WO2014156485A1 - グリーンネットワーク構築方法 - Google Patents

グリーンネットワーク構築方法 Download PDF

Info

Publication number
WO2014156485A1
WO2014156485A1 PCT/JP2014/055251 JP2014055251W WO2014156485A1 WO 2014156485 A1 WO2014156485 A1 WO 2014156485A1 JP 2014055251 W JP2014055251 W JP 2014055251W WO 2014156485 A1 WO2014156485 A1 WO 2014156485A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
information
port
mdmact
access
Prior art date
Application number
PCT/JP2014/055251
Other languages
English (en)
French (fr)
Inventor
キニ グレン マンスフィールド
Original Assignee
株式会社サイバー・ソリューションズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サイバー・ソリューションズ filed Critical 株式会社サイバー・ソリューションズ
Priority to KR1020157005056A priority Critical patent/KR102072879B1/ko
Priority to JP2015508211A priority patent/JP6298445B2/ja
Priority to US14/421,161 priority patent/US9497031B2/en
Publication of WO2014156485A1 publication Critical patent/WO2014156485A1/ja
Priority to IN396MUN2015 priority patent/IN2015MN00396A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/12Arrangements for remote connection or disconnection of substations or of equipment thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • H04L12/462LAN interconnection over a bridge based backbone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0823Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability
    • H04L41/0833Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability for reduction of network energy consumption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/145Network analysis or design involving simulating, designing, planning or modelling of a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/66Layer 2 routing, e.g. in Ethernet based MAN's
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/70Routing based on monitoring results
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/30Peripheral units, e.g. input or output ports
    • H04L49/3009Header conversion, routing tables or routing tags
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/35Switches specially adapted for specific applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/22Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks comprising specially adapted graphical user interfaces [GUI]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the present invention relates to a green network construction method in a Layer-2 network, and more particularly to a technology for constructing a green architecture for efficient power saving in a Layer-2 network.
  • Patent Document 1 discloses a method for conserving power by concentrating processing on servers in a predetermined rack among a group of racks in a server room and stopping the power supply of a rack in which no servers are operating. Has been.
  • Patent Document 2 discloses a method for reducing the power consumption of a network system by controlling the power supply of routers and switches that are redundant components of the network.
  • the usage status of all devices (especially L2 switches) installed in the network is monitored, and depending on the usage status, the corresponding device is monitored. It is considered that a method for controlling the power supply is effective.
  • An object of the present invention is to provide a technology for constructing a green architecture for efficient power saving in a Layer-2 network.
  • the invention according to claim 1 is a green network construction method for constructing a green architecture for efficient power saving in a Layer-2 network, Collect all broadcast packets communicated in the network and extract packet information of ⁇ time stamp (TStamp), source MAC address (SMAC), source IP address (SIP), destination IP address (DIP) ⁇
  • the invention according to claim 3 is the green network construction method according to claim 2,
  • Each L2 switch includes a visualization process for displaying GMDMAcT information in which the port connection configuration of the L2 switch is changed in the green architecture construction process.
  • the invention according to claim 4 is the green network construction method according to claim 3,
  • the visualization process refers to the access history table (MAcT) generated in the access analysis process, analyzes a communication time zone between specific devices, and the time zone is longer than a preset threshold. In this case, the information of the L2 switch to which these devices are connected is displayed.
  • MAcT access history table
  • the communication state of each port of the L2 switch in a predetermined time zone that is, the communication frequency of the device connected to each port can be easily understood, and the L2 can be constructed to construct a green architecture. Switch port connection configuration is automatically changed. This enables efficient power saving in the Layer-2 network.
  • the network administrator can easily change the port connection configuration of the L2 switch by referring to the change information of the port connection configuration of the L2 switch.
  • an L2 switch that does not access all ports in a predetermined time zone can be identified, and the corresponding L2 switch can be turned off in that time zone. That is, it is possible to realize power saving in the network without using wasted power.
  • the network administrator looks at the information of the L2 switch displayed when the communication time between the specific devices becomes longer than the threshold, and in the case of different L2 switches, It becomes clear that long-term communication is being performed via the L2 switch. For example, in order to reduce the communication load in the network, the connection configuration can be easily changed by connecting the device to the same L2 switch. It becomes possible to do.
  • M1 network monitoring terminals S1 to S2 L2 switches N11 to N33 communication devices H1 to H2 server R1 router
  • a green network construction method is an efficient method in a Layer-2 network by monitoring and analyzing communication between all devices installed in the Layer-2 network. This is a method for constructing a green architecture for power saving, and will be described with reference to the flowchart shown in FIG.
  • all broadcast packets communicated in the Layer-2 network are collected ⁇ time stamp (TStamp), source MAC address (SMAC), The packet information of the source IP address (SIP) and destination IP address (DIP) ⁇ is extracted.
  • TStamp time stamp
  • SMAC source MAC address
  • DIP destination IP address
  • ARP ARP packet
  • ⁇ MAC address (MAC), MAC based on ⁇ TStamp, SMAC, SIP ⁇ information from the packet information extracted in the packet collection process S01 Generate MAC-IP history table (MIPT) with IP address (IP) and latest time stamp (LastTimeStamp) ⁇ . That is, in this process S02, the latest time stamp (LastTimeStamp) is added to the correspondence table between the MAC address (MAC) and IP address (IP) of the device from the information of communication packets between the devices installed in the Layer-2 network.
  • the added history table (MIPT) is created, and when a communication packet having the same MAC and IP appears thereafter, the time stamp (TStamp) information of the communication packet is overwritten in the LastTimeStamp.
  • all the packet information extracted in the packet collection process S01 is ⁇ source MAC address (SMAC), Categorized in the category of destination MAC address (DMAC) ⁇ , and count the number of packets for each category for each time slot of a fixed interval ⁇ Time interval (TimePeriod), An access history table (MAcT) of a source MAC address (SMAC), a destination MAC address (DMAC), and an access count (Count) ⁇ is generated.
  • the transmission destination MAC address (DMAC) can be obtained by referring to the MIPT from the transmission destination IP address (DIP) of the packet information extracted in the packet collection process S01.
  • the predetermined time described above that is, the time interval (TimePeriod) of the access history table (MAcT) can be freely set in consideration of the network environment and the like.
  • L2 switch port analysis process S04 for each L2 switch, a device connected to the port of the L2 switch is detected, and based on the information in the access history table (MAcT) generated in the access analysis process S03, a predetermined Analyzing the number of accesses of these devices in time ⁇ HourlyPeriod, An L2 switch state table (MDMAcT) of L2 switch port (Port), transmission destination MAC address (DMAC), access count (Count) ⁇ is generated.
  • MDMAcT L2 switch state table of L2 switch port (Port), transmission destination MAC address (DMAC), access count (Count) ⁇
  • the L2 switch status table (MDMAcT) generated for each L2 switch indicates the communication status of each port of the L2 switch in the predetermined time zone (HourlyPeriod), that is, the communication frequency of the device (DMAC) connected to each port become.
  • the time zone (HourlyPeriod) can be set freely in consideration of the network environment and the like.
  • the L2 switch with the smallest number of ports with access (1 ⁇ Count) is detected based on the MDMAcT information, and the device (DMAC) connected to the port with that access is detected. It shows that GMDMAcT in which the port connection configuration of MDMAcT is updated is generated by repeatedly performing the process of deleting from the MDMAcT and adding to the MDMAcT of another L2 switch.
  • the packet collection process S01 collects all broadcast packets communicated in the Layer-2 network shown in FIG. 2, and the packet information ⁇ time stamp (TSt (TSt amp), source MAC address (SMAC), source IP address (SIP), destination IP address (DIP) ⁇ .
  • TSt time stamp
  • SMAC source MAC address
  • SIP source IP address
  • DIP destination IP address
  • the packet information extracted in the time zone from 10:00:00 to 10:09:10 is shown.
  • a broadcast packet is transmitted from the communication device N31 to the server H1 at the time of 10:00:00. It is shown that.
  • the MAC-IP history generation process S02 uses ⁇ TS address, SMAC, SIP ⁇ information from the packet information based on ⁇ MAC address (MAC), A history table (MIPT) of IP address (IP) and latest time stamp (LastTimeStamp) ⁇ is generated.
  • MIPT A history table of IP address
  • LastTimeStamp latest time stamp
  • ⁇ MAC-H1, IP-H1 ⁇ : Tstamp 10: 00: 10, 10:03:10, 10:06:10, 10:09:10 last information from 10:09:10 Set to LastTimeStamp.
  • ⁇ MAC-N22, IP-N22 ⁇ : Information of Tstamp 10: 01: 30 is set in LastTimeStamp.
  • ⁇ MAC-H2, IP-H2 ⁇ : The last 10:04:50 information is set in LastTimeStamp from the information of Tstamp 10: 01: 40, 10:04:50.
  • the IP address of the communication device N31 is changed from IP-N31 to IP-N31-1, the above ⁇ MAC-N31, IP-N31 ⁇ LastTimeStamp is not updated.
  • the IP address of the communication device N31 has been changed from IP-N31-1 to IP-N31, ⁇ MAC-N31, IP-N31 ⁇ LastTimeStamp is not updated.
  • the access analysis process S03 classifies the packet information into ⁇ source MAC address (SMAC), destination MAC address (DMAC) ⁇ categories based on the MIPT information, and sets the number of packets for each category to 10 Count every minute time slot ⁇ time interval (TimePeriod), Source MAC An access history table (MAcT) of address (SMAC), destination MAC address (DMAC), access count (Count) ⁇ is generated.
  • SMAC source MAC address
  • DMAC destination MAC address
  • Count access count
  • the destination MAC address (DMAC) can be obtained by referring to the MIPT from the destination IP address (DIP) of the packet information.
  • the number of accesses between N31 and H1 8 times
  • the number of accesses between N22 and H2 2 times
  • the L2 switch port analysis process S04 detects the devices connected to the L2 switch ports for each L2 switch, and based on the MAcT information shown in FIG. Analyzing ⁇ HourlyPeriod, An L2 switch state table (MDMAcT) of L2 switch port (Port), transmission destination MAC address (DMAC), access count (Count) ⁇ is generated.
  • MDMAcT L2 switch state table
  • DMAC transmission destination MAC address
  • Counter access count
  • the number of accesses of the communication device N33 connected to the port 4 in the time zone from 21:00:00 to 21:59:59 is 6 times, and the number of accesses of the other communication devices N31 and N32 : Indicates zero times.
  • the green architecture construction process S05 deletes the DMAC of the device N33 connected to the port 4 to which the L2 switch S3 has access from the MDMAcT based on the information of the MDMAcT of the L2 switch S2 as shown in FIG. Then, by performing processing to be added to the MDMAcT of another L2 switch S2, a green L2 switch state table (GMDMAcT) in which the port connection configuration of the MDMAcT is updated is generated.
  • GMDMAcT green L2 switch state table
  • the DMAC of the communication device N33 is not set to the port 4 in the GMDMAcT of the L2 switch S3. Further, in the GMDMAcT of the L2 switch S2, the DMAC of the communication device N33 is set to the port 1 that is an empty port.
  • the visualization process S06 displays the GMDMAcT information of S2 and S3 whose port connection configuration of the L2 switch has been changed. Based on this information, the network administrator can easily change the port connection configuration of the L2 switches S2 and S3, that is, remove the communication device N33 connected to the port 4 of the L2 switch S2 from the port, The communication device N33 can be connected to the port 1 that was an empty port of the L2 switch S2.
  • Second Embodiment A green network construction method according to a second embodiment of the present invention will be described.
  • the visualization process S06 will be described.
  • the visualization process S06 refers to the access history table (MAcT) generated in the access analysis process, analyzes the communication time zone between specific devices, and the time zone becomes longer than a preset threshold The information of the L2 switch to which those devices are connected is displayed. That is, the visualization process S06 detects devices that have been communicating for a long time in the network, and displays information on the two L2 switches to which these devices are connected.
  • MAcT access history table
  • the network administrator can see the information of the above two L2 switches, and if they are different L2 switches, it will be understood that long-term communication is performed via the L2 switch. In order to reduce the communication load, it is possible to easily change the connection configuration by connecting the device to the same L2 switch.
  • the number of accesses between N31 and H1 was 8 in the time zone from 10:00:00 to 10:09:59, but it continued in the subsequent time zone.
  • the threshold of the access time zone between N31 and H1 If it is set to 15 minutes, the access between N31 and H1 is detected, and the L2 switch S3 to which N31 is connected and the L2 switch S1 to which H1 is connected are displayed.
  • the network administrator can easily change the connection configuration by seeing this information, for example, by removing N31 from the L2 switch S3 and connecting it to the L2 switch S1. As a result, the communication load in the network is reduced, and power saving as a whole network can be expected.
  • the present invention can be applied to a system for constructing a green architecture for efficient power saving in a Layer-2 network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Small-Scale Networks (AREA)

Abstract

 Layer-2ネットワーク内における効率的な省電力化を図るためのグリーンアーキテクチャを構築する技術を提供する。 ネットワーク内で通信される全てのブロードキャストパケットを収集してパケット情報を抽出するパケット収集プロセスS01と、パケット情報から最新のタイムスタンプのMIPTを生成するMAC-IP履歴生成プロセスS02と、前記MIPTの情報を基に{SMAC, DMAC}のカテゴリ毎のパケット数を一定間隔のタイムスロット毎にカウントしてMAcTを生成するアクセス分析プロセスS03と、前記MAcTの情報を基にMDMAcTを生成するL2スイッチポート分析プロセスS04と、前記MDMAcTのポート接続構成が更新されたGMDMAcTを生成するグリーンアーキテクチャ構築プロセスS05と、前記GMDMAcTの情報を表示する可視化プロセスS06とを有する。

Description

グリーンネットワーク構築方法
 本発明は、Layer-2ネットワーク内におけるグリーンネットワーク構築方法に係り、特にLayer-2ネットワーク内における効率的な省電力化を図るためのグリーンアーキテクチャを構築する技術に関する。
 近年、オフィスや学校等におけるネットワーク環境の利用が増大してきている中で、使用されていない機器により消費される電力を削減する省電力化に関する技術(グリーンアーキテクチャ)の開発が進んできている。
 例えば、特許文献1では、サーバルーム内のラック群のうち、所定のラック内のサーバに処理を集中させ、稼働中のサーバが無くなったラックの電源を停止させて省電力化を図る方法が開示されている。
 また特許文献2では、ネットワークの冗長構成部分となっているルータおよびスイッチの電源を制御することにより、ネットワークシステムの省電力化を図る方法が開示されている。
特開2011-082799 特開2012-244440
 Layer-2ネットワーク内において効率的な省電力化を図るためには、ネットワーク内に設置された全ての装置(特にL2スイッチ)の使用状況を監視して、その使用状況に応じて当該装置への電力供給を制御する方法が有効であると考えられる。
 例えば、21時から翌日8時までの間、使用されていないL2スイッチに対して、当該時間帯に電力供給を停止することで省電力化を図ることができる。
 本発明の目的は、Layer-2ネットワーク内における効率的な省電力化を図るためのグリーンアーキテクチャを構築する技術を提供することにある。
 上記目的を達成するために、請求項1に係る発明は、Layer-2ネットワーク内における効率的な省電力化を図るためのグリーンアーキテクチャを構築するグリーンネットワーク構築方法であって、
 ネットワーク内で通信される全てのブロードキャストパケットを収集して{タイムスタンプ(TStamp), 送信元MACアドレス(SMAC), 送信元IPアドレス(SIP), 送信先IPアドレス(DIP) }のパケット情報を抽出するパケット収集プロセスと、
 前記パケット収集プロセスで抽出されたパケット情報から{TStamp, SMAC, SIP}の情報を基に{MACアドレス(MAC), IPアドレス(IP), 最新のタイムスタンプ(LastTimeStamp)}のMAC-IP履歴テーブル(MIPT)を生成するMAC-IP履歴生成プロセスと、
 前記MAC-IP履歴生成プロセスで生成されたMIPTの情報を基に、前記パケット収集プロセスで抽出された全てのパケット情報を{送信元MACアドレス(SMAC),
送信先MACアドレス(DMAC)}のカテゴリに分類して、該カテゴリ毎のパケット数を一定間隔のタイムスロット毎にカウントして{時間間隔(TimePeriod),
送信元MACアドレス(SMAC), 送信先MACアドレス(DMAC), アクセス数(Count)}のアクセス履歴テーブル(MAcT)を生成するアクセス分析プロセスと、
 L2スイッチ毎に、L2スイッチのポートに接続された装置を検出して、前記アクセス分析プロセスで生成されたMAcTの情報を基に、所定時間内におけるそれら装置のアクセス数を分析して{時間帯(HourlyPeriod),
L2スイッチポート(Port), 送信先MACアドレス(DMAC),  アクセス数(Count)}のL2スイッチ状態テーブル(MDMAcT)を生成するL2スイッチポート分析プロセスと、
 前記L2スイッチポート分析プロセスで生成されたMDMAcTの情報を基に、アクセスの有る(1≦Count)ポートを持つ特定のL2スイッチを抽出し、当該L2スイッチのアクセスの有るポートに接続されている装置(DMAC)を当該MDMAcTから削除し、別のL2スイッチのMDMAcTに追加する処理を行うことで、MDMAcTのポート接続構成が更新されたグリーンL2スイッチ状態テーブル(GMDMAcT)を生成するグリーンアーキテクチャ構築プロセスと、を有することを特徴とする。
 請求項2に係る発明は、請求項1に記載のグリーンネットワーク構築方法であって、
 前記グリーンアーキテクチャ構築プロセスは、前記L2スイッチポート分析プロセスで生成されたMDMAcTの情報を基に、アクセスの有る(1≦Count)ポート数が一番少ないL2スイッチを検出して、そのアクセスの有るポートに接続されている装置(DMAC)を当該MDMAcTから削除し、別のL2スイッチのMDMAcTに追加する処理を繰り返し行うことで、MDMAcTのポート接続構成が更新されたGMDMAcTを生成することを特徴とする。
 請求項3に係る発明は、請求項2に記載のグリーンネットワーク構築方法であって、
 L2スイッチ毎に、前記グリーンアーキテクチャ構築プロセスでL2スイッチのポート接続構成が変更されたGMDMAcTの情報を表示する可視化プロセスを有することを特徴とする。
 請求項4に係る発明は、請求項3に記載のグリーンネットワーク構築方法であって、
 前記可視化プロセスは、前記アクセス分析プロセスで生成されたアクセス履歴テーブル(MAcT)を参照して、特定の装置間の通信時間帯を分析し、その時間帯が予め設定された閾値よりも長くなった場合に、それらの装置が接続されているL2スイッチの情報を表示することを特徴とする。
 請求項1の発明によれば、所定の時間帯におけるL2スイッチの各ポートの通信状態、すなわち各ポートに接続された装置の通信頻度が容易にわかるようになるとともに、グリーンアーキテクチャ構築のためにL2スイッチのポート接続構成が自動的に変更されようになる。これによりLayer-2ネットワーク内における効率的な省電力化を図ることが可能になる。
 請求項2の発明によれば、グリーンアーキテクチャ構築のためにL2スイッチのポート接続構成の変更を効率的に行うことが可能になる。
 請求項3の発明によれば、ネットワーク管理者は、L2スイッチのポート接続構成の変更情報を参照して、容易にL2スイッチのポート接続構成を変更することができるようになる。また所定の時間帯に全ポートにアクセスの無いL2スイッチがわかるようになり、その時間帯において該当するL2スイッチを電源OFFすることが可能となる。すなわち、無駄な電力を使用せずにネットワーク内における省電力化を実現することが可能となる。
 請求項4の発明によれば、ネットワーク管理者は、特定の装置間の通信時間が閾値よりも長くなった場合に表示されるL2スイッチの情報を見て、それぞれが異なるL2スイッチの場合は、長時間にわたる通信がL2スイッチを経由して行われていることがわかるようになり、例えばネットワーク内の通信負荷を軽減するために、当該装置を同じL2スイッチに接続して容易に接続構成を変更することが可能になる。
本発明の第1実施形態に係るグリーンネットワーク構築方法を説明するフローチャート図である。 本発明の第1実施形態に係るグリーンネットワーク構築方法を説明するネットワーク構成図の一例を示した模式図である。 本発明の第1実施形態に係るグリーンネットワーク構築方法において、パケット情報から生成するテーブルの一例を示した模式図である。 本発明の第1実施形態に係るグリーンネットワーク構築方法において、L2スイッチ状態テーブルの一例を示した模式図である。 本発明の第1実施形態に係るグリーンネットワーク構築方法において、グリーンアーキテクチャ構築におけるアルゴリズムの一例を示した図である。
M1      ネットワーク監視端末
S1~S2   L2スイッチ
N11~N33 通信装置
H1~H2   サーバ
R1      ルータ
 以下、本発明を実施するための形態について図面を参照して詳細に説明する。なお、本発明は、以下に述べる実施形態により限定されるものではない。
1.第1実施形態
 本発明の第1実施形態に係るグリーンネットワーク構築方法は、Layer-2ネットワーク内に設置された全装置間の通信を監視・分析することにより、Layer-2ネットワーク内における効率的な省電力化を図るためのグリーンアーキテクチャを構築する方法であり、図1に示すフローチャートを用いて説明する。
 パケット収集プロセスS01では、Layer-2ネットワーク内で通信される全てのブロードキャストパケットを収集して{タイムスタンプ(TStamp), 送信元MACアドレス(SMAC),
送信元IPアドレス(SIP), 送信先IPアドレス(DIP) }のパケット情報を抽出する。ここで、Layer-2ネットワーク内で通信されるブロードキャストパケットとして、例えばIpv4プロトコルの場合にはARPパケットがある。
 次にMAC-IP履歴生成プロセスS02では、パケット収集プロセスS01で抽出されたパケット情報から{TStamp, SMAC, SIP}の情報を基に{MACアドレス(MAC),
IPアドレス(IP), 最新のタイムスタンプ(LastTimeStamp)}のMAC-IP履歴テーブル(MIPT)を生成する。すなわち、このプロセスS02では、Layer-2ネットワーク内に設置された装置間の通信パケットの情報から、装置のMACアドレス(MAC)とIPアドレス(IP)の対応表に最新のタイムスタンプ(LastTimeStamp)を付加した履歴テーブル(MIPT)を作成し、その後同じMACとIPを持つ通信パケットが現れたら、その通信パケットのタイムスタンプ(TStamp)の情報をLastTimeStampに上書きする。
 次にアクセス分析プロセスS03では、MAC-IP履歴生成プロセスS02で生成されたMIPTの情報を基に、パケット収集プロセスS01で抽出された全てのパケット情報を{送信元MACアドレス(SMAC),
送信先MACアドレス(DMAC)}のカテゴリに分類して、該カテゴリ毎のパケット数を一定間隔のタイムスロット毎にカウントして{時間間隔(TimePeriod),
送信元MACアドレス(SMAC), 送信先MACアドレス(DMAC), アクセス数(Count)}のアクセス履歴テーブル(MAcT)を生成する。ここで、送信先MACアドレス(DMAC)については、パケット収集プロセスS01で抽出されたパケット情報の送信先IPアドレス(DIP)からMIPTを参照することにより求めることができる。
 このアクセス履歴テーブル(MAcT)により、所定時間内における装置間のアクセス履歴がわかるようになり、例えば、どの装置間で通信が行われたのか、どの位の頻度で通信がおこなわれているのか、また通信が継続している時間はどの程度なのか、等の情報を知ることができるようになる。
 また上記で説明した所定時間、すなわちアクセス履歴テーブル(MAcT)の時間間隔(TimePeriod)については、ネットワーク環境等を考慮して自由に設定することが可能である。
 次にL2スイッチポート分析プロセスS04では、L2スイッチ毎に、L2スイッチのポートに接続された装置を検出して、アクセス分析プロセスS03で生成されたアクセス履歴テーブル(MAcT)の情報を基に、所定時間内におけるそれら装置のアクセス数を分析して{時間帯(HourlyPeriod),
L2スイッチポート(Port), 送信先MACアドレス(DMAC), アクセス数(Count)}のL2スイッチ状態テーブル(MDMAcT)を生成する。
 ここでL2スイッチのポートに接続された装置を検出する方法については、特許第4653164号(特許権者および発明者は、本願の出願人および発明者と同じ)に開示された方法を用いることができる。
 L2スイッチ毎に生成されたL2スイッチ状態テーブル(MDMAcT)により、所定の時間帯(HourlyPeriod)におけるL2スイッチの各ポートの通信状態、すなわち各ポートに接続された装置(DMAC)の通信頻度がわかるようになる。また時間帯(HourlyPeriod)については、ネットワーク環境等を考慮して自由に設定することが可能である。
 次にグリーンアーキテクチャ構築プロセスS05では、L2スイッチポート分析プロセスS04で生成されたMDMAcTの情報を基に、アクセスの有る(1≦Count)ポートを持つ特定のL2スイッチを抽出し、当該L2スイッチのアクセスの有るポートに接続されている装置(DMAC)を当該MDMAcTから削除し、別のL2スイッチのMDMAcTに追加する処理を行うことで、MDMAcTのポート接続構成が更新されたグリーンL2スイッチ状態テーブル(GMDMAcT)を生成する。このグリーンL2スイッチ状態テーブル(GMDMAcT)を生成するアルゴリズムの一例を図5に
示す。
 図5に示す例では、MDMAcTの情報を基に、アクセスの有る(1≦Count)ポート数が一番少ないL2スイッチを検出して、そのアクセスの有るポートに接続されている装置(DMAC)を当該MDMAcTから削除し、別のL2スイッチのMDMAcTに追加する処理を繰り返し行うことで、MDMAcTのポート接続構成が更新されたGMDMAcTを生成することを示している。
 次に可視化プロセスS06では、L2スイッチ毎に、グリーンアーキテクチャ構築プロセスS05でL2スイッチのポート接続構成が変更されたGMDMAcTの情報を表示する。ネットワーク管理者は、L2スイッチ毎のGMDMAcT情報を基に、容易にL2スイッチのポート接続構成を変更することができるようになる。
 またL2スイッチ毎のGMDMAcTの情報により、所定の時間帯(HourlyPeriod)において、全ポートにアクセスの無い(Count=0)L2スイッチがわかるようになり、その時間帯において該当するL2スイッチを電源OFFすることが可能となる。すなわち、無駄な電力を使用せずにネットワーク内における省電力化を実現することが可能となる。
 次に、上記で説明したグリーンネットワーク構築方法について、図2に示したネットワーク構成図、図3および図4に示したテーブルを用いて具体的に説明する。
 パケット収集プロセスS01は、図2に示したLayer-2ネットワーク内で通信される全てのブロードキャストパケットを収集して、図3に示したパケット情報{タイムスタンプ(TSt
amp), 送信元MACアドレス(SMAC), 送信元IPアドレス(SIP), 送信先IPアドレス(DIP) }を抽出する。この例では、10:00:00~10:09:10の時間帯に抽出したパケット情報を示しており、例えば10:00:00の時刻に通信装置N31からサーバH1にブロードキャストパケットが送信されたことを示している。
 次にMAC-IP履歴生成プロセスS02は、パケット情報から{TStamp, SMAC, SIP}の情報を基に{MACアドレス(MAC),
IPアドレス(IP), 最新のタイムスタンプ(LastTimeStamp)}の履歴テーブル(MIPT)を生成する。
 このMIPTの生成例について以下に説明する。
{MAC-N31, IP-N31}:Tstamp=10:00:00の情報がLastTimeStampに設定される。
{MAC-H1, IP-H1}:Tstamp=10:00:10, 10:03:10, 10:06:10, 10:09:10の情報の中から最後の10:09:10の情報がLastTimeStampに設定される。
{MAC-N22, IP-N22}:Tstamp=10:01:30の情報がLastTimeStampに設定される。
{MAC-H2, IP-H2}:Tstamp=10:01:40, 10:04:50の情報の中から最後の10:04:50の情報がLastTimeStampに設定される。
{MAC-N31, IP-N31-1}:Tstamp=10:03:00, 10:06:00のの中から最後の10:06:00の情報がLastTimeStampに設定される。ここでは通信装置N31のIPアドレスがIP-N31からIP-N31-1に変更されているため、上記{MAC-N31,
IP-N31}のLastTimeStampは更新されない。
{MAC-N11, IP-N11}:Tstamp=10:04:40の情報がLastTimeStampに設定される。
{MAC-N31, IP-N31}:Tstamp=10:09:00の情報がLastTimeStampに設定される。ここでは通信装置N31のIPアドレスがIP-N31-1からIP-N31に変更されているため、上記{MAC-N31,
IP-N31}のLastTimeStampは更新されない。
 次にアクセス分析プロセスS03は、MIPTの情報を基に、パケット情報を{送信元MACアドレス(SMAC), 送信先MACアドレス(DMAC)}のカテゴリに分類して、該カテゴリ毎のパケット数を10分間隔のタイムスロット毎にカウントして{時間間隔(TimePeriod),
送信元MAC
アドレス(SMAC), 送信先MACアドレス(DMAC), アクセス数(Count)}のアクセス履歴テーブル(MAcT)を生成する。ここで、送信先MACアドレス(DMAC)については、パケット情報の送信先IPアドレス(DIP)からMIPTを参照することにより求めることができる。
 このMAcTの例では、10:00:00~10:09:59の時間帯に、N31-H1間のアクセス数:8回、N22-H2間のアクセス数:2回、N11-H2間のアクセス数:2回であることを示している。
次にL2スイッチポート分析プロセスS04は、L2スイッチ毎に、L2スイッチのポートに接続された装置を検出して、図3に示したMAcTの情報を基に、所定時間内におけるそれら装置のアクセス数を分析して{時間帯(HourlyPeriod),
L2スイッチポート(Port), 送信先MACアドレス(DMAC), アクセス数(Count)}のL2スイッチ状態テーブル(MDMAcT)を生成する。L2スイッチS3のMDMAcTの例を図4に示す。
 このMDMAcTの例では、21:00:00~21:59:59の時間帯にポート4に接続されている通信装置N33のアクセス数:6回であり、その他の通信装置N31,N32のアクセス数:0回であることを示している。
 次にグリーンアーキテクチャ構築プロセスS05は、図4に示すようにL2スイッチS2のMDMAcTの情報を基に、L2スイッチS3のアクセスの有るポート4に接続されている装置N33のDMACを当該MDMAcTから削除し、別のL2スイッチS2のMDMAcTに追加する処理を行うことで、MDMAcTのポート接続構成が更新されたグリーンL2スイッチ状態テーブル(GMDMAcT)を生成する。このグリーンL2スイッチ状態テーブル(GMDMAcT)を生成するアルゴリズムの一例を図5に示す。
 この例では、L2スイッチS3のGMDMAcTにおいて、ポート4に通信装置N33のDMACが設定されていない。またL2スイッチS2のGMDMAcTにおいて、空きポートであったポート1に通信装置N33のDMACが設定されるようになる。
 次に可視化プロセスS06は、L2スイッチのポート接続構成が変更されたS2とS3のGMDMAcTの情報を表示する。ネットワーク管理者は、この情報を基に、容易にL2スイッチS2およびS3のポート接続構成を変更する、すなわちL2スイッチS2のポート4に接続されていた通信装置N33を、そのポートから取り外し、別のL2スイッチS2の空きポートであったポート1に通信装置N33を接続することができるようになる。
 またL2スイッチS3のGMDMAcTの情報により、時間帯21:00:00~21:59:59において、全ポートにアクセスの無い(Count=0)ことがわかるようになり、その時間帯においてL2スイッチS3を電源OFFすることが可能となる。すなわち、時間帯21:00:00~21:59:59において、使用されていないL2スイッチS3の電力供給を停止することで省電力化を図ることができるようになる。
 上述した例では、時間帯21:00:00~21:59:59にL2スイッチS3の全ポートにアクセスの無い状態であることを説明したが、その後の時間帯でも同じ状態が継続する場合は、例えば時間帯21:00:00~翌日07:59:59において、使用されていないL2スイッチS3の電力供給を停止することで省電力化を図ることができるようになる。
2.第2実施形態
 本発明の第2実施形態に係るグリーンネットワーク構築方法について説明する。第2実施形態では、第1実施形態で説明したプロセスS01~S05については同じであるので、可視化プロセスS06について説明する。
 可視化プロセスS06は、アクセス分析プロセスで生成されたアクセス履歴テーブル(MAcT)を参照して、特定の装置間の通信時間帯を分析し、その時間帯が予め設定された閾値よりも長くなった場合に、それらの装置が接続されているL2スイッチの情報を表示する。すなわち可視化プロセスS06は、ネットワーク内で長時間に渡り通信をしている装置を検出し、それらの装置が接続されている2つのL2スイッチの情報を表示する。
 ここで装置が接続されているL2スイッチを検出する方法については、特許第4653164号(特許権者および発明者は、本願の出願人および発明者と同じ)に開示された方法を用いることができる。
 ネットワーク管理者は、上記2つのL2スイッチの情報を見て、それぞれが異なるL2スイッチの場合は、長時間にわたる通信がL2スイッチを経由して行われていることがわかるようになり、例えばネットワーク内の通信負荷を軽減するために、当該装置を同じL2スイッチに接続して容易に接続構成を変更することが可能になる。
 次に図3に示したアクセス履歴テーブル(MAcT)を用いて具体的に説明する。このMAcTの例では、10:00:00~10:09:59の時間帯に、N31-H1間のアクセス数が8回あったことを示しているが、その後の時間帯においても継続してN31-H1間のアクセスがあり、例えば10:00:00~10:29:59の時間帯に継続してN31-H1間のアクセスがあった場合に、N31-H1間のアクセス時間帯の閾値として15分に設定されていれば、このN31-H1間のアクセスが検出され、N31が接続されているL2スイッチS3とH1が接続されているL2スイッチS1が表示されることになる。
 ネットワーク管理者は、この情報を見て、例えばN31をL2スイッチS3から取り外して、L2スイッチS1に接続して容易に接続構成を変更することができる。これにより、ネットワーク内の通信負荷が軽減されることになり、ネットワーク全体としての省電力化も期待できる。
 本発明は、Layer-2ネットワーク内における効率的な省電力化を図るためのグリーンアーキテクチャを構築するシステムに適用可能である。

Claims (4)

  1.  Layer-2ネットワーク内における効率的な省電力化を図るためのグリーンアーキテクチャを構築するグリーンネットワーク構築方法であって、
     ネットワーク内で通信される全てのブロードキャストパケットを収集して{タイムスタ
    ンプ(TStamp), 送信元MACアドレス(SMAC), 送信元IPアドレス(SIP), 送信先IPアドレス(DIP) }のパケット情報を抽出するパケット収集プロセスと、
     前記パケット収集プロセスで抽出されたパケット情報から{TStamp, SMAC, SIP}の情報を基に{MACアドレス(MAC), IPアドレス(IP), 最新のタイムスタンプ(LastTimeStamp)}のMAC-IP履歴テーブル(MIPT)を生成するMAC-IP履歴生成プロセスと、
     前記MAC-IP履歴生成プロセスで生成されたMIPTの情報を基に、前記パケット収集プロセスで抽出された全てのパケット情報を{送信元MACアドレス(SMAC),
    送信先MACアドレス(DMAC)}のカテゴリに分類して、該カテゴリ毎のパケット数を一定間隔のタイムスロット毎にカウントして{時間間隔(TimePeriod),
    送信元MACアドレス(SMAC), 送信先MACアドレス(DMAC), アクセス数(Count)}のアクセス履歴テーブル(MAcT)を生成するアクセス分析プロセスと、
     L2スイッチ毎に、L2スイッチのポートに接続された装置を検出して、前記アクセス分析プロセスで生成されたMAcTの情報を基に、所定時間内におけるそれら装置のアクセス数を分析して{時間帯(HourlyPeriod),
    L2スイッチポート(Port), 送信先MACアドレス(DMAC),  アクセス数(Count)}のL2スイッチ状態テーブル(MDMAcT)を生成するL2スイッチポート分析プロセスと、
     前記L2スイッチポート分析プロセスで生成されたMDMAcTの情報を基に、アクセスの有る(1≦Count)ポートを持つ特定のL2スイッチを抽出し、当該L2スイッチのアクセスの有るポートに接続されている装置(DMAC)を当該MDMAcTから削除し、別のL2スイッチのMDMAcTに追加する処理を行うことで、MDMAcTのポート接続構成が更新されたグリーンL2スイッチ状態テーブル(GMDMAcT)を生成するグリーンアーキテクチャ構築プロセスと、
     を有することを特徴とするグリーンネットワーク構築方法。
  2.  前記グリーンアーキテクチャ構築プロセスは、前記L2スイッチポート分析プロセスで生成されたMDMAcTの情報を基に、アクセスの有る(1≦Count)ポート数が一番少ないL2スイッチを検出して、そのアクセスの有るポートに接続されている装置(DMAC)を当該MDMAcTから削除し、別のL2スイッチのMDMAcTに追加する処理を繰り返し行うことで、MDMAcTのポート接続構成が更新されたGMDMAcTを生成することを特徴とする請求項1に記載のグリーンネットワーク構築方法。
  3.  L2スイッチ毎に、前記グリーンアーキテクチャ構築プロセスでL2スイッチのポート接続構成が変更されたGMDMAcTの情報を表示する可視化プロセスを有することを特徴とする請求項2に記載のグリーンネットワーク構築方法。
  4.  前記可視化プロセスは、前記アクセス分析プロセスで生成されたアクセス履歴テーブル(MAcT)を参照して、特定の装置間の通信時間帯を分析し、その時間帯が予め設定された閾値よりも長くなった場合に、それらの装置が接続されているL2スイッチの情報を表示することを特徴とする請求項3に記載のグリーンネットワーク構築方法。
PCT/JP2014/055251 2013-03-29 2014-03-03 グリーンネットワーク構築方法 WO2014156485A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157005056A KR102072879B1 (ko) 2013-03-29 2014-03-03 그린 네트워크 구축 방법
JP2015508211A JP6298445B2 (ja) 2013-03-29 2014-03-03 グリーンネットワーク構築方法
US14/421,161 US9497031B2 (en) 2013-03-29 2014-03-03 Method for building green network
IN396MUN2015 IN2015MN00396A (ja) 2013-03-29 2015-02-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-074675 2013-03-29
JP2013074675 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014156485A1 true WO2014156485A1 (ja) 2014-10-02

Family

ID=51623476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055251 WO2014156485A1 (ja) 2013-03-29 2014-03-03 グリーンネットワーク構築方法

Country Status (5)

Country Link
US (1) US9497031B2 (ja)
JP (1) JP6298445B2 (ja)
KR (1) KR102072879B1 (ja)
IN (1) IN2015MN00396A (ja)
WO (1) WO2014156485A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3051751A1 (de) * 2015-01-27 2016-08-03 Siemens Aktiengesellschaft Diagnose einer Fehlkonfiguration eines Netzwerkgerätes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10122585B2 (en) * 2014-03-06 2018-11-06 Dell Products, Lp System and method for providing U-space aligned intelligent VLAN and port mapping
US11394599B2 (en) * 2018-03-12 2022-07-19 Cyber Solutions Inc. System for estimating contact duration between a pair of communication apparatuses

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010148023A (ja) * 2008-12-22 2010-07-01 Alaxala Networks Corp パケット転送方法、パケット転送装置及びパケット転送システム
JP2011044842A (ja) * 2009-08-20 2011-03-03 Kddi Corp 光伝送システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7821968B2 (en) * 2005-04-27 2010-10-26 Cyber Solutions, Inc. Network map creating method
JP5435399B2 (ja) 2009-10-07 2014-03-05 日本電気株式会社 省電力化システム、省電力化方法、及び省電力化用プログラム
JP2012244440A (ja) 2011-05-20 2012-12-10 Hitachi Ltd パケット転送装置の電源制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010148023A (ja) * 2008-12-22 2010-07-01 Alaxala Networks Corp パケット転送方法、パケット転送装置及びパケット転送システム
JP2011044842A (ja) * 2009-08-20 2011-03-03 Kddi Corp 光伝送システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3051751A1 (de) * 2015-01-27 2016-08-03 Siemens Aktiengesellschaft Diagnose einer Fehlkonfiguration eines Netzwerkgerätes

Also Published As

Publication number Publication date
US20150207634A1 (en) 2015-07-23
JPWO2014156485A1 (ja) 2017-02-16
KR102072879B1 (ko) 2020-02-03
KR20150139489A (ko) 2015-12-11
IN2015MN00396A (ja) 2015-09-11
US9497031B2 (en) 2016-11-15
JP6298445B2 (ja) 2018-03-20

Similar Documents

Publication Publication Date Title
JP5958570B2 (ja) ネットワークシステム、コントローラ、スイッチ、及びトラフィック監視方法
US11233720B2 (en) Hierarchical time stamping
Yu et al. Flowsense: Monitoring network utilization with zero measurement cost
EP2912803B1 (en) Forwarding table optimization with flow data
JP5643433B2 (ja) プロトコルイベント管理のための方法および装置
US8249065B2 (en) Destination MAC aging of entries in a Layer 2 (L2) forwarding table
CN110324165A (zh) 网络设备的管理方法、装置及系统
JP2005051736A (ja) 統計収集装置を備えたパケット転送装置および統計収集方法
EP2572473A1 (en) Methods and apparatus for use in an openflow network
WO2015034564A1 (en) Patent latency monitoring in software-defined networks
CN108737221B (zh) 丢包检测方法及通信链路系统
US10116554B2 (en) Data flow processing method and apparatus
JP6298445B2 (ja) グリーンネットワーク構築方法
Afaq et al. Large flows detection, marking, and mitigation based on sFlow standard in SDN
Kumar et al. Open flow switch with intrusion detection system
CN106301844A (zh) 一种实现日志传输的方法及装置
CN101404594A (zh) 热备份性能的测试方法与装置、通信设备
JP2005033391A (ja) 要求とその応答の相関を利用したネットワーク監視装置
JPWO2013001655A1 (ja) 経路探索プログラムおよび情報処理装置
Zhao et al. Study on network topology discovery in IP networks
US20240259286A1 (en) Per-application network performance analysis
Bumgardner et al. Edge-enabled distributed network measurement
Han et al. Research on SDN-based LAN Unknown Unicast Processing Mechanism
Pajin et al. OF2NF: Flow monitoring in OpenFlow environment using NetFlow/IPFIX
CN108234155B (zh) 数据包采集方法、装置和服务器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774470

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14421161

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157005056

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015508211

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774470

Country of ref document: EP

Kind code of ref document: A1