WO2014153166A2 - Therapeutic use of antibodies to hgf - Google Patents

Therapeutic use of antibodies to hgf Download PDF

Info

Publication number
WO2014153166A2
WO2014153166A2 PCT/US2014/029383 US2014029383W WO2014153166A2 WO 2014153166 A2 WO2014153166 A2 WO 2014153166A2 US 2014029383 W US2014029383 W US 2014029383W WO 2014153166 A2 WO2014153166 A2 WO 2014153166A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
sequence
antibody
hgf
variable heavy
Prior art date
Application number
PCT/US2014/029383
Other languages
English (en)
French (fr)
Other versions
WO2014153166A3 (en
Inventor
Leon F. GARCIA-MARTINEZ
Andrew L. Feldhaus
Katie ANDERSON
Benjamin H. Dutzar
John A. Latham
Original Assignee
Alder Biopharmaceuticals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alder Biopharmaceuticals, Inc. filed Critical Alder Biopharmaceuticals, Inc.
Publication of WO2014153166A2 publication Critical patent/WO2014153166A2/en
Publication of WO2014153166A3 publication Critical patent/WO2014153166A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/10Drugs for disorders of the urinary system of the bladder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • A61P33/06Antimalarials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • This invention pertains to antibodies and fragments thereof, preferably high affinity or avidity antibodies having binding specificity to Hepatocyte Growth Factor (hereinafter "HGF"). More specifically, the invention also pertains to methods of screening for diseases and disorders associated with HGF, and methods of preventing or treating diseases and disorders associated with HGF by administering said antibodies or fragments thereof.
  • HGF Hepatocyte Growth Factor
  • Hepatocyte Growth Factor (also known as scatter factor (SF) is produced as a single-chain inactive precursor that is cleaved by serine proteases into two chains that are linked by a disulfide bond. (Abounader, R., et ah, Neuro-Oncology, 7:436-451 (2005)). The gene encoding HGF is located on chromosome 7q21.1.
  • the biologically active form of HGF is a heterodimer composed of a 69-kDa a-chain and a 34-kDa ⁇ -chain.
  • the a-chain contains an N-terminal hairpin domain and 4 kringle domains, while the ⁇ -chain contains a serine protease-like domain having no enzymatic activity. Id.
  • HGF Human Hepatocyte Growth Factor
  • HGF pleiotropic activity of HGF are mediated through its receptor, a transmembrane tyrosine kinase encoded by the proto-oncogene c-met.
  • HGF and its receptor c-met have been shown to be involved in the initiation, invasion and metastasis of tumors (Jeffers et al., J. Mol. Med. 74:505, 1996; Comoglio and Trusolino, J. Clin. Invest. 109:857, 2002).
  • HGF/c-met are coexpressed, often over-expressed, on various human solid tumors including tumors derived from lung, colon, rectum, stomach, kidney, ovary, skin, multiple myeloma and thyroid tissue (Prat et al., Int. J. Cancer 49:323, 1991 ; Chan et al., Oncogene 2:593, 1988; Weidner et al., Am. J. Respir. Cell Mol. Biol, 8:229, 1993; Derksen et al., Blood 99: 1405, 2002). HGF acts as an autocrine (Rong et al., Proc. Natl. Acad. Sci.
  • HGF is a 102 kDa protein with sequence and structural similarity to plasminogen and other enzymes of blood coagulation (Nakamura et al., Nature 342:440, 1989; Weidner et al., Am. J. Respir. Cell. Mol. Biol. 8:229, 1993, each of which is incorporated herein by reference).
  • Human HGF is synthesized as a 728 amino acid precursor (preproHGF), which undergoes intracellular cleavage to an inactive, single chain form (proHGF) (Nakamura et al., Nature 342:440, 1989: Rosen et al., J. Cell. Biol. 127: 1783, 1994).
  • proHGF Upon extracellular secretion, proHGF is cleaved to yield the biologically active disulfide-linked heterodimeric molecule composed of an alpha.subunit and beta-subunit (Nakamura et al., Nature 342:440, 1989; Naldini et al., EMBO J. 11 :4825, 1992).
  • the alpha-subunit contains 440 residues (69 kDa with glycosylation), consisting of the N-terminal hairpin domain and four kringle domains.
  • the beta-subunit contains 234 residues (34 kDa) and has a serine protease-like domain, which lacks proteolytic activity.
  • HGF HGF contains 4 putative N- glycosylation sites, 1 in the alpha-subunit and 3 in the beta-subunit.
  • c-met is a member of the class IV protein tyrosine kinase receptor family.
  • the full length c-met gene was cloned and identified as the c-met proto-oncogene (Cooper et al., Nature 311 :29, 1984; Park et al., Proc. Natl. Acad. Sci. USA 84:6379, 1987).
  • the c-met receptor is initially synthesized as a single chain, partially glycosylated precursor, ⁇ 170 ( ⁇ ⁇ ) (Park et al., Proc. Natl. Acad. Sci.
  • the protein Upon further glycosylation, the protein is proteolytically cleaved into a heterodimeric 190 kDa mature protein (1385 amino acids), consisting of the 50 kDa alpha-subunit (residues 1-307) and the 145 kDa beta- subunit.
  • the cytoplasmic tyrosine kinase domain of the beta-subunit is involved in signal transduction.
  • HGF inhibitors or HGF antagonists include truncated HGF proteins such as NK1 (N terminal domain plus kringle domain 1 : Lokker et al., J. Biol. Chem. 268: 17145, 1993); NK2 (N terminal domain plus kringle domains 1 and 2: Chan et al., Science 254: 1382, 1991); and NK4 (N-terminal domain plus four kringle domains), which was shown to partially inhibit the primary growth and metastasis of murine lung tumor LLC in a nude mouse model (Kuba et al., Cancer Res. 60:6737, 2000).
  • NK1 N terminal domain plus kringle domain 1 : Lokker et al., J. Biol. Chem. 268: 17145, 1993
  • NK2 N terminal domain plus kringle domains 1 and 2: Chan et al., Science 254: 1382, 1991
  • NK4 N-terminal domain plus four kringle domains
  • HGF promotes the growth and/or scattering of various cell types, and has been shown to be involved in the promotion of angiogenesis, the inhibition of cell growth, and the conversion from a mesenchymal to an epithelial phenotype. Also, both HGF and c-met are expressed in a wide variety of human tumors, and their expression levels is sometimes correlated with poor prognosis. Moreover HGF is believed to play a role in the development of a multitude of diseases and disorders, including but not limited to the development and metastasis of numerous cancers, and the development of macular degeneration.
  • HGF antagonists and compositions containing and methods useful for preventing or treating diseases associated with HGF, as well as methods of screening to identify patients having diseases or disorders associated with HGF are particularly preferred.
  • anti-HGF antagonists and compositions containing which effectively inhibit at least one HGF associated biological activity and which elicit minimal or no adverse reactions when administered to a patient are particularly preferred.
  • the present invention is directed to specific antibodies and fragments thereof having binding specificity for HGF, in particular antibodies having desired epitopic specificity, high affinity or avidity and/or functional properties and the use thereof in therapy and diagnostics.
  • the invention provides chimeric or humanized antibodies and fragments thereof capable of binding to HGF and/or the HGF-DGFR (c- met) complex.
  • Another embodiment of this invention relates to the antibodies described herein, comprising the sequences of the VH, VL and CDR polypeptides described herein, and the polynucleotides encoding them. In more specific embodiments of the invention these antibodies will possess binding affinities ( d's) less than 500 picomolar and/or off values less than or equal to 10-4 S-l .
  • the invention provides rabbit antibodies and humanized and chimeric antibodies derived therefrom specific to HGF as well as antibody fragments specific to HGF which include e.g., Fab', F(ab')2, Fv, scFv fragments, SMIPs (small molecule immunopharmaceuticals), camelbodies, nanobodies, monovalent antibodies such as MetMab like antibodies, and IgNAR which may be used in therapy and diagnostics.
  • the invention provides nucleic acids and host cells containing that encode for and result in the expression of the subject anti-HGF antibodies, i.e., rabbit antibodies and antibody fragments and modified forms thereof including by way of example humanized and chimeric antibodies derived therefrom as well as antibody fragments which include e.g., Fab', F(ab')2, Fv, scFv fragments, SMIPs (small molecule immunopharmaceuticals), camelbodies, nanobodies, monovalent antibodies such as MetMab like antibodies, and IgNAR.
  • the subject anti-HGF antibodies i.e., rabbit antibodies and antibody fragments and modified forms thereof including by way of example humanized and chimeric antibodies derived therefrom as well as antibody fragments which include e.g., Fab', F(ab')2, Fv, scFv fragments, SMIPs (small molecule immunopharmaceuticals), camelbodies, nanobodies, monovalent antibodies such as MetMab like antibodies, and IgN
  • the invention relates to expression systems for the manufacture of the inventive anti-HGF antibodies, including yeast, fungi, mammalian, and other cells useful for the manufacture of antibodies and antibody fragments.
  • the invention relates to novel antibodies and antibody fragments that specifically bind to human HGF which compete with and/or specifically bind to the same or overlapping epitope(s) on HGF as any of the anti-HGF antibodies and antibody fragments exemplified herein.
  • the invention provides anti- HGF antibodies and antibody fragments that partially or fully neutralize HGF, and which partially or completely inhibit one or more biological activities of HGF such as the ability of HGF to cause fibrosis or the scattering, proliferation, angiogenesis, chemotaxis of cells .
  • the invention further pertains to the in vivo use of the subject anti-HGF antibodies and antibody fragments alone or in association with other active agents or drugs for blocking, inhibiting or neutralizing HGF or at least one activity of HGF and/or for inhibiting or blocking the HGF/HGF-R (c-met) interaction or inhibiting c- met activation.
  • the invention further specifically pertains to the in vivo use of the subject anti-HGF antibodies and antibody fragments alone or in association with other active agents or drugs.
  • the invention further specifically pertains to the, anti-HGF antibodies described herein, or fragments thereof, for ameliorating or reducing the symptoms of, or treating, or preventing, the following non-limiting listing of proliferative, nonproliferative diseases and disorders such as cancers, including ovarian cancer, breast cancer, lung cancer (small cell or non-small cell), colon and colorectal cancer, prostate cancer, pancreatic cancer, renal cancer, gastric cancer, liver cancer, bladder cancer, thyroid cancer, endometrial cancer, head-and-neck tumors, melanoma, sarcomas, leukemias; lymphomas; and brain tumors (e.g., glioblastomas), of children or adults; macular degeneration; Alzheimer's disease; and malarial infection.
  • the disease is selected from a cancer or macular degeneration.
  • the invention further pertains to medicaments for the therapeutic and/or prophylactic treatment of different diseases such as a cancer, a tumor, a cell proliferative disorder, an immune (such as autoimmune) disorder and/or an angiogenesis-related disorder.
  • the invention provides use of a nucleic acid of the invention in the preparation of a medicament for the therapeutic and/or prophylactic treatment of a disease, such as a cancer, a tumor, a cell proliferative disorder, an immune (such as autoimmune) disorder and/or an angiogenesis-related disorder.
  • the invention further pertains to the use of an expression vector of the invention in the preparation of a medicament for the therapeutic and/or prophylactic treatment of a disease, such as a cancer, a tumor, a cell proliferative disorder, an immune (such as autoimmune) disorder and/or an angiogenesis-related disorder.
  • a disease such as a cancer, a tumor, a cell proliferative disorder, an immune (such as autoimmune) disorder and/or an angiogenesis-related disorder.
  • the invention provides use of an of a host cell of the invention in the preparation of a medicament for the therapeutic and/or prophylactic treatment of a disease, such as a cancer, a tumor, a cell proliferative disorder, an immune (such as autoimmune) disorder and/or an angiogenesis-related disorder.
  • the invention provides the use of an article of manufacture of the invention in the preparation of a medicament for the therapeutic and/or prophylactic treatment of a disease, such as a cancer, a tumor, a cell proliferative disorder, an immune (such as autoimmune) disorder and/or an angiogenesis-related disorder.
  • a disease such as a cancer, a tumor, a cell proliferative disorder, an immune (such as autoimmune) disorder and/or an angiogenesis-related disorder.
  • the invention further pertains to the use of a kit of the invention in the preparation of a medicament for the therapeutic and/or prophylactic treatment of a disease, such as a cancer, a tumor, a cell proliferative disorder, an immune (such as autoimmune) disorder and/or an angiogenesis-related disorder.
  • the invention further specifically pertains to modulating disease states associated with dysregulation of the HGF/c-met signaling axis and thereby modulating at least one of cell proliferation, invasion, metastasis and angiogenesis.
  • Methods of the invention can be used to affect any pathological state associated with dysregulation of the HGF/c-met signaling which includes chronic and acute disorders or diseases including those pathological conditions which predispose the mammal to the disorder in question.
  • disorders to be treated herein include malignant and benign tumors; non-leukemias and lymphoid malignancies; neuronal, glial, astrocytal, hypothalamic and other glandular, macrophagal, epithelial, stromal and blastocoelic disorders; and inflammatory, immunologic and other angiogenesis-related disorders, carcinoma, lymphoma, blastoma, sarcoma, and leukemia.
  • cancers include squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney cancer, liver cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma and various types of head and neck cancer; disorders involving dysregulation of angiogenesis including both non-neoplastic and neoplastic conditions such as the cancers described herein and non-neoplastic disorders including but are not limited to undesired or aberrant hypertrophy, arthritis, rheumatoid arthritis (RA), psoriasis, psoriatic plaques, sarcoidosis,
  • RA
  • a specific binding agent to HGF according to the invention is used with one or more other therapeutic agents to treat various cancers.
  • a specific binding agent to HGF is used with one or more particular therapeutic agents to treat or prevent malaria.
  • a specific binding agent to HGF according to the invention is used with one or more particular therapeutic agents to treat or prevent proliferative diabetic retinopathy.
  • two, three, or more agents may be administered.
  • such agents may be provided together by inclusion in the same formulation.
  • such agents and a specific binding agent to HGF according to the invention may be provided together by inclusion in the same formulation.
  • such agents may be formulated separately and provided together by inclusion in a treatment kit.
  • such agents and a specific binding agent to HGF may be formulated separately and provided together by inclusion in a treatment kit.
  • such agents may be provided separately.
  • the invention also contemplates conjugates of anti-HGF antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties.
  • the invention also contemplates methods of making said chimeric or humanized anti- HGF or anti-HGF/HGF-R complex antibodies and binding fragments thereof.
  • binding fragments include, but are not limited to, Fab, Fab', F(ab')2, Fv, scFv fragments, SMIPs (small molecule immunopharmaceuticals), camelbodies, nanobodies, and IgNAR.
  • Embodiments of the invention further pertain to the use of anti-HGF antibodies for the diagnosis, assessment and treatment of diseases and disorders associated with HGF or aberrant expression thereof.
  • the invention also contemplates the use of fragments of anti-HGF antibodies for the diagnosis, assessment and treatment of diseases and disorders associated with HGF or aberrant expression thereof.
  • Other embodiments of the invention relate to the production of anti-HGF antibodies in recombinant host cells, preferably diploid yeast such as diploid Pichia and other yeast strains.
  • Figure 1 provides the human-HGF ELISA binding data obtained following the protocol in Example 8 infra for antibody Abl .
  • Figure 3 provides the human-HGF ELISA binding data obtained following the protocol in Example 8 infra for antibody Ab7.
  • Figure 4 provides the human-HGF ELISA binding data obtained following the protocol in Example 8 infra for antibody Ab8.
  • Figure 5 provides the human-HGF ELISA binding data obtained following the protocol in Example 8 infra for antibody Ab9.
  • Figure 6 provides the human-HGF ELISA binding data obtained following the protocol in Example 8 infra for antibody AblO.
  • Figure 7 provides the human-HGF ELISA binding data obtained following the protocol in Example 8 infra for antibody Abl 2.
  • Figure 8 provides the human-HGF ELISA binding data obtained following the protocol in Example 8 infra for antibody Abl 4.
  • Figure 9 provides the human-HGF ELISA binding data obtained following the protocol in Example 8 infra for antibody Abl9.
  • Figure 10 provides the human-HGF ELISA binding data obtained following the protocol in Example 8 infra for antibody Ab21.
  • Figure 1 1 provides the human-HGF ELISA binding data obtained following the protocol in Example 8 infra for antibody Ab23.
  • Figure 12 provides the human-HGF ELISA binding data obtained following the protocol in Example 8 infra for antibody Ab24.
  • Figure 13 provides the human-HGF ELISA binding data obtained following the protocol in Example 8 infra for antibody Ab25.
  • Figure 14 provides the human-HGF ELISA binding data obtained following the protocol in Example 8 infra for antibody Ab28.
  • Figure 15 provides the response of subcutaneous U-87MG glioma to treatment with a negative control antibody, AblO and AM 2 (10 mg/kg/inj) obtained following the protocol corresponding to Figure 15 and 16 in Example 10 infra.
  • Figure 16 provides the survival proportions curve of subcutaneous U-87MG glioma treated with either a negative control antibody, or AblO or Abl2 (10 mg/kg/inj) obtained following the protocol for Figure 15 and 16 in Example 10 infra.
  • Figure 17 provides the response of subcutaneous U-87MG glioma to treatment with increasing doses of Ab8 (10, 2.5 and 0.25 mg/kg/inj) or a negative control antibody (10 mg/kg/inj) obtained following the protocol corresponding to Figures 17 and 18 described in Example 10 infra.
  • Figure 18 provides the survival proportions curve of subcutaneous U-87MG glioma treated with either increasing doses of Ab8 (10, 2.5 and 0.25 mg/kg/inj) or a negative control antibody (10 mg/kg/inj) obtained following the experimental protocol corresponding to Figures 17 and 18 described in Example 10 infra.
  • Figure 19 provides the response of subcutaneous U-87MG glioma to treatment with increasing doses of AblO (10, 2.5 and 0.25 mg/kg/inj) or a negative control antibody (10 mg/kg/inj) obtained following the protocol corresponding to Figures 19 and 20 described in Example 10 infra.
  • Figure 20 provides the survival proportions curve of subcutaneous U-87MG glioma treated with either increasing doses of AblO (10, 2.5 and 0.25 mg/kg/inj) or a negative control antibody (10 mg/kg/inj) obtained following the protocol corresponding to Figures 19 and 20 in Example 10 infra.
  • Figure 21 provides the response of subcutaneous U-87MG glioma to treatment with increasing doses of Ab28 (30, 10, and 2.5 mg/kg/inj) or a negative control antibody (30 mg/kg/inj) obtained following the experimental protocol corresponding to Figures 21 and 22 described in Example 10 infra.
  • Figure 22 provides the survival proportions curve of subcutaneous U-87MG glioma treated with either increasing doses of Ab28 (30, 10, and 2.5 mg/kg/inj) or a negative control antibody (30 mg/kg/inj) obtained following the experimental protocol corresponding to Figures 21 and 22 described in Example 10 infra.
  • Figure 23 contains data from experiments showing the inhibition of human- HGF driven phosphorylation of Y1234/35, Y1003 and Y1349 of c-met by Ab8 using PC-3 cells (prostate adenocarcinoma) following the experimental protocol described in Example 11 infra.
  • Figures 24-37 respectively contain the results of experiments assaying the effect of different anti-HGF antibodies according to the invention (Abl, Ab2, Ab7, Ab8, Ab9, AblO, Abl 2, Abl 4, Abl 9, Ab21 , Ab23, Ab24, Ab25 and Ab28) on human- HGF driven cell proliferation of 4mBr-5 cells (rhesus monkey bronchial epithelial cells) following the experimental protocol in Example 12 infra.
  • Figure 38 contains the results of experiments assaying the effect of an anti- HGF antibody (Ab8) according to the invention on human-HGF driven cell invasion of DBTRG cells (human glioblastoma) using Matrigel chambers following the experimental protocol described in Example 13 infra.
  • Figures 39A-39G provide the polypeptide sequences of the full-length heavy chain for antibodies Abl -Ab21 , and Ab23-28 aligned by their framework regions (FR), complementarity determining regions (CDRs), and constant regions.
  • FR framework regions
  • CDRs complementarity determining regions
  • Figures 40A-40D provide the polypeptide sequences of the full-length light chain for antibodies Abl-Ab21 and Ab23-28 aligned by their framework regions (FR), complementarity determining regions (CDRs), and constant regions.
  • FR framework regions
  • CDRs complementarity determining regions
  • Figure 41A-41 S provide the polynucleotide sequences encoding the full- length heavy chain for antibodies Abl-Ab21 and Ab23-28 aligned by their framework regions (FR), complementarity determining regions (CDRs), and constant regions.
  • Figure 42A-42J provide the polynucleotide sequences encoding the full- length light chain for antibodies Abl-Ab21 and Ab23-28 aligned by their framework regions (FR), complementarity determining regions (CDRs), and constant regions.
  • Figure 43 provides the polypeptide sequence coordinates for the variable region and complementarity determining regions (CDRs) of the heavy chain for antibodies Abl-Ab21 and Ab23-28.
  • Figure 44 provides the polypeptide sequence coordinates for the constant region and framework regions (FR) of the heavy chain for antibodies Abl-Ab21, and Ab23-28.
  • Figure 45 provides the polypeptide sequence coordinates for the variable region and complementarity determining regions (CDRs) of the light chain for antibodies Abl-Ab21 and Ab23-28.
  • Figure 46 provides the polypeptide sequence coordinates for the constant region and framework regions (FR) of the light chain for antibodies Abl-Ab21, and Ab23-28.
  • Figure 47 provides the polynucleotide sequence coordinates for the variable region and complementarity detemiining regions (CDRs) of the heavy chain for antibodies Abl-Ab21 and Ab23-28.
  • Figure 48 provides the polynucleotide sequence coordinates for the constant region and framework regions (FR) of the heavy chain for antibodies Abl-Ab21 and Ab23-28.
  • Figure 49 provides the polynucleotide sequence coordinates for the variable region and complementarity determining regions (CDRs) of the light chain for antibodies Abl-Ab21, and Ab23-28.
  • Figure 50 provides the polynucleotide sequence coordinates for the constant region and framework regions (FR) of the light chain for antibodies Abl-Ab21, and Ab23-28.
  • HGF Hepatocyte Growth Factor
  • Hepatocyte Growth Factor Receptor As used herein, the terms “HGF-R” and “c-met” refer to a cellular receptor for hepatocyte growth factor (HGF), which typically includes an extracellular domain, a transmembrane domain and an intracellular domain, as well as variants and fragments thereof which retain the ability to bind HGF, and includes the polypeptide molecule that comprises the full-length, native amino acid sequence.
  • HGF Human Hepatocyte Growth Factor
  • HGF is a multifunctional heterodimeric polypeptide produced by mesenchymal cells.
  • HGF has been shown to stimulate angiogenesis, morphogenesis and motogenesis, as well as the growth and scattering of various cell types (Bussolino et al., J. Cell. Biol. 119: 629, 1992; Zarnegar and Michalopoulos, J. Cell. Biol. 129:1 177, 1995; Matsumoto et al, Ciba. Found. Symp. 212:198, 1997; Birchmeier and Gherardi, Trends Cell. Biol. 8:404, 1998; Xin et al. Am. J. Pathol. 158: 11 11, 2001).
  • HGF pleiotropic activity of HGF are mediated through its receptor, a transmembrane tyrosine kinase encoded by the proto- oncogene c-met.
  • HGF and its receptor c-met have been shown to be involved in the initiation, invasion and metastasis of tumors (Jeffers et al., J. Mol. Med. 74:505, 1996; Comoglio and Trusolino, J. Clin. Invest. 109:857, 2002).
  • HGF/c-met are coexpressed, often over- expressed, on various human solid tumors including tumors derived from lung, colon, rectum, stomach, kidney, ovary, skin, multiple myeloma and thyroid tissue (Prat et al., Int. J. Cancer 49:323, 1991 ; Chan et al, Oncogene 2:593, 1988; Weidner et al., Am. J. Respir. Cell. Mol. Biol. 8:229, 1993; Derksen et al., Blood 99: 1405, 2002). HGF acts as an autocrine (Rong et al., Proc. Natl. Acad. Sci.
  • HGF is a 102 kDa protein with sequence and structural similarity to plasminogen and other enzymes of blood coagulation (Nakamura et al, Nature 342:440, 1989; Weidner et al., Am. J. Respir. Cell. Mol. Biol. 8:229, 1993).
  • Human HGF is synthesized as a 728 amino acid precursor (preproHGF), which undergoes intracellular cleavage to an inactive, single chain form (proHGF) (Nakamura et al., Nature 342:440, 1989; Rosen et al, J. Cell. Biol. 127:1783, 1994). Upon extracellular secretion, proHGF is cleaved to yield the biologically active disulfide-linked heterodimeric molecule composed of an a-subunit and n-subunit (Nakamura et al., Nature 342:440, 1989; Naldini et al., EMBO J. 1 1 :4825, 1992).
  • the alpha-subunit contains 440 residues (69 kDa with glycosylation), consisting of the N- terminal hairpin domain and four kringle domains.
  • the beta-subunit contains 234 residues (34 kDa) and has a serine protease-like domain, which lacks proteolytic activity.
  • c-met or "HGF-R” is a member of the class IV protein tyrosine kinase receptor family.
  • the full length c-met gene was cloned and identified as the c-met proto-oncogene (Cooper et al., Nature 311 :29, 1984; Park et al., Proc. Natl. Acad. Sci. USA 84:6379, 1987).
  • NK2 (a protein encompassing the N-terminus and first two kringle domains of the alpha-subunit) is sufficient for binding to c-met and activation of the signal cascade for motility, however the full length protein is required for the mitogenic response (Weidner et al, Am. J.
  • HGF/c-met have been reported to play important roles in several aspects of cancer development such as tumor initiation, invasion, metastasis, regulation of apoptosis and angiogenesis.
  • truncated HGF proteins such as NK1 (N terminal domain plus kringle domain 1 ; Lokker et al., J. Biol. Chem.
  • NK2 N terminal domain plus kringle domains 1 and 2; Chan et al., Science 254: 1382, 1991
  • NK4 N- terminal domain plus four kringle domains; Kuba et al., Cancer Res. 60:6737, 2000
  • anti-c-met mAbs Dodge, Master's Thesis, San Francisco State University, 1998)
  • anti-HGF mAbs Cao et al., Proc. Natl. Acad. Sci. USA 98:7443, 2001.
  • HGF Antibody Antagonist refers to a monoclonal antibody (mAb) that binds HGF (i.e., an anti-HGF mAb), wherein the binding partially or completely inhibits one or more biological activities of HGF (i.e., when the mAb is used as a single agent).
  • mAb monoclonal antibody
  • HGF human umbilical vascular endothelial cell
  • CAM chick embryo chorioallantoic membrane
  • blocking antibody or an “antagonist” antibody preferably is one which inhibits or reduces biological activity of the antigen it binds (for e.g., activated HGF beta chain or site/epitope on c-met to which activated HGF beta binds).
  • Preferred blocking antibodies or antagonist antibodies substantially or completely inhibit the biological activity of the antigen.
  • An "agonist antibody”, as used herein, is an antibody which mimics at least one of the functional activities of a polypeptide of interest (for e.g., an antibody could provide at least one of the c-met activating functions of activated HGF beta chain).
  • a "disorder” is any condition that would benefit from treatment with a substance/molecule or method of the invention. This includes chronic and acute disorders or diseases including those pathological conditions which predispose the mammal to the disorder in question.
  • disorders to be treated herein include malignant and benign tumors; non-leukemias and lymphoid malignancies; neuronal, glial, astrocytal, hypothalamic and other glandular, macrophagal, epithelial, stromal and blastocoelic disorders; and inflammatory, immunologic and other angiogenesis-related disorders.
  • cell proliferative disorder and “proliferative disorder” refer to disorders that are associated with some degree of abnormal cell proliferation.
  • the cell proliferative disorder is cancer.
  • Tumor refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.
  • cancer refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.
  • cancer and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth/proliferation.
  • examples of cancer include but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia.
  • cancers include squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney cancer, liver cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma and various types of head and neck cancer.
  • treatment refers to clinical intervention in an attempt to alter the natural course of the individual or cell being treated, and can be performed either for prophylaxis or during the course of clinical pathology. Desirable effects of treatment include preventing occurrence or recurrence of disease, alleviation of symptoms, diminishment of any direct or indirect pathological consequences of the disease, preventing metastasis, decreasing the rate of disease progression, amelioration or palliation of the disease state, and remission or improved prognosis.
  • antibodies of the invention are used to delay development of a disease or disorder.
  • an “effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic or prophylactic result.
  • a “therapeutically effective amount” of a substance/molecule of the invention, agonist or antagonist may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the substance/molecule, agonist or antagonist to elicit a desired response in the individual.
  • a therapeutically effective amount is also one in which any toxic or detrimental effects of the substance/molecule, agonist or antagonist are outweighed by the therapeutically beneficial effects.
  • a “prophylactically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically but not necessarily, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount will be less than the therapeutically effective amount.
  • cell proliferative disorder and “proliferative disorder” herein refer to disorders that are associated with some degree of abnormal cell proliferation.
  • the cell proliferative disorder is cancer.
  • Tumor refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer cancer
  • cancer and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth/proliferation.
  • examples of cancer include but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia.
  • cancers 2014/029383 include squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney cancer, liver cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma and various types of head and neck cancer.
  • Neoplastics include but are not limited to cancers described above.
  • Non-neoplastic disorders include but are not limited to undesired or aberrant hypertrophy, arthritis, rheumatoid arthritis (RA), psoriasis, psoriatic plaques, sarcoidosis, atherosclerosis, atherosclerotic plaques, diabetic and other proliferative retinopathies including retinopathy of prematurity, retrolental fibroplasia, neovascular glaucoma, age-related macular degeneration, diabetic macular edema, corneal neovascularization, corneal graft neovascularization, corneal graft rejection, retinal/choroidal neovascularization, neovascularization of the angle (rubeosis),
  • Recombinant cell or “recombinant host cell” herein in general refers to any cell engineered to express one or more antibody polypeptides according to the invention. This includes by way of example bacterial, fungal, yeast, mammalian, invertebrate such as insect, plant and avian cells.
  • Preferred host cells are yeast, fungi, especially filamentous fungi and mammalian cells.
  • Yeast and filamentous fungi include, but are not limited to Pichia pastoris, Pichia finlandica, Pichia trehalophila, Pichia koclamae, Pichia membranaefaciens, Pichia minuta (Ogataea minuta, Pichia lindneri), Pichia opuntiae, Pichia thermotolerans, Pichia salictaria, Pichia guercuum, Pichia pijperi, Pichia stiptis, Pichia methanolica, Pichia sp., Saccharomyces cerevisiae, Saccharomyces sp., Hansenula polymorpha, Kluyveromyces sp., Kluyveromyces lactis, Candida albicans, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Trichoderma reesei, Chrysosporium luck
  • Pichia sp. any Saccharomyces sp., Hansenula polymorpha, any Kluyveromyces sp., Candida albicans, any Aspergillus sp., Trichoderma reesei, Chrysosporium lucknowense, any Fusarium sp. and Neurospora crassa.
  • invertebrate cells include insect cells such as Drosophila S2 and Spodoptera Sf9, as well as plant cells.
  • useful mammalian host cell lines include Chinese hamster ovary (CHO) and COS cells. More specific examples include monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al, J. Gen Virol, 36:59 (1977)); Chinese hamster ovary cells/-DHFR (CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci. USA, 77:4216 (1980)); mouse Sertoli cells (TM4, Mather, Biol.
  • human lung cells W138, ATCC CCL 75
  • human liver cells Hep G2, HB 8065
  • mouse mammary tumor MMT 060562, ATCC CCL51 .
  • Preferred mammalian cells for antibody expression include CHO cells and COS cells.
  • the recombinant host cells are haploidal or polyploidal yeast cells of the genus Pichia.
  • Mating competent yeast species In the present invention this is intended to broadly encompass any diploid or tetraploid yeast which can be grown in culture. Such species of yeast may exist in a haploid, diploid, or other polyploid form. The cells of a given ploidy may, under appropriate conditions, proliferate for an indefinite number of generations in that form. Diploid cells can also sporulate to form haploid cells. Sequential mating can result in tetraploid strains through further mating or fusion of diploid strains. The present invention contemplates the use of haploid yeast, as well as diploid or other polyploid yeast cells produced, for example, by mating or spheroplast fusion.
  • Mating competent yeast include yeast which are a member of the Saccharomycetaceae family, which includes the genera Arxiozyma; Ascobotryozyma; Citeromyces; Debaryomyces; Dekkera; Eremothecium; Issatchenkia; azachstania; luyveromyces; Kodamaea; Lodderomyces; Pachysolen; Pichia; Saccharomyces; Saturnispora; Tetrapisispora; Torulaspora; Williopsis; and Zygosaccharomyces.
  • Other types of yeast potentially useful in the invention include Yarrowia; Rhodosporidium; Candida; Hansenula; Filobasium; Sporidiobolus; Bullera; Leucosporidium and Filobasidella.
  • the mating competent yeast is a member of the genus Pichia.
  • the mating competent yeast of the genus Pichia is one of the following species: Pichia pastoris, Pichia methanolica, and Hansenula polymorpha (Pichia angusta).
  • the mating competent yeast of the genus Pichia is the species Pichia pastoris.
  • Haploid Yeast Cell A cell having a single copy of each gene of its normal genomic (chromosomal) complement.
  • Polyploid Yeast Cell A cell having more than one copy of its normal genomic (chromosomal) complement.
  • Diploid Yeast Cell A cell having two copies (alleles) of essentially every gene of its normal genomic complement, typically formed by the process of fusion (mating) of two haploid cells.
  • Tetraploid Yeast Cell A cell having four copies (alleles) of essentially every gene of its normal genomic complement, typically formed by the process of fusion (mating) of two haploid cells. Tetraploids may carry two, three, four or more different expression cassettes. Such tetraploids might be obtained in S. cerevisiae by selective mating homozygotic heterothallic a/a and alpha alpha diploids and in Pichia by sequential mating of haploids to obtain auxotrophic diploids.
  • a [met his] haploid can be mated with [ade his] haploid to obtain diploid [his]; and a [met arg] haploid can be mated with [ade arg] haploid to obtain diploid [arg]; then the diploid [his] x diploid [arg] to obtain a tetraploid prototroph. It will be understood by those of skill in the art that reference to the benefits and uses of diploid cells may also apply to tetraploid cells.
  • Yeast Mating The process by which two haploid yeast cells naturally fuse to form one diploid yeast cell.
  • Meiosis The process by which a diploid yeast cell undergoes reductive division to form four haploid spore products. Each spore may then germinate and form a haploid vegetatively growing cell line.
  • a selectable marker is a gene or gene fragment that confers a growth phenotype (physical growth characteristic) on a cell receiving that gene as, for example through a transformation event.
  • the selectable marker allows that cell to survive and grow in a selective growth medium under conditions in which cells that do not receive that selectable marker gene cannot grow.
  • Selectable marker genes generally fall into several types, including positive selectable marker genes such as a gene that confers on a cell resistance to an antibiotic or other drug, temperature when two temperature sensitive ("ts") mutants are crossed or a ts mutant is transformed; negative selectable marker genes such as a biosynthetic gene that confers on a cell the ability to grow in a medium without a specific nutrient needed by all cells that do not have that biosynthetic gene, or a mutagenized biosynthetic gene that confers on a cell inability to grow by cells that do not have the wild type gene; and the like. Suitable markers include but are not limited to: ZEO; G418; LYS3; MET1 ; MET3a; ADE1 ; ADE3; URA3; and the like.
  • Expression Vector These DNA vectors contain elements that facilitate manipulation for the expression of a foreign protein within the target host cell. Conveniently, manipulation of sequences and production of DNA for transformation is first performed in a bacterial host, e.g. E. coli, and usually vectors will include sequences to facilitate such manipulations, including a bacterial origin of replication and appropriate bacterial selection marker. Selection markers encode proteins necessary for the survival or growth of transformed host cells grown in a selective culture medium. Host cells not transformed with the vector containing the selection gene will not survive in the culture medium. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media.
  • Exemplary vectors and methods for transformation of yeast are described, for example, in Burke, D., Dawson, D., & Stearns, T. (2000). Methods in yeast genetics: a Cold Spring Harbor Laboratory course manual. Plainview, N.Y.: Cold Spring Harbor Laboratory Press.
  • Expression vectors for use in the methods of the invention will further include a selectable auxotrophic or drug marker for identifying transformed cells such as yeast strains.
  • a drug marker may further be used to amplify copy number of the vector in a host cell.
  • the polypeptide coding sequence of interest is operably linked to transcriptional and translational regulatory sequences that provide for expression of the polypeptide in yeast cells.
  • These vector components may include, but are not limited to, one or more of the following: an enhancer element, a promoter, and a transcription termination sequence. Sequences for the secretion of the polypeptide may also be included, e.g. a signal sequence, and the like.
  • An origin of replication is optional, as expression vectors are often integrated into the host, e.g., yeast genome.
  • the polypeptide of interest is operably linked, or fused, to sequences providing for optimized secretion of the polypeptide from yeast diploid cells.
  • Nucleic acids are "operably linked" when placed into a functional relationship with another nucleic acid sequence.
  • DNA for a signal sequence is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence.
  • "operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading frame. However, enhancers do not have to be contiguous.
  • Linking is accomplished by ligation at convenient restriction sites or alternatively via a PCR/recombination method familiar to those skilled in the art (GatewayR Technology; Invitrogen, Carlsbad California). If such sites do not exist, the synthetic oligonucleotide adapters or linkers are used in accordance with conventional practice.
  • Promoters are untranslated sequences located upstream (5') to the start codon of a structural gene (generally within about 100 to 1000 bp) that control the transcription and translation of particular nucleic acid sequences to which they are 2014/029383 operably linked.
  • Such promoters fall into several classes: inducible, constitutive, and repressible promoters (that increase levels of transcription in response to absence of a repressor).
  • Inducible promoters may initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, e.g., the presence or absence of a nutrient or a change in temperature.
  • the promoter fragment may also serve as the site for homologous recombination and integration of the expression vector into the same site in the host genome; alternatively a selectable marker is used as the site for homologous recombination.
  • Suitable promoters useful in Pichia include the AOX1 and promoter (Cregg et al. (1989) Mol. Cell. Biol. 9: 1316-1323); ICL1 promoter (Menendez et al. (2003) Yeast 20(13):1097-108); glyceraldehyde-3-phosphate dehydrogenase promoter (GAP) (Waterham et al. (1997) Gene 186(l):37-44); and FLD1 promoter (Shen et al. (1998) Gene 216(1):93-102).
  • the GAP promoter is a strong constitutive promoter and the AOX and FLD1 promoters are inducible.
  • yeast promoters include ADHl, alcohol dehydrogenase II, GAL4, PH03, PH05, Pyk, and chimeric promoters derived therefrom.
  • non- yeast promoters may be used in the invention such as mammalian, insect, plant, reptile, amphibian, bacterial, fungal, viral, and avian promoters. Most typically the promoter will comprise a mammalian promoter (potentially endogenous to the expressed genes) or will comprise a yeast or viral promoter that provides for efficient transcription in yeast systems.
  • the polypeptides of interest may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, e.g. a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide.
  • a heterologous polypeptide e.g. a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide.
  • the signal sequence may be a component of the vector, or it may be a part of the polypeptide coding sequence that is inserted into the vector.
  • the heterologous signal sequence selected preferably is one that is recognized and processed through one of the standard pathways available within the host cell.
  • the S. cerevisiae alpha factor pre-pro signal has proven effective in the secretion of a variety of recombinant proteins from P. pastoris.
  • yeast signal sequences include the alpha mating factor signal sequence, the invertase signal sequence, and signal sequences derived from other secreted yeast polypeptides. Additionally, these signal peptide sequences may be engineered to provide for enhanced secretion in diploid yeast expression systems. Other secretion signals of interest also include mammalian signal sequences, which may be heterologous to the protein being secreted, or may be a native sequence for the protein being secreted. Signal sequences include pre-peptide sequences, and in some instances may include propeptide sequences.
  • signal sequences are known in the art, including the signal sequences found on immunoglobulin chains, e.g., K28 preprotoxin sequence, PHA-E, FACE, human MCP-1, human serum albumin signal sequences, human Ig heavy chain, human Ig light chain, and the like.
  • K28 preprotoxin sequence e.g., PHA-E, FACE, human MCP-1, human serum albumin signal sequences, human Ig heavy chain, human Ig light chain, and the like.
  • Transcription may be increased by inserting a transcriptional activator sequence into the vector.
  • These activators are cis-acting elements of DNA, usually about from 10 to 300 bp, which act on a promoter to increase its transcription.
  • Transcriptional enhancers are relatively orientation and position independent, having been found 5' and 3' to the transcription unit, within an intron, as well as within the coding sequence itself. The enhancer may be spliced into the expression vector at a position 5' or 3' to the coding sequence, but is preferably located at a site 5' from the promoter.
  • Expression vectors used in eukaryotic host cells may also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from 3' to the translation termination codon, in untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA.
  • Plasmids from the transformants are prepared, analyzed by restriction endonuclease digestion and/or sequenced.
  • recombination methods based on att sites and recombination enzymes may be used to insert DNA sequences into a vector. Such methods are described, for example, by Landy (1989) Ann.Rev.Biochem. 58:913-949; and are known to those of skill in the art. Such methods utilize intermolecular DNA recombination that is mediated by a mixture of lambda and E.coli -encoded recombination proteins. Recombination occurs between specific attachment (att) sites on the interacting DNA molecules.
  • Att sites may be introduced into a sequence of interest by ligating the sequence of interest into an appropriate vector; generating a PCR product containing att B sites through the use of specific primers; generating a cDNA library cloned into an appropriate vector containing att sites; and the like.
  • Folding refers to the three-dimensional structure of polypeptides and proteins, where interactions between amino acid residues act to stabilize the structure. While non-covalent interactions are important in determining structure, usually the proteins of interest will have intra- and/or intermolecular covalent disulfide bonds formed by two cysteine residues. For naturally occurring proteins and polypeptides or derivatives and variants thereof, the proper folding is typically the arrangement that results in optimal biological activity, and can conveniently be monitored by assays for activity, e.g. ligand binding, enzymatic activity, etc.
  • the expression host may be further modified by the introduction of sequences encoding one or more enzymes that enhance folding and disulfide bond formation, i.e. foldases, chaperonins, etc.
  • sequences may be constitutively or inducibly expressed in the yeast host cell, using vectors, markers, etc. as known in the 3 art.
  • sequences, including transcriptional regulatory elements sufficient for the desired pattern of expression are stably integrated in the yeast genome through a targeted methodology.
  • the eukaryotic PDI is not only an efficient catalyst of protein cysteine oxidation and disulfide bond isomerization, but also exhibits chaperone activity. Co-expression of PDI can facilitate the production of active proteins having multiple disulfide bonds. Also of interest is the expression of BIP (immunoglobulin heavy chain binding protein); cyclophilin; and the like.
  • BIP immunoglobulin heavy chain binding protein
  • cyclophilin cyclophilin
  • each of the haploid parental strains expresses a distinct folding enzyme, e.g. one strain may express BIP, and the other strain may express PDI or combinations thereof.
  • the terms “desired protein” or “desired antibody” are used interchangeably and refer generally to a parent antibody or fragment specific to a target, i.e., HGF or a chimeric or humanized antibody or a binding portion thereof derived therefrom or one containing the same CDRs or epitopic specificity as any of the anti-HGF antibodies or fragments described herein.
  • the term “antibody” is intended to include any polypeptide chain-containing molecular structure with a specific shape that fits to and recognizes an epitope, where one or more non-covalent binding interactions stabilize the complex between the molecular structure and the epitope.
  • the archetypal antibody molecule is the immunoglobulin, and all types of immunoglobulins, IgG, IgM, IgA, IgE, IgD, etc., from all sources, e.g. human, rodent, rabbit, cow, sheep, pig, dog, other mammals, chicken, other avians, etc., are considered to be "antibodies.”
  • a preferred source for producing antibodies useful as starting material according to the invention is rabbits. Numerous antibody coding sequences have been described; and others may be raised by methods well-known in the art.
  • Examples thereof include chimeric antibodies, human antibodies and other non-human mammalian antibodies, humanized antibodies, single chain antibodies (such as scFvs), camelbodies, nanobodies, IgNAR (single-chain antibodies derived from sharks), small-modular immunopharmaceuticals (SMIPs), and antibody fragments such as Fabs, Fab', F(ab')2, monovalent antibody fragments such as MetMab like molecules, IgNars and the like. See Streltsov VA, et al, Structure of a shark IgNAR antibody variable domain and modeling of an early- developmental isotype, Protein Sci. 2005 Nov;14(l l):2901-9.
  • the present invention includes in particular includes monovalent antibody molecules that bind HGF, which are analogous to MetMab molecules.
  • MetMab is a monovalent antibody specific to Met.
  • Met is a protein encoded by the nucleotide sequence set forth in Park et al, Proc. Natl. Acad. Sci. 84, 7479 ⁇ (1987), or fragments thereof, as well as related polypeptides, which include, but are not limited to, allelic variants, splice variants, derivative variants, substitution variants, deletion variants, and/or insertion variants, fusion polypeptides, and interspecies homologs).
  • the MetMab antibody is a monovalent antibody known by different names including OA-5d5 (Genentech) and is also called One Armed 5d5, 5d5, MetMab, PRO 143966, among others).
  • Antibody OA-5d5 including its structure and properties, and methods for making and using it, are described in U.S. Publication No. 2007/0092520.
  • an anti-HGF antibody according to the invention may comprise a single Fab region linked to an Fc region.
  • an antibody of the invention may comprise light and heavy chain variable domains as described herein.
  • the antibody is monovalent and may comprise an intact Fc region.
  • the Fc region may comprise at least one protuberance (knob) and at least one cavity (hole), wherein the presence of the protuberance and cavity enhances formation of a complex between an Fc polypeptide comprising the protuberance and an Fc polypeptide comprising the cavity, for example as described in WO 2005/063816.
  • the Fc region of an antibody of the invention may comprise a first and a second Fc polypeptide, wherein the first and second polypeptide each comprises one or more mutations with respect to wild type human Fc.
  • a cavity mutation is T366S, L368A and/or Y407V.
  • a protuberance mutation is T366W.
  • a monovalent antibody according to the subject invention may comprise a one-armed antibody synthesized as described in WO2005/063816.
  • the one- armed antibody may comprise Fc mutations constituting "knobs" and "holes” as described in WO2005/063816.
  • a hole mutation can be one or more of T366A, L368A and/or Y407V in an Fc polypeptide, and a cavity mutation can be T366W.
  • the invention is also directed to an anti-human HGF monovalent agent that binds with the same HGF epitope and/or competes with an anti-HGF antibody for binding to HGF as an antibody or antibody fragment disclosed herein.
  • antibodies or antigen binding fragments may be produced by genetic engineering.
  • antibody-producing cells are sensitized to the desired antigen or immunogen.
  • the messenger RNA isolated from antibody producing cells is used as a template to make cDNA using PCR amplification.
  • a library of vectors, each containing one heavy chain gene and one light chain gene retaining the initial antigen specificity, is produced by insertion of appropriate sections of the amplified immunoglobulin cDNA into the expression vectors.
  • a combinatorial library is constructed by combining the heavy chain gene library with the light chain gene library. This results in a library of clones which co- express a heavy and light chain (resembling the Fab fragment or antigen binding fragment of an antibody molecule).
  • the vectors that carry these genes are co- transfected into a host cell. When antibody gene synthesis is induced in the transfected host, the heavy and light chain proteins self-assemble to produce active antibodies that can be detected by screening with the antigen or immunogen.
  • Antibody coding sequences of interest include those encoded by native sequences, as well as nucleic acids that, by virtue of the degeneracy of the genetic code, are not identical in sequence to the disclosed nucleic acids, and variants thereof.
  • Variant polypeptides can include amino acid (aa) substitutions, additions or deletions. The amino acid substitutions can be conservative amino acid substitutions or substitutions to eliminate non-essential amino acids, such as to alter a glycosylation site, or to minimize misfolding by substitution or deletion of one or more cysteine residues that are not necessary for function.
  • Variants can be designed so as to retain or have enhanced biological activity of a particular region of the protein (e.g., a functional domain, catalytic amino acid residues, etc).
  • Variants also include fragments of the polypeptides disclosed herein, particularly biologically active fragments and/or fragments corresponding to functional domains. Techniques for in vitro mutagenesis of cloned genes are known. Also included in the subject invention are polypeptides that have been modified using ordinary molecular biological techniques so as to improve their resistance to proteolytic degradation or to optimize solubility properties or to render them more suitable as a therapeutic agent.
  • Chimeric antibodies may be made by recombinant means by combining the variable light and heavy chain regions (VL and VH), obtained from antibody producing cells of one species with the constant light and heavy chain regions from another.
  • VL and VH variable light and heavy chain regions
  • chimeric antibodies utilize rodent or rabbit variable regions and human constant regions, in order to produce an antibody with predominantly human domains.
  • the production of such chimeric antibodies is well known in the art, and may be achieved by standard means (as described, e.g., in U.S. Patent No. 5,624,659, incorporated herein by reference in its entirety).
  • the human constant regions of chimeric antibodies of the invention may be selected from IgG l, IgG2, IgG3, and IgG4 constant regions.
  • Humanized antibodies are engineered to contain even more human-like immunoglobulin domains, and incorporate only the complementarity-determining regions of the animal-derived antibody. This is accomplished by carefully examining the sequence of the hyper-variable loops of the variable regions of the monoclonal antibody, and fitting them to the structure of the human antibody chains. Although facially complex, the process is straightforward in practice. See, e.g., U.S. Patent No. 6,187,287, incorporated fully herein by reference.
  • immunoglobulin fragments comprising the epitope binding site (e.g., Fab', F(ab')2, Fab, or other fragments) may be synthesized.
  • "Fragment” or minimal immunoglobulins may be designed utilizing recombinant immunoglobulin techniques.
  • Fv immunoglobulins for use in the present invention may be produced by synthesizing a fused variable light chain region and a variable heavy chain region. Combinations of antibodies are also of interest, e.g. diabodies, which comprise two distinct Fv specificities.
  • SMIPs small molecule immunopharmaceuticals
  • camelbodies, nanobodies, and IgNAR are encompassed by immunoglobulin fragments.
  • Immunoglobulins and fragments thereof may be modified post- translationally, e.g.
  • effector moieties such as chemical linkers, detectable moieties, such as fluorescent dyes, enzymes, toxins, substrates, bioluminescent materials, radioactive materials, chemi luminescent moieties and the like, or specific binding moieties, such as streptavidin, avidin, or biotin, and the like may be utilized in the methods and compositions of the present invention. Examples of additional effector molecules are provided infra.
  • a "heterologous" region or domain of a DNA construct is an identifiable segment of DNA within a larger DNA molecule that is not found in association with the larger molecule in nature.
  • the heterologous region encodes a mammalian gene
  • the gene will usually be flanked by DNA that does not flank the mammalian genomic DNA in the genome of the source organism.
  • Another example of a heterologous region is a construct where the coding sequence itself is not found in nature (e.g., a cDNA where the genomic coding sequence contains introns, or synthetic sequences having codons different than the native gene). Allelic variations or naturally- occurring mutational events do not give rise to a heterologous region of DNA as defined herein.
  • a "coding sequence” is an in-frame sequence of codons that (in view of the genetic code) correspond to or encode a protein or peptide sequence. Two coding sequences correspond to each other if the sequences or their complementary sequences encode the same amino acid sequences. A coding sequence in association with appropriate regulatory sequences may be transcribed and translated into a polypeptide. A polyadenylation signal and transcription termination sequence will usually be located 3' to the coding sequence.
  • a “promoter sequence” is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. Promoter sequences typically contain additional sites for binding of regulatory molecules (e.g., transcription factors) which affect the transcription of the coding sequence.
  • a coding sequence is "under the control" of the promoter sequence or “operatively linked” to the promoter when RNA polymerase binds the promoter sequence in a cell and transcribes the coding sequence into mRNA, which is then in turn translated into the protein encoded by the coding sequence.
  • Vectors are used to introduce a foreign substance, such as DNA, RNA or protein, into an organism or host cell. Typical vectors include recombinant viruses (for polynucleotides) and liposomes (for polypeptides).
  • a "DNA vector” is a replicon, such as plasmid, phage or cosmid, to which another polynucleotide segment may be attached so as to bring about the replication of the attached segment.
  • An "expression vector” is a DNA vector which contains regulatory sequences which will direct polypeptide synthesis by an appropriate host cell. This usually means a promoter to bind RNA polymerase and initiate transcription of mRN A, as well as ribosome binding sites and initiation signals to direct translation of the mRN A into a polypeptide(s). Incorporation of a polynucleotide sequence into an expression vector at the proper site and in correct reading frame, followed by transformation of an appropriate host cell by the vector, enables the production of a polypeptide encoded by said polynucleotide sequence.
  • Amplification of polynucleotide sequences is the in vitro production of multiple copies of a particular nucleic acid sequence.
  • the amplified sequence is usually in the form of DNA.
  • a variety of techniques for carrying out such amplification are described in a review article by Van Brunt (1990, Bio/Technol., 8(4):291-294).
  • Polymerase chain reaction or PCR is a prototype of nucleic acid amplification, and use of PCR herein should be considered exemplary of other suitable amplification techniques.
  • Antibodies consist of two identical light polypeptide chains of molecular weight approximately 23,000 Daltons (the "light chain”), and two identical heavy chains of molecular weight 53,000-70,000 (the “heavy chain”).
  • the four chains are joined by disulfide bonds in a "Y" configuration wherein the light chains bracket the heavy chains starting at the mouth of the "Y” configuration.
  • the "branch" portion of the "Y” configuration is designated the Fab region; the stem portion of the "Y” configuration is designated the FC region.
  • the amino acid sequence orientation runs from the N-terminal end at the top of the "Y" configuration to the C-terminal end at the bottom of each chain.
  • the N-terminal end possesses the variable region having specificity for the antigen that elicited it, and is approximately 100 amino acids in length, there being slight variations between light and heavy chain and from antibody to antibody.
  • variable region is linked in each chain to a constant region that extends the remaining length of the chain and that within a particular class of antibody does not vary with the specificity of the antibody (i.e., the antigen eliciting it).
  • constant regions There are five known major classes of constant regions that determine the class of the immunoglobulin molecule (IgG, IgM, IgA, IgD, and IgE corresponding to ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ (gamma, mu, alpha, delta, or epsilon) heavy chain constant regions).
  • the constant region or class determines subsequent effector function of the antibody, including activation of complement (Kabat, E.
  • variable region refers to the domains within each pair of light and heavy chains in an antibody that are involved directly in binding the antibody to the antigen.
  • Each heavy chain has at one end a variable domain (VH) followed by a number of constant domains.
  • Each light chain has a variable domain (VL) at one end and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light chain variable domain is aligned with the variable domain of the heavy chain.
  • CDR complementarity determining region
  • hypervariable region refers to one or more of the hyper-variable or complementarity determining regions (CDRs) found in the variable regions of light or heavy chains of an antibody (See Kabat, E. A. et al., Sequences of Proteins of knmunological Interest, National Institutes of Health, Bethesda, Md., (1987)). These expressions include the hypervariable regions as defined by Kabat et al. ("Sequences of Proteins of Immunological Interest," Kabat E., et al., US Dept.
  • SDRs selectivity determining regions
  • An "epitope" or “binding site” is an area or region on an antigen to which an antigen-binding peptide (such as an antibody) specifically binds.
  • a protein epitope may comprise amino acid residues directly involved in the binding (also called immunodominant component of the epitope) and other amino acid residues, which are not directly involved in the binding, such as amino acid residues which are effectively blocked by the specifically antigen binding peptide (in other words, the amino acid residue is within the "footprint" of the specifically antigen binding peptide).
  • the term epitope herein includes both types of amino acid binding sites in any particular region of HGF that specifically binds to an anti-HGF antibody.
  • HGF may comprise a number of different epitopes, which may include, without limitation, (1) linear peptide antigenic determinants, (2) conformational antigenic determinants which consist of one or more non-contiguous amino acids located near each other in a mature HGF conformation; and (3) post-translational antigenic determinants which consist, either in whole or part, of molecular structures covalently attached to a HGF protein such as carbohydrate groups.
  • a first antibody binds substantially or partially the same or overlapping epitope as a second antibody means that the first and second antibodies compete in binding to the antigen, as described above.
  • the term "binds to substantially the same epitope or determinant as" a monoclonal antibody means that an antibody "competes" with the antibody.
  • the phrase "binds to the same or overlapping epitope or determinant as" an antibody of interest means that an antibody "competes" with said antibody of interest for at least one, or all residues on HGF to which said antibody of interest specifically binds.
  • the identification of one or more antibodies that bind(s) to substantially or essentially the same epitope as the monoclonal antibodies described herein can be readily determined using any one of variety of immunological screening assays in which antibody competition can be assessed. A number of such assays are routinely practiced and well known in the art (see, e.g., U.S. Pat. No. 5,660,827, issued Aug. 26, 1997, which is specifically incorporated herein by reference). It will be understood that actually determining the epitope to which an antibody described herein binds is not in any way required to identify an antibody that binds to the same or substantially the same or overlapping epitope as the monoclonal antibody described herein.
  • test antibodies to be examined are obtained from different source animals, or are even of a different Ig isotype
  • a simple competition assay may be employed in which the control antibody is mixed with the test antibody and then applied to a sample containing HGF.
  • Protocols based upon ELISAs, radioimmunoassays, Western blotting, and the use of surface plasmon resonance (using an instrument such as the "BIACORE") or light interferomentry (using an instrument such as the "Octet”) are suitable for use in such simple competition studies.
  • control anti-HGF antibody with varying amounts of the test antibody (e.g., in ratios of about 1 :1, 1 :2, 1 :10 or about 1 : 100) for a period of time prior to applying to the HGF antigen sample.
  • control and varying amounts of test antibody can simply be added separately and admixed during exposure to the HGF antigen sample.
  • test antibody As long as one can distinguish bound from free antibodies (e.g., by using separation or washing techniques to eliminate unbound antibodies) and control antibody from the test antibody (e.g., by using species specific or isotype specific secondary antibodies or by specifically labeling the control antibody with a detectable label) one will be able to determine if the test antibody reduces the binding of the control antibody to the HGF antigens, indicating that the test antibody recognizes substantially the same epitope as the control ant-HGF antibody.
  • the binding of the (labeled) control antibody in the presence of a completely irrelevant antibody (that does not bind HGF) can serve as the control high value.
  • the control low value can be obtained by incubating the labeled control antibody with the same but unlabeled control antibody, where competition would occur and reduce binding of the labeled antibody.
  • a significant reduction in labeled antibody reactivity in the presence of a test antibody is indicative of a test antibody that recognizes substantially the same epitope, i.e., one that competes with the labeled control antibody.
  • any test antibody that reduces the binding of the control antibody to HGF s by at least about 50%, such as at least about 60%, or more preferably at least about 70% (e.g., about 65-100%), at any ratio of :test antibody between about 1 : 1 or 1 : 10 and about 1 : 100 is considered to be an antibody that binds to substantially the same or overlapping epitope or determinant as the control antibody.
  • test antibody will reduce the binding of the control antibody to HGF antigen preferably at least about 50%, at least about 60%, at least about 80% or at least about 90% (e.g., about 95%) of the binding of 1 the control antibody observed in the absence of the test antibody.
  • Competition can also or alternatively be assessed by, for example, a flow cytometry test.
  • cells bearing HGF can be incubated first with a control antibody that binds HGF, and then with the test antibody labeled with a fluorochrome or biotin.
  • the antibody is said to compete with control antibody if the binding obtained upon preincubation with saturating amount of control antibody is about 80%, preferably about 50%, about 40% or less (e.g., about 30%) of the binding (as measured by mean of fluorescence) obtained by the test antibody without preincubation with control antibody.
  • an antibody is said to compete with the control antibody if the binding obtained with a labeled control antibody (by a fluorochrome or biotin) on cells preincubated with saturating amount of test antibody is about 80%, preferably about 50%, about 40%, or less (e.g., about 30%) of the binding obtained without preincubation with the test antibody.
  • a simple competition assay in which a test antibody is pre- adsorbed and applied at saturating concentration to a surface onto which HGF is immobilized also may be advantageously employed.
  • the surface in the simple competition assay is preferably a BIACORE chip (or other media suitable for surface plasmon resonance analysis).
  • the binding of a control antibody that binds HGF to the HGF-coated surface is measured. This binding to the HGF-containing surface of the control antibody alone is compared with the binding of the control antibody in the presence of a test antibody.
  • a significant reduction in binding to the HGF-containing surface by the control antibody in the presence of a test antibody indicates that the test antibody recognizes substantially the same epitope as the control antibody such that the test antibody "competes" with the control antibody.
  • test antibody that reduces the binding of control antibody by at least about 20% or more, at least about 40%, at least about 50%, at least about 70%, or more, can be considered to be an antibody that binds to substantially the same epitope or determinant as the control antibody .
  • test antibody will reduce the binding of the control antibody to HGF by at least about 50% (e.g., at least about 60%, at least about 70%, or more).
  • the order of control and test antibodies can be reversed; i.e. The control antibody can be first bound to the surface and then the test antibody is brought into contact with the surface thereafter in a competition assay.
  • the antibody having higher affinity for HGF antigen is bound to the HGF-containing surface first, as it will be expected that the decrease in binding seen for the second antibody (assuming the antibodies are competing) will be of greater magnitude.
  • assays are provided in e.g., Saunal and Regenmortel, (1995) J. Immunol. Methods 183 : 33-41, the disclosure of which is incorporated herein by reference.
  • HGF a library of peptides corresponding to the antigen bound by the antibody, herein HGF is made, which correspond to overlapping portions of the protein, typically 10-25, 10-20 or 10-15 amino acids long.
  • HGF a library of peptides corresponding to the antigen bound by the antibody, herein HGF is made, which correspond to overlapping portions of the protein, typically 10-25, 10-20 or 10-15 amino acids long.
  • These different overlapping amino acid peptides encompassing the HGF sequence are synthesized and covalently bound to a PepSpots nitrocellulose membrane (JPT Peptide technologies, Berlin, Germany). Blots are then prepared and probed according to the manufacturer's recommendations.
  • the immunoblot assay detects by fluorimetric means what peptides in the library bind to the test antibody and thereby can identify what residues on the antigen, i.e., HGF, interact with the test antibody. (See an embodiment of this technique in US Patent No. 7,935,340, incorporated by reference herein).
  • framework region refers to one or more of the framework regions within the variable regions of the light and heavy chains of an antibody (See Kabat, E. A. et al., Sequences of Proteins of Immunological Interest, National Institutes of Health, Bethesda, Md., (1987)). These expressions include those amino acid sequence regions interposed between the CDRs within the variable regions of the light and heavy chains of an antibody.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: QSVEESGGRLVTPGTPLTLTCTVSGFSLSAYAMSWVRQAPE GLEWIAVIYVIG ATDYASWAKGRFTISRTSTTVDLRIPSPTTEDTATYFCARVYDSVWNHFNLWG PGTLVTVSS (SEQ ID NO: 2).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as Abl and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQKSLSLSPGK (SEQ ID NO: 10).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below: AYDMTQTPASVEVAVGGTVT1KCQASQSISSWLAWYQQ PGQPP LL1YQASK LASGVPSRFKGSGSGTEFTLTISGVECADAATYYCQQAYSVSNVDNAFGGGTE VVVKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA VQWKVDNALQS GNSQESVTEQDS DSTYSLSSTLTLSKADYEKH VYACEVTHQGLSSPVT SFN RGEC (SEQ ID NO: 21).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: AYDMTQTPASVEVAVGGTVTIKCQASQSISSWLAWYQQKPGQPPKLLIYQASK LASGVPSRFKGSGSGTEFTLT1SGVECADAATYYCQQAYSVSNVDNAFGGGTE VVV R (SEQ ID NO: 22).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as Abl which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQE SVTEQDSKDSTYSLSSTLTLSKADYE HKVYACEVTHQGLSSPVTKSFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 4; SEQ ID NO: 6; and SEQ ID NO: 8 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 1 or which contain the variable heavy chain sequence of SEQ ID NO: 2, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 24; SEQ ID NO: 26; and SEQ ID NO: 28 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 21 or which contain the variable light chain sequence of SEQ ID NO: 22, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90%) or 95%) identical thereto.
  • the invention further contemplates anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 3; SEQ ID NO: 5; SEQ ID NO: 7; and SEQ ID NO: 9 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 1 or the variable heavy chain sequence of SEQ ID NO: 2, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 23; SEQ ID NO: 25; SEQ ID NO: 27; and SEQ ID NO: 29 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 21 or the variable light chain sequence of SEQ ID NO: 22, or combinations of these polypeptide sequences or sequences which are at least 80%, 90% or 95% identical therewith.
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 1 or SEQ ID NO: 2 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 21 or SEQ ID NO: 22 or polypeptides that are at least 90% or 95% identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 4; SEQ ID NO: 6; and SEQ ID NO: 8 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 1 or the variable heavy chain sequence of SEQ ID NO: 2 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 24; SEQ ID NO: 26; and SEQ ID NO: 28 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 21 or the variable 4 029383 light chain sequence of SEQ ID NO: 22 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 3; SEQ ID NO: 5; SEQ ID NO: 7; and SEQ ID NO: 9 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 1 or the variable heavy chain sequence of SEQ ID NO: 2 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 23; SEQ ID NO: 25; SEQ ID NO: 27; and SEQ ID NO: 29 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 21 or the variable light chain sequence of SEQ ID NO: 22 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 2; the variable light chain region of SEQ ID NO: 22; the complementarity-determining regions (SEQ ID NO: 4; SEQ ID NO: 6; and SEQ ID NO: 8) of the variable heavy chain region of SEQ ID NO: 2; and the complementarity-determining regions (SEQ ID NO: 24; SEQ ID NO: 26; and SEQ ID NO: 28) of the variable light chain region of SEQ ID NO: 22 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 2; the variable light chain region of SEQ ID NO: 22; the framework regions (SEQ ID NO: 3; SEQ ID NO: 5; SEQ ID NO: 7; and SEQ ID NO: 9) of the variable heavy chain region of SEQ ID NO: 2; and the framework regions (SEQ ID NO: 23; SEQ ID NO: 25; SEQ ID NO: 27; and SEQ ID NO: 29) of the variable light chain region of SEQ ID NO: 22.
  • the anti-HGF antibody is Abl, comprising, or alternatively consisting of, SEQ ID NO: 1 and SEQ ID NO: 21, or an antibody or antibody fragment comprising the CDRs of Abl and having at least one of the biological activities set forth herein or is an anti-HGF antibody that competes with Abl in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of Abl or an antibody that binds to the same or overlapping epitope(s) on HGF as Abl.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 2 and the variable light chain sequence of SEQ ID NO: 22 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 2 and/or SEQ ID NO: 22 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of Abl .
  • anti-HGF antibodies such as Abl or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HE 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • Suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of Abl as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: EVQLVESGGGLVQPGGSLRLSCAASGFTVSAYAMSWVRQAPGKGLEWVAVIY VIGATDYASSAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR DSVWN HFNLWGQGTLVTVSS (SEQ ID NO: 42).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as Ab2 and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQKSLSLSPG SEQ ID NO: 50.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: DIQMTQSPSTLSASVGDRVTITCQASQSISSWLAWYQQKPG APKLLIYQASKL ASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQAYSVSNVDNAFGGGTKVE IKR (SEQ ID NO: 62).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as Ab2 which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQL SGTASVVCLLNNFYPREA VQW VDNALQSGNSQE SVTEQDS DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 44; SEQ ID NO: 46; and SEQ ID NO: 48 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 41 or which contain the variable heavy chain sequence of SEQ ID NO: 42, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 64; SEQ ID NO: 66; and SEQ ID NO: 68 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 61 or which contain the variable light chain sequence of SEQ ID NO: 62, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90% or 95% identical thereto.
  • the invention further contemplates anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 43; SEQ ID NO: 45; SEQ ID NO: 47; and SEQ ID NO: 49 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 41 or the variable heavy chain sequence of SEQ ID NO: 42, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 63; SEQ ID NO: 65; SEQ ID NO: 67; and SEQ ID NO: 69 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 61 or the variable light chain sequence of SEQ ID NO: 62, or combinations of these polypeptide sequences or sequences which are at least 80%, 90% or 95% identical therewith.
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 41 or SEQ ID NO: 42 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 61 or SEQ ID NO: 62 or polypeptides that are at least 90% or 95% identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 44; SEQ ID NO: 46; and SEQ ID NO: 48 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 41 or the variable heavy chain sequence of SEQ ID NO: 42 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 64; SEQ ID NO: 66; and SEQ ID NO: 68 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 61 or the variable light chain sequence of SEQ ID NO: 62 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 43; SEQ ID NO: 45; SEQ ID NO: 47; and SEQ ID NO: 49 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 41 or the variable heavy chain sequence of SEQ ID NO: 42 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 63; SEQ ID NO: 65; SEQ ID NO: 67; and SEQ ID NO: 69 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 61 or the variable light chain sequence of SEQ ID NO: 62 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 42; the variable light chain region of SEQ ID NO: 62; the complementarity-detenriining regions (SEQ ID NO: 44; SEQ ID NO: 46; and SEQ ID NO: 48) of the variable heavy chain region of SEQ ID NO: 42; and the complementarity-determining regions (SEQ ID NO: 64; SEQ ID NO: 66; and SEQ ID NO: 68) of the variable light chain region of SEQ ID NO: 62 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 42; the variable light chain region of SEQ ID NO: 62; the framework regions (SEQ ID NO: 43; SEQ ID NO: 45; SEQ ID NO: 47; and SEQ ID NO: 49) of the variable heavy chain region of SEQ ID NO: 42; and the framework regions (SEQ ID NO: 63; SEQ ID NO: 65; SEQ ID NO: 67; and SEQ ID NO: 69) of the variable light chain region of SEQ ID NO: 62. 2014/029383
  • the anti-HGF antibody is Ab2, comprising, or alternatively consisting of, SEQ ID NO: 41 and SEQ ID NO: 61, or an antibody or antibody fragment comprising the CDRs of Ab2 and having at least one of the biological activities set forth herein or is an anti-HGF antibody that competes with Ab2 in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of Ab2 or an antibody that binds to the same or overlapping epitope(s) on HGF as Ab2.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 42 and the variable light chain sequence of SEQ ID NO: 62 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 42 and/or SEQ ID NO: 62 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of Ab2.
  • anti-HGF antibodies such as Ab2 or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HEK 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • Suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of Ab2 as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: QSVEESGGRLVTPGTPLTLTCTVSGLTISSYYMSWVRQAPGKGLEWIGTINPGA NTYFASWA GRFTISRTSTTVDL ITSPTTEDTATYFCAREGDSNDWGVFDLW GQGTLVTVSS (SEQ ID NO: 82).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as Ab3 and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQKSLSLSPGK (SEQ ID NO: 90).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: AYDMTQTPASVEIAVGGTVTIRCQASEDIESYLAWYQQKPGQPPKLLIYRASDL ASGVSSRFKGSGSGTDYTLTISGVECDDAATYYCQQGYTIDNVDNTFGGGTEV VVKR (SEQ ID NO: 102).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as Ab3 which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQW VDNALQSGNSQE SVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 84; SEQ ID NO: 86; and SEQ ID NO: 88 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 81 or which contain the variable heavy chain sequence of SEQ ID NO: 82, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 104; SEQ ID NO: 106; and SEQ ID NO: 108 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 101 or which contain the variable light chain sequence of SEQ ID NO: 102, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90% or 95% identical thereto.
  • the invention further contemplates anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 83; SEQ ID NO: 85; SEQ ID NO: 87; and SEQ ID NO: 89 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 81 or the variable heavy chain sequence of SEQ ID NO: 82, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 103; SEQ ID NO: 105; SEQ ID NO: 107; and SEQ ID NO: 109 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 101 or the variable light chain sequence of SEQ ID NO: 102, or combinations of these polypeptide sequences or sequences which are at least 80%, 90% or 95% identical therewith.
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 81 or SEQ ID NO: 82 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 101 or SEQ ID NO: 102 or polypeptides that are at least 90% or 95% identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 84; SEQ ID NO: 86; and SEQ ID NO: 88 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 81 or the variable heavy chain sequence of SEQ ID NO: 82 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 104; SEQ ID NO: 106; and SEQ ID NO: 108 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 101 or the variable light chain sequence of SEQ ID NO: 102 or sequences that are at least 90% or 95%» identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 83; SEQ ID NO: 85; SEQ ID NO: 87; and SEQ ID NO: 89 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 81 or the variable heavy chain sequence of SEQ ID NO: 82 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 103; SEQ ID NO: 105; SEQ ID NO: 107; and SEQ ID NO: 109 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 101 or the variable light chain sequence of SEQ ID NO: 102 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 82; the variable light chain region of SEQ ID NO: 102; the complementarity-determining regions (SEQ ID NO: 84; SEQ ID NO: 86; and SEQ ID NO: 88) of the variable heavy chain region of SEQ ID NO: 82; and the complementarity-determining regions (SEQ ID NO: 104; SEQ ID NO: 106; and SEQ ID NO: 108) of the variable light chain region of SEQ ID NO: 102 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 82; the variable light chain region of SEQ ID NO: 102; the framework regions (SEQ ID NO: 83; SEQ ID NO: 85; SEQ ID NO: 87; and SEQ ID NO: 89) of the variable heavy chain region of SEQ ID NO: 82; and the framework regions (SEQ ID NO: 103; SEQ ID NO: 105; SEQ ID NO: 107; and SEQ ID NO: 109) of the variable light chain region of SEQ ID NO: 102.
  • the anti-HGF antibody is Ab3, comprising, or alternatively consisting of, SEQ ID NO: 81 and SEQ ID NO: 101, or an antibody or antibody fragment comprising the CDRs of Ab3 and having at least one of the biological activities set forth herein or is an anti-HGF antibody that competes with Ab3 in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of Ab3 or an antibody that binds to the same or overlapping epitope(s) on HGF as Ab3.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 82 and the variable light chain sequence of SEQ ID NO: 102 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 82 and/or SEQ ID NO: 102 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of Ab3.
  • anti-HGF antibodies such as Ab3 or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HEK 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • Suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of Ab3 as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: QSLEESGGRLVQPGTPLTLSCTASGLTISSYYMSWVRQAPGKGLEWVGTINPGA NTYFASSAKGRFTISRSSTTLDLKMTSPTAEDTATYYCAREGDSNDWGVFDLW GQGTLVTVSS (SEQ ID NO: 122).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as Ab4 and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQ SLSLSPGK (SEQ ID NO: 130).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: AYDMTQSPASVEAAVGGTVTIRCQASEDIESYLAWYQQKPGQPPKLLIYRASD
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as Ab4 which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQE SVTEQDS DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 124; SEQ ID NO: 126; and SEQ ID NO: 128 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 121 or which contain the variable heavy chain sequence of SEQ ID NO: 122, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 144; SEQ ID NO: 146; and SEQ ID NO: 148 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 141 or which contain the variable light chain sequence of SEQ ID NO: 142, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%», 95%, 96%, 97%, 98% or 99% identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90% or 95% identical thereto.
  • the invention further contemplates anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 123; SEQ ID NO: 125; SEQ ID NO: 127; and SEQ ID NO: 129 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 121 or the variable heavy chain sequence of SEQ ID NO: 122, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 143; SEQ ID NO: 145; SEQ ID NO: 147; and SEQ ID NO: 149 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 141 or the variable light chain sequence of SEQ ID NO: 142, or combinations of these polypeptide sequences or sequences which are at least 80%, 90% or 95% identical therewith.
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 121 or SEQ ID NO: 122 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 141 or SEQ ID NO: 142 or polypeptides that are at least 90% or 95% identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 124; SEQ ID NO: 126; and SEQ ID NO: 128 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 121 or the variable heavy chain sequence of SEQ ID NO: 122 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 144; SEQ ID NO: 146; and SEQ ID NO: 148 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 141 or the variable light chain sequence of SEQ ID NO: 142 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 123; SEQ ID NO: 125; SEQ ID NO: 127; and SEQ ID NO: 129 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 121 or the variable heavy chain sequence of SEQ ID NO: 122 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 143; SEQ ID NO: 145; SEQ ID NO: 147; and SEQ ID NO: 149 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 141 or the variable light chain sequence of SEQ ID NO: 142 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 122; the variable light chain region of SEQ ID NO: 142; the complementarity-determining regions (SEQ ID NO: 124; SEQ ID NO: 126; and SEQ ID NO: 128) of the variable heavy chain region of SEQ ID NO: 122; and the complementarity-determining regions (SEQ ID NO: 144; SEQ ID NO: 146; and SEQ ID NO: 148) of the variable light chain region of SEQ ID NO: 142 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 122; the variable light chain region of SEQ ID NO: 142; the framework regions (SEQ ID NO: 123; SEQ ID NO: 125; SEQ ID NO: 127; and SEQ ID NO: 129) of the variable heavy chain region of SEQ ID NO: 122; and the framework regions (SEQ ID NO: 143; SEQ ID NO: 145; SEQ ID NO: 147; and SEQ ID NO: 149) of the variable light chain region of SEQ ID NO: 142.
  • the anti-HGF antibody is Ab4, comprising, or alternatively consisting of, SEQ ID NO: 121 and SEQ ID NO: 141, or an antibody or antibody fragment comprising the CDRs of Ab4 and having at least one of the biological activities set forth herein or is an anti-HGF antibody that competes with Ab4 in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of Ab4 or an antibody that binds to the same or overlapping epitope(s) on HGF as Ab4.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 122 and the variable light chain sequence of SEQ ID NO: 142 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 122 and/or SEQ ID NO: 142 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of Ab4.
  • anti-HGF antibodies such as Ab4 or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HEK 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • Suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of Ab4 as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: QSLEESGGRLVTPGTPLTLTCTVSGFSLNNYAVGWVRQAPGKGLEWIGIIYLSG NTDYANWAKGRFTIS TSTTVDL ITSPTTEDTATYFCARKFDTGYDIWGPGTL VTVSS (SEQ ID NO: 162).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as Ab5 and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQ SLSLSPG (SEQ ID NO: 170).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: AYDMTQTPASMEVAVGGTVTIKCQASQSISTYLAWYQQ PGQPPKLLIYDASD 9383
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as Ab5 which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQE SVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 164; SEQ ID NO: 166; and SEQ ID NO: 168 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 161 or which contain the variable heavy chain sequence of SEQ ID NO: 162, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 184; SEQ ID NO: 186; and SEQ ID NO: 188 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 181 or which contain the variable light chain sequence of SEQ ID NO: 182, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90% or 95% identical thereto.
  • the invention further contemplates anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 163; SEQ ID NO: 165; SEQ ID NO: 167; and SEQ ID NO: 169 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 161 or the variable heavy chain sequence of SEQ ID NO: 162, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 183; SEQ ID NO: 185; SEQ ID NO: 187; and SEQ ID NO: 189 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 181 or the variable light 2014/029383 chain sequence of SEQ ID NO: 182, or combinations of these polypeptide sequences or sequences which are at least 80%, 90% or 95% identical therewith.
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 161 or SEQ ID NO: 162 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 181 or SEQ ID NO: 182 or polypeptides that are at least 90% or 95% identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 164; SEQ ID NO: 166; and SEQ ID NO: 168 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 161 or the variable heavy chain sequence of SEQ ID NO: 162 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 184; SEQ ID NO: 186; and SEQ ID NO: 188 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 181 or the variable light chain sequence of SEQ ID NO: 182 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 163; SEQ ID NO: 165; SEQ ID NO: 167; and SEQ ID NO: 169 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 161 or the variable heavy chain sequence of SEQ ID NO: 162 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 183; SEQ ID NO: 185; SEQ ID NO: 187; and SEQ ID NO: 189 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 181 or the variable light chain sequence of SEQ ID NO: 182 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 162; the variable light chain region of SEQ ID NO: 182; the complementarity-determining regions (SEQ ID NO: 164; SEQ ID NO: 166; and SEQ ID NO: 168) of the variable heavy chain region of SEQ ID NO: 162; and the complementarity-determining regions (SEQ ID NO: 184; SEQ ID NO: 186; and SEQ ID NO: 188) of the variable light chain region of SEQ ID NO: 182 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 162; the variable light chain region of SEQ ID NO: 182; the framework regions (SEQ ID NO: 163; SEQ ID NO: 165; SEQ ID NO: 167; and SEQ ID NO: 169) of the variable heavy chain region of SEQ ID NO: 162; and the framework regions (SEQ ID NO: 183; SEQ ID NO: 185; SEQ ID NO: 187; and SEQ ID NO: 189) of the variable light chain region of SEQ ID NO: 182.
  • the anti-HGF antibody is Ab5, comprising, or alternatively consisting of, SEQ ID NO: 161 and SEQ ID NO: 181 , or an antibody or antibody fragment comprising the CDRs of Ab5 and having at least one of the biological activities set forth herein or is an anti-HGF antibody that competes with Ab5 in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of Ab5 or an antibody that binds to the same or overlapping epitope(s) on HGF as Ab5.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 162 and the variable light chain sequence of SEQ ID NO: 182 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 162 and/or SEQ ID NO: 182 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of Ab5.
  • anti-HGF antibodies such as Ab5 or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HE 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • Suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of Ab5 as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: QSVEESGGRLVMPGTPLTLTCTVSGFSLSSNAISWVRQAPE GLEWIGVIYVIG VTDYASWAQGRFTISKTSTTVDLKIPSPTTEDTATYFCARVYDSGWNHFNLWG PGTLVTVSS (SEQ ID NO: 202).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as Ab6 and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQKSLSLSPGK (SEQ ID NO: 210).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: ADIVMTQTPSSVEAAVGGTVTIKCQASENIYRLLAWYQQKPGQRPKLLIYSAST LASGVPSRFKGSGSGTQFTLTISDLECADAATYYCQNYYYSSRSSYDTYNVFGG GTEVVVKR (SEQ ID NO: 222).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as Ab6 which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA VQWKVDNALQSGNSQE SVTEQDS DSTYSLSSTLTLSKADYE HKVYACEVTHQGLSSPVTKSFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 204; SEQ ID NO: 206; and SEQ ID NO: 208 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 201 or which contain the variable heavy chain sequence of SEQ ID NO: 202, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 224; SEQ ID NO: 226; and SEQ ID NO: 228 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 221 or which contain the variable light chain sequence of SEQ ID NO: 222, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90% or 95% identical thereto.
  • the invention further contemplates anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 203; SEQ ID NO: 205; SEQ ID NO: 207; and SEQ ID NO: 209 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 201 or the variable heavy chain sequence of SEQ ID NO: 202, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 223; SEQ ID NO: 225; SEQ ID NO: 227; and SEQ ID NO: 229 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 221 or the variable light chain sequence of SEQ ID NO: 222, or combinations of these polypeptide sequences or sequences which are at least 80%, 90% or 95% identical therewith.
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 201 or SEQ ID NO: 202 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 221 or SEQ ID NO: 222 or polypeptides that are at least 90% or 95% identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 204; SEQ ID NO: 206; and SEQ ID NO: 208 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 201 or the variable heavy chain sequence of SEQ ID NO: 202 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 224; SEQ ID NO: 226; and SEQ ID NO: 228 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 221 or the variable light chain sequence of SEQ ID NO: 222 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 203; SEQ ID NO: 205; SEQ ID NO: 207; and SEQ ID NO: 209 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 201 or the variable heavy chain sequence of SEQ ID NO: 202 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 223; SEQ ID NO: 225; SEQ ID NO: 227; and SEQ ID NO: 229 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 221 or the variable light chain sequence of SEQ ID NO: 222 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 202; the variable light chain region of SEQ ID NO: 222; the complementarity-determining regions (SEQ ID NO: 204; SEQ ID NO: 206; and SEQ ID NO: 208) of the variable heavy chain region of SEQ ID NO: 202; and the complementarity-determining regions (SEQ ID NO: 224; SEQ ID NO: 226; and SEQ ID NO: 228) of the variable light chain region of SEQ ID NO: 222 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 202; the variable light chain region of SEQ ID NO: 222; the framework regions (SEQ ID NO: 203; SEQ ID NO: 205; SEQ ID NO: 207; and SEQ ID NO: 209) of the variable heavy chain region of SEQ ID NO: 202; and the framework regions (SEQ ID NO: 223; SEQ ID NO: 225; SEQ ID NO: 227; and SEQ ID NO: 229) of the variable light chain region of SEQ ID NO: 222.
  • the anti-HGF antibody is Ab6, comprising, or alternatively consisting of, SEQ ID NO: 201 and SEQ ID NO: 221, or an antibody or antibody fragment comprising the CDRs of Ab6 and having at least one of the biological activities set forth herein or is an anti-HGF antibody that competes with Ab6 in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of Ab6 or an antibody that binds to the same or overlapping epitope(s) on HGF as Ab6.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 202 and the variable light chain sequence of SEQ ID NO: 222 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 202 and/or SEQ ID NO: 222 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of Ab6.
  • anti-HGF antibodies such as Ab6 or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HE 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • Suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of Ab6 as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: QSVEESGGRLVMPGTPLTLTCTVSGFSLSSNAISWVRQAPE GLEW1GVIYVIG VTDYASWAQGRFTISKTSTTVDLKIPSPTTEDTATYFCARVYDSGWNHFNLWG PGTLVTVSS (SEQ ID NO: 242).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as Ab7 and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQ SLSLSPG (SEQ ID NO: 250).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: AYDMTQTPASVEVAVGGTVTI CQASQSISSWLAWYQQ PGQPP LLIYEASK LASGVPSRFSGSGSGTQFTLTISGVECADAATYYCQQAYSVANVDNAFGGGTE VVVKR (SEQ ID NO: 262).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as Ab7 which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQE SVTEQDS DSTYSLSSTLTLSKADYE HKVYACEVTHQGLSSPVT SFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 244; SEQ ID NO: 246; and SEQ ID NO: 248 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 241 or which contain the variable heavy chain sequence of SEQ ID NO: 242, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 264; SEQ ID NO: 266; and SEQ ID NO: 268 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 261 or which contain the variable light chain sequence of SEQ ID NO: 262, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90% or 95% identical thereto.
  • the invention further contemplates anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 243; SEQ ID NO: 245; SEQ ID NO: 247; and SEQ ID NO: 249 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 241 or the variable heavy chain sequence of SEQ ID NO: 242, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 263; SEQ ID NO: 265; SEQ ID NO: 267; and SEQ ID NO: 269 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 261 or the variable light chain sequence of SEQ ID NO: 262, or combinations of these polypeptide sequences or sequences which are at least 80%, 90% or 95% identical therewith.
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 241 or SEQ ID NO: 242 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 261 or SEQ ID NO: 262 or polypeptides that are at least 90% or 95% identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 244; SEQ ID NO: 246; and SEQ ID NO: 248 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 241 or the variable heavy chain sequence of SEQ ID NO: 242 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 264; SEQ ID NO: 266; and SEQ ID NO: 268 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 261 or the variable light chain sequence of SEQ ID NO: 262 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 243; SEQ ID NO: 245; SEQ ID NO: 247; and SEQ ID NO: 249 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 241 or the variable heavy chain sequence of SEQ ID NO: 242 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 263; SEQ ID NO: 265; SEQ ID NO: 267; and SEQ ID NO: 269 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 261 or the variable light chain sequence of SEQ ID NO: 262 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 242; the variable light chain region of SEQ ID NO: 262; the complementarity-determining regions (SEQ ID NO: 244; SEQ ID NO: 246; and SEQ ID NO: 248) of the variable heavy chain region of SEQ ID NO: 242; and the complementarity-determining regions (SEQ ID NO: 264; SEQ ID NO: 266; and SEQ ID NO: 268) of the variable light chain region of SEQ ID NO: 262 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 242; the variable light chain region of SEQ ID NO: 262; the framework regions (SEQ ID NO: 243; SEQ ID NO: 245; SEQ ID NO: 247; and SEQ ID NO: 249) of the variable heavy chain region of SEQ ID NO: 242; and the framework regions (SEQ ID NO: 263; SEQ ID NO: 265; SEQ ID NO: 267; and SEQ ID NO: 269) of the variable light chain region of SEQ ID NO: 262.
  • the anti-HGF antibody is Ab7, comprising, or alternatively consisting of, SEQ ID NO: 241 and SEQ ID NO: 261 , or an antibody or antibody fragment comprising the CDRs of Ab7 and having at least one of the biological activities set forth herein or is an anti-HGF 29383 antibody that competes with Ab7 in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of Ab7 or an antibody that binds to the same or overlapping epitope(s) on HGF as Ab7.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 242 and the variable light chain sequence of SEQ ID NO: 262 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 242 and/or SEQ ID NO: 262 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of Ab7.
  • anti-HGF antibodies such as Ab7 or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HEK 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • Suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of Ab7 as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNAISWVRQAPG GLEWVGVIYV IGVTDYASSAQGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVYDSGWNH FNLWGQGTLVTVSS (SEQ ID NO: 282).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as Ab8 and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQKSLSLSPG (SEQ ID NO: 290).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: DIQMTQSPSTLSASVGDRVT1TCQASQSISSWLAWYQQ PGKAPKLLIYEASKL ASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQAYSVANVDNAFGGGT VE IKR (SEQ ID NO: 302).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as Ab8 which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQE SVTEQDS DSTYSLSSTLTLSKADYE HKVYACEVTHQGLSSPVT SFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 284; SEQ ID NO: 286; and SEQ ID NO: 288 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 281 or which contain the variable heavy chain sequence of SEQ ID NO: 282, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 304; SEQ ID NO: 306; and SEQ ID NO: 308 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 301 or which contain the variable light chain sequence of SEQ ID NO: 302, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90% or 95% identical thereto.
  • the invention further contemplates anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 283; SEQ ID NO: 285; SEQ ID NO: 287; and SEQ ID NO: 289 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 281 or the variable heavy chain sequence of SEQ ID NO: 282, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 303; SEQ ID NO: 305; SEQ ID NO: 307; and SEQ ID NO: 309 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 301 or the variable light chain sequence of SEQ ID NO: 302, or combinations of these polypeptide sequences or sequences which are at least 80%, 90% or 95% identical therewith.
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 281 or SEQ ID NO: 282 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 301 or SEQ ID NO: 302 or polypeptides that are at least 90% or 95%» identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 284; SEQ ID NO: 286; and SEQ ID NO: 288 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 281 or the variable heavy chain sequence of SEQ ID NO: 282 or sequences that are at least 90% or 95%> identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 304; SEQ ID NO: 306; and SEQ ID NO: 308 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 301 or the variable light chain sequence of SEQ ID NO: 302 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 283; SEQ ID NO: 285; SEQ ID NO: 287; and SEQ ID NO: 289 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 281 or the variable heavy U 2014/029383 chain sequence of SEQ ID NO: 282 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 303; SEQ ID NO: 305; SEQ ID NO: 307; and SEQ ID NO: 309 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 301 or the variable light chain sequence of SEQ ID NO: 302 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 282; the variable light chain region of SEQ ID NO: 302; the complementarity-determining regions (SEQ ID NO: 284; SEQ ID NO: 286; and SEQ ID NO: 288) of the variable heavy chain region of SEQ ID NO: 282; and the complementarity-determining regions (SEQ ID NO: 304; SEQ ID NO: 306; and SEQ ID NO: 308) of the variable light chain region of SEQ ID NO: 302 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 282; the variable light chain region of SEQ ID NO: 302; the framework regions (SEQ ID NO: 283; SEQ ID NO: 285; SEQ ID NO: 287; and SEQ ID NO: 289) of the variable heavy chain region of SEQ ID NO: 282; and the framework regions (SEQ ID NO: 303; SEQ ID NO: 305; SEQ ID NO: 307; and SEQ ID NO: 309) of the variable light chain region of SEQ ID NO: 302.
  • the anti-HGF antibody is Ab8, comprising, or alternatively consisting of, SEQ ID NO: 281 and SEQ ID NO: 301, or an antibody or antibody fragment comprising the CDRs of Ab8 and having at least one of the biological activities set forth herein or is an anti-HGF antibody that competes with Ab8 in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of Ab8 or an antibody that binds to the same or overlapping epitope(s) on HGF as Ab8.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 282 and the variable light chain sequence of SEQ ID NO: 302 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 282 and/or SEQ ID NO: 302 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of Ab8.
  • anti-HGF antibodies such as Ab8 or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HEK 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • Suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of Ab8 as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: QSVEESGGRLVTPGTPLTLTCTVSGIDLNSNGMSWVRQAPGEGLEWIGASSIDG TTYYTNWA GRFTISKTSSTTVDL ITSPTTEDTATYFCTRGEYAGVVGSNYFD LWGQGTLVTVSS (SEQ ID NO: 322).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as Ab9 and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQKSLSLSPGK (SEQ ID NO: 330).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: QVLTQTPPSVSAVVGGTVTINCQSSQRIYSNWLSWYQQKPGQTPKPLIYAASSL ASGVPSRFKGSGSGTQFTLTISDLECDDAASYYCAGYYSGHIYSFGGGTEVVVK R (SEQ ID NO: 342).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as Ab9 which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQL SGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQE SVTEQDSKDSTYSLSSTLTLSKADYEKH VYACEVTHQGLSSPVTKSFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 324; SEQ ID NO: 326; and SEQ ID NO: 328 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 321 or which contain the variable heavy chain sequence of SEQ ID NO: 322, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 344; SEQ ID NO: 346; and SEQ ID NO: 348 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 341 or which contain the variable light chain sequence of SEQ ID NO: 342, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90% or 95% identical thereto.
  • the invention further contemplates anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 323; SEQ ID NO: 325; SEQ ID NO: 327; and SEQ ID NO: 329 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 321 or the variable heavy chain sequence of SEQ ID NO: 322, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 343; SEQ ID NO: 345; SEQ ID NO: 347; and SEQ ID NO: 349 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 341 or the variable light T/US2014/029383 chain sequence of SEQ ID NO: 342, or combinations of these polypeptide sequences or sequences which are at least 80%, 90% or 95% identical therewith.
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 321 or SEQ ID NO: 322 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 341 or SEQ ID NO: 342 or polypeptides that are at least 90% or 95% identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 324; SEQ ID NO: 326; and SEQ ID NO: 328 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 321 or the variable heavy chain sequence of SEQ ID NO: 322 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 344; SEQ ID NO: 346; and SEQ ID NO: 348 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 341 or the variable light chain sequence of SEQ ID NO: 342 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 323; SEQ ID NO: 325; SEQ ID NO: 327; and SEQ ID NO: 329 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 321 or the variable heavy chain sequence of SEQ ID NO: 322 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 343; SEQ ID NO: 345; SEQ ID NO: 347; and SEQ ID NO: 349 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 341 or the variable light chain sequence of SEQ ID NO: 342 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 322; the variable light chain region of SEQ ID NO: 342; the complementarity-determining regions (SEQ ID NO: 324; SEQ ID NO: 326; and SEQ ID NO: 328) of the variable heavy chain region of SEQ ID NO: 322; and the complementarity-determining regions (SEQ ID NO: 344; SEQ ID NO: 346; and SEQ ID NO: 348) of the variable light chain region of SEQ ID NO: 342 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 322; the variable light chain region of SEQ ID NO: 342; the framework regions (SEQ ID NO: 323; SEQ ID NO: 325; SEQ ID NO: 327; and SEQ ID NO: 329) of the variable heavy chain region of SEQ ID NO: 322; and the framework regions (SEQ ID NO: 343; SEQ ID NO: 345; SEQ ID NO: 347; and SEQ ID NO: 349) of the variable light chain region of SEQ ID NO: 342.
  • the anti-HGF antibody is Ab9, comprising, or alternatively consisting of, SEQ ID NO: 321 and SEQ ID NO: 341, or an antibody or antibody fragment comprising the CDRs of Ab9 and having at least one of the biological activities set forth herein or is an anti-HGF U 2014/029383 antibody that competes with Ab9 in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of Ab9 or an antibody that binds to the same or overlapping epitope(s) on HGF as Ab9.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 322 and the variable light chain sequence of SEQ ID NO: 342 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 322 and/or SEQ ID NO: 342 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of Ab9.
  • anti-HGF antibodies such as Ab9 or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HEK 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • Suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of Ab9 as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNGMSWVRQAPGKGLEWVGASS IDGTTYYTNSAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGEYAGVVG SNYFDLWGQGTLVTVSS (SEQ ID NO: 362).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as AblO and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQ SLSLSPG (SEQ ID NO: 370).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: DIQMTQSPSSVSASVGDRVTITCQSSQRIYSNWLSWYQQ PGKAP LLIYAASS 2014/029383
  • R (SEQ ID NO: 382).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as AblO which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQL SGTASVVCLLNNFYPREAKVQW VDNALQSGNSQE SVTEQDSKDSTYSLSSTLTLS ADYE H VYACEVTHQGLSSPVT SFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 364; SEQ ID NO: 366; and SEQ ID NO: 368 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 361 or which contain the variable heavy chain sequence of SEQ ID NO: 362, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 384; SEQ ID NO: 386; and SEQ ID NO: 388 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 381 or which contain the variable light chain sequence of SEQ ID NO: 382, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%, 98%) or 99%o identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90% or 95% identical thereto.
  • the invention further contemplates anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 363; SEQ ID NO: 365; SEQ ID NO: 367; and SEQ ID NO: 369 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 361 or the variable heavy chain sequence of SEQ ID NO: 362, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 383; SEQ ID NO: 385; SEQ ID NO: 387; and SEQ ID NO: 389 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 381 or the variable light T/US2014/029383 chain sequence of SEQ ID NO: 382, or combinations of these polypeptide sequences or sequences which are at least 80%, 90% or 95% identical therewith.
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 361 or SEQ ID NO: 362 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 381 or SEQ ID NO: 382 or polypeptides that are at least 90% or 95% identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 364; SEQ ID NO: 366; and SEQ ID NO: 368 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 361 or the variable heavy chain sequence of SEQ ID NO: 362 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 384; SEQ ID NO: 386; and SEQ ID NO: 388 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 381 or the variable light chain sequence of SEQ ID NO: 382 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 363; SEQ ID NO: 365; SEQ ID NO: 367; and SEQ ID NO: 369 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 361 or the variable heavy U 2014/029383 chain sequence of SEQ ID NO: 362 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 383; SEQ ID NO: 385; SEQ ID NO: 387; and SEQ ID NO: 389 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 381 or the variable light chain sequence of SEQ ID NO: 382 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 362; the variable light chain region of SEQ ID NO: 382; the complementarity-determining regions (SEQ ID NO: 364; SEQ ID NO: 366; and SEQ ID NO: 368) of the variable heavy chain region of SEQ ID NO: 362; and the complementarity-determining regions (SEQ ID NO: 384; SEQ ID NO: 386; and SEQ ID NO: 388) of the variable light chain region of SEQ ID NO: 382 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 362; the variable light chain region of SEQ ID NO: 382; the framework regions (SEQ ID NO: 363; SEQ ID NO: 365; SEQ ID NO: 367; and SEQ ID NO: 369) of the variable heavy chain region of SEQ ID NO: 362; and the framework regions (SEQ ID NO: 383; SEQ ID NO: 385; SEQ ID NO: 387; and SEQ ID NO: 389) of the variable light chain region of SEQ ID NO: 382.
  • the anti-HGF antibody is AblO, comprising, or alternatively consisting of, SEQ ID NO: 361 and SEQ ID NO: 381 , or an antibody or antibody fragment comprising the CDRs of AblO and having at least one of the biological activities set forth herein or is an anti-HGF antibody that competes with AblO in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of AblO or an antibody that binds to the same or overlapping epitope(s) on HGF as AblO.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 362 and the variable light chain sequence of SEQ ID NO: 382 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 362 and/or SEQ ID NO: 382 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of AblO.
  • anti-HGF antibodies such as AblO or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HE 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • yeast cells for example haploid or diploid yeast such as haploid or diploid Pichia
  • Suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of AblO as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below:
  • LDVPDGMDLWGPGTLVTVSS (SEQ ID NO: 402).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as Abl l and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQKSLSLSPGK (SEQ ID NO: 410).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: AVLTQTPSPVSAAVGGTVTIKCQSSQSVYNNNLLSWYQQKPGQPP LLIWGAS YLPSGVPDRFSGSGSGTQFTLTISGVQCDDAATYYCLGGYDGDADTYNTFGGG TEVVVKR (SEQ ID NO: 422).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as Abl 1 which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQL SGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQE SVTEQDS DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVT SFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 404; SEQ ID NO: 406; and SEQ ID NO: 408 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 401 or which contain the variable heavy chain sequence of SEQ ID NO: 402, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 424; SEQ ID NO: 426; and SEQ ID NO: 428 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 421 or which contain the variable light chain sequence of SEQ ID NO: 422, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%, 98%o or 99% identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90% or 95% identical thereto.
  • the invention further contemplates anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 403; SEQ ID NO: 405; SEQ ID NO: 407; and SEQ ID NO: 409 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 401 or the variable heavy chain sequence of SEQ ID NO: 402, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 423; SEQ ID NO: 425; SEQ ID NO: 427; and SEQ ID NO: 429 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 421 or the variable light chain sequence of SEQ ID NO: 422, or combinations of these polypeptide sequences or sequences which are at least 80%, 90% or 95% identical therewith.
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 401 or SEQ ID NO: 402 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 421 or SEQ ID NO: 422 or polypeptides that are at least 90% or 95% identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 404; SEQ ID NO: 406; and SEQ ID NO: 408 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 401 or the variable heavy chain sequence of SEQ ID NO: 402 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 424; SEQ ID NO: 426; and SEQ ID NO: 428 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 421 or the variable light chain sequence of SEQ ID NO: 422 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 403; SEQ ID NO: 405; SEQ ID NO: 407; and SEQ ID NO: 409 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 401 or the variable heavy chain sequence of SEQ ID NO: 402 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 423; SEQ ID NO: 425; SEQ ID NO: 427; and SEQ ID NO: 429 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 421 or the variable light chain sequence of SEQ ID NO: 422 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 402; the variable light chain region of SEQ ID NO: 422; the complementarity-determining regions (SEQ ID NO: 404; SEQ ID NO: 406; and SEQ ID NO: 408) of the variable heavy chain region of SEQ ID NO: 402; and the complementarity-determining regions (SEQ ID NO: 424; SEQ ID NO: 426; and SEQ ID NO: 428) of the variable light chain region of SEQ ID NO: 422 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 402; the variable light chain region of SEQ ID NO: 422; the framework regions (SEQ ID NO: 403; SEQ ID NO: 405; SEQ ID NO: 407; and SEQ ID NO: 409) of the variable heavy chain region of SEQ ID NO: 402; and the framework regions (SEQ ID NO: 423; SEQ ID NO: 425; SEQ ID NO: 427; and SEQ ID NO: 429) of the variable light chain region of SEQ ID NO: 422.
  • the anti-HGF antibody is Abl 1, comprising, or alternatively consisting of, SEQ ID NO: 401 and SEQ ID NO: 421 , or an antibody or antibody fragment comprising the CDRs of Abl 1 and having at least one of the biological activities set forth herein or is an anti-HGF 2014/029383 antibody that competes with Abl l in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of Abl l or an antibody that binds to the same or overlapping epitope(s) on HGF as Abl 1.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 402 and the variable light chain sequence of SEQ ID NO: 422 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 402 and/or SEQ ID NO: 422 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of Abl l .
  • anti-HGF antibodies such as Abl l or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HEK 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • yeast cells for example haploid or diploid yeast such as haploid or diploid Pichia
  • Suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of Abl l as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: QSLEESGGRLVTPGGSLTLTCTVSGIDLSSNAISWVRQAPEKGLEWIAVIYVVG ATDYASWAKGRFTISRTSTTVDLKMTSLTTEDTATYFCARVYDSGWNHFNLW GPGTLVTVSS (SEQ ID NO: 442).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as AM 2 and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQKSLSLSPGK (SEQ ID NO: 450).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: AYDMTQTPASVEVAVGGTVTIKCQVSQSISSWLSWYQKKPGQRPKLLIYRAST LASGVSSRF GSGSGTEFTLTISGVECADAATYYCQQAYSVSNVDNAFGGGTE VVVKR (SEQ ID NO: 462).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as Abl2 which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQW VDNALQSGNSQE SVTEQDSKDSTYSLSSTLTLS ADYEKH VYACEVTHQGLSSPVTKSFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 444; SEQ ID NO: 446; and SEQ ID NO: 448 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 441 or which contain the variable heavy chain sequence of SEQ ID NO: 442, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 464; SEQ ID NO: 466; and SEQ ID NO: 468 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 461 or which contain the variable light chain sequence of SEQ ID NO: 462, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90% or 95% identical thereto.
  • anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 443; SEQ ID NO: 445; SEQ ID NO: 447; and SEQ ID NO: 449 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 441 or the variable heavy chain sequence of SEQ ID NO: 442, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 463; SEQ ID NO: 465; SEQ ID NO: 467; and SEQ ID NO: 469 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 461 or the variable light
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 441 or SEQ ID NO: 442 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 461 or SEQ ID NO: 462 or polypeptides that are at least 90% or 95% identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 444; SEQ ID NO: 446; and SEQ ID NO: 448 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 441 or the variable heavy chain sequence of SEQ ID NO: 442 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 464; SEQ ID NO: 466; and SEQ ID NO: 468 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 461 or the variable light chain sequence of SEQ ID NO: 462 or sequences that are at least 90%» or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 443; SEQ ID NO: 445; SEQ ID NO: 447; and SEQ ID NO: 449 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 441 or the variable heavy chain sequence of SEQ ID NO: 442 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 463; SEQ ID NO: 465; SEQ ID NO: 467; and SEQ ID NO: 469 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 461 or the variable light chain sequence of SEQ ID NO: 462 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 442; the variable light chain region of SEQ ID NO: 462; the complementarity-determining regions (SEQ ID NO: 444; SEQ ID NO: 446; and SEQ ID NO: 448) of the variable heavy chain region of SEQ ID NO: 442; and the complementarity-determining regions (SEQ ID NO: 464; SEQ ID NO: 466; and SEQ ID NO: 468) of the variable light chain region of SEQ ID NO: 462 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 442; the variable light chain region of SEQ ID NO: 462; the framework regions (SEQ ID NO: 443; SEQ ID NO: 445; SEQ ID NO: 447; and SEQ ID NO: 449) of the variable heavy chain region of SEQ ID NO: 442; and the framework regions (SEQ ID NO: 463; SEQ ID NO: 465; SEQ ID NO: 467; and SEQ ID NO: 469) of the variable light chain region of SEQ ID NO: 462.
  • the anti-HGF antibody is Abl2, comprising, or alternatively consisting of, SEQ ID NO: 441 and SEQ ID NO: 461, or an antibody or antibody fragment comprising the CDRs of Abl2 and having at least one of the biological activities set forth herein or is an anti-HGF antibody that competes with Abl2 in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of Abl2 or an antibody that binds to the same or overlapping epitope(s) on HGF as Abl2.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 442 and the variable light chain sequence of SEQ ID NO: 462 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 442 and/or SEQ ID NO: 462 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of Abl2.
  • anti-HGF antibodies such as Abl2 or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HE 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • Suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of AM 2 as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNAISWVRQAPGKGLEWVAVIYV VGATDYASSA GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVYDSGWNH FNLWGQGTLVTVSS (SEQ ID NO: 482).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as Abl3 and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQKSLSLSPGK (SEQ ID NO: 490).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: DYQMTQSPSTLSASVGDRVTITCQVSQSISSWLSWYQQKPGKAP LLIYRASTL ASGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQAYSVSNVDNAFGGGT VE IKR (SEQ ID NO: 502).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as Abl3 which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQL SGTASVVCLLNNFYPREA VQW VDNALQSGNSQE SVTEQDSKDSTYSLSSTLTLS ADYEKH VYACEVTHQGLSSPVTKSFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 484; SEQ ID NO: 486; and SEQ ID NO: 488 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 481 or which contain the variable heavy chain sequence of SEQ ID NO: 482, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 504; SEQ ID NO: 506; and SEQ ID NO: 508 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 501 or which contain the variable light chain sequence of SEQ ID NO: 502, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90% or 95% identical thereto.
  • the invention further contemplates anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 483; SEQ ID NO: 485; SEQ ID NO: 487; and SEQ ID NO: 489 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 481 or the variable heavy chain sequence of SEQ ID NO: 482, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 503; SEQ ID NO: 505; SEQ ID NO: 507; and SEQ ID NO: 509 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 501 or the variable light P T/US2014/029383 chain sequence of SEQ ID NO: 502, or combinations of these polypeptide sequences or sequences which are at least 80%, 90% or 95% identical therewith.
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 481 or SEQ ID NO: 482 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 501 or SEQ ID NO: 502 or polypeptides that are at least 90% or 95% identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 484; SEQ ID NO: 486; and SEQ ID NO: 488 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 481 or the variable heavy chain sequence of SEQ ID NO: 482 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 504; SEQ ID NO: 506; and SEQ ID NO: 508 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 501 or the variable light chain sequence of SEQ ID NO: 502 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 483; SEQ ID NO: 485; SEQ ID NO: 487; and SEQ ID NO: 489 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 481 or the variable heavy T U 2014/029383 chain sequence of SEQ ID NO: 482 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 503; SEQ ID NO: 505; SEQ ID NO: 507; and SEQ ID NO: 509 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 501 or the variable light chain sequence of SEQ ID NO: 502 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 482; the variable light chain region of SEQ ID NO: 502; the complementarity-determining regions (SEQ ID NO: 484; SEQ ID NO: 486; and SEQ ID NO: 488) of the variable heavy chain region of SEQ ID NO: 482; and the complementarity-determining regions (SEQ ID NO: 504; SEQ ID NO: 506; and SEQ ID NO: 508) of the variable light chain region of SEQ ID NO: 502 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 482; the variable light chain region of SEQ ID NO: 502; the framework regions (SEQ ID NO: 483; SEQ ID NO: 485; SEQ ID NO: 487; and SEQ ID NO: 489) of the variable heavy chain region of SEQ ID NO: 482; and the framework regions (SEQ ID NO: 503; SEQ ID NO: 505; SEQ ID NO: 507; and SEQ ID NO: 509) of the variable light chain region of SEQ ID NO: 502.
  • the anti-HGF antibody is Abl3, comprising, or alternatively consisting of, SEQ ID NO: 481 and SEQ ID NO: 501 , or an antibody or antibody fragment comprising the CDRs of AM 3 and having at least one of the biological activities set forth herein or is an anti-HGF antibody that competes with Abl3 in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of Abl 3 or an antibody that binds to the same or overlapping epitope(s) on HGF as Abl 3.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 482 and the variable light chain sequence of SEQ ID NO: 502 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 482 and/or SEQ ID NO: 502 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of Abl 3.
  • anti-HGF antibodies such as Abl 3 or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HE 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • Suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of Abl 3 as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90%» or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: QSVEESGGRLVTPGTPLTLTCTVSGFSLSNYAMTWVRQAPGKGLEWIGVISFGG NTYYANWAKGRFTIS TSTTVDLKITSPTTEDTATYFCARWDAENNEILNLWG QGTLVTVSS (SEQ ID NO: 522).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as Abl4 and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQ SLSLSPG (SEQ ID NO: 530).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: AYDMTQTPASVEVAVGGTVT1KCQASESIESYLAWYQQKSGQPPKLLIYRASTL ASGVSSRF GSGSGTQFTLTISGVECADAATYYCQQGDAWSNVDNVFGGGTE VVVKR (SEQ ID NO: 542).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as Abl4 which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQL SGTASVVCLLNNFYPREA VQW VDNALQSGNSQE SVTEQDSKDSTYSLSSTLTLSKADYE HKVYACEVTHQGLSSPVT SFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 524; SEQ ID NO: 526; and SEQ ID NO: 528 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 521 or which contain the variable heavy chain sequence of SEQ ID NO: 522, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 544; SEQ ID NO: 546; and SEQ ID NO: 548 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 541 or which contain the variable light chain sequence of SEQ ID NO: 542, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90% or 95% identical thereto.
  • the invention further contemplates anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 523; SEQ ID NO: 525; SEQ ID NO: 527; and SEQ ID NO: 529 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 521 or the variable heavy chain sequence of SEQ ID NO: 522, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 543; SEQ ID NO: 545; SEQ ID NO: 547; and SEQ ID NO: 549 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 541 or the variable light chain sequence of SEQ ID NO: 542, or combinations of these polypeptide sequences or sequences which are at least 80%, 90% or 95% identical therewith.
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 521 or SEQ ID NO: 522 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 541 or SEQ ID NO: 542 or polypeptides that are at least 90% or 95% identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 524; SEQ ID NO: 526; and SEQ ID NO: 528 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 521 or the variable heavy chain sequence of SEQ ID NO: 522 or sequences that are at least 90% or 95%» identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 544; SEQ ID NO: 546; and SEQ ID NO: 548 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 541 or the variable light chain sequence of SEQ ID NO: 542 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 523; SEQ ID NO: 525; SEQ ID NO: 527; and SEQ ID NO: 529 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 521 or the variable heavy chain sequence of SEQ ID NO: 522 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 543; SEQ ID NO: 545; SEQ ID NO: 547; and SEQ ID NO: 549 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 541 or the variable light chain sequence of SEQ ID NO: 542 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 522; the variable light chain region of SEQ ID NO: 542; the complementarity-determining regions (SEQ ID NO: 524; SEQ ID NO: 526; and SEQ ID NO: 528) of the variable heavy chain region of SEQ ID NO: 522; and the complementarity-determining regions (SEQ ID NO: 544; SEQ ID NO: 546; and SEQ ID NO: 548) of the variable light chain region of SEQ ID NO: 542 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 522; the variable light chain region of SEQ ID NO: 542; the framework regions (SEQ ID NO: 523; SEQ ID NO: 525; SEQ ID NO: 527; and SEQ ID NO: 529) of the variable heavy chain region of SEQ ID NO: 522; and the framework regions (SEQ ID NO: 543; SEQ ID NO: 545; SEQ ID NO: 547; and SEQ ID NO: 549) of the variable light chain region of SEQ ID NO: 542.
  • the anti-HGF antibody is Abl4, comprising, or alternatively consisting of, SEQ ID NO: 521 and SEQ ID NO: 541, or an antibody or antibody fragment comprising the CDRs of Abl4 and having at least one of the biological activities set forth herein or is an anti-HGF antibody that competes with Abl4 in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of Ab 14 or an antibody that binds to the same or overlapping epitope(s) on HGF as Abl4.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 522 and the variable light chain sequence of SEQ ID NO: 542 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 522 and/or SEQ ID NO: 542 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of Abl4.
  • anti-HGF antibodies such as AM 4 or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HEK 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • Suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of AM 4 as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: QSVEESGGRLVTPGTPLTLTCTVSGFSLSNYAMTWVRQAPGKGLEWIGVISFGG NTYYANWAKGRFTISKTSTTVDL ITSPTTEDTATYFCARWDAENNEILNLWG PGTLVTVSS (SEQ ID NO: 562).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as Abl5 and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQKSLSLSPGK (SEQ ID NO: 570).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: AYDMTQTPASVEVAVGGTVTIKCQASESISSYLAWYQQKSGQPPKLLIYRASTL ASGVSSRFKGSGSGTQFTLTISGVECADAATYYCQQGDAWSNVDNVFGGGTE VVV R (SEQ ID NO: 582).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as AM 5 which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQLKSGTASVVCLLN FYPREAKVQWKVDNALQSGNSQE SVTEQDS DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 564; SEQ ID NO: 566; and SEQ ID NO: 568 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 561 or which contain the variable heavy chain sequence of SEQ ID NO: 562, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 584; SEQ ID NO: 586; and SEQ ID NO: 588 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 581 or which contain the variable light chain sequence of SEQ ID NO: 582, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90% or 95% identical thereto.
  • the invention further contemplates anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 563; SEQ ID NO: 565; SEQ ID NO: 567; and SEQ ID NO: 569 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 561 or the variable heavy chain sequence of SEQ ID NO: 562, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 583; SEQ ID NO: 585; SEQ ID NO: 587; and SEQ ID NO: 589 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 581 or the variable light chain sequence of SEQ ID NO: 582, or combinations of these polypeptide sequences or sequences which are at least 80%, 90% or 95% identical therewith.
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 561 or SEQ ID NO: 562 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 581 or SEQ ID NO: 582 or polypeptides that are at least 90% or 95% identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 564; SEQ ID NO: 566; and SEQ ID NO: 568 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 561 or the variable heavy chain sequence of SEQ ID NO: 562 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 584; SEQ ID NO: 586; and SEQ ID NO: 588 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 581 or the variable light chain sequence of SEQ ID NO: 582 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 563; SEQ ID NO: 565; SEQ ID NO: 567; and SEQ ID NO: 569 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 561 or the variable heavy chain sequence of SEQ ID NO: 562 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 583; SEQ ID NO: 585; SEQ ID NO: 587; and SEQ ID NO: 589 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 581 or the variable light chain sequence of SEQ ID NO: 582 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 562; the variable light chain region of SEQ ID NO: 582; the complementarity-determining regions (SEQ ID NO: 564; SEQ ID NO: 566; and SEQ ID NO: 568) of the variable heavy chain region of SEQ ID NO: 562; and the complementarity-determining regions (SEQ ID NO: 584; SEQ ID NO: 586; and SEQ ID NO: 588) of the variable light chain region of SEQ ID NO: 582 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 562; the variable light chain region of SEQ ID NO: 582; the framework regions (SEQ ID NO: 563; SEQ ID NO: 565; SEQ ID NO: 567; and SEQ ID NO: 569) of the variable heavy chain region of SEQ ID NO: 562; and the framework regions (SEQ ID NO: 583; SEQ ID NO: 585; SEQ ID NO: 587; and SEQ ID NO: 589) of the variable light chain region of SEQ ID NO: 582.
  • the anti-HGF antibody is Abl5, comprising, or alternatively consisting of, SEQ ID NO: 561 and SEQ ID NO: 581, or an antibody or antibody fragment comprising the CDRs of Abl5 and having at least one of the biological activities set forth herein or is an anti-HGF antibody that competes with Abl5 in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of Abl5 or an antibody that binds to the same or overlapping epitope(s) on HGF as A 5.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 562 and the variable light chain sequence of SEQ ID NO: 582 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 562 and/or SEQ ID NO: 582 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of AM 5.
  • anti-HGF antibodies such as AM 5 or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HEK 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of AM 5 as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: QSVEESGGRLVTPGTPLTLTCTVSGIDLSNYAMGWVRQAPGKGLEYIGMIGVN GRAWYATWAKGRFTISKTSPTVDLKITSPTTEDTATYFCARLIDERSTYSYVFD LWGQGTLVTVSS (SEQ ID NO: 602).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as Ab 16 and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQKSLSLSPGK (SEQ ID NO: 610).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: QVLTQTPSPVSAAVGGTVTINCQGSQSLYNNNAFSWYQQKPGQPP LLIYDAS TLASGVPSRFKGSGSGTQFTLTISGVQCADAATYYCQGEFSCGDVDCIAFGGGT EVVVKR (SEQ ID NO: 622).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as Abl6 which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQ8GNSQE SVTEQDSKDSTYSLSSTLTLS ADYEKHKVYACEVTHQGLSSPVT SFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 604; SEQ ID NO: 606; and SEQ ID NO: 608 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 601 or which contain the variable heavy chain sequence of SEQ ID NO: 602, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 624; SEQ ID NO: 626; and SEQ ID NO: 628 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 621 or which contain the variable light chain sequence of SEQ ID NO: 622, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%), 98% or 99%o identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90% or 95% identical thereto.
  • the invention further contemplates anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 603; SEQ ID NO: 605; SEQ ID NO: 607; and SEQ ID NO: 609 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 601 or the variable heavy chain sequence of SEQ ID NO: 602, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 623; SEQ ID NO: 625; SEQ ID NO: 627; and SEQ ID NO: 629 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 621 or the variable light chain sequence of SEQ ID NO: 622, or combinations of these polypeptide sequences or sequences which are at least 80%, 90% or 95% identical therewith.
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 601 or SEQ ID NO: 602 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 621 or SEQ ID NO: 622 or polypeptides that are at least 90% or 95% identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 604; SEQ ID NO: 606; and SEQ ID NO: 608 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 601 or the variable heavy chain sequence of SEQ ID NO: 602 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 624; SEQ ID NO: 626; and SEQ ID NO: 628 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 621 or the variable light chain sequence of SEQ ID NO: 622 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 603; SEQ ID NO: 605; SEQ ID NO: 607; and SEQ ID NO: 609 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 601 or the variable heavy chain sequence of SEQ ID NO: 602 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 623; SEQ ID NO: 625; SEQ ID NO: 627; and SEQ ID NO: 629 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 621 or the variable light chain sequence of SEQ ID NO: 622 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 602; the variable light chain region of SEQ ID NO: 622; the complementarity-determining regions (SEQ ID NO: 604; SEQ ID NO: 606; and SEQ ID NO: 608) of the variable heavy chain region of SEQ ID NO: 602; and the complementarity-determining regions (SEQ ID NO: 624; SEQ ID NO: 626; and SEQ ID NO: 628) of the variable light chain region of SEQ ID NO: 622 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 602; the variable light chain region of SEQ ID NO: 622; the framework regions (SEQ ID NO: 603; SEQ ID NO: 605; SEQ ID NO: 607; and SEQ ID NO: 609) of the variable heavy chain region of SEQ ID NO: 602; and the framework regions (SEQ ID NO: 623; SEQ ID NO: 625; SEQ ID NO: 627; and SEQ ID NO: 629) of the variable light chain region of SEQ ID NO: 622.
  • the anti-HGF antibody is Abl6, comprising, or alternatively consisting of, SEQ ID NO: 601 and SEQ ID NO: 621 , or an antibody or antibody fragment comprising the CDRs of Abl6 and having at least one of the biological activities set forth herein or is an anti-HGF antibody that competes with Abl6 in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of Abl 6 or an antibody that binds to the same or overlapping epitope(s) on HGF as Abl6.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 602 and the variable light chain sequence of SEQ ID NO: 622 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 602 and/or SEQ ID NO: 622 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of Abl6.
  • anti-HGF antibodies such as Abl6 or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HEK 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • yeast cells for example haploid or diploid yeast such as haploid or diploid Pichia
  • Suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of Abl6 as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: QSVEESGGRLVPPGTPLTLTCTVSGIDLSSYAMGWVRQAPGKGLEYIGMIDVSG STYYADWAKGRLTISKTPTTVDLEITSPTTEDTATYFCARLIDERSTYSYAFDLW GQGTLVTVSS (SEQ ID NO: 642).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as Abl7 and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQKSLSLSPGK (SEQ ID NO: 650).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: QVLTQTPSPVSAAVGGTVTINCQASQSFYNNGAFSWYQQKPGQPPKLLIYDAS TLASGVPSRFKGSGSGTQFTLTISGVQCGDAATYYCQGEFSCGSADCVAFGGG
  • TEVW R (SEQ ID NO: 662).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as Abl 7 which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQL SGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQE SVTEQDSKDSTYSLSSTLTLS ADYEKHKVYACEVTHQGLSSPVT SFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 644; SEQ ID NO: 646; and SEQ ID NO: 648 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 641 or which contain the variable heavy chain sequence of SEQ ID NO: 642, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 664; SEQ ID NO: 666; and SEQ ID NO: 668 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 661 or which contain the variable light chain sequence of SEQ ID NO: 662, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90% or 95% identical thereto.
  • the invention further contemplates anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 643; SEQ ID NO: 645; SEQ ID NO: 647; and SEQ ID NO: 649 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 641 or the variable heavy chain sequence of SEQ ID NO: 642, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 663; SEQ ID NO: 665; SEQ ID NO: 667; and SEQ ID NO: 669 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 661 or the variable light chain sequence of SEQ ID NO: 662, or combinations of these polypeptide sequences or sequences which are at least 80%, 90% or 95% identical therewith.
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 641 or SEQ ID NO: 642 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 661 or SEQ ID NO: 662 or polypeptides that are at least 90% or 95% identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 644; SEQ ID NO: 646; and SEQ ID NO: 648 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 641 or the variable heavy chain sequence of SEQ ID NO: 642 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 664; SEQ ID NO: 666; and SEQ ID NO: 668 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 661 or the variable light chain sequence of SEQ ID NO: 662 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 643; SEQ ID NO: 645; SEQ ID NO: 647; and SEQ ID NO: 649 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 641 or the variable heavy chain sequence of SEQ ID NO: 642 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 663; SEQ ID NO: 665; SEQ ID NO: 667; and SEQ ID NO: 669 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 661 or the variable light chain sequence of SEQ ID NO: 662 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 642; the variable light chain region of SEQ ID NO: 662; the complementarity-determining regions (SEQ ID NO: 644; SEQ ID NO: 646; and SEQ ID NO: 648) of the variable heavy chain region of SEQ ID NO: 642; and the complementarity-determining regions (SEQ ID NO: 664; SEQ ID NO: 666; and SEQ ID NO: 668) of the variable light chain region of SEQ ID NO: 662 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 642; the variable light chain region of SEQ ID NO: 662; the framework regions (SEQ ID NO: 643; SEQ ID NO: 645; SEQ ID NO: 647; and SEQ ID NO: 649) of the variable heavy chain region of SEQ ID NO: 642; and the framework regions (SEQ ID NO: 663; SEQ ID NO: 665; SEQ ID NO: 667; and SEQ ID NO: 669) of the variable light chain region of SEQ ID NO: 662.
  • the anti-HGF antibody is Abl7, comprising, or alternatively consisting of, SEQ ID NO: 641 and SEQ ID NO: 661, or an antibody or antibody fragment comprising the CDRs of AM 7 and having at least one of the biological activities set forth herein or is an anti-HGF antibody that competes with AM 7 in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of Abl7 or an antibody that binds to the same or overlapping epitope(s) on HGF as Abl7.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 642 and the variable light chain sequence of SEQ ID NO: 662 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 642 and/or SEQ ID NO: 662 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of AM 7.
  • anti-HGF antibodies such as AM 7 or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HE 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of AM 7 as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: QSLEESGGRLVTPGTPLTLTCTASGFSLSSYDMSWVRQAPG GLEWIGIIYAGS ASTWFASWV GRFTIS TSTTVDL MTSLTTEDTATYFCARVGYSGYGYDDNL DMWGQGTLVTVSS (SEQ ID NO: 682).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as Abl8 and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQ SLSLSPG (SEQ ID NO: 690).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: AYDMTQTPASVEVAVGGTVTI CQASQSISTALAWYQQ PGQRP LLIYDASK LASGVSSRFKGSGSGAQFTLTISGVECADAATYYCHQGYSSSNVDNTFGGGTE VVVKR (SEQ ID NO: 702).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as Ab 18 which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQE SVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVT SFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 684; SEQ ID NO: 686; and SEQ ID NO: 688 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 681 or which contain the variable heavy chain sequence of SEQ ID NO: 682, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 704; SEQ ID NO: 706; and SEQ ID NO: 708 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 701 or which contain the variable light chain sequence of SEQ ID NO: 702, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90% or 95% identical thereto.
  • the invention further contemplates anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 683; SEQ ID NO: 685; SEQ ID NO: 687; and SEQ ID NO: 689 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 681 or the variable heavy chain sequence of SEQ ID NO: 682, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 703; SEQ ID NO: 705; SEQ ID NO: 707; and SEQ ID NO: 709 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 701 or the variable light chain sequence of SEQ ID NO: 702, or combinations of these polypeptide sequences or sequences which are at least 80%, 90% or 95% identical therewith.
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 681 or SEQ ID NO: 682 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 701 or SEQ ID NO: 702 or polypeptides that are at least 90% or 95% identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 684; SEQ ID NO: 686; and SEQ ID NO: 688 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 681 or the variable heavy chain sequence of SEQ ID NO: 682 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 704; SEQ ID NO: 706; and SEQ ID NO: 708 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 701 or the variable light chain sequence of SEQ ID NO: 702 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 683; SEQ ID NO: 685; SEQ ID NO: 687; and SEQ ID NO: 689 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 681 or the variable heavy chain sequence of SEQ ID NO: 682 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 703; SEQ ID NO: 705; SEQ ID NO: 707; and SEQ ID NO: 709 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 701 or the variable light chain sequence of SEQ ID NO: 702 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 682; the variable light chain region of SEQ ID NO: 702; the complementarity-determining regions (SEQ ID NO: 684; SEQ ID NO: 686; and SEQ ID NO: 688) of the variable heavy chain region of SEQ ID NO: 682; and the complementarity-determining regions (SEQ ID NO: 704; SEQ ID NO: 706; and SEQ ID NO: 708) of the variable light chain region of SEQ ID NO: 702 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 682; the variable light chain region of SEQ ID NO: 702; the framework regions (SEQ ID NO: 683; SEQ ID NO: 685; SEQ ID NO: 687; and SEQ ID NO: 689) of the variable heavy chain region of SEQ ID NO: 682; and the framework regions (SEQ ID NO: 703; SEQ ID NO: 705; SEQ ID NO: 707; and SEQ ID NO: 709) of the variable light chain region of SEQ ID NO: 702.
  • the anti-HGF antibody is Abl8, comprising, or alternatively consisting of, SEQ ID NO: 681 and SEQ ID NO: 701, or an antibody or antibody fragment comprising the CDRs of Abl 8 and having at least one of the biological activities set forth herein or is an anti-HGF antibody that competes with AM 8 in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of Abl 8 or an antibody that binds to the same or overlapping epitope(s) on HGF as Abl 8.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 682 and the variable light chain sequence of SEQ ID NO: 702 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 682 and/or SEQ ID NO: 702 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of Abl 8.
  • anti-HGF antibodies such as Abl8 or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HEK 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • yeast cells for example haploid or diploid yeast such as haploid or diploid Pichia
  • Suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of Abl8 as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: QSVEESGGRLVTPGTPLTLTCTASGFSLSNYWMGWVRQAPGEGLEWIGTISYD GNTYYASWA GRFTISRTSTTVDLKMTSLTTEDTAIYFCATVNYPDYSTGAFNI WGPGTLVTVSS (SEQ ID NO: 722).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as Abl9 and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQKSLSLSPG (SEQ ID NO: 730).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: DVVMTQTPASVSEPVGGTVTIKCQASQSIDNYLAWYQQKPGQRPRLLIYYTST LASGVPSRF GSGSGTEYTLTISDLECADAATYYCQFTAYYSTYIGAFGGGTEV VV R (SEQ ID NO: 742).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as AM 9 which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA VQWKVDNALQSGNSQE S VTEQDSKDSTYS LS STLTLS AD YE HKVY ACE VTHQGLS SP VTKSFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 724; SEQ ID NO: 726; and SEQ ID NO: 728 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 721 or which contain the variable heavy chain sequence of SEQ ID NO: 722, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 744; SEQ ID NO: 746; and SEQ ID NO: 748 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 741 or which contain the variable light chain sequence of SEQ ID NO: 742, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90% or 95% identical thereto.
  • the invention further contemplates anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 723; SEQ ID NO: 725; SEQ ID NO: 727; and SEQ ID NO: 729 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 721 or the variable heavy chain sequence of SEQ ID NO: 722, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 743; SEQ ID NO: 745; SEQ ID NO: 747; and SEQ ID NO: 749 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 741 or the variable light chain sequence of SEQ ID NO: 742, or combinations of these polypeptide sequences or sequences which are at least 80%, 90% or 95% identical therewith.
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 721 or SEQ ID NO: 722 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 741 or SEQ ID NO: 742 or polypeptides that are at least 90% or 95% identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 724; SEQ ID NO: 726; and SEQ ID NO: 728 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 721 or the variable heavy chain sequence of SEQ ID NO: 722 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 744; SEQ ID NO: 746; and SEQ ID NO: 748 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 741 or the variable light chain sequence of SEQ ID NO: 742 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 723; SEQ ID NO: 725; SEQ ID NO: 727; and SEQ ID NO: 729 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 721 or the variable heavy chain sequence of SEQ ID NO: 722 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 743; SEQ ID NO: 745; SEQ ID NO: 747; and SEQ ID NO: 749 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 741 or the variable light chain sequence of SEQ ID NO: 742 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 722; the variable light chain region of SEQ ID NO: 742; the complementarity-determining regions (SEQ ID NO: 724; SEQ ID NO: 726; and SEQ ID NO: 728) of the variable heavy chain region of SEQ ID NO: 722; and the complementarity-determining regions (SEQ ID NO: 744; SEQ ID NO: 746; and SEQ ID NO: 748) of the variable light chain region of SEQ ID NO: 742 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 722; the variable light chain region of SEQ ID NO: 742; the framework regions (SEQ ID NO: 723; SEQ ID NO: 725; SEQ ID NO: 727; and SEQ ID NO: 729) of the variable heavy chain region of SEQ ID NO: 722; and the framework regions (SEQ ID NO: 743; SEQ ID NO: 745; SEQ ID NO: 747; and SEQ ID NO: 749) of the variable light chain region of SEQ ID NO: 742.
  • the anti-HGF antibody is Abl9, comprising, or alternatively consisting of, SEQ ID NO: 721 and SEQ ID NO: 741, or an antibody or antibody fragment comprising the CDRs of AM 9 and having at least one of the biological activities set forth herein or is an anti-HGF antibody that competes with Abl9 in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of Abl9 or an antibody that binds to the same or overlapping epitope(s) on HGF as Abl9.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 722 and the variable light chain sequence of SEQ ID NO: 742 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 722 and/or SEQ ID NO: 742 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of Abl9.
  • anti-HGF antibodies such as Abl9 or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HE 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • Suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of Abl 9 as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: EVQLVESGGGLVQPGGSLRLSCAASGFTVSNYWMGWVRQAPG GLEWIGTIS YDGNTYYASSAKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCATVNYPDYS TGAFNIWGQGTLVTVSS (SEQ ID NO: 762).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as Ab20 and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQ SLSLSPG (SEQ ID NO: 770).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: DIQMTQSPSSLSASVGDRVTITCQASQSIDNYLAWYQQKPGKVPKLLIYYTSTL ASGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQFTAYYSTYIGAFGGGTKVEI KR (SEQ ID NO: 782).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as Ab20 which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQLKSGTASVVCLLN FYPREAKVQWKVDNALQSGNSQE SVTEQDS DSTYSLSSTLTLSKADYEKH VYACEVTHQGLSSPVT SFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 764; SEQ ID NO: 766; and SEQ ID NO: 768 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 761 or which contain the variable heavy chain sequence of SEQ ID NO: 762, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 784; SEQ ID NO: 786; and SEQ ID NO: 788 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 781 or which contain the variable light chain sequence of SEQ ID NO: 782, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90% or 95% identical thereto.
  • the invention further contemplates anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 763; SEQ ID NO: 765; SEQ ID NO: 767; and SEQ ID NO: 769 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 761 or the variable heavy chain sequence of SEQ ID NO: 762, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 783; SEQ ID NO: 785; SEQ ID NO: 787; and SEQ ID NO: 789 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 781 or the variable light chain sequence of SEQ ID NO: 782, or combinations of these polypeptide sequences or sequences which are at least 80%, 90% or 95% identical therewith.
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 761 or SEQ ID NO: 762 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 781 or SEQ ID NO: 782 or polypeptides that are at least 90% or 95% identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 764; SEQ ID NO: 766; and SEQ ID NO: 768 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 761 or the variable heavy chain sequence of SEQ ID NO: 762 or sequences that are at least 90% or 95%o identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 784; SEQ ID NO: 786; and SEQ ID NO: 788 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 781 or the variable light chain sequence of SEQ ID NO: 782 or sequences that are at least 90% or 95%> identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 763; SEQ ID NO: 765; SEQ ID NO: 767; and SEQ ID NO: 769 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 761 or the variable heavy chain sequence of SEQ ID NO: 762 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 783; SEQ ID NO: 785; SEQ ID NO: 787; and SEQ ID NO: 789 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 781 or the variable light chain sequence of SEQ ID NO: 782 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 762; the variable light chain region of SEQ ID NO: 782; the complementarity-determining regions (SEQ ID NO: 764; SEQ ID NO: 766; and SEQ ID NO: 768) of the variable heavy chain region of SEQ ID NO: 762; and the complementarity-determining regions (SEQ ID NO: 784; SEQ ID NO: 786; and SEQ ID NO: 788) of the variable light chain region of SEQ ID NO: 782 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 762; the variable light chain region of SEQ ID NO: 782; the framework regions (SEQ ID NO: 763; SEQ ID NO: 765; SEQ ID NO: 767; and SEQ ID NO: 769) of the variable heavy chain region of SEQ ID NO: 762; and the framework regions (SEQ ID NO: 783; SEQ ID NO: 785; SEQ ID NO: 787; and SEQ ID NO: 789) of the variable light chain region of SEQ ID NO: 782.
  • the anti-HGF antibody is Ab20, comprising, or alternatively consisting of, SEQ ID NO: 761 and SEQ ID NO: 781 , or an antibody or antibody fragment comprising the CDRs of Ab20 and having at least one of the biological activities set forth herein or is an anti-HGF antibody that competes with Ab20 in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of Ab20 or an antibody that binds to the same or overlapping epitope(s) on HGF as Ab20.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 762 and the variable light chain sequence of SEQ ID NO: 782 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 762 and/or SEQ ID NO: 782 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of Ab20.
  • anti-HGF antibodies such as Ab20 or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HEK 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • Suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of Ab20 as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: QSVEESGGRLVTPGTPLTLTCTVSGFSLSTYYMSWVRQAPGKGLEWIGIIYVSGI TDYARWAKGRFTIS TSTTVDLKMTSLTTEDTATYFCARHIDSSGWDGLGIWG QGTLVTVSS (SEQ ID NO: 802).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as Ab21 and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQ SLSLSPG (SEQ ID NO: 810).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: AYDMTQTP AS VEVAVGGTVTI CQASES IS S YLN WYQQKLGQPPKLLIYRASTL TSGVSSRFKGSGSGTEYTLTISDLECADAATYYCQQTYGYSDTDNSFGGGTEV VV R (SEQ ID NO: 822).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as Ab21 which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA VQWKVDNALQSGNSQE SVTEQDS DSTYSLSSTLTLSKADYEKH VYACEVTHQGLSSPVTKSFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 804; SEQ ID NO: 806; and SEQ ID NO: 808 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 801 or which contain the variable heavy chain sequence of SEQ ID NO: 802, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 824; SEQ ID NO: 826; and SEQ ID NO: 828 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 821 or which contain the variable light chain sequence of SEQ ID NO: 822, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90% or 95% identical thereto.
  • the invention further contemplates anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 803; SEQ ID NO: 805; SEQ ID NO: 807; and SEQ ID NO: 809 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 801 or the variable heavy chain sequence of SEQ ID NO: 802, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 823; SEQ ID NO: 825; SEQ ID NO: 827; and SEQ ID NO: 829 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 821 or the variable light chain sequence of SEQ ID NO: 822, or combinations of these polypeptide sequences or sequences which are at least 80%, 90% or 95% identical therewith.
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 801 or SEQ ID NO: 802 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 821 or SEQ ID NO: 822 or polypeptides that are at least 90% or 95% identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 804; SEQ ID NO: 806; and SEQ ID NO: 808 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 801 or the variable heavy chain sequence of SEQ ID NO: 802 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 824; SEQ ID NO: 826; and SEQ ID NO: 828 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 821 or the variable light chain sequence of SEQ ID NO: 822 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 803; SEQ ID NO: 805; SEQ ID NO: 807; and SEQ ID NO: 809 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 801 or the variable heavy chain sequence of SEQ ID NO: 802 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 823; SEQ ID NO: 825; SEQ ID NO: 827; and SEQ ID NO: 829 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 821 or the variable light chain sequence of SEQ ID NO: 822 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 802; the variable light chain region of SEQ ID NO: 822; the complementarity-determining regions (SEQ ID NO: 804; SEQ ID NO: 806; and SEQ ID NO: 808) of the variable heavy chain region of SEQ ID NO: 802; and the complementarity-determining regions (SEQ ID NO: 824; SEQ ID NO: 826; and SEQ ID NO: 828) of the variable light chain region of SEQ ID NO: 822 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 802; the variable light chain region of SEQ ID NO: 822; the framework regions (SEQ ID NO: 803; SEQ ID NO: 805; SEQ ID NO: 807; and SEQ ID NO: 809) of the variable heavy chain region of SEQ ID NO: 802; and the framework regions (SEQ ID NO: 823; SEQ ID NO: 825; SEQ ID NO: 827; and SEQ ID NO: 829) of the variable light chain region of SEQ ID NO: 822.
  • the anti-HGF antibody is Ab21, comprising, or alternatively consisting of, SEQ ID NO: 801 and SEQ ID NO: 821, or an antibody or antibody fragment comprising the CDRs of Ab21 and having at least one of the biological activities set forth herein or is an anti-HGF antibody that competes with Ab21 in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of Ab21 or an antibody that binds to the same or overlapping epitope(s) on HGF as Ab21.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 802 and the variable light chain sequence of SEQ ID NO: 822 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 802 and/or SEQ ID NO: 822 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of Ab21.
  • anti-HGF antibodies such as Ab21 or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HEK 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • Suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of Ab21 as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: QSLEESGGRLVTPGTPLTLTCTASGFTIGRYYMSWVRQAPG GLEWIGIIYTHG VNPDYASWAKGRFTISRPSTTVDL ITSPTTEDTATYFCARVGGFNDYSDIWGP GTLVTVSS (SEQ ID NO: 842).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as Ab23 and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQ SLSLSPGK (SEQ ID NO: 850).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: AYDMTQTPASVEVAVGGTVTI CQASESISTYLAWYQQKPGQPPKLLIYRASTL ASGVSSRFKGSGSGTQFTLTISGVECADAATYYCQQGYSYSNVDNAFGGGTEV VVKR (SEQ ID NO: 862).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as Ab23 which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQE SVTEQDSKDSTYSLSSTLTLSKADYE HKVYACEVTHQGLSSPVT SFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 844; SEQ ID NO: 846; and SEQ ID NO: 848 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 841 or which contain the variable heavy chain sequence of SEQ ID NO: 842, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 864; SEQ ID NO: 866; and SEQ ID NO: 868 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 861 or which contain the variable light chain sequence of SEQ ID NO: 862, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90% or 95% identical thereto.
  • the invention further contemplates anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 843; SEQ ID NO: 845; SEQ ID NO: 847; and SEQ ID NO: 849 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 841 or the variable heavy chain sequence of SEQ ID NO: 842, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 863; SEQ ID NO: 865; SEQ ID NO: 867; and SEQ ID NO: 869 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 861 or the variable light chain sequence of SEQ ID NO: 862, or combinations of these polypeptide sequences or sequences which are at least 80%, 90% or 95% identical therewith.
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 841 or SEQ ID NO: 842 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 861 or SEQ ID NO: 862 or polypeptides that are at least 90% or 95% identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 844; SEQ ID NO: 846; and SEQ ID NO: 848 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 841 or the variable heavy chain sequence of SEQ ID NO: 842 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 864; SEQ ID NO: 866; and SEQ ID NO: 868 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 861 or the variable light chain sequence of SEQ ID NO: 862 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 843; SEQ ID NO: 845; SEQ ID NO: 847; and SEQ ID NO: 849 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 841 or the variable heavy chain sequence of SEQ ID NO: 842 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 863; SEQ ID NO: 865; SEQ ID NO: 867; and SEQ ID NO: 869 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 861 or the variable light chain sequence of SEQ ID NO: 862 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 842; the variable light chain region of SEQ ID NO: 862; the complementarity-determining regions (SEQ ID NO: 844; SEQ ID NO: 846; and SEQ ID NO: 848) of the variable heavy chain region of SEQ ID NO: 842; and the complementarity-determining regions (SEQ ID NO: 864; SEQ ID NO: 866; and SEQ ID NO: 868) of the variable light chain region of SEQ ID NO: 862 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 842; the variable light chain region of SEQ ID NO: 862; the framework regions (SEQ ID NO: 843; SEQ ID NO: 845; SEQ ID NO: 847; and SEQ ID NO: 849) of the variable heavy chain region of SEQ ID NO: 842; and the framework regions (SEQ ID NO: 863; SEQ ID NO: 865; SEQ ID NO: 867; and SEQ ID NO: 869) of the variable light chain region of SEQ ID NO: 862.
  • the anti-HGF antibody is Ab23, comprising, or alternatively consisting of, SEQ ID NO: 841 and SEQ ID NO: 861, or an antibody or antibody fragment comprising the CDRs of Ab23 and having at least one of the biological activities set forth herein or is an anti-HGF antibody that competes with Ab23 in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of Ab23 or an antibody that binds to the same or overlapping epitope(s) on HGF as Ab23.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 842 and the variable light chain sequence of SEQ ID NO: 862 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 842 and/or SEQ ID NO: 862 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of Ab23.
  • anti-HGF antibodies such as Ab23 or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HEK 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • Suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of Ab23 as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: EVQLVESGGGLVQPGGSLRLSCAASGFTVGRYYMSWVRQAPGKGLEWIGIIYT HGVNPDYASSAKGRFTISRDNS NTLYLQMNSLRAEDTAVYYCARVGGFNDY SDIWGQGTLVTVSS (SEQ ID NO: 882).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as Ab24 and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQKSLSLSPGK (SEQ ID NO: 890).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: DIQMTQSPSSLSASVGDRVTITCQASESISTYLAWYQQKPG VP LLIYRASTLA SGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQQGYSYSNVDNAFGGGT VEI KR (SEQ ID NO: 902).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as Ab24 which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA VQWKVDNALQSGNSQE SVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 884; SEQ ID NO: 886; and SEQ ID NO: 888 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 881 or which contain the variable heavy chain sequence of SEQ ID NO: 882, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 904; SEQ ID NO: 906; and SEQ ID NO: 908 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 901 or which contain the variable light chain sequence of SEQ ID NO: 902, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%, 98%o or 99% identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90% or 95% identical thereto.
  • the invention further contemplates anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 883; SEQ ID NO: 885; SEQ ID NO: 887; and SEQ ID NO: 889 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 881 or the variable heavy chain sequence of SEQ ID NO: 882, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 903; SEQ ID NO: 905; SEQ ID NO: 907; and SEQ ID NO: 909 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 901 or the variable light chain sequence of SEQ ID NO: 902, or combinations of these polypeptide sequences or sequences which are at least 80%, 90% or 95% identical therewith.
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 881 or SEQ ID NO: 882 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 901 or SEQ ID NO: 902 or polypeptides that are at least 90% or 95% identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 884; SEQ ID NO: 886; and SEQ ID NO: 888 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 881 or the variable heavy chain sequence of SEQ ID NO: 882 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 904; SEQ ID NO: 906; and SEQ ID NO: 908 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 901 or the variable light chain sequence of SEQ ID NO: 902 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 883; SEQ ID NO: 885; SEQ ID NO: 887; and SEQ ID NO: 889 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 881 or the variable heavy chain sequence of SEQ ID NO: 882 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 903; SEQ ID NO: 905; SEQ ID NO: 907; and SEQ ID NO: 909 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 901 or the variable light chain sequence of SEQ ID NO: 902 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 882; the variable light chain region of SEQ ID NO: 902; the complementarity-determining regions (SEQ ID NO: 884; SEQ ID NO: 886; and SEQ ID NO: 888) of the variable heavy chain region of SEQ ID NO: 882; and the complementarity-determining regions (SEQ ID NO: 904; SEQ ID NO: 906; and SEQ ID NO: 908) of the variable light chain region of SEQ ID NO: 902 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 882; the variable light chain region of SEQ ID NO: 902; the framework regions (SEQ ID NO: 883; SEQ ID NO: 885; SEQ ID NO: 887; and SEQ ID NO: 889) of the variable heavy chain region of SEQ ID NO: 882; and the framework regions (SEQ ID NO: 903; SEQ ID NO: 905; SEQ ID NO: 907; and SEQ ID NO: 909) of the variable light chain region of SEQ ID NO: 902.
  • the anti-HGF antibody is Ab24, comprising, or alternatively consisting of, SEQ ID NO: 881 and SEQ ID NO: 901, or an antibody or antibody fragment comprising the CDRs of Ab24 and having at least one of the biological activities set forth herein or is an anti-HGF antibody that competes with Ab24 in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of Ab24 or an antibody that binds to the same or overlapping epitope(s) on HGF as Ab24.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 882 and the variable light chain sequence of SEQ ID NO: 902 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 882 and/or SEQ ID NO: 902 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of Ab24.
  • anti-HGF antibodies such as Ab24 or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HE 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • Suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of Ab24 as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: QSLEESGGRLVTPGTPLTLTCTASGFSLSSYAMGWFRQAPG GLEWIAYIFASG STYYASWA GRFTIS TSTTVELKITSLTTEDTATYFCARGSGARFFPNYFAIWG PGTLVTVSS (SEQ ID NO: 922).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as Ab25 and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQ SLSLSPG (SEQ ID NO: 930).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: QVLTQTASSVSAAVGGTVTISCQSSQSVTNNNDLAWYQQ PGQPPKLLIYQAS KLASGVPSRF GSGSGTQFTLTISDLECDDAATYYCQGSYSGGICAFGGGTEVV VKR (SEQ ID NO: 942).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as Ab25 which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQE SVTEQDSKDSTYSLSSTLTLSKADYE HKVYACEVTHQGLSSPVTKSFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 924; SEQ ID NO: 926; and SEQ ID NO: 928 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 921 or which contain the variable heavy chain sequence of SEQ ID NO: 922, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 944; SEQ ID NO: 946; and SEQ ID NO: 948 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 941 or which contain the variable light chain sequence of SEQ ID NO: 942, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical thereto.
  • the antibodies of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the exemplified variable heavy chain and variable light chain sequences, or the heavy chain and light chain sequences set forth above, or sequences that are at least 90% or 95% identical thereto.
  • the invention further contemplates anti-HGF antibodies and antibody fragments comprising one, two, three, or four of the polypeptide sequences of SEQ ID NO: 923; SEQ ID NO: 925; SEQ ID NO: 927; and SEQ ID NO: 929 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 921 or the variable heavy chain sequence of SEQ ID NO: 922, and/or one, two, three, or four of the polypeptide sequences of SEQ ID NO: 943; SEQ ID NO: 945; SEQ ID NO: 947; and SEQ ID NO: 949 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 941 or the variable light chain sequence of SEQ ID NO: 942, or combinations of these polypeptide sequences or sequences which are at least 80%, 90% or 95% identical therewith.
  • the antibodies and antibody fragments of the invention or fragments thereof comprise, or alternatively consist of, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the anti-HGF antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 921 or SEQ ID NO: 922 or polypeptides that are at least 90% or 95% identical thereto.
  • antibody fragments of the invention comprise, or alternatively consist of, the polypeptide sequence of SEQ ID NO: 941 or SEQ ID NO: 942 or polypeptides that are at least 90% or 95% identical thereto.
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 924; SEQ ID NO: 926; and SEQ ID NO: 928 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 921 or the variable heavy chain sequence of SEQ ID NO: 922 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, or three of the polypeptide sequences of SEQ ID NO: 944; SEQ ID NO: 946; and SEQ ID NO: 948 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 941 or the variable light chain sequence of SEQ ID NO: 942 or sequences that are at least 90% or 95% identical thereto.
  • CDRs complementarity-determining regions
  • the antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 923; SEQ ID NO: 925; SEQ ID NO: 927; and SEQ ID NO: 929 which correspond to the framework regions (FRs or constant regions) of the heavy chain sequence of SEQ ID NO: 921 or the variable heavy chain sequence of SEQ ID NO: 922 or sequences that are at least 90% or 95% identical thereto.
  • the subject antibody or antibody fragment having binding specificity to HGF comprises, or alternatively consists of, one, two, three, or four of the polypeptide sequences of SEQ ID NO: 943; SEQ ID NO: 945; SEQ ID NO: 947; and SEQ ID NO: 949 which correspond to the framework regions (FRs or constant regions) of the light chain sequence of SEQ ID NO: 941 or the variable light chain sequence of SEQ ID NO: 942 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 922; the variable light chain region of SEQ ID NO: 942; the complementarity-determining regions (SEQ ID NO: 924; SEQ ID NO: 926; and SEQ ID NO: 928) of the variable heavy chain region of SEQ ID NO: 922; and the complementarity-determining regions (SEQ ID NO: 944; SEQ ID NO: 946; and SEQ ID NO: 948) of the variable light chain region of SEQ ID NO: 942 or sequences that are at least 90% or 95% identical thereto.
  • fragments of the antibodies having binding specificity to HGF comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable heavy chain region of SEQ ID NO: 922; the variable light chain region of SEQ ID NO: 942; the framework regions (SEQ ID NO: 923; SEQ ID NO: 925; SEQ ID NO: 927; and SEQ ID NO: 929) of the variable heavy chain region of SEQ ID NO: 922; and the framework regions (SEQ ID NO: 943; SEQ ID NO: 945; SEQ ID NO: 947; and SEQ ID NO: 949) of the variable light chain region of SEQ ID NO: 942.
  • the anti-HGF antibody is Ab25, comprising, or alternatively consisting of, SEQ ID NO: 921 and SEQ ID NO: 941, or an antibody or antibody fragment comprising the CDRs of Ab25 and having at least one of the biological activities set forth herein or is an anti-HGF antibody that competes with Ab25 in binding HGF, preferably one containing sequences that are at least 90% or 95% identical to that of Ab25 or an antibody that binds to the same or overlapping epitope(s) on HGF as Ab25.
  • antibody fragments comprise, or alternatively consist of, Fab (fragment antigen binding) fragments having binding specificity for HGF.
  • the Fab fragment preferably includes the variable heavy chain sequence of SEQ ID NO: 922 and the variable light chain sequence of SEQ ID NO: 942 or sequences that are at least 90% or 95% identical thereto.
  • This embodiment of the invention further includes Fabs containing additions, deletions, and variants of SEQ ID NO: 922 and/or SEQ ID NO: 942 which retain the binding specificity for HGF.
  • Fab fragments may be produced by enzymatic digestion (e.g., papain) of Ab25.
  • anti-HGF antibodies such as Ab25 or Fab fragments thereof may be produced via expression in mammalian cells such as CHO, NSO or HEK 293 cells, fungal, insect, or microbial systems such as yeast cells (for example haploid or diploid yeast such as haploid or diploid Pichia) and other yeast strains.
  • Suitable Pichia species include, but are not limited to, Pichia pastoris.
  • the invention is further directed to polynucleotides encoding antibody polypeptides having binding specificity to HGF, including the heavy and/or light chains of Ab25 as well as fragments, variants, combinations of one or more of the FRs, CDRs, the variable heavy chain and variable light chain sequences, and the heavy chain and light chain sequences set forth above, including all of them or sequences which are at least 90% or 95% identical thereto.
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess a heavy chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable heavy chain sequence comprising the sequence set forth below: QSVEESGGRLVTPGTPLTLTCTVSGFSLSTYTMNWVRQAPGKGLEYIGFISSSSS IDYVSWAKGRFTIS TSTTVDL ITSPTTEDTATYFCARDFYADYIGGGYPYIWG PGTLVTVSS (SEQ ID NO: 962).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that possess the same epitopic specificity as Ab26 and which contain a constant heavy chain sequence comprising the sequence set forth below:
  • TQKSLSLSPGK (SEQ ID NO: 970).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a light chain sequence comprising the sequence set forth below:
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain a variable light chain sequence comprising the sequence set forth below: ADVVMTQTPASVSEPVGGTVTIKCQASQSISSYLSWYQQKPGQPP LLIYGASK LTSGVPSRFKGSGSGTEYTLTISDLECADAATYYCQSNYDIYSYAFGGGTEVVV KR (SEQ ID NO: 982).
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that bind the same epitope as Ab26 which contain a constant light chain sequence comprising the sequence set forth below: TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQE SVTEQDSKDSTYSLSSTLTLS ADYE HKVYACEVTHQGLSSPVT SFNRGEC
  • the invention includes antibodies and antibody fragments having binding specificity to HGF that contain one, two, or three of the polypeptide sequences of SEQ ID NO: 964; SEQ ID NO: 966; and SEQ ID NO: 968 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain sequence of SEQ ID NO: 961 or which contain the variable heavy chain sequence of SEQ ID NO: 962, and/or which further contain one, two, or three of the polypeptide sequences of SEQ ID NO: 984; SEQ ID NO: 986; and SEQ ID NO: 988 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain sequence of SEQ ID NO: 981 or which contain the variable light chain sequence of SEQ ID NO: 982, or antibodies or fragments containing combinations of sequences which are at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical thereto.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Endocrinology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Reproductive Health (AREA)
  • Oncology (AREA)
  • Pulmonology (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Dermatology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
PCT/US2014/029383 2013-03-14 2014-03-14 Therapeutic use of antibodies to hgf WO2014153166A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361781643P 2013-03-14 2013-03-14
US201361782868P 2013-03-14 2013-03-14
US61/781,643 2013-03-14
US61/782,868 2013-03-14

Publications (2)

Publication Number Publication Date
WO2014153166A2 true WO2014153166A2 (en) 2014-09-25
WO2014153166A3 WO2014153166A3 (en) 2014-12-04

Family

ID=51581767

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2014/029383 WO2014153166A2 (en) 2013-03-14 2014-03-14 Therapeutic use of antibodies to hgf
PCT/US2014/029163 WO2014153117A2 (en) 2013-03-14 2014-03-14 Antibodies to hgf and compositions containing

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2014/029163 WO2014153117A2 (en) 2013-03-14 2014-03-14 Antibodies to hgf and compositions containing

Country Status (7)

Country Link
EP (1) EP2964673A4 (ko)
JP (1) JP2016516052A (ko)
KR (1) KR20150140685A (ko)
CN (1) CN105246915A (ko)
CA (1) CA2904743A1 (ko)
TW (2) TW201438737A (ko)
WO (2) WO2014153166A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11065265B2 (en) 2018-05-18 2021-07-20 Spes Pharmaceuticals Inc. Compositions of fosaprepitant and methods of preparation
US11285159B2 (en) 2019-11-05 2022-03-29 Abbvie Inc. Dosing regimens for use in treating myelofibrosis and MPN-related disorders with navitoclax

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106699868B (zh) * 2017-03-01 2019-11-15 牡丹江医学院 一种蛋白质及编码其的核苷酸序列
CN109771642B (zh) * 2017-11-13 2022-09-20 同济大学苏州研究院 c-MET激动型抗体及其用途
CN112569359A (zh) * 2019-09-30 2021-03-30 上海生物制品研究所有限责任公司 培干扰素和原癌基因产物靶向抑制剂在协同治疗肾癌中的应用
WO2022228514A1 (zh) * 2021-04-29 2022-11-03 北京浩古元方生物医药科技有限公司 抗人白血病抑制因子抗体及其用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214344B1 (en) * 1995-06-02 2001-04-10 Genetech, Inc. Hepatocyte growth factor receptor antagonists and uses thereof
US7718174B2 (en) * 2006-07-14 2010-05-18 Abxign, Inc. Anti-HGF/SF humanized antibody
US20100129357A1 (en) * 2008-11-25 2010-05-27 Leon Garcia-Martinez Antibodies to il-6 and use thereof
US20100278815A1 (en) * 2006-04-01 2010-11-04 Galaxy Biotech, Llc Humanized Monoclonal Antibodies to Hepatocyte Growth Factor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040208876A1 (en) * 2003-04-18 2004-10-21 Kim Kyung Jin Monoclonal antibodies to hepatocyte growth factor
NZ544797A (en) * 2003-07-18 2011-04-29 Amgen Fremont Inc Specific antibodies that bind HGF and neutralise binding of HGF to met
EP2021463B1 (en) * 2006-05-19 2016-11-23 Alder Biopharmaceuticals, Inc. Culture method for obtaining a clonal population of antigen-specific b cells
CN101460521A (zh) * 2006-06-02 2009-06-17 Aveo制药公司 肝细胞生长因子(hgf)的结合蛋白质
AU2007254942B2 (en) * 2006-06-02 2011-10-27 Aveo Pharmaceuticals, Inc. Hepatocyte growth factor (HGF) binding proteins
KR101196184B1 (ko) * 2006-06-02 2012-11-01 아베오 파마슈티컬즈, 인크. 간세포 성장 인자 (hgf) 결합 단백질
US9539324B2 (en) * 2010-12-01 2017-01-10 Alderbio Holdings, Llc Methods of preventing inflammation and treating pain using anti-NGF compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214344B1 (en) * 1995-06-02 2001-04-10 Genetech, Inc. Hepatocyte growth factor receptor antagonists and uses thereof
US20100278815A1 (en) * 2006-04-01 2010-11-04 Galaxy Biotech, Llc Humanized Monoclonal Antibodies to Hepatocyte Growth Factor
US7718174B2 (en) * 2006-07-14 2010-05-18 Abxign, Inc. Anti-HGF/SF humanized antibody
US20100129357A1 (en) * 2008-11-25 2010-05-27 Leon Garcia-Martinez Antibodies to il-6 and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BURGESS ET AL.: 'Fully Human Monoclonal Antibodies to Hepatocyte Growth Factor with Therapeutic Potential against Hepatocyte Growth Factor/c-Met-Dependent Human Tumors' CANCER RESEARCH vol. 66, 01 February 2006, pages 1721 - 1729 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11065265B2 (en) 2018-05-18 2021-07-20 Spes Pharmaceuticals Inc. Compositions of fosaprepitant and methods of preparation
US11285159B2 (en) 2019-11-05 2022-03-29 Abbvie Inc. Dosing regimens for use in treating myelofibrosis and MPN-related disorders with navitoclax

Also Published As

Publication number Publication date
JP2016516052A (ja) 2016-06-02
TW201444868A (zh) 2014-12-01
WO2014153117A2 (en) 2014-09-25
TW201438737A (zh) 2014-10-16
WO2014153117A3 (en) 2015-01-08
CA2904743A1 (en) 2014-09-25
CN105246915A (zh) 2016-01-13
KR20150140685A (ko) 2015-12-16
EP2964673A4 (en) 2017-02-22
WO2014153117A9 (en) 2014-11-27
EP2964673A2 (en) 2016-01-13
WO2014153166A3 (en) 2014-12-04

Similar Documents

Publication Publication Date Title
US20190085066A1 (en) Antibodies to hgf and compositions containing
US9783603B2 (en) Therapeutic use of antibodies to HGF
US20140271464A1 (en) Therapeutic use of antibodies to hgf
AU2017203536B2 (en) Antil-IL-6 antibodies for the treatment of oral mucositis
CN102292106B (zh) Il-6抗体及其用途
JP2015147778A (ja) Il−6に対する抗体およびその使用
HUE032563T2 (en) Antibodies to IL-6 and their use
WO2014153166A2 (en) Therapeutic use of antibodies to hgf
AU2016250478A1 (en) Antibodies to IL-6 and use thereof
AU2013203976A1 (en) Antibodies to IL-6 and use thereof
JP2021504492A (ja) 癌治療のための組成物および方法
AU2013203804A1 (en) Antibodies to il-6 and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14768665

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 14768665

Country of ref document: EP

Kind code of ref document: A2