WO2014153906A1 - 超细光纤松套管及其制造方法 - Google Patents

超细光纤松套管及其制造方法 Download PDF

Info

Publication number
WO2014153906A1
WO2014153906A1 PCT/CN2013/079972 CN2013079972W WO2014153906A1 WO 2014153906 A1 WO2014153906 A1 WO 2014153906A1 CN 2013079972 W CN2013079972 W CN 2013079972W WO 2014153906 A1 WO2014153906 A1 WO 2014153906A1
Authority
WO
WIPO (PCT)
Prior art keywords
loose tube
fiber
colored
ultra
optical fiber
Prior art date
Application number
PCT/CN2013/079972
Other languages
English (en)
French (fr)
Inventor
史惠萍
谭国华
廖伟章
钱峰
王世颖
Original Assignee
烽火通信科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烽火通信科技股份有限公司 filed Critical 烽火通信科技股份有限公司
Publication of WO2014153906A1 publication Critical patent/WO2014153906A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4486Protective covering

Definitions

  • the invention relates to light
  • the fiber outer tube with polybutylene terephthalate (PPT) as the main material can reach a minimum minimum outer diameter of 1.6mm, but this The size is still difficult to meet the stringent requirements of the outer diameter of the cable in the future, which has become a technical problem to be solved in the field of optical telecom cable.
  • PPT polybutylene terephthalate
  • the object of the present invention is to overcome the deficiencies of the above background art, and to provide an ultra-fine fiber loose tube and a manufacturing method thereof, which break through the size limit of a conventional fiber loose tube, and the outer diameter of the ultra-fine fiber loose tube product is L2. ⁇ L4mm, the fiber loose tube can accommodate 12 ordinary optical fibers inside, and the state of the optical fiber maintains a certain degree of freedom. It is convenient to make the outer diameter of the entire optical cable after the finished product of the ultra-fine fiber loose tube is cabled. To meet the demanding requirements of future pipelines for space ffi, save communication pipe space and expand pipe capacity; easy to strip fiber loose tube, separate fiber, shorten construction time and improve construction efficiency.
  • the preparation method of the ultra-fine optical fiber loose tube provided by the invention comprises the following steps:
  • the extruder extrudes the molten low-smoke halogen-free flame-retardant polyethylene material into an integrated extrusion pipe mold having an inner diameter of 1.5 mm and an outer diameter of 2.1 mm in the head, and is 30 to 50 m/min.
  • the production line speed extrusion molded loose tube, the low smoke zero halogen flame retardant polyethylene material has a tensile strength ranging from 6 to 15 MPa;
  • the optical fiber collecting mold pulls the colored fiber to the extruder, so that the colored fiber is evenly passed through the center of the integrated squeeze tube mold, and all enters the formed loose tube to form a loose tube containing the root colored fiber, and /3 ⁇ 4 a certain pressure to inject a water-blocking grease into the loose tube;
  • the loose tube containing the colored fiber and the water-blocking paste is sequentially subjected to two-stage cooling setting of a first water tank having a temperature of 50 ° C ⁇ 5 C and a second water tank having a temperature of 20 C to form a shaped loose sleeve. Tube, then blow dry the surface of the loose tube with compressed air;
  • the caliper test device is used to detect whether the outer diameter of the loose tube is uniform and whether there is a bulge.
  • the loose tube that is tested is the finished product of the ultra-fine fiber loose tube, and the outer diameter of the finished ultra-fine fiber loose tube is l. , 2 ⁇ l, 4mm, wall thickness is 0,10' 0.15mm;
  • the tractor pulls the finished product of the ultra-fine fiber loose tube to the wire take-up machine, and the wire take-up machine puts the finished product of the ultra-fine fiber loose tube on the tool plate, and the preparation is completed.
  • the tension of the fiber optic pay-off frame is adjusted to be 0.8-0.9 Newton in step S1.
  • the loose tube is extruded at a line speed of 35 to 45 m/min in step S2.
  • the tensile strength of the low-smoke halogen-free flame-retardant polyethylene material in step S2 is 8 to 12 MPa.
  • the temperature of the first water tank in the step S4 is 48"C ⁇ 52.
  • the invention also provides an ultra-fine fiber loose tube prepared by the above preparation method, comprising a loose tube, a colored fiber and a water blocking grease, wherein the loose tube adopts a low-smoke halogen-free flame-retardant polyethylene material with an inner diameter of 1.5.
  • the tensile strength of the low-smoke halogen-free flame-retardant polyethylene material is 6 ⁇ 15MPa; the loose tube includes 1 ⁇ 12 colored fibers with a diameter of 250 ⁇ , and the colored fiber has a certain degree of freedom in the loose tube.
  • the water-repellent grease is filled between the loose tube and the colored fiber and between the colored fibers.
  • the outer diameter of the ultra-fine fiber loose tube is 1.2 ⁇ 1, 4mm, and the wall thickness is 0, 10 ⁇ 0. I5mm.
  • the outer diameter of the ultrafine fiber loose tube finished product is 1.25 ⁇ 1, 35mm.
  • the wall thickness of the finished ultra-fine fiber loose tube is 0, l l ⁇ 0.
  • the colored fiber is a single mode fiber or a multimode fiber, and uses a full chromatographic color code.
  • the loose tube includes 2, 6, 8, 10 or 12 colored optical fibers having a diameter of 250 ⁇ m.
  • the invention breaks through the size limit of the conventional fiber loose tube, and the outer diameter of the prepared ultra-fine fiber loose tube finished product is lnch2 ⁇ l, 4mm, and the minimum minimum outer diameter i of the PPT loose tube, Compared with 6mm, it is reduced by at least 18.7%.
  • the fiber loose tube of the present invention can accommodate 12 ordinary optical fibers inside, and the ugly fiber state still maintains a certain degree of freedom, and is loose, not tight, and convenient to use.
  • the ultra-fine fiber loose tube finished product of the invention can be used as a basic optical fiber unit, and can form a plurality of optical cables such as a stranded optical cable or a central tubular optical cable, which can reduce the outer diameter of the entire optical cable, and meet the demanding space utilization of the pipeline in the future. Requirements, save communication pipe space, and expand pipe capacity.
  • the construction worker can easily strip the fiber loose tube by hand without using any tools, and separate the fiber, which can shorten the construction time and improve the construction efficiency.
  • Figure 1 is a schematic cross-sectional view showing an ultra-fine fiber loose tube in an embodiment of the present invention.
  • FIG. 2 is a flow chart showing the preparation process of the ultra-fine fiber loose tube in the embodiment of the present invention.
  • an embodiment of the present invention provides an ultra-fine fiber loose tube, including a loose tube 2, a colored fiber 1 and a water-blocking grease 3.
  • the loose tube 2 is made of a low-smoke, halogen-free flame-retardant polyethylene.
  • the material was extruded through a one-piece extruded tube mold with an inner diameter of 1.5 mm and an outer diameter of 2.1 mm at a line speed of 30 to 50 m/min, and passed through a first water tank 7 having a temperature of 50 ⁇ 51: and a temperature of 20 ⁇ .
  • the second water tank 8 is cooled and fixed in two stages.
  • the tensile strength of the low-smoke halogen-free flame-retardant polyethylene material is 6 ⁇ 15MPa;
  • the loose tube 2 includes 1 ⁇ 12 pieces (for example: 2, 6, 8) , 10 or 12) colored optical fibers 1 having a diameter of 250 ⁇ m, and the colored optical fibers 1 have a certain degree of freedom in the loose tube 2, and between the loose tube 2 and the colored fibers 1 and between the colored fibers 1 are filled with Water-blocking grease 3, ultra-fine fiber loose tube finished product
  • the outer diameter is 1.2-1.4 mm, preferably 1.25-1.35 mm, the wall thickness is 0.10-0.15 mm (the difference is not more than 0.05 mm), preferably 0.11 ⁇ (! 14mm.
  • the colored fiber 1 can be a single-mode fiber, or For multimode fiber, all chromatographic color identification.
  • the method for preparing the ultra-fine optical fiber loose tube includes the following steps: S1.
  • the optical fiber unit disks with the colored fiber 1 are respectively placed on the same set of fiber delivery frames 4, and the colored fiber 1 can be Single mode fiber, also can be multimode fiber, all adopt full chromatographic color identification; adjust the tension of the fiber delivery frame 4 to 0.7 ⁇ L0 Newton, the fiber delivery frame 4 makes 1 ⁇ 12 coloring fiber with diameter 250 ⁇ 1 Collecting the mold 5 through the optical fiber at a constant speed;
  • the extruder 6 extrudes the molten low-smoke-free flame-retardant polyethylene material into an integrated extrusion pipe mold having an inner diameter of 1.5 mm and an outer diameter of 2,1 mm in the head, at 30 to 50 m/min.
  • the production line speed is extruded into the loose tube 2, and the low-smoke halogen-free flame-retardant polyethylene material has a tensile strength ranging from 6 to 15 MPa;
  • the optical fiber collecting mold 5 draws 1, and 42 colored optical fibers 1 to the extruder 6, so that the colored optical fiber 1 passes through the center of the integrated extruded tube mold at a constant speed, and all enters the formed loose tube 2 to form an inner 1 ⁇ 12 pineized tubes 2 of colored fiber 1, and at the same time, a water-blocking grease 3 is injected into the loose tube 2 with a certain pressure;
  • the loose tube 2 containing the colored fiber 1 and the water-blocking grease 3 is sequentially subjected to two-stage cooling setting of the first water tank 7 having a temperature of 50 ° C ⁇ 5 ° C and the second water tank 8 having a temperature of 20 ,. Forming the loose tube 2, and then drying the surface of the loose tube 2 with compressed air;
  • the caliper measuring device 9 uses the caliper measuring device 9 to detect whether the outer diameter of the loose tube 2 is uniform and whether there is a bulge, and the loose tube 2 is the finished product of the ultra-fine fiber loose tube, and the ultra-fine fiber loose tube is finished.
  • the diameter is 1.2 ⁇ 1.4mm, the wall thickness is 0.10 ⁇ 0.15mm, and the tolerance is not more than 0,05mm;
  • the embodiment of the invention adopts a low-smoke halogen-free flame-retardant polyethylene material with flame retardant property, and sets appropriate process parameters: the inside diameter of the extruder head is
  • the ultra-fine fiber loose tube finished product is used as the basic fiber unit. It can form a variety of optical cables such as stranded optical cable or central tubular optical cable. The outer diameter of the entire optical cable is greatly reduced, which can meet the stringent requirements of the outer diameter of the optical cable.
  • the method for preparing the ultra-fine fiber loose tube includes the following steps: Step 101: Place the fiber unit disks with the colored fibers 1 on the same set of fiber delivery frames 4, and adjust the fiber delivery line.
  • the tension of the frame 4 is 0.7 Newton, and the fiber delivery frame 4 uses a tension of 0.7 Newton to make two colored fibers i having a diameter of 250 ⁇ m pass through the fiber collection die 5 at a constant speed;
  • Step 102 The extruder 6 extrudes the low-smoke halogen-free flame-retardant polyethylene material into a one-piece extruded tube mold having an inner diameter of 1.5 mm and an outer diameter of 2.1 mm in the head, and is 30 ni/miii.
  • the production line speed is extruded into the loose tube 2, and the tensile strength of the low-smoke halogen-free flame-retardant polyethylene material is 6 MPa;
  • Step 103 the optical fiber collecting mold 5 pulls the two colored optical fibers 1 to the extruder 6, and the colored optical fiber 1 passes through the center of the integrated extruded tube mold at a constant speed, and all enters into the formed loose tube 2 to form two colored colors.
  • the loose tube 2 of the optical fiber I is simultaneously injected with the water-blocking grease 3 into the loose tube 2 with a certain pressure ;
  • Step 104 the loose tube 2 containing the colored fiber 1 and the water-blocking grease 3 passes through the temperature in sequence a two-stage cooling setting of a first water tank 7 having a degree of 45 ° C and a second water tank 8 having a temperature of 19.8 ,, forming a shaped loose tube 2, and then drying the surface of the loose tube 2 with compressed air;
  • Step 105 The oscillating measuring device 9 is used to detect whether the outer diameter of the loose tube 2 is uniform and whether there is a bulge.
  • the loose tube 2 is the finished product of the ultra-fine fiber loose tube, and the ultra-fine fiber loose tube is finished.
  • the outer diameter is L2mm, and the wall thickness is 0.10mm;
  • Step 106 The tractor 10 draws the finished ultra-fine fiber loose tube casing to the wire take-up machine 11, the wire-receiving machine! 1
  • the finished product of the ultra-fine fiber loose tube is collected on the tool tray.
  • the preparation is completed, and each machine equipment involved in the preparation process is a well-known equipment.
  • the method for preparing the ultra-fine fiber loose tube includes the following steps: Step 201: Place the fiber unit disks with the colored fibers 1 on the same set of fiber delivery frames 4, and adjust the fiber delivery line.
  • the tension of the frame 4 is 0.75 Newton, the fiber delivery frame 4 uses a tension of 0.75 Newton to make four colored fibers 1 having a diameter of 250, pass through the fiber collection die 5 at a uniform speed;
  • Step 202 The extruder 6 extrudes the molten low-smoke halogen-free flame-retardant polyethylene material into an integrated extrusion pipe mold having an inner diameter of 1.5 mm and an outer diameter of 2.1 mm in the head, and is 35 m/mm.
  • the production line speed is extruded into the loose tube 2, and the tensile strength of the low-smoke halogen-free flame-retardant polyethylene material is 8 MPa;
  • Step 203 the optical fiber collecting mold 5 pulls the four colored optical fibers 1 to the extruder 6, so that the colored optical fiber I passes through the center of the integrated extruded tube mold at a constant speed, and all enters into the formed loose tube 2 to form four colored colors.
  • the loose tube 2 of the optical fiber 1 is filled with the water-blocking grease 3 into the loose tube 2 with a certain pressure on the same day;
  • Step 204 The loose tube 2 containing the colored fiber i and the water-blocking grease 3 is sequentially subjected to two-stage cooling and setting of a first water tank 7 having a temperature of 47 ⁇ and a second water tank 8 having a temperature of 19.9 , to form a shaped pine. Casing 2, and then drying the surface of the loose tube 2 with compressed air; Step 205: The oscillating measuring device 9 is used to detect whether the outer diameter of the loose tube 2 is uniform and whether there is a bulge.
  • the loose tube 2 is the finished product of the ultra-fine fiber loose tube, and the ultra-fine fiber loose tube is finished.
  • the outer diameter is i.25mm, and the wall thickness is O. i imm;
  • Step 206 The tractor 10 pulls the finished ultra-fine fiber loose tube to the wire take-up machine! 1.
  • the wire take-up machine 11 puts the finished product of the ultra-fine fiber loose tube on the tool plate.
  • the preparation is completed, and each machine equipment involved in the preparation process is a well-known device.
  • the method for preparing the ultra-fine fiber loose tube includes the following steps: Step 301: Place the fiber unit disks with the colored fibers 1 on the same set of fiber-optic pay-off frames 4, and adjust the fibers.
  • the tension of the wire frame 4 is 0.8 Newton, and the fiber delivery frame 4 uses a tension of 0 8 Newton to make 6 colored optical fibers 1 having a diameter of 250 ⁇ m pass through the fiber collection die 5 at a constant speed;
  • Step 302 the extruder 6 extrudes the molten low-smoke flame-free polyethylene material into an integrated extrusion pipe mold having an inner diameter of i 5 mm and an outer diameter of 2.1 mm in the machine head, and a production line of 40 m/mm.
  • the speed-expanded loose tube 2 the low-smoke halogen-free flame-retardant polyethylene material has a tensile strength range of 10 MPa;
  • Step 303 the optical fiber collecting mold 5 pulls the six colored optical fibers 1 to the extruder 6, and the colored optical fiber 1 passes through the center of the integrated extruded tube mold at a uniform speed, and all enters into the formed loose tube 2 to form an inner coloring 6 coloring.
  • the loose tube 2 of the optical fiber 1 is simultaneously injected with the water-blocking grease 3 into the loose tube 2 with a certain pressure;
  • Step 304 The loose tube 2 containing the colored fiber 1 and the water-blocking grease 3 is sequentially subjected to two-stage cooling setting of a first water tank 7 having a temperature of 48 C and a second water tank 8 having a temperature of 20 C, and is shaped and shaped. Loosening tube 2, and then drying the surface of loose tube 2 with compressed air;
  • Step 305 using the caliper testing device 9 to detect whether the outer diameter of the loose tube 2 is uniform, whether there is a bulge, and the loose tube 2 is the finished product of the ultra-fine fiber loose tube, super fine
  • the outer diameter of the fiber loose tube finished product is l, 28mm, and the wall thickness is (2mm ;
  • Step 306 the tractor 10 draws the finished product of the ultra-fine fiber loose tube to the wire take-up machine 11, and the wire take-up machine 11 collects the finished product of the ultra-fine fiber loose tube on the tool plate, and thus, the preparation is completed, and each involved in the preparation process Machine equipment is a well-known device known in the art.
  • the method for preparing the ultra-fine fiber loose tube includes the following steps: Step 401: Place the fiber unit disks with the colored fibers 1 on the same set of fiber delivery frames 4, and adjust the fiber delivery line.
  • the tension of the frame 4 is 0,85 Newton
  • the tension of the fiber optic pay-off frame 4 ffi 0.85 Newton causes eight colored fibers 1 having a diameter of 250 ⁇ m to pass through the fiber collecting die 5 at a constant speed;
  • Step 402 The extruder 6 extrudes the low-smoke halogen-free flame-retardant polyethylene material into a one-piece extruded tube mold having an inner diameter of L5 mm and an outer diameter of 2.1 mm in the head, and adopts a production line of 42 ni/miii.
  • the tensile strength of the loosely extruded loose tube 2, low smoke zero halogen flame retardant polyethylene material is 12 MPa ;
  • Step 403 the optical fiber collecting mold 5 pulls the 8 colored optical fibers 1 to the extruder 6, so that the colored optical fiber 1 passes through the center of the integrated extruded tube mold at a constant speed, and all enters into the formed loose tube 2 to form 8 colored colors.
  • the loose tube 2 of the optical fiber 1 is filled with the water-blocking grease 3 into the loose tube 2 with a certain pressure ;
  • Step 404 the loose tube 2 containing the colored fiber 1 and the water-blocking grease 3 is sequentially subjected to two-stage cooling and setting of the first water tank 7 having a temperature of 50 ° C and the second water tank 8 having a temperature of 20.1 ° C.
  • the shaped loose tube 2 is then blown dry with compressed air;
  • Step 405 using the caliper measuring device 9 to detect whether the outer diameter of the loose tube 2 is uniform, whether there is a bulge, and the loose tube 2 is the finished product of the ultra-fine fiber loose tube, and the finished product of the ultra-fine fiber loose tube is finished.
  • the outer diameter is L3mm, and the wall thickness is 0,13mm;
  • Step 406 The tractor 10 pulls the finished product of the ultra-fine fiber loose tube to the wire take-up machine 11 .
  • the wire take-up machine 11 puts the finished product of the ultra-fine fiber loose tube on the tool plate.
  • the method for preparing the ultra-fine fiber loose tube includes the following steps: Step 501: Place the fiber unit disks with the colored fibers 1 on the same set of fiber delivery frames 4, and adjust the fiber delivery line.
  • the tension of the frame 4 is 0.9 Newton
  • the fiber delivery frame 4 uses 10,9 Newtons of tension to make 10 colored fibers 1 with a diameter of 250 ⁇ m through the fiber collection die 5;
  • Step 502 the extruder 6 extrudes the molten low-smoke halogen-free flame-retardant polyethylene material into an integrated extrusion pipe mold having an inner diameter of 1.5 mm and an outer diameter of 2.1 mm in the head, at 45 m/mm.
  • Production line speed extrusion of loose tube 2, low smoke zero halogen flame retardant polyethylene material tensile strength range is
  • Step 503 the optical fiber collecting mold 5 pulls 10 colored optical fibers 1 to the extruder 6, so that the colored optical fibers i pass through the center of the integrated extruded tube mold at a constant speed, and all enter the formed loose tube 2 to form 10 colorings.
  • the loose tube 2 of the optical fiber 1 is simultaneously injected with the water-blocking grease 3 into the loose tube 2 with a certain pressure;
  • Step 504 the loose tube 2 containing the colored fiber 1 and the water-blocking grease 3 is sequentially subjected to two-stage cooling setting of a first water tank 7 having a temperature of 52 ⁇ and a second water tank 8 having a temperature of 20.2 , to form a shaped pine. Casing 2, and then drying the surface of the loose tube 2 with compressed air;
  • Step 505 using the caliper measuring device 9 to detect whether the outer diameter of the loose tube 2 is uniform, whether there is a bulge, the loose tube 2 is the finished product of the ultra-fine fiber loose tube, and the ultra-fine fiber loose tube is finished.
  • the outer diameter is L32mm.
  • the wall thickness is (4mm .;
  • Step 506 The tractor 10 pulls the finished product of the ultra-fine fiber loose tube to the wire take-up machine 11, the wire take-up machine! 1
  • the finished product of the ultra-fine fiber loose tube is collected on the tool tray.
  • the preparation is completed, and each machine equipment involved in the preparation process is a well-known equipment.
  • the method for preparing the ultra-fine fiber loose tube includes the following steps: Step 601: Place the fiber unit disks with the colored fibers 1 on a set of fiber delivery frames 4, and adjust the fibers.
  • the tension of the wire frame 4 is L0 Newton, and the fiber delivery frame 4 uses 12, Newton's tension to make 12 colored fibers 1 with a diameter of 250 ⁇ m pass through the fiber collection die 5 at a constant speed;
  • Step 602 The extruder 6 extrudes the molten low-smoke halogen-free flame-retardant polyethylene material into an integrated extrusion pipe mold having an inner diameter of L5 mm and an outer diameter of 2.1 mm in the head, at a line speed of 50 m/mm. Extruded loose tube 2, low smoke zero halogen flame retardant polyethylene material tensile strength range is 15MPa;
  • Step 603 the optical fiber collecting mold 5 draws 12 colored optical fibers 1 to the extruder 6, so that the colored optical fiber i is evenly passed through the center of the integrated extruded tube mold, and all enter the formed loose tube 2 to form 12 inner tubes. Coloring the loose tube 2 of the optical fiber 1 and simultaneously injecting the water blocking grease 3 into the loose tube 2 with a certain pressure;
  • Step 604 the loose tube 2 containing the colored fiber 1 and the water-blocking grease 3 is sequentially subjected to two-stage cooling setting of a first water tank 7 having a temperature of 55 C and a second water tank 8 having a temperature of 20 C, and is shaped and shaped. Loosening tube 2, and then drying the surface of loose tube 2 with compressed air;
  • Step 605 using the caliper testing device 9 to detect whether the outer diameter of the loose tube 2 is uniform, whether there is a bulge, the loose tube 2 is the finished product of the ultra-fine fiber loose tube, and the finished ultra-fine fiber loose tube is finished.
  • the outer diameter is i.35mm, and the wall thickness is 0.15mm;
  • Step 606 The tractor 10 pulls the finished product of the ultra-fine fiber loose tube to the wire take-up machine! 1.
  • the wire take-up machine 11 puts the finished product of the ultra-fine fiber loose tube on the tool plate.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

一种超细光纤松套管制造方法及根据该制造方法制得的超细光纤松套管。该制造方法包括如下步骤:将装有着色光纤(1)的光纤单元盘分别放在同一组光纤放线架(4)上,光纤放线架(4)使1-12根着色光纤(1)匀速通过光纤收集模(5);挤出机(6)将熔融的低烟无卤阻燃聚乙烯材料挤进其机头内的一体式挤管模具中,挤出成型的松套管(2);光纤收集模(5)将着色光纤(1)牵引至挤出机(6),使着色光纤(1)匀速通过一体式挤管模具中心,全部进入已成型的松套管(2)内,形成内含根着色光纤(1)的松套管(2),同时向松套管(2)内注入阻水油膏(3);内含着色光纤(1)和阻水油膏(3)的松套管(2)依次经过第一水槽(7)和第二水槽(8)的两级冷却定型,制成定型的松套管(2),再用压缩空气吹干松套管(2)表面;采用测径测包装置(9)在线检测松套管(2)的外径,通过检测的松套管(2)为超细光纤松套管成品;牵引机(10)将超细光纤松套管成品牵引至收线机(11),收线机(11)将超细光纤松套管成品收在工具盘上。该制造方法能降低整个光缆的外径,节省通信管道空间,并使得松套管容易剥除,缩短施工时间。

Description

本发明涉及光
:制造方法。
随着通信容量需求的爆炸式增长,光通信网络对光纤数量的需求 也急剧增长, 而当前可用的通信管道资源非常有限, 特别是接入网的 管道资源未来会日益紧缺。目前唯一能够解决这一矛盾的技术手段是 縮小光缆的外径, 以满足用较小的空间容纳尽可能多的光纤的需求。 根据目前应用最广的工艺技术条件和国内外报道,以聚对苯二甲酸丁 二醇酯 (PPT) 为主要材料的光纤松套管能够达到的极限最小外径为 1.6mm, 但是, 这一尺寸仍然难以满足未来管道空间对光缆外径的苛 刻要求, 这已成为光遥信线缆领域当前亟待解决的一个技术难题。
本发明的目的是为了克服上述背景技术的不足, 提供一种超细 光纤松套管及其制造方法, 突破了常规光纤松套管的尺寸极限, 超细 光纤松套管成品的外径为 L2〜L4mm, 光纤松套管内部能够容纳 12 根普通光纤, 且光纤状态乃然保持一定的自由度, 方便使 超细光 纤松套管成品作为光纤单元成缆以后, 能降低整个光缆的外径, 满足 未来管道对空间利 ffi的苛刻要求, 节省通信管道空间, 扩大管道容纤 率; 能够轻松剥除光纤松套管, 将光纤分离出来, 缩短施工时间, 提 高施工效率。 本发明提供的超细光纤松套管的制备方法, 包括以下歩骤:
S 将装有着色光纤的光纤单元盘分别放在同一组光纤放线架 上,调节光纤放线架的张力为 0.7〜1.0牛顿, 光纤放线架使 1〜12根直 径为 250μηι的着色光纤匀速通过光纤收集模;
52、挤出机将熔融的低烟无卤阻燃聚乙烯材料挤进其机头内的内 径为 i .5mm、外径为 2.1mm的一体式挤管模具中, 以 30〜50m/min的 生产线速度挤出成型的松套管,低烟无卤阻燃聚乙烯材料的拉伸强度 范围是 6〜15MPa;
53、光纤收集模将着色光纤牵引至挤出机, 使着色光纤匀速遥过 一体式挤管模具中心, 全部进入已成型的松套管内, 形成内含根着色 光纤的松套管, 同时/¾一定压力向松套管内注入阻水油膏;
54、 内含着色光纤和阻水油膏的松套管依次经过温度为 50°C ± 5 C的第一水槽和温度为 20 C的第二水槽的两级冷却定型, 制成定型 的松套管, 再用压缩空气吹干松套管表面;
55、采用测径测包装置在线检测松套管的外径是否均匀、是否有 鼓包, 通过检测的松套管为超细光纤松套管成品, 超细光纤松套管成 品的外径为 l ,2〜l ,4mm, 壁厚为 0,10' 0.15mm;
S6-,牵引机将超细光纤松套管成品牵引至收线机, 收线机将超细 光纤松套管成品收在工具盘上, 至此, 制备完成。
在上述技术方案的基础上,步骤 S1中调节光纤放线架的张力为 0.8-0.9牛顿。
在上述技术方案的基础上, 步骤 S2中以 35〜45m/min的生产线 速度挤出成型的松套管。
在上述技术方案的基础上,步骤 S2中所述低烟无卤阻燃聚乙烯 材料的拉伸强度范園是 8〜12MPa。 在上述技术方案的基础上, 步骤 S4 中 iff述第一水槽的温度为 48"C〜52。 (。
本发明还提供一种采用上述制备方法制备得到的超细光纤松套 管, 包括松套管、 着色光纤和阻水油膏, 松套管采用低烟无卤阻燃聚 乙烯材料经内径为 1.5mm、 外径为 2.1mm 的一体式挤管模具、 以 30~50m/min的生产线速度挤制、并依次经过温度为 50 ± 5 的第一 水槽和温度为 20Ό的第二水槽的两级冷却定型而成, 低烟无卤阻燃 聚乙烯材料的拉伸强度范围是 6〜15MPa; 松套管内包括 1〜12根直径 为 250μηι的着色光纤, 且着色光纤在松套管内有一定的自由度, 松 套管与着色光纤之间以及着色光纤之间填充有具有阻水油膏,超细光 纤松套管成品的外径为 1.2〜l,4mm, 壁厚为 0, 10〜0。i5mm。
在上述技术方案的基础上, 所述超细光纤松套管成品的外径为 1.25〜l,35mm。
在上述技术方案的基础上, 所述超细光纤松套管成品的壁厚为 0,l l〜0. !4mm。
在上述技术方案的基础上, 所述着色光纤为单模光纤或多模光 纤, 并采用全色谱颜色标识。
在上述技术方案的基础上, 所述松套管内包括 2、 6、 8、 10或 12根直径为 250μπι的着色光纤。
与现有技术相比, 本发明的优点如下:
( ! ) 本发明突破了常规光纤松套管的尺寸极限, 制备出的超细 光纤松套管成品的外径为 l„2〜l ,4mm,与 PPT松套管的极限最小外径 i,6mm相比, 至少降低 18.7%。
( 2)本发明的光纤松套管内部能够容纳 12根普通光纤, 丑光纤 状态仍然保持一定的自由度, 是松弛的, 而非紧套, 方便使用。 ( 3 ) 本发明的超细光纤松套管成品作为基本光纤单元, 可组成 层绞式光缆或中心管式光缆等多种光缆, 能够降低整个光缆的外径, 满足未来管道对空间利用的苛刻要求, 节省通信管道空间, 扩大管道 容纤率。
(4 ) 应用本发明, 不用借助任何工具, 施工人员用手即可轻松 剥除光纤松套管, 将光纤分离出来, 能够缩短施工时间, 提高施工效
图 1是本发明实施例中超细光纤松套管的横截面示意图。
图 2是本发明实施例中超细光纤松套管的制备工艺流程图。
附图标记: 1-着色光纤, 2-松套管, 3-阻水油膏, 4-光纤放线架,
5-光纤收集模, 6挤出机, 7第一水槽, 8第二水槽, 9-测径测包装 置, 10 -牵引机, 11收线机。
下面结合附图及具体实施例对本发明作进一步的详细描述。
参见图 1所示, 本发明实施例提供一种超细光纤松套管, 包括松 套管 2、 着色光纤 1和阻水油膏 3 , 松套管 2采 ^低烟无卤阻燃聚乙 烯材料经内径为 1.5mm、 外径为 2.1mm 的一体式挤管模具、 以 30〜50m/min的生产线速度挤制.、并依次经过温度为 50 ± 51:的第一 水槽 7和温度为 20Ό的第二水槽 8的两级冷却定型而成, 低烟无卤 阻燃聚乙烯材料的拉伸强度范围是 6〜15MPa; 松套管 2内包括 1〜12 根 (例如: 2、 6、 8、 10或 12根) 直径为 250μηι的着色光纤 1, 且 着色光纤 1在松套管 2内有一定的自由度,松套管 2与着色光纤 1之 间以及着色光纤 1-之间填充有具有阻水油膏 3 , 超细光纤松套管成品 的外径为 1.2-1.4mm,优选为 1.25-1.35mm,壁厚为 0.10-0.15mm ( 差不大于 0.05mm), 优选为 0.11〜(! 14mm。 着色光纤 1可以为单模光 纤, 也可以为多模光纤, 全部采 ^全色谱颜色标识。
参见图 2所示,上述超细光纤松套管的制备方法,包括以下步骤: S1、将装有着色光纤 1的光纤单元盘分别放在同一组光纤放线架 4上, 着色光纤 1可以为单模光纤, 也可以为多模光纤, 全部采 ^全 色谱颜色标识; 调节光纤放线架 4的张力为 0.7〜L0牛顿, 光纤放线 架 4使 1〜12根直径为 250μπι的着色光纤 1匀速通过光纤收集模 5 ;
52、挤出机 6将熔融的低烟无 ή阻燃聚乙烯材料挤进其机头内的 内径为 1.5mm、 外径为 2,1mm的一体式挤管模具中, 以 30〜50m/min 的生产线速度挤出成型的松套管 2, 低烟无卤阻燃聚乙烯材料的拉伸 强度范围是 6〜15MPa;
53、 光纤收集模 5将 1,、42根着色光纤 1牵引至挤出机 6, 使着 色光纤 1匀速通过一体式挤管模具中心, 全部进入已成型的松套管 2 内, 形成内含 1〜12根着色光纤 1的松套管 2, 同时用一定压力向松 套管 2内注入阻水油膏 3 ;
S4_、 内含着色光纤 1和阻水油膏 3的松套管 2依次经过温度为 50 °C ± 5°C的第一水槽 7和温度为 20Ό的第二水槽 8的两级冷却定型, 制成定型的松套管 2, 再用压缩空气吹干松套管 2表面;
S5、采用测径测包装置 9在线检测松套管 2的外径是否均匀、是 否有鼓包, 通过检测的松套管 2为超细光纤松套管成品, 超细光纤松 套管成品的外径为 1.2〜1.4mm, 壁厚为 0.10〜0.15mm, 容差不大于 0,05mm;
S6-, 牵引机 10将超细光纤松套管成品牵引至收线机!1, 收线机 11 将超细光纤松套管成品收在工具盘上, 至此, 制备完成, 制备工 艺中涉及的各机器设备均为现有的公知设备。
与普通松套管相比,本发明实施例采用具有阻燃性能的低烟无卤 阻燃聚乙烯材料, 设置合适的工艺参数: 挤出机的机头内采 ^内径为
1 ,5mm、夕卜径为 2.1mm的一体式挤管模具、生产线速度为 30〜50m/min、 第一水槽温度为 50 C ± 5 ° (:、第二水槽温度为 20Ό左右, 可使得制备 出的超细光纤松套管成品的外径为 12〜! L4mm,与 PPT松套管的极限 最小外径 L6mm相比,至少降低 18.7%。以超细光纤松套管成品作为 基本光纤单元, 可组成层绞式光缆或中心管式光缆等多种光缆, 整个 光缆的外径大幅度降低, 可满足管道空间对光缆外径的苛刻要求。
下面通过 6个实施例来具体说明细光纤松套管的制备方法。 参见图 2所示,上述超细光纤松套管的制备方法,包括以下步骤: 步骤 101、 将装有着色光纤 1的光纤单元盘分别放在同一组光纤 放线架 4上, 调节光纤放线架 4的张力为 0.7牛顿, 光纤放线架 4用 0.7牛顿的张力使 2根直径为 250μηι的着色光纤 i匀速遥过光纤收集 模 5;
步骤 102、 挤出机 6将瑢融的低烟无卤阻燃聚乙烯材料挤进其机 头内的内径为 1.5mm、 外径为 2.1mm 的一体式挤管模具中, 以 30ni/miii的生产线速度挤出成型的松套管 2, 低烟无卤阻燃聚乙烯材 料的拉伸强度范围是 6MPa;
步骤 103、 光纤收集模 5将 2根着色光纤 1牵引至挤出机 6, 使 着色光纤 1匀速通过一体式挤管模具中心,全部进入已成型的松套管 2内, 形成内含 2根着色光纤 I的松套管 2, 同时用一定压力向松套 管 2内注入阻水油膏 3 ;
歩骤 104、 内含着色光纤 1和阻水油膏 3的松套管 2依次经过温 度为 45°C的第一水槽 7和温度为 19.8Ό的第二水槽 8的两级冷却定 型, 制成定型的松套管 2, 再用压缩空气吹干松套管 2表面;
步骤 105、 采用测径测包装置 9在线检测松套管 2的外径是否均 匀、 是否有鼓包, 通过检测的松套管 2为超细光纤松套管成品, 超细 光纤松套管成品的外径为 L2mm, 壁厚为 0.10mm;
步骤 106、 牵引机 10将超细光纤松套管成品牵引至收线机 11, 收线机!1将超细光纤松套管成品收在工具盘上, 至此, 制备完成, 制备工艺中涉及的各机器设备均为现有的公知设备。 参见图 2所示,上述超细光纤松套管的制备方法,包括以下步骤: 步骤 201、 将装有着色光纤 1的光纤单元盘分别放在同一组光纤 放线架 4上, 调节光纤放线架 4的张力为 0.75牛顿, 光纤放线架 4 用 0.75牛顿的张力使 4根直径为 250,的着色光纤 1匀速通过光纤 收集模 5;
步骤 202、 挤出机 6将熔融的低烟无卤阻燃聚乙^材料挤进其机 头内的内径为 1.5mm、 外径为 2.1mm 的一体式挤管模具中, 以 35m/mm的生产线速度挤出成型的松套管 2, 低烟无卤阻燃聚乙烯材 料的拉伸强度范围是 8MPa;
步骤 203、 光纤收集模 5将 4根着色光纤 1牵引至挤出机 6, 使 着色光纤 I匀速通过一体式挤管模具中心,全部进入己成型的松套管 2内, 形成内含 4根着色光纤 1的松套管 2, 同日寸用一定压力向松套 管 2内注入阻水油膏 3 ;
步骤 204、 内含着色光纤 i和阻水油膏 3的松套管 2依次经过温 度为 47Ό的第一水槽 7和温度为 19.9Ό的第二水槽 8的两级冷却定 型, 制成定型的松套管 2, 再用压缩空气吹干松套管 2表面; 步骤 205、 采用测径测包装置 9在线检测松套管 2的外径是否均 匀、 是否有鼓包, 通过检测的松套管 2为超细光纤松套管成品, 超细 光纤松套管成品的外径为 i.25mm, 壁厚为 O. i imm;
步骤 206、 牵引机 10将超细光纤松套管成品牵引至收线机!1, 收线机 11将超细光纤松套管成品收在工具盘上, 至此, 制备完成, 制备工艺中涉及的各机器设备均为现有的公知设备。
实施例 3
参见图 2所示,上述超细光纤松套管的制备方法,包括以下步骤: 歩骤 301、 将装有着色光纤 1的光纤单元盘分别放在同一组光纤 放线架 4上, 调节光纤放线架 4的张力为 0.8牛顿, 光纤放线架 4用 0 8牛顿的张力使 6根直径为 250μπι的着色光纤 1匀速通过光纤收集 模 5;
步骤 302、 挤出机 6将熔融的低烟无 ¾阻燃聚乙烯材料挤进其机 头内的内径为 i 5mm、 外径为 2.1mm 的一体式挤管模具中, 以 40m/mm的生产线速度挤出成型的松套管 2, 低烟无卤阻燃聚乙烯材 料的拉伸强度范围是 lOMPa;
步骤 303、 光纤收集模 5将 6根着色光纤 1牵引至挤出机 6, 使 着色光纤 1匀速通过一体式挤管模具中心,全部进入已成型的松套管 2内, 形成内含 6根着色光纤 1的松套管 2, 同时用一定压力向松套 管 2内注入阻水油膏 3 ;
步骤 304、 内含着色光纤 1和阻水油膏 3的松套管 2依次经过温 度为 48 C的第一水槽 7和温度为 20 C的第二水槽 8的两级冷却定型, 制成定型的松套管 2, 再用压缩空气吹干松套管 2表面;
步骤 305、 采用测径测包装置 9在线检测松套管 2的外径是否均 匀、 是否有鼓包, 通过检测的松套管 2为超细光纤松套管成品, 超细 光纤松套管成品的外径为 l,28mm, 壁厚为( 2mm;
步骤 306、 牵引机 10将超细光纤松套管成品牵引至收线机 11 , 收线机 11将超细光纤松套管成品收在工具盘上, 至此, 制备完成, 制备工艺中涉及的各机器设备均为现有的公知设备。
实施例 4
参见图 2所示,上述超细光纤松套管的制备方法,包括以下步骤: 步骤 401、 将装有着色光纤 1的光纤单元盘分别放在同一组光纤 放线架 4上, 调节光纤放线架 4的张力为 0,85牛顿, 光纤放线架 4 ffi 0.85牛顿的张力使 8根直径为 250μηι的着色光纤 1匀速通过光纤 收集模 5;
步骤 402、 挤出机 6将瑢融的低烟无卤阻燃聚乙烯材料挤进其机 头内的内径为 L5mm、 外径为 2.1mm 的一体式挤管模具中, 以 42ni/miii的生产线速度挤出成型的松套管 2, 低烟无卤阻燃聚乙烯材 料的拉伸强度范围是 12MPa;
步骤 403、 光纤收集模 5将 8根着色光纤 1牵引至挤出机 6, 使 着色光纤 1匀速通过一体式挤管模具中心,全部进入已成型的松套管 2内, 形成内含 8根着色光纤 1的松套管 2, 时用一定压力向松套 管 2内注入阻水油膏 3 ;
步骤 404、 内含着色光纤 1和阻水油膏 3的松套管 2依次经过温 度为 50°C的第一水槽 7和温度为 20.1 °C的第二水槽 8的两级冷却定 型, 制成定型的松套管 2, 再用压缩空气吹干松套管 2表面;
步骤 405、 采用测径测包装置 9在线检测松套管 2的外径是否均 匀、 是否有鼓包, 通过检测的松套管 2为超细光纤松套管成品, 超细 光纤松套管成品的外径为 L3mm, 壁厚为 0,13mm;
歩骤 406、 牵引机 10将超细光纤松套管成品牵引至收线机 11 , 收线机 11将超细光纤松套管成品收在工具盘上, 至此, 制备完成, 制备工艺中涉及的各机器设备均为现有的公知设备。
实施例 5
参见图 2所示,上述超细光纤松套管的制备方法,包括以下步骤: 步骤 501、 将装有着色光纤 1的光纤单元盘分别放在同一组光纤 放线架 4上, 调节光纤放线架 4的张力为 0.9牛顿, 光纤放线架 4用 0,9牛顿的张力使 10根直径为 250μηι的着色光纤 1匀速通过光纤收 集模 5;
歩骤 502、 挤出机 6将熔融的低烟无卤阻燃聚乙烯材料挤进其机 头内的内径为 1.5mm、 外径为 2.1mm 的一体式挤管模具中, 以 45m/mm的生产线速度挤出成型的松套管 2, 低烟无卤阻燃聚乙烯材 料的拉伸强度范围是
步骤 503、光纤收集模 5将 10根着色光纤 1牵引至挤出机 6, 使 着色光纤 i匀速通过一体式挤管模具中心,全部进入已成型的松套管 2内, 形成内含 10根着色光纤 1的松套管 2, 同时用一定压力向松套 管 2内注入阻水油膏 3 ;
步骤 504、 内含着色光纤 1和阻水油膏 3的松套管 2依次经过温 度为 52Ό的第一水槽 7和温度为 20.2Ό的第二水槽 8的两级冷却定 型, 制成定型的松套管 2, 再用压缩空气吹干松套管 2表面;
歩骤 505、 采用测径测包装置 9在线检测松套管 2的外径是否均 匀、 是否有鼓包, 通过检测的松套管 2为超细光纤松套管成品, 超细 光纤松套管成品的外径为 L32mm., 壁厚为 ( 4mm.;
步骤 506、 牵引机 10将超细光纤松套管成品牵引至收线机 11, 收线机!1将超细光纤松套管成品收在工具盘上, 至此, 制备完成, 制备工艺中涉及的各机器设备均为现有的公知设备。 实施例 6
参见图 2所示,上述超细光纤松套管的制备方法,包括以下步骤: 歩骤 601、 将装有着色光纤 1的光纤单元盘分别放在 一组光纤 放线架 4上, 调节光纤放线架 4的张力为 L0牛顿, 光纤放线架 4用 1 ,0牛顿的张力使 12根直径为 250μπι的着色光纤 1匀速通过光纤收 集模 5 ;
步骤 602、 挤出机 6将熔融的低烟无卤阻燃聚乙烯材料挤迸其机 头内的内径为 L5mm、 外径为 2.1mm 的一体式挤管模具中, 以 50m/mm的生产线速度挤出成型的松套管 2, 低烟无卤阻燃聚乙烯材 料的拉伸强度范围是 15MPa;
步骤 603、光纤收集模 5将 12根着色光纤 1牵引至挤出机 6, 使 着色光纤 i匀速遥过一体式挤管模具中心,全部进入已成型的松套管 2内, 形成内含 12根着色光纤 1的松套管 2, 同时用一定压力向松套 管 2内注入阻水油膏 3 ;
步骤 604、 内含着色光纤 1和阻水油膏 3的松套管 2依次经过温 度为 55 C的第一水槽 7和温度为 20 C的第二水槽 8的两级冷却定型, 制成定型的松套管 2, 再用压缩空气吹干松套管 2表面;
步骤 605、 采用测径测包装置 9在线检测松套管 2的外径是否均 匀、 是否有鼓包, 通过检测的松套管 2为超细光纤松套管成品, 超细 光纤松套管成品的外径为 i .35mm, 壁厚为 0.15mm;
步骤 606、 牵引机 10将超细光纤松套管成品牵引至收线机!1, 收线机 11将超细光纤松套管成品收在工具盘上, 至此, 制备完成, 制备工艺中涉及的各机器设备均为现有的公知设备。
本领域的技术人员可以对本发明实施例进行各种修改和变型,倘 若这些修改和变型属在本发明权利要求及其等同技术的范围之内,则 这些修改和变型也在本发明的保护范围之内。
说明书中未详细描述的内容为本领域技术人员公知^

Claims

1、 一种超细光纤松套管的制备方法, 其特征在于, 包括以下步 骤:
51、 将装有着色光纤 (1) 的光纤单元盘分别放在同一组光纤放 线架 (4) 上, 调节光纤放线架 (4) 的张力为 0.7〜L0牛顿, 光纤放 线架(4) 使 1〜12根直径为 250μπι的着色光纤(1)匀速通过光纤收 集模 (5);
52、 挤出机 (6) 将熔融的低烟无卤阻燃聚乙烯材料挤进其机头 内的内径为 i .5mm、 外径为 2, 1mm 的一体式挤管模具 , 以 30〜50m/miri 的生产线速度挤出成型的松套管 (2), 低烟无卤阻燃聚 乙烯材料的拉伸强度范围是 6〜15MPa;
53、 光纤收集模 (5)将着色光纤 (1)牵引至挤出机 (6), 使着 色光纤 (1) 匀速通过一体式挤管模具中心, 全部进入已成型的松套 管 (2) 内, 形成内含根着色光纤(1) 的松套管 (2), 同时用一定压 力向松套管 (2) 内注入阻水油膏 (3):
54、 内含着色光纤 (1) 和阻水油膏 (3) 的松套管 (2) 依次经 过温度为 50°C±5O的第一水槽 (7) 和温度为 20°C的第二水槽 (8) 的两级冷却定型, 制成定型的松套管(2), 再用压缩空气吹千松套管
(2) 表面;
55、 采用测径测包装置(9)在线检测松套管(2) 的外径是否均 匀、 是否有鼓包, 通过检测的松套管 (2) 为超细光纤松套管成品, 超细光纤松套管成品的外径为 l,2〜l,4mm, 壁厚为 0.10〜0.15mm;
56、 牵引机 (10) 将超细光纤松套管成品牵引至收线机 (11), 收线机(11)将超细光纤松套管成品收在工具盘上, 至此, 制备完成。
2、 如权利要求 1所述的超细光纤松套管的制备方法, 其特征在 于: 步骤 Si中调节光纤放线架 (4) 的张力为 〜(λ9牛顿。
3、 如权利要求 1所述的超细光纤松套管的制备方法, 其特征在 于: 步骤 S2中以 35~45m/min的生产线速度挤出成型的松套管 (2)。
4、 如权利要求 1所述的超细光纤松套管的制备方法, 其特征在 于: 步骤 S2 中所述低烟无卤阻燃聚乙烯材料的拉伸强度范围是 8〜12MPa。
5、 如权利要求 1所述的超细光纤松套管的制备方法, 其特征在 f: 步骤 S4中所述第一水槽 (7) 的温度为 48C〜52°C。
6、 采用权利要求 i所述制备方法制备得到的超细光纤松套管, 其特征在于: 包括松套管 (2)、 着色光纤 (1) 和阻水油膏 (3), 松 套管 (2) 采 ^低烟无卤阻燃聚乙烯材料经内径为 L5mm_、 外径为 2Jmm的一体式挤管模具、 以 30〜50m/min的生产线速度挤制、 并依 次经过温度为 50O±5°C的第一水槽 (7) 和温度为 20'Ό的第二水槽
(8) 的两级冷却定型而成, 低烟无卤阻燃聚乙烯材料的拉伸强度范 围是 6〜15MPa; 松套管 (2) 内包括 1〜12根直径为 250μϊη的着色光 纤(1), 且着色光纤(1)在松套管(2) 内有一定的自由度, 松套管
(2) 与着色光纤 (1) 之间以及着色光纤 (1) 之间填充有具有阻水 油膏 (3), 超细光纤松套管成品的外径为 l,2〜1.4mm, 壁厚为 0.10〜0,15mm。
7、 如权利要求 6所述的超细光纤松套管, 其特征在于: 所述超 细光纤松套管成品的外径为 1.25〜: L35mm。
8、 如权利要求 6所述的超细光纤松套管, 其特征在于: 所述超 细光纤松套管成品的壁厚为 0.1 i〜0. i4mm。
9、 如权利要求 6至 8中任一项所述的超细光纤松套管, 其特征 在于: 所述着色光纤 (1) 为单模光纤或多模光纤, 并采用全色谱颜 色标识。
10、如权利要求 6至 8中任一项所述的超细光纤松套管, 其特征 光
在于: 所述松套管 (2 ) 内包括 2.、 6.、 8.、 10或 12根直径为 250μπι 、
PCT/CN2013/079972 2013-03-27 2013-07-24 超细光纤松套管及其制造方法 WO2014153906A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310100877.3A CN103235376B (zh) 2013-03-27 2013-03-27 超细光纤松套管及其制造方法
CN201310100877.3 2013-03-27

Publications (1)

Publication Number Publication Date
WO2014153906A1 true WO2014153906A1 (zh) 2014-10-02

Family

ID=48883427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079972 WO2014153906A1 (zh) 2013-03-27 2013-07-24 超细光纤松套管及其制造方法

Country Status (2)

Country Link
CN (1) CN103235376B (zh)
WO (1) WO2014153906A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106353016A (zh) * 2016-09-28 2017-01-25 广西大学 一种含光纤光栅传感器的智能钢绞线的制作方法
CN107599340A (zh) * 2017-10-12 2018-01-19 长飞光纤光缆四川有限公司 单牵引光纤二次套塑生产线及其生产工艺
CN107861202A (zh) * 2017-11-09 2018-03-30 江苏亨通光电股份有限公司 具有擦字复印功能的光纤光缆绕线系统
CN113671644A (zh) * 2021-05-13 2021-11-19 浙江金元完保光纤有限公司 一种光缆阻水油膏填充装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103235376B (zh) * 2013-03-27 2015-05-13 烽火通信科技股份有限公司 超细光纤松套管及其制造方法
CN103474173B (zh) * 2013-08-29 2016-04-13 北京亨通斯博通讯科技有限公司 用于线缆生产的自循环冷却装置及线缆生产线
CN104459911B (zh) * 2014-12-12 2019-05-07 中天电力光缆有限公司 大容量小直径光纤opgw及其生产方法
CN104483739B (zh) * 2014-12-25 2017-03-22 南京华信藤仓通信有限公司 薄壁型低烟无卤干式松套管的生产方法
CN106199886A (zh) * 2016-09-28 2016-12-07 广西大学 一种含光纤光栅传感器的智能钢绞线
CN108859052B (zh) * 2018-05-03 2021-03-02 烽火通信科技股份有限公司 干式光纤松套管生产设备、生产方法及干式光纤松套管
CN110531475B (zh) * 2019-08-30 2020-10-09 江苏中天科技股份有限公司 易剥离柔性光纤微管

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0235753A1 (fr) * 1986-02-27 1987-09-09 Alcatel Cable Procédé et installation de fabrication d'un tube extrude muni d'au moins une fibre optique
DE10046587A1 (de) * 2000-09-20 2002-03-28 Scc Special Comm Cables Gmbh Anordnung und Verfahren zur Herstellung einer optischen Ader mit mindestens einer Lichtleitfaser
CN102346286A (zh) * 2011-11-21 2012-02-08 江苏江扬电缆有限公司 全干式光缆松套管的制作方法
CN202631806U (zh) * 2012-04-20 2012-12-26 苏州洲通光电科技有限公司 一种超高强度加强芯光缆制造设备
CN102866475A (zh) * 2012-09-28 2013-01-09 中国电子科技集团公司第八研究所 光纤与光纤带二次被覆复合生产设备及利用该设备的方法
CN103235376A (zh) * 2013-03-27 2013-08-07 烽火通信科技股份有限公司 超细光纤松套管及其制造方法
CN203191599U (zh) * 2013-03-27 2013-09-11 烽火通信科技股份有限公司 超细光纤松套管

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102955212B (zh) * 2011-08-30 2014-12-24 苏州亨利通信材料有限公司 接入网用蝶形引入光缆专用低烟无卤阻燃包覆层材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0235753A1 (fr) * 1986-02-27 1987-09-09 Alcatel Cable Procédé et installation de fabrication d'un tube extrude muni d'au moins une fibre optique
DE10046587A1 (de) * 2000-09-20 2002-03-28 Scc Special Comm Cables Gmbh Anordnung und Verfahren zur Herstellung einer optischen Ader mit mindestens einer Lichtleitfaser
CN102346286A (zh) * 2011-11-21 2012-02-08 江苏江扬电缆有限公司 全干式光缆松套管的制作方法
CN202631806U (zh) * 2012-04-20 2012-12-26 苏州洲通光电科技有限公司 一种超高强度加强芯光缆制造设备
CN102866475A (zh) * 2012-09-28 2013-01-09 中国电子科技集团公司第八研究所 光纤与光纤带二次被覆复合生产设备及利用该设备的方法
CN103235376A (zh) * 2013-03-27 2013-08-07 烽火通信科技股份有限公司 超细光纤松套管及其制造方法
CN203191599U (zh) * 2013-03-27 2013-09-11 烽火通信科技股份有限公司 超细光纤松套管

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106353016A (zh) * 2016-09-28 2017-01-25 广西大学 一种含光纤光栅传感器的智能钢绞线的制作方法
CN107599340A (zh) * 2017-10-12 2018-01-19 长飞光纤光缆四川有限公司 单牵引光纤二次套塑生产线及其生产工艺
CN107861202A (zh) * 2017-11-09 2018-03-30 江苏亨通光电股份有限公司 具有擦字复印功能的光纤光缆绕线系统
CN107861202B (zh) * 2017-11-09 2024-02-06 江苏亨通光电股份有限公司 具有擦字复印功能的光纤光缆绕线系统
CN113671644A (zh) * 2021-05-13 2021-11-19 浙江金元完保光纤有限公司 一种光缆阻水油膏填充装置
CN113671644B (zh) * 2021-05-13 2024-04-16 浙江金元完保光纤有限公司 一种光缆阻水油膏填充装置

Also Published As

Publication number Publication date
CN103235376A (zh) 2013-08-07
CN103235376B (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
WO2014153906A1 (zh) 超细光纤松套管及其制造方法
CN105427948B (zh) 骨架式光电复合缆及其制造方法
CN101697028B (zh) 二步法生产层绞式光缆的方法及用于该方法的装置
CN109358399A (zh) 层绞式微型光缆串联生产装置及其生产工艺
CN104730667A (zh) 骨架式光缆及制作方法
CN109143516B (zh) 一种护套嵌入式掏接光缆及生产方法
CN104076461A (zh) 一种结构紧凑的光电综合缆及其制作方法
CN103203854B (zh) 一种改性pp料二次套塑的工艺方法
CN103163613A (zh) 一种无线射频拉远用光缆及其制造方法
CN106125234A (zh) 一种大芯数小缆径防蚁气吹微缆及其制作工艺
CN113433634A (zh) 一种拉远光缆及其制备方法
CN208189291U (zh) 一种混合铜芯信号线的非金属自承式光电混合缆
CN113406756B (zh) 一种阻燃低释放物层绞光缆及其制备方法
CN104267471B (zh) 一种pe纤维中心管束式光缆及其制造方法
CN106646795A (zh) 多场景室内布线光缆
CN204651101U (zh) 一种光缆用非金属带材纵包成型模具
CN114002796A (zh) 一种基于双层绞合结构缆芯的大芯光缆及其成型工艺
CN106338802A (zh) 单束管加阻水带纵包光缆护套一次成型制造工艺及其产品
CN201489164U (zh) 一种半干式接入光缆
CN203191599U (zh) 超细光纤松套管
CN105988160A (zh) 光纤、光纤的制造系统和制造方法
CN203018609U (zh) 一种压紧模装置及其压紧模固定座
CN115826167A (zh) 蝶形光缆及蝶形光缆制造方法
CN204044409U (zh) 一种全干式光纤带光缆
CN103276463A (zh) 一种高强度网丝的抽丝工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880624

Country of ref document: EP

Kind code of ref document: A1