WO2022264673A1 - Travel system - Google Patents
Travel system Download PDFInfo
- Publication number
- WO2022264673A1 WO2022264673A1 PCT/JP2022/017887 JP2022017887W WO2022264673A1 WO 2022264673 A1 WO2022264673 A1 WO 2022264673A1 JP 2022017887 W JP2022017887 W JP 2022017887W WO 2022264673 A1 WO2022264673 A1 WO 2022264673A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- traveling
- running
- travel
- position information
- indicator
- Prior art date
Links
- 230000008859 change Effects 0.000 claims abstract description 44
- 238000012360 testing method Methods 0.000 claims description 23
- 230000009467 reduction Effects 0.000 claims description 3
- 238000012545 processing Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 12
- 238000004891 communication Methods 0.000 description 11
- 238000005259 measurement Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000012636 effector Substances 0.000 description 8
- 238000003384 imaging method Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000003550 marker Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 230000006399 behavior Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000003936 working memory Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
Definitions
- the present disclosure relates to traveling systems.
- Unmanned production systems such as factories are desired.
- Self-propelled devices are being developed in order to realize unmanned operation.
- Self-propelled devices are used to transport pre-machined workpieces and tools to machine tools, and to collect workpieces and used tools that have been machined by machine tools.
- an automated guided vehicle that moves according to tracks such as magnetic tape on the floor
- AMR autonomous mobile robots
- AMR autonomous mobile robots
- Such an autonomous mobile transport robot automatically calculates a travel route based on a map.
- a map is generated by remotely controlling an autonomous transport robot using an information device (personal computer, tablet, smartphone, etc.) equipped with a browser.
- Patent Document 1 As a self-propelled device, a light projection unit that emits projection light is rotationally driven, and the projection light is reflected by the measurement object.
- a mobile device is disclosed that includes a distance measuring device that outputs distance measurement data, a map creation unit that creates map information based on the distance measurement data, and an obstacle sensor that detects obstacles.
- Patent No. 6779398 Patent Document 2 discloses a self-propelled device having an omni-wheel.
- Patent Laying-Open No. 2021-6359 Patent Document 3 discloses a self-propelled device including a traveling carriage and a robot arm.
- Patent Document 4 discloses a peripheral device arranged around a machine tool and an automatic guided vehicle as a self-propelled device that engages with the peripheral device to convey.
- a material stocker, a product stocker, a measuring instrument and a chuck stocker are disclosed as peripheral devices.
- a self-propelled device pulls a towed object such as a trolley
- the towed object may overturn.
- the object to be towed leans to the left or right in the direction of travel while traveling on a curve
- the object to be towed may overturn.
- the load loaded on the object to be towed may fall or overturn even if the object to be towed does not overturn. Therefore, it is necessary to run the self-propelled device (tractor) so as to maintain the posture of the towed body.
- the towed body In order to maintain the posture of the towed body, for example, it is conceivable to install an inertial measurement unit (IMU) on the towed body.
- IMU inertial measurement unit
- the towed body detects the posture of the towed body by the inertial measurement device, and notifies the self-propelled device of the detection result by wireless communication or the like.
- the self-propelled device changes running conditions such as running speed based on the detection result.
- the present disclosure has been made in view of the above problems, and its purpose is to provide a self-propelled system capable of maintaining the posture of the towed body at low cost.
- a traveling system includes a traveling body capable of self-propelled, a towed body having an index section and towed by the traveling body, a camera or a laser sensor, and when the traveling body travels, An acquisition unit that acquires positional information of the index unit with respect to the traveling object, and a travel control unit that controls traveling of the traveling object based on changes in the positional information of the index unit acquired by the acquisition unit.
- the posture of the towed body can be maintained by controlling the running of the running body based on the change in the position information of the indicator acquired by the acquisition section. For example, it is possible to prevent the towed body from overturning. In this case, since a camera or a laser sensor is used for the acquisition unit, it is possible to achieve lower costs than when using a device such as an inertial measurement device.
- the position information of the indicator portion includes first position information acquired when the running body travels straight and second position information acquired when the running body travels along a curve.
- the traveling control unit controls traveling of the traveling body when the amount of change in the second position information based on the first position information exceeds a predetermined threshold when the traveling body travels along a curve. According to such a configuration, it is possible to prevent the towed body from overturning when the traveling body travels around a curve.
- the travel control unit controls travel of the travel object to stop the travel object, decelerate the travel object, or reduce the curvature of the travel object when it travels along a curve. According to such a configuration, it is possible to prevent the towed body from overturning when traveling on a curved line by stopping or decelerating the traveling body or by reducing the curvature when traveling on a curved line.
- the towed body includes a top portion and a wheel portion.
- the index portion is provided at a position closer to the top portion than the wheel portion in the vertical direction. According to such a configuration, the behavior of the indicator portion becomes greater when the traveling object travels around a curvature, so that the control device can easily recognize a change in the positional information of the indicator portion.
- the positional information of the index portion includes third positional information acquired before the running body crosses the step on the floor and fourth positional information acquired after the running body crosses the step on the floor.
- the traveling control unit controls traveling of the traveling object when the amount of change in the fourth position information based on the third position information exceeds a predetermined threshold when the traveling object travels. According to such a configuration, it is possible to prevent the towed body from overturning when there is a step on the floor surface.
- the running control unit controls running of the running body so that the running body stops. According to such a configuration, by stopping the traveling body, it is possible to prevent the towed body from overturning when there is a step on the floor surface.
- the index portion is a specific figure attached to the towed body.
- the acquisition unit includes a camera, and acquires the position information of the indicator by acquiring an image of the figure captured by the camera.
- the self-propelled device can maintain the posture of the towed body using the graphic attached to the towed body.
- the towed body is a trolley.
- the type of trolley towed by the traveling object may vary, the number and weight of loads to be loaded on the trolley, and the loading positions of the loads may differ.
- the running condition of the running body in which the rollover occurs changes each time. Therefore, it is possible to accurately prevent the towed object from overturning by controlling the running of the traveling object based on the change in the position information of the indicator acquired by the acquiring unit.
- the acquisition unit further acquires the position information of the index unit with respect to the running body when the running body is test run.
- the test run is carried out with the loading state of the cargo on the trolley fixed or with no cargo loaded.
- the travel control unit sets travel conditions during actual operation of the traveling object based on changes in the position information of the index unit acquired by the acquiring unit during test runs, and sets the traveling conditions during actual operation of the traveling object. to control the running of the running body.
- a traveling system includes a traveling body capable of self-propelled, a towed body having an indicator section and towed by the traveling body, and a camera or a laser sensor.
- an acquisition unit for acquiring positional information of the indicator unit with respect to the running object; setting a running condition of the running object based on changes in the positional information of the indicator unit acquired by the acquisition unit; and a travel control unit that controls travel of the traveling body so as to satisfy travel conditions.
- FIG. 11 is a top view of the traveling system when the self-propelled device starts to turn left;
- FIG. 8 is a cross-sectional view taken along line ix-ix in FIG. 7;
- FIG. 5 is a schematic diagram for explaining image data obtained immediately before and after starting a left turn.
- FIG. 4 is a schematic diagram for explaining image data obtained before and immediately after the self-propelled device climbs over a step; It is a flow diagram for explaining the flow of processing executed by the self-propelled device.
- FIG. 11 is a diagram showing another form of carriage;
- FIG. 5 is a diagram for explaining driving conditions generated by a test run of the driving system;
- AMR autonomous mobile transport robot
- AMR autonomous mobile transport robot
- the robotic arm is, for example, a collaborative robot.
- the self-propelled device may be an automated guided vehicle (AGV) combined with a robot arm instead of the autonomous transport robot.
- AGV automated guided vehicle
- the self-propelled device only needs to have a self-propelled running body, and does not have to have a robot arm. That is, the self-propelled device may simply be an autonomous transport robot or an unmanned transport vehicle.
- a trolley will be described as an example.
- the towed object is not limited to a trolley and may be a movable peripheral device on wheels (eg, a battery-powered deburring machine).
- FIG. 1 is a side view of a travel system 1 according to this embodiment.
- FIG. 2 is a top view of the traveling system 1.
- FIG. 1 is a side view of a travel system 1 according to this embodiment.
- FIG. 2 is a top view of the traveling system 1.
- the forward and rearward directions are the traveling directions when the self-propelled device 100 travels straight, and are opposite to each other.
- the right side is the right-hand direction when viewed forward from the self-propelled device 100 .
- the left side is the left-hand direction when viewed forward from the self-propelled device 100, and is the opposite direction to the right side.
- the upper side is the sky side when viewed from the self-propelled device 100, and the lower side is the floor side on which the self-propelled device 100 runs.
- the direction in which the robot arm 11 is positioned with respect to a tray 66, which will be described later, is referred to as the front, and the opposite direction is referred to as the rear. is not particularly limited.
- the travel system 1 includes a self-propelled device 100 and a truck 200 as a towed body.
- the self-propelled device 100 and the carriage 200 are connected by a connecting portion 45 .
- the cart 200 is towed by the self-propelled device 100 .
- Carriage 200 is typically a material stocker, a product stocker, a measuring instrument stocker, or a chuck stocker, for example.
- the self-propelled device 100 performs two-way communication with a server (not shown).
- the communication is realized by, for example, a wireless LAN (Local Area Network).
- the above communication is realized by a wireless system for mobiles.
- a fourth-generation communication system (4G) and a fifth-generation communication system (5G) can be used as mobile radio systems.
- the self-propelled device 100 has a traveling body 61, a robot arm 11, a camera 35, and a connecting portion 45b.
- the traveling body 61 is configured to be travelable (self-propellable) by driving wheels using a motor.
- the robot arm 11 is mounted on the traveling body 61 .
- An end effector 40 is attached to the tip of the robot arm 11 .
- the end effector 40 is detachably attached to the tip of the robot arm 11 and performs work on an object.
- a grasping hand is connected to the robot arm 11 as an end effector 40 .
- Self-propelled device 100 is configured to be able to grip an object to be conveyed by end effector 40 .
- the running body 61 has a running body portion 62 and a cover portion 63 .
- the cover portion 63 is provided on the traveling body portion 62 .
- the cover portion 63 is composed of a cover body that forms an internal space on the traveling main body portion 62, and contains a motor for driving the robot arm 11, a battery provided as a power source for the self-propelled device 100, or a self-propelled device.
- Various control parts and the like for controlling the device 100 are accommodated.
- the structure of the running body portion 62 will be described later in detail.
- the cover portion 63 has a top surface 65 .
- a tray 66 for placing an object to be conveyed is provided on the top surface 65 .
- Robot arm 11 is connected to top surface 65 .
- the robot arm 11 extends upward from the top surface 65 .
- the connecting position of the robot arm 11 to the traveling body 61 is aligned with the tray 66 in the front-rear direction.
- the robot arm 11 has a base portion 12 and an arm portion 13 .
- the base portion 12 is rotatably connected to the traveling body 61 .
- the arm portion 13 is connected to the base portion 12 .
- the arm portion 13 extends like an arm from the base portion 12 .
- the robot arm 11 is a program-controlled robot.
- the robot arm 11 is a vertically articulated robot in this example.
- the robot arm 11 is a six-axis robot having six degrees of freedom (six movable parts).
- the traveling body 61 may be equipped with a multi-axis controllable robot arm other than the six-axis controllable robot arm.
- the carriage 200 includes a main body 205 and a plurality of wheels 220.
- the truck 200 includes a right front wheel 220Rf, a left front wheel 220Lf (see FIG. 3), a right rear wheel 220Rb, and a left front wheel (not shown).
- the carriage 200 further includes a connecting portion 45a.
- the self-propelled device 100 and the carriage 200 are connected to each other by a connecting portion 45 a and a connecting portion 45 b that constitute the connecting portion 45 .
- the body portion 205 of the carriage 200 includes an accommodation portion 210 and a plurality of side wall portions 251 .
- a housing portion 210 is formed by a plurality of side wall portions 251 .
- the truck 200 includes a front side wall portion 251F, a rear side wall portion 251B, a right side wall portion 251R, and a left side wall portion 251L.
- the top portion 211 of each side wall portion 251 has a flat shape.
- Each side wall portion 251 prevents the cargo (load) loaded on the truck 200 from falling due to a large inclination of the truck 200 or the like.
- the camera 35 is installed on the traveling body 61. Camera 35 is installed so that the rear of self-propelled device 100 can be imaged. Specifically, the camera 35 is installed at a position where the carriage 200 can be imaged. More specifically, the camera 35 is installed at a position capable of capturing an image of the side wall portion 251F on the front side of the carriage 200 .
- the camera 35 images an area including at least part of the side wall portion 251F.
- the optical axis J of the camera 35 and the side wall portion 251F are substantially orthogonal.
- the camera 35 is typically a digital camera in this example.
- the camera 35 can capture at least moving images. It should be noted that the installation position of the camera 35 is not limited to the illustrated position. The position is not particularly limited as long as it is a position where the later-described indicator portion 300 attached to the carriage 200 can be imaged.
- FIG. 3 is a top view showing the running body portion 62. As shown in FIG.
- the traveling main body 62 includes first driving wheels 71, a first traveling motor 77, a second driving wheel 72, a second traveling motor 78, and a plurality of driven wheels 51 ( 51Rf, 51Lf, 51Rb, 51Lb).
- the driven wheel 51 consists of an omni wheel.
- the driven wheel 51 has a wheel 56 and a plurality of rollers 60 .
- the traveling main body 62 has a first axle 73 , a second axle 74 , a speed reducer 75 and a speed reducer 76 .
- the first travel motor 77 is connected to the first driving wheels 71 via a reduction gear 75 .
- the second travel motor 78 is connected to the second drive wheels 72 via a reduction gear 76 .
- the traveling body portion 62 includes a frame 86, a first support arm 93, a second support arm 94, a first support shaft 91, a second support shaft 92, a third support arm 88, and a third support shaft 87. and
- the traveling main body 62 further has a third axle 96 , a fourth axle 97 , a fifth axle 98 and a sixth axle 99 .
- the driven wheel 51Rf is connected to the first support arm 93 via the third axle 96 .
- the driven wheel 51Lf is connected to the second support arm 94 via the fourth axle 97 .
- the driven wheel 51 ⁇ /b>Rb is connected to the third support arm 88 via the fifth axle 98 .
- the driven wheel 51Lb is connected to the third support arm 88 via the sixth axle 99 .
- the connecting portion 45b is connected to the frame 86. As shown in FIG.
- the running body 61 moves straight in the front-rear direction by imparting the same rotation to the first driving wheels 71 and the second driving wheels 72 , and rotates relative to the first driving wheels 71 and the second driving wheels 72 . , rotates in the left-right direction (differential two-wheel drive system).
- the first drive wheel 71, the second drive wheel 72 and the driven wheel 51 cannot be steered left and right.
- the traveling body 61 moves straight forward (forward) by rotating the first driving wheel 71 and the second driving wheel 72 at the same number of revolutions.
- the traveling body 61 advances straight rearward (backward) by rotating the first driving wheel 71 and the second driving wheel 72 at the same number of revolutions and inverting them.
- the traveling body 61 rotates the second driving wheels 72 forward and rotates the first driving wheels 71 forward at a higher rotational speed than the second driving wheels 72, thereby turning leftward (left turning).
- the running body 61 rotates the first drive wheel 71 forward and rotates the second drive wheel 72 forward at a higher rotational speed than the first drive wheel 71, thereby turning rightward (right turn).
- the traveling body 61 rotates (counterclockwise rotation) by rotating the first driving wheels 71 forward and rotating the second driving wheels 72 in the same rotation speed as the first driving wheels 71 .
- the center of rotation of the traveling body 61 when viewed from above is on the axis of the first shaft 121 and the second shaft 122, corresponding to the center position of the first drive wheel 71 and the second drive wheel 72.
- the "turning motion" in the present invention includes the right turning, left turning, and rotation (left turning, right turning) described above.
- FIG. 4 is a diagram showing a device configuration regarding operation control of the self-propelled device 100. As shown in FIG. 4
- the self-propelled device 100 includes a control device 501, a ROM (Read Only Memory) 502, a RAM (Random Access Memory) 503, a communication interface 504, a laser sensor 505, and a motor drive device. 506 , storage device 510 , robot arm 11 , antenna 31 , and camera 35 . These components are connected to bus 509 .
- the control device 501 is composed of, for example, at least one integrated circuit.
- the integrated circuit is, for example, at least one CPU (Central Processing Unit), at least one GPU (Graphics Processing Unit), at least one ASIC (Application Specific Integrated Circuit), at least one FPGA (Field Programmable Gate Array), or It can be configured by a combination thereof.
- the control device 501 is a PLC (Programmable Logic Controller).
- the control device 501 controls the operation of the self-propelled device 100 by executing various programs such as a control program 511 or an operating system.
- the control device 501 reads the control program 511 from the storage device 510 or the ROM 502 to the RAM 503 based on the acceptance of the execution command of the control program 511 .
- the RAM 503 functions as a working memory and temporarily stores various data necessary for executing the control program 511 .
- the control device 501 performs travel control of the travel body 61 .
- a control device 501 controls the motion of the robot arm 11 . That is, the control device 501 also functions as a robot controller.
- the self-propelled device 100 may include a control device for controlling the traveling of the traveling body 61 and a control device for controlling the operation of the robot arm 11 as separate bodies.
- the communication interface 504 is connected to the antenna 31 and the like.
- Self-running device 100 realizes wireless communication between self-running device 100 and an external device (for example, a server) via antenna 31 and communication interface 504 .
- the laser sensor 505 is housed in the cover portion 63 of FIG.
- the laser sensor 505 detects an object around the laser sensor 505 by irradiating the surroundings with laser light while rotating and receiving the reflected light of the laser light.
- the laser sensor 505 outputs the distance from the laser sensor 505 to an object existing within the scanning plane of the laser beam to the control device 501 as two-dimensional distance data D representing each angle around the rotation axis of the laser sensor 505 .
- the scanning plane of the laser sensor 505 is tilted with respect to the horizontal plane. Therefore, the self-propelled device 100 can three-dimensionally scan the surroundings by moving.
- the motor drive device 506 controls the rotation of the first travel motor 77 and the second travel motor 78 according to the motor drive command from the control device 501 .
- the motor drive command includes, for example, a forward rotation command for the first travel motor 77 and the second travel motor 78, a reverse rotation command for the first travel motor 77 and the second travel motor 78, and a first travel motor 77. and the number of revolutions (rotational speed) of the second travel motor 78 .
- the storage device 510 is, for example, a storage medium such as a hard disk or flash memory.
- the storage device 510 stores a control program 511 for controlling the operation of the self-propelled device 100, a three-dimensional map 512 of the travel area, and the like.
- the control program 511 includes a program for controlling the travel of the traveling body 61 and a program for controlling the motion of the robot arm 11 .
- the control program 511 and the three-dimensional map 512 are not limited to the storage device 510, and are stored in a storage area of the control device 501 (eg, cache memory, etc.), ROM 502, RAM 503, or an external device (eg, server). may be
- control program 511 may be provided as a part of an arbitrary program, not as a standalone program. In this case, the travel control processing of the traveling body 61 and the motion control processing of the robot arm 11 by the control program 511 are realized in cooperation with arbitrary programs.
- control program 511 Even a program that does not include such a part of modules does not deviate from the gist of the control program 511 according to the present embodiment. Furthermore, part or all of the functions provided by the control program 511 may be realized by dedicated hardware. Furthermore, self-propelled device 100 may be configured in a form such as a so-called cloud service in which at least one server executes part of the processing of control program 511 .
- Index part of the truck> 5 is a cross-sectional view taken along line vv of FIG. 2.
- the indicator part 300 is attached to the carriage 200 .
- the indicator portion 300 is attached to the side wall portion 251F of the carriage 200 .
- the index portion 300 is attached to the top portion 211 of the truck 200 rather than the wheels 220 in the vertical direction. From the viewpoint of detection accuracy, the indicator part 300 is preferably attached to a flat surface.
- the indicator portion 300 is directly attached to the side wall portion 251F.
- the back surface of the indicator section 300 may be made of an adhesive sheet.
- the index portion 300 may be encased in a transparent case attached to the side wall portion 251F.
- the index part 300 is a specific figure.
- the indicator part 300 is a marker in this example.
- the indicator unit 300 is used by the self-propelled device 100 to detect the inclination of the carriage 200 .
- the indicator part 300 is used to detect the inclination of the truck 200 with respect to the floor surface 910 (running surface).
- the indicator section 300 is used to detect the inclination of the body section 205 with respect to the floor surface 910 (see FIG. 8). Note that the inclination is typically represented by an inclination angle.
- the index portion 300 detects the degree of inclination of the body portion 205 with respect to the self-propelled device 100 .
- an AR (Augmented Reality) marker can be used as the indicator section 300 .
- AprilTag which is one of the AR markers, is illustrated.
- AprilTag is a visual marker for applications that detect the position and orientation of a three-dimensional object.
- AprilTag is also used in machine tools.
- AprilTag is designed to encode less data, so it can be decoded faster. Therefore, it is suitable for the traveling system 1 that requires real-time performance.
- the self-propelled device 100 since the AprilTag is attached to the truck 200 , the relative position and orientation of the truck 200 with respect to the self-propelled device 100 can be detected by the self-propelled device 100 .
- the indicator section 300 is not limited to the AR marker. As will be described later, self-propelled device 100 only needs to be able to detect at least the relative position of index section 300 with respect to camera 35 . For this reason, the indicator unit 300 may be anything that can be recognized by the application on the self-propelled device 100 side.
- the index section 300 may be any device as long as the application can track the position of the index section 300 .
- FIG. 6 is a functional block diagram for explaining the functional configuration of self-propelled device 100. As shown in FIG.
- control device 501 includes a travel control unit 550, a robot control unit 560, and a data processing unit 555 as an example of a functional configuration.
- the robot control unit 560 is a functional configuration for controlling the operations of the robot arm 11 and the end effector 40.
- the robot control unit 560 controls operations of six movable parts (six axes) of the robot arm 11 .
- the robot control unit 560 controls the operation (rotation angle, rotation speed, etc.) of an actuator (not shown) of the robot arm 11 .
- the robot control unit 560 controls the movement of the electric hand of the end effector 40.
- a robot control unit 560 controls the gripping operation of the electric hand.
- the robot controller 560 controls the operation of an actuator (not shown) inside the end effector 40 .
- the travel control unit 550 is a functional configuration for controlling travel of the self-propelled device 100 .
- Travel control unit 550 identifies the current position of self-propelled device 100 by comparing two-dimensional distance data D input from laser sensor 505 and three-dimensional map 512 .
- Control device 501 causes self-propelled device 100 to travel along a predetermined route on three-dimensional map 512 by specifying the current position. Note that the control device 501 can also generate a three-dimensional map 512 .
- the travel control unit 550 detects obstacles around the self-propelled device 100 based on the two-dimensional distance data D sequentially acquired from the laser sensor 505 while the self-propelled device 100 is driven, and detects the obstacle.
- the traveling of the self-propelled device 100 is controlled so as to avoid a collision with.
- the obstacles include, for example, moving bodies such as people and other self-propelled devices 100, and stationary bodies such as walls and shelves.
- the traveling control unit 550 controls traveling of the self-propelled device 100 so that it travels along a predetermined route on the three-dimensional map 512 while no obstacle is detected. On the other hand, when an obstacle is detected, the travel control unit 550 controls travel of the self-propelled device 100 so as to avoid collision with the obstacle.
- the travel control unit 550 controls travel of the self-propelled device 100 so as to avoid the obstacle.
- the travel control unit 550 stops the travel of the self-propelled device 100 .
- the self-propelled device 100 has a position information acquisition unit 570 .
- Position information acquisition unit 570 includes camera 35 and data processing unit 555 in control device 501 .
- Travel control unit 550 includes a storage unit 551 .
- the storage unit 551 stores a threshold Th1 and a threshold Th2.
- the threshold Th1 is an angle threshold.
- the threshold Th2 is a threshold for distance (length or number of pixels). Note that the storage unit 551 is part of the storage device 510 .
- the position information acquisition unit 570 includes the camera 35 and acquires position information of the index unit 300 with respect to the running body 61 while the running body 61 is running. Specifically, the camera 35 continuously images the index portion 300 . The camera 35 sequentially transmits image data obtained by imaging to the data processing unit 555 .
- the data processing unit 555 calculates the position and orientation of the index unit 300 in the three-dimensional space based on the image data. Specifically, the data processing unit 555 calculates the position of the index unit 300 (position information of the index unit 300), and calculates the orientation of the index unit 300 based on the calculation result. In this example, the inclination (inclination angle) of the index section 300 is calculated as the orientation. Data processing section 555 sends the position information of indicator section 300 and the information of the inclination of indicator section 300 to running control section 550 . For convenience of explanation, the inclination of the indicator portion 300 in the state of FIG. 5 is assumed to be 0°.
- the position information acquisition section 570 acquires the position information and the tilt information of the index section 300 by acquiring the image of the index section 300 captured by the camera 35 .
- the data processing unit 555 does not necessarily need to determine the position and inclination of the index portion 300 in all image data.
- the data processing section 555 may determine the position and inclination of the index section 300 according to a predetermined calculation cycle.
- the travel control unit 550 sequentially acquires position information and inclination information of the index unit 300 from the data processing unit 555 .
- the travel control unit 550 controls travel of the traveling body 61 based on changes in the position information of the indicator unit 300 . More specifically, the travel control unit 550 controls travel of the traveling body 61 based on changes in the position information of the indicator 300 and the tilt of the indicator 300 based on the change.
- the self-propelled device 100 can move forward, backward, turn left, turn right, turn left, or turn right. I know if there is.
- the position information of the index unit 300 includes position information P1 acquired when the running body 61 travels straight and position information P2 acquired when the running body 61 travels along a curve.
- the travel control unit 550 controls the travel control unit 550 when the amount of change in the position information P2 based on the position information P1 (hereinafter referred to as “change amount ⁇ P12”) exceeds a predetermined threshold value Th1 when the traveling object 61 travels along a curve. , to control the running of the running body 61 .
- the amount of change ⁇ P12 is the inclination (inclination angle) of the indicator section 300 .
- the traveling control unit 550 stops traveling of the traveling body 61 when the amount of change ⁇ P12 exceeds the threshold Th1. Without being limited to this, the traveling control unit 550 may decelerate the traveling body 61 to continue traveling when the amount of change exceeds the threshold value Th1. Alternatively, the traveling control unit 550 may reduce the curvature of the traveling object 61 in traveling along a curve when the amount of change exceeds the threshold value Th1. Which control is to be performed by travel control unit 550 is preset in self-propelled device 100 . The setting can be made based on a user operation.
- the travel control unit 550 may appropriately select a control method from among the three controls according to the travel speed of the travel object 61 and/or the curvature of the curve. Further, the traveling control unit 550 may simultaneously decelerate the traveling body 61 and reduce the curvature of the traveling body 61 when it travels along a curve.
- the running control unit 550 decelerates the running body 61 . If the curvature is greater than the predetermined value, the traveling control unit 550 may reduce the curvature of the traveling body 61 traveling along the curve. When the traveling speed is faster than the predetermined speed and the curvature is greater than the predetermined value, the traveling control unit 550 decelerates the traveling body 61 and reduces the curvature of the traveling body 61 when it travels along the curve. and may be performed at the same time.
- the deceleration control may be a control to reduce the speed to a predetermined speed, or may be a control to slow down the running speed by a predetermined speed. In the latter control, traveling control unit 550 repeats the control of slowing the traveling speed by a predetermined speed until variation ⁇ P12 becomes equal to or less than threshold Th1.
- the travel control unit 550 may select a control method based on the difference between the amount of change ⁇ P12 and the threshold value Th1.
- the position information of the index portion 300 includes position information P3 acquired before the running object 61 crosses the step on the floor surface 910 and position information P4 acquired after the running object 61 crosses the step on the floor surface 910. include.
- the travel control unit 550 controls the travel of the travel object 61 when the amount of change in the position information P4 based on the position information P3 (hereinafter referred to as “change amount ⁇ P34”) exceeds a threshold Th2 when the travel object 61 travels. control running.
- the amount of change ⁇ P34 is the amount of change in the position of the index portion 300 in the vertical direction.
- the traveling control unit 550 stops traveling of the traveling body 61 when the amount of change ⁇ P34 exceeds the threshold Th2. Without being limited to this, the traveling control unit 550 may decelerate the traveling body 61 to continue traveling when the amount of change ⁇ P34 exceeds the threshold value Th2.
- Which control is to be performed by travel control unit 550 is preset in self-propelled device 100 . The setting can be made based on a user operation.
- the running control unit 550 stops the running body 61 .
- the running control unit 550 decelerates the running body 61 to continue running.
- the travel control unit 550 may select a control method based on the difference between the amount of change ⁇ P34 and the threshold Th2 (that is, the size of the step). For example, when the difference is equal to or greater than a predetermined value, the running control unit 550 stops the running body 61, and when the difference is less than the predetermined value, the running body 61 is stopped. You may decelerate to the determined speed.
- the running control unit 550 When the running body 61 is stopped, the running control unit 550 then reverses the running body 61 (for example, moves backward). For example, travel control unit 550 may cause traveling body 61 to move backward on condition that a predetermined time has elapsed after traveling body 61 is stopped.
- FIG. 7 is a top view of the traveling system 1 when the self-propelled device 100 starts to turn left.
- the subject area captured by the camera 35 changes in the side wall portion 251F of the carriage.
- FIG. 8 is a cross-sectional view taken along line ix-ix of FIG. 7.
- the truck 200 has the left front wheel 220Lf separated from the floor surface 910, and the truck 200 is tilted by an angle ⁇ .
- the cart 200 is tilted in the direction of the arrow as the self-propelled device 100 turns to the left.
- the index portion 300 attached to the side wall portion 251F is also inclined by an angle ⁇ .
- FIG. 9 is a schematic diagram for explaining image data obtained immediately before and after starting a left turn.
- the image 300G of the index portion 300 is not tilted. Also, the image 300G exists at the reference position in the image data 501G obtained by imaging. In this example, for convenience of explanation, a case where the reference position is the center of the image data 501G is taken as an example.
- state (B) as shown in FIG. 7, the traveling body 61 has started to turn left, so the state of the truck 200 is as shown in FIG. In this case, the left front wheel 220Lf of the truck 200 is tilted by the angle ⁇ while the left front wheel 220Lf of the truck 200 is separated from the floor surface 910, so the image 300G of the index portion 300 is tilted by the angle ⁇ .
- the image 300G of the index portion 300 is shifted from the default position in the image data 502G obtained by imaging.
- the image 300G is shifted by x1 in the positive direction of the X axis and by y1 in the positive direction of the Y axis.
- the travel control unit 550 prevents the travel of the travel object 61 when the change amount ⁇ P12 of the position information P2 based on the position information P1 exceeds the threshold value Th1 when the travel object 61 travels along a curve. Control. Since AprilTag is used as the index portion 300, the amount of change ⁇ P12 can be used as the inclination (tilt angle) of the image 300G as described above.
- the threshold Th1 can be, for example, 3°.
- FIG. 10 is a side view of the traveling system 1 immediately after the self-propelled device 100 has climbed over the step.
- FIG. 11 is a schematic diagram for explaining image data obtained before and immediately after the self-propelled device 100 climbs over the step W.
- FIG. In this example, it is assumed that the self-propelled device 100 and the carriage 200 move forward before and after the step W is overcome.
- the image 300G of the index portion 300 is present at the default position in the image data 503G obtained by imaging. do. Also in this example, the case where the reference position is the center of the image data 503G is taken as an example.
- the image 300G of the indicator section 300 is image data 504G obtained by imaging. , it deviates from the default position. Specifically, in the case of this example, the image 300G is shifted by y2 in the negative direction of the Y-axis.
- the traveling control unit 550 controls traveling of the traveling body 61 when the change amount ⁇ P34 of the position information P4 based on the position information P3 exceeds the threshold Th2 while the traveling body 61 is traveling.
- the amount of change ⁇ P34 can be the amount of change in the Y coordinate.
- FIG. 12 is a flowchart for explaining the flow of processing executed by the self-propelled device 100. As shown in FIG.
- step S1 the self-propelled device 100 starts traveling. As a result, the cart 200 is towed by the self-propelled device 100 .
- step S ⁇ b>2 imaging of the index portion 300 by the camera 35 is started under the control of the control device 501 .
- step S3 the control device 501 determines whether or not turning has started.
- control device 501 determines whether the tilt of index portion 300 (more specifically, the tilt of image 300G of index portion 300) is greater than or equal to threshold Th1. determine whether or not If it is determined that turning has not started (NO in step S3), in step S7, control device 501 changes the position of indicator portion 300 (more specifically, the position of image 300G of indicator portion 300) from the reference position to the threshold value. It is determined whether or not there is an upward or downward change greater than or equal to Th2.
- step S4 determines whether an affirmative determination is made in step S4 (YES in step S4) or not. If an affirmative determination is made in step S4 (YES in step S4), the control device 501 controls traveling of the traveling body 61 in step S5. After that, the control device 501 advances the process to step S4. If a negative determination is made in step S4 (NO in step S4), control device 501 advances the process to step S6.
- step S7 If an affirmative determination is made in step S7 (YES in step S7), the control device 501 controls traveling of the traveling body 61 in step S8. After that, the control device 501 advances the process to step S6. If a negative determination is made in step S7 (NO in step S7), control device 501 advances the process to step S6.
- step S6 the control device 501 determines whether or not the self-propelled device 100 and the carriage 200 have reached the target position. If an affirmative determination is made in step S6 (YES in step S6), control device 501 terminates the series of processes. If a negative determination is made in step S6 (NO in step S6), control device 501 returns the process to step S3.
- the traveling system 1 has a self-propellable traveling body 61 and an indicator section 300, and includes a carriage 200 towed by the traveling body 61 and a camera 35.
- the traveling body 61 A position information acquisition unit 570 that acquires the position information of the indicator unit 300 with respect to the position information acquisition unit 570, and a travel control unit 550 that controls the travel of the traveling body 61 based on changes in the position information of the indicator unit 300 acquired by the position information acquisition unit 570.
- attitude control using an inertial measurement device can be considered as means for correcting the attitude of the carriage 200, but the cost is high.
- the trolley 200 can be prevented from overturning.
- a camera is used for the position information acquisition unit 570, low cost can be realized.
- the position information of the index unit 300 includes position information P1 acquired when the running body 61 travels straight and position information P2 acquired when the running body 61 travels along a curve.
- the traveling control unit 550 controls traveling of the traveling body 61 when the change amount ⁇ P12 of the position information P2 based on the position information P1 exceeds a predetermined threshold Th1 when the traveling body 61 travels along a curve. According to such a configuration, it is possible to prevent the truck from overturning when the traveling body 61 travels along a curve.
- the traveling control unit 550 controls traveling of the traveling body 61 to any one of stopping the traveling body 61, decelerating the traveling body 61, and decreasing the curvature of the traveling body 61 when traveling on a curve. According to this, it is possible to prevent the truck 200 from overturning when traveling on a curve by stopping or decelerating the traveling body 61 or by reducing the curvature when traveling on a curve.
- the carriage 200 includes a top portion 211 and wheels 220 .
- the index portion 300 is provided at a position closer to the top portion 211 than the wheel 220 in the vertical direction. According to such a configuration, the behavior of the indicator portion 300 becomes greater when the traveling body 61 travels along a curvature, so that the control device 501 can easily recognize the change in the position information of the indicator portion 300 .
- the position information of the indicator part 300 is position information P3 acquired before the traveling body 61 crosses the step W of the floor surface 910, and acquired after the traveling body 61 crosses the step W of the floor surface 910. and position information P4.
- the traveling control unit 550 controls traveling of the traveling body 61 when the change amount ⁇ P34 of the position information P4 based on the position information P3 exceeds a predetermined threshold Th2 when the traveling body 61 travels. According to such a configuration, it is possible to prevent the trolley from overturning when there is a step W on the floor surface 910 .
- the running control unit 550 controls the running of the running body 61 so that the running body 61 stops. By stopping the traveling body 61, it is possible to prevent the trolley 200 from overturning when there is a step W on the floor surface 910. - ⁇
- the index part 300 is a specific figure (AprilTag in this example) attached to the carriage 200 .
- the position information acquisition section 570 acquires the position information of the index section 300 by acquiring the image of the figure captured by the camera 35 .
- FIG. 13 is a diagram showing the carriage 200A.
- the carriage 200A includes a plate member 290.
- Plate-like member 290 is installed on body portion 205 so as to protrude upward from top portion 211 .
- the plate-like member 290 has its lower end attached to the side wall portion 251F.
- An index portion 300 is attached to the upper end portion of the plate-like member 290 .
- the index portion 300 is attached to the surface of the plate member 290 on the camera 35 side. According to such a configuration, the indicator portion 300 can be positioned higher than the floor surface 910 as compared with the carriage 200 .
- the truck 200A and the truck 200 are tilted by the same angle, the truck 200A has a larger amount of movement of the indicator part 300. Therefore, when an index that cannot detect the tilt angle is used as the index unit 300, the control device 501 can detect the tilt of the trolley 200A with higher accuracy than when the trolley 200 is tilted.
- a square pole may be used instead of the plate member 290.
- the camera 35 acquires the position information of the index portion 300 with respect to the traveling object 61, but the present invention is not limited to this.
- a laser sensor 36 (see FIG. 1 etc.) may be used instead of the camera 35 .
- threshold Th1 is used as the threshold for the tilt (tilt angle) of the indicator section 300 .
- a plurality of thresholds may be used as the thresholds for the inclination.
- running control unit 550 stops running of running body 61 when change amount ⁇ P12 is Th1_a or more, and changes amount ⁇ P12 of Th1_b or more and less than Th1_a.
- the traveling body 61 may be decelerated to a constant speed to continue traveling.
- Embodiment 2 In Embodiment 1, travel control unit 550 controls travel of traveling body 61 based on changes in the position information of index unit 300 acquired by position information acquisition unit 570 . That is, in Embodiment 1, control during actual operation of traveling system 1 has been described.
- the running system 1 is run on a trial basis, and the carriage 200 sets the running conditions in advance.
- the position information of the index unit 300 is used for setting the travel conditions.
- the traveling condition is a condition under which the trolley 200 does not overturn (for example, overturn).
- the test run is performed with no luggage loaded on the trolley 200 .
- the present invention is not limited to this, and when the same number of the same packages are placed in the same positions on the cart 200 each time, it is preferable to perform the test run with the packages loaded on the cart 200 .
- the position information acquisition unit 570 acquires the position information of the indicator unit 300 with respect to the running body 61 when the running body 61 is running on a test run.
- the traveling control unit 550 sets the traveling condition of the traveling object 61 based on the change in the position information of the index unit 300 acquired by the position information acquiring unit 570, and sets the traveling condition during the actual operation of the traveling object 61.
- the traveling of the traveling body 61 is controlled so as to satisfy the requirement.
- the running speed and the curvature of the curve that forms the running route are varied. Also, during the test run, the vehicle is allowed to pass through steps with different heights at a plurality of running speeds. Through such a test run, a running condition is found that does not cause the truck 200 to overturn. For example, a combination of the running speed and the curvature of the curve is obtained so that the tilt angle ⁇ of the truck 200 does not exceed the threshold value Th1. Also, the traveling speed at which the carriage 200 can climb over the step is found for each size of the step.
- FIG. 14 is a diagram for explaining driving conditions generated by a test run of the driving system 1.
- the travel conditions may be generated by self-propelled device 100 or by a server (not shown).
- the travel conditions are generated before actual operation based on changes in the position information of the indicator section 300, as described above. Note that the travel conditions are stored in the storage unit 551 ( FIG. 6 ) of the travel control unit 550 .
- the driving condition P includes two driving conditions P1 and P2 in this example.
- Traveling conditions P1 and P2 are conditions under which the trolley 200 does not overturn.
- the running conditions P1 and P2 are preferably set individually based on the type of the truck 200, the weight of the members placed on the truck 200, and the like.
- the traveling condition P1 indicates the relationship between the traveling speed of the self-propelled device 100 and the curvature of the curve.
- the curvature of a curve is the curvature of an arc when the trajectory of the traveling system 1 during traveling is an arc in a certain situation.
- the driving condition P1 is defined by a function in this example.
- the area of the graph is divided into area A1 and area B1 by the function.
- Area A1 is an area whose curvature is equal to or less than the value of the function (that is, the curvature of the vertical axis).
- Region B1 is a region where the curvature is greater than the value of the function.
- Driving condition P1 is defined as a combination of driving speed and curvature within area A1. "Satisfies the traveling condition P1" means that the traveling speed and the curvature are within the area A1.
- the traveling condition P2 indicates the relationship between the traveling speed of the self-propelled device 100 and the size of the step.
- the size of the step is the height difference (cm) between the floor surfaces in the vertical direction.
- the driving condition P2 is defined by a function, like the driving condition P1.
- the area of the graph is divided into area A2 and area B2 by the function.
- Area A2 is an area whose curvature is equal to or less than the value of the function (that is, the curvature of the vertical axis).
- Region B2 is a region where the curvature is greater than the value of the function.
- Driving condition P2 is defined as a combination of driving speed and curvature within area A2. "Satisfies the traveling condition P2" means that the traveling speed and the curvature are within the area A2.
- the traveling conditions P are set in advance by test running the traveling system 1 .
- the self-propelled device 100 travels so that the travel condition P is satisfied. In such a case, in most cases, rollover or the like of the truck 200 does not occur.
- control device 501 controls the traveling body 61 so as to satisfy the traveling condition P in actual operation.
- Running control of the running body 61 is executed based on the change in the positional information of the indicator section 300 .
- the position information acquisition unit 570 further acquires the position information of the indicator unit 300 with respect to the running body 61 when the running body 61 is running on a test run.
- the test run is performed with the loading state of the cargo on the trolley 200 fixed or with no cargo loaded.
- the traveling control unit 550 sets the traveling condition P during actual operation of the traveling object 61 based on the change in the position information of the index unit 300 acquired by the position information acquiring unit 570 during the test run, and The traveling of the traveling body 61 is controlled so as to satisfy the traveling condition P during actual operation.
- the running control unit 550 controls the running of the running object so as to satisfy the running condition P, and based on the change in the position information of the index unit 300 acquired by the position information acquiring unit 570, the running control unit 550 By controlling the running of the body 61, the posture of the cart 200 can be maintained more stably than when the running condition P is not set in advance.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
This travel system has an autonomous mobile object (61), an indicator (300), a towed object to be towed by the mobile object (61), and a camera (35) or laser sensor, and comprises an acquisition unit that acquires position information of the indicator (300) with respect to the mobile object (61) while the mobile object (61) is traveling, and a travel control unit that controls traveling of the mobile object (61) on the basis of a change in position information of the indicator (300) acquired by the acquisition unit.
Description
本開示は、走行システムに関する。
The present disclosure relates to traveling systems.
工場などの生産システムにおいて、無人化が望まれている。無人化を実現するために、自走装置の開発が進められている。自走装置は、加工前のワークや工具などを各工作機械に搬送したり、各工作機械で加工が完了したワークや使用済の工具などを回収するために利用される。
Unmanned production systems such as factories are desired. Self-propelled devices are being developed in order to realize unmanned operation. Self-propelled devices are used to transport pre-machined workpieces and tools to machine tools, and to collect workpieces and used tools that have been machined by machine tools.
自走装置としては、たとえば、床の磁気テープ等のトラックに従って移動する無人搬送車(AGV:Automated Guided Vehicle)が知られている。また、近年、人や障害物を自動的に回避し自律走行する自律走行搬送ロボット(AMR:Autonomous Mobile Robot)も開発されている。このような自律走行搬送ロボットは、マップを元に自動で走行ルートを算出する。たとえば、ブラウザが搭載された情報機器(パーソナルコンピュータ、タブレット、スマートフォン等)によって自律走行搬送ロボットを遠隔制御することにより、マップが生成される。
As a self-propelled device, for example, an automated guided vehicle (AGV) that moves according to tracks such as magnetic tape on the floor is known. In recent years, autonomous mobile robots (AMR) have also been developed that automatically avoid people and obstacles and travel autonomously. Such an autonomous mobile transport robot automatically calculates a travel route based on a map. For example, a map is generated by remotely controlling an autonomous transport robot using an information device (personal computer, tablet, smartphone, etc.) equipped with a browser.
特開2019-8359号公報(特許文献1)には、自走装置として、投射光を出射する投光部を回転駆動させ、前記投射光が計測対象物で反射した反射光の受光に基づいて距離測定データを出力する距離測定装置と、距離測定データに基づいてマップ情報を作成するマップ作成部と、障害物を検知する障害物センサとを備える移動装置が開示されている。特許第6779398号公報(特許文献2)には、オムニホイールを備える自走装置が開示されている。特開2021-6359号公報(特許文献3)には、走行台車部とロボットアームとを備える自走装置が開示されている。
In Japanese Patent Laid-Open No. 2019-8359 (Patent Document 1), as a self-propelled device, a light projection unit that emits projection light is rotationally driven, and the projection light is reflected by the measurement object. A mobile device is disclosed that includes a distance measuring device that outputs distance measurement data, a map creation unit that creates map information based on the distance measurement data, and an obstacle sensor that detects obstacles. Japanese Patent No. 6779398 (Patent Document 2) discloses a self-propelled device having an omni-wheel. Japanese Patent Laying-Open No. 2021-6359 (Patent Document 3) discloses a self-propelled device including a traveling carriage and a robot arm.
特開2021―77054号公報(特許文献4)には、工作機械の周辺に配設される周辺装置と、周辺装置に係合して搬送する自走装置としての無人搬送車とが開示されている。周辺装置として、材料ストッカと、製品ストッカと、測定器およびチャックストッカとが開示されている。
Japanese Unexamined Patent Application Publication No. 2021-77054 (Patent Document 4) discloses a peripheral device arranged around a machine tool and an automatic guided vehicle as a self-propelled device that engages with the peripheral device to convey. there is A material stocker, a product stocker, a measuring instrument and a chuck stocker are disclosed as peripheral devices.
自走装置が台車等の被牽引体を牽引する自走システムにおいては、走行時に被牽引体が姿勢を崩すと、被牽引体が転倒する可能性もある。たとえば、曲線走行時に被牽引体が進行方向に向かって左右方向に大きく傾くと、被牽引体が横転する可能性がある。また、被牽引体が台車である場合、被牽引体が姿勢を崩すと、被牽引体が横転まではしなくても、被牽引体に積載した積載物が落下または転倒するおそれがある。このため、被牽引体の姿勢を保つように、自走装置(牽引体)を走行させる必要がある。
In a self-propelled system in which a self-propelled device pulls a towed object such as a trolley, if the towed object loses its posture while traveling, the towed object may overturn. For example, if the object to be towed leans to the left or right in the direction of travel while traveling on a curve, the object to be towed may overturn. Further, when the object to be towed is a trolley, if the object to be towed loses its posture, the load loaded on the object to be towed may fall or overturn even if the object to be towed does not overturn. Therefore, it is necessary to run the self-propelled device (tractor) so as to maintain the posture of the towed body.
被牽引体の姿勢を保つために、たとえば、被牽引体に、慣性計測装置(IMU:Inertial Measurement Unit)を設置することが考えられる。この場合、被牽引体は、慣性計測装置によって被牽引体の姿勢を検知し、かつ、検知結果を無線通信等で自走装置に通知する。自走装置は、検知結果に基づき、走行速度等の走行条件を変化させる。
In order to maintain the posture of the towed body, for example, it is conceivable to install an inertial measurement unit (IMU) on the towed body. In this case, the towed body detects the posture of the towed body by the inertial measurement device, and notifies the self-propelled device of the detection result by wireless communication or the like. The self-propelled device changes running conditions such as running speed based on the detection result.
しかしながら、慣性計測装置等の姿勢を検知する機器は、一般的には高価である。また、工場等の作業場では、数多くの被牽引体が利用される。それゆえ、被牽引体に慣性計測装置等の高価な機器を設置することは、コスト面からは得策とは言えない。
However, devices that detect attitude, such as inertial measurement devices, are generally expensive. Also, in a workshop such as a factory, a large number of towed bodies are used. Therefore, installing an expensive device such as an inertial measurement device on the towed body is not a cost-effective measure.
本開示は、上記の問題点に鑑みなされたものであって、その目的は、低コストで被牽引体の姿勢を保つことが可能な自走システムを提供することにある。
The present disclosure has been made in view of the above problems, and its purpose is to provide a self-propelled system capable of maintaining the posture of the towed body at low cost.
本開示のある局面に従うと、走行システムは、自走可能な走行体と、指標部を有し、走行体により牽引される被牽引体と、カメラまたはレーザセンサを含み、走行体の走行時に、走行体に対する指標部の位置情報を取得する取得部と、取得部において取得される指標部の位置情報の変化に基づいて、走行体の走行を制御する走行制御部とを備える。
According to one aspect of the present disclosure, a traveling system includes a traveling body capable of self-propelled, a towed body having an index section and towed by the traveling body, a camera or a laser sensor, and when the traveling body travels, An acquisition unit that acquires positional information of the index unit with respect to the traveling object, and a travel control unit that controls traveling of the traveling object based on changes in the positional information of the index unit acquired by the acquisition unit.
このような構成によれば、取得部において取得される指標部の位置情報の変化に基づいて、走行体の走行を制御することによって、被牽引体の姿勢を保つことができる。たとえば、被牽引体の横転等を防止できる。この場合に、取得部にカメラまたはレーザセンサが利用されるため、慣性計測装置等の機器を用いる場合に比べて、低コストを実現することができる。
According to such a configuration, the posture of the towed body can be maintained by controlling the running of the running body based on the change in the position information of the indicator acquired by the acquisition section. For example, it is possible to prevent the towed body from overturning. In this case, since a camera or a laser sensor is used for the acquisition unit, it is possible to achieve lower costs than when using a device such as an inertial measurement device.
好ましくは、指標部の位置情報は、走行体の直線走行時に取得される第1位置情報と、走行体の曲線走行時に取得される第2位置情報とを含む。走行制御部は、走行体の曲線走行時、第1位置情報を基準とする第2位置情報の変化量が予め定められた閾値を超えた場合に、走行体の走行を制御する。このような構成によれば、走行体の曲線走行時に被牽引体が横転することを防止できる。
Preferably, the position information of the indicator portion includes first position information acquired when the running body travels straight and second position information acquired when the running body travels along a curve. The traveling control unit controls traveling of the traveling body when the amount of change in the second position information based on the first position information exceeds a predetermined threshold when the traveling body travels along a curve. According to such a configuration, it is possible to prevent the towed body from overturning when the traveling body travels around a curve.
好ましくは、走行制御部は、走行体の走行を、走行体の停止、走行体の減速、および、走行体の曲線走行における曲率の減少のいずれかに制御する。このような構成によれば、走行体を停止させたり、減速させたり、曲線走行時における曲率を減少させたりすることによって、曲線走行時に被牽引体が横転することを防止できる。
Preferably, the travel control unit controls travel of the travel object to stop the travel object, decelerate the travel object, or reduce the curvature of the travel object when it travels along a curve. According to such a configuration, it is possible to prevent the towed body from overturning when traveling on a curved line by stopping or decelerating the traveling body or by reducing the curvature when traveling on a curved line.
好ましくは、被牽引体は、頂部と、車輪部とを含む。指標部は、上下方向において、車輪部よりも頂部寄りの位置に設けられる。このような構成によれば、走行体の曲率走行時、指標部の挙動がより大きくなるため、制御装置が、指標部の位置情報の変化を認識しやすくなる。
Preferably, the towed body includes a top portion and a wheel portion. The index portion is provided at a position closer to the top portion than the wheel portion in the vertical direction. According to such a configuration, the behavior of the indicator portion becomes greater when the traveling object travels around a curvature, so that the control device can easily recognize a change in the positional information of the indicator portion.
好ましくは、指標部の位置情報は、走行体が床面の段差を越える前に取得される第3位置情報と、走行体が床面の段差を越えた後に取得される第4位置情報とを含む。走行制御部は、走行体の走行時、第3位置情報を基準とする第4位置情報の変化量が予め定められた閾値を超えた場合に、走行体の走行を制御する。このような構成によれば、床面に段差があった場合に、被牽引体が横転することを防止できる。
Preferably, the positional information of the index portion includes third positional information acquired before the running body crosses the step on the floor and fourth positional information acquired after the running body crosses the step on the floor. include. The traveling control unit controls traveling of the traveling object when the amount of change in the fourth position information based on the third position information exceeds a predetermined threshold when the traveling object travels. According to such a configuration, it is possible to prevent the towed body from overturning when there is a step on the floor surface.
好ましくは、走行制御部は、走行体が停止するように、走行体の走行を制御する。このような構成によれば、走行体を停止させることによって、床面に段差があった場合に、被牽引体が横転することを防止できる。
Preferably, the running control unit controls running of the running body so that the running body stops. According to such a configuration, by stopping the traveling body, it is possible to prevent the towed body from overturning when there is a step on the floor surface.
好ましくは、指標部は、被牽引体に付された特定の図形である。取得部は、カメラを含み、カメラにより撮像された図形の画像を取得することにより、指標部の位置情報を取得する。このような構成によれば、自走装置は、被牽引体に付された図形を用いて、被牽引体の姿勢を保つことができる。
Preferably, the index portion is a specific figure attached to the towed body. The acquisition unit includes a camera, and acquires the position information of the indicator by acquiring an image of the figure captured by the camera. According to such a configuration, the self-propelled device can maintain the posture of the towed body using the graphic attached to the towed body.
好ましくは、被牽引体は、台車である。このように被牽引体が台車である場合、走行体により牽引する台車の種類が様々であったり、台車に積載する荷物の数および重量、荷物の積載位置が異なっていたりして、被牽引体の横転が生じる走行体の走行条件が都度変わる。このため、取得部において取得される指標部の位置情報の変化に基づいて、走行体の走行を制御することによって、被牽引体の横転を的確に防ぐことが可能となる。
Preferably, the towed body is a trolley. When the object to be towed is a trolley, the type of trolley towed by the traveling object may vary, the number and weight of loads to be loaded on the trolley, and the loading positions of the loads may differ. The running condition of the running body in which the rollover occurs changes each time. Therefore, it is possible to accurately prevent the towed object from overturning by controlling the running of the traveling object based on the change in the position information of the indicator acquired by the acquiring unit.
好ましくは、取得部は、走行体の試走時に、走行体に対する指標部の位置情報をさらに取得する。試走は、台車の荷物の積載状態を一定または当該荷物が積載されていない状態で行なわれる。走行制御部は、試走時において取得部によって取得される指標部の位置情報の変化に基づいて走行体の実運用時の走行条件を設定し、かつ、走行体の実運用時に走行条件を満たすように走行体の走行を制御する。
Preferably, the acquisition unit further acquires the position information of the index unit with respect to the running body when the running body is test run. The test run is carried out with the loading state of the cargo on the trolley fixed or with no cargo loaded. The travel control unit sets travel conditions during actual operation of the traveling object based on changes in the position information of the index unit acquired by the acquiring unit during test runs, and sets the traveling conditions during actual operation of the traveling object. to control the running of the running body.
このような構成によれば、走行体を試走させることによって、台車の積載状態が特定の状態にあるときに、台車が横転することのない走行条件を設定できる。実運用時において、当該走行条件を満たすように走行体の走行を制御し、かつ、取得部において取得される指標部の位置情報の変化に基づいて、走行体の走行を制御することによって、走行条件を予め設定しない場合に比べて、被牽引体の姿勢をより安定して保つことができる。
According to such a configuration, it is possible to set a traveling condition that prevents the truck from overturning when the truck is in a specific loading state by making the traveling body test run. During actual operation, by controlling the traveling of the traveling object so as to satisfy the traveling condition and controlling the traveling of the traveling object based on the change in the position information of the index portion acquired by the acquisition unit, The posture of the towed body can be maintained more stably than when the conditions are not set in advance.
本開示の他の局面に従うと、走行システムは、自走可能な走行体と、指標部を有し、走行体により牽引される被牽引体と、カメラまたはレーザセンサを含み、走行体の試走時に、走行体に対する指標部の位置情報を取得する取得部と、取得部において取得される指標部の位置情報の変化に基づいて、走行体の走行条件を設定し、かつ、走行体の実運用時に走行条件を満たすように走行体の走行を制御する走行制御部とを備える。
According to another aspect of the present disclosure, a traveling system includes a traveling body capable of self-propelled, a towed body having an indicator section and towed by the traveling body, and a camera or a laser sensor. an acquisition unit for acquiring positional information of the indicator unit with respect to the running object; setting a running condition of the running object based on changes in the positional information of the indicator unit acquired by the acquisition unit; and a travel control unit that controls travel of the traveling body so as to satisfy travel conditions.
このような構成によれば、走行体を試走させることによって、被牽引体が横転することのない走行条件を設定できる。当該走行条件を満たすように走行体の走行を制御することにより、走行体の走行時に、被牽引体の姿勢を保つことが可能となる。
According to such a configuration, it is possible to set running conditions that prevent the towed body from overturning by test running the running body. By controlling the traveling of the traveling body so as to satisfy the traveling conditions, it is possible to maintain the posture of the towed body during traveling of the traveling body.
本開示によれば、走行時において、低コストで被牽引体の姿勢を保つことが可能となる。
According to the present disclosure, it is possible to maintain the posture of the towed body at low cost during travel.
以下、図面を参照しつつ、本発明に従う各実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。したがって、これらについての詳細な説明は繰り返さない。なお、以下で説明される各実施の形態および各変形例は、適宜選択的に組み合わされてもよい。
Each embodiment according to the present invention will be described below with reference to the drawings. In the following description, identical parts and components are given identical reference numerals. Their names and functions are also the same. Therefore, detailed description of these will not be repeated. In addition, each embodiment and each modified example described below may be selectively combined as appropriate.
また、以下では、自律走行搬送ロボット(AMR:Autonomous Mobile Robot)に、ロボットアームが組み合わされた自走装置を例に挙げて説明する。ロボットアームは、たとえば、協働ロボットである。なお、自走装置は、自律走行搬送ロボットの代わりに、無人搬送車(AGV:Automated Guided Vehicle)にロボットアームが組み合わされていてもよい。
Also, in the following, a self-propelled device in which a robot arm is combined with an autonomous mobile transport robot (AMR) will be described as an example. The robotic arm is, for example, a collaborative robot. Note that the self-propelled device may be an automated guided vehicle (AGV) combined with a robot arm instead of the autonomous transport robot.
また、自走装置は、自走可能な走行体を備えていればよく、ロボットアームを備えていなくてもよい。すなわち、自走装置は、単に、自律走行搬送ロボットまたは無人搬送車であってもよい。
In addition, the self-propelled device only needs to have a self-propelled running body, and does not have to have a robot arm. That is, the self-propelled device may simply be an autonomous transport robot or an unmanned transport vehicle.
また、以下では、自走装置に牽引される被牽引体の例として、台車を例に挙げて説明する。ただし、被牽引体は、台車に限定されず、車輪が付いた移動可能な周辺機器(たとえば、バッテリ駆動するバリ取り用の機械)であってもよい。
Also, in the following, as an example of the object to be towed by the self-propelled device, a trolley will be described as an example. However, the towed object is not limited to a trolley and may be a movable peripheral device on wheels (eg, a battery-powered deburring machine).
[実施の形態1]
<A.走行システムの概略構成>
図1は、本実施の形態の走行システム1の側面図である。図2は、走行システム1の上面図である。 [Embodiment 1]
<A. Schematic configuration of traveling system>
FIG. 1 is a side view of atravel system 1 according to this embodiment. FIG. 2 is a top view of the traveling system 1. FIG.
<A.走行システムの概略構成>
図1は、本実施の形態の走行システム1の側面図である。図2は、走行システム1の上面図である。 [Embodiment 1]
<A. Schematic configuration of traveling system>
FIG. 1 is a side view of a
図1、図2および後出の図面には、前方、後方、右方、左方、上方および下方の6方向が適宜示されている。前方および後方は、自走装置100が直進走行する場合の進行方向であり、互いに反対方向である。右方は、自走装置100から前方を見た場合の右手方向である。左方は、自走装置100から前方を見た場合の左手方向であり、右方の反対方向である。上方は、自走装置100から見て空側であり、下方は、自走装置100が走行する床面側である。
In Figures 1, 2 and the drawings described later, the six directions of forward, backward, rightward, leftward, upward and downward are shown as appropriate. The forward and rearward directions are the traveling directions when the self-propelled device 100 travels straight, and are opposite to each other. The right side is the right-hand direction when viewed forward from the self-propelled device 100 . The left side is the left-hand direction when viewed forward from the self-propelled device 100, and is the opposite direction to the right side. The upper side is the sky side when viewed from the self-propelled device 100, and the lower side is the floor side on which the self-propelled device 100 runs.
なお、本実施の形態では、後述するトレイ66に対してロボットアーム11が位置する方向を前方といい、その反対方向を後方というが、いずれの方向を前方といい、いずれの方向を後方というかは、特に限定されない。
In this embodiment, the direction in which the robot arm 11 is positioned with respect to a tray 66, which will be described later, is referred to as the front, and the opposite direction is referred to as the rear. is not particularly limited.
図1および図2に示されるように、走行システム1は、自走装置100と、被牽引体としての台車200とを備える。自走装置100と、台車200とは、連結部45で連結されている。台車200は、自走装置100により牽引される。台車200は、典型的には、たとえば、材料ストッカ、製品ストッカ、測定器ストッカ、または、チャックストッカである。
As shown in FIGS. 1 and 2, the travel system 1 includes a self-propelled device 100 and a truck 200 as a towed body. The self-propelled device 100 and the carriage 200 are connected by a connecting portion 45 . The cart 200 is towed by the self-propelled device 100 . Carriage 200 is typically a material stocker, a product stocker, a measuring instrument stocker, or a chuck stocker, for example.
自走装置100は、図示しないサーバと双方向通信をする。当該通信は、たとえば、無線LAN(Local Area Network)により実現される。あるいは、上記の通信は、移動体用の無線システムにより実現される。移動体用の無線システムとして、たとえば、第4世代通信システム(4G)、第5世代通信システム(5G)を用いることができる。
The self-propelled device 100 performs two-way communication with a server (not shown). The communication is realized by, for example, a wireless LAN (Local Area Network). Alternatively, the above communication is realized by a wireless system for mobiles. For example, a fourth-generation communication system (4G) and a fifth-generation communication system (5G) can be used as mobile radio systems.
図1に示されるように、自走装置100は、走行体61と、ロボットアーム11と、カメラ35と、連結部45bとを有する。走行体61は、モータを用いた車輪駆動により走行可能(自走可能)に構成されている。ロボットアーム11は、走行体61に搭載されている。ロボットアーム11の先端部には、エンドエフェクタ40が装着されている。エンドエフェクタ40は、ロボットアーム11の先端に着脱可能に取り付けられ、対象物に対して作業を行なう。本例では、ロボットアーム11には、エンドエフェクタ40として、把持ハンドが接続される。自走装置100は、エンドエフェクタ40により、搬送対象物を把持可能に構成されている。
As shown in FIG. 1, the self-propelled device 100 has a traveling body 61, a robot arm 11, a camera 35, and a connecting portion 45b. The traveling body 61 is configured to be travelable (self-propellable) by driving wheels using a motor. The robot arm 11 is mounted on the traveling body 61 . An end effector 40 is attached to the tip of the robot arm 11 . The end effector 40 is detachably attached to the tip of the robot arm 11 and performs work on an object. In this example, a grasping hand is connected to the robot arm 11 as an end effector 40 . Self-propelled device 100 is configured to be able to grip an object to be conveyed by end effector 40 .
走行体61は、走行本体部62と、カバー部63とを有する。カバー部63は、走行本体部62上に設けられている。カバー部63は、走行本体部62上に内部空間を形成するカバー体からなり、その内部には、ロボットアーム11の駆動用モータ、自走装置100の動力源として設けられるバッテリ、または、自走装置100を制御するための各種制御部品などが収容されている。なお、走行本体部62の構造については、後に詳しく説明する。
The running body 61 has a running body portion 62 and a cover portion 63 . The cover portion 63 is provided on the traveling body portion 62 . The cover portion 63 is composed of a cover body that forms an internal space on the traveling main body portion 62, and contains a motor for driving the robot arm 11, a battery provided as a power source for the self-propelled device 100, or a self-propelled device. Various control parts and the like for controlling the device 100 are accommodated. The structure of the running body portion 62 will be described later in detail.
カバー部63は、頂面65を有する。頂面65上には、搬送対象物を載置するためのトレイ66が設けられている。ロボットアーム11は、頂面65に接続されている。ロボットアーム11は、頂面65から上方に向けて延出している。走行体61に対するロボットアーム11の接続位置は、トレイ66と前後方向に並んでいる。
The cover portion 63 has a top surface 65 . A tray 66 for placing an object to be conveyed is provided on the top surface 65 . Robot arm 11 is connected to top surface 65 . The robot arm 11 extends upward from the top surface 65 . The connecting position of the robot arm 11 to the traveling body 61 is aligned with the tray 66 in the front-rear direction.
ロボットアーム11は、基台部12と、アーム部13とを有する。基台部12は、走行体61に対して回転可能に接続されている。アーム部13は、基台部12に対して接続されている。アーム部13は、基台部12からアーム状に延びている。
The robot arm 11 has a base portion 12 and an arm portion 13 . The base portion 12 is rotatably connected to the traveling body 61 . The arm portion 13 is connected to the base portion 12 . The arm portion 13 extends like an arm from the base portion 12 .
ロボットアーム11は、プログラム制御型ロボットである。ロボットアーム11は、本例では、垂直多関節型ロボットである。詳しくは、本例では、ロボットアーム11は、6自由度(6つの可動部)を有する6軸ロボットである。なお、6軸が制御可能なロボットアーム11の代わりに、走行体61に6軸以外の多軸制御可能なロボットアームが搭載されてもよい。
The robot arm 11 is a program-controlled robot. The robot arm 11 is a vertically articulated robot in this example. Specifically, in this example, the robot arm 11 is a six-axis robot having six degrees of freedom (six movable parts). Instead of the six-axis controllable robot arm 11, the traveling body 61 may be equipped with a multi-axis controllable robot arm other than the six-axis controllable robot arm.
台車200は、本体部205と、複数の車輪220とを備える。詳しくは、台車200は、右側前輪220Rfと、左側前輪220Lf(図3参照)と、右側後輪220Rbと、左側前輪(図示せず)とを備える。
The carriage 200 includes a main body 205 and a plurality of wheels 220. Specifically, the truck 200 includes a right front wheel 220Rf, a left front wheel 220Lf (see FIG. 3), a right rear wheel 220Rb, and a left front wheel (not shown).
台車200は、連結部45aをさらに備える。自走装置100と台車200とは、連結部45を構成する連結部45aと連結部45bとで、互いに連結される。
The carriage 200 further includes a connecting portion 45a. The self-propelled device 100 and the carriage 200 are connected to each other by a connecting portion 45 a and a connecting portion 45 b that constitute the connecting portion 45 .
図2に示されるように、台車200の本体部205は、収容部210と、複数の側壁部251とを備える。複数の側壁部251により収容部210が形成されている。詳しくは、台車200は、前側の側壁部251Fと、後側の側壁部251Bと、右側の側壁部251Rと、左側の側壁部251Lとを備える。本例では、各側壁部251の頂部211は、平らな形状となっている。各側壁部251によって、台車200の大きな傾き等により台車200に積載された荷物(積載物)が落下してしまうことを防いでいる。
As shown in FIG. 2 , the body portion 205 of the carriage 200 includes an accommodation portion 210 and a plurality of side wall portions 251 . A housing portion 210 is formed by a plurality of side wall portions 251 . Specifically, the truck 200 includes a front side wall portion 251F, a rear side wall portion 251B, a right side wall portion 251R, and a left side wall portion 251L. In this example, the top portion 211 of each side wall portion 251 has a flat shape. Each side wall portion 251 prevents the cargo (load) loaded on the truck 200 from falling due to a large inclination of the truck 200 or the like.
図1および図2に示されるように、カメラ35は、走行体61に設置されている。カメラ35は、自走装置100の後方を撮像可能に設置されている。詳しくは、カメラ35は、台車200を撮像可能な位置に設置されている。より詳しくは、カメラ35は、台車200の前側の側壁部251Fを撮像可能な位置に設置されている。
As shown in FIGS. 1 and 2, the camera 35 is installed on the traveling body 61. Camera 35 is installed so that the rear of self-propelled device 100 can be imaged. Specifically, the camera 35 is installed at a position where the carriage 200 can be imaged. More specifically, the camera 35 is installed at a position capable of capturing an image of the side wall portion 251F on the front side of the carriage 200 .
本例のように、自走装置100が台車200と連結されている場合には、カメラ35は、側壁部251Fの少なくとも一部を含む領域を撮像する。図2の状態では、カメラ35の光軸Jと、側壁部251Fとが略直交している。
As in this example, when the self-propelled device 100 is connected to the carriage 200, the camera 35 images an area including at least part of the side wall portion 251F. In the state of FIG. 2, the optical axis J of the camera 35 and the side wall portion 251F are substantially orthogonal.
カメラ35は、本例では、典型的には、デジタルカメラである。カメラ35は、少なくとも動画像を撮像可能である。なお、カメラ35の設置位置は、図示した位置に限定されるものではない。台車200に貼り付けられた後述する指標部300が撮像可能な位置であれば、特に限定されるものではない。
The camera 35 is typically a digital camera in this example. The camera 35 can capture at least moving images. It should be noted that the installation position of the camera 35 is not limited to the illustrated position. The position is not particularly limited as long as it is a position where the later-described indicator portion 300 attached to the carriage 200 can be imaged.
<B.自走装置の走行本体部>
図3は、走行本体部62を示す上面図である。 <B. Traveling body of self-propelled device>
FIG. 3 is a top view showing the runningbody portion 62. As shown in FIG.
図3は、走行本体部62を示す上面図である。 <B. Traveling body of self-propelled device>
FIG. 3 is a top view showing the running
図3に示されるように、走行本体部62は、第1駆動輪71と、第1走行用モータ77と、第2駆動輪72と、第2走行用モータ78と、複数の従動輪51(51Rf,51Lf,51Rb,51Lb)とを有する。従動輪51は、オムニホイールからなる。従動輪51は、ホイール56と、複数のローラ60とを有する。
As shown in FIG. 3, the traveling main body 62 includes first driving wheels 71, a first traveling motor 77, a second driving wheel 72, a second traveling motor 78, and a plurality of driven wheels 51 ( 51Rf, 51Lf, 51Rb, 51Lb). The driven wheel 51 consists of an omni wheel. The driven wheel 51 has a wheel 56 and a plurality of rollers 60 .
走行本体部62は、第1車軸73と、第2車軸74と、減速機75と、減速機76とを有する。第1走行用モータ77は、減速機75を介して第1駆動輪71に接続されている。第2走行用モータ78は、減速機76を介して第2駆動輪72に接続されている。
The traveling main body 62 has a first axle 73 , a second axle 74 , a speed reducer 75 and a speed reducer 76 . The first travel motor 77 is connected to the first driving wheels 71 via a reduction gear 75 . The second travel motor 78 is connected to the second drive wheels 72 via a reduction gear 76 .
走行本体部62は、フレーム86と、第1支持アーム93と、第2支持アーム94と、第1支持軸91と、第2支持軸92と、第3支持アーム88と、第3支持軸87とをさらに有する。
The traveling body portion 62 includes a frame 86, a first support arm 93, a second support arm 94, a first support shaft 91, a second support shaft 92, a third support arm 88, and a third support shaft 87. and
走行本体部62は、第3車軸96と、第4車軸97と、第5車軸98と、第6車軸99とをさらに有する。従動輪51Rfは、第3車軸96を介して、第1支持アーム93に接続されている。従動輪51Lfは、第4車軸97を介して、第2支持アーム94に接続されている。従動輪51Rbは、第5車軸98を介して、第3支持アーム88に接続されている。従動輪51Lbは、第6車軸99を介して、第3支持アーム88に接続されている。本例では、連結部45bは、フレーム86に接続されている。
The traveling main body 62 further has a third axle 96 , a fourth axle 97 , a fifth axle 98 and a sixth axle 99 . The driven wheel 51Rf is connected to the first support arm 93 via the third axle 96 . The driven wheel 51Lf is connected to the second support arm 94 via the fourth axle 97 . The driven wheel 51</b>Rb is connected to the third support arm 88 via the fifth axle 98 . The driven wheel 51Lb is connected to the third support arm 88 via the sixth axle 99 . In this example, the connecting portion 45b is connected to the frame 86. As shown in FIG.
このような走行本体部62のハードウェア構成は公知であるため、ここでは、当該構成についての詳細な説明は繰り返さない。以下、走行本体部62による走行体61の移動方向について、説明する。
Since the hardware configuration of such a traveling main unit 62 is publicly known, detailed description of the configuration will not be repeated here. The moving direction of the traveling body 61 by the traveling body portion 62 will be described below.
走行体61は、第1駆動輪71および第2駆動輪72に対して、互いに同じ回転が付与されることによって、前後方向に直進し、第1駆動輪71および第2駆動輪72に対して、互いに異なる回転が付与されることによって、左右方向に旋回動作する(差動2輪駆動方式)。第1駆動輪71、第2駆動輪72および従動輪51は、左右に操舵不可である。
The running body 61 moves straight in the front-rear direction by imparting the same rotation to the first driving wheels 71 and the second driving wheels 72 , and rotates relative to the first driving wheels 71 and the second driving wheels 72 . , rotates in the left-right direction (differential two-wheel drive system). The first drive wheel 71, the second drive wheel 72 and the driven wheel 51 cannot be steered left and right.
より具体的には、走行体61は、第1駆動輪71および第2駆動輪72を、互いに等しい回転数で、かつ、正転させることによって、前方に直進する(前進)。走行体61は、第1駆動輪71および第2駆動輪72を、互いに等しい回転数で、かつ、反転させることによって、後方に直進する(後進)。
More specifically, the traveling body 61 moves straight forward (forward) by rotating the first driving wheel 71 and the second driving wheel 72 at the same number of revolutions. The traveling body 61 advances straight rearward (backward) by rotating the first driving wheel 71 and the second driving wheel 72 at the same number of revolutions and inverting them.
走行体61は、第2駆動輪72を正転させ、第1駆動輪71を第2駆動輪72よりも大きい回転数で正転させることによって、左方に旋回動作する(左旋回)。走行体61は、第1駆動輪71を正転させ、第2駆動輪72を第1駆動輪71よりも大きい回転数で正転させることによって、右方に旋回動作する(右旋回)。
The traveling body 61 rotates the second driving wheels 72 forward and rotates the first driving wheels 71 forward at a higher rotational speed than the second driving wheels 72, thereby turning leftward (left turning). The running body 61 rotates the first drive wheel 71 forward and rotates the second drive wheel 72 forward at a higher rotational speed than the first drive wheel 71, thereby turning rightward (right turn).
走行体61は、第1駆動輪71を正転させ、第2駆動輪72を第1駆動輪71と同じ回転数で反転させることによって、回転動作する(左回転)。上面視における走行体61の回転中心は、理想的には、第1軸121および第2軸122の軸上であって、第1駆動輪71および第2駆動輪72の中心位置に対応している。
The traveling body 61 rotates (counterclockwise rotation) by rotating the first driving wheels 71 forward and rotating the second driving wheels 72 in the same rotation speed as the first driving wheels 71 . Ideally, the center of rotation of the traveling body 61 when viewed from above is on the axis of the first shaft 121 and the second shaft 122, corresponding to the center position of the first drive wheel 71 and the second drive wheel 72. there is
なお、第1駆動輪71を反転させ、第2駆動輪72を第1駆動輪71と同じ回転数で正転させた場合には、走行体61の回転動作の方向が上記の場合と逆転する(右回転)。本発明における「旋回動作」は、上記の右旋回、左旋回、および、回転(左回転、右回転)の動作を含む。
When the first drive wheel 71 is reversed and the second drive wheel 72 is rotated forward at the same rotational speed as the first drive wheel 71, the direction of rotation of the running body 61 is reversed from that in the above case. (Right rotation). The "turning motion" in the present invention includes the right turning, left turning, and rotation (left turning, right turning) described above.
<C.動作制御に関する装置構成>
図4は、自走装置100の動作制御に関する装置構成を示す図である。 <C. Device Configuration for Operation Control>
FIG. 4 is a diagram showing a device configuration regarding operation control of the self-propelleddevice 100. As shown in FIG.
図4は、自走装置100の動作制御に関する装置構成を示す図である。 <C. Device Configuration for Operation Control>
FIG. 4 is a diagram showing a device configuration regarding operation control of the self-propelled
図4に示されるように、自走装置100は、制御装置501と、ROM(Read Only Memory)502と、RAM(Random Access Memory)503と、通信インターフェイス504と、レーザセンサ505と、モータ駆動装置506と、記憶装置510と、ロボットアーム11と、アンテナ31と、カメラ35とを有する。これらのコンポーネントは、バス509に接続されている。
As shown in FIG. 4, the self-propelled device 100 includes a control device 501, a ROM (Read Only Memory) 502, a RAM (Random Access Memory) 503, a communication interface 504, a laser sensor 505, and a motor drive device. 506 , storage device 510 , robot arm 11 , antenna 31 , and camera 35 . These components are connected to bus 509 .
制御装置501は、たとえば、少なくとも1つの集積回路によって構成されている。集積回路は、たとえば、少なくとも1つのCPU(Central Processing Unit)、少なくとも1つのGPU(Graphics Processing Unit)、少なくとも1つのASIC(Application Specific Integrated Circuit)、少なくとも1つのFPGA(Field Programmable Gate Array)、または、それらの組み合わせなどによって構成され得る。一例として、制御装置501は、PLC(Programmable Logic Controller)である。
The control device 501 is composed of, for example, at least one integrated circuit. The integrated circuit is, for example, at least one CPU (Central Processing Unit), at least one GPU (Graphics Processing Unit), at least one ASIC (Application Specific Integrated Circuit), at least one FPGA (Field Programmable Gate Array), or It can be configured by a combination thereof. As an example, the control device 501 is a PLC (Programmable Logic Controller).
制御装置501は、制御プログラム511またはオペレーティングシステムなどの各種プログラムを実行することによって、自走装置100の動作を制御する。制御装置501は、制御プログラム511の実行命令を受け付けたことに基づいて、記憶装置510またはROM502からRAM503に制御プログラム511を読み出す。RAM503は、ワーキングメモリとして機能し、制御プログラム511の実行に必要な各種データを一時的に格納する。
The control device 501 controls the operation of the self-propelled device 100 by executing various programs such as a control program 511 or an operating system. The control device 501 reads the control program 511 from the storage device 510 or the ROM 502 to the RAM 503 based on the acceptance of the execution command of the control program 511 . The RAM 503 functions as a working memory and temporarily stores various data necessary for executing the control program 511 .
制御装置501は、走行体61の走行制御を行なう。制御装置501は、ロボットアーム11の動作を制御する。すなわち、制御装置501は、ロボットコントローラとしても機能する。なお、自走装置100は、走行体61の走行を制御する制御装置と、ロボットアーム11の動作を制御する制御装置とを、別体として備えてもよい。
The control device 501 performs travel control of the travel body 61 . A control device 501 controls the motion of the robot arm 11 . That is, the control device 501 also functions as a robot controller. The self-propelled device 100 may include a control device for controlling the traveling of the traveling body 61 and a control device for controlling the operation of the robot arm 11 as separate bodies.
通信インターフェイス504には、アンテナ31などが接続されている。自走装置100は、アンテナ31および通信インターフェイス504を介して、自走装置100および外部機器(たとえば、サーバ)の間の無線通信を実現する。
The communication interface 504 is connected to the antenna 31 and the like. Self-running device 100 realizes wireless communication between self-running device 100 and an external device (for example, a server) via antenna 31 and communication interface 504 .
レーザセンサ505は、図1のカバー部63に収容されている。レーザセンサ505は、自ら回転しながらレーザ光を周囲に照射し、当該レーザ光の反射光を受光することによって、レーザセンサ505の周囲にある物体を検出する。レーザセンサ505は、レーザセンサ505からレーザ光の走査面内に存在する物体までの距離を、レーザセンサ505の回転軸周りの角度別に表わした2次元距離データDとして、制御装置501に出力する。レーザセンサ505の走査面は、水平面に対して傾いている。そのため、自走装置100は、移動することで周囲を3次元的にスキャンすることができる。
The laser sensor 505 is housed in the cover portion 63 of FIG. The laser sensor 505 detects an object around the laser sensor 505 by irradiating the surroundings with laser light while rotating and receiving the reflected light of the laser light. The laser sensor 505 outputs the distance from the laser sensor 505 to an object existing within the scanning plane of the laser beam to the control device 501 as two-dimensional distance data D representing each angle around the rotation axis of the laser sensor 505 . The scanning plane of the laser sensor 505 is tilted with respect to the horizontal plane. Therefore, the self-propelled device 100 can three-dimensionally scan the surroundings by moving.
モータ駆動装置506は、制御装置501からのモータ駆動指令に従って、第1走行用モータ77および第2走行用モータ78の回転を制御する。モータ駆動指令は、たとえば、第1走行用モータ77および第2走行用モータ78の正転指令、第1走行用モータ77および第2走行用モータ78の逆転指令、ならびに、第1走行用モータ77および第2走行用モータ78の回転数(回転速度)を含む。
The motor drive device 506 controls the rotation of the first travel motor 77 and the second travel motor 78 according to the motor drive command from the control device 501 . The motor drive command includes, for example, a forward rotation command for the first travel motor 77 and the second travel motor 78, a reverse rotation command for the first travel motor 77 and the second travel motor 78, and a first travel motor 77. and the number of revolutions (rotational speed) of the second travel motor 78 .
記憶装置510は、たとえば、ハードディスクまたはフラッシュメモリなどの記憶媒体である。記憶装置510は、自走装置100の動作制御するための制御プログラム511、走行エリアの3次元マップ512などを格納する。詳しくは、制御プログラム511は、走行体61の走行を制御するためのプログラムと、ロボットアーム11の動作を制御するプログラムとを含む。なお、制御プログラム511および3次元マップ512は、記憶装置510に限定されず、制御装置501の記憶領域(たとえば、キャッシュメモリなど)、ROM502、RAM503、または、外部機器(たとえば、サーバー)などに格納されてもよい。
The storage device 510 is, for example, a storage medium such as a hard disk or flash memory. The storage device 510 stores a control program 511 for controlling the operation of the self-propelled device 100, a three-dimensional map 512 of the travel area, and the like. Specifically, the control program 511 includes a program for controlling the travel of the traveling body 61 and a program for controlling the motion of the robot arm 11 . Note that the control program 511 and the three-dimensional map 512 are not limited to the storage device 510, and are stored in a storage area of the control device 501 (eg, cache memory, etc.), ROM 502, RAM 503, or an external device (eg, server). may be
また、制御プログラム511は、単体のプログラムとしてではなく、任意のプログラムの一部に組み込まれて提供されてもよい。この場合、制御プログラム511による走行体61の走行制御処理およびロボットアーム11の動作制御処理は、任意のプログラムと協働して実現される。
Also, the control program 511 may be provided as a part of an arbitrary program, not as a standalone program. In this case, the travel control processing of the traveling body 61 and the motion control processing of the robot arm 11 by the control program 511 are realized in cooperation with arbitrary programs.
このような一部のモジュールを含まないプログラムであっても、本実施の形態に従う制御プログラム511の趣旨を逸脱するものではない。さらに、制御プログラム511によって提供される機能の一部または全部は、専用のハードウェアによって実現されてもよい。さらに、少なくとも1つのサーバが制御プログラム511の処理の一部を実行する所謂クラウドサービスのような形態で、自走装置100が構成されてもよい。
Even a program that does not include such a part of modules does not deviate from the gist of the control program 511 according to the present embodiment. Furthermore, part or all of the functions provided by the control program 511 may be realized by dedicated hardware. Furthermore, self-propelled device 100 may be configured in a form such as a so-called cloud service in which at least one server executes part of the processing of control program 511 .
<D.台車の指標部>
図5は、図2のv-v線矢視断面図である。 <D. Index part of the truck>
5 is a cross-sectional view taken along line vv of FIG. 2. FIG.
図5は、図2のv-v線矢視断面図である。 <D. Index part of the truck>
5 is a cross-sectional view taken along line vv of FIG. 2. FIG.
図5に示されるように、指標部300は、台車200に付されている。指標部300は、台車200の側壁部251Fに付されている。指標部300は、上下方向において、台車200の車輪220よりも頂部211に付されている。指標部300は、検出精度の観点から、平らな面に付されることがこのましい。
As shown in FIG. 5 , the indicator part 300 is attached to the carriage 200 . The indicator portion 300 is attached to the side wall portion 251F of the carriage 200 . The index portion 300 is attached to the top portion 211 of the truck 200 rather than the wheels 220 in the vertical direction. From the viewpoint of detection accuracy, the indicator part 300 is preferably attached to a flat surface.
たとえば、指標部300は、側壁部251Fに直に貼り付けられる。指標部300の裏面は、粘着シートで構成されてもよい。または、指標部300は、側壁部251Fに取り付けられた透明のケースに入れられていてもよい。
For example, the indicator portion 300 is directly attached to the side wall portion 251F. The back surface of the indicator section 300 may be made of an adhesive sheet. Alternatively, the index portion 300 may be encased in a transparent case attached to the side wall portion 251F.
指標部300は、特定の図形である。指標部300は、本例では、マーカである。指標部300は、台車200の傾きを自走装置100が検出するために利用される。指標部300は、台車200の床面910(走行面)に対する傾きを検出するために利用される。詳しくは、指標部300は、本体部205の床面910に対する傾き(図8参照)を検出するために利用される。なお、傾きは、典型的には、傾斜角度で表される。
The index part 300 is a specific figure. The indicator part 300 is a marker in this example. The indicator unit 300 is used by the self-propelled device 100 to detect the inclination of the carriage 200 . The indicator part 300 is used to detect the inclination of the truck 200 with respect to the floor surface 910 (running surface). Specifically, the indicator section 300 is used to detect the inclination of the body section 205 with respect to the floor surface 910 (see FIG. 8). Note that the inclination is typically represented by an inclination angle.
なお、本体部205だけではなく、自走装置100も同様に傾いたときには、指標部300によって、自走装置100に対する本体部205の傾きの度合いが検出されることになる。
It should be noted that when not only the body portion 205 but also the self-propelled device 100 is similarly tilted, the index portion 300 detects the degree of inclination of the body portion 205 with respect to the self-propelled device 100 .
指標部300として、たとえば、AR(Augmented Reality)マーカを用いることができる。本例では、ARマーカの一つであるAprilTagを図示している。なお、AprilTagは、3次元上の物体の位置および姿勢を検出するアプリケーション用の視覚的なマーカである。AprilTagは、工作機械でも用いられている。AprilTagは、符号化するデータが少なくなるように設計されているため、より高速に復号化できる。よって、リアルタイム性を必要とする走行システム1に適している。
For example, an AR (Augmented Reality) marker can be used as the indicator section 300 . In this example, AprilTag, which is one of the AR markers, is illustrated. Note that AprilTag is a visual marker for applications that detect the position and orientation of a three-dimensional object. AprilTag is also used in machine tools. AprilTag is designed to encode less data, so it can be decoded faster. Therefore, it is suitable for the traveling system 1 that requires real-time performance.
本例では、AprilTagが台車200に付されているため、自走装置100に対する台車200の相対的位置および姿勢を、自走装置100が検出できる。
In this example, since the AprilTag is attached to the truck 200 , the relative position and orientation of the truck 200 with respect to the self-propelled device 100 can be detected by the self-propelled device 100 .
なお、指標部300は、ARマーカに限定されるものではない。後述するように、自走装置100は、少なくとも、カメラ35に対する指標部300の相対位置を検出できればよい。このため、指標部300は、自走装置100側のアプリケーションが認識できるものであればよい。指標部300は、アプリケーションが指標部300の位置を追従できるものであればよい。
It should be noted that the indicator section 300 is not limited to the AR marker. As will be described later, self-propelled device 100 only needs to be able to detect at least the relative position of index section 300 with respect to camera 35 . For this reason, the indicator unit 300 may be anything that can be recognized by the application on the self-propelled device 100 side. The index section 300 may be any device as long as the application can track the position of the index section 300 .
<E.自走装置の機能的構成>
図6は、自走装置100の機能的構成を説明するための機能ブロック図である。 <E. Functional configuration of self-propelled device>
FIG. 6 is a functional block diagram for explaining the functional configuration of self-propelleddevice 100. As shown in FIG.
図6は、自走装置100の機能的構成を説明するための機能ブロック図である。 <E. Functional configuration of self-propelled device>
FIG. 6 is a functional block diagram for explaining the functional configuration of self-propelled
図6に示されるように、制御装置501は、機能構成の一例として、走行制御部550と、ロボット制御部560と、データ処理部555とを含む。
As shown in FIG. 6, the control device 501 includes a travel control unit 550, a robot control unit 560, and a data processing unit 555 as an example of a functional configuration.
ロボット制御部560は、ロボットアーム11およびエンドエフェクタ40の動作を制御するための機能構成である。ロボット制御部560は、ロボットアーム11の6つの可動部(6軸)の動作を制御する。具体的には、ロボット制御部560は、ロボットアーム11のアクチュエータ(図示せず)の動作(回転角、回転速度等)を制御する。
The robot control unit 560 is a functional configuration for controlling the operations of the robot arm 11 and the end effector 40. The robot control unit 560 controls operations of six movable parts (six axes) of the robot arm 11 . Specifically, the robot control unit 560 controls the operation (rotation angle, rotation speed, etc.) of an actuator (not shown) of the robot arm 11 .
さらに、ロボット制御部560は、エンドエフェクタ40の電動ハンドの動きを制御する。ロボット制御部560は、電動ハンドの把持動作を制御する。具体的には、ロボット制御部560は、エンドエフェクタ40内のアクチュエータ(図示せず)の動作を制御する。
Furthermore, the robot control unit 560 controls the movement of the electric hand of the end effector 40. A robot control unit 560 controls the gripping operation of the electric hand. Specifically, the robot controller 560 controls the operation of an actuator (not shown) inside the end effector 40 .
走行制御部550は、自走装置100の走行を制御するための機能構成である。走行制御部550は、レーザセンサ505から入力される2次元距離データDと、3次元マップ512とを比較することにより、自走装置100の現在位置を特定する。制御装置501は、現在位置を特定することで、3次元マップ512上の予め定められた経路に沿って自走装置100を走行させる。なお、制御装置501は、3次元マップ512を生成することもできる。
The travel control unit 550 is a functional configuration for controlling travel of the self-propelled device 100 . Travel control unit 550 identifies the current position of self-propelled device 100 by comparing two-dimensional distance data D input from laser sensor 505 and three-dimensional map 512 . Control device 501 causes self-propelled device 100 to travel along a predetermined route on three-dimensional map 512 by specifying the current position. Note that the control device 501 can also generate a three-dimensional map 512 .
さらに、走行制御部550は、自走装置100の駆動中にレーザセンサ505から順次取得される2次元距離データDに基づいて、自走装置100の周囲にある障害物を検知し、当該障害物との衝突を避けるように自走装置100の走行を制御する。当該障害物は、たとえば、人物や他の自走装置100などの移動体と、壁や棚などの静止体とを含む。
Further, the travel control unit 550 detects obstacles around the self-propelled device 100 based on the two-dimensional distance data D sequentially acquired from the laser sensor 505 while the self-propelled device 100 is driven, and detects the obstacle. The traveling of the self-propelled device 100 is controlled so as to avoid a collision with. The obstacles include, for example, moving bodies such as people and other self-propelled devices 100, and stationary bodies such as walls and shelves.
走行制御部550は、障害物が検知されていない間、3次元マップ512上の予め定められた経路を走行するように自走装置100の走行を制御する。一方で、走行制御部550は、障害物が検知された場合には、当該障害物との衝突を避けるように自走装置100の走行を制御する。
The traveling control unit 550 controls traveling of the self-propelled device 100 so that it travels along a predetermined route on the three-dimensional map 512 while no obstacle is detected. On the other hand, when an obstacle is detected, the travel control unit 550 controls travel of the self-propelled device 100 so as to avoid collision with the obstacle.
ある局面において、障害物までの距離が所定距離以上である場合には、走行制御部550は、当該障害物を避けるように自走装置100の走行を制御する。一方で、障害物までの距離が所定距離未満である場合には、走行制御部550は、自走装置100の走行を停止する。
In a certain aspect, when the distance to the obstacle is equal to or greater than a predetermined distance, the travel control unit 550 controls travel of the self-propelled device 100 so as to avoid the obstacle. On the other hand, when the distance to the obstacle is less than the predetermined distance, the travel control unit 550 stops the travel of the self-propelled device 100 .
次に、カメラ35を用いた、制御装置501による走行体61の制御について説明する。
Next, the control of the traveling body 61 by the control device 501 using the camera 35 will be described.
自走装置100は、位置情報取得部570を備える。位置情報取得部570は、カメラ35と、制御装置501内のデータ処理部555とを含む。走行制御部550は、記憶部551を含む。記憶部551は、閾値Th1と、閾値Th2とを記憶している。本例では、閾値Th1は、角度の閾値である。閾値Th2は、距離(長さまたはピクセル数)に関する閾値である。なお、記憶部551は、記憶装置510の一部である。
The self-propelled device 100 has a position information acquisition unit 570 . Position information acquisition unit 570 includes camera 35 and data processing unit 555 in control device 501 . Travel control unit 550 includes a storage unit 551 . The storage unit 551 stores a threshold Th1 and a threshold Th2. In this example, the threshold Th1 is an angle threshold. The threshold Th2 is a threshold for distance (length or number of pixels). Note that the storage unit 551 is part of the storage device 510 .
図6に示されるように、位置情報取得部570は、カメラ35を含み、走行体61の走行時に、走行体61に対する指標部300の位置情報を取得する。詳しくは、カメラ35は、指標部300を連続的に撮像する。カメラ35は、撮像により得られた画像データを、データ処理部555に逐次送信する。
As shown in FIG. 6, the position information acquisition unit 570 includes the camera 35 and acquires position information of the index unit 300 with respect to the running body 61 while the running body 61 is running. Specifically, the camera 35 continuously images the index portion 300 . The camera 35 sequentially transmits image data obtained by imaging to the data processing unit 555 .
データ処理部555は、当該画像データに基づいて、3次元空間上の指標部300の位置および姿勢を算出する。詳しくは、データ処理部555は、指標部300の位置(指標部300の位置情報)を算出し、かつ、当該算出結果に基づき、指標部300の姿勢を算出する。本例では、姿勢として、指標部300の傾き(傾斜角度)が算出される。データ処理部555は、指標部300の位置情報および指標部300の傾きの情報を、走行制御部550に送る。なお、説明の便宜上、図5の状態における指標部300の傾きは、0°とする。
The data processing unit 555 calculates the position and orientation of the index unit 300 in the three-dimensional space based on the image data. Specifically, the data processing unit 555 calculates the position of the index unit 300 (position information of the index unit 300), and calculates the orientation of the index unit 300 based on the calculation result. In this example, the inclination (inclination angle) of the index section 300 is calculated as the orientation. Data processing section 555 sends the position information of indicator section 300 and the information of the inclination of indicator section 300 to running control section 550 . For convenience of explanation, the inclination of the indicator portion 300 in the state of FIG. 5 is assumed to be 0°.
このように、位置情報取得部570は、カメラ35により撮像された指標部300の画像を取得することにより、指標部300の位置情報および傾きの情報を取得する。なお、データ処理部555は、全ての画像データにおける指標部300の位置および傾きを決定する必要は必ずしもない。データ処理部555は、所定の演算周期に従って、指標部300の位置および傾きを決定してもよい。
In this way, the position information acquisition section 570 acquires the position information and the tilt information of the index section 300 by acquiring the image of the index section 300 captured by the camera 35 . Note that the data processing unit 555 does not necessarily need to determine the position and inclination of the index portion 300 in all image data. The data processing section 555 may determine the position and inclination of the index section 300 according to a predetermined calculation cycle.
走行制御部550は、データ処理部555から指標部300の位置情報および傾きの情報を逐次取得する。走行制御部550は、指標部300の位置情報の変化に基づいて、走行体61の走行を制御する。より詳しくは、走行制御部550は、指標部300の位置情報の変化および当該変化に基づく指標部300の傾きに基づいて、走行体61の走行を制御する。
The travel control unit 550 sequentially acquires position information and inclination information of the index unit 300 from the data processing unit 555 . The travel control unit 550 controls travel of the traveling body 61 based on changes in the position information of the indicator unit 300 . More specifically, the travel control unit 550 controls travel of the traveling body 61 based on changes in the position information of the indicator 300 and the tilt of the indicator 300 based on the change.
以下、指標部300の位置情報の変化に基づく制御例を2つ説明する。なお、自走装置100は、自律的に走行、あるいは指令された経路を走行するため、自走装置100は、前進、後進、左旋回、右旋回、左回転、右回転のいずれを行なっているかを把握している。
Two control examples based on changes in the positional information of the index unit 300 will be described below. In addition, since the self-propelled device 100 runs autonomously or travels along an instructed route, the self-propelled device 100 can move forward, backward, turn left, turn right, turn left, or turn right. I know if there is.
(1)直線走行時から曲線走行時に切り替った場合
走行体61の走行ルートが直線走行時から曲線走行時に切り替った際における、走行制御部550による走行体61の制御について説明する。 (1) Switching from Straight Traveling to Curved Traveling Control of the travelingbody 61 by the traveling control unit 550 when the traveling route of the traveling body 61 switches from straight traveling to curved traveling will be described.
走行体61の走行ルートが直線走行時から曲線走行時に切り替った際における、走行制御部550による走行体61の制御について説明する。 (1) Switching from Straight Traveling to Curved Traveling Control of the traveling
指標部300の位置情報は、走行体61の直線走行時に取得される位置情報P1と、走行体61の曲線走行時に取得される位置情報P2とを含む。走行制御部550は、走行体61の曲線走行時、位置情報P1を基準とする位置情報P2の変化量(以下、「変化量ΔP12」と称する)が予め定められた閾値Th1を超えた場合に、走行体61の走行を制御する。具体的には、本例では、変化量ΔP12は、指標部300の傾き(傾斜角度)である。
The position information of the index unit 300 includes position information P1 acquired when the running body 61 travels straight and position information P2 acquired when the running body 61 travels along a curve. The travel control unit 550 controls the travel control unit 550 when the amount of change in the position information P2 based on the position information P1 (hereinafter referred to as “change amount ΔP12”) exceeds a predetermined threshold value Th1 when the traveling object 61 travels along a curve. , to control the running of the running body 61 . Specifically, in this example, the amount of change ΔP12 is the inclination (inclination angle) of the indicator section 300 .
走行制御部550は、変化量ΔP12が閾値Th1を越えると、走行体61の走行を停止させる。これに限定されず、走行制御部550は、上記変化量が閾値Th1を越えると、走行体61を減速させ、走行を続けさせてもよい。あるいは、走行制御部550は、上記変化量が閾値Th1を越えると、走行体61の曲線走行における曲率を減少させてもよい。走行制御部550が、いずれの制御を行なうかは、自走装置100において予め設定されている。当該設定は、ユーザ操作に基づき行なうことができる。
The traveling control unit 550 stops traveling of the traveling body 61 when the amount of change ΔP12 exceeds the threshold Th1. Without being limited to this, the traveling control unit 550 may decelerate the traveling body 61 to continue traveling when the amount of change exceeds the threshold value Th1. Alternatively, the traveling control unit 550 may reduce the curvature of the traveling object 61 in traveling along a curve when the amount of change exceeds the threshold value Th1. Which control is to be performed by travel control unit 550 is preset in self-propelled device 100 . The setting can be made based on a user operation.
また、走行制御部550は、走行体61の走行速度および/または曲線の曲率に応じて、3つの制御のうちから、適宜、制御方法を選択してもよい。また、走行制御部550は、走行体61の減速と、走行体61の曲線走行における曲率の減少とを同時におこなってもよい。
Further, the travel control unit 550 may appropriately select a control method from among the three controls according to the travel speed of the travel object 61 and/or the curvature of the curve. Further, the traveling control unit 550 may simultaneously decelerate the traveling body 61 and reduce the curvature of the traveling body 61 when it travels along a curve.
たとえば、走行速度が予め定められた速度よりも早いときには、走行制御部550は、走行体61を減速させる。曲率が予め定められた値よりも大きい場合には、走行制御部550は、走行体61の曲線走行における曲率を減少させればよい。走行速度が予め定められた速度よりも早く、かつ曲率が予め定められた値よりも大きい場合には、走行制御部550は、走行体61を減速と、走行体61の曲線走行における曲率を減少とを同時に行なってもよい。
For example, when the running speed is faster than a predetermined speed, the running control unit 550 decelerates the running body 61 . If the curvature is greater than the predetermined value, the traveling control unit 550 may reduce the curvature of the traveling body 61 traveling along the curve. When the traveling speed is faster than the predetermined speed and the curvature is greater than the predetermined value, the traveling control unit 550 decelerates the traveling body 61 and reduces the curvature of the traveling body 61 when it travels along the curve. and may be performed at the same time.
減速の制御は、予め定められた速度まで低下させる制御であってもよいし、所定の速度だけ走行速度を遅くする制御であってもよい。後者の制御の場合、走行制御部550は、変化量ΔP12が閾値Th1以下となるまで、所定の速度だけ走行速度を遅くする制御を繰り返す。
The deceleration control may be a control to reduce the speed to a predetermined speed, or may be a control to slow down the running speed by a predetermined speed. In the latter control, traveling control unit 550 repeats the control of slowing the traveling speed by a predetermined speed until variation ΔP12 becomes equal to or less than threshold Th1.
さらに、走行制御部550は、変化量ΔP12と閾値Th1との差に基づき、制御方法を選択してもよい。
Further, the travel control unit 550 may select a control method based on the difference between the amount of change ΔP12 and the threshold value Th1.
(2)段差がある場合
走行体61が段差を越えた際における、走行制御部550による走行体61の制御について説明する。 (2) When there is a step Control of the travelingobject 61 by the traveling control unit 550 when the traveling object 61 has passed over a step will be described.
走行体61が段差を越えた際における、走行制御部550による走行体61の制御について説明する。 (2) When there is a step Control of the traveling
指標部300の位置情報は、走行体61が床面910の段差を越える前に取得される位置情報P3と、走行体61が床面910の段差を越えた後に取得される位置情報P4とを含む。走行制御部550は、走行体61の走行時、位置情報P3を基準とする位置情報P4の変化量(以下、「変化量ΔP34」と称する)が閾値Th2を超えた場合に、走行体61の走行を制御する。具体的には、本例では、変化量ΔP34は、指標部300の位置の上下方向の位置の変化量である。
The position information of the index portion 300 includes position information P3 acquired before the running object 61 crosses the step on the floor surface 910 and position information P4 acquired after the running object 61 crosses the step on the floor surface 910. include. The travel control unit 550 controls the travel of the travel object 61 when the amount of change in the position information P4 based on the position information P3 (hereinafter referred to as “change amount ΔP34”) exceeds a threshold Th2 when the travel object 61 travels. control running. Specifically, in this example, the amount of change ΔP34 is the amount of change in the position of the index portion 300 in the vertical direction.
走行制御部550は、変化量ΔP34が閾値Th2を越えると、走行体61の走行を停止させる。これに限定されず、走行制御部550は、変化量ΔP34が閾値Th2を越えると、走行体61を減速させ、走行を続けさせてもよい。走行制御部550が、いずれの制御を行なうかは、自走装置100において予め設定されている。当該設定は、ユーザ操作に基づき行なうことができる。
The traveling control unit 550 stops traveling of the traveling body 61 when the amount of change ΔP34 exceeds the threshold Th2. Without being limited to this, the traveling control unit 550 may decelerate the traveling body 61 to continue traveling when the amount of change ΔP34 exceeds the threshold value Th2. Which control is to be performed by travel control unit 550 is preset in self-propelled device 100 . The setting can be made based on a user operation.
たとえば、走行速度が予め定められた速度よりも早いときには、走行制御部550は、走行体61を停止させる。走行速度が予め定められた速度よりも遅いときには、走行制御部550は、走行体61を減速させて、走行を続けさせる。
For example, when the running speed is faster than a predetermined speed, the running control unit 550 stops the running body 61 . When the running speed is slower than the predetermined speed, the running control unit 550 decelerates the running body 61 to continue running.
また、走行制御部550は、変化量ΔP34と閾値Th2との差(すなわち、段差の大きさ)に基づき、制御方法を選択してもよい。たとえば、走行制御部550は、当該差が予め定められた値以上の場合には、走行体61の走行を停止させ、当該差が予め定められた値未満の場合には、走行体61を予め定められた速度まで減速させてもよい。
Further, the travel control unit 550 may select a control method based on the difference between the amount of change ΔP34 and the threshold Th2 (that is, the size of the step). For example, when the difference is equal to or greater than a predetermined value, the running control unit 550 stops the running body 61, and when the difference is less than the predetermined value, the running body 61 is stopped. You may decelerate to the determined speed.
なお、走行体61を停止させた場合には、走行制御部550は、その後、走行体61を逆走(たとえば、後進)させる。たとえば、走行制御部550は、走行体61を停止させた後に所定の時間が経過したことを条件に、走行体61を後進させてもよい。
When the running body 61 is stopped, the running control unit 550 then reverses the running body 61 (for example, moves backward). For example, travel control unit 550 may cause traveling body 61 to move backward on condition that a predetermined time has elapsed after traveling body 61 is stopped.
<F.カメラで取得される画像の例>
(1)直線走行時から曲線走行時に切り替った場合
図7は、自走装置100が左旋回し始めたときの走行システム1の上面図である。 <F. Examples of images captured by the camera>
(1) In the Case of Switching from Straight Traveling to Curved Traveling FIG. 7 is a top view of the travelingsystem 1 when the self-propelled device 100 starts to turn left.
(1)直線走行時から曲線走行時に切り替った場合
図7は、自走装置100が左旋回し始めたときの走行システム1の上面図である。 <F. Examples of images captured by the camera>
(1) In the Case of Switching from Straight Traveling to Curved Traveling FIG. 7 is a top view of the traveling
図7に示されるように、自走装置100が旋回を開始すると、台車の側壁部251Fのうち、カメラ35によって撮像される被写体領域が変化する。カメラ35の光軸Jと側壁部251Fとが交差する位置が、図2の位置から大きく変化する。
As shown in FIG. 7, when the self-propelled device 100 starts turning, the subject area captured by the camera 35 changes in the side wall portion 251F of the carriage. The position where the optical axis J of the camera 35 and the side wall portion 251F intersect greatly changes from the position shown in FIG.
図8は、図7のix-ix線矢視断面図である。
図8に示されるように、本例では、台車200は、左側前輪220Lfが床面910から離間し、台車200が角度θだけ傾いている。台車200は、自走装置100が左旋回することにより、矢印の方向に傾いている。これにともない、側壁部251Fに付された指標部300も角度θだけ傾いた状態となっている。 8 is a cross-sectional view taken along line ix-ix of FIG. 7. FIG.
As shown in FIG. 8, in this example, thetruck 200 has the left front wheel 220Lf separated from the floor surface 910, and the truck 200 is tilted by an angle θ. The cart 200 is tilted in the direction of the arrow as the self-propelled device 100 turns to the left. Along with this, the index portion 300 attached to the side wall portion 251F is also inclined by an angle θ.
図8に示されるように、本例では、台車200は、左側前輪220Lfが床面910から離間し、台車200が角度θだけ傾いている。台車200は、自走装置100が左旋回することにより、矢印の方向に傾いている。これにともない、側壁部251Fに付された指標部300も角度θだけ傾いた状態となっている。 8 is a cross-sectional view taken along line ix-ix of FIG. 7. FIG.
As shown in FIG. 8, in this example, the
図9は、左旋回時を開始する直前と直後とに得られる画像データを説明するための模式図である。
FIG. 9 is a schematic diagram for explaining image data obtained immediately before and after starting a left turn.
図9に示されるように、状態(A)では、走行体61および台車200が直進しているため、指標部300の画像300Gは傾いていない。また、画像300Gは、撮像により得られた画像データ501Gにおいて基準位置に存在する。なお、本例では、説明の便宜上、基準位置が画像データ501Gの中心となる場合を例に挙げている。
As shown in FIG. 9, in the state (A), since the traveling body 61 and the carriage 200 are traveling straight, the image 300G of the index portion 300 is not tilted. Also, the image 300G exists at the reference position in the image data 501G obtained by imaging. In this example, for convenience of explanation, a case where the reference position is the center of the image data 501G is taken as an example.
状態(B)では、図7に示すように走行体61が左旋回を開始したため、台車200の状態が図8に示す状態となる。この場合、台車200の左側前輪220Lfが床面910から離間した状態で台車200が角度θ傾いているため、指標部300の画像300Gは、角度θだけ傾くことになる。
In state (B), as shown in FIG. 7, the traveling body 61 has started to turn left, so the state of the truck 200 is as shown in FIG. In this case, the left front wheel 220Lf of the truck 200 is tilted by the angle θ while the left front wheel 220Lf of the truck 200 is separated from the floor surface 910, so the image 300G of the index portion 300 is tilted by the angle θ.
また、指標部300の画像300Gは、撮像により得られた画像データ502Gにおいて、デフルトの位置からずれる。本例の場合には、画像300Gが、X軸の正方向にx1、Y軸の正方向にy1だけずれている。
Also, the image 300G of the index portion 300 is shifted from the default position in the image data 502G obtained by imaging. In this example, the image 300G is shifted by x1 in the positive direction of the X axis and by y1 in the positive direction of the Y axis.
ところで、上述したように、走行制御部550は、走行体61の曲線走行時、位置情報P1を基準とする位置情報P2の変化量ΔP12が閾値Th1を超えた場合に、走行体61の走行を制御する。当該変化量ΔP12は、指標部300としてAprilTagを用いているため、上述したように、変化量ΔP12を画像300Gの傾き(傾斜角度)とすることができる。閾値Th1は、たとえば、3°とすることができる。
By the way, as described above, the travel control unit 550 prevents the travel of the travel object 61 when the change amount ΔP12 of the position information P2 based on the position information P1 exceeds the threshold value Th1 when the travel object 61 travels along a curve. Control. Since AprilTag is used as the index portion 300, the amount of change ΔP12 can be used as the inclination (tilt angle) of the image 300G as described above. The threshold Th1 can be, for example, 3°.
なお、指標部300として、傾斜角度を検知できない指標を用いる場合には、変化量ΔP12を、y1をx1で除したときの値(=y1/x1)としてもよい。
Note that if an index that cannot detect the tilt angle is used as the index unit 300, the amount of change ΔP12 may be a value obtained by dividing y1 by x1 (=y1/x1).
(2)段差がある場合
図10は、自走装置100が段差を乗り越えた直後の走行システム1の側面図である。 (2) When there is a step Fig. 10 is a side view of the travelingsystem 1 immediately after the self-propelled device 100 has climbed over the step.
図10は、自走装置100が段差を乗り越えた直後の走行システム1の側面図である。 (2) When there is a step Fig. 10 is a side view of the traveling
図10に示されるように、自走装置100が段差Wを乗り越えると、台車の側壁部251Fのうち、カメラ35によって撮像される被写体領域が変化する。カメラ35の光軸Jと側壁部251Fとが交差する位置が、図2の位置から上方に変化する。
As shown in FIG. 10, when the self-propelled device 100 climbs over the step W, the subject area imaged by the camera 35 changes in the side wall portion 251F of the carriage. The position where the optical axis J of the camera 35 and the side wall portion 251F intersect shifts upward from the position shown in FIG.
図11は、自走装置100が段差Wを乗り越える前と、乗り越えた直後とに得られる画像データを説明するための模式図である。なお、本例では、段差Wを乗り越える前後において、自走装置100および台車200は、前進しているものとする。
FIG. 11 is a schematic diagram for explaining image data obtained before and immediately after the self-propelled device 100 climbs over the step W. FIG. In this example, it is assumed that the self-propelled device 100 and the carriage 200 move forward before and after the step W is overcome.
図11に示されるように、状態(A)では、走行体61および台車200が直進しているため、指標部300の画像300Gは、撮像により得られた画像データ503Gにおいて、デフルトの位置に存在する。本例においても、当該基準位置が、画像データ503Gの中心となる場合を例に挙げている。
As shown in FIG. 11, in the state (A), since the traveling body 61 and the carriage 200 are traveling straight, the image 300G of the index portion 300 is present at the default position in the image data 503G obtained by imaging. do. Also in this example, the case where the reference position is the center of the image data 503G is taken as an example.
状態(B)では、図10に示すように自走装置100が段差Wを乗り越える一方で台車200は段差Wを乗り越えていないため、指標部300の画像300Gは、撮像により得られた画像データ504Gにおいて、デフルトの位置からずれることになる。具体的には、本例の場合には、画像300Gが、Y軸の負方向にy2だけずれている。
In the state (B), as shown in FIG. 10, the self-propelled device 100 climbs over the step W, but the carriage 200 does not climb over the step W. Therefore, the image 300G of the indicator section 300 is image data 504G obtained by imaging. , it deviates from the default position. Specifically, in the case of this example, the image 300G is shifted by y2 in the negative direction of the Y-axis.
上述したように、走行制御部550は、走行体61の走行時、位置情報P3を基準とする位置情報P4の変化量ΔP34が閾値Th2を超えた場合に、走行体61の走行を制御する。本例では、変化量ΔP34は、Y座標の変化量とすることができる。
As described above, the traveling control unit 550 controls traveling of the traveling body 61 when the change amount ΔP34 of the position information P4 based on the position information P3 exceeds the threshold Th2 while the traveling body 61 is traveling. In this example, the amount of change ΔP34 can be the amount of change in the Y coordinate.
なお、図10の例では、段差Wによって、自走装置100の位置が上方に変化する場合を例に挙げて説明した。段差によって自走装置100の位置が下方に変化する場合には、指標部300の画像300Gは基準位置から上方向に変化することになる。
In the example of FIG. 10, the case where the position of the self-propelled device 100 changes upward due to the step W has been described as an example. When the position of the self-propelled device 100 changes downward due to a step, the image 300G of the index portion 300 changes upward from the reference position.
<G.制御構造および制御例>
図12は、自走装置100で実行される処理の流れを説明するためのフロー図である。 <G. Control structure and control example>
FIG. 12 is a flowchart for explaining the flow of processing executed by the self-propelleddevice 100. As shown in FIG.
図12は、自走装置100で実行される処理の流れを説明するためのフロー図である。 <G. Control structure and control example>
FIG. 12 is a flowchart for explaining the flow of processing executed by the self-propelled
図12に示されるように、ステップS1において、自走装置100は走行を開始する。これにより、台車200が自走装置100に牽引される。ステップS2において、制御装置501による制御に基づき、カメラ35による指標部300の撮像が開始される。ステップS3において、制御装置501は、旋回を開始したか否かを判断する。
As shown in FIG. 12, in step S1, the self-propelled device 100 starts traveling. As a result, the cart 200 is towed by the self-propelled device 100 . In step S<b>2 , imaging of the index portion 300 by the camera 35 is started under the control of the control device 501 . In step S3, the control device 501 determines whether or not turning has started.
旋回を開始したと判断された場合(ステップS3においてYES)、制御装置501は、ステップS4において、指標部300の傾き(詳しくは、指標部300の画像300Gの傾き)が閾値Th1以上になったか否かを判断する。旋回を開始していないと判断された場合(ステップS3においてNO)、制御装置501は、ステップS7において、指標部300の位置(詳しくは、指標部300の画像300Gの位置)が基準位置から閾値Th2以上、上方向または下方向に変化したか否かを判断する。
When it is determined that turning has started (YES in step S3), in step S4, control device 501 determines whether the tilt of index portion 300 (more specifically, the tilt of image 300G of index portion 300) is greater than or equal to threshold Th1. determine whether or not If it is determined that turning has not started (NO in step S3), in step S7, control device 501 changes the position of indicator portion 300 (more specifically, the position of image 300G of indicator portion 300) from the reference position to the threshold value. It is determined whether or not there is an upward or downward change greater than or equal to Th2.
ステップS4において肯定的な判断がなされた場合(ステップS4においてYES)、制御装置501は、ステップS5において、走行体61の走行を制御する。その後、制御装置501は、処理をステップS4に進める。ステップS4において否定的な判断がなされた場合(ステップS4においてNO)、制御装置501は、処理をステップS6に進める。
If an affirmative determination is made in step S4 (YES in step S4), the control device 501 controls traveling of the traveling body 61 in step S5. After that, the control device 501 advances the process to step S4. If a negative determination is made in step S4 (NO in step S4), control device 501 advances the process to step S6.
ステップS7において肯定的な判断がなされた場合(ステップS7においてYES)、制御装置501は、ステップS8において、走行体61の走行を制御する。その後、制御装置501は、処理をステップS6に進める。ステップS7において否定的な判断がなされた場合(ステップS7においてNO)、制御装置501は、処理をステップS6に進める。
If an affirmative determination is made in step S7 (YES in step S7), the control device 501 controls traveling of the traveling body 61 in step S8. After that, the control device 501 advances the process to step S6. If a negative determination is made in step S7 (NO in step S7), control device 501 advances the process to step S6.
ステップS6において、制御装置501は、自走装置100および台車200が、目的位置に到達したか否かを判断する。ステップS6において肯定的な判断がなされた場合(ステップS6においてYES)、制御装置501は、一連の処理を終了する。ステップS6において否定的な判断がなされた場合(ステップS6においてNO)、制御装置501は、処理をステップS3に戻す。
In step S6, the control device 501 determines whether or not the self-propelled device 100 and the carriage 200 have reached the target position. If an affirmative determination is made in step S6 (YES in step S6), control device 501 terminates the series of processes. If a negative determination is made in step S6 (NO in step S6), control device 501 returns the process to step S3.
<H.小括>
走行システム1の構成の一部を小括すると、以下のとおりである。 <H. Summary>
A part of the configuration of the travelingsystem 1 is summarized as follows.
走行システム1の構成の一部を小括すると、以下のとおりである。 <H. Summary>
A part of the configuration of the traveling
(1)走行システム1は、自走可能な走行体61と、指標部300を有し、走行体61により牽引される台車200と、カメラ35を含み、走行体61の走行時に、走行体61に対する指標部300の位置情報を取得する位置情報取得部570と、位置情報取得部570において取得される指標部300の位置情報の変化に基づいて、走行体61の走行を制御する走行制御部550とを備える。
(1) The traveling system 1 has a self-propellable traveling body 61 and an indicator section 300, and includes a carriage 200 towed by the traveling body 61 and a camera 35. When the traveling body 61 travels, the traveling body 61 A position information acquisition unit 570 that acquires the position information of the indicator unit 300 with respect to the position information acquisition unit 570, and a travel control unit 550 that controls the travel of the traveling body 61 based on changes in the position information of the indicator unit 300 acquired by the position information acquisition unit 570. and
走行体61により台車200を牽引する場合、台車200の転倒を防ぐことが求められる。また、台車200の姿勢を正す手段として慣性計測装置を用いた姿勢制御が考えられるが、高コストになる。
When the truck 200 is towed by the traveling body 61, it is required to prevent the truck 200 from overturning. In addition, attitude control using an inertial measurement device can be considered as means for correcting the attitude of the carriage 200, but the cost is high.
これに対して、位置情報取得部570において取得される指標部300の位置情報の変化に基づいて、走行体61の走行を制御することによって、台車200の転倒を防ぐことができる。この場合に、位置情報取得部570にカメラが利用されるため、低コストを実現することができる。
On the other hand, by controlling the travel of the traveling body 61 based on the change in the position information of the indicator section 300 acquired by the position information acquisition section 570, the trolley 200 can be prevented from overturning. In this case, since a camera is used for the position information acquisition unit 570, low cost can be realized.
また、走行体61により牽引する台車200の種類が様々であったり、台車200に積載する荷物の数および重量、荷物の積載位置が異なっていたりして、台車200の転倒が生じる走行体61の走行条件が都度変わる。このため、位置情報取得部570において取得される指標部300の位置情報の変化に基づいて、走行体61の走行を制御することによって、台車の転倒を精度良く防止することが可能となる。
In addition, there are various types of trucks 200 towed by the traveling body 61, and the number and weight of loads to be loaded on the truck 200 and the loading position of the luggage are different, causing the truck 200 to overturn. Driving conditions change all the time. Therefore, by controlling the travel of the traveling body 61 based on the change in the position information of the index section 300 acquired by the position information acquisition section 570, it is possible to prevent the trolley from overturning with high accuracy.
(2)指標部300の位置情報は、走行体61の直線走行時に取得される位置情報P1と、走行体61の曲線走行時に取得される位置情報P2とを含む。走行制御部550は、走行体61の曲線走行時、位置情報P1を基準とする位置情報P2の変化量ΔP12が予め定められた閾値Th1を超えた場合に、走行体61の走行を制御する。このような構成によれば、走行体61の曲線走行時に台車が横転することを防止できる。
(2) The position information of the index unit 300 includes position information P1 acquired when the running body 61 travels straight and position information P2 acquired when the running body 61 travels along a curve. The traveling control unit 550 controls traveling of the traveling body 61 when the change amount ΔP12 of the position information P2 based on the position information P1 exceeds a predetermined threshold Th1 when the traveling body 61 travels along a curve. According to such a configuration, it is possible to prevent the truck from overturning when the traveling body 61 travels along a curve.
たとえば、走行制御部550は、走行体61の走行を、走行体61の停止、走行体61の減速、および、走行体61の曲線走行における曲率の減少のいずれかに制御する。これによれば、走行体61を停止させたり、減速させたり、曲線走行時における曲率を減少させたりすることによって、曲線走行時に台車200が横転することを防止できる。
For example, the traveling control unit 550 controls traveling of the traveling body 61 to any one of stopping the traveling body 61, decelerating the traveling body 61, and decreasing the curvature of the traveling body 61 when traveling on a curve. According to this, it is possible to prevent the truck 200 from overturning when traveling on a curve by stopping or decelerating the traveling body 61 or by reducing the curvature when traveling on a curve.
(3)台車200は、頂部211と、車輪220とを含む。指標部300は、上下方向において、車輪220よりも頂部211寄りの位置に設けられる。このような構成によれば、走行体61の曲率走行時に、指標部300の挙動がより大きくなるため、制御装置501が、指標部300の位置情報の変化を認識しやすくなる。
(3) The carriage 200 includes a top portion 211 and wheels 220 . The index portion 300 is provided at a position closer to the top portion 211 than the wheel 220 in the vertical direction. According to such a configuration, the behavior of the indicator portion 300 becomes greater when the traveling body 61 travels along a curvature, so that the control device 501 can easily recognize the change in the position information of the indicator portion 300 .
(4)指標部300の位置情報は、走行体61が床面910の段差Wを越える前に取得される位置情報P3と、走行体61が床面910の段差Wを越えた後に取得される位置情報P4とを含む。走行制御部550は、走行体61の走行時、位置情報P3を基準とする位置情報P4の変化量ΔP34が予め定められた閾値Th2を超えた場合に、走行体61の走行を制御する。このような構成によれば、床面910に段差Wがあった場合に、台車が転倒すること防止できる。
(4) The position information of the indicator part 300 is position information P3 acquired before the traveling body 61 crosses the step W of the floor surface 910, and acquired after the traveling body 61 crosses the step W of the floor surface 910. and position information P4. The traveling control unit 550 controls traveling of the traveling body 61 when the change amount ΔP34 of the position information P4 based on the position information P3 exceeds a predetermined threshold Th2 when the traveling body 61 travels. According to such a configuration, it is possible to prevent the trolley from overturning when there is a step W on the floor surface 910 .
たとえば、走行制御部550は、走行体61が停止するように、走行体61の走行を制御する。走行体61を停止させることによって、床面910に段差Wがあった場合に、台車200が横転することを防止できる。
For example, the running control unit 550 controls the running of the running body 61 so that the running body 61 stops. By stopping the traveling body 61, it is possible to prevent the trolley 200 from overturning when there is a step W on the floor surface 910. - 特許庁
(5)指標部300は、台車200に付された特定の図形(本例では、AprilTag)である。位置情報取得部570は、カメラ35により撮像された当該図形の画像を取得することにより、指標部300の位置情報を取得する。
(5) The index part 300 is a specific figure (AprilTag in this example) attached to the carriage 200 . The position information acquisition section 570 acquires the position information of the index section 300 by acquiring the image of the figure captured by the camera 35 .
<I.変形例>
(1)上記においては、指標部300を台車200の側壁部251Fに付けた場合を例に挙げて説明したが、これに限定されない。 <I. Variation>
(1) In the above description, the case where theindicator portion 300 is attached to the side wall portion 251F of the carriage 200 has been described as an example, but the present invention is not limited to this.
(1)上記においては、指標部300を台車200の側壁部251Fに付けた場合を例に挙げて説明したが、これに限定されない。 <I. Variation>
(1) In the above description, the case where the
図13は、台車200Aを示した図である。図13に示されるように、台車200Aは、板状部材290を備える。板状部材290は、頂部211から上方に突き出るように本体部205に設置されている。本例では、板状部材290は、下端部が側壁部251Fに取り付けられている。
FIG. 13 is a diagram showing the carriage 200A. As shown in FIG. 13, the carriage 200A includes a plate member 290. As shown in FIG. Plate-like member 290 is installed on body portion 205 so as to protrude upward from top portion 211 . In this example, the plate-like member 290 has its lower end attached to the side wall portion 251F.
板状部材290の上端部に、指標部300が付けられている。指標部300は、板状部材290のカメラ35側の表面に付けられている。このような構成によれば、台車200の場合に比べて、指標部300の位置を床面910から高い位置とすることができる。
An index portion 300 is attached to the upper end portion of the plate-like member 290 . The index portion 300 is attached to the surface of the plate member 290 on the camera 35 side. According to such a configuration, the indicator portion 300 can be positioned higher than the floor surface 910 as compared with the carriage 200 .
台車200Aと台車200とが同じ角度だけ傾いた場合には、台車200Aの方が、指標部300の移動量が大きい。それゆえ、指標部300として傾斜角度を検知できない指標を用いる場合には、制御装置501は、台車200Aの傾きを、台車200のときよりも、精度よく検出することができる。
When the truck 200A and the truck 200 are tilted by the same angle, the truck 200A has a larger amount of movement of the indicator part 300. Therefore, when an index that cannot detect the tilt angle is used as the index unit 300, the control device 501 can detect the tilt of the trolley 200A with higher accuracy than when the trolley 200 is tilted.
なお、この場合には、自走装置100のカメラ35の位置を、台車200のときよりも高い位置に設置する必要がある。また、板状部材290の代わりに、角ポールを用いてもよい。
In this case, it is necessary to install the camera 35 of the self-propelled device 100 at a higher position than when the cart 200 is used. Also, instead of the plate member 290, a square pole may be used.
(2)上記においては、カメラ35によって、走行体61に対する指標部300の位置情報を取得したが、これに限定されるものではない。カメラ35の代わりに、レーザセンサ36(図1等参照)を用いてもよい。
(2) In the above description, the camera 35 acquires the position information of the index portion 300 with respect to the traveling object 61, but the present invention is not limited to this. A laser sensor 36 (see FIG. 1 etc.) may be used instead of the camera 35 .
(3)上記においては、指標部300の傾き(傾斜角度)に関する閾値として、閾値Th1のみを用いた。しかしならが、これに限定されず、傾きに関する閾値として、複数の閾値を用いてもよい。たとえば、2つの閾値Th1_a,Th1_bを用いる場合(Th1_a>Th1_b)、走行制御部550は、変化量ΔP12がTh1_a以上となると走行体61の走行を停止させ、変化量ΔP12がTh1_b以上かつTh1_a未満の場合に走行体61を一定の速度まで減速させ、走行を継続してもよい。
(3) In the above description, only the threshold Th1 is used as the threshold for the tilt (tilt angle) of the indicator section 300 . However, without being limited to this, a plurality of thresholds may be used as the thresholds for the inclination. For example, when two thresholds Th1_a and Th1_b are used (Th1_a>Th1_b), running control unit 550 stops running of running body 61 when change amount ΔP12 is Th1_a or more, and changes amount ΔP12 of Th1_b or more and less than Th1_a. In some cases, the traveling body 61 may be decelerated to a constant speed to continue traveling.
[実施の形態2]
実施の形態1では、走行制御部550は、位置情報取得部570において取得される指標部300の位置情報の変化に基づいて、走行体61の走行を制御した。すなわち、実施の形態1では、走行システム1の実運用時の制御について説明した。 [Embodiment 2]
InEmbodiment 1, travel control unit 550 controls travel of traveling body 61 based on changes in the position information of index unit 300 acquired by position information acquisition unit 570 . That is, in Embodiment 1, control during actual operation of traveling system 1 has been described.
実施の形態1では、走行制御部550は、位置情報取得部570において取得される指標部300の位置情報の変化に基づいて、走行体61の走行を制御した。すなわち、実施の形態1では、走行システム1の実運用時の制御について説明した。 [Embodiment 2]
In
本実施の形態では、走行システム1を試走させて、台車200が走行条件を予め設定する。当該走行条件の設定に、指標部300の位置情報を利用する。走行条件は、本例では、台車200が転倒(たとえば、横転)しない条件である。
In the present embodiment, the running system 1 is run on a trial basis, and the carriage 200 sets the running conditions in advance. The position information of the index unit 300 is used for setting the travel conditions. In this example, the traveling condition is a condition under which the trolley 200 does not overturn (for example, overturn).
また、本実施の形態では、試走は、台車200に荷物を積載していない状態で行なうものとする。ただし、これに限定されず、台車200に都度同じ荷物を同じ数だけ同じ位置に載置する場合には、台車200に荷物を積載した状態で試走を行なうことが好ましい。
Also, in the present embodiment, the test run is performed with no luggage loaded on the trolley 200 . However, the present invention is not limited to this, and when the same number of the same packages are placed in the same positions on the cart 200 each time, it is preferable to perform the test run with the packages loaded on the cart 200 .
詳しくは、位置情報取得部570は、走行体61の試走時に、走行体61に対する指標部300の位置情報を取得する。走行制御部550は、位置情報取得部570において取得される指標部300の位置情報の変化に基づいて、走行体61の走行条件を設定し、かつ、走行体61の実運用時に当該走行条件を満たすように走行体61の走行を制御する。
Specifically, the position information acquisition unit 570 acquires the position information of the indicator unit 300 with respect to the running body 61 when the running body 61 is running on a test run. The traveling control unit 550 sets the traveling condition of the traveling object 61 based on the change in the position information of the index unit 300 acquired by the position information acquiring unit 570, and sets the traveling condition during the actual operation of the traveling object 61. The traveling of the traveling body 61 is controlled so as to satisfy the requirement.
走行体61の試走時には、走行速度と、走行経路となる曲線の曲率との各々を、様々に変化させる。また、試走時には、高さが異なる段差を、複数の走行速度で通過させる。このような試走により、台車200が転倒しない走行条件を見つけ出す。たとえば、台車200の傾斜角θが上記閾値Th1を越えないような、走行速度と曲線の曲率との組み合わせをもとめる。また、台車200が段差を乗り越えられる走行速度を、段差の大きさ毎に見つけ出す。
During the test run of the running body 61, the running speed and the curvature of the curve that forms the running route are varied. Also, during the test run, the vehicle is allowed to pass through steps with different heights at a plurality of running speeds. Through such a test run, a running condition is found that does not cause the truck 200 to overturn. For example, a combination of the running speed and the curvature of the curve is obtained so that the tilt angle θ of the truck 200 does not exceed the threshold value Th1. Also, the traveling speed at which the carriage 200 can climb over the step is found for each size of the step.
このような構成によれば、多くの状況下で、実運用時において指標部300の位置情報の変化を監視する必要がなくなる。たとえば、特に、上述したように、台車200に荷物を積載した状態で試走させたときには、監視が不要となる。
According to such a configuration, it becomes unnecessary to monitor changes in the position information of the indicator section 300 during actual operation under many circumstances. For example, in particular, as described above, monitoring is not required when the truck 200 is loaded with cargo and the test run is performed.
図14は、走行システム1を試走によって生成された走行条件を説明するための図である。走行条件は、自走装置100によって生成されてもよいし、図示しないサーバによって生成されてもよい。走行条件は、上述したように、指標部300の位置情報の変化に基づき、実運用前に生成される。なお、走行条件は、走行制御部550の記憶部551(図6)に格納される。
FIG. 14 is a diagram for explaining driving conditions generated by a test run of the driving system 1. FIG. The travel conditions may be generated by self-propelled device 100 or by a server (not shown). The travel conditions are generated before actual operation based on changes in the position information of the indicator section 300, as described above. Note that the travel conditions are stored in the storage unit 551 ( FIG. 6 ) of the travel control unit 550 .
図14に示されるように、走行条件Pは、本例では、2つの走行条件P1,P2を含む。走行条件P1,P2は、台車200が転倒しない条件である。走行条件P1,P2は、台車200の種別、台車200に載置された部材の重さ等に基づき、個別に設定されることが好ましい。
As shown in FIG. 14, the driving condition P includes two driving conditions P1 and P2 in this example. Traveling conditions P1 and P2 are conditions under which the trolley 200 does not overturn. The running conditions P1 and P2 are preferably set individually based on the type of the truck 200, the weight of the members placed on the truck 200, and the like.
走行条件P1は、自走装置100の走行速度と、曲線の曲率との関係を示している。曲線の曲率とは、走行システム1の走行時の軌跡がある局面において円弧である場合の当該円弧の曲率である。
The traveling condition P1 indicates the relationship between the traveling speed of the self-propelled device 100 and the curvature of the curve. The curvature of a curve is the curvature of an arc when the trajectory of the traveling system 1 during traveling is an arc in a certain situation.
走行条件P1は、本例では、関数により規定されている。グラフの領域は、当該関数によって、領域A1と領域B1とに区分される。領域A1は、曲率が関数の値(すなわち縦軸の曲率)以下の領域である。領域B1は、曲率が関数の値よりも大きい領域である。走行条件P1は、領域A1内の走行速度と曲率との組み合わせとして定義される。「走行条件P1を満たす」とは、走行速度と曲率とが領域A1内に収まっていることである。
The driving condition P1 is defined by a function in this example. The area of the graph is divided into area A1 and area B1 by the function. Area A1 is an area whose curvature is equal to or less than the value of the function (that is, the curvature of the vertical axis). Region B1 is a region where the curvature is greater than the value of the function. Driving condition P1 is defined as a combination of driving speed and curvature within area A1. "Satisfies the traveling condition P1" means that the traveling speed and the curvature are within the area A1.
走行条件P2は、自走装置100の走行速度と、段差の大きさとの関係を示している。段差の大きさは、上下方向における、床面の高さの差(cm)である。
The traveling condition P2 indicates the relationship between the traveling speed of the self-propelled device 100 and the size of the step. The size of the step is the height difference (cm) between the floor surfaces in the vertical direction.
走行条件P2は、走行条件P1と同様、関数により規定されている。グラフの領域は、当該関数によって、領域A2と領域B2とに区分される。領域A2は、曲率が関数の値(すなわち縦軸の曲率)以下の領域である。領域B2は、曲率が関数の値よりも大きい領域である。走行条件P2は、領域A2内の走行速度と曲率との組み合わせとして定義される。「走行条件P2を満たす」とは、走行速度と曲率とが領域A2内に収まっていることである。
The driving condition P2 is defined by a function, like the driving condition P1. The area of the graph is divided into area A2 and area B2 by the function. Area A2 is an area whose curvature is equal to or less than the value of the function (that is, the curvature of the vertical axis). Region B2 is a region where the curvature is greater than the value of the function. Driving condition P2 is defined as a combination of driving speed and curvature within area A2. "Satisfies the traveling condition P2" means that the traveling speed and the curvature are within the area A2.
このように、走行システム1の実運用時に走行条件Pを満たすように走行体61の走行を制御することにより、実運用時において、台車200が横転等することを防止できる。また、台車200から積載物が落下することも防止できる。
In this way, by controlling the traveling of the traveling body 61 so as to satisfy the traveling condition P during the actual operation of the traveling system 1, it is possible to prevent the carriage 200 from overturning during the actual operation. In addition, it is possible to prevent the load from falling from the truck 200. - 特許庁
[実施の形態3]
実施の形態1の制御と、実施の形態2で設定した走行条件Pに基づく制御とを組み合わせてもよい。 [Embodiment 3]
The control of the first embodiment and the control based on the running condition P set in the second embodiment may be combined.
実施の形態1の制御と、実施の形態2で設定した走行条件Pに基づく制御とを組み合わせてもよい。 [Embodiment 3]
The control of the first embodiment and the control based on the running condition P set in the second embodiment may be combined.
実施の形態2で説明したように、走行システム1の試走により走行条件Pを予め設定しておく。実運用では、自走装置100は、走行条件Pを満たすように走行する。このような場合、大抵の場合には、台車200の横転等は起こらない。
As described in the second embodiment, the traveling conditions P are set in advance by test running the traveling system 1 . In actual operation, the self-propelled device 100 travels so that the travel condition P is satisfied. In such a case, in most cases, rollover or the like of the truck 200 does not occur.
しかしながら、台車200の種類が様々であったり、台車200に積載する荷物の数および重量、荷物の積載位置が異なっていたりしており、全てのケースにおいて走行条件Pを予め設定することは難しい場合もある。また、建物環境の変化、台車200の劣化、衝突回避等により、走行条件Pを必ずしも満たせない場合も生じうる。また、走行条件Pを設定する際に、試走で試すことができなかった走行状態もあり得る。
However, there are various types of carts 200, and the number and weight of cargoes to be loaded on the carts 200 and the loading position of the cargoes are different, and it is difficult to preset the traveling conditions P in all cases. There is also In addition, there may be cases where the running condition P cannot always be satisfied due to changes in the building environment, deterioration of the truck 200, collision avoidance, and the like. Moreover, when setting the running conditions P, there may be running states that could not be tested in the test run.
このような様々な場合を考慮し、制御装置501は、実運用においては、走行条件Pを満たすよう走行体61を制御する一方で、さらなる信頼性の確保の観点から、実施の形態1で説明した指標部300の位置情報の変化に基づく走行体61の走行制御を実行する。
Considering such various cases, the control device 501 controls the traveling body 61 so as to satisfy the traveling condition P in actual operation. Running control of the running body 61 is executed based on the change in the positional information of the indicator section 300 .
詳しくは、位置情報取得部570は、走行体61の試走時に、走行体61に対する指標部300の位置情報をさらに取得する。試走は、台車200の荷物の積載状態を一定または当該荷物が積載されていない状態で行なわれる。走行制御部550は、試走時において位置情報取得部570によって取得される指標部300の位置情報の変化に基づいて走行体61の実運用時の走行条件Pを設定し、かつ、走行体61の実運用時において走行条件Pを満たすように走行体61の走行を制御する。
Specifically, the position information acquisition unit 570 further acquires the position information of the indicator unit 300 with respect to the running body 61 when the running body 61 is running on a test run. The test run is performed with the loading state of the cargo on the trolley 200 fixed or with no cargo loaded. The traveling control unit 550 sets the traveling condition P during actual operation of the traveling object 61 based on the change in the position information of the index unit 300 acquired by the position information acquiring unit 570 during the test run, and The traveling of the traveling body 61 is controlled so as to satisfy the traveling condition P during actual operation.
このような構成によれば、走行体61を試走させることによって、台車200の積載状態が特定の状態にあるときに、台車200が横転することのない走行条件Pを設定できる。実運用時において、走行制御部550は、走行条件Pを満たすように走行体の走行を制御し、かつ、位置情報取得部570において取得される指標部300の位置情報の変化に基づいて、走行体61の走行を制御することによって、走行条件Pを予め設定しない場合に比べて、台車200の姿勢をより安定して保つことができる。
According to such a configuration, it is possible to set a traveling condition P that prevents the truck 200 from overturning when the truck 200 is loaded in a specific state by running the traveling body 61 on a trial basis. During actual operation, the running control unit 550 controls the running of the running object so as to satisfy the running condition P, and based on the change in the position information of the index unit 300 acquired by the position information acquiring unit 570, the running control unit 550 By controlling the running of the body 61, the posture of the cart 200 can be maintained more stably than when the running condition P is not set in advance.
具体的には、台車200の左右方向または前後方向の傾きによって台車200が転倒することをより一層防止することができる。また、台車200から荷物(積載物)が落下することも防止できる。
Specifically, it is possible to further prevent the trolley 200 from overturning due to the tilt of the trolley 200 in the left-right direction or the front-rear direction. In addition, it is possible to prevent the baggage (load) from falling from the carriage 200 .
今回開示された実施の形態は例示であって、上記内容のみに制限されるものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The embodiments disclosed this time are examples, and are not limited to the above contents. The scope of the present invention is indicated by the claims, and is intended to include all changes within the meaning and range of equivalents to the claims.
1 走行システム、11 ロボットアーム、12 基台部、13 アーム部、31 アンテナ、35 カメラ、36,505 レーザセンサ、40 エンドエフェクタ、45,45a,45b 連結部、51,51Lb,51Lf,51Rb,51Rf 従動輪、56 ホイール、60 ローラ、61 走行体、62 走行本体部、63 カバー部、65 頂面、66 トレイ、71 第1駆動輪、72 第2駆動輪、73 第1車軸、74 第2車軸、75,76 減速機、77 第1走行用モータ、78 第2走行用モータ、86 フレーム、87 第3支持軸、88 第3支持アーム、91 第1支持軸、92 第2支持軸、93 第1支持アーム、94 第2支持アーム、96 第3車軸、97 第4車軸、98 第5車軸、99 第6車軸、100 自走装置、121 第1軸、122 第2軸、200,200A 台車、205 本体部、210 収容部、211 頂部、220 車輪、220Lf 左側前輪、220Rb 後輪、220Rf 右側前輪、251,251B,251F,251L,251R 側壁部、290 板状部材、300 指標部、300G 画像、501 制御装置、501G,502G,503G,504G 画像データ、502 ROM、503 RAM、504 通信インターフェイス、506 モータ駆動装置、509 バス、510 記憶装置、511 制御プログラム、512 次元マップ、550 走行制御部、551 記憶部、555 データ処理部、560 ロボット制御部、570 位置情報取得部、910 床面、A1,A2,B1,B2 領域、D 次元距離データ、J 光軸、P,P1,P2 走行条件。
1 traveling system, 11 robot arm, 12 base, 13 arm, 31 antenna, 35 camera, 36, 505 laser sensor, 40 end effector, 45, 45a, 45b coupling, 51, 51Lb, 51Lf, 51Rb, 51Rf driven wheel, 56 wheel, 60 roller, 61 running body, 62 running main body, 63 cover part, 65 top surface, 66 tray, 71 first drive wheel, 72 second drive wheel, 73 first axle, 74 second axle , 75, 76 reducer, 77 first travel motor, 78 second travel motor, 86 frame, 87 third support shaft, 88 third support arm, 91 first support shaft, 92 second support shaft, 93 third 1 support arm, 94 second support arm, 96 third axle, 97 fourth axle, 98 fifth axle, 99 sixth axle, 100 self-propelled device, 121 first axle, 122 second axle, 200, 200A truck, 205 Body part, 210 Storage part, 211 Top part, 220 Wheel, 220Lf Left front wheel, 220Rb Rear wheel, 220Rf Right front wheel, 251, 251B, 251F, 251L, 251R Side wall part, 290 Plate member, 300 Index part, 300G Image, 501 control device, 501G, 502G, 503G, 504G image data, 502 ROM, 503 RAM, 504 communication interface, 506 motor drive device, 509 bus, 510 storage device, 511 control program, 512 dimension map, 550 travel control unit, 551 Storage unit, 555 data processing unit, 560 robot control unit, 570 position information acquisition unit, 910 floor surface, A1, A2, B1, B2 areas, D dimension distance data, J optical axis, P, P1, P2 travel conditions.
Claims (8)
- 自走可能な走行体と、
指標部を有し、前記走行体により牽引される台車と、
カメラまたはレーザセンサを含み、前記走行体の走行時に、前記走行体に対する前記指標部の位置情報を取得する取得部と、
前記取得部において取得される前記指標部の位置情報の変化に基づいて、前記走行体の走行を制御する走行制御部とを備え、
前記取得部は、前記走行体の試走時に、前記走行体に対する前記指標部の位置情報をさらに取得し、前記試走は、前記台車の荷物の積載状態を一定または当該荷物が積載されていない状態で行なわれ、
前記走行制御部は、前記試走時において前記取得部によって取得される前記指標部の位置情報の変化に基づいて前記走行体の実運用時の走行条件を設定し、かつ、前記走行体の実運用時に前記走行条件を満たすように前記走行体の走行を制御する、走行システム。 a self-propelled running body;
a carriage that has an indicator and is towed by the traveling body;
an acquisition unit that includes a camera or a laser sensor and acquires position information of the index unit with respect to the running body when the running body is running;
a travel control unit that controls travel of the traveling object based on a change in the position information of the index unit acquired by the acquisition unit;
The acquisition unit further acquires the position information of the indicator unit with respect to the running body during a test run of the running body, and the test run is performed with the loading state of the cargo on the truck constant or with no cargo loaded. carried out,
The running control unit sets running conditions during actual operation of the running body based on changes in the position information of the indicator acquired by the acquiring unit during the test run, and sets running conditions during actual operation of the running body. A travel system that controls travel of the travel body so as to satisfy the travel conditions at times. - 前記指標部の位置情報は、前記走行体の直線走行時に取得される第1位置情報と、前記走行体の曲線走行時に取得される第2位置情報とを含み、
前記走行制御部は、前記走行体の曲線走行時、前記第1位置情報を基準とする前記第2位置情報の変化量が予め定められた閾値を超えた場合に、前記走行体の走行を制御する、請求項1に記載の走行システム。 The position information of the indicator section includes first position information acquired when the running body travels straight and second position information acquired when the running body travels along a curve,
The travel control unit controls travel of the travel object when a change amount of the second position information based on the first position information exceeds a predetermined threshold when the travel object travels a curve. The travel system according to claim 1, wherein - 前記走行制御部は、前記走行体の走行を、前記走行体の停止、前記走行体の減速、および、前記走行体の曲線走行における曲率の減少のいずれかに制御する、請求項2に記載の走行システム。 3. The traveling control unit according to claim 2, wherein the travel control unit controls travel of the travel body to any one of stopping of the travel body, deceleration of the travel body, and reduction of curvature in curve travel of the travel body. running system.
- 前記台車は、頂部と、車輪部とを含み、
前記指標部は、上下方向において、前記車輪部よりも前記頂部寄りの位置に設けられる、請求項2または3に記載の走行システム。 the bogie includes a top portion and a wheel portion;
The travel system according to claim 2 or 3, wherein the indicator portion is provided at a position closer to the top portion than the wheel portion in the vertical direction. - 前記指標部の位置情報は、前記走行体が床面の段差を越える前に取得される第3位置情報と、前記走行体が床面の段差を越えた後に取得される第4位置情報とを含み、
前記走行制御部は、前記走行体の走行時、前記第3位置情報を基準とする前記第4位置情報の変化量が予め定められた閾値を超えた場合に、前記走行体の走行を制御する、請求項1から4のいずれか1項に記載の走行システム。 The position information of the index portion includes third position information acquired before the running body crosses the step on the floor and fourth position information acquired after the running body crosses the step on the floor. including
The traveling control unit controls traveling of the traveling body when a change amount of the fourth position information based on the third position information exceeds a predetermined threshold when the traveling body travels. , The travel system according to any one of claims 1 to 4. - 前記走行制御部は、前記走行体が停止するように、前記走行体の走行を制御する、請求項5に記載の走行システム。 The traveling system according to claim 5, wherein the traveling control unit controls traveling of the traveling body so that the traveling body stops.
- 前記指標部は、前記台車に付された特定の図形であり、
前記取得部は、前記カメラを含み、前記カメラにより撮像された前記図形の画像を取得することにより、前記指標部の位置情報を取得する、請求項1から6のいずれか1項に記載の走行システム。 The indicator part is a specific figure attached to the truck,
7. The traveling according to any one of claims 1 to 6, wherein the acquisition unit includes the camera, and acquires the position information of the indicator unit by acquiring an image of the figure captured by the camera. system. - 自走可能な走行体と、
指標部を有し、前記走行体により牽引される被牽引体と、
カメラまたはレーザセンサを含み、前記走行体の試走時に、前記走行体に対する前記指標部の位置情報を取得する取得部と、
前記取得部において取得される前記指標部の位置情報の変化に基づいて、前記走行体の走行条件を設定し、かつ、前記走行体の実運用時に前記走行条件を満たすように前記走行体の走行を制御する走行制御部とを備える、走行システム。 a self-propelled running body;
a towed body having an index portion and towed by the traveling body;
an acquisition unit that includes a camera or a laser sensor and acquires the position information of the indicator unit with respect to the running object during a test run of the running object;
A running condition of the running body is set based on a change in the position information of the indicator acquired by the acquiring section, and the running of the running body is satisfied so as to satisfy the running condition during actual operation of the running body. A travel system comprising a travel control unit that controls the
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-099351 | 2021-06-15 | ||
JP2021099351A JP6970852B1 (en) | 2021-06-15 | 2021-06-15 | Driving system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022264673A1 true WO2022264673A1 (en) | 2022-12-22 |
Family
ID=78605739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/017887 WO2022264673A1 (en) | 2021-06-15 | 2022-04-15 | Travel system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6970852B1 (en) |
WO (1) | WO2022264673A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024209687A1 (en) * | 2023-04-07 | 2024-10-10 | 三菱電機株式会社 | Automatic connection mechanism, autonomous traveling vehicle, and automatic connection method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003148938A (en) * | 2001-11-15 | 2003-05-21 | Hino Motors Ltd | Coupling angle detector |
JP2018188105A (en) * | 2017-05-11 | 2018-11-29 | アイシン精機株式会社 | Towing support device |
JP2019156066A (en) * | 2018-03-09 | 2019-09-19 | 株式会社Subaru | Travel control device for vehicle |
-
2021
- 2021-06-15 JP JP2021099351A patent/JP6970852B1/en active Active
-
2022
- 2022-04-15 WO PCT/JP2022/017887 patent/WO2022264673A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003148938A (en) * | 2001-11-15 | 2003-05-21 | Hino Motors Ltd | Coupling angle detector |
JP2018188105A (en) * | 2017-05-11 | 2018-11-29 | アイシン精機株式会社 | Towing support device |
JP2019156066A (en) * | 2018-03-09 | 2019-09-19 | 株式会社Subaru | Travel control device for vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP2022190865A (en) | 2022-12-27 |
JP6970852B1 (en) | 2021-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10875448B2 (en) | Visually indicating vehicle caution regions | |
US10754350B2 (en) | Sensor trajectory planning for a vehicle | |
US9870002B1 (en) | Velocity control of position-controlled motor controllers | |
KR101909766B1 (en) | Holonomic motion vehicle for travel on non-level surfaces | |
CN113848910B (en) | Navigation system, navigation control method and device, controller and AGV | |
JPWO2016103303A1 (en) | Self-propelled joint robot | |
WO2014156501A1 (en) | Automatic guided vehicle | |
JP2016151897A (en) | Mobile body control device and mobile body control method | |
CN215679136U (en) | Navigation system and AGV dolly | |
WO2022264673A1 (en) | Travel system | |
US11845415B2 (en) | AGV having dynamic safety zone | |
JP6944611B1 (en) | Self-propelled device and running system of self-propelled device | |
KR101232584B1 (en) | Apparatus for controlling mobile robot and method of the same | |
CN112873198A (en) | Control method of robot system | |
WO2022264672A1 (en) | Self-propelled device | |
Doroftei et al. | Design and control of an omni-directional mobile robot | |
US20220073329A1 (en) | Transport device, control method, and computer program product | |
CN107405526B (en) | Amusement ride with robot mechanism | |
JP6743572B2 (en) | Mobile device | |
WO2020240398A1 (en) | Electric vehicle with autonomous drive | |
JP7254973B1 (en) | traveling robot system | |
Chainarong et al. | Development of an Obstacle Avoidance System for Autonomous Material Handling Vehicles | |
JP7548650B1 (en) | Mobile object route generation system, route generation method, and program | |
JP7540815B1 (en) | Mobile object route generation system, route generation method, and program | |
JP7397045B2 (en) | Unmanned conveyance device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22824668 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22824668 Country of ref document: EP Kind code of ref document: A1 |