, and work is performed using the facilities of the production facility 1 and the production facility 2. In the production facility 2, the articles produced in the production facility 1 are also used as materials. An operator in the work space 1 places an article produced by the production facility 1 on a carriage. When a predetermined number of articles are placed on the cart, the worker in the work space 1 places the cart in the cart yard 1. There is a transport worker between the production facility 1 and the production facility 2. When the transport worker finds a cart placed in the cart yard 1, the transport worker carries the cart to the cart yard 2.
 作業スペース1および作業スペース2には、作業の邪魔になる、安全上の問題があるなどの理由で、それぞれの作業者以外の立ち入りはできない。また、作業スペース1および作業スペース2における作業者の作業効率や、工場のスペース上の効率の観点から、台車置場1と作業スペース1の間、および台車置場2と作業スペース2の間の距離はできるだけ短いことが望ましい。 ・ Work space 1 and work space 2 cannot be accessed by anyone other than the respective worker because of obstacles to work or safety issues. Further, from the viewpoint of the work efficiency of the workers in the work space 1 and the work space 2 and the efficiency on the factory space, the distance between the carriage parking place 1 and the work space 1 and between the carriage parking place 2 and the work space 2 is It is desirable to be as short as possible.
 <B:自動搬送車による自動搬送>
 上記した図12の状況において、図13に示すように、搬送作業者による搬送を自動搬送車による搬送に置き換えて省人化する場合を考える。搬送対象が台車であるため、自動搬送車は台車牽引型の自動搬送車であることが望ましい。自動搬送車による搬送のシーケンスは、以下のようになる。
(1)台車置場1において、自動搬送車は台車を自動的に連結する。
(2)自動搬送車は、台車と連結した状態で台車置場2まで走行する。
(3)台車置場2において、自動搬送車は台車との連結を解除する。
<B: Automatic conveyance by automatic conveyance vehicle>
In the situation of FIG. 12 described above, as shown in FIG. 13, consider a case where labor is saved by replacing conveyance by a conveyance worker with conveyance by an automatic conveyance vehicle. Since the object to be transported is a cart, it is desirable that the automated transport vehicle is a cart pulling type automatic transport vehicle. The conveyance sequence by the automatic conveyance vehicle is as follows.
(1) In the cart yard 1, the automated guided vehicle automatically connects the carts.
(2) The automated guided vehicle travels to the trolley yard 2 while being connected to the trolley.
(3) In the cart yard 2, the automatic guided vehicle releases the connection with the cart.
 以上の各ステップ(1),(2),(3)において、それぞれ以下のような問題が発生する。 In the above steps (1), (2), and (3), the following problems occur.
 <<B1:ステップ(1)について>>
 上記の図12に示したような手動搬送の場合、台車置場は床面に線を描いたり、テープなどを貼ったりして設定する場合が多い。その際、人が台車を置く際に過度の位置決めの負担を負わないようにするために、図14に示すように、台車の大きさに対して前後左右に10cm程度の余裕を持たせることがある。
<< B1: Step (1) >>
In the case of manual conveyance as shown in FIG. 12 above, the carriage yard is often set by drawing a line on the floor or applying a tape or the like. At that time, in order to prevent a person from placing an excessive positioning burden when placing the cart, as shown in FIG. 14, a margin of about 10 cm may be provided in the front, rear, left and right with respect to the size of the cart. is there.
 このような台車置場に置かれる台車の位置は、状況によって±10cm程度のばらつきが生じる。 The position of the carriage placed in such a carriage yard varies about ± 10 cm depending on the situation.
 台車置場の大きさを台車の大きさぎりぎりに設定することでばらつきは生じなくなるが、その場合、作業スペースの作業者が台車置場に台車を置く際に精密な位置決めが必要になり、時間がかかるようになるために作業効率が低下する。 By setting the size of the trolley to the limit of the size of the trolley, there will be no variation, but in that case, precise positioning is required when workers in the work space place the trolley at the trolley, and it takes time. As a result, work efficiency decreases.
 また、台車置場に何らかの治具を設置することもできるが、レイアウト変更の妨げになったり、歩行者の邪魔になったりするなどの理由により難しい場合もある。また、台車に何らかの改造を施すこともできるが、台車の数が多い場合は全数に対して改造が必要になり、改造費用が問題となる。 In addition, some kind of jig can be installed in the trolley yard, but it may be difficult for reasons such as obstructing layout changes or obstructing pedestrians. In addition, some modifications can be made to the carts, but if the number of carts is large, modification is required for all the carts, and the cost of the modification becomes a problem.
 したがって、自動搬送車は、台車にも台車置場にも改造を加えずに、台車置場に置かれた位置のばらつきがある台車に対して自動連結できることが望ましい。 Therefore, it is desirable that the automated guided vehicle can be automatically connected to a cart having a variation in position placed on the cart location without modifying the cart or the cart location.
 <<B2:ステップ(2)について>>
 台車と自動搬送車は何らかの連結機構を介して連結されるが、何らかの理由により、走行中に意図しない場所で連結が外れてしまう場合がある。このような場合、自動搬送車はその場所で走行を停止し、必要に応じて光や音などによる警報を発することが望ましい。
<< B2: Step (2) >>
Although the cart and the automatic transport vehicle are connected via some connecting mechanism, the connection may be disconnected at an unintended place during traveling for some reason. In such a case, it is desirable that the automated guided vehicle stops traveling at that location and issues a warning by light or sound as necessary.
 <<B3:ステップ(3)について>>
 自動搬送車は自機の後方に台車を連結して牽引するため、図15に示すように、台車置場2に台車を置くためには台車置場2と作業スペース2の間に自動搬送車が入るための隙間が必要になる。この隙間は、自動搬送車のサイズにもよるが、一般に知られる小型の自動搬送車であってもその全長は1m近くあるため、走行上の余裕を考慮すると1.5m以上必要になる。
<< B3: About Step (3) >>
Since the automated guided vehicle is towed with a cart connected to the rear of the machine, as shown in FIG. A gap is required. Although this gap depends on the size of the automatic conveyance vehicle, even a generally known small automatic conveyance vehicle has a total length of nearly 1 m, and therefore it is required to be 1.5 m or more in consideration of travel allowance.
 前述の通り、作業効率およびスペース効率の観点から作業スペースと台車置場の距離は近いことが望ましく、このような隙間があることは効率低下の原因となる。したがって、作業スペースと台車置場の距離を近づけるために、作業スペースと台車置場の間の隙間をなくすことが望ましい。 As described above, it is desirable that the distance between the work space and the carriage yard is close from the viewpoint of work efficiency and space efficiency, and such a gap causes a decrease in efficiency. Therefore, it is desirable to eliminate a gap between the work space and the carriage yard in order to reduce the distance between the work space and the carriage yard.
 上記のステップ(1),(2),(3)に関わる問題は、自動搬送車の小型化、低コスト化の観点、またシステム全体の低コスト化の観点から、それぞれに個別の解決策を用意するよりも、自動搬送車に1つの解決策を用意することで解決することが望ましい。 The problems related to steps (1), (2), and (3) above are individually resolved from the viewpoints of downsizing and cost reduction of automated guided vehicles and cost reduction of the entire system. It is desirable to solve the problem by preparing one solution for the automated guided vehicle rather than preparing it.
 そこで、本発明は、上記のような課題に鑑みてなされたものであり、その代表的な目的は、自動搬送車に、自機の後方を検出範囲として含むようにレーザ測域センサを搭載し、このレーザ測域センサの計測結果によって台車の位置または向きの一方あるいは両方を検出する技術を提供することにある。 Therefore, the present invention has been made in view of the above-described problems, and a typical object thereof is to mount a laser range sensor on an automatic guided vehicle so as to include the rear of the own machine as a detection range. Another object of the present invention is to provide a technique for detecting one or both of the position and orientation of the carriage based on the measurement result of the laser range sensor.
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
 すなわち、代表的な自動搬送車は、台車を連結して搬送できる自動搬送車であって、以下のような特徴を有するものである。 That is, a typical automated guided vehicle is an automated guided vehicle that can be transported by connecting carts, and has the following characteristics.
 (1)前記自動搬送車は、自機の後方を計測できるレーザ測域センサを備え、前記レーザ測域センサにより前記台車の位置または向きの一方あるいは両方を検出する。 (1) The automated guided vehicle includes a laser range sensor capable of measuring the rear of the machine, and the laser range sensor detects one or both of the position and orientation of the carriage.
 (2)前記自動搬送車は、自機の後方を計測できるレーザ測域センサを備え、前記レーザ測域センサの計測結果に基づいて、前記自機の後方にあり、かつ前記自機に連結されていない前記台車に対して接近し、前記台車を連結する。 (2) The automated guided vehicle includes a laser range sensor capable of measuring the rear of the own machine, and is located behind the own machine and connected to the own machine based on a measurement result of the laser range sensor. Close to the cart that is not, and connect the cart.
 (3)前記自動搬送車は、自機の後方を計測できるレーザ測域センサを備え、前記レーザ測域センサの計測結果に基づいて、前記台車を連結した状態で後方へ走行する。 (3) The automated guided vehicle includes a laser range sensor capable of measuring the back of the self-machine, and travels backward in a state where the cart is connected based on a measurement result of the laser range sensor.
 (4)前記自動搬送車は、自機の後方を計測できるレーザ測域センサを備え、前記レーザ測域センサの計測結果に基づいて、連結して走行していた前記台車が外れ、前記自機と前記台車との位置関係が連結状態の位置関係に相当しなくなった場合には走行を停止する。 (4) The automatic transport vehicle includes a laser range sensor capable of measuring a rear side of the own vehicle. Based on a measurement result of the laser range sensor, the cart that has been connected and disconnected is detached, When the positional relationship between the vehicle and the carriage does not correspond to the positional relationship in the connected state, the traveling is stopped.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。 Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.
 すなわち、代表的な効果は、自動搬送車に、自機の後方を検出範囲として含むようにレーザ測域センサを搭載し、このレーザ測域センサの計測結果によって台車の位置または向きの一方あるいは両方を検出することができる。 In other words, a typical effect is that a laser range sensor is mounted on an automated guided vehicle so as to include the rear of the machine as a detection range, and one or both of the position and orientation of the carriage are determined by the measurement result of the laser range sensor Can be detected.
本発明の一実施の形態における自動搬送車および台車の構成の一例を説明するための図である。It is a figure for demonstrating an example of a structure of the automatic conveyance vehicle and trolley | bogie in one embodiment of this invention. 図1において、自動搬送車および台車を上面から見た図である。In FIG. 1, it is the figure which looked at the automatic conveyance vehicle and the trolley | bogie from the upper surface. 図1において、レーザ測域センサの計測範囲の一例を説明するための図である。In FIG. 1, it is a figure for demonstrating an example of the measurement range of a laser range sensor. 図1において、自動搬送車を移動させる制御方法の一例を説明するための図である。In FIG. 1, it is a figure for demonstrating an example of the control method which moves an automatic conveyance vehicle. 図1において、台車の位置と向きを検出する原理を説明するための図である。In FIG. 1, it is a figure for demonstrating the principle which detects the position and direction of a trolley | bogie. 図1において、台車の角とレーザ測域センサによる三角形の関係を説明するための図である。In FIG. 1, it is a figure for demonstrating the relationship between the angle | corner of a trolley | bogie, and the triangle by a laser range sensor. 図1において、自動搬送車を台車に連結させる制御方法の一例を説明するためのフローチャートである。In FIG. 1, it is a flowchart for demonstrating an example of the control method which connects an automatic conveyance vehicle to a trolley | bogie. 図7において、自動搬送車と台車の位置関係を説明するための図である。In FIG. 7, it is a figure for demonstrating the positional relationship of an automatic conveyance vehicle and a trolley | bogie. 図1において、自動搬送車の車庫入れ方式を説明するための図である。In FIG. 1, it is a figure for demonstrating the garage putting system of an automatic conveyance vehicle. 図1において、台車を連結した状態で自動搬送車を後退させる制御方法の一例を説明するためのフローチャートである。In FIG. 1, it is a flowchart for demonstrating an example of the control method which reverse | retreats an automatic conveyance vehicle in the state which connected the trolley | bogie. 図10において、自動搬送車と台車の位置関係を説明するための図である。In FIG. 10, it is a figure for demonstrating the positional relationship of an automatic conveyance vehicle and a trolley | bogie. 一般的な手動搬送の一例を説明するための図である。It is a figure for demonstrating an example of general manual conveyance. 一般的な自動搬送車による自動搬送の一例を説明するための図である。It is a figure for demonstrating an example of the automatic conveyance by a general automatic conveyance vehicle. 図13において、台車置場と台車のサイズの一例を説明するための図である。In FIG. 13, it is a figure for demonstrating an example of the size of a trolley | bogie place and a trolley | bogie. 図13において、作業スペースと台車置場の位置の一例を説明するための図である。In FIG. 13, it is a figure for demonstrating an example of the position of a work space and a truck parking place.
 以下の実施の形態においては、便宜上その必要があるときは、複数の実施の形態またはセクションに分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明などの関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲などを含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合などを除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。 In the following embodiments, when it is necessary for the sake of convenience, the description will be divided into a plurality of embodiments or sections. However, unless otherwise specified, they are not irrelevant and one is the other. There are some or all of the modifications, details, supplementary explanations, and the like. Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), particularly when clearly indicated, and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
 さらに、以下の実施の形態において、その構成要素(要素ステップなども含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合などを除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素などの形状、位置関係などに言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合などを除き、実質的にその形状などに近似または類似するものなどを含むものとする。このことは、上記数値および範囲についても同様である。 Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently indispensable in principle. Needless to say. Similarly, in the following embodiments, when referring to the shape and positional relationship of components and the like, the shape is substantially the same unless otherwise specified and the case where it is not clearly apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
 [実施の形態の概要]
 まず、実施の形態の概要について説明する。本実施の形態の概要では、一例として、括弧内に実施の形態の対応する構成要素、符号などを付して説明する。
[Outline of the embodiment]
First, an outline of the embodiment will be described. In the outline of the present embodiment, as an example, the description will be given with the corresponding components, reference numerals, etc. of the embodiment in parentheses.
 本実施の形態の代表的な自動搬送車は、台車(200)を連結して搬送できる自動搬送車(100)であって、以下のような特徴を有するものである。 A typical automated guided vehicle according to the present embodiment is an automated guided vehicle (100) that can be coupled to a cart (200) and has the following characteristics.
 (1)前記自動搬送車は、自機の後方を計測できるレーザ測域センサ(105)を備え、前記レーザ測域センサにより前記台車の位置または向きの一方あるいは両方を検出する(ステップ(1),(2),(3)に関わる課題の1つの解決策)。 (1) The automated guided vehicle includes a laser range sensor (105) capable of measuring the rear side of the own vehicle, and the laser range sensor detects one or both of the position and orientation of the carriage (step (1)). , (2), one solution to the problem related to (3)).
 (2)前記自動搬送車は、自機の後方を計測できるレーザ測域センサ(105)を備え、前記レーザ測域センサの計測結果に基づいて、前記自機の後方にあり、かつ前記自機に連結されていない前記台車に対して接近し、前記台車を連結する(ステップ(1)の課題に対する解決策)。 (2) The automatic transport vehicle includes a laser range sensor (105) capable of measuring the rear side of the own machine, is located behind the own machine based on a measurement result of the laser range sensor, and the own machine And approaching the cart not connected to the vehicle to connect the cart (solution to the problem of step (1)).
 (3)前記自動搬送車は、自機の後方を計測できるレーザ測域センサ(105)を備え、前記レーザ測域センサの計測結果に基づいて、前記台車を連結した状態で後方へ走行する(ステップ(3)の課題に対する解決策)。 (3) The automated guided vehicle includes a laser range sensor (105) capable of measuring the rear of the machine, and travels backward in a state where the cart is connected based on a measurement result of the laser range sensor ( Solution to the problem of step (3)).
 (4)前記自動搬送車は、自機の後方を計測できるレーザ測域センサ(105)を備え、前記レーザ測域センサの計測結果に基づいて、連結して走行していた前記台車が外れ、前記自機と前記台車との位置関係が連結状態の位置関係に相当しなくなった場合には走行を停止する(ステップ(2)の課題に対する解決策)。 (4) The automated guided vehicle includes a laser range sensor (105) capable of measuring the rear of the own vehicle, and the cart that has been connected and disconnected is removed based on the measurement result of the laser range sensor, When the positional relationship between the own machine and the cart does not correspond to the positional relationship in the connected state, the traveling is stopped (solution to the problem of step (2)).
 以上説明した本実施の形態の概要に基づいた一実施の形態を、以下において図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。 An embodiment based on the outline of the present embodiment described above will be described in detail below based on the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
 [一実施の形態]
 本実施の形態における自動搬送車、およびこの自動搬送車に連結される台車について、図1~図11を用いて説明する。
[One Embodiment]
The automated guided vehicle and the cart connected to the automated guided vehicle in the present embodiment will be described with reference to FIGS.
 <自動搬送車および台車の構成および動作>
 図1~図4を用いて、本実施の形態における自動搬送車および台車の構成および動作について説明する。図1は、自動搬送車100および台車200の構成の一例を説明するための図である。図2は、自動搬送車100および台車200を上面から見た図である。図3は、レーザ測域センサ105の計測範囲の一例を説明するための図である。図4は、自動搬送車100を移動させる制御方法の一例を説明するための図である。
<Configuration and operation of automated guided vehicle and cart>
The configuration and operation of the automated guided vehicle and the carriage in this embodiment will be described with reference to FIGS. FIG. 1 is a diagram for explaining an example of the configuration of the automatic transport vehicle 100 and the carriage 200. FIG. 2 is a view of the automatic transport vehicle 100 and the carriage 200 as viewed from above. FIG. 3 is a diagram for explaining an example of a measurement range of the laser range sensor 105. FIG. 4 is a diagram for explaining an example of a control method for moving the automatic transport vehicle 100.
 図1は、本実施の形態における自動搬送車100と、この自動搬送車100が連結して搬送することのできる台車200の構成を示している。本実施の形態における自動搬送車100は、台車200を連結して搬送できる台車牽引型の自動搬送車である。 FIG. 1 shows a configuration of an automated guided vehicle 100 according to the present embodiment and a carriage 200 that can be connected to and transported by the automated guided vehicle 100. The automated guided vehicle 100 according to the present embodiment is a trolley pulling type automated guided vehicle capable of connecting and transporting the trolley 200.
 この自動搬送車100は、移動機構101と、連結機構107と、台車200が連結されているか否かを検出する連結検出センサ108と、自機の周囲を計測する外界センサ104と、自機の後方を計測するレーザ測域センサ105と、制御装置106とを備えている。ここで、外界センサ104およびレーザ測域センサ105の計測における自機とは、自動搬送車100の本体を指す。 The automatic transport vehicle 100 includes a moving mechanism 101, a connecting mechanism 107, a connection detection sensor 108 that detects whether the carriage 200 is connected, an external sensor 104 that measures the surroundings of the own machine, A laser range sensor 105 for measuring the rear and a control device 106 are provided. Here, the own machine in the measurement of the external sensor 104 and the laser range sensor 105 refers to the main body of the automatic transport vehicle 100.
 移動機構101は、動力を発生する装置(図示せず)と、これに図示しない動力伝達機構(勿論、ダイレクトドライブ方式も含む)を介して接続された駆動輪102を備えており、この駆動輪102を回転させることで従動輪であるキャスタ103も回転し、自動搬送車100を移動させることができる。ここでは、駆動輪102を後方側に設け、キャスタ103を前方側に設けた例を図示している。この駆動輪102とキャスタ103の構成は、これに限定されるものではなく、当業者であれば適宜選択可能なものである。 The moving mechanism 101 includes a driving wheel 102 connected via a device (not shown) for generating power and a power transmission mechanism (not shown) including a direct drive system (not shown). By rotating 102, the caster 103 which is a driven wheel is also rotated, and the automatic conveyance vehicle 100 can be moved. Here, an example in which the driving wheel 102 is provided on the rear side and the caster 103 is provided on the front side is illustrated. The configurations of the drive wheel 102 and caster 103 are not limited to this, and can be appropriately selected by those skilled in the art.
 連結機構107は、自動搬送車100の後部に取り付けられたアーム状の機構であり、根元部分を軸にして上下させることができる。アーム109の先端には穴110が開けられており、アーム109を下げてこの穴110を台車200に備えられたピン203に引っ掛けることによって自動搬送車100と台車200を連結することができる。また、アーム109を上げると(図1に二点鎖線で表示)、自動搬送車100と台車200は切り離される。このアーム109の上げ下げは、これに限定されるものではないが、例えばモータを用いて駆動させることができる。 The connecting mechanism 107 is an arm-like mechanism attached to the rear portion of the automatic guided vehicle 100, and can be moved up and down around the root portion. A hole 110 is formed at the tip of the arm 109, and the automatic conveyance vehicle 100 and the cart 200 can be connected by lowering the arm 109 and hooking the hole 110 on the pin 203 provided in the cart 200. When the arm 109 is raised (indicated by a two-dot chain line in FIG. 1), the automatic conveyance vehicle 100 and the carriage 200 are separated. The raising and lowering of the arm 109 is not limited to this, but can be driven using, for example, a motor.
 台車200が連結機構107を介して、自動搬送車100に連結された場合には、連結検出センサ108によって連結されたことが検出され、制御装置106に伝えられる。この連結検出センサ108としては、これに限定されるものではないが、例えばアームの角度をエンコーダで計測し、連結状態を検出することができる。なお、この連結検出センサ108は、アーム109の状態を検知できるものでよい。例えば、リミットスイッチのような機械的に検知するものでもよく、電気的な接触状態を検知するものでもよい。 When the carriage 200 is connected to the automatic transport vehicle 100 via the connection mechanism 107, it is detected by the connection detection sensor 108 and transmitted to the control device 106. The connection detection sensor 108 is not limited to this, but for example, the angle of the arm can be measured with an encoder to detect the connection state. The connection detection sensor 108 may be a sensor that can detect the state of the arm 109. For example, a mechanical switch such as a limit switch may be used, or an electrical contact state may be detected.
 また、自動搬送車100には、この自動搬送車100の前面に外界センサ104が設けられているので、この外界センサ104によって自動搬送車100の周囲の建物、物体、人などを検知し、それらの情報を取得でき、その内容は制御装置106に伝えて処理することができる。この外界センサ104には、これに限定されるものではないが、例えば、赤外レーザによりスキャンして周囲の建物、物体、人などとの距離を検知するレーザ距離センサなどが用いられる。 Further, since the automatic transport vehicle 100 is provided with an external sensor 104 on the front surface of the automatic transport vehicle 100, the external sensor 104 detects buildings, objects, people, and the like around the automatic transport vehicle 100, and detects them. The information can be acquired and the content can be transmitted to the control device 106 for processing. The external sensor 104 is not limited to this, and for example, a laser distance sensor that scans with an infrared laser and detects the distance to surrounding buildings, objects, people, and the like is used.
 さらに、本実施の形態においては、自動搬送車100の上面後側に、自機の後方を計測するレーザ測域センサ105も設けられている。このレーザ測域センサ105は、自動搬送車100の後方の台車200を検知し、この台車200の位置や向きなどの情報を取得でき、その内容は制御装置106に伝えて処理することができる。このレーザ測域センサ105には、これに限定されるものではないが、例えば、赤外レーザによりスキャンして台車200との距離を検知するレーザ距離センサなどが用いられる。 Furthermore, in the present embodiment, a laser range sensor 105 for measuring the rear of the own machine is also provided on the rear side of the upper surface of the automatic transport vehicle 100. The laser range sensor 105 can detect a carriage 200 behind the automated guided vehicle 100 and acquire information such as the position and orientation of the carriage 200, and the contents can be transmitted to the control device 106 for processing. The laser range sensor 105 is not limited to this. For example, a laser distance sensor that scans with an infrared laser and detects the distance from the carriage 200 is used.
 そして、制御装置106は、台車200を搬送できるように、移動機構101の制御を行う。具体的には、外界センサ104によって取得された情報に基づいて得られる自動搬送車100の現在の位置と、目標となる位置と、自動搬送車100の周辺の状況とに基づいて移動機構101に対して走行制御信号を送信して、走行制御を行う。さらに、レーザ測域センサ105によって取得された情報に基づいて得られる台車200の位置と向きに基づいて、台車200を連結する場合、台車200を連結して搬送する場合などの走行が制御される。 And the control apparatus 106 controls the moving mechanism 101 so that the trolley | bogie 200 can be conveyed. Specifically, based on the current position of the automated guided vehicle 100 obtained based on the information acquired by the external sensor 104, the target position, and the surrounding conditions of the automated guided vehicle 100, the moving mechanism 101 A traveling control signal is transmitted to the vehicle to perform traveling control. Further, based on the position and orientation of the carriage 200 obtained based on the information acquired by the laser range sensor 105, traveling such as when the carriage 200 is connected or when the carriage 200 is connected and transported is controlled. .
 本実施の形態における自動搬送車100において、この自動搬送車100の現在の位置の同定などは、制御装置106に備えられている地図生成および位置同定の機能により実現される。地図生成機能は、予め外界センサ104によって収集した環境(周囲の建物、物体など)の測定情報を統計処理し、自動搬送車100が移動する環境の地図を作成しておく。位置同定機能は、実際に自動搬送車100が移動する際に、外界センサ104によって測定された測定情報と、予め作成しておいた地図とをマッチングさせ、測定情報と地図とがマッチする位置(x,y)と姿勢(θ)を算出し、自機の位置を同定することができる。 In the automatic guided vehicle 100 according to the present embodiment, identification of the current position of the automatic guided vehicle 100 and the like are realized by a map generation and position identification function provided in the control device 106. The map generation function statistically processes measurement information of the environment (such as surrounding buildings and objects) collected in advance by the external sensor 104, and creates a map of the environment in which the automated guided vehicle 100 moves. The position identification function matches the measurement information measured by the external sensor 104 and a previously created map when the automated guided vehicle 100 actually moves, and the position where the measurement information and the map match ( x, y) and posture (θ) can be calculated to identify the position of the aircraft.
 このように、本実施の形態における自動搬送車100は、誘導設備なしで自己位置を求めて、状況に応じて自律的に走行可能な無軌道自動搬送車となっている。この自律的走行においては、外界センサ104による障害物の検出により、この障害物との距離に応じて、減速、回避、停止などが可能である。さらに、指定された目標点に対して、最短時間の経路、障害のない経路、渋滞していない経路などを自動的に選んで走行することができる。 As described above, the automated guided vehicle 100 according to the present embodiment is a trackless automated guided vehicle capable of autonomously traveling according to the situation by obtaining its own position without guidance equipment. In this autonomous traveling, it is possible to decelerate, avoid, stop, etc. according to the distance from the obstacle by detecting the obstacle by the external sensor 104. Furthermore, it is possible to automatically select and travel to a designated target point such as a route with the shortest time, a route with no obstacles, or a route without traffic jams.
 また、本実施の形態における自動搬送車100に連結される台車200は、当業者であれば適宜選択可能なものであるが、例えば、2つのキャスタ201と、2つの自在キャスタ202を備えている。ここでは、キャスタ201を後方側に設け、自在キャスタ202を前方側に設けた例を図示している。 The cart 200 connected to the automated guided vehicle 100 according to the present embodiment can be appropriately selected by those skilled in the art. For example, the cart 200 includes two casters 201 and two universal casters 202. . Here, an example in which the caster 201 is provided on the rear side and the universal caster 202 is provided on the front side is illustrated.
 図2は、図1に示した自動搬送車100および台車200の構成を上面から見たもので、本実施の形態における自動搬送車100が備えるレーザ測域センサ105の正面方向を示している。また、図3は、レーザ測域センサ105の計測範囲の一例を示している。 FIG. 2 is a top view of the configuration of the automatic conveyance vehicle 100 and the carriage 200 shown in FIG. 1, and shows the front direction of the laser range sensor 105 provided in the automatic conveyance vehicle 100 in the present embodiment. FIG. 3 shows an example of the measurement range of the laser range sensor 105.
 レーザ測域センサ105は、図2に示すように、自動搬送車100の上面後側に取り付けられている。そして、このレーザ測域センサ105によって、図3に示すように、自動搬送車100の後方の約220°程度の範囲を計測し、特に、自動搬送車100の後方に連結されるべき台車200、あるいは連結されている台車200を検知し、この台車200の位置や向きなどの情報を取得して、制御装置106に伝えられる。 The laser range sensor 105 is attached to the rear side of the upper surface of the automated guided vehicle 100 as shown in FIG. Then, as shown in FIG. 3, the laser range sensor 105 measures a range of about 220 ° behind the automated guided vehicle 100, and in particular, a carriage 200 to be connected to the rear of the automated guided vehicle 100, Alternatively, the connected cart 200 is detected, and information such as the position and orientation of the cart 200 is acquired and transmitted to the control device 106.
 図4は、図1に示した自動搬送車100を移動させる制御方法の一例を説明するための図で、本実施の形態における自動搬送車100が備える車輪の構成を示している。 FIG. 4 is a diagram for explaining an example of a control method for moving the automatic guided vehicle 100 shown in FIG. 1, and shows a configuration of wheels included in the automatic guided vehicle 100 in the present embodiment.
 自動搬送車100の移動機構101は、左駆動輪102Lと右駆動輪102Rの2つの駆動輪102を備えている。この左駆動輪102Lと右駆動輪102Rは互いに平行に、自動搬送車100の進行方向に向かって向きを固定して配置されている。この駆動輪102には、向きが固定された駆動輪の他に、舵角を制御できる駆動輪などもある。さらに、自動搬送車100は、従動輪としてのキャスタ103として、左キャスタ103Lと右キャスタ103Rを備えている。このキャスタ103には、向きが固定されたキャスタ、向きが固定されていない自在キャスタ、舵角を制御できるキャスタなどがあるが、ここでは自在キャスタを用いている。 The moving mechanism 101 of the automatic transport vehicle 100 includes two drive wheels 102, a left drive wheel 102L and a right drive wheel 102R. The left driving wheel 102L and the right driving wheel 102R are arranged in parallel with each other and fixed in the direction toward the traveling direction of the automatic guided vehicle 100. The drive wheel 102 includes a drive wheel whose steering angle can be controlled in addition to a drive wheel whose direction is fixed. Furthermore, the automatic transport vehicle 100 includes a left caster 103L and a right caster 103R as casters 103 as driven wheels. The caster 103 includes a caster whose direction is fixed, a free caster whose direction is not fixed, a caster capable of controlling the rudder angle, and the like. Here, a free caster is used.
 左駆動輪102Lと右駆動輪102Rの回転数はそれぞれ独立に制御することができる。例えば、左駆動輪102Lと右駆動輪102Rの回転数を等しくした場合、自動搬送車100は直進し、左駆動輪102Lと右駆動輪102Rの回転数が異なる場合には、自動搬送車100は旋回走行する。この場合、左駆動輪102Lと右駆動輪102Rの回転数の差によってカーブの曲率が決定される。また、直進および旋回は、前進に限らず、後退も可能である。 The rotation speed of the left driving wheel 102L and the right driving wheel 102R can be controlled independently. For example, when the rotation speeds of the left driving wheel 102L and the right driving wheel 102R are equal, the automatic transport vehicle 100 goes straight, and when the rotation speeds of the left driving wheel 102L and the right driving wheel 102R are different, the automatic transport vehicle 100 is Make a turn. In this case, the curvature of the curve is determined by the difference in rotation speed between the left drive wheel 102L and the right drive wheel 102R. Further, the straight movement and the turning are not limited to the forward movement, and the backward movement is also possible.
 例えば、左駆動輪102Lの単位時間当たりの回転数を、右駆動輪102Rの単位時間当たりの回転数よりも大きくすると、自動搬送車100は右方向へ旋回する。一方、左駆動輪102Lの単位時間当たりの回転数を、右駆動輪102Rの単位時間当たりの回転数よりも小さくすると、自動搬送車100は左方向へ旋回する。 For example, if the rotation speed per unit time of the left drive wheel 102L is larger than the rotation speed per unit time of the right drive wheel 102R, the automatic guided vehicle 100 turns rightward. On the other hand, when the rotation speed per unit time of the left drive wheel 102L is smaller than the rotation speed per unit time of the right drive wheel 102R, the automatic guided vehicle 100 turns leftward.
 また、左駆動輪102Lの回転方向と右駆動輪102Rの回転方向を互いに逆向きになるようにすると、自動搬送車100はその場旋回する。 Also, when the rotation direction of the left driving wheel 102L and the rotation direction of the right driving wheel 102R are opposite to each other, the automatic guided vehicle 100 turns on the spot.
 この自動搬送車100に連結される台車200は、図1において、例えば、台車200の進行方向に向きが固定された2つのキャスタ201と、向きが固定されていない2つの自在キャスタ202を備えている。 In FIG. 1, the cart 200 connected to the automatic transport vehicle 100 includes, for example, two casters 201 whose directions are fixed in the traveling direction of the cart 200 and two universal casters 202 whose directions are not fixed. Yes.
 <従来の自動搬送車による自動搬送の課題の解決策>
 図5~図11を用いて、本実施の形態における自動搬送車において、従来の自動搬送車による自動搬送の課題の解決策について説明する。図5は、台車200の位置と向きを検出する原理を説明するための図である。図6は、台車200の角とレーザ測域センサ105による三角形の関係を説明するための図である。
<Solutions to the problem of automatic conveyance by conventional automatic conveyance vehicles>
With reference to FIGS. 5 to 11, a solution to the problem of automatic conveyance by a conventional automatic conveyance vehicle in the automatic conveyance vehicle according to the present embodiment will be described. FIG. 5 is a diagram for explaining the principle of detecting the position and orientation of the carriage 200. FIG. 6 is a diagram for explaining the relationship between the angle of the carriage 200 and the triangle by the laser range sensor 105.
 上述したように、本実施の形態における自動搬送車100は、自機の後方を検出範囲として含むようにレーザ測域センサ105を搭載し、このレーザ測域センサ105の計測結果によって台車200の位置または向きの一方あるいは両方を検出することができる。この台車200の位置と向きを検出する原理の一例を、図5および図6を用いて説明する。 As described above, the automated guided vehicle 100 according to the present embodiment is equipped with the laser range sensor 105 so as to include the rear side of the own machine as a detection range, and the position of the carriage 200 is determined by the measurement result of the laser range sensor 105. Or one or both of the orientations can be detected. An example of the principle of detecting the position and orientation of the carriage 200 will be described with reference to FIGS.
 (1)レーザ測域センサ105の計測範囲に台車200が入ると、図5に示すように、レーザ測域センサ105から照射されたレーザ光が台車200の前面に当たり、レーザ測域センサ105から台車200の前面までの距離が計測される。 (1) When the carriage 200 enters the measurement range of the laser range sensor 105, the laser light emitted from the laser range sensor 105 hits the front surface of the carriage 200 as shown in FIG. The distance to the front surface of 200 is measured.
 (2)一方、台車200の前面に当たらなかったレーザ光は台車200より遠方の物体に当たり、その点までの距離が計測される。通常、計測される点は台車200よりも十分遠方の点となるので、台車200の前面とは区別できる。これにより、台車200の角(前面の両端)を検出できる。 (2) On the other hand, the laser beam that did not hit the front surface of the carriage 200 hits an object far from the carriage 200, and the distance to that point is measured. Usually, the point to be measured is a point sufficiently far away from the cart 200, so that it can be distinguished from the front surface of the cart 200. Thereby, the corners (both ends of the front surface) of the carriage 200 can be detected.
 (3)レーザ測域センサ105から見た、(2)で検出された台車200の角の方向は、図6に示すように、レーザの照射方向であり、既知である。また、台車200の角までの距離はレーザ測域センサ105による計測結果そのものである。これにより、台車200の角とレーザ測域センサ105による三角形の関係から計算して、レーザ測域センサ105に対する台車200の位置と向きが検出できる。 (3) The angle direction of the carriage 200 detected in (2) as seen from the laser range sensor 105 is a laser irradiation direction as shown in FIG. 6 and is known. Further, the distance to the corner of the carriage 200 is the measurement result itself by the laser range sensor 105. Thus, the position and orientation of the carriage 200 relative to the laser range sensor 105 can be detected by calculating from the relationship between the angle of the carriage 200 and the triangle by the laser range sensor 105.
 なお、実際にレーザ測域センサ105の計測結果から台車200の位置と向きを計算する手法は、これに限定されるものではない。 Note that the method of actually calculating the position and orientation of the carriage 200 from the measurement result of the laser range sensor 105 is not limited to this.
 <<B1:ステップ(1)の課題に対する解決策>>
 ステップ(1)は、台車置場において、自動搬送車100が台車200を自動的に連結するステップである。このステップ(1)の課題に対する解決策は、自動搬送車100は、台車200にも台車置場にも改造を加えずに、台車置場に置かれた位置のばらつきがある台車200に対して自動連結できるようにすることである。
<< B1: Solution to the problem of step (1) >>
Step (1) is a step in which the automatic transport vehicle 100 automatically connects the cart 200 in the cart storage area. The solution to the problem of step (1) is that the automatic guided vehicle 100 is automatically connected to the cart 200 with a variation in the position of the cart 200 without modifying the cart 200 or the cart location. Is to be able to do it.
 台車200と自動搬送車100を連結する連結機構107については、上述したように、自動搬送車100の後部に取り付けられたアーム109を下げて、このアーム109の先端に開けられている穴110を台車200に備えられたピン203に引っ掛ける。これによって、自動搬送車100と台車200を連結することができる。台車200が自動搬送車100に連結された場合には、連結検出センサ108によって連結されたことが検出され、制御装置106に伝えられる。 As described above, the connecting mechanism 107 that connects the cart 200 and the automatic transport vehicle 100 is lowered by lowering the arm 109 attached to the rear portion of the automatic transport vehicle 100 and forming a hole 110 formed at the tip of the arm 109. Hook on the pin 203 provided on the carriage 200. Thereby, the automatic conveyance vehicle 100 and the trolley | bogie 200 can be connected. When the cart 200 is connected to the automatic transport vehicle 100, it is detected by the connection detection sensor 108 and transmitted to the control device 106.
 また、上述したように、レーザ測域センサ105の計測結果によって台車200の位置と向きがわかれば、その台車200と連結できるような自動搬送車100の位置と向きを設定できる。台車200と連結できるような位置と向きを目標点として、目標点に向かって自動搬送車100を移動させる。この自動搬送車100を台車200に連結させる制御方法は、例えば図7および図8に示すような方法がある。図7は、自動搬送車100を台車200に連結させる制御方法の一例を説明するためのフローチャート、図8はその制御方法における自動搬送車100と台車200の位置関係を説明するための図である。 In addition, as described above, if the position and orientation of the carriage 200 are known from the measurement result of the laser range sensor 105, the position and orientation of the automated guided vehicle 100 that can be connected to the carriage 200 can be set. Using the position and orientation that can be connected to the carriage 200 as a target point, the automatic guided vehicle 100 is moved toward the target point. As a control method for connecting the automatic transport vehicle 100 to the carriage 200, for example, there are methods as shown in FIGS. FIG. 7 is a flowchart for explaining an example of a control method for connecting the automatic guided vehicle 100 to the cart 200, and FIG. 8 is a diagram for explaining the positional relationship between the automatic guided vehicle 100 and the cart 200 in the control method. .
 まず、レーザ測域センサ105により台車200の位置と向きを検出する(S301)。このS301における自動搬送車100と台車200の位置関係は、図8(1)のようになる。この検出情報は、制御装置106に伝えられる。 First, the position and orientation of the carriage 200 are detected by the laser range sensor 105 (S301). The positional relationship between the automatic transport vehicle 100 and the carriage 200 in S301 is as shown in FIG. This detection information is transmitted to the control device 106.
 次に、制御装置106は、台車200の位置と向きを検出できたかを判定する(S302)。S302の判定の結果、検出できない場合は、一定時間待機した後(S303)、S301に戻る。S302の判定の結果、検出できた場合には、自動搬送車100はその場旋回する(S304)。このS304における自動搬送車100と台車200の位置関係は、図8(2)のようになる。 Next, the control device 106 determines whether the position and orientation of the carriage 200 have been detected (S302). If it is not detected as a result of the determination in S302, after waiting for a certain time (S303), the process returns to S301. If it is detected as a result of the determination in S302, the automatic guided vehicle 100 turns on the spot (S304). The positional relationship between the automatic transport vehicle 100 and the carriage 200 in S304 is as shown in FIG.
 次に、制御装置106は、自機(自動搬送車100)の後方正面が目標点(台車200)の方向を向いているかを判定する(S305)。S305の判定の結果、向いていない場合は、S304に戻る。S305の判定の結果、向いている場合には、自動搬送車100は直進後退する(S306)。このS306における自動搬送車100と台車200の位置関係は、図8(3)のようになる。 Next, the control device 106 determines whether the rear front of the own machine (automatic transport vehicle 100) is facing the direction of the target point (cart 200) (S305). If the result of determination in S305 is not suitable, the process returns to S304. As a result of the determination in S305, if the vehicle is facing, the automatic guided vehicle 100 moves straight back (S306). The positional relationship between the automatic transport vehicle 100 and the carriage 200 in S306 is as shown in FIG.
 次に、制御装置106は、自動搬送車100が目標点に到達したかを判定する(S307)。S307の判定の結果、到達していない場合は、S306に戻る。S307の判定の結果、到達した場合には、自動搬送車100はその場旋回する(S308)。このS308における自動搬送車100と台車200の位置関係は、図8(4)のようになる。 Next, the control device 106 determines whether the automatic guided vehicle 100 has reached the target point (S307). As a result of the determination in S307, if not reached, the process returns to S306. As a result of the determination in S307, if the vehicle arrives, the automatic guided vehicle 100 turns on the spot (S308). The positional relationship between the automatic transport vehicle 100 and the carriage 200 in S308 is as shown in FIG.
 次に、制御装置106は、自機(自動搬送車100)の後方正面は台車200の方向を向いているかを判定する(S309)。S309の判定の結果、向いていない場合は、S308に戻る。S309の判定の結果、向いている場合には、自動搬送車100は走行停止する(S310)。そして、制御装置106は、連結機構107を動作させ、台車200と連結する(S311)。このS311における自動搬送車100と台車200の位置関係は、図8(5)のようになる。 Next, the control device 106 determines whether the rear front of the own machine (the automatic transport vehicle 100) faces the direction of the carriage 200 (S309). If the result of determination in S309 is not suitable, the process returns to S308. If the result of determination in S309 is that the vehicle is facing, the automatic guided vehicle 100 stops traveling (S310). And the control apparatus 106 operates the connection mechanism 107, and connects with the trolley | bogie 200 (S311). The positional relationship between the automated guided vehicle 100 and the carriage 200 in S311 is as shown in FIG.
 以上のようにして、自動搬送車100は、台車200にも台車置場にも改造を加えずに、台車置場に置かれた位置のばらつきがある台車200に対して自動連結できるようになる。 As described above, the automated guided vehicle 100 can be automatically connected to the cart 200 having a variation in the positions of the carts without changing the cart 200 or the carts.
 <<B2:ステップ(2)の課題に対する解決策>>
 ステップ(2)は、自動搬送車100が、台車200と連結した状態で台車置場まで走行するステップである。このステップ(2)の課題に対する解決策は、走行中に意図しない場所で連結が外れてしまった場合、自動搬送車100はその場所で走行を停止し、必要に応じて光や音などによる警報を発することができるようにすることである。
<< B2: Solution to the Problem of Step (2) >>
Step (2) is a step in which the automated guided vehicle 100 travels to the trolley parking place in a state where it is connected to the trolley 200. The solution to the problem of step (2) is that if the connection is disconnected at an unintended location during traveling, the automatic guided vehicle 100 stops traveling at that location, and an alarm by light or sound as necessary. Is to be able to emit.
 自動搬送車100と台車200の走行中、台車200と自動搬送車100は機械的に連結されていることから、レーザ測域センサ105の計測結果において、台車200の位置は自動搬送車100に対してある範囲におさまる。例えば、上述した図3において、レーザ測域センサ105の計測範囲内に台車200はおさまる。 Since the cart 200 and the automatic transport vehicle 100 are mechanically connected during the traveling of the automatic transport vehicle 100 and the cart 200, the position of the cart 200 is relative to the automatic transport vehicle 100 in the measurement result of the laser range sensor 105. It falls within a certain range. For example, in FIG. 3 described above, the carriage 200 falls within the measurement range of the laser range sensor 105.
 台車200と自動搬送車100の連結が切れた場合、台車200は動力がないために置き去りにされる。このため、台車200の位置が想定された範囲から外れる。例えば、上述した図3において、レーザ測域センサ105の計測範囲から台車200が外れる。この場合、制御装置106は、自動搬送車100を停止させ、光や音などによる警報を発するようにする。 When the cart 200 and the automatic transport vehicle 100 are disconnected, the cart 200 is left behind because it has no power. For this reason, the position of the carriage 200 deviates from the assumed range. For example, in FIG. 3 described above, the carriage 200 deviates from the measurement range of the laser range sensor 105. In this case, the control device 106 stops the automatic conveyance vehicle 100 and issues an alarm by light or sound.
 以上のようにして、走行中に意図しない場所で連結が外れてしまった場合、自動搬送車100はその場所で走行を停止し、光や音などによる警報を発することができるようになる。 As described above, when the connection is disconnected at an unintended location during traveling, the automatic guided vehicle 100 can stop traveling at the location and issue an alarm by light or sound.
 <<B3:ステップ(3)の課題に対する解決策>>
 ステップ(3)は、台車置場において、自動搬送車100が台車200との連結を解除するステップである。このステップ(3)の課題に対する解決策は、作業スペースと台車置場の距離を近づけるために、作業スペースと台車置場の間の隙間をなくすことができるようにすることである。
<< B3: Solution to the Problem of Step (3) >>
Step (3) is a step in which the automatic guided vehicle 100 releases the connection with the cart 200 in the cart storage area. The solution to the problem of step (3) is to make it possible to eliminate the gap between the work space and the carriage yard in order to reduce the distance between the work space and the carriage yard.
 そのために、図9に示すような自動搬送車100の車庫入れ方式を採用する。図9は、自動搬送車100の車庫入れ方式を説明するための図である。図9に示すように、台車置場2と作業スペース2の間に自動搬送車100が入らないように、台車200を台車置場2へ後ろから入れればよい。台車200を後ろから入れるためには、自動搬送車100に台車置場2の前で切返しさせ、後退させればよい。このようにして、自動搬送車100に連結した台車200を、車庫入れ方式により台車置場2に入れる。 For this purpose, a garage storing method of the automatic guided vehicle 100 as shown in FIG. 9 is adopted. FIG. 9 is a diagram for explaining a garage storage method of the automatic transport vehicle 100. As shown in FIG. 9, the carriage 200 may be inserted into the carriage parking place 2 from behind so that the automated guided vehicle 100 does not enter between the carriage parking place 2 and the work space 2. In order to insert the carriage 200 from behind, the automatic guided vehicle 100 may be turned back in front of the carriage parking place 2 and moved backward. In this way, the cart 200 connected to the automatic transport vehicle 100 is put into the cart parking place 2 by the garage storage method.
 自機に対する台車200の向きが計測できる場合に、自動搬送車100を後退させる制御方法は、例えば図10および図11に示すような方法がある。逆に、自機に対する台車200の向きが計測できない場合には、自動搬送車100を後退させることはできない。 When the direction of the carriage 200 relative to the own machine can be measured, a control method for moving the automatic guided vehicle 100 backward is, for example, a method as shown in FIGS. Conversely, when the direction of the carriage 200 relative to the own machine cannot be measured, the automatic guided vehicle 100 cannot be moved backward.
 図10は、台車200を連結した状態で自動搬送車100を後退させる制御方法の一例を説明するためのフローチャート、図11は、その制御方法における自動搬送車100と台車200の位置関係を説明するための図である。 FIG. 10 is a flowchart for explaining an example of a control method for retracting the automatic transport vehicle 100 in a state where the cart 200 is connected. FIG. 11 is a diagram for explaining the positional relationship between the automatic transport vehicle 100 and the cart 200 in the control method. FIG.
 まず、レーザ測域センサ105により台車200の位置と向きを検出する(S401)。この検出情報は、制御装置106に伝えられる。 First, the position and orientation of the carriage 200 are detected by the laser range sensor 105 (S401). This detection information is transmitted to the control device 106.
 次に、制御装置106は、台車200の位置と向きを検出できたかを判定する(S402)。S402の判定の結果、検出できない場合は、警報を発して(S403)、終了する。 Next, the control device 106 determines whether the position and orientation of the carriage 200 have been detected (S402). As a result of the determination in S402, if it cannot be detected, an alarm is issued (S403) and the process ends.
 S402の判定の結果、検出できた場合には、次に、制御装置106は、台車200と自機(自動搬送車100)の向きは揃っているかを判定する(S404)。S404の判定の結果、揃っている場合には、自動搬送車100は直進後退する(S405)。このS405における自動搬送車100と台車200の位置関係は、図11(1)のようになる。 If it is detected as a result of the determination in S402, next, the control device 106 determines whether the directions of the carriage 200 and the own machine (automatic conveyance vehicle 100) are aligned (S404). If the result of determination in S404 is that they are complete, the automated guided vehicle 100 moves straight back (S405). The positional relationship between the automated guided vehicle 100 and the carriage 200 in S405 is as shown in FIG.
 S404の判定の結果、揃っていない場合には、次に、台車200は自機(自動搬送車100)に対して右を向いているかを判定する(S406)。S406の判定の結果、右を向いている場合には、自動搬送車100は右旋回しながら後退する(S407)。このS407における自動搬送車100と台車200の位置関係は、図11(2)のようになる。 If the result of determination in S404 is that they are not complete, it is next determined whether the carriage 200 is facing right with respect to the own machine (automatic conveyance vehicle 100) (S406). As a result of the determination in S406, if the vehicle is facing right, the automatic guided vehicle 100 moves backward while turning right (S407). The positional relationship between the automated guided vehicle 100 and the carriage 200 in S407 is as shown in FIG.
 S406の判定の結果、左を向いている場合には、自動搬送車100は左旋回しながら後退する(S408)。このS408における自動搬送車100と台車200の位置関係は、図11(3)のようになる。 As a result of the determination in S406, if the vehicle is facing left, the automatic guided vehicle 100 moves backward while turning left (S408). The positional relationship between the automated guided vehicle 100 and the carriage 200 in S408 is as shown in FIG.
 S405、S407、S408の終了後、制御装置106は、自動搬送車100が目標点(台車置場)に到達したかを判定する(S409)。S409の判定の結果、到達していない場合は、S401に戻る。S409の判定の結果、到達した場合には、自動搬送車100は走行停止する(S410)。 After the end of S405, S407, and S408, the control device 106 determines whether or not the automatic guided vehicle 100 has reached the target point (cart location) (S409). As a result of the determination in S409, if not reached, the process returns to S401. If the result of the determination in S409 is that it has reached, the automatic guided vehicle 100 stops traveling (S410).
 以上のようにして、台車200を台車置場へ後ろから入れることで、作業スペースと台車置場の間の隙間をなくすことができるようになる。 As described above, by inserting the carriage 200 into the carriage yard from behind, the gap between the work space and the trolley yard can be eliminated.
 <一実施の形態の効果>
 以上説明した本実施の形態における自動搬送車100、およびこの自動搬送車100に連結される台車200によれば、以下のような効果を得ることができる。
<Effect of one embodiment>
According to the automatic transport vehicle 100 and the cart 200 connected to the automatic transport vehicle 100 in the present embodiment described above, the following effects can be obtained.
 (1)自動搬送車100は、自機の後方を計測できるレーザ測域センサ105を備えることで、このレーザ測域センサ105により、台車200の位置または向きの一方あるいは両方を検出することができる。 (1) The automated guided vehicle 100 includes a laser range sensor 105 that can measure the rear of the vehicle, and the laser range sensor 105 can detect one or both of the position and orientation of the carriage 200. .
 (2)自動搬送車100は、自機の後方を計測できるレーザ測域センサ105を備えることで、台車置場において自動搬送車100が台車200を自動的に連結するステップで、レーザ測域センサ105の計測結果に基づいて、自機の後方にあり、かつ自機に連結されていない台車200に対して接近し、台車200を連結することができる。 (2) The automated guided vehicle 100 includes a laser range sensor 105 that can measure the rear side of the own vehicle, so that the automated guided vehicle 100 automatically connects the cart 200 in the carriage yard. On the basis of the measurement result, the vehicle 200 can be approached and connected to the vehicle 200 that is behind the vehicle and is not connected to the vehicle.
 (3)自動搬送車100は、自機の後方を計測できるレーザ測域センサ105を備えることで、台車置場において自動搬送車100が台車200との連結を解除するステップで、レーザ測域センサ105の計測結果に基づいて、台車200を連結した状態で後方へ走行することができる。 (3) The automated guided vehicle 100 includes a laser range sensor 105 that can measure the rear side of the own vehicle, so that the automated ranging vehicle 100 is disconnected from the cart 200 in the carriage yard. On the basis of the measurement result, it is possible to travel backward with the carriage 200 connected.
 (4)自動搬送車100は、自機の後方を計測できるレーザ測域センサ105を備えることで、自動搬送車100が台車200と連結した状態で台車置場まで走行するステップで、レーザ測域センサ105の計測結果に基づいて、連結して走行していた台車200が外れ、自機と台車200との位置関係が連結状態の位置関係に相当しなくなった場合には走行を停止することができる。 (4) The automatic transport vehicle 100 includes a laser range sensor 105 that can measure the rear of the own vehicle, and the laser range sensor is a step in which the automatic transport vehicle 100 travels to the trolley parking place in a state of being connected to the trolley 200. Based on the measurement result of 105, when the cart 200 that has traveled in a connected manner is disconnected, and the positional relationship between the vehicle and the cart 200 does not correspond to the positional relationship in the coupled state, the travel can be stopped. .
 (5)自動搬送車100は、レーザ測域センサ105の計測結果に基づいて自機の動作を制御する制御装置106を備えることで、制御装置106により、自機の走行を制御し、かつ台車200の連結を制御することができる。 (5) The automatic transport vehicle 100 includes the control device 106 that controls the operation of the own device based on the measurement result of the laser range sensor 105, thereby controlling the travel of the own device by the control device 106 and the cart. 200 connections can be controlled.
 (6)上記(1)~(5)により、制御装置106は、上記(1)のレーザ測域センサ105により検出した結果に基づいて、上記(2)~(4)の各動作を複数組み合わせて制御することができる。 (6) From the above (1) to (5), the control device 106 combines a plurality of operations (2) to (4) based on the result detected by the laser range sensor 105 of (1). Can be controlled.
 (7)自動搬送車100が、自機の周囲を計測できる外界センサ104を備えることで、制御装置106は、この外界センサ104の計測結果も含めて自機の走行を制御することができる。 (7) Since the automated guided vehicle 100 includes the external sensor 104 that can measure the surroundings of the own machine, the control device 106 can control the traveling of the own machine including the measurement result of the external sensor 104.
 (8)自動搬送車100が、自機と台車200との連結を検出できる連結検出センサ108を備えることで、制御装置106は、この連結検出センサ108の検出結果も含めて自機の走行を制御することができる。 (8) Since the automatic guided vehicle 100 includes the connection detection sensor 108 that can detect the connection between the self-machine and the cart 200, the control device 106 includes the detection result of the connection detection sensor 108 so that the self-machine travels. Can be controlled.
 (9)自動搬送車100が、自機を移動させる移動機構101を備えることで、制御装置106は、この移動機構101を制御して自機の走行を制御することができる。 (9) Since the automatic conveyance vehicle 100 includes the moving mechanism 101 that moves the own machine, the control device 106 can control the movement of the own machine by controlling the moving mechanism 101.
 (10)自動搬送車100が、台車200との連結および切り離しができる連結機構107を備えることで、制御装置106は、この連結機構107を制御して自機と台車200との連結および切り離しを制御することができる。 (10) Since the automatic transport vehicle 100 includes the connection mechanism 107 that can be connected to and disconnected from the carriage 200, the control device 106 controls the connection mechanism 107 to connect and disconnect the own apparatus and the carriage 200. Can be controlled.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。例えば、上記した実施の形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、上記した実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, it is possible to add, delete, and replace other configurations with respect to a part of the configuration of the above-described embodiment.
 例えば、前記実施の形態においては、自動搬送車について説明したが、本発明としてはこれに限定されるものではなく、自律して移動するロボットなどの自律移動体にも適用可能なものである。 For example, in the above-described embodiment, the automatic guided vehicle has been described. However, the present invention is not limited to this, and can be applied to an autonomous moving body such as a robot that moves autonomously.
100 自動搬送車
101 移動機構
102 駆動輪
103 キャスタ
104 外界センサ
105 レーザ測域センサ
106 制御装置
107 連結機構
108 連結検出センサ
109 アーム
110 穴
200 台車
201 キャスタ
202 キャスタ
203 ピン
 
 
DESCRIPTION OF SYMBOLS 100 Automatic conveyance vehicle 101 Movement mechanism 102 Driving wheel 103 Caster 104 External sensor 105 Laser range sensor 106 Control device 107 Connection mechanism 108 Connection detection sensor 109 Arm 110 Hole 200 Cart 201 Caster 202 Caster 203 Pin

Claims (10)

  1.  台車を連結して搬送できる自動搬送車であって、
     自機の後方を計測できるレーザ測域センサを備え、前記レーザ測域センサにより前記台車の位置または向きの一方あるいは両方を検出する、自動搬送車。
    An automated guided vehicle that can transport by connecting carts,
    An automatic transport vehicle that includes a laser range sensor capable of measuring the rear of the vehicle, and detects one or both of the position and orientation of the carriage by the laser range sensor.
  2.  台車を連結して搬送できる自動搬送車であって、
     自機の後方を計測できるレーザ測域センサを備え、前記レーザ測域センサの計測結果に基づいて、前記自機の後方にあり、かつ前記自機に連結されていない前記台車に対して接近し、前記台車を連結する、自動搬送車。
    An automated guided vehicle that can transport by connecting carts,
    A laser range sensor capable of measuring the rear of the aircraft, and based on the measurement result of the laser range sensor, the vehicle is located behind the vehicle and is not connected to the vehicle. An automated guided vehicle that connects the carts.
  3.  台車を連結して搬送できる自動搬送車であって、
     自機の後方を計測できるレーザ測域センサを備え、前記レーザ測域センサの計測結果に基づいて、前記台車を連結した状態で後方へ走行する、自動搬送車。
    An automated guided vehicle that can transport by connecting carts,
    An automatic transport vehicle that includes a laser range sensor capable of measuring the rear of its own machine and travels backward in a state where the cart is connected based on a measurement result of the laser range sensor.
  4.  台車を連結して搬送できる自動搬送車であって、
     自機の後方を計測できるレーザ測域センサを備え、前記レーザ測域センサの計測結果に基づいて、連結して走行していた前記台車が外れ、前記自機と前記台車との位置関係が連結状態の位置関係に相当しなくなった場合には走行を停止する、自動搬送車。
    An automated guided vehicle that can transport by connecting carts,
    Provided with a laser range sensor capable of measuring the rear of the own machine, based on the measurement result of the laser range sensor, the cart that was traveling in conjunction is disconnected, and the positional relationship between the own machine and the cart is connected An automated guided vehicle that stops traveling when it no longer corresponds to the positional relationship of the state.
  5.  請求項1~4のいずれか一項に記載の自動搬送車において、
     さらに、前記レーザ測域センサの計測結果に基づいて前記自機の動作を制御する制御装置を備え、
     前記制御装置は、前記自機の走行を制御し、かつ前記台車の連結を制御する、自動搬送車。
    In the automatic guided vehicle according to any one of claims 1 to 4,
    Further, a control device for controlling the operation of the own machine based on the measurement result of the laser range sensor,
    The said control apparatus is an automatic conveyance vehicle which controls the driving | running | working of the said own machine, and controls the connection of the said trolley | bogie.
  6.  請求項5に記載の自動搬送車において、
     前記制御装置は、
     前記レーザ測域センサにより前記台車の位置または向きの一方あるいは両方を検出した結果に基づいて、
     前記自機の後方にあり、かつ前記自機に連結されていない前記台車に対して接近し、前記台車を連結する動作と、
     前記台車を連結した状態で後方へ走行する動作と、
     連結して走行していた前記台車が外れ、前記自機と前記台車との位置関係が連結状態の位置関係に相当しなくなった場合には走行を停止する動作と、
     を複数組み合わせて制御する、自動搬送車。
    In the automatic conveyance vehicle of Claim 5,
    The controller is
    Based on the result of detecting one or both of the position or orientation of the carriage by the laser range sensor,
    An operation of approaching the carriage that is behind the own machine and not connected to the own machine to connect the carriage;
    An operation of traveling backward with the cart connected;
    The operation of stopping traveling when the cart that has been connected and running is disengaged, and the positional relationship between the own vehicle and the cart no longer corresponds to the positional relationship of the connected state;
    An automated guided vehicle that controls multiple combinations.
  7.  請求項5に記載の自動搬送車において、
     さらに、前記自機の周囲を計測できる外界センサを備え、
     前記制御装置は、前記外界センサの計測結果に基づいて前記自機の走行を制御する、自動搬送車。
    In the automatic conveyance vehicle of Claim 5,
    Furthermore, an external sensor capable of measuring the surroundings of the own machine is provided,
    The said control apparatus is an automatic conveyance vehicle which controls the driving | running | working of the said own machine based on the measurement result of the said external sensor.
  8.  請求項5に記載の自動搬送車において、
     さらに、前記自機と前記台車との連結を検出できる連結検出センサを備え、
     前記制御装置は、前記連結検出センサの検出結果に基づいて前記自機の走行を制御する、自動搬送車。
    In the automatic conveyance vehicle of Claim 5,
    Furthermore, a connection detection sensor capable of detecting the connection between the own machine and the carriage is provided,
    The said control apparatus is an automatic conveyance vehicle which controls the driving | running | working of the said own machine based on the detection result of the said connection detection sensor.
  9.  請求項5に記載の自動搬送車において、
     さらに、前記自機を移動させる移動機構を備え、
     前記制御装置は、前記移動機構を制御して前記自機の走行を制御する、自動搬送車。
    In the automatic conveyance vehicle of Claim 5,
    Furthermore, a moving mechanism for moving the machine is provided,
    The said control apparatus is an automatic conveyance vehicle which controls the driving | running | working of the said own machine by controlling the said moving mechanism.
  10.  請求項5に記載の自動搬送車において、
     さらに、前記台車との連結および切り離しができる連結機構を備え、
     前記制御装置は、前記連結機構を制御して前記自機と前記台車との連結および切り離しを制御する、自動搬送車。
     
     
    In the automatic conveyance vehicle of Claim 5,
    Furthermore, a connection mechanism that can be connected to and disconnected from the carriage is provided,
    The said control apparatus is an automatic conveyance vehicle which controls the said connection mechanism and controls connection and disconnection of the said own machine and the said trolley | bogie.

PCT/JP2014/055380 2013-03-25 2014-03-04 Automatic guided vehicle WO2014156501A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480018197.XA CN105103069B (en) 2013-03-25 2014-03-04 automatic conveying vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013062900A JP6109616B2 (en) 2013-03-25 2013-03-25 Automated guided vehicle
JP2013-062900 2013-03-25

Publications (1)

Publication Number Publication Date
WO2014156501A1 true WO2014156501A1 (en) 2014-10-02

Family

ID=51623491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055380 WO2014156501A1 (en) 2013-03-25 2014-03-04 Automatic guided vehicle

Country Status (3)

Country Link
JP (1) JP6109616B2 (en)
CN (1) CN105103069B (en)
WO (1) WO2014156501A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210284233A1 (en) * 2020-03-10 2021-09-16 Ricoh Company, Ltd. Autonomous traveling device and autonomous traveling control method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10960544B2 (en) 2015-10-28 2021-03-30 Bar-Ilan University Robotic cooperative system
KR102082071B1 (en) * 2016-05-12 2020-02-26 아이치 기까이 테크노 시스템 가부시끼가이샤 Traction device of unmanned carrier and unmanned carrier having same
CN106054889B (en) * 2016-06-28 2019-05-10 深圳市三宝创新智能有限公司 A kind of robot autonomous barrier-avoiding method and device
CN109782701A (en) * 2017-11-13 2019-05-21 台湾积体电路制造股份有限公司 Intelligent environment and method for safety monitoring and monitoring system
JP7081194B2 (en) * 2018-02-13 2022-06-07 セイコーエプソン株式会社 Travel control system for transport vehicles and travel control methods for transport vehicles
US11797011B2 (en) 2018-02-13 2023-10-24 Seiko Epson Corporation Traveling control system for transport vehicle and traveling control method for transport vehicle
JP7095301B2 (en) * 2018-02-13 2022-07-05 セイコーエプソン株式会社 Travel control system for transport vehicles and travel control methods for transport vehicles
CN108776482B (en) * 2018-06-22 2021-02-26 北京京东尚科信息技术有限公司 Unmanned distribution vehicle, and distribution control method and device for unmanned distribution vehicle
JP7080481B2 (en) * 2018-07-19 2022-06-06 株式会社ササキコーポレーション Control system for self-propelled work machines and self-propelled work machines
JP7163782B2 (en) * 2019-01-15 2022-11-01 株式会社豊田自動織機 Autonomous cart
JP7365573B2 (en) * 2019-06-03 2023-10-20 株式会社リコー Connecting devices, connecting moving devices, and autonomous moving devices
CN111409654A (en) * 2020-04-03 2020-07-14 首钢智新迁安电磁材料有限公司 Rail transport device
JP7151925B1 (en) 2022-04-28 2022-10-12 株式会社椿本チエイン Automatic guided vehicle control method, control device, and computer program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09267614A (en) * 1996-03-29 1997-10-14 Mazda Motor Corp Detector for coupling of carriage for vehicle
JPH10119808A (en) * 1996-10-22 1998-05-12 Mitsubishi Motors Corp Rear wheel steering control method of tractor
JP2003034261A (en) * 2001-07-24 2003-02-04 Tokyu Car Corp Linked vehicle retreat control device and retreat control method for the same
JP2009057003A (en) * 2007-09-03 2009-03-19 Hitachi Ltd Towing determination device for vehicle
JP2011189769A (en) * 2010-03-12 2011-09-29 Hitachi Industrial Equipment Systems Co Ltd Automatic transport system
JP2013041527A (en) * 2011-08-19 2013-02-28 Hitachi Industrial Equipment Systems Co Ltd Automatic conveyance vehicle and automatic conveyance vehicle system using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08272444A (en) * 1995-04-03 1996-10-18 Suzuki Motor Corp Retreat controllable tractive vehicle
JP2010122916A (en) * 2008-11-19 2010-06-03 Murata Machinery Ltd Autonomous moving apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09267614A (en) * 1996-03-29 1997-10-14 Mazda Motor Corp Detector for coupling of carriage for vehicle
JPH10119808A (en) * 1996-10-22 1998-05-12 Mitsubishi Motors Corp Rear wheel steering control method of tractor
JP2003034261A (en) * 2001-07-24 2003-02-04 Tokyu Car Corp Linked vehicle retreat control device and retreat control method for the same
JP2009057003A (en) * 2007-09-03 2009-03-19 Hitachi Ltd Towing determination device for vehicle
JP2011189769A (en) * 2010-03-12 2011-09-29 Hitachi Industrial Equipment Systems Co Ltd Automatic transport system
JP2013041527A (en) * 2011-08-19 2013-02-28 Hitachi Industrial Equipment Systems Co Ltd Automatic conveyance vehicle and automatic conveyance vehicle system using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210284233A1 (en) * 2020-03-10 2021-09-16 Ricoh Company, Ltd. Autonomous traveling device and autonomous traveling control method

Also Published As

Publication number Publication date
JP6109616B2 (en) 2017-04-05
CN105103069B (en) 2018-07-03
CN105103069A (en) 2015-11-25
JP2014186680A (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP6109616B2 (en) Automated guided vehicle
US10875448B2 (en) Visually indicating vehicle caution regions
US10596705B2 (en) Mobile robot with collision anticipation
JP6020265B2 (en) Goods transport equipment
JP2015170284A (en) Forklift type unmanned carrier vehicle, control method of the same, and control device of the same
JP2019168942A (en) Moving body, management device, and moving body system
JP5848915B2 (en) Automated guided vehicle and automated guided vehicle system using the same
WO2017158973A1 (en) Automatic guided vehicle
CN205880660U (en) Adopt in -wheel motor driving&#39;s AGV dolly
JP7081881B2 (en) Mobiles and mobile systems
JP6986314B1 (en) Transport system and transport control method
JP7164085B2 (en) Work transport method using moving body, computer program, and moving body
WO2019053798A1 (en) Autonomous traveling robot system
JPWO2019059307A1 (en) Mobiles and mobile systems
CN214846390U (en) Dynamic environment obstacle avoidance system based on automatic guided vehicle
WO2020089170A1 (en) Mechanical coupling of vehicles
JP7380350B2 (en) Autonomous running device, autonomous running control method, and autonomous running control program
WO2023084637A1 (en) Transport system and transport control method
JP2019175136A (en) Mobile body
CN115771582A (en) AGV trolley for transporting anode plates
JP2024071468A (en) Transport system and unmanned transport vehicle
WO2022264673A1 (en) Travel system
JP2019067001A (en) Moving body
JP2022148651A (en) Vehicular automatic transport device and vehicular automatic transport system
JP7540815B1 (en) Mobile object route generation system, route generation method, and program

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018197.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14773227

Country of ref document: EP

Kind code of ref document: A1