WO2014154414A1 - Dispositif d'addition de tension inductif - Google Patents

Dispositif d'addition de tension inductif Download PDF

Info

Publication number
WO2014154414A1
WO2014154414A1 PCT/EP2014/053579 EP2014053579W WO2014154414A1 WO 2014154414 A1 WO2014154414 A1 WO 2014154414A1 EP 2014053579 W EP2014053579 W EP 2014053579W WO 2014154414 A1 WO2014154414 A1 WO 2014154414A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer conductor
impedance
voltage
inductive
addition device
Prior art date
Application number
PCT/EP2014/053579
Other languages
German (de)
English (en)
Inventor
Werner Hartmann
Martin Hergt
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP14707714.3A priority Critical patent/EP2957033A1/fr
Publication of WO2014154414A1 publication Critical patent/WO2014154414A1/fr

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback

Definitions

  • the invention relates to an inductive voltage addition device, comprising a coaxial conductor structure with an inner conductor and an outer conductor divided into a plurality of outer conductor sections corresponding to one respective amplification stage, the outer conductor sections being coupled by the voltage sources supplying voltage pulses to be added.
  • the outer conductor sections together with an impedance structure between any two adjacent voltage sources, form a short circuit for the impedance to be amplified for avoiding voltage pulses.
  • Pulse generators for generating voltage / current pulses are already known in the prior art.
  • electrical engineering in the field of Pulsed Power Technology English “pulsed power”
  • high-voltage and high-power pulses of egg Nigen kilowatts to several hundred terawatts for wis ⁇ tific and industrial purposes required whose Lie in ⁇ pulse take in the nanosecond to microsecond range
  • a pulse generator which generates voltages of typically 250 kV and currents of a few 10 kA in pulses with a pulse duration of 1 ys to 2 ys.
  • Such a pulse generator can be realized as an inductive voltage adder (IVA)
  • IVA inductive voltage adder
  • Inductive voltage addition devices offer a compact design, since they are composed during pulse generation as a series connection of n discrete voltage sources.
  • Inductive voltage addition devices have been known for some time in the prior art, reference being made, for example, to the book by Hansjoachim Bluhm, "Pulsed Power Systems", in which Springer-Verlag, 2006, where the principle of voltage addition and in particular voltage addition by inductive isolation is explained in detail in Section 7.2, which disclosure is hereby incorporated by reference into this description.
  • Briefly provides an inductive voltage adder in the steady state during charging are wired in parallel memory ⁇ capacitors as power sources that are uncoupled during the pulse phase via an inductor and conditionally assembled by the topology of the inductive voltage adder with a series circuit, wherein the wave properties, due to the Reflection factors, be used during the switch-on and in the stationary state to increase the voltage amplitude.
  • pulse lines can be implemented as voltage multiplier circuits by connecting the positive conductor of one line to the negative of the other.
  • the Verbin ⁇ -making must be isolated for the duration of the pulse.
  • cable ⁇ transformers for this purpose sufficiently long Studentstra ⁇ supply lines using a term decoupling in an inductive voltage adder coupling is provided with a sufficiently high coupling inductors. This means that a high impedance is generated by the coupling inductances at the frequencies of the voltage pulses, which avoids the short circuit, so that the coupling inductances can also be understood as impedance structures.
  • An inductive voltage addition device usually initially has a coaxial conductor structure with an inner conductor and an outer conductor.
  • the outer conductor is divided into several, one adder or one stage (gain stage) corresponding toneleiterab ⁇ sections divided, which are usually shaped so that they form at least partially enclosed by the outer conductor sections interior, so a cavity.
  • the outer conductor sections thus annularly surround the cylindrical, in particular with respect to decreasing radii, for successive outer conductor sections stepped executed inner conductor, on which add the voltages to the output pulse.
  • the stepped design creates a stepwise impedance matching so that the current in the structure remains constant in all stages.
  • the positive conductor becomes a
  • a partial volume of the interior is filled with a ferromagnetic material, for example using annular band cores, to which iron cores are usually used.
  • a high-frequency choke is maraf ⁇ fen on the outside of the outer conductor, the properties of which are dependent on the ferromagnetic material and the duration of the voltage pulses.
  • the duration for which the high-frequency choke can be considered effective (volt * second product, Vs-product) is through the cross of the toroidal core and the sum of retentive and Seeds ⁇ t Trentsindukttechnik cut given.
  • a suitable ferromagnetic material must have a high saturation inductance and a steep hysteresis curve.
  • the generally known structure, in which the outer conductor sections give the ring-like cylindrical, in particular with respect to minifying radii for successivelyleiterab ⁇ sections stepped executed inner conductor also arises in inductivelysadditions- device according to the present invention. It should be noted at this point that the stepped from ⁇ formation of the inner conductor mainly arises for reasons of impedance matching after the reflection of the voltage pulses must be avoided at the injection points of the voltage sources, so that the impedance of the coaxial Porterstruk- tur progressively towards Load must rise.
  • each outer conductor section with the corresponding portion of the inner conductor can then be regarded as a generator of the impedance nZ 0 , where n is the step, so that the waves propagating through the overall arrangement always see a matched load.
  • the location of the breakdown or gap does not necessarily have to influence the localization of impedances for the impedance structure.
  • Currents flow on the outer surfaces of the outer conductor section, which often have a thickness of a few millimeters, for example 5 mm, due to the mechanical stability, wherein the penetration depth is extremely low, so that it is quite possible for a current to flow on the surface facing the inner conductor of the portion of the outer conductor section extending parallel to the inner conductor flows as far as the opening, but on the other surface, until it can reach the impedance structure.
  • a current flow in several directions can be rea ⁇ larra. This enables the impedance structure to be electrically coupled to the outer conductor section at positions which are meaningful with respect to the overall arrangement.
  • the outer conductor portions are formed to define a through them we ⁇ ilias partially enclosed interior, where ⁇ is arranged connecting with the impedance of structure in the interior, in particular two radial portions.
  • is arranged connecting with the impedance of structure in the interior, in particular two radial portions.
  • the breakthrough as described, may be provided in a "corner”
  • the impedance structure there are a variety of possibilities, some of which advantageous embodiments are now to be shown in more detail.
  • the impedance structure is formed as a separate components comprehensive trap circuit having an inductance into ⁇ particular a coil, and a capacitance connected in parallel thereto, in particular a capacitor.
  • an air coil or a coil can be provided with an egg ⁇ lowering.
  • the use of single- or multi-winding iron core coils with a parallel capacitor leads to a significant increase in the inductance, so that long pulse durations for the voltage pulses are possible even with smaller iron cores.
  • at least a part of the capacity can be realized in the coil.
  • the coil conductors consist of a copper strip, so that a coupling capacitance between the coil turns, thus the capacity either realized by the coil ⁇ who can or at least partially, so that a used Capacitor can be sized smaller.
  • Another possibility for providing a coil with an intrinsic capacitance is the use of ceramic elements, for example ceramic rings, in the coil.
  • the impedance structure refers tied to a specific frequency. It is expedient if, depending on the output pulses to be generated, an adaptation would be possible, so that it can advantageously be provided that the capacitance can be changed at least partially via an adjusting device as a function of the pulse length and / or pulse shape of the voltage pulses, for example can be realized that a varactor is used as a component for the capacity. So this makes it possible by characteristics of the lock ⁇ circle be customized inductivelysadditions- device for different configurations and output pulses.
  • an alternative, second exemplary embodiment of an inductive voltage addition device provides that the impedance structure is a lambda / 4 line shortened in particular by a capacitor.
  • Such barrier structures in the prior art as well known and can be ⁇ continues to generate impedances high impedance-in rather narrow frequency bands.
  • the length of the lambda / 4-line is variable via an adjusting depending on the pulse length and / or pulse shape ofistspul ⁇ se and / or the capacitor is designed as a varactor.
  • a tapping point can be provided which is displaceable or the like.
  • Analogous to the embodiment of the blocking circuit can also be done via a varactor an adjustment of the effective length and thus effect of the lambda / 4-line.
  • an adaptation of the blocking effect for different desired output pulses is also conceivable in this case.
  • the impedance structure is a wave trap, especially in a plane defined by the length and shape of the voltage pulses Fre acid sequence of more than 100 MHz.
  • Locking pots are already known in the art, so that, for example, a Reali ⁇ tion as a cylinder ladder is conceivable, which is filled with material suitable permeability or dielectric constant, for which, for example, iron offers. This Ausges ⁇ taltung is particularly suitable for higher frequencies, wherein when iron is used as filler and a use at lower frequencies is conceivable.
  • Such a blocking pot is a broadband realization of an impedance structure.
  • FIG. 2 shows a cross section through part of the inductive voltage adding device shown in FIG. 1, FIG.
  • FIG. 6 shows an equivalent circuit diagram for the inventive in ⁇ inductive voltage addition device having an impedance structure according to FIG. 4 or FIG. 5,
  • FIG. 8 shows a third concrete embodiment of an impedance structure.
  • the core of the inductive voltage adder 1 is a coaxial Conductor structure with an inner conductor 2 shown only in the sectional views of Fig. 2 and Fig. 3 and an outer conductor 3, which in different, one amplifier stage corresponding outer conductor sections 4 is divided.
  • the outer conductor sections 4 are pot-shaped here, that is, they have, see.
  • the finding underlying the present invention is that such impedance structures 9 can be easily implemented as discrete components, which can be realized cost-consuming and consuming little space, taking into account that the high impedance, so the blocking effect ⁇ only is required for the frequencies defined by the length and shape of the voltage pulses.
  • the impedance of structure 9 is chosen so that it blocks in a Fre ⁇ quenzband that contains the used, defined by the voltage ⁇ pulse frequency. For unused Fre ⁇ frequencies this blocking effect must not be present.
  • the impedance of structure 9 represents no significant resistance. However, if the voltage pulses are output, the inductive effect of the impedance structure 9 occurs. There is an extremely high impedance and the amplitudes of the voltage pulses can alsad ⁇ dieren, where as usual by the stepped structure of the inner conductor 2, which is shown in the figures, an impedance adaptation to avoid reflections is achieved.
  • the payload for the voltage pulses is then connected to the side 12 (FIG. 1) of the inductive voltage addition device 1 between the outer conductor 3 and the inner conductor 2 of the conductor structure.
  • the impedance of structure 9 is thereby so designed that with the DEFINE ⁇ th by the length and shape of the voltage pulses of a frequency impedance maximum is given.
  • the impedance structure 9 is realized as a blocking circuit 13 whose resonance frequency at the frequency defined by the length and shape of the voltage pulses.
  • the blocking circuit 13 an inductance L realized by a coil 14 and a capacitor C realized according to FIG. 4 by a capacitor 15 are connected in parallel, as the arrows 16 indicating the current input and the current output show.
  • the coil 14 has in this case before ⁇ lying to increase their inductance an iron core 17, and the capacitance C is realized in accordance with Fig. 4 by a separate, discrete component, namely, a capacitor 15,. Less preferably, air coils may also be used.
  • the capacitor 15 is replaced by a varactor 18, which is part of an adjusting device 19. Depending on the voltage pulses to be given concretely, this can be used to adjust the resonance frequency of the blocking circuit and thus of the frequency band in such a way that the magnetic insulation is achieved by the blocking circuit 13 during the voltage pulse.
  • Section is shown. This is formed by a Zy ⁇ linderleiter 21, which is filled here with iron 22.
  • a further possibility, shown in more detail in FIG. 8, for realizing the impedance structure 9 is the use of a lambda / 4-line 23 which is shortened by a capacitor 24 in relation to a length which is necessary without the capacitor and which is indicated by the dashed line 25 can. If the capacitor 24 is designed as a varactor, here too an adjustment to different frequencies and thus different pulses to be generated is possible.

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

L'invention concerne un dispositif d'addition de tension inductif (1) présentant une structure conductrice coaxiale comprenant un conducteur intérieur (2) et un conducteur extérieur (3) subdivisé en plusieurs segments (4) de conducteur extérieur correspondant respectivement à un certain niveau de renforcement. Les segments (4) de conducteur extérieur sont couplées par les sources de tension (8) fournissant des impulsions de tension à additionner et les segments (4) de conducteur extérieur forment conjointement avec une structure d'impédance (9) une impédance évitant un court-circuit entre deux sources de tension (8) en présence d'impulsions de tension données à renforcer. Le segment (4) de conducteur extérieur est interrompue à au moins un endroit (11) complètement non conducteur pour former deux parties et les parties du segment (4) de conducteur extérieur sont reliées par la structure d'impédance (9) déployant une action de blocage pour une bande de fréquence contenant la fréquence définie par la longueur et la forme des impulsions de tension.
PCT/EP2014/053579 2013-03-28 2014-02-25 Dispositif d'addition de tension inductif WO2014154414A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14707714.3A EP2957033A1 (fr) 2013-03-28 2014-02-25 Dispositif d'addition de tension inductif

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201310205656 DE102013205656A1 (de) 2013-03-28 2013-03-28 Induktive Spannungsadditionseinrichtung
DE102013205656.7 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014154414A1 true WO2014154414A1 (fr) 2014-10-02

Family

ID=50193467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/053579 WO2014154414A1 (fr) 2013-03-28 2014-02-25 Dispositif d'addition de tension inductif

Country Status (3)

Country Link
EP (1) EP2957033A1 (fr)
DE (1) DE102013205656A1 (fr)
WO (1) WO2014154414A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005094502A2 (fr) * 2004-03-24 2005-10-13 Richard Auchterlonie Systeme a courant pulse comprenant un commutateur a ouverture de plasma
US20080315689A1 (en) * 2007-06-15 2008-12-25 Dmirty Medvedev Ultra short high voltage pulse generator based on single or double spark gap

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL281778A (fr) * 1961-08-04
US3832569A (en) * 1972-08-22 1974-08-27 Maxwell Lab Pulse generator module and generator system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005094502A2 (fr) * 2004-03-24 2005-10-13 Richard Auchterlonie Systeme a courant pulse comprenant un commutateur a ouverture de plasma
US20080315689A1 (en) * 2007-06-15 2008-12-25 Dmirty Medvedev Ultra short high voltage pulse generator based on single or double spark gap

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HANSJOACHIM BLUHM: "Pulsed Power Systems", 2006, SPRINGER-VERLAG
THOMAS K J ET AL: "Linx and future iva machines", 19990414; 19990414 - 19990415, 14 April 1999 (1999-04-14), pages 2/1 - 2/4, XP006501418 *

Also Published As

Publication number Publication date
DE102013205656A1 (de) 2014-10-02
EP2957033A1 (fr) 2015-12-23

Similar Documents

Publication Publication Date Title
DE3638748C2 (fr)
EP1699107B1 (fr) Coupleur 3dB
DE2201814A1 (de) Filter-Verbindungsanordnung
DE102010042280B4 (de) Symmetrierglied zur Wandlung eines symmetrischen Hochfrequenzsignals in ein asymmetrisches Hochfrequenzsignal
DE102013112325B4 (de) Ringspule und Herstellungsverfahren für eine Ringspule
EP2957032A1 (fr) Isolation inductive de sources de tension d'un iva au moyen de bobines individuelles couplées
EP3785345B1 (fr) Dispositif électronique de puissance à équipement de transformateur et procédé
WO2014111274A1 (fr) Générateur d'impulsion et procédé pour faire fonctionner un générateur d'impulsion
DE4025159C2 (de) Durchführungsfilter
WO2013124298A2 (fr) Convertisseur polyphasé
DE202010016850U1 (de) HF Leistungs-Koppler
DE102013111433A1 (de) Planare symmetrische Spule für integrierte HF-Schaltungen
EP2957033A1 (fr) Dispositif d'addition de tension inductif
EP3021332B1 (fr) Inductance et son procédé de fabrication
DE102012216693A1 (de) 3-Phasen-Drossel mit Gleichtaktunterdrückungsverbindung
DE102016113839A1 (de) Spulenanordnung
DE102010042149B4 (de) HF-Vorrichtung und Beschleuniger mit einer solchen HF-Vorrichtung
WO2014111328A1 (fr) Générateur d'impulsion haute tension et procédé pour générer des impulsions haute tension
DE102012200634B4 (de) Leistungskoppler und Schaltschrank mit Leistungskoppler
EP3729645B1 (fr) Arrangement d'un filtre lc, dispositif electrique ou electronique comprenant un arrangement d'un tel filtre lc
CH639225A5 (de) Halbleiterschaltkreis mit mindestens einer in serie geschalteten drosselspule, insbesondere fuer elektrische umformer.
DE102022101327A1 (de) Ferritrohrkern, Entstördrossel mit einem solchen Ferritrohrkern und Verfahren zum Bilden eines Ferritrohrkerns
DE1281062B (de) Filter fuer sehr kurze elektromagnetische Wellen
DE102020100190A1 (de) Induktives Bauteil mit einer Betriebsfrequenz im Mittelfrequenzbereich
DE955966C (de) Einrichtung zum hochfrequenzmaessigen Kurzschliessen eines Leiterpaares

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14707714

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014707714

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014707714

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE