WO2014156215A1 - タングステン酸ジルコニウム - Google Patents

タングステン酸ジルコニウム Download PDF

Info

Publication number
WO2014156215A1
WO2014156215A1 PCT/JP2014/050226 JP2014050226W WO2014156215A1 WO 2014156215 A1 WO2014156215 A1 WO 2014156215A1 JP 2014050226 W JP2014050226 W JP 2014050226W WO 2014156215 A1 WO2014156215 A1 WO 2014156215A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconium tungstate
tungstate
zirconium
diffraction
intensity
Prior art date
Application number
PCT/JP2014/050226
Other languages
English (en)
French (fr)
Inventor
高村 博
里安 成田
鈴木 了
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to JP2015508102A priority Critical patent/JP5982058B2/ja
Publication of WO2014156215A1 publication Critical patent/WO2014156215A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry

Definitions

  • the present invention relates to a material having a negative expansion coefficient (volume decreases with increasing temperature) used when adjusting the expansion coefficient of glass or the like.
  • the expansion strain is caused by the difference in volume change at the bonding interface of different materials, and sometimes causes a large amount of peeling or breaking.
  • Negative expansion materials that shrink in volume with increasing temperature can be combined with materials with positive thermal expansion commonly found in most substances to control the coefficient of thermal expansion of the composite material. Because of it.
  • zirconium tungstate (ZrW 2 O 8 ) has a large thermal contraction coefficient and has a characteristic of exhibiting isotropic negative thermal expansion uniformly over a wide temperature range. Furthermore, as environmental regulation standards become stricter, it is a highly anticipated material because it is a lead-free material that does not use lead.
  • Patent Document 1 listed below proposes a method that is capable of stably producing a large and highly pure single-phase zirconium tungstate (ZrW 2 O 8 ).
  • an amorphous powder in which the element of the target substance has an accurate stoichiometric ratio is made by using a liquid phase method (sol-gel method), and then it is used for discharge plasma sintering or the like.
  • the method is energization and pressure sintering.
  • the amorphous powder is fired at a temperature of 500 ° C. to 700 ° C. at normal pressure to prepare a seed crystal in advance, and this is energized and pressure sintered by a method such as discharge plasma sintering. .
  • Patent Document 2 oxide (WO 3 and ZrO 2 ) is used as a starting material, the material is made into a bipolar particle size distribution, and this material powder is put into a desired mold and sintered. Proposed manufacturing methods have been proposed.
  • the oxide powder sintering method disclosed in Patent Document 2 requires long-time mixing and long-time sintering, and cannot be manufactured in a short time, resulting in high manufacturing costs. is there.
  • Patent Document 3 a compound (A 4+ M 2 6+ O 8 ) in which two kinds of metal elements are chemically bonded through oxygen, zirconium oxide chloride and tungstate containing no Na ions are used as starting materials. , Hydrolyzed with H 2 O for 10 hours, added HCl, refluxed for 48 hours, filtered solids, aged for 7 days, calcined at 600 ° C. for 10 hours at atmospheric pressure, and zirconium tungstate (ZrW It has been proposed to produce 2 O 8 ).
  • the tungsten component is unstable, stable production cannot be performed, and firing requires a long time, resulting in inferior mass productivity. There is.
  • An object of the present invention is to reduce manufacturing costs by reducing composition fluctuations, improving quality and yield, and performing synthesis for crystallization in a very short time.
  • the latter diffraction peak is characterized by being larger than the conventional relative intensity ratio, and conventionally, there is no “zirconium tungstate” exhibiting this characteristic.
  • zirconium tungstate can be used effectively.
  • TMA thermomechanical analysis
  • the thermal expansion coefficient of the zirconium tungstate of the present invention was measured by TMA (thermomechanical analysis), it was ⁇ 9.6 ⁇ 10 ⁇ 6 / K, indicating a large negative thermal expansion characteristic equal to or higher than that of the conventional one. Since this zirconium tungstate has a very large negative expansion coefficient, by adding it to the main positive expansion material, it is possible to more effectively produce a zero expansion material whose expansion coefficient is almost zero. It becomes possible.
  • measures can be taken to reduce the occurrence of expansion strain by bringing the expansion coefficients of both materials closer to each other. Since the same effect can be obtained with an addition amount equal to or less than that, it is very effective.
  • the cooling rate at that time is desirably within 3 minutes, more preferably within 1 minute, until the temperature reaches 200 ° C. or lower.
  • zirconium tungstate of the present invention can be converted into a material having a crystal structure of zirconium tungstate in a very short time when heated, it suppresses volatilization of WO 3 having a high vapor pressure, Variations in composition can be reduced, and quality and yield can be improved. In addition, this short-time synthesis is possible even for mass production and reduction of manufacturing costs.
  • WO 3 powder (FIG. 1.a) which does not have a complete WO 3 crystal structure, which is an intermediate product when APT (ammonium paratungstate) is reduced to metallic tungsten, and zirconia by addition of Ca, Y or the like
  • APT ammonium paratungstate
  • the pure ZrO 2 powder that has not been stabilized is weighed so as to have a molar ratio of 2: 1, and is mixed and pulverized to an average particle size of 0.3 ⁇ m by a pulverizer.
  • Example 4-6 A mixed raw material of WO 3 and ZrO 2 prepared in the same manner as in Example 1-3 was placed in a shell and heated in the atmosphere at 1200 ° C. for 1 hour in a continuous furnace (roller hearth furnace). A shower was introduced and cooled rapidly.
  • Example 4-6 the material located above the upper (Example 4), the material located on the side of the upper (Example 5), and the material located inside (Example 6).
  • the X-ray diffraction results are shown in FIG. 4 and the analysis results of the peaks are shown in Table 2.
  • Examples 4 to 6 were all made of zirconium tungstate having a high purity, and the X-ray diffraction intensity ratio was 94%, 95%, and 92%, which did not exist in the conventional JCPDS card. Although the strength ratio was lower than in Examples 1 to 3, there was a possibility that the cooling rate was somewhat slower due to the heat capacity than when it was put into water. It was possible to obtain zirconium tungstate.
  • Example 2 The raw material was prepared and heated under the same conditions as in Example 1, and the temperature was lowered to room temperature over 8 hours only for the cooling method. The X-ray diffraction result of the obtained material is shown in FIG. The crystal structure of zirconium tungstate was not obtained.
  • heat treating for a long time it is necessary to consider the evaporation of WO 3 and it is difficult to obtain stable quality.
  • it can be crystallized in a very short time as in the examples, it has the advantage that it can be stably produced with the targeted formulation.
  • the composition variation is reduced, the yield is improved by improving the quality, and the production cost can be reduced by performing the synthesis for crystallization in a relatively short time.
  • a material having a negative expansion coefficient the volume decreases as the temperature rises
  • excellent quality can be provided, it can greatly contribute to the industry used when adjusting the expansion coefficient of glass or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本願発明は、X線回折において2θ=21.4~21.8°に位置する回折ピークの強度を100%とした場合に、2θ=23.5~23.9°に位置するピークが92~115%であることを特徴とするタングステン酸ジルコニウムを提供する。従来は、結晶化の合成に長時間かかるという問題点があり、これまで製品への応用が進んでいなかった。実験室レベルでは白金坩堝を使用して作製した報告はあるが、量産化には不向きであった。また、酸化タングステンは揮発しやすく(950℃-2hで0.3%の重量減少がある)、組成の制御が困難であるという問題があった。本願発明は、組成の調整と品質の向上により歩留まりを向上させ、結晶化への合成が極めて短時間で行うことによる製造コストの低減化を課題とするものである。

Description

タングステン酸ジルコニウム
本発明は、ガラス等の膨張係数を調整する際に使用する負の膨張係数(温度上昇とともに体積が小さくなる)を有する材料に関する。
近年、益々高精度化が要求される精密機械部品、光学部品、電子材料パッケージにおいては、外部環境に起因した温度変化に伴う歪みの発生を避ける対策が必要になっている。また、センサー類によっては、緊急時に確実に作動できるようにするため、このような応力による素子の劣化を避け、長寿命となる材料設計が要求されている。
膨張歪みは、異なる材料の接合界面において体積変化量が異なることからから生じ、時には剥離や破壊の大きな原因となる。
温度上昇と共に体積が収縮する負の膨張材料は、大半の物質に共通に見られる正の熱膨張を有する材料と複合化することにより、その複合素材の熱膨張率を制御することが可能となるため注目されている。特にタングステン酸ジルコニウム(ZrW)は、熱収縮係数が大きく、広い温度範囲で一様に等方的な負の熱膨張を示す特長がある。さらには環境規制基準が厳しくなる昨今、鉛を使用しない非鉛系材料であることから非常に期待された材料となっている。
しかしながら、ZrWは1960年代に負の熱膨張を報告された後、様々な研究がなされているが、ペロブスカイトの高い結晶比率を示し、且つ量産できる製法は未だ確立されていない。
 従来技術では、下記特許文献1に、大形で純度の高い単相のタングステン酸ジルコニウム(ZrW)を、安定的に作製することができるという趣旨の方法が提案されている。文献1の方法は、先ず液相法(ゾル-ゲル法)を使って目的物質の元素が正確な化学量論比になっているアモルファス粉末を作り、次に、それを放電プラズマ焼結等の方法で通電加圧焼結する。好ましくは、上記アモルファス粉末を常圧において温度500℃から700℃で焼成することにより、種結晶を予め作っておき、それを放電プラズマ焼結等の方法で通電加圧焼結するという方法である。
そして、このようにすることにより、より優れた結晶性を有する単相のタングステン酸ジルコニウム(ZrW)を得ることができるということが提案されている。しかし、この方法でも、アモルファス粉末を液相反応させる工程では長時間必要であり、グラファイト製金型(治具径20mmΦ)に充填し、プレスするというバッチ式の処理となるため、本当の意味での量産化(毎月数トン以上の生産ライン)という面では不向きであった。
他の従来技術として、特許文献2に、酸化物(WOとZrO) を出発原料とし、該原料を二極化された粒径分布とし、この原料粉を所望の型に入れて焼結させる製造方法が提案されている。しかし、特許文献2に開示された酸化物粉末の焼結法では、長時間の混合と長時間の焼結を必要とし、短時間での製造が事実上できず、製造コストがかかるという問題がある。
また、特許文献3に、2種類の金属元素が酸素を介して化学結合している化合物(A4+ 6+) を、酸化塩化ジルコニウムとNaイオンを含まないタングステン酸塩を出発物質とし、HOで10時間加水分解させ、HClを加え、48時間還流し、固形物をろ過して、7日間熟成させた後、常圧において600 ℃で10時間焼成してタングステン酸ジルコニウム(ZrW) を作製することが提案されている。
しかし、このような液相法で調整した粉末原料を常圧焼結する方法では、タングステン成分が不安定であり、安定した製造ができず、焼成に長時間を要するため量産性に劣るという問題がある。
特開2006-44953号公報 特開2003-342075号公報 米国特許第6183713号公報
上記の従来のように、結晶化の合成に長時間かかるという問題点があり、これまで製品への応用が進んでいなかった。実験室レベルでは白金坩堝を使用して作製した報告はあるが、量産化には不向きであった。また、酸化タングステンは揮発しやすく(950℃-2hで0.3%の重量減少がある)、組成の制御が困難であるという問題があった。本願発明は、組成の変動を少なくし、品質と歩留りを向上させ、結晶化への合成を極めて短時間で行うことによる製造コストの低減化を課題とする。
 上記の課題を解決するため、以下の発明を提供するものである。
1)X線回折において2θ=21.4~21.8°に位置する回折ピークの強度を100%とした場合に、2θ=23.5~23.9°に位置する回折ピーク強度が92~115%であることを特徴とするタングステン酸ジルコニウム。
2)2θ=21.4~21.8°に位置する回折ピークの半価幅が0.05°以上0.2°以下であることを特徴とする上記1)に記載のタングステン酸ジルコニウム。
3)回折角2θ=15~60°の範囲において、JCPDSのカードコード00-050-1868に登録されていない2θ位置にある回折ピークの強度が、2θ=21.4~21.8°に位置するピーク強度を100%とした場合に2%以下であることを特徴とする上記1)又は2)に記載のタングステン酸ジルコニウム。
4)2θ=22~24°の3つの回折ピークの半価幅がそれぞれ0.25°以上であるか、若しくは2θ=33~37°のピークが単一であるか、又は2θ=49°~51°若しくは53°~57°のピークが単一である、WO粉末を、原料として用いることを特徴とするタングステン酸ジルコニウムの製造方法。
5)上記WO粉末をZrO粉末と十分に混ぜ合わせた後、1190℃以上で30秒以上保持し、200℃以下まで3分以内に急速冷却して作製することを特徴とする上記4)記載のタングステン酸ジルコニウムの製造方法。
従来は、結晶化の合成に長時間かかるという問題点があり、これまで製品への応用が進んでいなかった。実験室レベルでは白金坩堝を使用して作製した報告はあるが、量産化には不向きであった。また、酸化タングステンは揮発しやすく(950℃-2hで0.3%の重量減少がある)、組成の制御が困難であるという問題があった。
本願発明は、これらの問題を解決することが可能となり、組成の変動を少なくすることができ、品質と歩留まりを向上させ、結晶化への合成が比較的短時間で行うことによる製造コストの低減化が達成できるという著しい効果を有する。
WO粉末のXRDの結果を示す図である。 標準的なZrO粉末のXRDの結果を示す図である。 実施例1~3のXRDの結果を示す図である。 実施例4~6のXRDの結果を示す図である。 比較例1~2のXRDの結果を示す図である。 比較例3~5のXRDの結果を示す図である。
本願発明のタングステン酸ジルコニウムは、X線回折において2θ=21.4~21.8°に位置する回折ピーク強度を100%とした場合に、2θ=23.5~23.9°に位置するピークが92~115%であることを特徴とする。
タングステン酸ジルコニウムでX線回折(JCPDS: Joint Committee for Powder Diffraction Standards )で登録されているのは、下記の表1に記載する4種類がある。すなわち、カードコード00-013-0557、00-050-1868、01-083-1005、01-087-1528の4種である。
いずれも2θ=21.552~21.690°の回折ピーク強度の方が、2θ=23.643~23.789°の回折ピーク強度より大きくなっている。
一方、本願発明では、後者の回折ピークは従来の相対強度比より大きくなる特徴があり、従来はこの特徴を示す「タングステン酸ジルコニウム」は存在していない。
Figure JPOXMLDOC01-appb-T000001
この特徴を活かして、下記に示すように、タングステン酸ジルコニウムを有効に利用できる。本発明のタングステン酸ジルコニウムの熱膨張係数をTMA(熱機械分析)で計測すると、-9.6x10-6/Kとなり、従来と同等もしくはそれ以上の大きな負の熱膨張特性を示した。このタングステン酸ジルコニウムは非常に大きな負の膨張係数を有するので、主体となる正の膨張材料に添加することにより、膨張率が限りなくゼロに近い、ゼロ膨張材料をより効果的に作製することが可能となる。
また異なる材料が接合される素子においては、負膨張材を添加することにより、両材料の膨張係数を近づけて膨張歪みの発生を抑えられる対策がとられるが、その場合においても、従来に比べて同等以下の添加量で同じ効果が得られるため非常に有効となる。
また、本願発明のタングステン酸ジルコニウムの製造に際しては、WOの標準的な結晶構造(カードコード01-083-0950)とは異なり、2θ=22~24°の3つの回折ピークの半価幅がそれぞれ0.25°以上であるか、若しくは2θ=33~37°の回折ピークがほぼ一体化して単一であるか、又は2θ=49°~51°若しくは53°~57°のピークがブロード状になっている結晶化が不十分な状態のWO粉末(図1.a)と標準的なZrO粉末(図2)を混合粉砕し、平均粒径2μm以下の加熱合成前の原料を準備した。
前記結晶化が不十分な状態のWO粉末については、回折ピークにより判定(評価)することができる。すなわち、回折ピークの半価幅がそれぞれ0.25°以上であるか、若しくは2θ=33~37°の回折ピークがほぼ一体化して単一であるか、又は2θ=49°~51°若しくは53°~57°のピークがブロード状になっているものは、いずれも結晶化が不十分な状態のWO粉末であると言える。
そして、1190℃以上の高温で30秒以上保持してタングステン酸ジルコニウム(ZrW)に結晶化させた後、降温時にWOやZrOに再度、分解するのを避けるために瞬時に冷却することにより達成できる。その際の冷却速度は、200℃以下の温度になるまでに、3分以内、より好ましくは1分以内であることが望ましい。
以上に説明した本願発明の「タングステン酸ジルコニウム」は、加熱時に、従来に比べて極めて短時間でタングステン酸ジルコニウムの結晶構造を有する材料に変換できるため、蒸気圧の高いWOの揮発を抑え、組成の変動を少なくすることが可能となり、品質と歩留まりを向上させることができる。またこの短時間の合成は量産化や製造コストの低減のおいても可能となる。
さらに、本願発明のタングステン酸ジルコニウムは、2θ=21.4~21.8°に位置するX線回折ピークの半価幅が0.05°以上0.2°以下であるタングステン酸ジルコニウム及びJCPDSのカード00-050-1868に登録されていない2θ位置にある回折ピークの強度が、2θ=21.4~21.8°に位置するピーク強度を100%とした場合に2%以下である特性を備えている。
本願発明を、実施例及び比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例のみに制限されるものではない。すなわち、本発明に含まれる他の態様または変形を包含するものである。
(実施例1-3)
 APT(パラタングステン酸アンモニウム)から金属タングステンに還元する際の中間生成物である完全なWOの結晶構造を有さないWO粉末(図1.a)と、CaやY等の添加でジルコニアを安定化させていない純ZrO粉末をモル比で2:1になるように秤量し、粉砕機で平均粒径0.3μmまで混合・微粉砕した。
この原料を石英坩堝の内張りに白金箔を貼った容器に入れ、大気中1200℃で10時間(実施例1)、1時間(実施例2)、10分(実施例3)保持した後、炉温1200℃のままの状態から坩堝を取り出し、十分な水量のある20℃の水の中へ、速やかに坩堝を反転させ原料を投入した。この条件で得られたX線回折の結果を図3に示した。
また、2θ=21.4~21.8°に位置して回折ピーク強度比を100とするピークの具体的な2θとその半価幅の値、及びタングステン酸ジルコニウムのもう一方のメインピークである2θ=23.5~23.9°に位置する回折ピークの具体的な2θとその強度比の値、さらには2θ=15~60°の範囲においてJCPDSカード00-050-1868に登録されていない2θ位置にある回折ピークを2θ=21.4~21.8に位置するピークと比較した値を表2に示した。
Figure JPOXMLDOC01-appb-T000002
実施例1~3は、いずれも純度の高いタングステン酸ジルコニウムになっており、また強度比は従来のJCPDSカードには存在しない102%,106%,115%の比率となった。これは原料としたWOが不安定な結晶構造のため、完全なWOの結晶構造を有する材料より、タングステン酸ジルコニウムへの結晶化が従来になく急速に進んだ可能性がある。また1200℃からの急速冷却が十分に適切で、高温での形成された結晶構造を大きく変化させることなく降温できたためと考えられる。さらに2θ=21.4~21.8°に位置して回折ピーク半価幅が0.05°以上0.2°以下と狭いため、結晶度が高いことも分かる。
(実施例4-6)
 実施例1-3と同様に準備したWOとZrOの混合原料を甲鉢に入れ、連続炉(ローラーハース炉)で、大気中1200℃、1時間加熱した後、冷却ゾーンで液体窒素のシャワーを導入し急速冷却した。
実施例4-6は、甲鉢内で上方に位置した材料(実施例4)、甲鉢の側面に位置した材料(実施例5)、内部に位置した材料(実施例6)になる。X線回折結果は図4に、そのピークの分析結果を表2に示した。
実施例4~6は、いずれも純度の高いタングステン酸ジルコニウムになっており、またX線回折強度比は従来のJCPDSカードには存在しない94%、95%、92%の比率となった。
実施例1~3より強度比が低下したのは、水中に投入するよりも熱容量の関係で冷却速度が幾分遅くなったことが影響している可能性があるが、従来にない結晶性を有するタングステン酸ジルコニウムを得ることができた。
(比較例1)
 十分なWOの結晶構造を有するWO粉末(図1.b)と、実施例1~6で使用したZrO粉末を用いて混合粉砕し、石英坩堝の内張りに白金箔を貼った容器に入れ、大気中1200℃で10時間加熱処理し、実施例1~3と同様に水中へ投入した。そのX線回折結果を図5に示した。タングステン酸ジルコニウムの結晶構造は得られなかった。
(比較例2)
 実施例1と同条件で原料作製と加熱を行い、冷却方法のみ8時間かけて室温に戻す降温を行った。得られた材料のX線回折結果を図5に示した。タングステン酸ジルコニウムの結晶構造は得られなかった。
(比較例3)
 実施例1~3と同様に原料を準備し、1200℃までの昇温速度が8時間と遅く、また1200℃での保持時間が60時間となる条件で熱処理し、実施例1~3と同様に水中投入で冷却した。得られた材料のX線回折結果を図6に示した。また、そのピークの分析結果を表2に示した。
結晶構造は主としてタングステン酸ジルコニウムであることを示したが、2θ=21.3°付近にZrWとは異なるピークが出現しており、この強度比は29%であった。これは熱処理中にWOが蒸発してZrOがリッチな相になったためと考えられる。
(比較例4-5)
 WOの熱処理中の揮発を考慮して、WOとZrO粉末をモル比で2.1:1として混合粉砕し、石英坩堝の内張りに白金箔を貼った容器に入れ、大気中1200℃で1時間(比較例4)と30時間(比較例5)で加熱処理し、実施例1~3と同様に水中へ投入した。得られた材料のX線回折結果を図6に、そのピークの分析結果を表2に示した。
結晶構造は主としてタングステン酸ジルコニウムであることを示したが、2θ=23.7°の前後にZrWとは異なるピークが出現しており、この強度比は37%と7%であった。これはWOに関係するピークであり、WOが蒸発するよりも過剰に残留したためと考えられる。
長時間熱処理する場合は、WOの蒸発を考慮する必要がり、安定した品質を得るのが難しい。一方、実施例にあるように極めて短時間で結晶化できる場合は狙った配合で安定して製造できる特長がある。
上記の従来のように、結晶化の合成に長時間かかるという問題点があり、これまで製品への応用が進んでいなかった。実験室レベルでは白金坩堝を使用して作製した報告はあるが、量産化には不向きであった。また、酸化タングステンは揮発しやすく(950℃-2hで0.3%の重量減少がある)、組成の制御が困難であるという問題があった。本願発明は、X線回折において2θ=21.4~21.8°に位置する回折ピークの強度を100%とした場合に、2θ=23.5~23.9°に位置する回折ピーク強度が92~115%であるタングステン酸ジルコニウムを提供する。
これにより、組成変動を少なくすると共に品質の向上により歩留まりを向上させ、結晶化への合成が比較的短時間で行うことによる製造コストの低減化を可能とするものである。このように負の膨張係数(温度上昇とともに体積が小さくなる)を有する品質に優れた材料を提供できるので、ガラス等の膨張係数を調整する際に使用する産業に大きく貢献できる。

Claims (5)

  1. X線回折において2θ=21.4~21.8°に位置する回折ピークの強度を100%とした場合に、2θ=23.5~23.9°に位置する回折ピーク強度が92~115%であることを特徴とするタングステン酸ジルコニウム。
  2. 2θ=21.4~21.8°に位置する回折ピークの半価幅が0.05°以上0.2°以下であることを特徴とする請求項1に記載のタングステン酸ジルコニウム。
  3. 回折角2θ=15~60°の範囲において、JCPDSのカードコード00-050-1868に登録されていない2θ位置にある回折ピークの強度が、2θ=21.4~21.8°に位置するピーク強度を100%とした場合に2%以下であることを特徴とする請求項1又は2に記載のタングステン酸ジルコニウム。
  4. 2θ=22~24°の3つの回折ピークの半価幅がそれぞれ0.25°以上であるか、若しくは2θ=33~37°のピークが単一であるか、又は2θ=49°~51°若しくは53°~57°のピークが単一である、WO粉末を、原料として用いることを特徴とするタングステン酸ジルコニウムの製造方法。
  5. 上記WO粉末をZrO粉末と混合した後、1190℃以上で30秒以上保持し、200℃以下まで3分以内に急速冷却して作製することを特徴とする請求項4に記載のタングステン酸ジルコニウムの製造方法。
PCT/JP2014/050226 2013-03-29 2014-01-09 タングステン酸ジルコニウム WO2014156215A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015508102A JP5982058B2 (ja) 2013-03-29 2014-01-09 タングステン酸ジルコニウム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-072707 2013-03-29
JP2013072707 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014156215A1 true WO2014156215A1 (ja) 2014-10-02

Family

ID=51623221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050226 WO2014156215A1 (ja) 2013-03-29 2014-01-09 タングステン酸ジルコニウム

Country Status (3)

Country Link
JP (1) JP5982058B2 (ja)
TW (1) TWI603920B (ja)
WO (1) WO2014156215A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104495939A (zh) * 2014-11-26 2015-04-08 上海交通大学 纳米级钨酸锆空心球的水热合成方法
CN112789092A (zh) * 2018-08-31 2021-05-11 感受世界公司暨施乐罗鞋业公司 用于更改步态的生物反馈

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024176745A1 (ja) * 2023-02-20 2024-08-29 Jx金属株式会社 タングステン酸ジルコニウムの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265274A (ja) * 2001-03-06 2002-09-18 Takeo Hattori 粉体の製造方法
JP2009067619A (ja) * 2007-09-11 2009-04-02 Tokyo Univ Of Science タングステン酸ジルコニウム−酸化ケイ素複合焼結体、当該複合焼結体の製造方法、及び当該複合焼結体を備えた成形体
JP2010229515A (ja) * 2009-03-27 2010-10-14 National Institute For Materials Science 溶射用原粉末とそれを用いた皮膜生成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265274A (ja) * 2001-03-06 2002-09-18 Takeo Hattori 粉体の製造方法
JP2009067619A (ja) * 2007-09-11 2009-04-02 Tokyo Univ Of Science タングステン酸ジルコニウム−酸化ケイ素複合焼結体、当該複合焼結体の製造方法、及び当該複合焼結体を備えた成形体
JP2010229515A (ja) * 2009-03-27 2010-10-14 National Institute For Materials Science 溶射用原粉末とそれを用いた皮膜生成方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
H. LIU ET AL.: "Effects of HCl concentration on the growth and negative thermal expansion property of the ZrW2O8 nanorods", CERAMICS INTERNATIONAL, vol. 38, no. 2, March 2012 (2012-03-01), pages 1341 - 1345, XP028341418, DOI: doi:10.1016/j.ceramint.2011.09.010 *
K. D. BUYSSER ET AL.: "Study of Negative Thermal Expansion and Shift in Phase Transition Temperature in Ti4+- and Sn4+-Substituted ZrW2O8 Materials", INORGANIC CHEMISTRY, vol. 47, no. 2, 21 January 2008 (2008-01-21), pages 736 - 741 *
R. ZHAO ET AL.: "A novel route to synthesize cubic ZrW2-xMoxO8(x=0-1.3) solid solutions and their negative thermal expansion properties", JOURNAL OF SOLID STATE CHEMISTRY, vol. 180, no. 11, November 2007 (2007-11-01), pages 3160 - 3165, XP022352162, DOI: doi:10.1016/j.jssc.2007.09.011 *
T. HASHIMOTO ET AL.: "Observation of two kinds of phase transitions of ZrW2O8 by power - compensated differential scanning calorimetry and high-temperature X-ray diffraction", SOLID STATE COMMUNICATIONS, vol. 116, no. 3, September 2000 (2000-09-01), pages 129 - 132 *
Y. MORITO ET AL.: "Preparation of Dense Negative-Thermal-Expansion Oxide by Rapid Quenching of ZrW2O8 Melt", JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, vol. 110, no. 6, 2002, pages 544 - 548, XP001247595 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104495939A (zh) * 2014-11-26 2015-04-08 上海交通大学 纳米级钨酸锆空心球的水热合成方法
CN104495939B (zh) * 2014-11-26 2016-07-06 上海交通大学 纳米级钨酸锆空心球的水热合成方法
CN112789092A (zh) * 2018-08-31 2021-05-11 感受世界公司暨施乐罗鞋业公司 用于更改步态的生物反馈

Also Published As

Publication number Publication date
TWI603920B (zh) 2017-11-01
JP5982058B2 (ja) 2016-08-31
JPWO2014156215A1 (ja) 2017-02-16
TW201439005A (zh) 2014-10-16

Similar Documents

Publication Publication Date Title
JP5169888B2 (ja) 複合タングステン酸化物ターゲット材とその製造方法
CN110342933B (zh) 一种调控铌酸钠陶瓷居里温度的方法
TW200606123A (en) Process for production of powder of perovskite compound
JPWO2020032060A1 (ja) 六方晶窒化ホウ素粉末、及び六方晶窒化ホウ素粉末の製造方法
JP5982058B2 (ja) タングステン酸ジルコニウム
CN104496477A (zh) 一种高纯度Cr2AlC陶瓷粉体的制备方法
WO2020158721A1 (ja) 負熱膨張材料及びその製造方法
JP2009242230A (ja) アルカリニオブ酸ペロブスカイト結晶の製造方法
Ma et al. Microstructure, dielectric, piezoelectric, and ferroelectric properties of fine-grained 0.94 Na0. 5Bi0. 5TiO3-0.06 BaTiO3 ceramics
US20150064094A1 (en) Method of preparing titanium carbide powder
US5106794A (en) Zirconium oxide sinter for forming thin film thereof and method for production of the same
JP4766852B2 (ja) タングステン酸ジルコニウムの製造方法
CN113200566B (zh) 一种预熔化的高折射率光学镀膜材料及其制备方法和应用
Lv et al. Processing and Morphology of (111) BaTiO 3 Crystal Platelets by a Two‐Step Molten Salt Method
JP6180813B2 (ja) チタン酸バリウムの製造方法及びその方法で製造したチタン酸バリウム粉末
JP2003342075A (ja) 熱収縮性セラミックスの合成方法
JP2007302532A (ja) 低熱膨張性フィラー
JP4638767B2 (ja) 蓚酸バリウムチタニルの製造方法及びチタン酸バリウムの製造方法
JPH10330169A (ja) セラミックス焼結体の製造方法
JPS6218481B2 (ja)
KR100200409B1 (ko) 인디움-주석-산화물 성분과 그의 제조방법
Kivi et al. Devitrification Rates of Fused Silica in the Presence of Trace Impurities
CN108862301B (zh) 高纯度Ti3B2N材料的制备方法
JP5360439B2 (ja) 低熱膨張性フィラー及びその製造方法
JP5050263B2 (ja) 誘電体の製造方法、及びその前駆体組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774149

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508102

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774149

Country of ref document: EP

Kind code of ref document: A1