WO2014155868A1 - 水質診断方法、水質診断装置および給湯器システム - Google Patents
水質診断方法、水質診断装置および給湯器システム Download PDFInfo
- Publication number
- WO2014155868A1 WO2014155868A1 PCT/JP2013/083892 JP2013083892W WO2014155868A1 WO 2014155868 A1 WO2014155868 A1 WO 2014155868A1 JP 2013083892 W JP2013083892 W JP 2013083892W WO 2014155868 A1 WO2014155868 A1 WO 2014155868A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- water quality
- ions
- calcium
- scale
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 535
- 238000000034 method Methods 0.000 title claims abstract description 31
- 229910001424 calcium ion Inorganic materials 0.000 claims abstract description 75
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims abstract description 74
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims abstract description 74
- 150000002500 ions Chemical class 0.000 claims abstract description 52
- -1 hydrogen ions Chemical class 0.000 claims abstract description 50
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims abstract description 38
- 229910000019 calcium carbonate Inorganic materials 0.000 claims abstract description 37
- 150000003839 salts Chemical class 0.000 claims abstract description 33
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 7
- 239000001257 hydrogen Substances 0.000 claims abstract description 7
- 238000003745 diagnosis Methods 0.000 claims description 63
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical class N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 claims description 34
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims description 27
- 229910001425 magnesium ion Inorganic materials 0.000 claims description 27
- 238000012937 correction Methods 0.000 claims description 24
- 238000003860 storage Methods 0.000 claims description 19
- 230000006698 induction Effects 0.000 claims description 18
- 238000003908 quality control method Methods 0.000 claims description 17
- 238000002405 diagnostic procedure Methods 0.000 claims description 13
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 12
- 238000005259 measurement Methods 0.000 claims description 11
- 230000003247 decreasing effect Effects 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 6
- 239000011575 calcium Substances 0.000 description 58
- 239000003507 refrigerant Substances 0.000 description 40
- 238000001556 precipitation Methods 0.000 description 36
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 34
- 229910052791 calcium Inorganic materials 0.000 description 34
- 230000008021 deposition Effects 0.000 description 33
- 239000000243 solution Substances 0.000 description 27
- 239000007864 aqueous solution Substances 0.000 description 25
- 238000010438 heat treatment Methods 0.000 description 25
- 239000011777 magnesium Substances 0.000 description 22
- 239000002245 particle Substances 0.000 description 20
- 239000008399 tap water Substances 0.000 description 18
- 235000020679 tap water Nutrition 0.000 description 18
- FEPMHVLSLDOMQC-UHFFFAOYSA-N virginiamycin-S1 Natural products CC1OC(=O)C(C=2C=CC=CC=2)NC(=O)C2CC(=O)CCN2C(=O)C(CC=2C=CC=CC=2)N(C)C(=O)C2CCCN2C(=O)C(CC)NC(=O)C1NC(=O)C1=NC=CC=C1O FEPMHVLSLDOMQC-UHFFFAOYSA-N 0.000 description 17
- 238000010586 diagram Methods 0.000 description 16
- 238000012546 transfer Methods 0.000 description 16
- 230000008859 change Effects 0.000 description 13
- 230000007423 decrease Effects 0.000 description 13
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 12
- 238000012423 maintenance Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 10
- 230000006872 improvement Effects 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 239000000835 fiber Substances 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000001506 calcium phosphate Substances 0.000 description 6
- 229910000389 calcium phosphate Inorganic materials 0.000 description 6
- 235000011010 calcium phosphates Nutrition 0.000 description 6
- 235000011007 phosphoric acid Nutrition 0.000 description 6
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 229920002379 silicone rubber Polymers 0.000 description 5
- 239000004945 silicone rubber Substances 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 4
- 239000000347 magnesium hydroxide Substances 0.000 description 4
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 4
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000008213 purified water Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 239000003643 water by type Substances 0.000 description 3
- 229910001369 Brass Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910017958 MgNH Inorganic materials 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000003729 cation exchange resin Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 208000018459 dissociative disease Diseases 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229920003049 isoprene rubber Polymers 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229940085991 phosphate ion Drugs 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 229910017119 AlPO Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- 101100283604 Caenorhabditis elegans pigk-1 gene Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229910052898 antigorite Inorganic materials 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- ZFXVRMSLJDYJCH-UHFFFAOYSA-N calcium magnesium Chemical compound [Mg].[Ca] ZFXVRMSLJDYJCH-UHFFFAOYSA-N 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229910052620 chrysotile Inorganic materials 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229910052899 lizardite Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
- G01N33/1853—Hardness of water
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D17/00—Domestic hot-water supply systems
- F24D17/02—Domestic hot-water supply systems using heat pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D19/00—Details
- F24D19/0092—Devices for preventing or removing corrosion, slime or scale
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H4/00—Fluid heaters characterised by the use of heat pumps
- F24H4/02—Water heaters
- F24H4/04—Storage heaters
Definitions
- the present invention relates to a water quality diagnosis method, a water quality diagnosis apparatus, and a water heater system in water quality in which calcium scale adheres to a heat exchanger in a heat pump heat exchange type water heater or the like.
- Water heaters that supply hot water to the bathroom or kitchen are roughly classified into electric water heaters, gas water heaters, and oil water heaters. These all have a heat exchanger to transfer heat to the water. Recently, heat pump heat exchange type electric water heaters (heat pump water heaters) have attracted attention, particularly from the viewpoint of energy saving and carbon dioxide reduction as a countermeasure against global warming.
- the principle of the heat pump water heater is to transfer atmospheric heat to a heat medium and boil hot water with that heat. Specifically, the heat generated when the gas is compressed is transferred to water through the heat exchanger, and the temperature of the heat medium is returned to the atmospheric temperature again by the cold air when the gas is expanded. This is due to repetition (cooling cycle). Theoretically, it is not possible to extract more heat energy than the input energy. However, since the heat pump water heater uses the heat of the atmosphere, more heat energy than the energy required for operation can be used.
- the heat exchanger in the heat pump water heater always keep its transmission surface clean in order to transfer heat to water.
- the wall surface of the heat transfer surface becomes dirty, the effective heat transfer area is reduced and the heat transfer performance is deteriorated. Further accumulation of dirt increases the pressure loss that occurs when water flows through the heat exchanger, and in the worst case, the flow path is blocked.
- an inorganic compound salt with low solubility called a scale containing calcium carbonate as a main component (calcium scale) is deposited by heating and adheres to the heat exchanger.
- the problem of adhesion of calcium scale is not a problem specific to a heat pump water heater, but also occurs in an electric water heater, a gas water heater, an oil water heater, or the like. This is due to the water quality that occurs whenever water is heated to a predetermined temperature.
- Calcium carbonate (CaCO 3 ) is generated by a reaction between calcium ions (Ca 2+ ) and carbonate ions (CO 3 2 ⁇ ) in water.
- Patent Document 1 and Patent Document 2 as a method for diagnosing water quality to which calcium scale adheres, water quality is judged based on calcium hardness corresponding to calcium amount, alkalinity corresponding to carbonate ion amount, pH and water temperature, and scale adhesion is determined. A method of controlling to suppress is disclosed.
- Patent Document 3 discloses the relationship between pH / temperature factor, calcium factor, and phosphate factor, which is calculated using the actual wastewater pH, calcium ion concentration, and phosphate ion concentration: pH / temperature factor> calcium In the case of factor + phosphate factor, it is described that calcium phosphate precipitates with supersaturation. Moreover, in patent document 3, the scale generation
- Patent Document 3 only describes the conditions relating to the supersaturation of calcium phosphate corresponding to the precipitation characteristics of calcium phosphate (Ca 4 (PO 4 ) 3 ) generated by the reaction between calcium ions and phosphoric acid.
- diagnosis is generally made only by calcium ion concentration, carbonate ion concentration, hydrogen ion concentration (pH) and water temperature, and from the influence of other factors on water quality.
- the adhesion of calcium scale is not considered.
- the present invention has been made in view of the above circumstances, and an object thereof is to more accurately and accurately diagnose water quality to which calcium scale adheres.
- the present inventors have conducted intensive research, and as a result, even if the calcium ion concentration, carbonate ion concentration, hydrogen ion concentration (pH) and water temperature in the solution are equal, it reacts with calcium ions. Contained in tap water, such as the concentration of dissolved ions that form a sparingly soluble salt (phosphoric acid orthophosphoric acid ion concentration (HPO 4 2 ⁇ concentration), magnesium ion concentration (Mg 2+ concentration) or silica ion concentration) It was clarified that the precipitation rate of calcium carbonate varies greatly depending on the concentration of ions that can be obtained (see Examples).
- HPO 4 2 ⁇ concentration phosphoric acid orthophosphoric acid ion concentration
- Mg 2+ concentration magnesium ion concentration
- silica ion concentration silica ion concentration
- the water quality diagnostic method is a water quality diagnostic method performed by a water quality diagnostic device for diagnosing the quality of water flowing through a heat exchanger, and in the first step, the calcium ion concentration in the solution for water quality diagnosis Then, the carbonate ion concentration, the hydrogen ion concentration, the water temperature, and the value of dissolved ion concentration that reacts with calcium ions to form a hardly soluble salt are measured.
- the supersaturation coefficient of calcium carbonate in the solution is calculated using the values of calcium ion concentration, carbonate ion concentration, hydrogen ion concentration and water temperature measured in the first step.
- the corrected corrected supersaturation coefficient is calculated from the supersaturation coefficient using the value of the dissolved ion concentration that reacts with the calcium ions measured in the first process to form a hardly soluble salt.
- the water quality is determined from the corrected supersaturation coefficient.
- the water quality to which the calcium scale adheres can be diagnosed more accurately and accurately. Can do.
- FIG. 7 shows the structure of the water heater system which concerns on the modification of Embodiment 7.
- FIG. It is a figure which shows the curl-like fiber in the structure of a scale adhering body. It is a figure which shows the structure of the scale precipitation experimental apparatus used in the Example. It is a figure which shows the water quality analysis result before the heating which concerns on Example 1.
- FIG. It is a figure which shows the change of pH after heating which concerns on Example 1, Ca hardness, and M alkalinity.
- FIG. 1 It is a figure which shows the time change of the electrical conductivity of the sample water during the heating which concerns on Example 1.
- FIG. It is a figure which shows the value of the correction supersaturation coefficient with respect to the orthophosphoric acid density
- FIG. It is a figure which shows the water quality analysis result before the heating which concerns on Example 2.
- FIG. It is a figure which shows the time change of the electrical conductivity of the sample water during the heating which concerns on Example 2.
- the present inventors have found that a dissolved salt that reacts with calcium ions to form a hardly soluble salt even if the calcium ion concentration, carbonate ion concentration, hydrogen ion concentration (pH) and water temperature in the solution are equivalent. It was clarified that the precipitation rate of calcium carbonate greatly changes due to the influence of ion concentration (see Examples). Therefore, first, a water quality diagnostic apparatus and a water quality diagnostic method that take into consideration the influence of the concentration of dissolved ions that react with calcium ions to form a hardly soluble salt will be described in detail, including theoretical explanations.
- FIG. 1 is a block diagram of a water quality diagnostic apparatus according to the present invention.
- the water quality diagnosis apparatus 100 includes a measurement unit 101, a calculation unit 102, a correction unit 103, and a determination unit 104.
- the measuring unit 101 is a dissolved ion (orthophosphate ion or magnesium ion, etc.) that reacts with calcium ions, carbonate ions, hydrogen ions, water temperature, and calcium ions to form a hardly soluble salt in a solution for water quality diagnosis. ) Measure the concentration value.
- the calculation unit 102 calculates the supersaturation coefficient of calcium carbonate in the solution using the measured values of calcium ion concentration, carbonate ion concentration, hydrogen ion concentration, and water temperature.
- amendment part 103 calculates the correction
- the determination unit 104 determines the water quality from the calculated corrected supersaturation coefficient.
- the term “determining water quality” means that, as a result, it is determined whether scale measures are necessary, or the time (period) in which the heat exchanger needs to be cleaned / replaced. It is intended to determine the necessity of replacement.
- the determination unit 104 uses the accumulated specific data from the numerical values calculated by the correction unit 103, and calculates a desired numerical value in each embodiment. There may be a case where a calculation means for calculating is included. A specific method of the determination means will be described later in detail in Embodiments 1 to 3.
- the present inventors examined the influence of phosphate ions on the precipitation characteristics of calcium carbonate using a homogeneous nucleation theory for solid nucleation (see, for example, Yoshihiko Goto, “Crystal Growth”, pages 29-44).
- the supersaturation coefficient of calcium carbonate is S 1
- the water temperature is T (K)
- the interfacial energy between precipitation nuclei and water is ⁇ (J / m 2 )
- the Boltzmann constant is k (J / K)
- the ionic molecules in the solution Assuming that the collision frequency is A (1 / s), the precipitation rate R of calcium carbonate is given by the following equation.
- the supersaturation coefficient of calcium carbonate is S 1 is given by the following equation.
- the solubility product Ksp is a physical property value determined by temperature (for example, see Plummer et al, Geochimica Et Cosmochimica Acta, 1982. 46 (6): p. 1011-1040). For example, at a water temperature of 10 ° C., 20 ° C., and 60 ° C., they are 3.89 ⁇ 10 ⁇ 9 , 3.53 ⁇ 10 ⁇ 9 , and 1.74 ⁇ 10 ⁇ 9 , respectively. That is, solubility product higher temperature decreases, supersaturation factor S 1 for a given solution composition increases. This means that the higher the temperature, the easier the calcium carbonate precipitates.
- the activity coefficient f D of divalent ions varies depending on the electric conductivity of the aqueous solution and the hydrogen ion concentration, but in the case of ordinary tap water, it is in the range of 0.6 to 0.8.
- the calcium concentration, carbonate ion concentration, hydrogen ion concentration (pH) and water temperature in the solution are usually equivalent.
- the water temperature and supersaturation coefficient S 1 should constant. Since the Boltzmann constant k and the collision frequency A are unchanged, the influence of the orthophosphate ion concentration in the solution on the precipitation rate of calcium carbonate is due to the change in the interfacial energy ⁇ between the precipitation nucleus and water from ⁇ to ⁇ '. Explain (see formula below).
- C P is constant deposition rate R of the calcium carbonate is 3.0 mg / L or more
- R of the calcium carbonate is 3.0 mg / L or more
- between the modified supersaturated factor S 2 and supersaturation coefficient S 1 is the relationship of the following ranges is established all right.
- Median in this case is 0.227S 1.
- the representative value is calculated using the median value. Accordingly, the correction unit 103 shown in FIG. 1, based on the value of the measured orthophosphate ion concentration by measuring section 101, using the number 5 or 6 wherein the following described above, from a supersaturated coefficients S 1, orthophosphate ions to the calculated corrected supersaturation factor S 2 which is corrected in consideration of the effect of the deposition rate of calcium carbonate.
- the calcium ion concentration, the carbonate ion concentration, the hydrogen ion concentration and the water temperature, and further the orthophosphate ion concentration are measured. Thereafter, the calcium ion concentration, does not consider the carbonate ion concentration and the dissolved ions other than hydrogen ion concentration, calculates the supersaturation coefficient S 1 of calcium carbonate. Then, based on the orthophosphate ion concentration, corrected and calculated as the corrected supersaturation factor S 2.
- the correction unit 103 shown in FIG. 1 applies the values of the magnesium ion concentration and the calcium ion concentration measured by the measurement unit 101 to the following equation (7), and from the supersaturation coefficient S 1 , It calculates a correction supersaturation factor S 2 which is corrected in consideration of the influence on the deposition rate of calcium carbonate.
- the calcium ion concentration, the carbonate ion concentration, the hydrogen ion concentration and the water temperature, and further the magnesium ion concentration are measured. Thereafter, the calcium ion concentration, does not consider the carbonate ion concentration and the dissolved ions other than hydrogen ion concentration, calculates the supersaturation coefficient S 1 of calcium carbonate. Then, using the calculated value of the concentration of magnesium ions and calcium ion concentrations, corrected as a correction saturation coefficient S 2 in the above Equation 7 expression.
- FIG. 2 is a flowchart showing the water quality diagnosis method according to the first embodiment.
- the value of ion concentration or the like is measured (step S11).
- the measured calcium ion concentration was, carbonate ion concentration, calculates the supersaturation coefficient S 1 from the value of the hydrogen ion concentration and temperature (step S12).
- step S13 determines whether the threshold value S 0 or more (step S14). If modified supersaturated factor S 2 is the threshold value S 0 or more (step S14; YES), it can be determined that calcium scale deposition progresses, it is determined that the scale measures are required (step S15). If modified supersaturated factor S 2 is less than the threshold value S 0 (Step S14; NO), since calcium scale deposition can be determined that does not proceed, the scale measures not needed and (step S16).
- the threshold S 0, is a value determined according to the water heater water diagnostic method is utilized and application according example to the first embodiment.
- a water heater system to which the water quality diagnosis method described in the first embodiment is applied will be described in detail.
- the correction supersaturation factor S 2 when it is determined that the threshold value S 0 or more, so as to reduce the correction supersaturation factor S 2, various water quality (diagnostic functions and operations as a calcium scale deposition inhibition ) Describes a water heater system with a controller.
- the water quality control device or the water quality improvement device may be separately designed to be removable. .
- the precipitation rate R of calcium carbonate in a predetermined water quality that does not include dissolved ions that react with calcium other than calcium ions, carbonate ions, and hydrogen ions to form a hardly soluble salt is similarly given in the above-described equation (1).
- the induction period t ind is proportional to the reciprocal of the above-described equation 1, and therefore, the proportional relationship of the following equation is obtained.
- the value of the interfacial energy ⁇ between the precipitation nuclei and water is obtained in advance. Further, in the same apparatus, an induction period t ind in a predetermined water quality that does not contain dissolved ions that react with calcium ions such as orthophosphate ions and magnesium ions to form a hardly soluble salt is measured. Then, the induction period t ′ ind in the water quality related to the corrected supersaturation coefficient S 2 can be calculated.
- the interfacial energy ⁇ the interfacial energy ⁇ of the scale when phosphoric acid is not included is 0.018 J / m 2 .
- the interface energy ⁇ at the scale interface when phosphoric acid is included is 0.024 J / m 2 .
- the growth rate U of the scale is calculated by the following formula using the supersaturation coefficient S.
- k is a reaction rate coefficient and is a physical property value that varies with temperature.
- reaction rate coefficient k is calculated by the following equation.
- [epsilon] a is an activation energy and is a physical property value specific to a substance independent of temperature (for example, see Wiecher et al, Water Research, 1975, 9 (9): 835-845). In the case of calcium carbonate, it is 10.3 kcal / mol.
- the growth temperature T 1, supersaturation factor S 1, and if the growth rate U 1, the water temperature T 2, modified supersaturation factor S 2, in the case in the growth rate U 2, the growth rate U 1 the relative value of the velocity U 2 is calculated by the following equation.
- the scale growth rate U 2 in this case reacts with calcium ions such as orthophosphate and magnesium ions from the corrected supersaturation coefficient S 2 calculated from Equations 5, 6, and 7 described above. whether to strike many times the growth rate U 1 in a given water containing no dissolved ions to form a slightly soluble salt, can be calculated.
- the induction period t ind and the growth rate U 1 in the water quality apparatus having the supersaturation coefficient S 1 without considering the orthophosphate ion concentration and the like, and further the adhesion amount V 1 of the scale in a specific period are measured in advance.
- the induction period t ′ ind and the growth rate U 2 in the corrected supersaturation coefficient S 2 can be calculated.
- the induction period is the time until the deposition of the scale starts, the growth rate is the rate at which the deposited scale grows, and the amount of deposited scale is proportional to the growth rate after the start of deposition. Therefore, in the diagnosis, any time in the water quality considering the orthophosphate ion concentration and the magnesium ion concentration (e.g., assuming use period) can be calculated scale deposition amount V 2 in. Water diagnostic method according to the second embodiment determines quality by determining the scale deposition amount V 2 in this manner calculated any time.
- FIG. 3 is a flowchart showing a water quality diagnosis method according to the second embodiment. As shown in FIG. 3, the correction step S21 until the calculated supersaturation factor S 2, steps S22 and S23 are respectively the same as steps S11, step S12 and step S13 described in the first embodiment described above .
- the next step S23 in the manner described above, using the modified supersaturation factor S 2, at a given water containing no dissolved ions react with orthophosphoric ion and magnesium calcium ions such as ions to form a slightly soluble salt
- the induction period t ′ ind and the growth rate U 2 are calculated.
- the scale deposition amount V 2 determines whether the allowable scale deposition amount greater than or equal to V 0 (step S25).
- scale deposition amount V 2 is the allowable scale adhesion amount greater than or equal to V 0 (step S25; YES), since the functional deterioration due to scale deposition is assumed, the scale measures judged to be necessary (step S26).
- scale deposition amount V 2 is less than the allowable scale deposition amount V 0 (Step S25; NO), since the reduction function by scale deposition is assumed to be within the allowable range, the scale measures not needed and ( Step S27).
- the allowable scale adhering amount V 0 is a value that defines the threshold value S 0 and the consent diagram according to the first embodiment described above. For example, the water heater to which the water quality diagnosis method according to the second embodiment is used / applied It is a value that is appropriately determined according to.
- FIG. 4 is a flowchart showing a water quality diagnosis method according to the third embodiment.
- Figure 4 As shown in, modify step S31 until the calculated supersaturation factor S 2, step S32 and step S33 are respectively the same as steps S11, step S12 and step S13 described in the first embodiment described above .
- the next step S33 in the manner described above in the second embodiment, using the modified supersaturation factor S 2, include dissolved ions to form the reacting with calcium ions low-solubility salt such as orthophosphate and magnesium ions
- the induction period t ind and the growth rate U 2 are calculated based on the values of the induction period t ind and the growth rate U 1 in the same apparatus with no predetermined water quality (step S34).
- the scale deposition amount of the water quality to be diagnosed is the allowable scale deposition amount V ′ 0 (scale measures or heat exchanger cleaning / replacement is required.
- the time (t ′ 0 ) to reach the scale adhesion amount) is calculated.
- the water quality is determined using the time t ′ 0 until the scale measures or the heat exchanger needs to be cleaned and replaced as an index (step S35). For example, if the time t ′ 0 is shorter than the normal assumed usage period of the heat exchanger, it can be determined that the water quality needs to be taken as a measure for scale or a measure for washing and replacing the heat exchanger. On the other hand, if the time t ′ 0 is longer than the assumed period of use, it can be determined that the water quality is unnecessary for the scale or for the cleaning and replacement of the heat exchanger over a long period of time.
- the time t ′ 0 until the calculated scale countermeasure or the heat exchanger needs to be cleaned / replaced is, for example, a water quality diagnostic apparatus or hot water supply to which the water quality diagnostic method according to the third embodiment is used / applied. It may be configured to be displayed on a vessel.
- the allowable scale adhesion amount V ′ 0 scale adhesion amount requiring scale countermeasures or heat exchanger cleaning / replacement
- This value is appropriately determined according to the water heater to which the water quality diagnosis method according to aspect 3 is used / applied.
- FIG. 5 is a schematic diagram showing the configuration of the refrigerant circuit and the water circuit of the heat pump heat exchange type water heater system.
- a general water heater system 1 includes a compressor 2, a first refrigerant pipe 3, a refrigerant / water heat exchanger 4, a hot water storage tank 5, a pump 6, and a first water pipe. 7, the second water pipe 8, the second refrigerant pipe 9, the expansion valve 10, the third refrigerant pipe 11, the evaporator 12, the blower 13, the fourth refrigerant pipe 14, and the first water supply pipe 15. And the second water supply pipe 16.
- Heated gas refrigerant for example, carbon dioxide or hydrofluorocarbon
- Heated gas refrigerant passes through the first refrigerant pipe 3 and flows into the refrigerant / water heat exchanger 4.
- the water stored in the hot water storage tank 5 is pushed out by the pump 6, passes through the first water pipe 7, and flows into the refrigerant / water heat exchanger 4.
- the heated gas refrigerant and water exchange heat to heat water returns to the hot water storage tank 5 through the second water pipe 8.
- the heated gas refrigerant that has transmitted heat to the water is sent to the expansion valve 10 through the second refrigerant pipe 9.
- the heated gas refrigerant sent to the expansion valve 10 is depressurized and flows into the evaporator 12 through the third refrigerant pipe 11.
- the heat is absorbed by the outside air sent from the blower 13, and then returns to the compressor 2 through the fourth refrigerant pipe 14.
- the heated water is supplied from the second water supply pipe 16 to the use point.
- tap water is supplied from the first water supply pipe 15 according to the amount of hot water used. To be supplied. Since the water in the hot water storage tank 5 is separated into two layers, a high temperature layer and a low temperature layer, as long as there is no agitation, the boundary layer portion between the high temperature layer and the low temperature layer is located above the hot water storage tank 5 (hot water storage tank). 5). Therefore, hot water is always supplied in the daytime.
- the scale adheres to the outlet side water circuit heat transfer surface of the refrigerant / water heat exchanger 4.
- FIG. 6 is a schematic diagram showing a configuration of a water heater system according to Embodiment 4 of the present invention.
- the water heater system 1 of Embodiment 4 further includes a water quality control unit 17, a first flow control valve 18, and a second flow rate.
- a control valve 19, a conductivity meter 20, a water quality diagnostic controller 201, and a water quality measuring device 202 are provided.
- the tap water supplied from the first water supply pipe 15 to the hot water storage tank 5 includes water flowing in from the water quality control unit 17 whose flow rate is adjusted by the first flow rate control valve 18, Water that flows in directly without passing through the water quality control unit 17 whose flow rate is adjusted by the flow rate control valve 19 is merged.
- the water quality flowing into the hot water storage tank 5 is improved.
- the water quality diagnosis controller 201 controls the open / closed state of the first flow control valve 18 and the second flow control valve 19.
- the water quality measuring device 202 includes a pH electrode, an electrical conductivity electrode, a phosphate ion electrode, a calcium ion electrode, a carbonate ion electrode, a thermocouple, and the like. It is a converter that converts output signals from each electrode and thermocouple into numerical values for each water quality item, and generates an analog or digital signal that controls the water quality diagnostic controller 201.
- a pure water typified resin typified by an ion exchange resin a cartridge filled with a substance that slowly releases orthophosphate ions or magnesium ions, or the like can be considered.
- a purified water resin for example, a polymer having a basic structure of a styrene-divinylbenzene copolymer can be used.
- a purified water resin has a function of selectively exchanging a cation if it has a functional group showing acidity, and a function that selectively exchanges an anion if it shows a functional group showing basicity.
- modified supersaturation factor S 2 is calculated by the water quality diagnosis control unit 201 in the fourth embodiment has a calcium ion concentration, the more carbonate ion concentration is large increases, the larger value orthophosphate ion concentration is small.
- a resin having a sulfonic acid group as an exchange group is more desirable because it can efficiently remove calcium ions.
- orthophosphate when orthophosphate is not contained in tap water, it is desirable to remove calcium ions and carbonate ions using a cation exchange resin and an anion exchange resin. Further, a resin in which an amino group is introduced as a functional group of a purified water resin is more desirable because it can efficiently remove carbonate ions.
- the conductivity meter 20 may monitor the conductivity of the treated water. For example, if the conductivity meter 20 has an alarm function and is set so that an alarm sounds when the conductivity exceeds 10 ⁇ S / cm, it is possible to notify the replacement timing of the pure water resin. Further, the measured value of the conductivity meter 20 may be transmitted to the water quality diagnostic controller 201 and an alarm may be issued from the water quality diagnostic controller 201.
- the shape of the substance that gradually releases orthophosphate ions can be selected from a cylindrical shape, a spherical shape, a hollow shape, or a fibrous shape, and it is desirable that the contact area per 1 m 3 of water has a fine structure of 1 m 2 or more. .
- Examples of substances that gradually release magnesium ions filled in the cartridge include Mg (OH) 2 , MgSO 4 , CaMg (CO 3 ) 2 , Mg 3 Si 2 O 5 (OH) 4 , and Mg 2 Si 3 O 7.5.
- a salt containing magnesium ions inside the crystal such as (OH) .3H 2 O, Mg 3 Si 4 O 10 (OH) 2 .H 2 O, or MgNH 4 PO 4 is desirable.
- the shape of the substance that releases magnesium ions can be selected from a cylindrical shape, a spherical shape, a hollow shape, or a fiber shape, and the contact area per 1 m 3 of water is 1 m 2 or more. It is desirable to have a fine structure.
- the water quality extracted from the water quality diagnostic cock (not shown in FIG. 6; see the fifth embodiment and FIG. 7 to be described later) in the water quality measuring device 202 is described above.
- the water quality diagnosis method according to the first to third embodiments is used for diagnosis. Furthermore, the quality of the water supplied is controlled based on the result. Specifically, measurement, calculation, correction, determination, and the like are performed in the water quality diagnostic controller 201 and the water quality measuring device 202 shown in FIG. More specifically, first, the supersaturation coefficient S 1 is calculated from the measured values of the calcium ion concentration, the carbonic acid concentration, and the hydrogen ion concentration and the water temperature set value inside the hot water storage tank 5.
- the supersaturation coefficient is corrected from S 1 to S 2 using the measured value of the orthophosphate ion concentration (or magnesium ion concentration, etc.) contained in the solution. If the corrected corrected supersaturated factor S 2 equal to or greater than the threshold value S 0, it is determined that calcium scale adhesion to the refrigerant / water heat exchanger 4 proceeds.
- the flow rate of the first flow rate control valve 18 is adjusted, the flow rate of the water quality control unit 17 is increased, and the water quality diagnosis cock is extracted. Diagnose the water quality again.
- the flow rate of the first flow rate control valve 18 is adjusted again, and the flow rate of the water quality control unit 17 is increased. By repeating such adjustment, water quality without scales can be obtained. It should be noted that the same adjustment may be performed by reducing the amount of flowing water of the second flow control valve 19, or both the first flow control valve 18 and the second flow control valve 19 may be adjusted.
- the water heater system 1 operates the water quality control unit and the calcium scale adhesion suppression unit based on the accurate water quality diagnosis result with higher accuracy than the water to be heated. There is an effect that scale adhesion to the heat transfer surface of the water heat exchanger 4 can be reliably prevented.
- FIG. 7 is a schematic diagram showing a configuration of a water heater system according to Embodiment 5 of the present invention.
- the water heater system 1 according to the fifth embodiment includes a water quality diagnosis controller 301, a water temperature sensor 303, and the water heater system 1 according to the fourth embodiment as additional components. Is a form provided.
- the configurations of the water quality diagnosis controller 201 and the water quality measurement device 202 are omitted.
- the rotational speed of the compressor 2 based on the signal from the water temperature sensor 303 in the second water pipe 8, the rotational speed of the compressor 2, the rotational speed of the blower 13, and / or the flow path gap of the expansion valve 10. It has a water quality diagnostic controller 301 for adjusting the water quality.
- the configuration is intended to control the water temperature in the second water pipe 8.
- the water quality diagnosis controller 301 has an interface for inputting a supersaturation coefficient, and performs the above control based on the input coefficient.
- the water quality diagnosis controller 301 may be integrated with the water quality diagnosis controller 201 (not shown) described in the fourth embodiment. In that case, at water quality diagnosis control unit 301, directly, supersaturation factor S 1 and modified supersaturation factor S 2 may be calculated and correction.
- the water quality extracted from the water quality diagnostic cock 21 provided in the first water supply pipe 15 is used for the water quality diagnostic controller 301 (or the water quality diagnostic controller 301 as described above). Diagnosis is made by a water quality diagnosis controller 201 (not shown).
- the supersaturation is based on the measured values of the calcium ion concentration, carbonate ion concentration and hydrogen ion concentration of the extracted water and the water temperature measured value by the water temperature sensor 303 in the second water pipe 8.
- the coefficient S 1 is calculated, the supersaturation coefficient is corrected from S 1 to S 2 using the measured value of orthophosphate ion concentration (or magnesium ion concentration) contained in the solution, and the corrected modified supersaturation coefficient S 2 is the threshold value. In the case of S 0 or more, it is determined that the calcium scale adheres to the water / refrigerant heat exchanger 4.
- the corrected saturation coefficient S 2 corrected using the water quality diagnosis method according to the first embodiment described above is less than the threshold value S 0 .
- the water temperature in the second water pipe 8 is calculated.
- the water temperature diagnosis controller 301 adjusts the rotation speed of the compressor 2, the rotation speed of the blower 13, and / or the flow passage clearance of the expansion valve 10, thereby changing the water temperature in the second water pipe 8 to a predetermined temperature. Set to.
- the water temperature at the outlet of the water / refrigerant heat exchanger 4 is lowered, the amount of heat held in the hot water storage tank 5 is lowered, which causes a problem such as running out of hot water. Accordingly, when the water temperature in the second water pipe 8 is controlled by the water quality diagnosis controller 301, it is desirable to set the temperature to 40 ° C. to 90 ° C.
- the water heater system 1 operates the water quality control unit and the calcium scale adhesion suppression unit based on the accurate water quality diagnosis result with higher accuracy than the water to be heated.
- it has more certainty in the scale adhesion prevention effect to a heat-transfer surface by using together with the water heater system 1 which concerns on above-mentioned Embodiment 4.
- FIG. 8 is a schematic diagram showing a configuration of a water heater system according to Embodiment 6 of the present invention.
- the water heater system 1 according to the sixth embodiment includes a bypass circuit pipe 22, an automatic opening / closing valve 23, and a water quality diagnosis in addition to the components of the general water heater system 1 shown in FIG. 5.
- a controller 401 and a water quality measuring device 402 (equipped with a water quality diagnosis cock) are provided.
- the scale adhesion to the heat transfer surface is performed using the water quality control means or the water temperature control means.
- the corrected corrected supersaturated factor S 2 an apparatus for controlled below the threshold S 0, to disclose the specific configuration.
- the water heater system 1 is corrected corrected supersaturated factor S 2, even the threshold value S 0 than controls water flow through the first water pipe 7 and the second water pipe 8 This prevents the scale from adhering to the refrigerant / water heat exchanger 4.
- a bypass circuit pipe 22 that connects the inlet side and the outlet side of the pump 6 that supplies water to the refrigerant / water heat exchanger 4 is provided, and an automatic open / close valve 23 is provided in the bypass circuit pipe 22. Install and periodically open and close the valve. As a result, a pulsating flow is generated in the water sent to the refrigerant / water heat exchanger 4, thereby preventing scale adhesion.
- the water quality diagnosis is diagnosed by the water quality diagnosis controller 401 and the water quality measuring device 402 in the same manner as in the above-described embodiment (particularly, the embodiment 4), and the opening / closing of the valve is appropriately controlled and adjusted based on the result. .
- the pulsating flow pattern, sine wave, can be used a square wave or a triangular wave, etc., the maximum flow rate Q 1, the minimum flow rate Q 2 between the be periodically change desired flow rate.
- the time T 1 (pulse flow width) of the flow rate Q 1 is preferably in the range of 0.1 to 10 seconds, and the frequency T 2 of the pulsating flow is adjusted in the range of 1 to 20 times the width T 1 of the pulsating flow. desirable.
- the optimal pulsating flow conditions vary depending on the water quality and hot water supply conditions used.
- the tapping temperature is 40 to 60 ° C. and the corrected supersaturation coefficient S 2 at room temperature is water quality of 2 or less, the ratio of the maximum flow rate Q 1 / minimum flow rate Q 2 in the pulsating flow is in the range of 1 to 2. It is desirable to define.
- the corrected supersaturation coefficient S 2 at room temperature is a water quality of 2 or more, the ratio of the maximum flow rate Q 1 / minimum flow rate Q 2 is in the range of 1 to 4 for water quality in which calcium carbonate is more likely to be generated. It is desirable to define.
- the ratio of the maximum flow rate Q 1 / minimum flow rate Q 2 in the pulsating flow is in the range of 1 to 6. It is desirable to define.
- the water heater system 1 As described above, the water heater system 1 according to the sixth embodiment generates a pulsating flow in the water sent to the refrigerant / water heat exchanger 4 based on a more accurate and accurate water quality diagnosis result.
- the flow velocity of the water side heat transfer surface of the refrigerant / water heat exchanger 4 it is possible to prevent the deposited scale from adhering.
- FIG. 9 is a schematic diagram showing a configuration of a water heater system according to Embodiment 7 of the present invention.
- FIG. 10 is a schematic diagram illustrating a configuration of a water heater system according to a modification of the seventh embodiment.
- the water heater system 1 according to the seventh embodiment is different from the water heater system 1 according to the fourth embodiment described above as a scale particle capturing unit 24 and a second additional component.
- a 3 flow rate control valve 25 and a fourth flow rate control valve 26 are provided. 9 and 10, except for the water quality diagnosis cock 21, the water quality control unit 17, the first flow rate control valve 18, the second flow rate control valve 19, which are components of the water heater system 1 of the fourth embodiment.
- the configurations of the conductivity meter 20, the water quality diagnostic controller 201, and the water quality measuring device 202 are not shown.
- the scale particle capturing unit 24 in the flow path of the first water pipe 7 or the second water pipe 8, not only the effect in the water heater system 1 of the above-described fourth embodiment but also the first Calcium carbonate scale particles generated in the first water pipe 7 and the second water pipe 8 can be captured.
- the amount of flowing water that passes through the scale particle capturing unit 24 is appropriately adjusted by the third flow rate control valve 25, and the amount of flowing water that does not pass through the scale particle capturing unit 24 is adjusted to the fourth flow rate control valve 26. If it adjusts in (4), the quality of the tap water supplied from the 1st water piping 7 or the 2nd water piping 8 between the hot water storage tank 5 and the refrigerant
- coolant / water heat exchanger 4 will be improved. Adjustment of the 3rd flow control valve 25 and the 4th flow control valve 26 is operated by water quality diagnostic controller 201 and water quality measuring device 202 (not shown), for example. The actions and effects of the scale particle capturing unit 24 shown in FIGS.
- the scale grows directly on the heat transfer surface of the water / refrigerant heat exchanger 4, the first water pipe 7 and the second water pipe 8, or the hot water storage tank 5.
- Scale fine particles generated in the water may adhere to the heat transfer surface of the water / refrigerant heat exchanger 4.
- the scale particle capturing unit 24 according to the seventh embodiment removes the scale particles generated in the water corresponding to the latter cause, and suppresses the adhesion of the scale particles generated in the water to the inside of the water / refrigerant heat exchanger 4. Is.
- the material of the adhering body filled in the scale particle capturing part 24 copper, brass, stainless steel, silicone rubber, glass, iron, iron oxide (III, II), polytetrafluoroethylene (Teflon (registered trademark) resin (PTFE, PFA)), polyvinyl chloride, polyethylene, polystyrene, polypropylene, polysulfone, isoprene rubber, butadiene rubber, styrene butadiene rubber, aromatic polyamide (such as nylon 6 or nylon 6-6), and the like can be used.
- FIG. 11 is a diagram showing curled fibers in the structure of the scale attached body.
- an aggregate composed of such curled fibers having the curl diameter D 1 and the fiber diameter D 2 can be used.
- the curl fiber has a tensile strength of 2 to 4 kg. This condition corresponds to a corrosion durability of 10 years or more in the water heater system 1 that is heated to 60 ° C. or higher. If stainless steel curling fiber, the fiber diameter D 2 can correspond even 10 ⁇ m or more.
- the water quality diagnosis is performed using the water extracted from the water quality diagnosis cock 21 provided in the first water supply pipe 15 and using the method according to the first to third embodiments.
- the water quality diagnostic controller 201 and the water quality measuring device 202 (not shown) perform the calcium ion concentration, the carbonate ion concentration, and the hydrogen.
- the corrected supersaturation coefficient S 2 is corrected from S 1 to S 2 and the corrected supersaturation coefficient S 2 is equal to or greater than the threshold value S 0 , it is determined that the calcium scale adheres to the water / refrigerant heat exchanger 4.
- the water flow in the third flow control valve 25 increases the water flow rate Q 3 which passes through the scale particle capture unit 24, the scale particles generated in water one Remove the part. Thereby, the scale amount adhering to the heat transfer surface of the water / refrigerant heat exchanger 4 can be suppressed.
- the difference (S 2 ⁇ S 0 ) between the corrected supersaturation coefficient S 2 and the threshold value S 0 is 0 or more and less than 5
- the water flow ratio Q 3 / (Q 3 + Q 4 ) is in the range of 0 to 0.5. It is desirable to adjust to.
- the water flow ratio Q 3 / (Q 3 + Q 4 ) is set to 0.25 to 1 It is desirable to adjust to the range of 0.0.
- the water heater system 1 operates the water quality control means and the plurality of calcium scale adhesion suppressing means based on the accurate water quality diagnosis result with higher accuracy than the water to be heated. There is an effect that scale adhesion to the heat transfer surface of the refrigerant / water heat exchanger 4 can be more reliably prevented.
- FIG. 12 is a diagram showing the configuration of the scale deposition experiment apparatus used in the examples.
- the scale deposition experimental device 600 is composed of a heat-resistant glass container 601, an electrical conductivity electrode 602, a silicone rubber 603, a magnetic stirrer 604, and a constant temperature bath 605.
- an electric conductivity electrode 602 (CT-2712B, manufactured by TOADKK) was inserted into a heat-resistant glass container 601 (capacity 585 mL) whose inside was acid-washed, and the gas phase was minimized with silicone rubber 603. It sealed so that it might become.
- the sample water in the glass bottle was constantly stirred at about 300 rpm using a PTFE magnetic stirring bar 604.
- the water temperature of the sample water was adjusted to be constant at 65 ° C. by the thermostatic bath 605.
- the aqueous solution becomes slightly cloudy. Since innumerable CaCO 3 fine particles are adhered inside the heat-resistant glass container 601 after the CaCO 3 deposition, the heat-resistant glass container 601, the electrical conductivity electrode 602 and the magnetic stir bar 604 are added with 0.01 mol / L hydrochloric acid. Were immersed for 20 minutes or more at room temperature to completely dissolve the fine particles. Before heating the sample water in the experiment, nitrogen gas (industrial nitrogen gas, purity 99.995%, CO 2 concentration 0.1 ppm or less) was aerated through each aqueous solution for 5 to 10 minutes to adjust the pH to 8. It was adjusted to 4 to 8.7.
- nitrogen gas industrial nitrogen gas, purity 99.995%, CO 2 concentration 0.1 ppm or less
- the electrical conductivity of the solution decreases.
- the time change of the electrical conductivity of the solution using the scale deposition experimental apparatus 600 was recorded. Detailed examples and results are shown below.
- Example 1 In Example 1, using the scale deposition experiment apparatus 600, nitrogen gas was preaerated as described above, and various sample waters whose pH was adjusted to 8.4 to 8.7 were held at 65 ° C. for several hundred hours or more. The experimental results are shown. Examples of the various sample water include tap water collected in Europe (hereinafter referred to as tap water), simulated aqueous solution (hereinafter referred to as simulated water), and aqueous solution obtained by adding K 3 PO 4 to simulated water at 1 mg / L. (Experimental water 1) and an aqueous solution (experimental water 2) obtained by adding K 3 PO 4 to simulated water at 5 mg / L were used.
- FIG. 13 is a diagram illustrating a water quality analysis result before heating according to Example 1. Comparing the tap water and the simulated water, the simulated water is approximately the same with respect to Na + , K + , Ca 2+ , Mg 2+ , Cl ⁇ , NO 3 ⁇ and SO 4 2 ⁇ which are main ions contained in the tap water. It was found that a certain amount of ions was contained (some ions are not shown), and the pH was equivalent. Further, the HPO 4 2 ⁇ concentration of the aqueous solution (experimental water 2) obtained by adding K 3 PO 4 to the simulated water at 5 mg / L is 2.2 mg / L which is slightly lower than 3.2 mg / L contained in tap water. However, it was equivalent.
- FIG. 14 is a graph showing changes in pH, Ca hardness, and M alkalinity after heating according to Example 1.
- Ca hardness and M alkalinity also decreased with heating.
- the supersaturation coefficient with respect to calcium carbonate before heating was 112 to 165 times, but after heating, the supersaturation coefficient was 1.7 to 3. It decreased to 4 times and almost reached an equilibrium state.
- calcium carbonate (CaCO 3 ) was included, but calcium phosphate (Ca 4 (PO 4 ) 3 ) was not included.
- FIG. 15 is a diagram illustrating a change over time in the electrical conductivity of the sample water during heating according to Example 1.
- FIG. Since the ion concentration in the solution decreases with the CaCO 3 precipitation reaction, the electrical conductivity of each sample water decreases.
- the electric conductivity of tap water gradually changes in the range of 68 mS / m to 69 mS / m for about 50 hours from the start of heating, and after that, it starts to decrease and requires 400 hours or more to reach a steady state (in a steady state) The transition to reach is not shown).
- the electrical conductivity gradually decreases as the amount of K 3 PO 4 added to the simulated water increases.
- the aqueous solution in which K 3 PO 4 was added to simulated water at 1 mg / L reached steady state after about 250 hours.
- the aqueous solution in which K 3 PO 4 was added to the simulated water at 5 mg / L, it gradually changed in the range of 56 to 67 mS / m for about 150 hours after the start of heating, and then began to decrease thereafter. It took more than 400 hours to reach steady state.
- the CaCO 3 precipitation reaction rate cannot be compared as it is. Therefore, based on the initial value and the steady value of the electrical conductivity in each experiment, it was normalized as “the rate of change of electrical conductivity”, and the time t 1 required to reach the equilibrium rate of 20% was compared.
- t 1 61 hours.
- the amount of added K 3 PO 4 was further increased, and the rate of change in electrical conductivity was measured in an aqueous solution having an HPO 4 2 concentration of 3.0 mg / L or more in order to reach an equilibrium state of 20%.
- FIG. 16 is a diagram showing the value of the corrected supersaturation coefficient with respect to the orthophosphoric acid concentration according to Example 1.
- the shaded area in FIG. 16 is the range of the corrected supersaturation coefficient shown in the above-mentioned formulas 5 and 6.
- the solid line is a representative value passing through the center of the range.
- Example 2 In Example 2, similarly to Example 1 described above, using the scale deposition experimental apparatus 600, various sample waters whose pH was adjusted to 8.4 to 8.7 by aeration of nitrogen gas in advance were adjusted to 65 ° C. Shows the experimental results held for several hundred hours or more.
- simulated water similar to the above-described Example 1, an aqueous solution (experimental water 3) obtained by adding Mg (OH) 2 to the simulated water at 87 mg / L, and Mg (OH) in the simulated water.
- An aqueous solution (Experimental water 4) added with 2 at 175 mg / L was used.
- FIG. 17 is a diagram illustrating a water quality analysis result before heating according to Example 2.
- an aqueous solution (experimental water 3) in which Mg (OH) 2 was added to simulated water at 87 mg / L
- the Mg 2+ concentration was 35.6 mg / L (1.5 ⁇ 10 ⁇ 3 mol / L).
- an aqueous solution (experimental water 4) in which Mg (OH) 2 was added to simulated water at 175 mg / L
- the Mg 2+ concentration was 71.3 mg / L (3.0 ⁇ 10 ⁇ 3 mol / L).
- Met Since the simulated water contains Ca 2+ of about 3.0 ⁇ 10 ⁇ 3 mol / L, the molar concentration ratio of Mg 2+ / Ca 2+ is 0.5 in the experimental water 3, and the experimental water 4 It was 1.0.
- the supersaturation coefficient with respect to calcium carbonate before heating was 112 to 165 times, but after heating, the supersaturation coefficient was 1.5 to 2. It decreased to 5 times and almost reached an equilibrium state.
- calcium carbonate (CaCO 3 ) was included, but magnesium carbonate (MgCO 3 ) was not included.
- FIG. 18 is a diagram illustrating a temporal change in electrical conductivity during heating according to Example 2. Since the ion concentration in the solution decreases with the CaCO 3 precipitation reaction, the electrical conductivity of the solution decreases. The electrical conductivity of the simulated water gradually decreases as the amount of magnesium hydroxide added increases. As shown in FIG. 18, the simulated water without magnesium hydroxide has a Mg 2+ concentration of 35.6 mg / L after about 150 hours. The experimental water 3 (1.5 ⁇ 10 ⁇ 3 mol / L) reached a steady state after about 180 hours.
- the water quality to which the calcium scale adheres can be diagnosed more accurately and accurately. can do.
- calcium scale adhesion can be efficiently suppressed by using the water quality diagnosis method in the water heater system.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
- Treatment Of Water By Ion Exchange (AREA)
Abstract
熱交換器を流れる水の水質を診断する水質診断装置100が行う水質診断方法であって、第1工程において、溶液中における、カルシウムイオン濃度、炭酸イオン濃度、水素イオン濃度、水温およびカルシウムイオンと反応して難溶解性塩を形成する溶存イオン濃度の値を測定する。第2工程において、測定されたカルシウムイオン濃度、炭酸イオン濃度、水素イオン濃度および水温の値を用い、溶液中における炭酸カルシウムの過飽和係数を算出する。第3工程において、測定されたカルシウムイオンと反応して難溶解性塩を形成する溶存イオン濃度の値を用い、過飽和係数から、補正された修正過飽和係数を算出する。第4工程において、算出された修正過飽和係数から水質を判定する。
Description
本発明は、ヒートポンプ熱交換式の給湯器等において、熱交換器内へカルシウムスケールが付着する水質における水質診断方法、水質診断装置および給湯器システムに関する。
浴室または台所に温水を供給する給湯器は、電気給湯器、ガス給湯器または石油給湯器等に大別される。これらはいずれも熱を水に伝えるための熱交換器を備える。最近は、特にこれらのうち、省エネルギーおよび地球温暖化対策としての二酸化炭素削減の観点から、ヒートポンプ熱交換式の電気給湯器(ヒートポンプ給湯器)が注目されている。
ヒートポンプ給湯器の原理は、大気の熱を熱媒体に移し、その熱でお湯を沸かすものである。具体的に言えば、気体を圧縮したときに発生する熱が、熱交換器を介して水へ移動し、その気体を膨張させたときの冷気によって再び熱媒体の温度を大気の温度まで戻すという繰り返し(冷熱サイクル)によるものである。理論上投入エネルギー以上の熱エネルギーを取り出すことはできない。しかし、ヒートポンプ給湯器は大気の熱を活用する仕組みのため、運転に要するエネルギーよりも多くの熱エネルギーを利用することができる。
ヒートポンプ給湯器における熱交換器は、水に熱を伝えるために、その伝達面を常に清浄な状態に保つことが非常に重要である。熱伝達面の壁面が汚れると有効な熱伝達面積が減少し、熱伝達性能の低下を招く。さらに汚れが蓄積すると、熱交換器に水が流動する際に発生する圧力損失が増大し、最悪の場合には流路の閉塞を招く。
特に水中の硬度成分(カルシウムイオン)が高い区画では、加熱により炭酸カルシウムを主成分とするスケール(カルシウムスケール)と呼ばれる溶解度の低い無機化合物塩が析出し、熱交換器内に付着する。カルシウムスケールが付着する問題は、ヒートポンプ給湯器固有の問題ではなく、電気給湯器、ガス給湯器または石油給湯器等においても発生する。これは、所定温度まで水が加熱されると必ず発生するという水質に起因するものである。
炭酸カルシウム(CaCO3)は、水中のカルシウムイオン(Ca2+)と炭酸イオン(CO3
2-)の反応によって生成する。特許文献1および特許文献2には、カルシウムスケールが付着する水質を診断する方法として、カルシウム量に対応するカルシウム硬度、炭酸イオン量に対応するアルカリ度、pHおよび水温によって水質判断し、スケール付着を抑制するように制御する方法が開示されている。
カルシウムイオンはリン酸イオンとも反応し、溶解性の低いリン酸カルシウム(Ca4(PO4)3)を生成する。特許文献3には、実際の排水のpHとカルシウムイオン濃度とリン酸イオン濃度とを用いて計算される、pH・温度ファクター、カルシウムファクターおよびリン酸塩ファクターの関係が、pH・温度ファクター>カルシウムファクター+リン酸塩ファクターの場合には、リン酸カルシウムが過飽和で析出することが記載されている。また、特許文献3では、リン酸カルシウムの生成を利用した、カルシウムを含む排水処理におけるスケール発生防止方法についても開示されている。
しかし、特許文献1および特許文献2に記載されている方法では、前述したように、カルシウム量に対応するカルシウム硬度、炭酸イオン量に対応するアルカリ度、pHおよび水温によってのみ水質を判断している。特許文献3では、リン酸カルシウムの過飽和に関する条件について、カルシウムイオンとリン酸の反応によって生成するリン酸カルシウム(Ca4(PO4)3)の析出特性に対応する記載がなされているのみである。
すなわち、現存のカルシウムスケールの付着に対する水質診断において、一般的には、カルシウムイオン濃度、炭酸イオン濃度、水素イオン濃度(pH)および水温のみによって診断がなされており、水質における他の要素の影響からのカルシウムスケールの付着については考慮されていない。
本発明は、上記事情に鑑みてなされたものであり、カルシウムスケールが付着する水質をより精度よく正確に診断することを目的とする。
上記目的を達成するため、本発明者らが鋭意研究を重ねた結果、溶液中のカルシウムイオン濃度、炭酸イオン濃度、水素イオン濃度(pH)および水温が同等であっても、カルシウムイオンと反応して難溶解性塩を形成する溶存イオン濃度(短分子のリン酸であるオルトリン酸イオン濃度(HPO4
2-濃度)、マグネシウムイオン濃度(Mg2+濃度)またはシリカイオン濃度等の、水道水に含まれ得るイオンの濃度)によって、炭酸カルシウムの析出速度が大きく変化することを解明した(実施例参照)。
そこで、本発明に係る水質診断方法では、熱交換器を流れる水の水質を診断する水質診断装置が行う水質診断方法であって、第1工程において、水質診断を行う溶液中における、カルシウムイオン濃度、炭酸イオン濃度、水素イオン濃度、水温およびカルシウムイオンと反応して難溶解性塩を形成する溶存イオン濃度の値を測定する。第2工程において、第1工程で測定されたカルシウムイオン濃度、炭酸イオン濃度、水素イオン濃度および水温の値を用い、溶液中における炭酸カルシウムの過飽和係数を算出する。第3工程において、第1工程で測定されたカルシウムイオンと反応して難溶解性塩を形成する溶存イオン濃度の値を用い、過飽和係数から、補正された修正過飽和係数を算出する。第4工程において、修正過飽和係数から水質を判定する。
本発明によれば、カルシウムイオンと反応して難溶解性塩を形成する溶存イオンが炭酸カルシウムの析出速度へ与える影響を考慮するので、カルシウムスケールが付着する水質をより精度よく正確に診断することができる。
前述したとおり、本発明者らは、溶液中のカルシウムイオン濃度、炭酸イオン濃度、水素イオン濃度(pH)および水温が同等であっても、カルシウムイオンと反応して難溶解性塩を形成する溶存イオン濃度の影響にて、炭酸カルシウムの析出速度が大きく変化することを解明した(実施例参照)。そこで、まず、カルシウムイオンと反応して難溶解性塩を形成する溶存イオン濃度の影響を考慮した水質診断装置および水質診断方法について、理論的説明を含め、詳細に説明する。
図1は、本発明に係る水質診断装置のブロック図を示す図である。図1に示すように、水質診断装置100は、測定部101、算出部102、補正部103および判定部104から構成される。測定部101は、水質診断を行う溶液中における、カルシウムイオン濃度、炭酸イオン濃度、水素イオン濃度、水温およびカルシウムイオンと反応して難溶解性塩を形成する溶存イオン(オルトリン酸イオンまたはマグネシウムイオン等)濃度の値を測定する。算出部102は、測定されたカルシウムイオン濃度、炭酸イオン濃度、水素イオン濃度および水温の値を用い、溶液中における炭酸カルシウムの過飽和係数を算出する。補正部103は、カルシウムイオンと反応して難溶解性塩を形成する溶存イオン濃度の値を用い、炭酸カルシウムの析出速度へ与える影響を考慮して補正された修正過飽和係数を算出する。
判定部104は、算出した修正過飽和係数から水質を判定する。本願において、水質を判定するという文言は、結果的に、スケール対策が必要であるか否か判定すること、または、熱交換器の洗浄・交換が必要となる時間(期間)を確認もしくは洗浄・交換の必要性を判定すること等を意図する。後の実施の形態2および3にて述べるように、判定部104は、補正部103にて算出された数値から、蓄積された特定のデータを用い、それぞれの実施の形態にて所望する数値を算出するための算出手段を含んでいる場合もある。判定手段の具体的な方法は、後に、実施の形態1から3において詳細に説明する。
本発明者らは、固体核生成に関する均一核生成理論(例えば、後藤芳彦著、「結晶成長」第29~44頁参照)を用いて、炭酸カルシウムの析出特性に対するリン酸イオンの影響を考察した。炭酸カルシウムの過飽和係数をS1、水温をT(K)、析出核と水の間の界面エネルギーをγ(J/m2)、ボルツマン定数をk(J/K)、溶液中のイオン分子の衝突頻度をA(1/s)とすると、炭酸カルシウムの析出速度Rは、以下の式にて与えられる。
また、溶液中のカルシウム濃度を[Ca2+]、炭酸イオン濃度を[CO3
2-]、二価イオンの活量係数をfD、炭酸カルシウムの溶解度積をKspとすると、炭酸カルシウムの過飽和係数S1は以下の式にて与えられる。図1に示す算出部102は、測定部101において測定された各値を利用し以下の式を用いることにより、炭酸カルシウムの過飽和係数S1を算出する。
溶解度積のKspは、温度によって決定される物性値(例えば、Plummer et al, Geochimica Et Cosmochimica Acta, 1982. 46(6): p. 1011-1040参照)である。例えば、水温10℃、20℃、60℃において、それぞれ、3.89×10-9、3.53×10-9、1.74×10-9である。つまり、高温になるほど溶解度積は小さくなり、一定の溶液組成に対する過飽和係数S1は大きくなる。これは、高温ほど炭酸カルシウムが析出し易いことを意味する。一方、二価イオンの活量係数fDは水溶液の電気伝導率、水素イオン濃度によって変化するが、通常の水道水であれば、0.6~0.8の範囲である。
例えば、カルシウムイオンと反応して難溶解性塩を形成する溶存イオンがオルトリン酸イオンである場合について述べると、通常、溶液中のカルシウム濃度、炭酸イオン濃度、水素イオン濃度(pH)および水温が同等であれば、水温と過飽和係数S1は一定のはずである。ボルツマン定数kと衝突頻度Aも不変なので、溶液中のオルトリン酸イオン濃度の炭酸カルシウムの析出速度に対する影響は、析出核と水の間の界面エネルギーγがγ→γ'に変化したことに起因すると説明できる(以下の式参照)。
オルトリン酸イオン濃度をCPとして、上記の数4の式を用い、後述の実施例1における炭酸カルシウムの析出速度Rとオルトリン酸イオン濃度CPの測定結果とを解析した。すると、CPが3.0mg/L未満の場合においては、修正過飽和係数S2と過飽和係数S1の間には以下の範囲の関係式が成立することがわかった。すなわち、修正過飽和係数S2は、オルトリン酸イオン濃度CPの多項式からなる分母で規格化された0.6~1.4倍の過飽和係数S1の範囲に含まれる。その中央値は、1.0倍である。代表値は、中央値を用いて算出する。
CPが3.0mg/L以上では炭酸カルシウムの析出速度Rは一定なので、この場合においては、修正過飽和係数S2と過飽和係数S1の間には以下の範囲の関係式が成立することがわかった。この場合の中央値は、0.227S1となる。代表値は、中央値を用いて算出する。従って、図1に示す補正部103は、測定部101により測定されたオルトリン酸イオン濃度の値に基づき、上記の数5または下記の数6の式を用い、過飽和係数S1から、オルトリン酸イオンの炭酸カルシウムの析出速度へ与える影響を考慮して補正された修正過飽和係数S2を算出する。
このように、オルトリン酸イオン濃度の影響を考慮する水質診断では、まず、カルシウムイオン濃度、炭酸イオン濃度、水素イオン濃度および水温、さらにはオルトリン酸イオン濃度を測定する。その後、カルシウムイオン濃度、炭酸イオン濃度および水素イオン濃度以外の溶存イオンを考慮しない、炭酸カルシウムの過飽和係数S1を算出する。次いで、当該オルトリン酸イオン濃度に基づき、修正過飽和係数S2として補正・算出する。図1に示す判定部104では、当該修正過飽和係数S2を用いて水質を判定する。
一方、例えば、カルシウムイオンと反応して難溶解性塩を形成する溶存イオンがマグネシウムイオンである場合でも、ある関係式が成立することがわかった。マグネシウムイオン濃度をCM(mol/L)、カルシウムイオン濃度をCC(mol/L)として、前述の数4の式を用い、後述する実施例2における炭酸カルシウムの析出速度Rとマグネシウムイオン濃度CMの測定結果を解析した。すると、修正過飽和係数S2と過飽和係数S1の間には以下の範囲の関係式が成立することがわかった。すなわち、修正過飽和係数S2は、CM/CCを含む1次式からなる分母で規格化された0.6~1.4倍の過飽和係数S1の範囲に含まれる。その中央値は1.0倍である。この場合でも同様に、図1に示す補正部103は、測定部101により測定されたマグネシウムイオン濃度およびカルシウムイオン濃度の値を下記の数7の式に当てはめ、過飽和係数S1から、マグネシウムイオンの炭酸カルシウムの析出速度へ与える影響を考慮して補正された修正過飽和係数S2を算出する。
このように、マグネシウムイオン濃度の影響を考慮する水質診断では、まず、カルシウムイオン濃度、炭酸イオン濃度、水素イオン濃度および水温、さらにはマグネシウムイオン濃度を測定する。その後、カルシウムイオン濃度、炭酸イオン濃度および水素イオン濃度以外の溶存イオンを考慮しない、炭酸カルシウムの過飽和係数S1を算出する。次いで、算出したマグネシウムイオン濃度およびカルシウムイオン濃度の値を用い、上記の数7の式にて修正飽和係数S2として補正する。図1に示す判定部104では、当該修正過飽和係数S2を用いて水質を判定する。その結果、給湯器システム等の熱交換器を流れる水において、カルシウムスケール付着に影響を与える水質を、より精度よく診断することができる。
(実施の形態1)
図2は、実施の形態1に係る水質診断方法を示すフローチャートである。図2に示すように、水質診断では、まず、カルシウムイオン濃度、炭酸イオン濃度、水素イオン濃度、水温およびカルシウムイオンと反応して難溶解性塩を形成する溶存イオン濃度(オルトリン酸イオン濃度またはマグネシウムイオン濃度等)の値を測定する(ステップS11)。次に、測定されたカルシウムイオン濃度、炭酸イオン濃度、水素イオン濃度および水温の値から過飽和係数S1を算出する(ステップS12)。そして、過飽和係数S1から、修正過飽和係数S2を算出する(ステップS13)。ここで、修正過飽和係数S2が、閾値S0以上か否かを判定する(ステップS14)。修正過飽和係数S2が閾値S0以上である場合には(ステップS14;YES)、カルシウムスケール付着が進行すると判断できるので、スケール対策が必要であると判断する(ステップS15)。修正過飽和係数S2が閾値S0未満である場合には(ステップS14;NO)、カルシウムスケール付着は進行しないと判断できるので、スケール対策は不要と判断する(ステップS16)。
図2は、実施の形態1に係る水質診断方法を示すフローチャートである。図2に示すように、水質診断では、まず、カルシウムイオン濃度、炭酸イオン濃度、水素イオン濃度、水温およびカルシウムイオンと反応して難溶解性塩を形成する溶存イオン濃度(オルトリン酸イオン濃度またはマグネシウムイオン濃度等)の値を測定する(ステップS11)。次に、測定されたカルシウムイオン濃度、炭酸イオン濃度、水素イオン濃度および水温の値から過飽和係数S1を算出する(ステップS12)。そして、過飽和係数S1から、修正過飽和係数S2を算出する(ステップS13)。ここで、修正過飽和係数S2が、閾値S0以上か否かを判定する(ステップS14)。修正過飽和係数S2が閾値S0以上である場合には(ステップS14;YES)、カルシウムスケール付着が進行すると判断できるので、スケール対策が必要であると判断する(ステップS15)。修正過飽和係数S2が閾値S0未満である場合には(ステップS14;NO)、カルシウムスケール付着は進行しないと判断できるので、スケール対策は不要と判断する(ステップS16)。
閾値S0とは、後に詳細に説明するが、例えば本実施の形態1に係る水質診断方法が利用・適用される給湯器に応じて決定される値である。後述する実施の形態4から7では、実施の形態1にて説明した水質診断方法が適用された給湯器システムについて詳細に説明する。実施の形態4から7では、修正過飽和係数S2が、閾値S0以上であると判定された場合、修正過飽和係数S2を下げるよう、カルシウムスケール付着抑制として機能・動作する種々の水質(診断)制御器を備える給湯器システムについて述べている。しかし、例えば、実施の形態1にて述べた水質診断工程・ステップのみを行う装置を備える給湯器システムにおいて、別個として水質制御装置または水質改善装置等を取り外し可能となるように設計してもよい。
(実施の形態2)
実施の形態2では、修正過飽和係数S2を用いてスケールの付着量を計算し、水質を判定する水質診断方法について説明する。この方法によると、前述の実施の形態1の水質診断方法の精度をさらに高める。
実施の形態2では、修正過飽和係数S2を用いてスケールの付着量を計算し、水質を判定する水質診断方法について説明する。この方法によると、前述の実施の形態1の水質診断方法の精度をさらに高める。
カルシウムイオン、炭酸イオンおよび水素イオン以外のカルシウムと反応して難溶解性塩を形成する溶存イオンを含まない所定の水質における炭酸カルシウムの析出速度Rは、前述した数1の式において同様に与えられる。ここで、スケールが析出するまでの時間を誘導期間tindとすると、誘導期間tindは前述の数1の逆数に比例するので、以下の式の比例関係が求められる。
ここで、予め、析出核と水の間の界面エネルギーγの値を求めておく。さらに、同装置において、オルトリン酸イオンおよびマグネシウムイオン等のカルシウムイオンと反応して難溶解性塩を形成する溶存イオンを含まない所定の水質における誘導期間tindを測定しておく。すると、修正過飽和係数S2に係る水質における誘導期間t’indを計算することができる。界面エネルギーγに関しては、リン酸を含まない場合のスケールの界面エネルギーγは0.018J/m2である。リン酸を含む場合のスケールの界面の界面エネルギーγは0.024J/m2である。
εaは活性化エネルギーであり、温度に依存しない物質固有の物性値である(例えば、Wiecher et al, Water Research, 1975, 9(9): 835-845参照)。炭酸カルシウムの場合は、10.3kcal/molである。これらの値を用いると、水温T1、過飽和係数S1、成長速度U1における場合と、水温T2、修正過飽和係数S2、成長速度U2における場合とでの、成長速度U1と成長速度U2の相対値は以下の式で計算される。
数12を用いると、前述した数5、数6および数7より算出される修正過飽和係数S2から、この場合のスケールの成長速度U2が、オルトリン酸イオンおよびマグネシウムイオン等のカルシウムイオンと反応して難溶解性塩を形成する溶存イオンを含まない所定の水質における成長速度U1の何倍に当たるかを、計算することができる。このように、オルトリン酸イオン濃度等を考慮しない過飽和係数S1である水質の同装置における誘導期間tindおよび成長速度U1、さらには特定の期間におけるスケールの付着量V1を測定しておくことで、修正過飽和係数S2における誘導期間t’indおよび成長速度U2を計算することができる。誘導期間はスケールの析出が開始するまでの時間であり、成長速度は析出したスケールが成長する速度であって、スケールの付着量は析出開始後の成長速度に比例する。そのため、診断において、オルトリン酸イオン濃度およびマグネシウムイオン濃度を考慮した水質における任意の時間(例えば、想定使用期間)でのスケール付着量V2を計算することができる。本実施の形態2に係る水質診断方法は、このように計算された任意の時間でのスケール付着量V2を判定することにより水質を判定する。
図3は、実施の形態2に係る水質診断方法を示すフローチャートである。図3に示すように、修正過飽和係数S2を算出するまでのステップS21、ステップS22およびステップS23は、それぞれ、前述の実施の形態1において述べたステップS11、ステップS12およびステップS13と同様である。
ステップS23の次に、上述した方法にて、修正過飽和係数S2を用い、オルトリン酸イオンおよびマグネシウムイオン等のカルシウムイオンと反応して難溶解性塩を形成する溶存イオンを含まない所定の水質における同装置での誘導期間tindおよび成長速度U1の値を元とし、誘導期間t’indおよび成長速度U2を算出する。さらに任意の使用時間におけるスケール付着量V2を算出する(ステップS24)。ここで、スケール付着量V2が、許容スケール付着量V0以上か否かを判定する(ステップS25)。スケール付着量V2が許容スケール付着量V0以上である場合には(ステップS25;YES)、スケール付着による機能低下が想定されるので、スケール対策が必要であると判断する(ステップS26)。スケール付着量V2が許容スケール付着量V0未満である場合には(ステップS25;NO)、スケール付着による機能低下は許容範囲内であると想定されるので、スケール対策は不要と判断する(ステップS27)。許容スケール付着量V0とは、前述の実施の形態1に係る閾値S0と同意図の規定となる値であり、例えば本実施の形態2に係る水質診断方法が利用・適用される給湯器に応じて適宜決定される値である。
(実施の形態3)
実施の形態3では、前述の実施の形態2のように、スケール付着量V2から水質を判定する水質診断方法ではなく、スケール対策または熱交換器の洗浄・交換が必要となるに至る時間を算出し指標とすることにより、水質を判定する水質診断方法について説明する。
実施の形態3では、前述の実施の形態2のように、スケール付着量V2から水質を判定する水質診断方法ではなく、スケール対策または熱交換器の洗浄・交換が必要となるに至る時間を算出し指標とすることにより、水質を判定する水質診断方法について説明する。
図4は、実施の形態3に係る水質診断方法を示すフローチャートである。図4に示すように、修正過飽和係数S2を算出するまでのステップS31、ステップS32およびステップS33は、それぞれ、前述の実施の形態1において述べたステップS11、ステップS12およびステップS13と同様である。
ステップS33の次に、実施の形態2において前述した方法にて、修正過飽和係数S2を用い、オルトリン酸イオンおよびマグネシウムイオン等のカルシウムイオンと反応して難溶解性塩を形成する溶存イオンを含まない所定の水質における同装置での誘導期間tindおよび成長速度U1の値を元とし、誘導期間t’indおよび成長速度U2を算出する(ステップS34)。次に、当該算出された誘導期間t’indおよび成長速度U2から、診断対象の水質のスケール付着量が許容スケール付着量V’0(スケール対策または熱交換器の洗浄・交換が必要となるスケール付着量)に至るまでの時間(t’0とする)を算出する。このスケール対策または熱交換器の洗浄・交換が必要となるに至るまでの時間t’0を指標として、水質を判定する(ステップS35)。例えば、時間t’0が熱交換器の通常の想定使用期間より短ければ、スケール対策または熱交換器の洗浄・交換対策を行う必要がある水質であると判断することができる。一方、時間t’0が想定使用期間より長ければ、長期間においてスケール対策または熱交換器の洗浄・交換は不要な水質であると判断することができる。
算出されたスケール対策または熱交換器の洗浄・交換が必要となるに至るまでの時間t’0は、例えば、本実施の形態3に係る水質診断方法が利用・適用される水質診断装置または給湯器において表示されるよう構成されていてもよい。許容スケール付着量V’0(スケール対策または熱交換器の洗浄・交換が必要となるスケール付着量)は、前述の実施の形態1および2において述べた規定値と同様に、例えば、本実施の形態3に係る水質診断方法が利用・適用される給湯器に応じて適宜決定される値である。
(実施の形態4)
実施の形態4以降では、実際の給湯器システムの形態について、詳細に説明する。前述の実施の形態1から3では、スケール対策または熱交換器の洗浄・交換の必要性の判定手段の段階において、それぞれ異なる手段を述べたが(ステップS14、ステップS25またはステップS35)、以下、代表して、実施の形態1にて述べたステップS14の判定手段を用いて説明する。当業者であれば、下記を基に、他の判定手段を用いた給湯器システムへと応用することは容易であろう。
実施の形態4以降では、実際の給湯器システムの形態について、詳細に説明する。前述の実施の形態1から3では、スケール対策または熱交換器の洗浄・交換の必要性の判定手段の段階において、それぞれ異なる手段を述べたが(ステップS14、ステップS25またはステップS35)、以下、代表して、実施の形態1にて述べたステップS14の判定手段を用いて説明する。当業者であれば、下記を基に、他の判定手段を用いた給湯器システムへと応用することは容易であろう。
図5は、ヒートポンプ熱交換式の給湯器システムの冷媒回路と水回路の構成を示す概略図である。図5に示すように、一般的な給湯器システム1は、圧縮機2と、第1冷媒配管3と、冷媒/水熱交換器4と、貯湯タンク5と、ポンプ6と、第1水配管7と、第2水配管8と、第2冷媒配管9と、膨張弁10と、第3冷媒配管11と、蒸発器12と、送風機13と、第4冷媒配管14と、第1給水配管15と、第2給水配管16とから構成されている。
まず、一般的なヒートポンプ熱交換式の給湯システムについて、図5を参照して説明する。圧縮機2により高温高圧になった加熱ガス冷媒(例えば、二酸化炭素またはハイドロフルオロカーボン等)は、第1冷媒配管3を通り、冷媒/水熱交換器4に流入する。貯湯タンク5に蓄えられた水は、ポンプ6により押し出され、第1水配管7を通り、冷媒/水熱交換器4に流入する。冷媒/水熱交換器4では、加熱ガス冷媒と水が熱交換することで水を加熱する。加熱された水は第2水配管8を通り貯湯タンク5へと戻る。
水へ熱を伝えた加熱ガス冷媒は、第2冷媒配管9を通り膨張弁10に送られる。膨張弁10に送られた加熱ガス冷媒は減圧され、第3冷媒配管11を通り蒸発器12に流入する。蒸発器12では、送風機13から送られた外気により吸熱した後、第4冷媒配管14を通り、圧縮機2へと戻る。加熱された水は、第2給水配管16からユースポイントへ供給される。
例えば、深夜電力を利用して湯沸する一般的なヒートポンプ給湯器システムでは、昼間に貯湯タンク5の湯が使用されると、第1給水配管15から水道水が使用湯量に応じて貯湯タンク5に供給される。貯湯タンク5内の水は攪拌が無い限り、高温層と低温層の2層に分離しているため、水道水の供給により高温層と低温層の境界層部分が貯湯タンク5の上部(貯湯タンク5の出水側)へと移動する。したがって、昼間に高温の湯が常時供給される。ここで、スケールが付着する水質で一般的なヒートポンプ給湯器システムを動作させた場合、スケールは冷媒/水熱交換器4の出口側水回路伝熱面に付着する。
図6は、本発明の実施の形態4に係る給湯器システムの構成を示す概略図である。基本的構成要素は図5と同様であるが、図6に示すように、実施の形態4の給湯器システム1は、さらに、水質制御部17と、第1流量制御弁18と、第2流量制御弁19と、導電率計20と、水質診断制御器201と、水質測定器202とを備えている。
図6に示すように、第1給水配管15から貯湯タンク5に供給される水道水は、第1流量制御弁18によって流水量が調整されている水質制御部17から流入する水と、第2流量制御弁19によって流水量が調整されている水質制御部17を通らずに直接流入する水とが合流したものである。水質制御部17を通る流水量を調整させることで、貯湯タンク5に流入する水の水質が改善される仕組みとなっている。具体的には、水質測定器202のデータから、スケールが付着する水質であると判断された場合、基準値を外れた項目について、給水の水の一部を水質制御部17に通すことで、貯湯タンク5への流入水が基準内に収まるようにし、スケール付着を防止する。その際、水質診断制御器201が、第1流量制御弁18と第2流量制御弁19との開閉状態を制御する。
水質測定器202は、pH電極、電気伝導率電極、リン酸イオン電極、カルシウムイオン電極、炭酸イオン電極および熱電対等を備える。各電極や熱電対からの出力信号を各水質項目の数値に変換する変換器であり、水質診断制御器201を制御するアナログもしくはデジタル信号を発生する。
ここで、水質制御部17の具体例として、イオン交換樹脂に代表される純水化樹脂や、オルトリン酸イオンまたはマグネシウムイオンを徐放する物質を充填したカートリッジ等が考えられる。
純水化樹脂としては、例えば、スチレン-ジビニルベンゼンの共重合体を基本構造とした高分子を用いることができる。純水化樹脂は、一般的に酸性を示す官能基を持つものは陽イオンを選択的に交換し、塩基性を示す官能基を示すものは陰イオンを選択的に交換する機能を持つことが知られている。例えば、実施の形態4での水質診断制御器201にて計算される修正過飽和係数S2は、カルシウムイオン濃度、炭酸イオン濃度が大きいほど大きく、オルトリン酸イオン濃度が小さいほど大きい値を持つ。従って、例えば、水道水にオルトリン酸イオンが含まれる場合には、陽イオン交換樹脂のみによってカルシウムイオンを除去し、オルトリン酸イオンは通過させることが望ましい。特に、スルホン酸基を交換基として持つ樹脂は、カルシウムイオンを効率的に除去できるので、より望ましい。
また、水道水にオルトリン酸イオンが含まれない場合には、陽イオン交換樹脂および陰イオン交換樹脂を用いてカルシウムイオンと炭酸イオンを除去するのが望ましい。また、純水化樹脂の官能基としてアミノ基を導入した樹脂は炭酸イオンを効率的に除去できるため、より望ましい。
一方で、イオン交換能力に関する寿命が来るとカルシウムイオンや重炭酸イオンを捕捉しにくくなるため、水素イオンや水酸化物イオンとのイオン交換が行えなくなる。その状態を検知するために、導電率計20は処理水の導電率を監視すればよい。例えば、導電率計20にアラーム機能を持たせ、導電率が10μS/cmを超えた場合にアラームが鳴るように設定すれば、純水化樹脂の交換時期を知らせることができる。また、水質診断制御器201に導電率計20の測定値を送信して、水質診断制御器201からアラームを発してもよい。
なお、カートリッジに充填されるオルトリン酸イオンを徐放する物質としては、FePO4・2H2O、AlPO4・2H2O、CaHPO4、Ca4H(PO4)3、Ca10(PO4)6(OH)2、Ca10(PO4)6F2、CaHAL(PO4)2、CaF2、MgNH4PO4、FeNH4PO4またはFe2(PO4)2等の、オルトリン酸系イオンを結晶内部に含有する塩が望ましい。オルトリン酸イオンを徐放する物質の形状は、円筒状、球状、中空形状または繊維状等を選択することができ、水1m3当たりの接触面積が、1m2以上の微細構造を持つことが望ましい。
カートリッジに充填されるマグネシウムイオンを徐放する物質としては、Mg(OH)2、MgSO4、CaMg(CO3)2、Mg3Si2O5(OH)4、Mg2Si3O7.5(OH)・3H2O、Mg3Si4O10(OH)2・H2OまたはMgNH4PO4等の、マグネシウムイオンを結晶内部に含有する塩が望ましい。マグネシウムイオンを徐放する物質の形状は、オルトリン酸イオンの場合と同様に、円筒状、球状、中空形状または繊維状等を選択することができ、水1m3当たりの接触面積が、1m2以上の微細構造を持つことが望ましい。
実施の形態4に係る給湯器システム1では、水質測定器202内における水質診断コック(図6では図示せず、後述する実施の形態5および図7参照)から抜き取られた水の水質を、前述の実施の形態1から3に係る水質診断方法を利用して診断する。さらには、当該結果に基づき給水される水の水質を制御する。具体的には、図6に示す水質診断制御器201および水質測定器202において、測定、計算、補正および判定等が行われる。さらに詳細には、まず、カルシウムイオン濃度、炭酸濃度および水素イオン濃度の測定値と、貯湯タンク5内部の水温設定値から過飽和係数S1を計算する。次いで、溶液中に含まれるオルトリン酸イオン濃度(またはマグネシウムイオン濃度等)の測定値を用いて過飽和係数をS1からS2に補正する。補正された修正過飽和係数S2が閾値S0以上の場合には、冷媒/水熱交換器4へのカルシウムスケール付着が進行すると判断する。
基準を満たさない場合(カルシウムスケール付着が進行すると判断された場合)には、第1流量制御弁18の流水量を調整し、水質制御部17の流水量を増加させ、水質診断コックから抜き取られた水の水質を再び診断する。基準を満たさない場合には、再度、第1流量制御弁18の流水量を調整し、水質制御部17の流水量を増加させる。このような調整を繰り返すことで、スケールが付着しない水質が得られる。なお、第2流量制御弁19の流水量を減少させることで、同様な調整を行ってもよいし、第1流量制御弁18と第2流量制御弁19の双方を調整してもよい。
補正された修正飽和係数S2と比較する設定値S0は、運転条件、水質および給湯機のメンテ頻度に応じて決定することができる。一般的に、定期メンテナンスを15年以上実施しない場合には、設定値S0=1として水質改善システムを運用するのが望ましい。定期メンテナンスを5年毎に実施する場合には、設定値S0=6として水質改善システムを運用するのが望ましい。定期メンテナンスを1年毎に実施する場合には、設定値S0=12として水質改善システムを運用するのが望ましい。
このように、本実施の形態4に係る給湯器システム1は、被加熱水のより精度のよい正確な水質診断結果に基づいて、水質制御手段やカルシウムスケール付着抑制手段を動作するので、冷媒/水熱交換器4の伝熱面へのスケール付着を確実に防止できるという効果がある。
(実施の形態5)
図7は、本発明の実施の形態5に係る給湯器システムの構成を示す概略図である。図7に示すように、本実施の形態5に係る給湯器システム1は、前述の実施の形態4の給湯器システム1に、さらなる追加の構成要素として水質診断制御器301と、水温センサー303とが備えられた形態である。なお、図7では、水質診断コック21を除き、水質診断制御器201および水質測定器202の構成については省略して示されている。
図7は、本発明の実施の形態5に係る給湯器システムの構成を示す概略図である。図7に示すように、本実施の形態5に係る給湯器システム1は、前述の実施の形態4の給湯器システム1に、さらなる追加の構成要素として水質診断制御器301と、水温センサー303とが備えられた形態である。なお、図7では、水質診断コック21を除き、水質診断制御器201および水質測定器202の構成については省略して示されている。
本実施の形態5に係る給湯器システム1では、第2水配管8内の水温センサー303の信号に基づき、圧縮機2の回転数、送風機13の回転数および/または膨張弁10の流路隙間を調節する水質診断制御器301を有する。当該構成は、第2水配管8内の水温を制御することを目的としている。
例えば、温度を下げる際は、圧縮機2および送風機13の回転数を低下させ、膨張弁10の流路隙間を広げる動作を行なう。水質診断制御器301は、過飽和係数を入力するためのインターフェースを有しており、入力された係数をもとに上記の制御を行なう。水質診断制御器301は、実施の形態4にて述べた水質診断制御器201(図示せず)と一体化されたものであってもよい。その場合は、水質診断制御器301にて、直接、過飽和係数S1および修正過飽和係数S2が算出・補正等されてもよい。
一般的に、貯湯タンク5における保有熱量を最大化するには、蒸発器12の出口の水温を最大化することが有効であり、通常60~90℃に設定することが多い。しかし、高温ほど炭酸カルシウムが析出し易いため、水温が高温になるほど一定の溶液組成に対する過飽和係数S1は大きくなる。つまり、前述した実施の形態1から3に係る水質診断方法では、カルシウムイオン濃度、炭酸イオン濃度、水素イオン濃度および水温から計算される過飽和係数S1が増加すると、補正された修正過飽和係数S2も、過飽和係数S1に比例して増加する。
本実施の形態5においても、第1給水配管15に設けられた供給水の水質診断コック21から抜き取られた水の水質を、前述したような水質診断方法を用い、水質診断制御器301(または水質診断制御器201(図示せず))にて診断する。しかし、本実施の形態5における水質診断方法では、抜き取られた水のカルシウムイオン濃度、炭酸イオン濃度および水素イオン濃度の測定値と、第2水配管8内の水温センサー303による水温測定値から過飽和係数S1を計算し、溶液中に含まれるオルトリン酸イオン濃度(またはマグネシウムイオン濃度)の測定値を用いて過飽和係数をS1からS2に補正し、補正された修正過飽和係数S2が閾値S0以上の場合には、水/冷媒熱交換器4へのカルシウムスケール付着が進行すると判断する。
基準を満たさない場合(カルシウムスケール付着が進行すると判断された場合)には、まず、前述の実施の形態1に係る水質診断方法を用いて補正された修正飽和係数S2が閾値S0未満にするための第2水配管8内の水温を計算する。次に、水質診断制御器301により、圧縮機2の回転数、送風機13の回転数および/または膨張弁10の流路隙間を調節することで、第2水配管8内の水温を所定の温度に設定する。
前述の実施の形態4と同様に、補正された修正過飽和係数S2と比較する設定値S0は、運転条件、水質、そして給湯機のメンテ頻度に依存して決定することができる。一般的に、定期メンテナンスを15年以上実施しない場合には、設定値S0=1として水質改善システムを運用するのが望ましい。定期メンテナンスを5年毎に実施する場合には、設定値S0=6として水質改善システムを運用するのが望ましい。定期メンテナンスを1年毎に実施する場合には、設定値S0=12として水質改善システムを運用するのが望ましい。
水/冷媒熱交換器4の出口の水温が低下すると、貯湯タンク5における保有熱量が低下するので、湯切れなどの問題が発生する問題がある。従って、水質診断制御器301によって第2水配管8内の水温を制御する場合には、40℃~90℃に設定することが望ましい。
このように、本実施の形態5に係る給湯器システム1は、被加熱水のより精度のよい正確な水質診断結果に基づいて、水質制御手段やカルシウムスケール付着抑制手段を動作するので、冷媒/水熱交換器4の伝熱面へのスケール付着を確実に防止できるという効果がある。また、前述の実施の形態4に係る給湯器システム1と併用することで、伝熱面へのスケール付着防止効果において、より確実性を有している。
(実施の形態6)
図8は、本発明の実施の形態6に係る給湯器システムの構成を示す概略図である。図8に示すように、実施の形態6に係る給湯器システム1は、図5に示す一般的な給湯器システム1の構成要素以外に、バイパス回路配管22と、自動開閉弁23と、水質診断制御器401と、水質測定器402(内部に水質診断コックを備える)とを備えている。
図8は、本発明の実施の形態6に係る給湯器システムの構成を示す概略図である。図8に示すように、実施の形態6に係る給湯器システム1は、図5に示す一般的な給湯器システム1の構成要素以外に、バイパス回路配管22と、自動開閉弁23と、水質診断制御器401と、水質測定器402(内部に水質診断コックを備える)とを備えている。
前述の実施の形態4および実施の形態5では、水質診断の結果により、スケール付着が起こると判断される運転条件の場合、水質制御手段または水温制御手段を用いて伝熱面へのスケール付着を補正された修正過飽和係数S2を、閾値S0未満に制御する装置について、その具体的構成を開示した。本実施の形態6に係る給湯器システム1では、補正された修正過飽和係数S2が、閾値S0以上であっても、第1水配管7および第2水配管8を流れる水流量を制御することにより、冷媒/水熱交換器4へのスケール付着を防止する。
詳細には、図8に示すように、冷媒/水熱交換器4へ送水するポンプ6の入口側と出口側を繋ぐバイパス回路配管22を設け、当該バイパス回路配管22に、自動開閉弁23を設置し、定期的に弁を開閉する。その結果、冷媒/水熱交換器4に送られる水に脈流が生じることにより、スケール付着を防止することができる。水質診断は水質診断制御器401および水質測定器402により、前述の実施の形態(特に、実施の形態4)と同様に診断され、その結果に基づき、適宜、弁の開閉について制御、調整される。
脈流パターンとしては、正弦波、矩形波または三角波等を用いることができ、流量を最大流量Q1と最小流量Q2の間を周期的に変動させることが望ましい。流量Q1の時間T1(脈流の幅)は0.1~10秒の範囲が望ましく、脈流の頻度T2は脈流の幅T1の1~20倍の範囲で調節することが望ましい。
使用する水質や給湯条件によって最適な脈流の条件は変動する。出湯温度40~60℃であり、室温における補正された修正過飽和係数S2が2以下の水質の場合には、脈流における最大流量Q1/最小流量Q2の比率は1~2の範囲で定めることが望ましい。室温における補正された修正過飽和係数S2が2以上の水質の場合には、炭酸カルシウムがより発生し易い水質に対しては最大流量Q1/最小流量Q2の比率を1~4の範囲で定めることが望ましい。さらに、室温における補正された修正過飽和係数S2が2以上の水を60~90℃に加熱する場合には、脈流における最大流量Q1/最小流量Q2の比率は1~6の範囲で定めることが望ましい。
このように、本実施の形態6に係る給湯器システム1は、より精度のよい正確な水質診断結果に基づいて、冷媒/水熱交換器4に送られる水に脈流を生じさせることで、冷媒/水熱交換器4の水側伝熱面の流速に変化をつけて、析出したスケールの付着を防止することができる。
(実施の形態7)
図9は、本発明の実施の形態7に係る給湯器システムの構成を示す概略図である。また、図10は、実施の形態7の変形例に係る給湯器システムの構成を示す概略図である。図9および図10に示すように、本実施の形態7に係る給湯器システム1は、前述の実施の形態4の給湯器システム1に、さらなる追加の構成要素としてスケール粒子捕捉部24と、第3流量制御弁25と、第4流量制御弁26とが備えられた形態である。なお、図9および図10では、水質診断コック21を除き、実施の形態4の給湯器システム1の構成要素である、水質制御部17、第1流量制御弁18、第2流量制御弁19、導電率計20、水質診断制御器201および水質測定器202の構成については省略して示されている。
図9は、本発明の実施の形態7に係る給湯器システムの構成を示す概略図である。また、図10は、実施の形態7の変形例に係る給湯器システムの構成を示す概略図である。図9および図10に示すように、本実施の形態7に係る給湯器システム1は、前述の実施の形態4の給湯器システム1に、さらなる追加の構成要素としてスケール粒子捕捉部24と、第3流量制御弁25と、第4流量制御弁26とが備えられた形態である。なお、図9および図10では、水質診断コック21を除き、実施の形態4の給湯器システム1の構成要素である、水質制御部17、第1流量制御弁18、第2流量制御弁19、導電率計20、水質診断制御器201および水質測定器202の構成については省略して示されている。
実施の形態7では、第1水配管7または第2水配管8の流路にスケール粒子捕捉部24を設置することにより、前述の実施の形態4の給湯器システム1における効果だけでなく、第1水配管7および第2水配管8内で発生した炭酸カルシウムスケール粒子を捕捉することができる。
図9および図10に示すように、適宜、スケール粒子捕捉部24を通る流水量を第3流量制御弁25にて調整し、スケール粒子捕捉部24を通らない流水量を第4流量制御弁26にて調整すると、貯湯タンク5と冷媒/水熱交換器4との間において、第1水配管7または第2水配管8から供給される水道水の水質は改善される。第3流量制御弁25および第4流量制御弁26の調整は、例えば、水質診断制御器201および水質測定器202(図示せず)を以て動作される。図9と図10に示すスケール粒子捕捉部24での作用および効果は同じであるが、図9のスケール粒子捕捉部24に流入する水温は、図10のスケール粒子捕捉部24に流入する水温より10~40℃程度高いので、図9の給湯器システム1の構成の方がスケール粒子捕捉部24における捕捉性能が1.2~2倍高くなる。
水/冷媒熱交換器4にスケールが付着するメカニズムとして、水/冷媒熱交換器4の伝熱面において直接スケールが成長する場合と、第1水配管7および第2水配管8または貯湯タンク5の水中において発生したスケール微粒子が水/冷媒熱交換器4の伝熱面に付着する場合とがある。本実施の形態7におけるスケール粒子捕捉部24は、後者の原因に対応する水中で発生したスケール微粒子を除去し、水中において発生したスケール微粒子の水/冷媒熱交換器4内部への付着を抑制するものである。
スケール粒子捕捉部24の内部に充填する付着体の材料としては、銅、黄銅、ステンレス、シリコーンゴム、ガラス、鉄、酸化鉄(III、II)、ポリテトラフルオロエチレン(テフロン(登録商標)樹脂(PTFE、PFA))、ポリ塩化ビニル、ポリエチレン、ポリスチレン、ポリプロピレン、ポリスルフォン、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴムまたは芳香族ポリアミド(ナイロン6またはナイロン6-6等)等を用いることができる。これらのうち、銅、黄銅、ステンレス、シリコーンゴム、ガラス、鉄、酸化鉄(III、II)、ポリ塩化ビニル、ポリエチレン、ポリスチレン、ポリプロピレン、ポリスルフォン、イソプレンゴム、ブタジエンゴムまたはスチレンブタジエンゴムのいずれかの材料が好ましい。
図11は、スケール付着体の構造におけるカール状繊維を示す図である。例えば、スケール粒子捕捉部24の内部には、このようなカール径D1、繊維径D2であるカール状繊維から構成される集合体を用いることもできる。実用的には、カール繊維の引っ張り強度は2~4kgであることが望ましい。この条件は、60℃以上に加熱する給湯器システム1において、10年以上の腐食耐久力に対応する。ステンレス製のカール繊維であれば、繊維径D2は10μm以上であっても対応できる。スケール粒子捕捉部24の充填物が占める体積V1は、貯湯タンク5の内部体積V2を目安として、V2/V1=10~500の範囲で設定することが望ましい。
水質診断は、第1給水配管15に設けられた供給水の水質診断コック21から抜き取られた水を用い、前述の実施の形態1から3に係る方法を用いて行う。本実施の形態7に係る給湯器システム1では、前述の実施の形態4と同様に、水質診断制御器201および水質測定器202(図示せず)にて、カルシウムイオン濃度、炭酸イオン濃度および水素イオン濃度の測定値と、貯湯タンク5内部の水温設定値とから過飽和係数S1を計算し、溶液中に含まれるオルトリン酸イオン濃度(またはマグネシウムイオン濃度等)の測定値を用いて過飽和係数をS1からS2に補正し、補正された修正過飽和係数S2が閾値S0以上の場合には、水/冷媒熱交換器4へのカルシウムスケール付着が進行すると判断する。
カルシウムスケール付着が進行すると判断された場合には、第3流量制御弁25の流水量を調整し、スケール粒子捕捉部24を通過する水流量Q3を増加させ、水中において発生したスケール微粒子の一部を除去する。これにより、水/冷媒熱交換器4の伝熱面に付着するスケール量を抑制することができる。ここで、第4流量制御弁26を通過する水流量をQ4とする。修正過飽和係数S2と閾値S0との差(S2-S0)が0以上5未満の場合には、水流量の比Q3/(Q3+Q4)を0~0.5の範囲に調節することが望ましい。また、修正過飽和係数S2と閾値S0との差(S2-S0)が5以上11以下の場合には、水流量の比Q3/(Q3+Q4)を0.25~1.0の範囲に調節することが望ましい。
このようなカルシウムスケール付着抑制手段を用いたヒートポンプ給湯器システムにおいて、補正された修正飽和係数S2と比較する設定値S0は、運転条件、水質、さらに給湯器システム1のメンテナンス頻度に応じて決定することができる。一般的に、定期メンテナンスを15年以上実施しない場合には、設定値S0=1として水質改善システムを運用するのが望ましい。定期メンテナンスを5年毎に実施する場合には、設定値S0=6として水質改善システムを運用するのが望ましい。定期メンテナンスを1年毎に実施する場合には、設定値S0=12として水質改善システムを運用するのが望ましい。
このように、本実施の形態7に係る給湯器システム1は、被加熱水のより精度のよい正確な水質診断結果に基づいて、水質制御手段や複数のカルシウムスケール付着抑制手段を動作するので、冷媒/水熱交換器4の伝熱面へのスケール付着をより確実に防止できるという効果がある。
図12は、実施例にて使用したスケール析出実験装置の構成を示す図である。図12に示すように、スケール析出実験装置600は、耐熱ガラス製容器601と、電気伝導率電極602と、シリコーンゴム603と、磁気撹拌子604と、恒温槽605とから構成されている。
具体的には、実験において、内部を酸洗浄した耐熱ガラス製容器601(容量585mL)に、電気伝導率電極602(CT-27112B、TOADKK製)を挿入し、シリコーンゴム603でガス相が最小となるように封止した。ガラス瓶内の試料水は、PTFE製の磁気撹拌子604を用いて300rpm程度で常時撹拌した。なお、恒温槽605によって試料水の水温を65℃で一定に調節した。
また、スケール析出実験装置600を用いての実験中にスケール(CaCO3)の析出が始まると、水溶液はわずかに白濁する。CaCO3析出後の耐熱ガラス製容器601内部には無数のCaCO3の微粒子が付着しているため、耐熱ガラス製容器601、電気伝導率電極602および磁気撹拌子604を、0.01mol/L塩酸に常温で20分以上浸漬して、微粒子を完全に溶解させた。なお、実験において試料水を加熱する前には、窒素ガス(工業用窒素ガス、純度99.995%、CO2濃度0.1ppm以下)を各水溶液に5~10分間通気してpHを8.4~8.7に調整するようにした。
一般的に、CaCO3析出反応に伴い溶液中のイオン濃度が減少するため、溶液の電気伝導率は低下する。溶液中のリン酸濃度がCaCO3析出反応に与える影響を定量化することを目的として、スケール析出実験装置600を用いての溶液の電気伝導率の時間変化を記録した。以下に詳細な実施例およびその結果を示す。
(実施例1)
実施例1では、スケール析出実験装置600を用いて、前述のとおり窒素ガスを事前に通気し、pHを8.4~8.7に調整した様々な試料水を65℃で数百時間以上保持した実験結果について示す。当該様々な試料水としては、欧州で採取した水道水(以下、水道水という)と、模擬水溶液(以下、模擬水という)と、模擬水にK3PO4を1mg/Lにて添加した水溶液(実験水1)と、模擬水にK3PO4を5mg/Lにて添加した水溶液(実験水2)とを用いた。
実施例1では、スケール析出実験装置600を用いて、前述のとおり窒素ガスを事前に通気し、pHを8.4~8.7に調整した様々な試料水を65℃で数百時間以上保持した実験結果について示す。当該様々な試料水としては、欧州で採取した水道水(以下、水道水という)と、模擬水溶液(以下、模擬水という)と、模擬水にK3PO4を1mg/Lにて添加した水溶液(実験水1)と、模擬水にK3PO4を5mg/Lにて添加した水溶液(実験水2)とを用いた。
図13は、実施例1に係る加熱前の水質分析結果を示す図である。水道水と模擬水とを比較すると、模擬水は、水道水に含まれる主要イオンであるNa+、K+、Ca2+、Mg2+、Cl-、NO3
-およびSO4
2-に関して、およそ同量のイオンを含んでおり(一部イオンについては図示せず)、pHも同等であることがわかった。また、模擬水にK3PO4を5mg/Lにて添加した水溶液(実験水2)のHPO4
2-濃度についても、水道水に含まれる3.2mg/Lよりやや低い2.2mg/Lであるが、同等であった。
図14は、実施例1に係る加熱後のpH、Ca硬度およびMアルカリ度の変化を示す図である。加熱前に、窒素ガスの通気にてpHを8.4~8.7に調整していたが、各試料水のpHは数百時間の加熱によって徐々に低下し、7.6~8.2となっていた。これは、炭酸カルシウムの析出に伴いCO3
2-が消費され、HCO3
-の解離反応(HCO3
-⇔H++CO3
2-)の平衡が右にずれ、H+が生成したことによるものと考えられる。また、加熱に伴って、Ca硬度およびMアルカリ度も減少していた。
各試料水において、加熱前の炭酸カルシウムに対する過飽和係数(溶液中のイオン量の飽和状態のイオン量に対する比率)は112~165倍であったが、加熱後には過飽和係数は1.7~3.4倍まで減少し、ほぼ平衡状態に到達していた。なお、水溶液中に析出した固体粒子のX線回折を評価したところ、炭酸カルシウム(CaCO3)は含まれていたが、リン酸カルシウム(Ca4(PO4)3)は含まれていなかった。
ここで、水道水と模擬水にK3PO4を5mg/Lにて添加した水溶液(実験水2)とを比較すると、図14に示すように、150時間程の加熱に対して、pHとCa硬度の減少幅はおおむね同等であった。一方、K3PO4を添加していない模擬水では、150時間程の加熱でほぼ平衡状態に到達していた。通常、添加されたK3PO4は電離し、さらに7.2<pH<12.7では、PO4
3-は、直ちにHPO4
2-に変化する(HPO4
2-→PO4
3- + H+(解離定数Ka=10-12.67))。つまり、模擬水に添加されたK3PO4は、HPO4
2-に変化し、水道水に含まれるHPO4
2-と同様の効果でCaCO3析出反応を抑制したと考えられる。
図15は、実施例1に係る加熱中の試料水の電気伝導率の時間変化を示す図である。CaCO3析出反応に伴い溶液中のイオン濃度が減少するため、各試料水の電気伝導率は低下する。水道水の電気伝導率は、加熱開始から約50時間は68mS/m~69mS/mの範囲で緩やかに推移し、それ以降に減少し始め定常に到達するのに400時間以上を要する(定常に達するまでの推移は図示せず)。
図15に示すように、水道水以外の試料水においては、模擬水に添加するK3PO4量が多いほど電気伝導率は緩やかに減少し、K3PO4が添加されていない模擬水では約150時間後、模擬水にK3PO4を1mg/Lにて添加した水溶液(実験水1)では約250時間後に定常に達した。模擬水にK3PO4を5mg/Lにて添加した水溶液(実験水2)では、加熱開始後の約150時間は56~67mS/mの範囲で緩やかに推移し、それ以降に減少し始め定常に到達するのに400時間以上を要した。
しかし、上述した結果では、初期の電気伝導率の絶対値が異なるため、そのままではCaCO3析出反応速度を比較することができない。そこで、各実験での電気伝導率の初期値と定常値に基づき、「電気伝導率の変化率」として規格化し、平衡状態への到達率20%に達するために要する時間t1を比較した。
その結果、K3PO4が添加されていない模擬水ではt1=1.6時間であり、模擬水にK3PO4を1mg/Lにて添加した水溶液(実験水1)ではt1=5時間であり、模擬水にK3PO4を5mg/Lにて添加した水溶液(実験水2)ではt1=28時間であった。一方、水道水ではt1=61時間であった。K3PO4の添加量をさらに増加し、HPO4
2-濃度3.0mg/L以上の水溶液において同様に電気伝導率の変化率を測定し、平衡状態への到達率20%に達するのに要する時間t1について評価したところ、HPO4
2-濃度3.0mg/L以上の水溶液においては、t1=60時間で一定であった(図示せず)。
CaCO3析出速度Rは単位時間あたりの電気伝導率の変化率に比例するので、平衡状態への到達率20%に達するのに要する時間t1に反比例する。従って、K3PO4が添加されていない模擬水の場合の析出速度をR=100とすると、模擬水にK3PO4を1mg/Lにて添加した水溶液(実験水1)(HPO4
2-濃度0.4mg/L)の場合の析出速度はR=32であり、模擬水にK3PO4を5mg/Lにて添加した水溶液(実験水2)(HPO4
2-濃度2.2mg/L)の場合の析出速度はR=5.7である。水道水(HPO4
2-濃度3.2mg/L)の場合の析出速度はR=2.6となる。
図16は、実施例1に係るオルトリン酸濃度に対する修正過飽和係数の値を示す図である。図16における斜線部が、前述の数5および数6で示した修正過飽和係数の範囲である。実線は、当該範囲の中央を通る代表値である。
以上の実施例1の結果から、水溶液中のCa硬度(カルシウムイオン濃度)、炭酸イオン量に対応するアルカリ度、pHおよび水温が同等であっても、溶液中のオルトリン酸イオン濃度(HPO4
2-濃度)によってCaCO3の析出速度Rが大きく変化することがわかった。
(実施例2)
実施例2では、前述の実施例1と同様に、スケール析出実験装置600を用いて、窒素ガスを事前に通気し、pHを8.4~8.7に調整した様々な試料水を65℃で数百時間以上保持した実験結果を示す。様々な試料水としては、前述の実施例1と同様の模擬水と、模擬水にMg(OH)2を87mg/Lにて添加した水溶液(実験水3)と、模擬水にMg(OH)2を175mg/Lにて添加した水溶液(実験水4)とを用いた。
実施例2では、前述の実施例1と同様に、スケール析出実験装置600を用いて、窒素ガスを事前に通気し、pHを8.4~8.7に調整した様々な試料水を65℃で数百時間以上保持した実験結果を示す。様々な試料水としては、前述の実施例1と同様の模擬水と、模擬水にMg(OH)2を87mg/Lにて添加した水溶液(実験水3)と、模擬水にMg(OH)2を175mg/Lにて添加した水溶液(実験水4)とを用いた。
図17は、実施例2に係る加熱前の水質分析結果を示す図である。図17に示すように、模擬水にMg(OH)2を87mg/Lにて添加した水溶液(実験水3)では、Mg2+濃度が35.6mg/L(1.5×10-3mol/L)であり、模擬水にMg(OH)2を175mg/Lにて添加した水溶液(実験水4)では、Mg2+濃度が71.3mg/L(3.0×10-3mol/L)であった。なお、模擬水中にはCa2+が約3.0×10-3mol/L含まれているので、Mg2+/Ca2+のモル濃度比は、実験水3では0.5であり、実験水4では1.0であった。
前述の実施例1と同様に加熱を行うと、各試料水のpHは数百時間の加熱によって徐々に低下し、7.6~8.2に到達した(図示せず)。これは、前述したとおり、炭酸カルシウムの析出に伴いCO3
2-が消費され、HCO3
-の解離反応(HCO3
-⇔H++CO3
2-)の平衡が右にずれ、H+が生成したことによるものと考えられる。
各試料水において、加熱前の炭酸カルシウムに対する過飽和係数(溶液中のイオン量の飽和状態のイオン量に対する比率)は112~165倍であったが、加熱後には過飽和係数は1.5~2.5倍まで減少し、ほぼ平衡状態に到達していた。なお、水溶液中に析出した固体粒子のX線回折を評価したところ、炭酸カルシウム(CaCO3)が含まれていたが、炭酸マグネシウム(MgCO3)は含まれていなかった。
図18は、実施例2に係る加熱中の電気伝導率の時間変化を示す図である。CaCO3析出反応に伴い溶液中のイオン濃度が減少するため、溶液の電気伝導率が低下する。模擬水の電気伝導率は添加する水酸化マグネシウム量が多いほど緩やかに減少し、図18に示すように、水酸化マグネシウムなしの模擬水では約150時間後に、Mg2+濃度が35.6mg/L(1.5×10-3mol/L)の実験水3では約180時間後に定常に達した。また、Mg2+濃度が71.3mg/L(3.0×10-3mol/L)の実験水4では、加熱開始後の約30~40時間は60~67mS/mの範囲で緩やかに推移し、それ以降に減少し始め定常に到達するのに200時間以上を要した。
各実験での電気伝導率の初期値と定常値に基づき、「電気伝導率の変化率」として規格化し、平衡状態への到達率20%に達するのに要する時間t1を比較した。その結果、水酸化マグネシウムを添加していない模擬水ではt1=1.6時間であり、Mg2+濃度が35.6mg/L(1.5×10-3mol/L)の実験水3ではt1=4時間であり、Mg2+濃度が71.3mg/L(3.0×10-3mol/L)の実験水4ではt1=10時間であった。
CaCO3析出速度Rは単位時間あたりの電気伝導率の変化率に比例するので、平衡状態への到達率20%に達するのに要する時間t1に反比例する。従って、K3PO4および水酸化マグネシウムが添加されていない模擬水の場合の析出速度をR=100とすると、Mg2+濃度が35.6mg/L(1.5×10-3mol/L)の実験水3の場合の析出速度はR=40であり、Mg2+濃度が71.3mg/L(3.0×10-3mol/L)の実験水4の場合の析出速度はR=16となる。
すなわち、Mg2+/Ca2+のモル濃度比が0.5の場合には析出速度R=40であり、Mg2+/Ca2+のモル濃度比が1.0の場合には析出速度R=16であった。水溶液中のCa2+濃度が1~1000mg/Lの範囲で同様の実験を行ったところ、Ca2+濃度によらずMg2+/Ca2+のモル濃度比が0.5の場合には析出速度R=40であり、Mg2+/Ca2+のモル濃度比が1.0の場合には析出速度R=16であることがわかった(図示せず)。なお、前述の実施例1と同様に、Mg2+/Ca2+のモル濃度比に対する修正過飽和係数の関係を以って、前述の数7の式を求めた(図示せず)。
以上の実施例2の結果から、水溶液中のCa硬度(カルシウムイオン濃度)、炭酸イオン量に対応するアルカリ度、pHおよび水温が同等であっても、溶液中のマグネシウムイオンがCaCO3の析出速度Rに大きな影響を与えることがわかった。また、実施例1の結果も考慮すると、オルトリン酸イオンおよびマグネシウムイオンだけでなく、シリカイオン等のカルシウムイオンと反応して難溶解性塩を形成するイオンについても同様にCaCO3の析出速度Rに影響を与えることがわかる。
上記実施の形態および実施例は、いずれも本発明の趣旨の範囲内で各種の変形が可能である。上記実施の形態は本発明を説明するためのものであり、本発明の範囲を限定することを意図したものではない。本発明の範囲は実施形態よりも添付した請求項によって示される。請求項の範囲内、および発明の請求項と均等の範囲でなされた各種変形は本発明の範囲に含まれる。
本出願は、2013年3月29日に出願された、明細書、特許請求の範囲、図面、および要約書を含む日本国特許出願2013-71777号に基づく優先権を主張するものである。この元となる特許出願の開示内容は参照により全体として本出願に含まれる。
本発明によれば、溶液中のオルトリン酸イオンおよびマグネシウムイオン等のカルシウムイオンと反応して難溶解性塩を形成する溶存イオンについても考慮し、カルシウムスケールが付着する水質をより精度よく正確に診断することができる。また、当該水質診断方法を給湯器システムにおいて利用することで、カルシウムスケール付着を効率的に抑制することができる。
1 給湯器システム、2 圧縮機、3 第1冷媒配管、4 冷媒/水熱交換器、5 貯湯タンク、6 ポンプ、7 第1水配管、8 第2水配管、9 第2冷媒配管、10 膨張弁、11 第3冷媒配管、12 蒸発器、13 送風機、14 第4冷媒配管、15 第1給水配管、16 第2給水配管、17 水質制御部、18 第1流量制御弁、19 第2流量制御弁、20 導電率計、21 水質診断コック、22 バイパス回路配管、23 自動開閉弁、24 スケール粒子捕捉部、25 第3流量制御弁、26 第4流量制御弁、100 水質診断装置、101 測定部、102 算出部、103 補正部、104 判定部、201,301,401 水質診断制御器、202,402 水質測定器、303 水温センサー、600 スケール析出実験装置、601 耐熱ガラス製容器、602 電気伝導率電極、603 シリコーンゴム、604 磁気撹拌子、605 恒温槽。
Claims (15)
- 熱交換器を流れる水の水質を診断する水質診断装置が行う水質診断方法であって、
水質診断を行う溶液中における、カルシウムイオン濃度、炭酸イオン濃度、水素イオン濃度、水温およびカルシウムイオンと反応して難溶解性塩を形成する溶存イオン濃度の値を測定する第1工程と、
前記第1工程において測定された前記カルシウムイオン濃度、前記炭酸イオン濃度、前記水素イオン濃度および前記水温の値を用い、前記溶液中における炭酸カルシウムの過飽和係数を算出する第2工程と、
前記第1工程において測定された前記カルシウムイオンと反応して難溶解性塩を形成する溶存イオン濃度の値を用い、前記過飽和係数から、補正された修正過飽和係数を算出する第3工程と、
前記修正過飽和係数から水質を判定する第4工程と、
を含む、水質診断方法。 - 前記第4工程では、前記修正過飽和係数が、閾値以上か否かを判定することにより水質を判定する、請求項1から3のいずれか1項に記載の水質診断方法。
- 前記第4工程では、カルシウムイオンと反応して難溶解性塩を形成する炭酸イオン以外の溶存イオンを含まない所定の水質におけるスケールが析出するまでの誘導期間およびスケールの成長速度を元に、前記修正過飽和係数に基づいて任意の使用期間でのスケールの付着量を算出し、
前記スケールの付着量が、閾値以上か否かを判定することにより水質を判定する、請求項1から3のいずれか1項に記載の水質診断方法。 - 前記第4工程では、カルシウムイオンと反応して難溶解性塩を形成する炭酸イオン以外の溶存イオンを含まない所定の水質におけるスケールが析出するまでの誘導期間およびスケールの成長速度を元に、前記修正過飽和係数に基づくスケールの付着量が許容スケール付着量に至るまでの時間を算出し指標とすることにより水質を判定する、請求項1から3のいずれか1項に記載の水質診断方法。
- 水質診断を行う溶液中における、カルシウムイオン濃度、炭酸イオン濃度、水素イオン濃度、水温およびカルシウムイオンと反応して難溶解性塩を形成する溶存イオン濃度の値を測定する測定部と、
前記測定部において測定された前記カルシウムイオン濃度、前記炭酸イオン濃度、前記水素イオン濃度および前記水温の値を用い、前記溶液中における炭酸カルシウムの過飽和係数を算出する算出部と、
前記測定部において測定された前記カルシウムイオンと反応して難溶解性塩を形成する溶存イオン濃度の値を用い、前記過飽和係数から、補正された修正過飽和係数を算出する補正部と、
前記修正過飽和係数から水質を判定する判定部と、
を備える、水質診断装置。 - 前記判定部は、前記修正過飽和係数が、閾値以上か否かを判定することにより水質を判定する、請求項7から9のいずれか1項に記載の水質診断装置。
- 前記判定部は、カルシウムイオンと反応して難溶解性塩を形成する炭酸イオン以外の溶存イオンを含まない所定の水質におけるスケールが析出するまでの誘導期間およびスケールの成長速度を元に、前記修正過飽和係数に基づいて任意の使用期間でのスケールの付着量を算出し、
前記スケールの付着量が、閾値以上か否かを判定することにより水質を判定する、請求項7から9のいずれか1項に記載の水質診断装置。 - 前記判定部は、カルシウムイオンと反応して難溶解性塩を形成する炭酸イオン以外の溶存イオンを含まない所定の水質におけるスケールが析出するまでの誘導期間およびスケールの成長速度を元に、前記修正過飽和係数に基づくスケールの付着量が許容スケール付着量に至るまでの時間を算出し指標とすることにより水質を判定する、請求項7から9のいずれか1項に記載の水質診断装置。
- 請求項7から12のいずれか1項に記載の水質診断装置を備え、熱交換器を流通する水の水質を診断する、給湯器システム。
- 請求項10または11に記載の水質診断装置を備え、
前記判定部において、前記修正過飽和係数または前記スケールの付着量が、前記閾値以上であると判定された場合、前記修正過飽和係数または前記スケールの付着量を下げるよう、熱交換器に流通する水の水質を改善する制御部を備え、
熱交換器を流通する水の水質を診断する、給湯器システム。 - 前記制御部は、オルトリン酸イオンまたはマグネシウムイオンを徐放する物質が充填された水質制御部と、貯湯タンクに給水される水が前記水質制御部を通るように調整する流量制御弁とから構成されている、請求項14に記載の給湯器システム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13879951.5A EP2980584B1 (en) | 2013-03-29 | 2013-12-18 | Method for checking water quality, water quality checking device, and hot-water feeder system |
JP2015507961A JP6029744B2 (ja) | 2013-03-29 | 2013-12-18 | 水質診断方法、水質診断装置および給湯器システム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-071777 | 2013-03-29 | ||
JP2013071777 | 2013-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014155868A1 true WO2014155868A1 (ja) | 2014-10-02 |
Family
ID=51622900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/083892 WO2014155868A1 (ja) | 2013-03-29 | 2013-12-18 | 水質診断方法、水質診断装置および給湯器システム |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2980584B1 (ja) |
JP (1) | JP6029744B2 (ja) |
WO (1) | WO2014155868A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016117051A (ja) * | 2014-12-18 | 2016-06-30 | 三菱電機株式会社 | スケール除去装置及び給湯器並びにスケール除去方法 |
JP2016180565A (ja) * | 2015-03-25 | 2016-10-13 | 三菱電機株式会社 | 貯湯式給湯機 |
CN106544982A (zh) * | 2016-09-29 | 2017-03-29 | 河海大学 | 梯级水库泄洪溶解气体过饱和预警系统和方法 |
CN111028895A (zh) * | 2019-11-19 | 2020-04-17 | 中国石油天然气集团有限公司 | 一种水处理过程中药剂软化加药量的计算方法 |
KR20200111521A (ko) * | 2019-03-19 | 2020-09-29 | 한국과학기술원 | 위험유해물질 탐지 시스템 |
CN111879010A (zh) * | 2020-06-18 | 2020-11-03 | 华帝股份有限公司 | 一种具有水质监测功能的热水器及其控制方法 |
CN112129707A (zh) * | 2019-06-24 | 2020-12-25 | 中国石油天然气股份有限公司 | 油田集输管道内采出液ph值的计算方法 |
WO2021090758A1 (ja) * | 2019-11-05 | 2021-05-14 | ダイキン工業株式会社 | 給湯装置 |
CN113281285A (zh) * | 2021-06-25 | 2021-08-20 | 中铁二院工程集团有限责任公司 | 碳酸盐岩富Ca2+地区水热系统平衡判定方法及工具 |
CN113960274A (zh) * | 2021-10-15 | 2022-01-21 | 西安特种设备检验检测院 | 一种工业热水锅炉结垢的测量方法 |
CN115808942A (zh) * | 2023-01-16 | 2023-03-17 | 南京鸿光环保科技有限公司 | 用于水质检测仪的温度调节方法及系统 |
CN117923447A (zh) * | 2024-03-20 | 2024-04-26 | 云南磷化集团有限公司 | 一种串级式反应釜连续生产磷酸氢钙的方法及其装置 |
WO2024139971A1 (zh) * | 2022-12-28 | 2024-07-04 | 何高荣 | 一种水中无机盐析出速度的检测方法及检测系统、电子设备、存储介质 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3412991B1 (en) * | 2016-03-16 | 2020-04-22 | Mitsubishi Electric Corporation | Heat exchange system and scale suppression method for heat exchange system |
EP3712510B1 (en) * | 2017-12-06 | 2022-04-27 | Mitsubishi Electric Corporation | Water circulation device construction method and scale removal device |
JP6919696B2 (ja) | 2019-11-05 | 2021-08-18 | ダイキン工業株式会社 | 給湯装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61220793A (ja) | 1985-03-25 | 1986-10-01 | Sasakura Eng Co Ltd | 水質監視方法及び水質制御方法 |
JPH08224595A (ja) * | 1994-11-10 | 1996-09-03 | Calgon Corp | 高pHスケール抑制用のポリエーテルポリアミノメチレンホスホネート |
JPH09174092A (ja) * | 1995-10-06 | 1997-07-08 | Calgon Corp | 相乗的ホスホネートスケール抑制組合せを含有する水性系 |
JP2002066576A (ja) * | 2000-08-28 | 2002-03-05 | Matsushita Electric Works Ltd | 水処理装置 |
JP2002086190A (ja) | 2000-09-12 | 2002-03-26 | Japan Organo Co Ltd | 排水処理装置 |
WO2011045878A1 (ja) | 2009-10-15 | 2011-04-21 | 三菱電機株式会社 | 水質診断方法及びその方法を用いたヒートポンプ利用の給湯システム |
-
2013
- 2013-12-18 WO PCT/JP2013/083892 patent/WO2014155868A1/ja active Application Filing
- 2013-12-18 JP JP2015507961A patent/JP6029744B2/ja not_active Expired - Fee Related
- 2013-12-18 EP EP13879951.5A patent/EP2980584B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61220793A (ja) | 1985-03-25 | 1986-10-01 | Sasakura Eng Co Ltd | 水質監視方法及び水質制御方法 |
JPH08224595A (ja) * | 1994-11-10 | 1996-09-03 | Calgon Corp | 高pHスケール抑制用のポリエーテルポリアミノメチレンホスホネート |
JPH09174092A (ja) * | 1995-10-06 | 1997-07-08 | Calgon Corp | 相乗的ホスホネートスケール抑制組合せを含有する水性系 |
JP2002066576A (ja) * | 2000-08-28 | 2002-03-05 | Matsushita Electric Works Ltd | 水処理装置 |
JP2002086190A (ja) | 2000-09-12 | 2002-03-26 | Japan Organo Co Ltd | 排水処理装置 |
WO2011045878A1 (ja) | 2009-10-15 | 2011-04-21 | 三菱電機株式会社 | 水質診断方法及びその方法を用いたヒートポンプ利用の給湯システム |
Non-Patent Citations (5)
Title |
---|
H. M. MULLER-STEINHAGEN ET AL.: "Comparison of Indices for the Scaling and Corrosion Tendency of Water", THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, vol. 66, no. ISSUE, December 1988 (1988-12-01), pages 1005 - 1007, XP055279585 * |
PLUMMER ET AL., GEOCHIMICA ET COSMOCHIMICA ACTA, vol. 46, no. 6, 1982, pages 1011 - 1040 |
See also references of EP2980584A4 * |
WIECHER ET AL., WATER RESEARCH, vol. 9, no. 9, 1975, pages 835 - 845 |
YOSHILUKO GOTOU, CRYSTAL GROWTH, pages 29 - 44 |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016117051A (ja) * | 2014-12-18 | 2016-06-30 | 三菱電機株式会社 | スケール除去装置及び給湯器並びにスケール除去方法 |
JP2016180565A (ja) * | 2015-03-25 | 2016-10-13 | 三菱電機株式会社 | 貯湯式給湯機 |
CN106544982A (zh) * | 2016-09-29 | 2017-03-29 | 河海大学 | 梯级水库泄洪溶解气体过饱和预警系统和方法 |
CN106544982B (zh) * | 2016-09-29 | 2018-01-16 | 河海大学 | 梯级水库泄洪溶解气体过饱和预警系统和方法 |
KR102217300B1 (ko) * | 2019-03-19 | 2021-02-19 | 한국과학기술원 | 위험유해물질 탐지 시스템 |
KR20200111521A (ko) * | 2019-03-19 | 2020-09-29 | 한국과학기술원 | 위험유해물질 탐지 시스템 |
CN112129707B (zh) * | 2019-06-24 | 2024-05-28 | 中国石油天然气股份有限公司 | 油田集输管道内采出液ph值的计算方法 |
CN112129707A (zh) * | 2019-06-24 | 2020-12-25 | 中国石油天然气股份有限公司 | 油田集输管道内采出液ph值的计算方法 |
JP2021076365A (ja) * | 2019-11-05 | 2021-05-20 | ダイキン工業株式会社 | 給湯装置 |
WO2021090758A1 (ja) * | 2019-11-05 | 2021-05-14 | ダイキン工業株式会社 | 給湯装置 |
JP7071672B2 (ja) | 2019-11-05 | 2022-05-19 | ダイキン工業株式会社 | 給湯装置 |
CN111028895B (zh) * | 2019-11-19 | 2023-06-16 | 中国石油天然气集团有限公司 | 一种水处理过程中药剂软化加药量的计算方法 |
CN111028895A (zh) * | 2019-11-19 | 2020-04-17 | 中国石油天然气集团有限公司 | 一种水处理过程中药剂软化加药量的计算方法 |
CN111879010A (zh) * | 2020-06-18 | 2020-11-03 | 华帝股份有限公司 | 一种具有水质监测功能的热水器及其控制方法 |
CN113281285A (zh) * | 2021-06-25 | 2021-08-20 | 中铁二院工程集团有限责任公司 | 碳酸盐岩富Ca2+地区水热系统平衡判定方法及工具 |
CN113281285B (zh) * | 2021-06-25 | 2023-02-21 | 中铁二院工程集团有限责任公司 | 碳酸盐岩富Ca2+地区水热系统平衡判定方法及工具 |
CN113960274A (zh) * | 2021-10-15 | 2022-01-21 | 西安特种设备检验检测院 | 一种工业热水锅炉结垢的测量方法 |
WO2024139971A1 (zh) * | 2022-12-28 | 2024-07-04 | 何高荣 | 一种水中无机盐析出速度的检测方法及检测系统、电子设备、存储介质 |
CN115808942A (zh) * | 2023-01-16 | 2023-03-17 | 南京鸿光环保科技有限公司 | 用于水质检测仪的温度调节方法及系统 |
CN117923447A (zh) * | 2024-03-20 | 2024-04-26 | 云南磷化集团有限公司 | 一种串级式反应釜连续生产磷酸氢钙的方法及其装置 |
CN117923447B (zh) * | 2024-03-20 | 2024-06-04 | 云南磷化集团有限公司 | 一种串级式反应釜连续生产磷酸氢钙的方法及其装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2980584B1 (en) | 2018-09-12 |
JP6029744B2 (ja) | 2016-11-24 |
EP2980584A1 (en) | 2016-02-03 |
JPWO2014155868A1 (ja) | 2017-02-16 |
EP2980584A4 (en) | 2016-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6029744B2 (ja) | 水質診断方法、水質診断装置および給湯器システム | |
ES2297865T3 (es) | Sistema de control de rendimiento. | |
CA2689830A1 (en) | Method to inhibit scale formation in cooling circuits using carbon dioxide | |
JP7354113B2 (ja) | 冷却水監視制御システム | |
AU2005240633A1 (en) | Apparatus and process for water conditioning | |
JP5499823B2 (ja) | 冷却水系の処理方法 | |
JP5672237B2 (ja) | 水質診断を用いたヒートポンプ利用の給湯システムの運転方法 | |
ES2594558T3 (es) | Procedimiento para el funcionamiento de una bomba de dosificación y dispositivo de dosificación asociado | |
JP2008241631A (ja) | 蒸気経路の腐食の監視方法 | |
JP2017202432A (ja) | 腐食性アニオン除去装置及びアニオン交換樹脂の再生方法 | |
Al-Deffeeri | Heat transfer measurement as a criterion for performance evaluation of scale inhibition in MSF plants in Kuwait | |
EP0866148B1 (en) | Method for inhibiting corrosion in water systems | |
JP2002296268A (ja) | 水質評価方法および水質管理システム | |
US20130001171A1 (en) | Process for controlling hardness in open recirculating systems | |
JP4654392B2 (ja) | ボイラ水処理システムおよびそれを用いたブロー水管理方法 | |
Kim et al. | Control of corrosive water in advanced water treatment plant by manipulating calcium carbonate precipitation potential | |
JP2012011287A (ja) | 検水中のアルミニウム濃度測定方法及び自動測定装置、並びにシリカ系スケール付着防止剤濃度の制御方法 | |
JP4873919B2 (ja) | 鉄イオン注入方法及び鉄イオン注入量制御装置 | |
JP2006231199A (ja) | 海水電解式塩素注入装置及び方法 | |
JP2005189212A (ja) | 付着汚れ量測定装置及び付着汚れ量測定方法 | |
RU2676151C1 (ru) | Способ управления работой парового котла и устройство для осуществления этого способа | |
JPH1128461A (ja) | 水系の金属の腐食抑制方法 | |
JP4433732B2 (ja) | シリカスケール析出防止方法 | |
ES2357394T3 (es) | Sistema de control en base a rendimiento. | |
Kleinebrahm | Mechanical Online System for Cleaning Heat Exchanger Tubes by Sponge Rubber Balls (Taprogge System) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13879951 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015507961 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013879951 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |