WO2014153793A1 - 一种背光驱动电路及其驱动方法和液晶装置 - Google Patents

一种背光驱动电路及其驱动方法和液晶装置 Download PDF

Info

Publication number
WO2014153793A1
WO2014153793A1 PCT/CN2013/073783 CN2013073783W WO2014153793A1 WO 2014153793 A1 WO2014153793 A1 WO 2014153793A1 CN 2013073783 W CN2013073783 W CN 2013073783W WO 2014153793 A1 WO2014153793 A1 WO 2014153793A1
Authority
WO
WIPO (PCT)
Prior art keywords
controllable switch
coupled
drive circuit
adjustable load
resistor
Prior art date
Application number
PCT/CN2013/073783
Other languages
English (en)
French (fr)
Inventor
胡安乐
张先明
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/880,742 priority Critical patent/US8890423B2/en
Publication of WO2014153793A1 publication Critical patent/WO2014153793A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/025Reduction of instantaneous peaks of current
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/04Display protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to the field of liquid crystal display, and more particularly to a backlight driving circuit, a driving method thereof, and a liquid crystal device.
  • the constant current driving chip of the backlight driving circuit is provided with an over current protection (OCC) and a corresponding OCP threshold.
  • OCP over current protection
  • the flow driver chip controls the backlight drive circuit to open to protect the circuit. The specific circuit is shown in FIG.
  • the current constant current driving chip of the backlight driving circuit has only one OCP threshold, which is generally set in accordance with the 2D display mode.
  • OCP threshold is generally set in accordance with the 2D display mode.
  • 3D mode it is often not found that the OCP threshold is not reached, and the overcurrent protection function has not been triggered yet, but the power of the backlight driving circuit is already too high, which has a large impact on the components of the backlight driving circuit, and reduces the backlight driving circuit. The situation of working life.
  • the technical problem to be solved by the present invention is to provide a backlight driving circuit and a driving method thereof and a liquid crystal device which provide reliable overcurrent protection for a backlight driving circuit having both 2D/3D display.
  • a backlight driving circuit includes a power module and a constant current driving chip, wherein the power module includes a first controllable switch, and an adjustable load is connected between the first controllable switch and the grounding end of the backlight driving circuit,
  • the load adjustment includes a switching module that can switch different resistance values, and the mode switching signal of the backlight driving circuit is coupled to the control end of the switching module; the end of the adjustable load connected to the first controllable switch is coupled to the constant current driving The overcurrent protection port of the chip.
  • the adjustable load includes a first resistor and a second resistor connected in parallel
  • the switching module includes a second controllable switch
  • the second controllable switch is serially connected between the second resistor and the ground ;
  • the control terminal of the second controllable switch is coupled to the mode switching signal.
  • This is an adjustable load with parallel resistors. The current flows through the resistor, and a voltage difference is formed across the resistor. The voltage value is fed back to the constant current driving chip. The constant current driving chip can judge whether the protection is achieved according to the voltage change. The threshold of the current.
  • the technical solution utilizes the second controllable switch to control whether the second resistor is input to control the resistance of the entire adjustable load.
  • the second controllable switch Under the premise of a certain voltage, the second controllable switch is disconnected in the 2D mode, and only the first resistor is available at this time. When it is put into use, the resistance is high, only a small current is needed to reach the predetermined voltage. In the 3D mode, the second controllable switch is turned on. At this time, the first resistor and the second resistor are operated in parallel, and the resistance values are connected in parallel. Below the first resistance, this requires a large current to reach the predetermined voltage. It can be seen that the OCP protection point of the 2D mode is higher than that of the 3D mode, and can fully meet the needs of overcurrent protection in different modes. In addition, the material cost of the resistor and the controllable switch is lower, which is conducive to cost saving.
  • the constant current driving chip includes an analog dimming pin, and the analog dimming pin outputs a mode switching signal to a control end of the switching module.
  • the output voltage of the analog dimming pin in the 3D mode is higher than the voltage output in the 2D mode, so the output signal of the analog dimming pin can be used as the mode switching signal, thereby simplifying the control circuit. , shorten development cycles and reduce development and production costs.
  • the constant current driving chip includes a comparator and a protection unit, and one end of the adjustable load connected to the first controllable switch is coupled to a non-inverting input end of the comparator, and the reverse input of the comparator A reference signal having a constant voltage is coupled to the terminal; the comparator output is coupled to the protection unit, and the protection unit outputs a control signal to the first controllable switch.
  • This is a circuit configuration of a specific constant current driving chip.
  • the power module includes an inductor and a diode, and one end of the inductor is coupled to an external power source, and the other end is coupled to an anode of the diode, and a cathode of the diode is coupled to a light bar of the backlight driving circuit, A controllable switch is coupled to the anode of the diode.
  • the light bar is an LED light bar
  • a third controllable switch is connected in series between the output end of the LED light bar and the ground end of the backlight driving circuit, and the control end of the third controllable switch is coupled with a PWM Dimming Signal.
  • This is an LED backlight driving circuit with dimming function.
  • the adjustable load includes a first resistor and a second resistor connected in parallel
  • the switching module includes a second controllable switch
  • the second controllable switch is serially connected between the second resistor and the ground
  • the constant current driving chip includes an analog dimming pin, and the analog dimming pin output mode switching signal is coupled to a control end of the second controllable switch
  • the constant current driving chip includes a comparator and a protection unit And an end of the adjustable load connected to the first controllable switch is coupled to a non-inverting input end of the comparator, and a reverse input end of the comparator is connected with a reference signal having a constant voltage;
  • the output of the comparator Coupled to the protection unit, the protection unit outputs a control signal to the first controllable switch
  • the power module includes an inductor and a diode, one end of the inductor is coupled to an external power source, and the other end is coupled to the anode of the diode a cathode of the diode is
  • a driving method of a backlight driving circuit of the present invention comprising the steps of:
  • step A determine the display mode of the backlight drive circuit, if it is 2D display mode, go to step B; if it is 3D display mode, go to step C;
  • the mode switching signal controls the switching module to switch to a resistance value corresponding to the 2D overcurrent protection threshold
  • the mode switching signal controls the switching module to switch to the resistance value corresponding to the 3D overcurrent protection threshold.
  • the adjustable load includes a first resistor and a second resistor connected in parallel, the switching module includes a second controllable switch, and the second controllable switch is serially connected between the second resistor and the ground
  • the step B includes: the mode switching signal outputs a low level to control the second controllable switch to be turned off; the step C includes: the mode switching signal outputs a high level to control the second controllable switch to be turned on.
  • the constant current driving chip can judge whether the protection is achieved according to the voltage change.
  • the threshold of the current The technical solution utilizes the second controllable switch to control whether the second resistor is input to control the resistance of the entire adjustable load. Under the premise of a certain voltage, the second controllable switch is disconnected in the 2D mode, and only the first resistor is available at this time. Cast In use, the resistance is higher, only a small current is required to reach the predetermined voltage; in the 3D mode, the second controllable switch is turned on, and the first resistor and the second resistor are operated in parallel, and the resistance values are connected in parallel Below the first resistance, this requires a large current to reach the predetermined voltage.
  • the OCP protection point of the 2D mode is higher than that of the 3D mode, and can fully meet the needs of overcurrent protection in different modes.
  • the material cost of the resistor and the controllable switch is lower, which is conducive to cost saving.
  • a liquid crystal display device comprising the backlight driving circuit of the present invention.
  • the adjustable load is set, and the adjustable load is adjusted to different resistance values through the switching module, and the current values of the 2D and 3D corresponding protection currents can be obtained. Therefore, the present invention can provide two or more OCP thresholds, and reliable overcurrent protection can be obtained in both 2D mode and 3D mode.
  • the scheme makes good use of the overcurrent protection interface of the existing constant current driving chip itself, and can adapt to the overcurrent protection in 2D/3D situations without modifying the internal results of the chip, and effectively passes
  • the simple and practical structure provides better protection for the backlight driving circuit.
  • FIG. 1 is a schematic diagram of a conventional backlight driving circuit
  • FIG. 2 is a schematic block diagram of a backlight driving circuit of the present invention
  • FIG. 3 is a schematic diagram showing the principle of a backlight driving circuit controlled by a constant current driving chip according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram showing the principle of controlling a switching module by other circuits in a backlight driving circuit according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a driving method of a backlight driving circuit according to Embodiment 2 of the present invention. ⁇ detailed description ⁇
  • the present invention discloses a liquid crystal display device including a backlight driving circuit.
  • the backlight driving circuit includes a power module 10 and a constant current driving chip 30.
  • the power module 10 includes a first controllable switch Q1.
  • the first controllable switch Q1 and the grounding end of the backlight driving circuit are connected with an adjustable load 20, and the adjustable load 20
  • the switching module 21 can be switched with different resistance values, and the control end of the switching module 21 is coupled to the mode switching signal of the backlight driving circuit; the end of the adjustable load 20 connected to the first controllable switch Q1 is coupled to the constant current driving chip 30.
  • Stream protection port is provided to the end of the adjustable load 20 connected to the first controllable switch Q1 is coupled to the constant current driving chip 30.
  • the adjustable load is set, and the adjustable load is adjusted to different resistance values through the switching module, and the current values of the 2D and 3D corresponding protection currents can be obtained. Therefore, the present invention can provide two or more OCP thresholds, and reliable overcurrent protection can be obtained in both 2D mode and 3D mode.
  • the scheme makes good use of the overcurrent protection interface of the existing constant current driving chip itself, and can adapt to the overcurrent protection in 2D/3D situations without modifying the internal results of the chip, and effectively adopts the simple
  • the practical structure provides better protection for the backlight driving circuit.
  • the backlight driving circuit disclosed in this embodiment includes a power module and a constant current driving chip 30.
  • the power module includes a first controllable switch Q1, and between the first controllable switch Q1 and the ground of the backlight driving circuit.
  • the connection has an adjustable load, the adjustable load includes a switching module that can switch different resistance values, and the mode switching signal of the backlight driving circuit is coupled to the control end of the switching module; the end of the adjustable load connected to the first controllable switch Q1 is coupled to the constant The overcurrent protection port of the stream drive chip 30.
  • the adjustable load includes a first resistor R1 and a second resistor R2 connected in parallel, the switching module includes a second controllable switch Q2, and the second controllable switch Q2 is connected in series between the second resistor R2 and the ground;
  • the constant current driving chip 30 includes an analog dimming pin, ADIM, which controls the opening and closing of the second controllable switch Q2 by the ADIM output mode switching signal.
  • the analog dimming pin ADIM outputs a higher voltage in the 3D mode than in the 2D mode, so that the output signal of the analog dimming pin ADIM can be used as the mode switching signal. Simplify control circuitry, shorten development cycles, and reduce development and production costs.
  • the present invention can also provide mode switching signals from other circuits as shown in FIG.
  • the constant current driving chip 30 includes a comparator 31 and a protection unit 32.
  • One end of the adjustable load connected to the first controllable switch Q1 is coupled to the non-inverting input terminal of the comparator 31, and the reverse input terminal of the comparator 31 is connected with a constant voltage.
  • Reference signal (0.5V, 0.75V, etc.); the output of comparator 31 is coupled to protection unit 32, and protection unit 32 outputs a control signal to first controllable switch Q1;
  • the power module includes inductor L and diode D, and one end of inductor L The external power supply is coupled, the other end is coupled to the anode of diode D, the cathode of diode D is coupled to LED strip 40 of the backlight drive circuit, and the first controllable switch Q1 is coupled to the anode of diode D.
  • a third controllable switch Q3 may be connected in series between the output end of the LED strip 40 and the ground of the backlight driving circuit, and the control end of the third controllable switch Q3 is coupled to the PWM dimming signal.
  • the adjustable load of the parallel resistor is used, the current flows through the resistor, a voltage difference is formed across the resistor, and the voltage value is fed back to the constant current driving chip 30, and the constant current driving chip 30 can determine whether the voltage is reached according to the change of the voltage.
  • the threshold of the protection current is used to control whether the second resistor R2 is input to control the resistance of the entire adjustable load. Under the premise of a certain voltage, the second controllable switch Q2 is disconnected in the 2D mode.
  • a resistor R1 is put into use, the resistance is high, and only a small current is required to reach a predetermined voltage; in the 3D mode, the second controllable switch Q2 is turned on, and the first resistor R1 and the second resistor R2 are operated in parallel. When the two are connected in parallel, the resistance is lower than the first resistor R1, which requires a large current to reach the predetermined voltage. It can be seen that the OCP protection point of 2D mode is higher than that of 3D mode, which can fully meet the needs of overcurrent protection in different modes. In addition, the material cost of the resistor and the controllable switch is lower, which is conducive to cost savings.
  • the OCP pin of the constant current driver chip is connected to the first controllable switch Q1.
  • the source detects the input current of the backlight driving circuit, and the first resistor R1 and the second resistor R2 convert the current value into a voltage value.
  • the analog dimming pin ADIM has a small voltage, and the second controllable switch Q2 is turned off, OCP?
  • the 1-pin detection resistor is only R1; the OCP protection current is:
  • the 2D/3D signal is high (logic 1), that is, the voltage of the analog dimming pin ADIM is large, the second controllable switch Q2 is turned on, and the OCP pin detecting resistor is connected in parallel by R1 and R2.
  • the OCP protection current is:
  • this embodiment discloses a driving method of the backlight driving circuit of the present invention. Including steps:
  • step A determine the display mode of the backlight drive circuit, if it is 2D display mode, go to step B; if it is 3D display mode, go to step C;
  • the mode switching signal controls the switching module to switch to a resistance value corresponding to the 2D overcurrent protection threshold
  • the mode switching signal controls the switching module to switch to the resistance value corresponding to the 3D overcurrent protection threshold; the adjustable load can adopt the parallel resistance scheme, specifically, the adjustable load includes the first resistor and the second resistor connected in parallel.
  • the switching module includes a second controllable switch, and the second controllable switch is connected in series between the second resistor and the ground.
  • step B includes: mode switching signal output low level (logic 0) controlling the second controllable switch to be turned off;
  • step C includes: mode switching signal output high level (logic 1) controlling the second controllable switch to be turned on .
  • a current flows through the resistor, and a voltage difference is formed across the resistor.
  • the current is proportional to the voltage, so as long as the voltage value is fed back to the constant current driving chip, the constant current driving chip It is possible to judge whether the backlight driving circuit reaches the protection current according to the change of the voltage. Threshold.
  • the second controllable switch is used to control whether the second resistor is input to control the resistance of the entire adjustable load.
  • the second controllable switch is disconnected in the 2D mode, and only the first resistor is available at this time. When it is put into use, the resistance is high, only a small current is needed to reach the predetermined voltage.
  • the second controllable switch is turned on. At this time, the first resistor and the second resistor are operated in parallel, and the resistance values are connected in parallel. Below the first resistance, this requires a large current to reach the predetermined voltage. It can be seen that the OCP protection point of 2D mode is higher than that of 3D mode, which can fully meet the needs of overcurrent protection in different modes. In addition, the material cost of the resistor and the controllable switch is lower, which is conducive to cost saving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种背光驱动电路,包括电源模块和恒流驱动芯片(30),所述电源模块包括第一可控开关(Q1),所述第一可控开关(Q1)与背光驱动电路接地端之间连接有可调负载,所述可调负载包括可切换不同阻值的切换模块,所述背光驱动电路的模式切换信号耦合到切换模块的控制端,所述可调负载与第一可控开关(Q1)连接的一端耦合到所述恒流驱动芯片(30)的过流保护端口。还公开了一种背光驱动电路的驱动方法和液晶显示装置。所述背光驱动电路通过切换模块将可调负载调节到不同的电阻值,使得在2D模式和3D模式都能得到可靠的过流保护。

Description

一种背光驱动电路及其驱动方法和液晶装置
【技术领域】
本发明涉及液晶显示领域, 更具体的说, 涉及一种背光驱动电路及其驱动 方法和液晶装置。
【背景技术】
通常背光驱动电路的恒流驱动芯片都会设置过流保护端口(over current protection, 以下简称 OCP)并设有对应的 OCP阀值, 当背光驱动电路输出功率 过大, 可能会损坏元器件时, 恒流驱动芯片控制背光驱动电路断开以保护电路, 具体线路如图 1所示。
目前的背光驱动电路的恒流驱动芯片的 OCP 阀值只有一个, 一般是按照 2D显示模式来设定。 但在 3D模式下, 常出现没有达到此 OCP阀值, 过流保护 功能还没有触发, 却背光驱动电路的功率已经过高, 对背光驱动电路的元器件 有较大冲击, 减小背光驱动电路的工作寿命的情况。
【发明内容】
本发明所要解决的技术问题是提供一种对同时具备 2D/3D显示的背光驱动 电路提供可靠过流保护的背光驱动电路及其驱动方法和液晶装置。
本发明的目的是通过以下技术方案来实现的:
一种背光驱动电路, 包括电源模块和恒流驱动芯片, 所述电源模块包括第 一可控开关, 所述第一可控开关与背光驱动电路接地端之间连接有可调负载, 所述可调负载包括可切换不同阻值的切换模块, 所述背光驱动电路的模式切换 信号耦合到切换模块的控制端; 所述可调负载与第一可控开关连接的一端耦合 到所述恒流驱动芯片的过流保护端口。
进一步的, 所述可调负载包括并联的第一电阻和第二电阻, 所述切换模块 包括第二可控开关, 所述第二可控开关串接在所述第二电阻和接地端之间; 所 述第二可控开关的控制端耦合到模式切换信号。 此为一种釆用并联电阻的可调 负载, 电流流过电阻, 在电阻两端形成压差, 将电压值反馈回恒流驱动芯片, 恒流驱动芯片根据电压的变化就可以判断是否达到保护电流的阀值。 本技术方 案利用第二可控开关来控制第二电阻是否投入来控制整个可调负载的阻值, 在 电压一定的前提下, 2D模式时第二可控开关断开,此时只有第一电阻投入使用, 阻值较高, 只需要较小的电流就能达到预定的电压; 3D模式时第二可控开关导 通, 此时第一电阻和第二电阻并联运行, 两者并联后阻值低于第一电阻, 这就 需要较大的电流才能达到预定的电压。可见 2D模式的 OCP保护点比 3D模式的 高, 完全能满足不同模式下的过流保护需要。 另外电阻和可控开关的材料成本 较低, 有利于节约成本。
进一步的, 所述恒流驱动芯片包括模拟调光引脚, 所述模拟调光引脚输出 模式切换信号到所述切换模块的控制端。 根据恒流驱动芯片的特性, 模拟调光 引脚在 3D模式时输出的电压高于 2D模式时输出的电压, 因此完全可以用模拟 调光引脚的输出信号作为模式切换信号, 从而简化控制电路, 缩短开发周期, 减少开发和生产成本。
进一步的, 所述恒流驱动芯片包括比较器和保护单元, 所述可调负载与第 一可控开关连接的一端耦合到所述比较器的同向输入端, 所述比较器的反向输 入端连接有电压恒定的基准信号; 所述比较器输出端耦合到所述保护单元, 所 述保护单元输出控制信号到所述第一可控开关。 此为一种具体的恒流驱动芯片 的电路构造。
进一步的, 所述电源模块包括电感和二极管, 所述电感一端与外部电源耦 合, 另一端与所述二极管的正极耦合, 所述二极管的负极耦合到所述背光驱动 电路的灯条, 所述第一可控开关耦合到所述二极管的正极。 此为一种具体的电 源模块的电路构造。
进一步的,所述灯条为 LED灯条,所述 LED灯条的输出端和背光驱动电路 接地端之间串接有第三可控开关,所述第三可控开关的控制端耦合有 PWM调光 信号。 此为一种带调光功能的 LED背光驱动电路。
进一步的, 所述可调负载包括并联的第一电阻和第二电阻, 所述切换模块 包括第二可控开关, 所述第二可控开关串接在所述第二电阻和接地端之间; 所 述恒流驱动芯片包括模拟调光引脚, 所述模拟调光引脚输出模式切换信号耦合 到所述第二可控开关的控制端; 所述恒流驱动芯片包括比较器和保护单元, 所 述可调负载与第一可控开关连接的一端耦合到所述比较器的同向输入端, 所述 比较器的反向输入端连接有电压恒定的基准信号; 所述比较器输出端耦合到所 述保护单元, 所述保护单元输出控制信号到所述第一可控开关; 所述电源模块 包括电感和二极管, 所述电感一端与外部电源耦合, 另一端与所述二极管的正 极耦合, 所述二极管的负极耦合到所述背光驱动电路的 LED灯条, 所述第一可 控开关耦合到所述二极管的正极; 所述 LED灯条的输出端和背光驱动电路接地 端之间串接有第三可控开关, 所述第三可控开关的控制端耦合有 PWM调光信 号。 此为一种具体的背光驱动电路。
一种本发明所述背光驱动电路的驱动方法, 包括步骤:
A、 判断背光驱动电路的显示模式, 如果是 2D显示模式, 转步骤 B; 如果 是 3D显示模式, 转步骤 C;
B、 模式切换信号控制切换模块切换到 2D过流保护阀值对应的电阻值;
C、 模式切换信号控制切换模块切换到 3D过流保护阀值对应的电阻值。 进一步的, 所述可调负载包括并联的第一电阻和第二电阻, 所述切换模块 包括第二可控开关, 所述第二可控开关串接在所述第二电阻和接地端之间; 所 述步骤 B包括: 模式切换信号输出低电平控制第二可控开关断开; 所述步骤 C 包括: 模式切换信号输出高电平控制第二可控开关导通。此为一种釆用并联电阻 的可调负载, 电流流过电阻, 在电阻两端形成压差, 将电压值反馈回恒流驱动 芯片, 恒流驱动芯片根据电压的变化就可以判断是否达到保护电流的阀值。 本 技术方案利用第二可控开关来控制第二电阻是否投入来控制整个可调负载的阻 值, 在电压一定的前提下, 2D模式时第二可控开关断开, 此时只有第一电阻投 入使用, 阻值较高, 只需要较小的电流就能达到预定的电压; 3D模式时第二可 控开关导通, 此时第一电阻和第二电阻并联运行, 两者并联后阻值低于第一电 阻, 这就需要较大的电流才能达到预定的电压。 可见 2D模式的 OCP保护点比 3D模式的高, 完全能满足不同模式下的过流保护需要。 另外电阻和可控开关的 材料成本较低, 有利于节约成本。
一种液晶显示装置, 包括本发明所述的背光驱动电路。
经研究, 对于同时具有 2D/3D功能的背光驱动电路来说, 在 3D模式下, 若某些异常原因导致背光驱动电路的功率过高, 但过流保护功能还没有触发, 无法做出限制功率的动作, 会对背光驱动电路的元器件有较大冲击, 减小背光 驱动电路的工作寿命。 本发明根据 2D和 3D显示保护电流的不同, 设置了可调 负载, 通过切换模块将可调负载调节到不同的电阻值, 就能得到 2D和 3D对应 保护电流的电流值。 因此, 本发明可以提供两个甚至更多的 OCP阀值, 无论在 2D模式还是 3D模式都能得到可靠的过流保护。 而且本方案很好的利用了现有 的恒流驱动芯片本身的过流保护接口, 不需要对芯片内部的结果做改动即可适 应 2D/3D两种情形下的的过流保护, 有效的通过简单实用的结构对背光驱动电 路进行了较好的保护。
【附图说明】
图 1是现有的一种背光驱动电路的原理示意图;
图 2是本发明背光驱动电路的原理框图;
图 3是本发明实施例一背光驱动电路由恒流驱动芯片控制切换模块的原理 示意图;
图 4是本发明实施例一背光驱动电路由其他电路控制切换模块的的原理示 意图;
图 5是本发明实施例二背光驱动电路的驱动方法示意图。 【具体实施方式】
如图 2所示, 本发明公开一种液晶显示装置, 液晶显示装置包括背光驱动 电路。 背光驱动电路包括电源模块 10和恒流驱动芯片 30, 电源模块 10包括第 一可控开关 Q1 , 第一可控开关 Q1与背光驱动电路接地端之间连接有可调负载 20, 可调负载 20包括可切换不同阻值的切换模块 21 , 切换模块 21的控制端耦 合到背光驱动电路的模式切换信号; 可调负载 20与第一可控开关 Q1连接的一 端耦合到恒流驱动芯片 30的过流保护端口。
经研究, 对于同时具有 2D/3D功能的背光驱动电路来说, 在 3D模式下, 若某些异常原因导致背光驱动电路的功率过高, 但过流保护功能还没有触发, 无法做出限制功率的动作, 会对背光驱动电路的元器件有较大冲击, 减小背光 驱动电路的工作寿命。 本发明根据 2D和 3D显示保护电流的不同, 设置了可调 负载, 通过切换模块将可调负载调节到不同的电阻值, 就能得到 2D和 3D对应 保护电流的电流值。 因此, 本发明可以提供两个甚至更多的 OCP阀值, 无论在 2D模式还是 3D模式都能得到可靠的过流保护。 而且本方案很好的利用了现有 的恒流驱动芯片本身的过流保护接口, 不需要对芯片内部的结果做改动即可适 应 2D/3D两种情形下的过流保护, 有效的通过简单实用的结构对背光驱动电路 进行了较好的保护。
下面结合附图和较佳的实施例对本发明作进一步说明。
实施例一
如图 3、 4所示, 本实施例公开的背光驱动电路包括电源模块和恒流驱动芯 片 30, 电源模块包括第一可控开关 Q1 , 第一可控开关 Q1与背光驱动电路接地 端之间连接有可调负载, 可调负载包括可切换不同阻值的切换模块, 背光驱动 电路的模式切换信号耦合到切换模块的控制端;可调负载与第一可控开关 Q1连 接的一端耦合到恒流驱动芯片 30的过流保护端口。
可调负载包括并联的第一电阻 R1和第二电阻 R2, 切换模块包括第二可控 开关 Q2, 第二可控开关 Q2 串接在第二电阻 R2和接地端之间; 恒流驱动芯片 30包括模拟调光引脚 ADIM, 该模拟调光引脚 ADIM输出模式切换信号控制第 二可控开关 Q2 的打开与闭合。 根据恒流驱动芯片 30 的特性, 模拟调光引脚 ADIM在 3D模式时输出的电压高于 2D模式时输出的电压, 因此完全可以用模 拟调光引脚 ADIM的输出信号作为模式切换信号, 从而简化控制电路, 缩短开 发周期, 减少开发和生产成本。 当然, 本发明也可以如图 4所示, 从其他电路 提供模式切换信号。
恒流驱动芯片 30包括比较器 31和保护单元 32, 可调负载与第一可控开关 Q1连接的一端耦合到比较器 31的同向输入端, 比较器 31的反向输入端连接有 电压恒定的基准信号 (0.5V、 0.75V等); 比较器 31输出端耦合到保护单元 32, 保护单元 32输出控制信号到第一可控开关 Q1 ; 电源模块包括电感 L和二极管 D, 电感 L一端与外部电源耦合, 另一端与二极管 D的正极耦合, 二极管 D的 负极耦合到背光驱动电路的 LED灯条 40,第一可控开关 Q1耦合到二极管 D的 正极。
为了增加调光功能, 可以在 LED灯条 40的输出端和背光驱动电路接地端 之间串接第三可控开关 Q3 , 第三可控开关 Q3的控制端耦合到 PWM调光信号。
本实施例釆用并联电阻的可调负载, 电流流过电阻, 在电阻两端形成压差, 将电压值反馈回恒流驱动芯片 30,恒流驱动芯片 30根据电压的变化就可以判断 是否达到保护电流的阀值。 本发明利用第二可控开关 Q2来控制第二电阻 R2是 否投入来控制整个可调负载的阻值, 在电压一定的前提下, 2D模式时第二可控 开关 Q2断开, 此时只有第一电阻 R1投入使用, 阻值较高, 只需要较小的电流 就能达到预定的电压; 3D模式时第二可控开关 Q2导通,此时第一电阻 R1和第 二电阻 R2并联运行, 两者并联后阻值低于第一电阻 R1 , 这就需要较大的电流 才能达到预定的电压。可见 2D模式的 OCP保护点比 3D模式的高,完全能满足 不同模式下的过流保护需要。 另外电阻和可控开关的材料成本较低, 有利于节 约成本。
依据图 3所示举例分析: 恒流驱动芯片的 OCP引脚接第一可控开关 Q1的 源极, 侦测背光驱动电路输入电流的大小, 第一电阻 Rl、 第二电阻 R2将电流 值转化为电压值。
在 2D模式下, 模拟调光引脚 ADIM的电压较小, 第二可控开关 Q2关闭, OCP? 1脚侦测电阻只有 R1; OCP保护电流为:
I=0.5V/R1
在 3D模式下, 2D/3D信号为高电平 ( logic 1 ), 即模拟调光引脚 ADIM的 电压较大, 第二可控开关 Q2导通, OCP引脚侦测电阻由 Rl、 R2并联而成, OCP保护电流为:
I=0.5V/(R1 // R2)
由公式可见, 2D模式的 OCP保护阀值比 3D模式的高。 可以在 2D和 3D 模式下都具有可靠的过流保护能力。
实施例二
如图 5 所示, 本实施例公开了一种本发明背光驱动电路的驱动方法。 包括 步骤:
A、 判断背光驱动电路的显示模式, 如果是 2D显示模式, 转步骤 B; 如果 是 3D显示模式, 转步骤 C;
B、 模式切换信号控制切换模块切换到 2D过流保护阀值对应的电阻值;
C、 模式切换信号控制切换模块切换到 3D过流保护阀值对应的电阻值; 可调负载可以釆用并联电阻的方案, 具体来说, 可调负载包括并联的第一 电阻和第二电阻, 切换模块包括第二可控开关, 第二可控开关串接在第二电阻 和接地端之间。 此时, 步骤 B包括: 模式切换信号输出低电平 (logic 0)控制第二 可控开关断开; 步骤 C包括: 模式切换信号输出高电平 (logic 1)控制第二可控开 关导通。
根据欧姆定律, 电流流过电阻, 在电阻两端形成压差, 在阻值一定的前提 下, 电流跟电压是成正比例关系的, 因此只要将电压值反馈回恒流驱动芯片, 恒流驱动芯片就可以根据电压的变化来判断背光驱动电路是否达到保护电流的 阀值。
本实施方式利用第二可控开关来控制第二电阻是否投入来控制整个可调负 载的阻值, 在电压一定的前提下, 2D模式时第二可控开关断开, 此时只有第一 电阻投入使用, 阻值较高, 只需要较小的电流就能达到预定的电压; 3D模式时 第二可控开关导通, 此时第一电阻和第二电阻并联运行, 两者并联后阻值低于 第一电阻, 这就需要较大的电流才能达到预定的电压。 可见 2D模式的 OCP保 护点比 3D模式的高, 完全能满足不同模式下的过流保护需要。 另外电阻和可控 开关的材料成本较低, 有利于节约成本。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不 能认定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通 技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替 换, 都应当视为属于本发明的保护范围。

Claims

权利要求
1、 一种背光驱动电路, 包括电源模块和恒流驱动芯片, 所述电源模块包括 第一可控开关, 所述第一可控开关与背光驱动电路接地端之间连接有可调负载 , 所述可调负载包括可切换不同阻值的切换模块, 所述背光驱动电路的模式切换 信号耦合到切换模块的控制端; 所述可调负载与第一可控开关连接的一端耦合 到所述恒流驱动芯片的过流保护端口。
2、 如权利要求 1所述的背光驱动电路, 其中, 所述恒流驱动芯片包括模拟 调光引脚, 所述模拟调光引脚输出模式切换信号到所述切换模块的控制端。
3、 如权利要求 1所述的背光驱动电路, 其中, 所述可调负载包括并联的第 一电阻和第二电阻, 所述切换模块包括第二可控开关, 所述第二可控开关串接 在所述第二电阻和接地端之间; 所述第二可控开关的控制端耦合到模式切换信 号。
4、 如权利要求 3所述的背光驱动电路, 其中, 所述恒流驱动芯片包括模拟 调光引脚, 所述模拟调光引脚输出模式切换信号到所述切换模块的控制端。
5、 如权利要求 1所述的背光驱动电路, 其中, 所述恒流驱动芯片包括比较 器和保护单元, 所述可调负载与第一可控开关连接的一端耦合到所述比较器的 同向输入端, 所述比较器的反向输入端连接有电压恒定的基准信号; 所述比较 器输出端耦合到所述保护单元, 所述保护单元输出控制信号到所述第一可控开 关。
6、 如权利要求 1所述的背光驱动电路, 其中, 所述电源模块包括电感和二 极管, 所述电感一端与外部电源耦合, 另一端与所述二极管的正极耦合, 所述 二极管的负极耦合到所述背光驱动电路的灯条, 所述第一可控开关耦合到所述 二极管的正极。
7、 如权利要求 6所述的背光驱动电路, 其中, 所述灯条为 LED灯条, 所 述 LED灯条的输出端和背光驱动电 妻地端之间串接有第三可控开关, 所述第 三可控开关的控制端耦合有 PWM调光信号。
8、 如权利要求 1所述的背光驱动电路, 其中, 所述可调负载包括并联的第 一电阻和第二电阻, 所述切换模块包括第二可控开关, 所述第二可控开关串接 在所述第二电阻和接地端之间;
所述恒流驱动芯片包括模拟调光引脚, 所述模拟调光引脚输出模式切换信 号耦合到所述第二可控开关的控制端; 所述恒流驱动芯片包括比较器和保护单 元, 所述可调负载与第一可控开关连接的一端耦合到所述比较器的同向输入端, 所述比较器的反向输入端连接有电压恒定的基准信号; 所述比较器输出端耦合 到所述保护单元, 所述保护单元输出控制信号到所述第一可控开关;
所述电源模块包括电感和二极管, 所述电感一端与外部电源耦合, 另一端 与所述二极管的正极耦合, 所述二极管的负极耦合到所述背光驱动电路的 LED 灯条, 所述第一可控开关耦合到所述二极管的正极; 所述 LED灯条的输出端和 背光驱动电路接地端之间串接有第三可控开关, 所述第三可控开关的控制端耦 合有 PWM调光信号。
9、 一种背光驱动电路的驱动方法, 所述背光驱动电路包括电源模块和恒流 驱动芯片, 所述电源模块包括第一可控开关, 所述第一可控开关与背光驱动电 ^^地端之间连接有可调负载, 所述可调负载包括可切换不同阻值的切换模块 , 所述背光驱动电路的模式切换信号耦合到切换模块的控制端; 所述可调负载与 第一可控开关连接的一端耦合到所述恒流驱动芯片的过流保护端口, 所述驱动 方法包括步骤:
A、 判断背光驱动电路的显示模式, 如果是 2D显示模式, 转步骤 B; 如果 是 3D显示模式, 转步骤 C;
B、 模式切换信号控制切换模块切换到 2D过流保护阀值对应的电阻值;
C、 模式切换信号控制切换模块切换到 3D过流保护阀值对应的电阻值。
10、 如权利要求 9所述的背光驱动电路的驱动方法, 其中, 所述可调负载 包括并联的第一电阻和第二电阻, 所述切换模块包括第二可控开关, 所述第二 可控开关串接在所述第二电阻和接地端之间; 所述步骤 B 包括: 模式切换信号 输出低电平控制第二可控开关断开; 所述步骤 C 包括: 模式切换信号输出高电 平控制第二可控开关导通。
11、 一种液晶显示装置, 包括背光驱动电路, 所述背光驱动电路包括电源 模块和恒流驱动芯片, 所述电源模块包括第一可控开关, 所述第一可控开关与 背光驱动电路接地端之间连接有可调负载, 所述可调负载包括可切换不同阻值 的切换模块, 所述背光驱动电路的模式切换信号耦合到切换模块的控制端; 所 述可调负载与第一可控开关连接的一端耦合到所述恒流驱动芯片的过流保护端 σ 。
12、 如权利要求 11所述的液晶显示装置, 其中, 所述恒流驱动芯片包括模 拟调光引脚, 所述模拟调光 ]脚输出模式切换信号到所述切换模块的控制端。
13、 如权利要求 11所述的液晶显示装置, 其中, 所述可调负载包括并联的 第一电阻和第二电阻, 所述切换模块包括第二可控开关, 所述第二可控开关串 接在所述第二电阻和接地端之间; 所述第二可控开关的控制端耦合到模式切换 信号。
14、 如权利要求 13所述的液晶显示装置, 其中, 所述恒流驱动芯片包括模 拟调光引脚, 所述模拟调光 ]脚输出模式切换信号到所述切换模块的控制端。
15、 如权利要求 11所述的液晶显示装置, 其中, 所述恒流驱动芯片包括比 较器和保护单元, 所述可调负载与第一可控开关连接的一端耦合到所述比较器 的同向输入端, 所述比较器的反向输入端连接有电压恒定的基准信号; 所述比 较器输出端耦合到所述保护单元, 所述保护单元输出控制信号到所述第一可控 开关。
16、 如权利要求 11所述的液晶显示装置, 其中, 所述电源模块包括电感和 二极管, 所述电感一端与外部电源耦合, 另一端与所述二极管的正极耦合, 所 述二极管的负极耦合到所述液晶显示装置的灯条, 所述第一可控开关耦合到所 述二极管的正极。
17、 如权利要求 16所述的液晶显示装置, 其中, 所述灯条为 LED灯条, 所述 LED灯条的输出端和液晶显示装置接地端之间串接有第三可控开关, 所述 第三可控开关的控制端耦合有 PWM调光信号。
18、 如权利要求 11所述的液晶显示装置, 其中, 所述可调负载包括并联的 第一电阻和第二电阻, 所述切换模块包括第二可控开关, 所述第二可控开关串 接在所述第二电阻和接地端之间;
所述恒流驱动芯片包括模拟调光引脚, 所述模拟调光引脚输出模式切换信 号耦合到所述第二可控开关的控制端; 所述恒流驱动芯片包括比较器和保护单 元, 所述可调负载与第一可控开关连接的一端耦合到所述比较器的同向输入端, 所述比较器的反向输入端连接有电压恒定的基准信号; 所述比较器输出端耦合 到所述保护单元, 所述保护单元输出控制信号到所述第一可控开关;
所述电源模块包括电感和二极管, 所述电感一端与外部电源耦合, 另一端 与所述二极管的正极耦合, 所述二极管的负极耦合到所述液晶显示装置的 LED 灯条, 所述第一可控开关耦合到所述二极管的正极; 所述 LED灯条的输出端和 液晶显示装置接地端之间串接有第三可控开关, 所述第三可控开关的控制端耦 合有 PWM调光信号。
PCT/CN2013/073783 2013-03-29 2013-04-07 一种背光驱动电路及其驱动方法和液晶装置 WO2014153793A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/880,742 US8890423B2 (en) 2013-03-29 2013-04-07 Backlight driving circuit, LCD device, and method for driving backlight driving circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310109280.5A CN103165085B (zh) 2013-03-29 2013-03-29 一种背光驱动电路及其驱动方法和液晶装置
CN201310109280.5 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014153793A1 true WO2014153793A1 (zh) 2014-10-02

Family

ID=48588122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073783 WO2014153793A1 (zh) 2013-03-29 2013-04-07 一种背光驱动电路及其驱动方法和液晶装置

Country Status (2)

Country Link
CN (1) CN103165085B (zh)
WO (1) WO2014153793A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10420196B2 (en) 2014-09-16 2019-09-17 Koito Manufacturing Co., Ltd. Lighting circuit and vehicle lamp having the same
CN111327851A (zh) * 2020-03-27 2020-06-23 深圳创维-Rgb电子有限公司 一种oled电源电路、oled电视电源及oled电视
CN111669528A (zh) * 2020-05-11 2020-09-15 深圳创维-Rgb电子有限公司 一种oled驱动电源及oled电视

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415105B (zh) * 2013-07-02 2016-05-11 深圳Tcl新技术有限公司 背光模组、补偿显示器背光源的方法及显示器
CN103440848B (zh) * 2013-09-02 2016-01-20 深圳市华星光电技术有限公司 背光驱动电路
CN103606884A (zh) * 2013-11-25 2014-02-26 深圳市华星光电技术有限公司 过流保护电路、led背光驱动电路以及液晶显示器
US9489898B2 (en) 2013-12-06 2016-11-08 Shenzhen China Star Optoelectronics Technology Co., Ltd. LED boost converter and backlight LED driver device using the same
CN103680444B (zh) * 2013-12-06 2016-03-30 深圳市华星光电技术有限公司 Led升压转换器及应用其的背光源led驱动装置
CN103687240B (zh) * 2013-12-17 2016-03-30 深圳市华星光电技术有限公司 过压过流保护电路及电子装置
CN109410847A (zh) * 2018-11-21 2019-03-01 惠科股份有限公司 一种背光控制电路和控制方法
CN109509449B (zh) * 2018-12-19 2021-07-06 惠科股份有限公司 电流调节电路、驱动电路及显示装置
CN110070836B (zh) * 2019-04-19 2021-01-26 重庆两江联创电子有限公司 背光模组驱动电路
CN115035867B (zh) * 2022-07-20 2023-04-28 绵阳惠科光电科技有限公司 背光驱动电路及方法、背光模组以及显示装置
EP4339932A1 (en) 2022-07-20 2024-03-20 Mianyang Hkc Optoelectronics Technology Co., Ltd Backlight driving circuit, backlight module, and display device
CN115734432B (zh) * 2022-11-21 2023-08-11 珠海市圣昌电子有限公司 一种可切换输出模式多路输出调光电源及其使用方法
WO2024178613A1 (zh) * 2023-02-28 2024-09-06 京东方科技集团股份有限公司 驱动芯片的温控电路和温控方法和时序控制驱动板

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070001625A1 (en) * 2005-06-30 2007-01-04 Samsung Electro-Mechanics Co., Ltd. Light emitting diode driving circuit for backlight having constant current control function
CN101533607A (zh) * 2008-03-14 2009-09-16 原景科技股份有限公司 发光二极管的驱动电路以及发光二极管的驱动方法
US20100194301A1 (en) * 2009-02-05 2010-08-05 Denso Corporation Light emitting diode driving circuit
CN101944331A (zh) * 2010-09-15 2011-01-12 深圳创维-Rgb电子有限公司 一种电视机及其背光控制电路
CN202205441U (zh) * 2011-08-03 2012-04-25 青岛海信电器股份有限公司 背光控制电路、背光照明装置和led液晶显示装置
CN102665325A (zh) * 2012-04-12 2012-09-12 深圳市华星光电技术有限公司 一种 led 背光驱动电路、背光模组及液晶显示装置
US20120229036A1 (en) * 2011-03-07 2012-09-13 Hitachi Displays, Ltd. Liquid crystal display device
CN102855849A (zh) * 2012-09-20 2013-01-02 青岛海信电器股份有限公司 一种液晶背光驱动电流控制装置
CN102881262A (zh) * 2012-09-28 2013-01-16 深圳Tcl新技术有限公司 Led背光驱动装置、方法和led背光模组

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101416228B1 (ko) * 2007-07-06 2014-07-08 삼성전자주식회사 2차원/3차원 영상 호환용 디스플레이 장치의 구동 장치 및그 구동방법
JP2009058857A (ja) * 2007-09-03 2009-03-19 Toshiba Matsushita Display Technology Co Ltd バックライト装置
CN201680231U (zh) * 2010-03-17 2010-12-22 Bcd半导体制造有限公司 一种lcd的led背光驱动装置
JP5749465B2 (ja) * 2010-09-07 2015-07-15 ローム株式会社 発光素子の駆動回路、それを用いた発光装置および電子機器
CN201846423U (zh) * 2010-10-26 2011-05-25 康佳集团股份有限公司 用于led背光电视的电源及led背光电视
CN102810299B (zh) * 2011-06-03 2015-06-03 乐金显示有限公司 背光单元及其驱动方法
CN102306484A (zh) * 2011-08-31 2012-01-04 福州华映视讯有限公司 产生背光驱动电流的控制电路与其方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070001625A1 (en) * 2005-06-30 2007-01-04 Samsung Electro-Mechanics Co., Ltd. Light emitting diode driving circuit for backlight having constant current control function
CN101533607A (zh) * 2008-03-14 2009-09-16 原景科技股份有限公司 发光二极管的驱动电路以及发光二极管的驱动方法
US20100194301A1 (en) * 2009-02-05 2010-08-05 Denso Corporation Light emitting diode driving circuit
CN101944331A (zh) * 2010-09-15 2011-01-12 深圳创维-Rgb电子有限公司 一种电视机及其背光控制电路
US20120229036A1 (en) * 2011-03-07 2012-09-13 Hitachi Displays, Ltd. Liquid crystal display device
CN202205441U (zh) * 2011-08-03 2012-04-25 青岛海信电器股份有限公司 背光控制电路、背光照明装置和led液晶显示装置
CN102665325A (zh) * 2012-04-12 2012-09-12 深圳市华星光电技术有限公司 一种 led 背光驱动电路、背光模组及液晶显示装置
CN102855849A (zh) * 2012-09-20 2013-01-02 青岛海信电器股份有限公司 一种液晶背光驱动电流控制装置
CN102881262A (zh) * 2012-09-28 2013-01-16 深圳Tcl新技术有限公司 Led背光驱动装置、方法和led背光模组

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10420196B2 (en) 2014-09-16 2019-09-17 Koito Manufacturing Co., Ltd. Lighting circuit and vehicle lamp having the same
CN111327851A (zh) * 2020-03-27 2020-06-23 深圳创维-Rgb电子有限公司 一种oled电源电路、oled电视电源及oled电视
CN111669528A (zh) * 2020-05-11 2020-09-15 深圳创维-Rgb电子有限公司 一种oled驱动电源及oled电视

Also Published As

Publication number Publication date
CN103165085B (zh) 2016-06-29
CN103165085A (zh) 2013-06-19

Similar Documents

Publication Publication Date Title
WO2014153793A1 (zh) 一种背光驱动电路及其驱动方法和液晶装置
CN102682721B (zh) 一种led背光系统及显示装置
TWI535175B (zh) Load driving circuit and method thereof
CN106793246B (zh) 泄放电路及其控制方法及led控制电路
TWI482402B (zh) 自舉型閘極驅動器
CN103177698B (zh) 一种led背光驱动电路及背光模组
WO2014180057A1 (zh) 一种led背光驱动电路、背光模组和液晶显示装置
WO2014079038A1 (zh) 一种led背光驱动电路、背光模组和液晶显示装置
US10270355B1 (en) AC-AC conversion circuit and device
WO2014094316A1 (zh) 一种led背光驱动电路和液晶显示装置
WO2014183329A1 (zh) 一种过压保护电路、过压保护方法及面板驱动电路
CN103401209A (zh) Led背光短路保护电路
US8624706B2 (en) Control circuit for indicator light
WO2014089855A1 (zh) 一种led背光驱动电路和液晶显示装置
CN208656639U (zh) 用于开关变换器的控制电路及开关变换器
CN106658838A (zh) 照明装置、控制芯片、线性调光系统及线性调光方法
CN206100533U (zh) 一种高压恒流灯带电路
CN204377201U (zh) 一种led恒流驱动电路及led汽车照明装置
CN107914636A (zh) 车载调光控制器
CN204117010U (zh) 开关型稳压电路、恒压恒流产生电路及恒压恒流电源设备
CN104754800B (zh) 一种led模组输入浪涌电流的控制装置
US20220086983A1 (en) Led system for vehicle lighting having high efficiency and high reliability
US8890423B2 (en) Backlight driving circuit, LCD device, and method for driving backlight driving circuit
CN101702850B (zh) 可控硅关断负载的电路及方法
CN203331936U (zh) 非卤素灯用作车灯的解码电路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13880742

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880285

Country of ref document: EP

Kind code of ref document: A1