WO2014148365A1 - 電気接触子及び電気部品用ソケット - Google Patents

電気接触子及び電気部品用ソケット Download PDF

Info

Publication number
WO2014148365A1
WO2014148365A1 PCT/JP2014/056788 JP2014056788W WO2014148365A1 WO 2014148365 A1 WO2014148365 A1 WO 2014148365A1 JP 2014056788 W JP2014056788 W JP 2014056788W WO 2014148365 A1 WO2014148365 A1 WO 2014148365A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
alloy
socket
package
contact
Prior art date
Application number
PCT/JP2014/056788
Other languages
English (en)
French (fr)
Inventor
享弘 小田
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Priority to US14/778,573 priority Critical patent/US20160285186A1/en
Priority to EP14770603.0A priority patent/EP2978076B1/en
Priority to KR1020157027479A priority patent/KR20150135336A/ko
Priority to CN201480017235.XA priority patent/CN105051982B/zh
Publication of WO2014148365A1 publication Critical patent/WO2014148365A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/712Coupling devices for rigid printing circuits or like structures co-operating with the surface of the printed circuit or with a coupling device exclusively provided on the surface of the printed circuit
    • H01R12/716Coupling device provided on the PCB
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/20Pins, blades, or sockets shaped, or provided with separate member, to retain co-operating parts together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/7076Coupling devices for connection between PCB and component, e.g. display

Definitions

  • the present invention relates to an electrical contact that is electrically connected to an electrical component such as a semiconductor device (hereinafter referred to as “IC package”), and an electrical component socket in which the electrical contact is disposed.
  • an electrical component such as a semiconductor device (hereinafter referred to as “IC package”)
  • IC package semiconductor device
  • electrical component socket in which the electrical contact is disposed.
  • an electrical contact that is electrically connected to an electrical component such as an IC package has a contact pin provided on the IC socket as an electrical component socket disposed on an external continuity test circuit.
  • the connection terminal of the IC package and the electrode of the continuity test circuit are electrically connected via the contact pins, and in this state, heat is applied to perform the burn-in test.
  • connection terminal of the IC package there is a connection terminal formed of so-called lead-free solder whose main component is tin (Sn) and does not contain lead (Pb).
  • solder whose main component is tin (Sn) and does not contain lead (Pb).
  • Au gold
  • Ni nickel
  • connection terminal of the IC package does not diffuse into the material of the contact pin, and Sn attached to the contact pin is oxidized to easily form an insulator. Therefore, as the number of tests increases, the electrical resistance value rapidly increases between the contact pins and the connection terminals of the IC package, making it impossible to make an electrical connection, and in the burn-in test, a good product package may be erroneously judged as defective. There is.
  • a conventional contact pin is formed by superposing a palladium (Pd) plating layer on the outside of the Ni of the underlayer, and further on the outside thereof, silver (Ag) having a slower diffusion rate of Sn than the Pd plating layer. ) Even if the plating layer is formed as the outermost layer and the contact pin and the connection terminal of the IC package are adhered, the Ag of the contact pin is broken by breaking between the very thin Ag-Sn alloy layers formed at this interface. A device in which the amount taken is minimized is known (for example, see Patent Document 1).
  • the use temperature environment required for the IC package tends to be high, for example, when the IC package is used in a control unit disposed in an engine room of an automobile. Accordingly, it is necessary to increase the test temperature in the burn-in test (for example, 150 ° C. or higher).
  • the problem to be solved by the present invention that addresses such problems is that when the test temperature of the burn-in test is increased, the number of tests until the electrical resistance value suddenly increases is reduced. It is an object of the present invention to provide an electrical contact that suppresses the electrical contact and a socket for an electrical component in which the electrical contact is disposed.
  • an electrical contact according to the present invention is configured by laminating a plurality of layers on a base material, and the plurality of layers are made of tin among materials in which tin is melted and diffused by applying heat.
  • a first layer formed of a material having a diffusion rate slower than that of palladium; and a second layer formed of a material having a diffusion rate of tin slower than that of the first layer on the opposite side of the first layer from the first layer; It is equipped with.
  • the first layer may be formed of a Pd—Ni alloy containing palladium and nickel as main components or a Pd—Co alloy containing palladium and cobalt as main components.
  • the weight ratio of palladium in the Pd—Ni alloy may be higher than the weight ratio of nickel.
  • the weight ratio of palladium may be 60 to 90% by weight
  • the weight ratio of nickel may be 10 to 40% by weight.
  • the weight ratio of palladium in the Pd—Co alloy may be higher than the weight ratio of cobalt.
  • the second layer may be formed of silver or an Ag alloy containing silver as a main component. Either nickel, copper, iron, or antimony may be added to the Ag alloy.
  • the second layer may be formed of silver or an Ag alloy containing silver as a main component.
  • the second layer may be formed by plating the first layer.
  • the base material is formed between the base material and the first layer and further includes a base layer containing nickel, and the first layer may be formed by plating the base layer.
  • an electrical component socket includes a socket main body in which an electrical component having a connection terminal containing tin is accommodated, and the socket body provided in the socket main body and in contact with the connection terminal of the accommodated electrical component. An electrical contact.
  • the electrical contact and the electrical component socket of the present invention when the test temperature of the burn-in test is increased, it is possible to suppress a decrease in the number of tests until the electrical resistance value suddenly increases. Therefore, the life of the electrical component socket can be extended as compared with the electrical component socket provided with the conventional electrical contact.
  • the first contact part in the contact pin after the burn-in test is shown, (A) is a side view showing the first contact part, (B) is a cross-sectional view of the conventional contact pin, (C) is It is sectional drawing about the contact pin which concerns on embodiment of this invention. It is a graph which shows the change of the electrical resistance value in the part equivalent to the 1st contact part of the contact pin in a burn-in test, (A) shows about a conventional contact pin, (B) shows the contact pin which concerns on embodiment of this invention Show about.
  • FIG. 1 to 8 are views showing an embodiment of an electrical contact and an electrical component socket according to the present invention.
  • an IC socket 12 as a socket for an electric component to which an IC package 10 that is an electric component is mounted includes a socket body 14 and a cover 16.
  • the cover 16 is assembled to the socket body 14 so that it can move up and down. More specifically, a cover guide 18 is formed in the socket body 14, and a guide groove 20 that is slidably engaged with the cover guide 18 is formed in the cover 16. The cover 16 is guided by the cover guide 18 of the socket body 14. To move up and down.
  • the socket body 14 and the cover 16 are made of an insulating resin material.
  • the cover 16 is assembled to the socket body 14 so as to compress the coil spring 22 disposed between the socket body 14 and the cover 16 by a predetermined amount, and is constantly urged upward by the coil spring 22 toward the socket body 14.
  • the upper position is positioned by the stopper means 24. Note that at least one pair of the coil springs 22 is arranged in the left-right direction in FIG.
  • the stopper means 24 is composed of claws 26 formed at the four corners of the cover 16 and claws 28 of the socket body 14 that engage with these claws 26.
  • the claw 26 on the cover 16 side is engaged so as to be slidable in a groove 29 formed in the socket body 14, and when the cover 16 is pushed down in FIG. 4, the inclined surface of the claw 28 of the socket body 14.
  • the claw 28 of the socket main body 14 is stretched elastically along the 28 a and gets over the claw 28 of the socket main body 14. As a result, the cover 16 is assembled to the socket body 14.
  • the socket main body 14 is composed of tin (Sn) as a main component and does not contain lead (Pb).
  • the connection terminal 30 of the IC package 10 formed including so-called lead-free solder and an external continuity test circuit (not shown).
  • a plurality of contact pins 32 are attached as electrical contacts for connecting the two.
  • the contact pin 32 is fixed to the socket body 14 by press-fitting or the like at the base portion 34, and is partitioned by a rib 36 formed on the socket body 14 so as not to contact another adjacent contact pin 32. As shown in FIGS. 1 and 5, the contact pin 32 has a connection arm 38 that protrudes from the base 34 to the lower side of the socket body 14, and this connection arm 38 is connected to a continuity test circuit (not shown). .
  • the contact pin 32 is connected to the base portion 34 via the first contact portion 42 connected to the base portion 34 via the first spring portion 40 and the second spring portion 44. And a second contact portion 46 connected thereto.
  • the first spring portion 40 is attached to the engagement groove 50 of the pin support block 48 of the socket body 14 in a state of being elastically deformed from the two-dot chain line position shown in FIG. 5 to the solid line position.
  • a positioning step 52 is formed on the first contact portion 42. As shown in FIG. 3, the positioning step portion 52 is pressed against the positioning engagement portion 54 formed on the pin support block 48 of the socket body 14 by the elastic force of the first spring portion 40.
  • the contact portion 42 is positioned in the vertical direction. At this time, tensile stress is generated in the first spring portion 40, and the positioning step portion 52 is pressed against the positioning engagement portion 54 by the tensile force generated in the first spring portion 40. Further, the lower end side surface 42a of the first contact portion 42 is pressed against the side end surface 48a of the pin support block 48 by the elastic force of the first spring portion 40, and the first contact portion 42 is positioned in the left-right direction.
  • the second spring portion 44 has an arm 56 that protrudes upward in the drawing as shown in FIGS.
  • the arm 56 is pushed by the arcuate pressing portion inclined surface 58 formed on the cover 16, and reaches the position of the two-dot chain line in FIGS. 1 and 5. Displace.
  • the second spring portion 44 is bent and deformed counterclockwise in FIG.
  • the second contact portion 46 is retracted from the upper surface of the first contact portion 42, and the upper surface of the first contact portion 42 is released.
  • the IC package 10 is inserted into the cover 16 from the IC package insertion opening 60 formed in the cover 16 and accommodated in the socket body 14. Then, the connection terminals 30 of the IC package 10 are in contact with the upper surface of the first contact portion 42 on a one-to-one basis. Thereafter, when the pressing force applied to the cover 16 is released, the cover 16 returns to the original position by the spring force of the coil spring 22. As a result, the second spring portion 44 is displaced clockwise from the position of the two-dot chain line in FIG. 5, and as shown in FIG. 6, the second contact portion 46 is applied to the IC package by the elastic force of the second spring portion 44.
  • connection terminal 30 of the IC package 10 is securely held by the first contact portion 42 and the second contact portion 46 at a predetermined contact pressure, and the continuity test circuit (not shown) and the IC package 10 are connected to the contact pin 32. It is electrically connected via.
  • the IC package 10 is mounted on the IC socket 12, and in this mounted state, a continuity test such as a burn-in test is performed on the IC package 10.
  • the cover 16 When the continuity test is completed, the cover 16 is pushed down against the spring force of the coil spring 22, the arm 56 is pressed by the pressing portion inclined surface 58 of the cover 16, and the second spring portion 44 is bent and deformed. After the second contact portion 46 is retracted from the upper surface of the connection terminal 30 to the position of the two-dot chain line in FIG. 5, the IC package 10 is taken out of the cover 16 from the IC package insertion port 60 and the continuity test of the next IC package 10 is performed. Migrate to
  • the contact pin 32 includes a base material 62 and a base layer 64 formed on a side of the base material 62 that contacts the connection terminal 30 of the IC package 10 (hereinafter referred to as “contact side”).
  • the surface layer 66 formed on the contact side of the base layer 64 is composed of a plurality of layers. That is, the surface layer 66 is located on the contact side of the contact pin 32.
  • a beryllium copper (Be—Cu) alloy is used in consideration of the elasticity required for the contact pins 32 in the present embodiment.
  • the underlayer 64 is formed by, for example, nickel (Ni) plating of 2 ⁇ 10 ⁇ 6 to 3 ⁇ 10 ⁇ 6 m.
  • the base material 62 and the base layer 64 are not limited to such, and may be formed by appropriately selecting from other materials.
  • the surface layer 66 includes at least two layers.
  • the first layer 68 formed on the contact side of the base layer 64, the second layer 70 formed on the contact side of the first layer 68, Is composed of two layers stacked.
  • One or more layers may be formed on at least one of the contact side of the second layer 70 and the substrate 62 side of the first layer 68.
  • Sn, gold (Au), palladium (Pd) or A layer containing any one of zinc (Zn) may be provided.
  • One or more layers may be formed between the first layer 68 and the second layer 70.
  • the first layer 68 is formed of a material in which Sn is melted and diffused by applying heat, and the Sn diffusion rate is slower than Pd.
  • the first layer 68 is formed of a Pd—Ni alloy containing Pd and Ni as main components.
  • the weight ratio of Pd to Ni is higher in Pd than in Ni.
  • Pd is 60 to 90% by weight, whereas Ni is 40 to 10% by weight.
  • the thickness of the first layer 68 needs to be 0.1 ⁇ 10 ⁇ 6 m or more in order to obtain a function of Sn melting and diffusing. It may be 2 ⁇ 10 ⁇ 6 m or more. On the other hand, the thickness of the first layer 68 may be 5 ⁇ 10 ⁇ 6 m or less in order to suppress the occurrence of cracks.
  • the first layer 68 is not limited to a Pd—Ni alloy as long as it is formed of a material in which Sn is melted and diffused by applying heat and the diffusion rate of Sn is slower than Pd.
  • a Pd—Co alloy containing Pd and cobalt (Co) may also be used. Also in this Pd—Co alloy, the weight ratio of Pd to Co is higher in Pd, for example, Pd is 90% by weight, whereas Co is 10% by weight.
  • the first layer 68 is formed by, for example, a manufacturing method using plating or a manufacturing method using ion plating.
  • Ni plating is applied as the base layer 64
  • strike Au plating is applied thereon as an adhesion layer
  • Pd—Ni alloy plating is stacked as the first layer 68.
  • Ni is plated as the base layer 64
  • a Pd—Ni alloy is deposited thereon as the first layer 68 by ion plating.
  • the second layer 70 is formed of a material in which Sn melts and diffuses when heat is applied, but the Sn diffusion rate is slower than that of the first layer 68.
  • the second layer 70 is made of silver (Ag).
  • the thickness of the second layer 70 needs to be 0.1 ⁇ 10 ⁇ 6 m or more in order to delay the diffusion of Sn into the first layer 68. Since the diffusion rate of Sn diffusing into the first layer 68 varies depending on the ambient temperature around the contact pin 32, at 150 ° C. or higher, 0.3 ⁇ 10 ⁇ 6 m or higher in order to delay the diffusion of Sn into the first layer 68. It may be set to 1 ⁇ 10 ⁇ 6 m or more for the same purpose at 180 ° C. or higher.
  • the second layer 70 is formed on the first layer 68 by, for example, a manufacturing method using plating or a manufacturing method using ion plating in the same manner as the manufacturing method of the first layer 68 described above.
  • the second layer 70 melts and diffuses when heat is applied.
  • the second layer 70 is not limited to Ag as long as it is formed of a material whose Sn diffusion rate is slower than that of the first layer 68.
  • Ag And a silver alloy mainly composed of any one of four elements of Ni, copper (Cu), iron (Fe), and antimony (Sb). These elements are considered to inhibit the alloying of Ag in the silver alloy and Sn of the connection terminal 30 of the IC package 10.
  • the second layer 70 may be a silver alloy in which Sn or Au is added to Ag in addition to the above-described four elements.
  • the contact pin 32 and the IC socket 12 described above when the test temperature of the burn-in test is increased, the electrical resistance value between the contact pin 32 and the connection terminal 30 of the IC package 10 is rapidly increased. It is possible to suppress a decrease in the number of tests. Therefore, the life of the IC socket 12 can be extended as compared with an IC socket provided with a conventional contact pin. The reason will be described.
  • the diffusion rate of Sn and the absorbed amount of Sn are extremely high along with Au, but the mechanical strength of the alloy with Sn is high.
  • Sn is dissolved and diffused by applying heat to the contact side of the first layer formed of a Pd plating layer much higher than Au, but Ag is a material whose diffusion rate is slower than that of the first layer.
  • a second layer formed of the plating layer was further provided. For this reason, the speed at which Sn contained in the connection terminal 30 of the IC package 10 is melted to the contact pin side becomes slow, and as a result, Ag—Sn alloy and Sn—Pd alloy are gradually formed without being rapidly formed.
  • connection terminals 30 and the contact pins of the IC package 10 via the formed Ag—Sn alloy or Sn—Pd alloy are made difficult to stick, and the first layer and the second layer are reduced in speed. Was suppressed.
  • connection terminal 30 of the IC package 10 forms an Ag—Sn alloy with Ag of the second layer. This increases the speed at which the second layer of contact pins and the connection terminal 30 of the IC package 10 are easily attached. Since the thickness of the Ag—Sn alloy also increases, when the connection terminal 30 of the IC package 10 is peeled off from the contact pin, the Ag of the second layer tends to decrease compared to the case where the test temperature is not increased. Further, when the Ag plating layer of the second layer is deficient, Sn contained in the connection terminal 30 of the IC package 10 is faster than the Ag of the second layer with the Pd of the first layer.
  • a Pd—Ni alloy plating layer whose Sn diffusion rate is lower than Pd is used as the first layer 68 among materials in which Sn melts and diffuses when heat is applied. Forming.
  • the alloying speed of Sn and Pd—Ni alloy is slower than the alloying speed of Sn and Pd. Therefore, even when the Ag plating layer of the second layer 70 is deficient, the conventional contact Compared to the pins, the first layer 68 of the contact pin 32 of the present embodiment is less likely to stick to the connection terminal 30 of the IC package 10, and the first layer 68 is less likely to decrease.
  • the Pd—Ni alloy plating layer can absorb a large amount of Sn like the Pd single plating layer, but has a higher mechanical strength than the Pd single plating layer.
  • the Pd—Ni alloy is alloyed with Sn of the connection terminal 30 of the IC package 10
  • the Pd—Ni alloy of the first layer 68 is peeled off even if the IC package 10 is peeled off from the contact pin 32. Hard to decrease.
  • the exposure of Ni as the base layer 64 is delayed, and the number of tests until the electrical resistance value between the contact pin 32 and the connection terminal 30 of the IC package 10 is rapidly increased. Will increase. Therefore, the life of the IC socket 12 can be extended as compared with an IC socket provided with a conventional contact pin.
  • a conventional contact pin (hereinafter referred to as “conventional contact pin”) having a Pd plating layer in the first layer and an Ag plating layer in the second layer, and a Pd—Ni alloy plating layer in the first layer.
  • a contact pin (hereinafter referred to as “improved contact pin”) according to the present embodiment having an Ag plating layer as a second layer and a portion corresponding to the first contact portion 42 shown in FIG. The state of alloy formation and the change in electrical resistance value were compared.
  • test IC socket An IC socket to which a conventional contact pin is attached (hereinafter referred to as “conventional IC socket”) and an IC socket to which an improved contact pin is attached (hereinafter referred to as “improved IC socket”). 4) each.
  • the configuration of the IC socket was common.
  • Both conventional contact pins and improved contact pins used a Be-Cu alloy as a base material.
  • 2 ⁇ 10 ⁇ 6 to 3 ⁇ 10 ⁇ 6 m of Ni plating is applied as a base layer on a base material, and a Pd plating layer is 0.5 ⁇ 10 ⁇ 6 as a first layer on the base layer.
  • m an Ag plating layer as a second layer was formed on the first layer by 2 ⁇ 10 ⁇ 6 m.
  • the improved contact pin is formed by applying Ni plating 2 ⁇ 10 ⁇ 6 to 3 ⁇ 10 ⁇ 6 m as a base layer on the base material, and adding a Pd—Ni alloy plating layer as a first layer to the base layer 0. 5 ⁇ 10 ⁇ 6 m was applied, and an Ag plating layer was formed on the first layer as a second layer by 1 ⁇ 10 ⁇ 6 m.
  • connection terminals are formed of Sn-3Ag-0.5Cu alloy.
  • the ambient temperature of the IC socket is set to 200 with unused IC packages mounted on a total of eight IC sockets including four conventional IC sockets and four improved IC sockets.
  • the temperature was raised to 0 ° C., and this temperature was maintained for 24 hours. After that, the temperature was lowered to room temperature, and the IC package was removed from the IC socket. With this as one cycle, 15 cycles were sequentially performed.
  • the electrical resistance value of the contact portion of the contact pin that contacts the connection terminal of the IC package is measured for the contact pin of each IC socket at each stage after 1 cycle, 5 cycles, 10 cycles, and 15 cycles. Went.
  • the cross section of the portion corresponding to the first contact portion 42 was observed using a microscope at the stage where 15 cycles were completed.
  • the second Ag plating layer is lost, but the first Pd—Ni alloy is lost.
  • the Pd—Ni—Sn alloy layer in which Sn is diffused and alloyed in the gold plating layer remains in the entire region corresponding to the first contact portion 42, and Ni in the underlayer is not exposed.
  • the thickness of the second Ag plating layer in the improved contact pin is half that of the second Ag plating layer in the conventional contact pin, the remaining amount of the first layer is the improved contact. Since there are more pins, it was predicted that the remaining amount of the first layer in the improved contact pin would be further increased if the second Ag plating layer had the same thickness as the conventional contact pin.
  • the open top type IC socket 12 has been described as an example of the electrical component socket to which the IC package 10 is mounted, it is not limited to this.
  • other types of sockets such as clamshell type sockets may be used as long as they are IC sockets having electrical contacts.
  • contact pin 32 as an electrical contact is applied to the IC socket 12, it may be applied to uses other than the IC socket.

Abstract

ICパッケージが収容されるソケット本体にはコンタクトピンが設けられ、収容されたICパッケージの接続端子と電気的に接触する。コンタクトピンは、導電性を有する基材に対して、基材から順に、Niを含む下地層と、表層と、が積層された複数層を形成してなる。また、表層は、下地層側の第1層と、ICパッケージの接続端子と接触する第2層とで構成されている。第1層は、熱を加えることによりSnが溶け込んで拡散する材料のうち、Snの拡散速度がPdよりも遅い材料であるPd-Ni合金を主成分とするメッキ層で形成される。第2層は、Snの拡散速度が第1層よりも遅い材料であるAgを主成分とするメッキ層で形成される。

Description

電気接触子及び電気部品用ソケット
 本発明は、半導体装置(以下、「ICパッケージ」という)などの電気部品に電気的に接続される電気接触子、及び、この電気接触子が配設された電気部品用ソケットに関する。
 従来から、ICパッケージなどの電気部品に電気的に接続される電気接触子には、外部の導通試験回路上に配置される電気部品用ソケットとしてのICソケットに設けられたコンタクトピンがある。ICパッケージはICソケットに収容されることにより、ICパッケージの接続端子と導通試験回路の電極とがコンタクトピンを介して電気的に接続され、この状態で熱を加えてバーンイン試験が行われる。
 ここで、ICパッケージの接続端子として、主成分がスズ(Sn)で、鉛(Pb)を含有しない、いわゆる鉛フリー半田により形成されるものがあるが、このようなICパッケージの接続端子と電気的に接続されるコンタクトピンが、金(Au)メッキ(極微量のCoが添加されている)層を最表層とし、ニッケル(Ni)を下地層として形成されている場合には、次のような問題が生じる。
 すなわち、バーンイン試験を行うと、ICパッケージの接続端子に含まれるSnがコンタクトピンのAuに溶け込み拡散することでAu-Sn合金を形成して、コンタクトピンにICパッケージの接続端子が貼り付いてしまう。そして、バーンイン試験完了後、コンタクトピンからICパッケージの接続端子を引き剥がすと、Au-Sn合金の脆い性質によりAu-Snの層間で破断が起き、コンタクトピンのAuの一部がICパッケージの接続端子側に奪われてしまうため、バーンイン試験を繰り返すことにより、コンタクトピンのAuが殆ど奪われて下地層のNiが露出してしまう。このため、ICパッケージの接続端子に含まれるSnがコンタクトピンの材料中に拡散しなくなり、コンタクトピンへ付着したSnは酸化して絶縁体を構成し易くなる。したがって、試験回数が多くなるにつれて、コンタクトピンとICパッケージの接続端子との間で電気抵抗値が急激に上昇して電気的に接続ができなくなり、バーンイン試験において良品パッケージを誤って不良と判断するおそれがある。
 このため、従来のコンタクトピンには、下地層のNiの外側に、パラジウム(Pd)メッキ層を重ねて形成するとともに、さらにその外側に、Pdメッキ層よりもSnの拡散速度が遅い銀(Ag)メッキ層を最表層として形成して、コンタクトピンとICパッケージの接続端子とが貼り付いた場合にも、この界面に形成されたごく薄いAg-Sn合金層間で破断させて、コンタクトピンのAgが奪われる量を最小にしたものが知られている(例えば、特許文献1参照)。
国際公開第2007/034921号公報
 ところで、ICパッケージに要求される使用温度環境は、例えば、ICパッケージが、自動車のエンジンルーム内に配設されたコントロールユニットに使用される場合などのように、高温化する傾向にあり、これに伴い、バーンイン試験における試験温度も高く(例えば、150℃以上に)する必要がある。
 しかしながら、前記従来のコンタクトピンでは、バーンイン試験の試験温度を高くすると、合金形成の促進等の理由により、コンタクトピンにおけるAgメッキ層及びPdメッキ層の減少速度が上昇して、下地層の露出が早期化していた。このため、コンタクトピンとICパッケージの接続端子との間における電気抵抗値が急激に上昇するまでの試験回数が減少してしまい、ICソケットの寿命が低下するおそれがあった。
 そこで、このような問題点に対処し、本発明が解決しようとする課題は、バーンイン試験の試験温度を高くした場合に、電気抵抗値の急激な上昇が発生するまでの試験回数が減少することを抑制する電気接触子、及び、この電気接触子を配設した電気部品用ソケットを提供することにある。
 前記課題を解決するために、本発明による電気接触子は、基材に複数層が積層されて構成され、かかる複数層は、熱を加えることによりスズが溶け込んで拡散する材料のうち、スズの拡散速度がパラジウムよりも遅い材料で形成される第1層と、第1層のうち基材と反対側において、スズの拡散速度が第1層よりも遅い材料で形成される第2層と、を備えたものである。
 このような電気接触子において、第1層は、パラジウム及びニッケルを主成分とするPd-Ni合金、あるいは、パラジウム及びコバルトを主成分とするPd-Co合金で形成されてもよい。
 第1層をPd-Ni合金で形成する場合、Pd-Ni合金において、パラジウムの重量比率はニッケルの重量比率より高くてもよい。この場合、パラジウムの重量比率は60~90重量%であり、ニッケルの重量比率は10~40重量%であってもよい。
 第1層をPd-Co合金で形成する場合、Pd-Co合金において、パラジウムの重量比率はコバルトの重量比率より高くてもよい。
 また、第2層は、銀あるいは銀を主成分とするAg合金で形成されてもよい。このAg合金には、ニッケル、銅、鉄、又はアンチモンのいずれかが添加されてもよい。
 また、第2層は、銀、又は銀を主成分とするAg合金で形成されてもよい。あるいは、第2層は、第1層に対するメッキにより形成されてもよい。
 さらにまた、基材と第1層との間に形成され、ニッケルを含んでなる下地層を更に含んで構成され、第1層は、下地層に対するメッキにより形成されてもよい。
 一方、本発明による電気部品用ソケットは、スズを含んでなる接続端子を備えた電気部品が収容されるソケット本体と、ソケット本体に設けられ、収容された電気部品の接続端子に接触される前記電気接触子と、を備えたものである。
 本発明の電気接触子及び電気部品用ソケットによれば、バーンイン試験の試験温度を高くした場合、電気抵抗値の急激な上昇が発生するまでの試験回数が減少することを抑制できる。したがって、従来の電気接触子が設けられた電気部品用ソケットに比べると、電気部品用ソケットの寿命を延ばすことができる。
本発明の実施形態に係る電気部品用ソケット(ICソケット)を正面から見た場合の部分断面図である。 同ICソケットの平面図である。 同ICソケットに配設されたコンタクトピンの部分拡大図である。 同ICソケットを側面から見た場合の部分断面図である。 本発明の実施形態に係るコンタクトピンの第1の作動状態を示す説明図である。 本発明の実施形態に係るコンタクトピンの第2の作動状態を示す説明図である。 コンタクトピンの接触部を示す説明図である。 バーンイン試験後のコンタクトピンにおける第1の接触部を示し、(A)は第1の接触部を示す側面図であり、(B)は従来のコンタクトピンについての断面図であり、(C)は本発明の実施形態に係るコンタクトピンについての断面図である。 バーンイン試験におけるコンタクトピンの第1の接触部に相当する部分における電気抵抗値の変化を示すグラフであり、(A)は従来コンタクトピンについて示し、(B)は本発明の実施形態に係るコンタクトピンについて示す。
 以下、本発明の実施の形態を添付図面に基づいて説明する。図1~図8は、本発明による電気接触子及び電気部品用ソケットの実施形態を示す図である。
 図1において、電気部品であるICパッケージ10が装着される電気部品用ソケットとしてのICソケット12は、ソケット本体14と、カバー16と、を備えてなる。
 ソケット本体14には、カバー16が上下動できるように組み付けられている。詳しくは、ソケット本体14にカバーガイド18が形成され、このカバーガイド18にスライド可能に係合するガイド溝20がカバー16に形成されており、カバー16がソケット本体14のカバーガイド18に案内されて上下動するようになっている。なお、ソケット本体14とカバー16は、絶縁性の樹脂材料で形成されている。
 カバー16は、ソケット本体14とカバー16との間に配設されたコイルスプリング22を所定量圧縮するようにソケット本体14に組み付けられ、コイルスプリング22でソケット本体14の上方へ向けて常時付勢されるようになっており、ストッパ手段24でその上方位置が位置決めされるようになっている。なお、コイルスプリング22は、図4における左右方向に少なくとも一対配置されている。
 ストッパ手段24は、カバー16の四隅に形成された爪26と、これらの爪26に係合するソケット本体14の爪28とで構成されている。ここで、カバー16側の爪26は、ソケット本体14に形成された溝29内にスライドできるように係合され、カバー16が図4における下方に押し下げられると、ソケット本体14の爪28の斜面28aに沿って弾性的に押し広げられてソケット本体14の爪28を乗り越え、その後ソケット本体14の爪28に係合する。これにより、カバー16がソケット本体14に組み付けられることになる。
 ソケット本体14には、主成分がスズ(Sn)で、鉛(Pb)を含有しない、いわゆる鉛フリー半田を含んで形成されるICパッケージ10の接続端子30と外部の導通試験回路(図示省略)とを接続する電気接触子として、コンタクトピン32が複数取り付けられている。
 コンタクトピン32は、その基部34において圧入等によりソケット本体14へ固定され、隣接する他のコンタクトピン32に接触しないように、ソケット本体14に形成されたリブ36により仕切られる。また、コンタクトピン32は、図1及び図5に示すように、基部34からソケット本体14の下方へ突出する接続アーム38を有し、この接続アーム38が図示省略の導通試験回路に接続される。
 コンタクトピン32は、図1及び図5に示すように、第1のバネ部40を介して基部34に接続された第1の接触部42と、第2のバネ部44を介して基部34に接続された第2の接触部46とを有している。
 第1のバネ部40は、図5に示す2点鎖線位置から実線位置まで弾性変形させられた状態でソケット本体14のピン支持ブロック48の係合溝50に装着される。そして、第1の接触部42には位置決め段部52が形成されている。この位置決め段部52は、図3に示すように、ソケット本体14のピン支持ブロック48に形成された位置決め係合部54に第1のバネ部40の弾性力で押圧されており、第1の接触部42が上下方向に位置決めされるようになっている。なお、この際、第1のバネ部40には引っ張り応力が生じており、この第1のバネ部40に生じる引っ張り力によって位置決め段部52が位置決め係合部54に押圧される。また、第1の接触部42の下端部側面42aがピン支持ブロック48の側端面48aに第1のバネ部40の弾性力で押圧されており、第1の接触部42が左右方向に位置決めされる。
 第2のバネ部44は、その上端部において、図1及び図5に示すように、図中上方へ向けて突出形成されたアーム56を有している。このアーム56は、カバー16がコイルスプリング22のバネ力に抗して押し下げられると、カバー16に形成された円弧状の押圧部斜面58で押され、図1及び図5の2点鎖線位置まで変位する。この際、第2のバネ部44が、図5における反時計方向へ曲げ変形する。その結果、第2の接触部46が、第1の接触部42の上面から退避し、第1の接触部42の上面が解放される。
 カバー16がコイルスプリング22のバネ力に抗して押し下げられた状態において、ICパッケージ10は、カバー16に形成されたICパッケージ挿入口60からカバー16の内部に挿入されて、ソケット本体14に収容され、ICパッケージ10の接続端子30は、夫々、第1の接触部42の上面に1対1で接触する。その後、カバー16に作用させていた押し下げ力を解除すると、カバー16がコイルスプリング22のバネ力で元の位置に復帰する。その結果、第2のバネ部44が図5の2点鎖線位置から時計方向へ変位し、図6に示すように、第2の接触部46が第2のバネ部44の弾性力でICパッケージ10の接続端子30を第1の接触部42の上面に向けて押圧する。したがって、ICパッケージ10の接続端子30は第1の接触部42と第2の接触部46とによって所定の接触圧で確実に挟持され、図示省略の導通試験回路とICパッケージ10とがコンタクトピン32を介して電気的に接続される。これにより、ICパッケージ10がICソケット12に装着され、この装着状態において、ICパッケージ10に対するバーンイン試験などの導通試験が行われる。
 導通試験が終了すると、カバー16をコイルスプリング22のバネ力に抗して押し下げ、カバー16の押圧部斜面58でアーム56を押圧して、第2のバネ部44を曲げ変形させ、図1及び図5の2点鎖線位置まで第2の接触部46を接続端子30上面から退避させた後、ICパッケージ10をICパッケージ挿入口60からカバー16の外部に取り出し、次のICパッケージ10の導通試験に移行する。
 次に、コンタクトピン32の材料について説明する。コンタクトピン32は、図7に示すように、基材62と、基材62のうちICパッケージ10の接続端子30と接触する側(以下、「接触側」という)に形成される下地層64と、下地層64のうち接触側に形成される表層66と、が積層された複数層から構成されてなる。すなわち、表層66はコンタクトピン32の接触側に位置する。
 基材62は、導電性を有する材料で形成され、本実施形態では、コンタクトピン32に弾性が必要とされることを考慮して、例えば、ベリリウム銅(Be-Cu)合金が用いられる。また、下地層64は、例えば、2×10-6~3×10-6mのニッケル(Ni)メッキにより形成されている。なお、基材62及び下地層64は、このようなものに限定されず、他の材料から適宜選択されて形成されてもよい。
 表層66は、少なくとも2つの層で構成され、本実施形態では、下地層64の接触側に形成される第1層68と、第1層68の接触側に形成される第2層70と、が積層された2層で構成される。なお、第2層70の接触側、及び第1層68の基材62側の少なくとも一方に1つ以上の層が形成されてもよい。例えば、バーンイン試験によるコンタクトピン32とICパッケージ10の接続端子30との貼り付きを抑制するため、第2層70の接触側に、最表層として、Sn、金(Au)、パラジウム(Pd)又は亜鉛(Zn)のいずれか1つを含んでなる層を設けてもよい。また、第1層68と第2層70との間に、1つ以上の層が形成されてもよい。
 第1層68は、熱を加えることによりSnが溶け込んで拡散する材料のうち、Snの拡散速度がPdよりも遅い材料で形成される。本実施形態では、第1層68は、PdとNiとを主成分とするPd-Ni合金で形成されている。このPd-Ni合金におけるPdとNiとの重量比率は、NiよりもPdの方が高く、例えば、Pdが60~90重量%であるのに対し、Niが40~10重量%である。
 第1層68の厚さは、Snが溶け込んで拡散する機能を得るために、0.1×10-6m以上である必要があるが、Snが拡散する時間を長くするために、0.2×10-6m以上としてもよい。一方、第1層68の厚さは、クラックの発生を抑制するため、5×10-6m以下としてもよい。
 なお、第1層68は、熱を加えることによりSnが溶け込んで拡散する材料のうち、Snの拡散速度がPdよりも遅い材料で形成されていれば、Pd-Ni合金に限定されず、例えば、Pdとコバルト(Co)とを含んでなるPd-Co合金であってもよい。このPd-Co合金においても、PdとCoとの重量比率は、Pdの方が高く、例えば、Pdが90重量%であるのに対し、Coが10重量%である。
 この第1層68は、例えば、メッキによる製法、又はイオンプレーティングによる製法により形成される。メッキによる製法は、下地層64としてNiメッキを施し、その上に密着層としてストライクAuメッキをした上で、第1層68としてPd-Ni合金メッキを重ねたものである。また、イオンプレーティングによる製法は、下地層64としてNiメッキを施し、その上に第1層68としてPd-Ni合金をイオンプレーティングにより付着させたものである。
 第2層70は、熱を加えることによりSnが溶け込んで拡散するが、Snの拡散速度が第1層68よりも遅い材料で形成される。本実施形態では、第2層70は、銀(Ag)で形成されている。第2層70の厚さは、第1層68へのSnの拡散を遅延させるために、0.1×10-6m以上である必要がある。第1層68へ拡散するSnの拡散速度はコンタクトピン32周囲の雰囲気温度によって異なるため、150℃以上では、第1層68へのSnの拡散を遅延させるべく0.3×10-6m以上としてもよく、180℃以上では、同様の目的で1×10-6m以上としてもよい。
 この第2層70は、第1層68の上から、前述の第1層68の製法と同様に、例えば、メッキによる製法、又はイオンプレーティングによる製法により形成される。
 なお、第2層70は、熱を加えることによりSnが溶け込んで拡散するが、Snの拡散速度が第1層68よりも遅い材料で形成されていれば、Agに限定されず、例えば、Agと、Ni、銅(Cu)、鉄(Fe)、及びアンチモン(Sb)の4元素のいずれか1つと、を主成分とする銀合金であってもよい。これらの元素は、銀合金中のAgとICパッケージ10の接続端子30のSnとの合金化を阻害すると考えられる。また、第2層70は、Agに対し、前述の4元素以外に、Sn又はAuなどを添加した銀合金であってもよい。
 このようなコンタクトピン32及びICソケット12によれば、バーンイン試験の試験温度を高くした場合に、コンタクトピン32とICパッケージ10の接続端子30との間における電気抵抗値の急激な上昇を生じるまでの試験回数が減少することを抑制できる。したがって、従来のコンタクトピンが設けられたICソケットに比べると、ICソケット12の寿命を延ばすことができる。その理由について説明する。
 従来のコンタクトピンでは、熱を加えることにより、Snが溶け込んで拡散する材料のうち、Snの拡散速度、及びSnの吸収量がAuと並んできわめて高いが、Snとの合金の機械的強度がAuよりもはるかに高いPdのメッキ層で形成された第1層の接触側に、熱を加えることによりSnが溶け込んで拡散するが、その拡散の速度が第1層よりも遅い材料であるAgのメッキ層で形成された第2層をさらに設けていた。このため、ICパッケージ10の接続端子30に含まれるSnがコンタクトピン側に溶け込む速度が遅くなり、その結果、Ag-Sn合金やSn-Pd合金が急激に形成されずに徐々に形成される。これにより、バーンイン試験の後、形成されたAg-Sn合金やSn-Pd合金を介したICパッケージ10の接続端子30とコンタクトピンとを貼り付きにくくして、第1層及び第2層の減少速度を抑えていた。
 しかしながら、バーンイン試験の試験温度を高くする(例えば、150℃以上にする)と、ICパッケージ10の接続端子30に含まれるSnが、第2層のAgとの間で、Ag-Sn合金を形成する速度が上昇し、コンタクトピンの第2層とICパッケージ10の接続端子30とが貼り付き易くなる。Ag-Sn合金の厚みも増すため、コンタクトピンからICパッケージ10の接続端子30を引き剥がすと、試験温度を高くしていない場合と比べて、第2層のAgは減少し易くなる。また、第2層のAgメッキ層が欠乏してくると、ICパッケージ10の接続端子30に含まれるSnは、第1層のPdとの間で、第2層のAgよりもさらに速い速度でSn-Pb合金を形成し、コンタクトピンの第1層とICパッケージ10の接続端子30とが貼り付き易くなる。このため、試験温度を高くしていない場合と比べると、第1層のPdも減少しやすくなる。したがって、試験温度を高くしていない場合と比較すると、下地層であるNiの露出は早期化する。そして、ICパッケージ10の接続端子30に含まれるSnはコンタクトピンの材料中に拡散せず下地層の界面に蓄積するため、コンタクトピンに付着したSnは酸化して絶縁体を構成しやすくなる。このため、コンタクトピンとICパッケージ10の接続端子30との間における電気抵抗値が急激に上昇するまでの試験回数が減少し、ICソケットの寿命が低下するおそれがあった。
 これに対し、本実施形態におけるコンタクトピン32では、熱を加えることによりSnが溶け込んで拡散する材料のうち、Snの拡散速度がPdよりも遅いPd-Ni合金のメッキ層を第1層68として形成している。
 このため、SnとPd-Ni合金との合金化の速度は、SnとPdとの合金化の速度よりも遅くなるので、第2層70のAgメッキ層が欠乏してきた場合でも、従来のコンタクトピンに比べると、本実施形態のコンタクトピン32の第1層68はICパッケージ10の接続端子30と貼り付きにくくなり、第1層68は減少しにくくなる。
 また、Pd-Ni合金のメッキ層は、Pd単体のメッキ層と同様にSnを大量に吸収することができるが、Pd単体のメッキ層よりも機械的強度に優れているため、第1層68のPd-Ni合金がICパッケージ10の接続端子30のSnとの間で合金化した場合に、コンタクトピン32からICパッケージ10を引き剥がしても、第1層68のPd-Ni合金は剥離しにくく減少しにくい。
 したがって、従来のコンタクトピンに比べると、下地層64であるNiの露出は遅くなり、コンタクトピン32とICパッケージ10の接続端子30との間における電気抵抗値の急激な上昇を生じるまでの試験回数は増大する。ゆえに、従来のコンタクトピンが設けられたICソケットに比べると、ICソケット12の寿命を延ばすことができる。
 次に、本発明の効果を裏付ける評価試験について説明する。この試験では、第1層にPdメッキ層を有し、第2層にAgメッキ層を有する従来のコンタクトピン(以下、「従来コンタクトピン」という)と、第1層にPd-Ni合金メッキ層を有し、第2層にAgメッキ層を有する本実施形態に係るコンタクトピン(以下、「改良コンタクトピン」という)との間で、図3等に示す第1の接触部42に相当する部分における合金形成の状態及び電気抵抗値変化を比較した。
(1)供試されたICソケットの仕様
 従来コンタクトピンが取り付けられているICソケット(以下、「従来ICソケット」という)と、改良コンタクトピンが取り付けられているICソケット(以下、「改良ICソケット」という)とを、夫々、4台ずつ用意した。ICソケットの構成は共通であった。
 従来コンタクトピン及び改良コンタクトピンのいずれも、基材にBe-Cu合金を使用した。従来コンタクトピンは、基材の上に下地層としてNiメッキを2×10-6~3×10-6m施し、下地層の上に第1層としてPdメッキ層を0.5×10-6m施し、第1層の上に第2層としてAgメッキ層を2×10-6m施して形成した。
 また、改良コンタクトピンは、基材の上に下地層としてNiメッキを2×10-6~3×10-6m施し、下地層の上に第1層としてPd-Ni合金メッキ層を0.5×10-6m施し、第1層の上に第2層としてAgメッキ層を1×10-6m施して形成した。
(2)供試されたICパッケージの端子仕様
 接続端子がSn-3Ag-0.5Cu合金で形成されているICパッケージを用いた。
(3)試験方法
 試験手順としては、従来ICソケット4台及び改良ICソケット4台の計8台のICソケットに、夫々、未使用のICパッケージを装着した状態で、ICソケットの周囲温度を200℃まで昇温させ、この温度を維持して24時間経過した後、室温まで降温させて、ICソケットからICパッケージを取り外した。これを1サイクルとして、順次、15サイクルを実施した。
 コンタクトピンのうちICパッケージの接続端子と接触する接触部の電気抵抗値については、1サイクル、5サイクル、10サイクル、及び15サイクルが終了した各段階で、各ICソケットのコンタクトピンに対して測定を行った。
 また、合金形成の状態については、15サイクルが終了した段階で、第1の接触部42に相当する部分の断面を、顕微鏡を用いて観察した。
(4)結果
 バーンイン試験終了後の従来コンタクトピンにおける合金形成の状態については、図8(B)に示すように、第2層のAgメッキ層が失われ、また、第1層のPdメッキ層にSnが拡散して合金化したPd-Sn合金層も局所的には殆ど失われ、下地層のNiが露出している状態である、という結果が得られた。なお、従来コンタクトピンの中には、バーンイン試験が10サイクル終了した段階で下地層のNiが露出したものもあった。
 一方、バーンイン試験終了後の改良コンタクトピンにおける合金形成の状態については、図8(C)に示すように、第2層のAgメッキ層が失われているが、第1層のPd-Ni合金メッキ層にSnが拡散して合金化したPd-Ni-Sn合金層が第1の接触部42に相当する部分の全域で残存し、下地層のNiが露出していない状態である、という結果が得られた。また、改良コンタクトピンにおける第2層のAgメッキ層の厚さは、従来コンタクトピンにおける第2層のAgメッキ層の2分の1であるにもかかわらず、第1層の残存量は改良コンタクトピンの方が多いことから、第2層のAgメッキ層を従来コンタクトピンと同等の厚さにすれば、改良コンタクトピンにおける第1層の残存量は更に増加する、という予測が得られた。
 バーンイン試験の所定サイクル数終了後における従来コンタクトピンの電気抵抗値変化については、図9(A)に示すように、10サイクル終了した段階で電気抵抗値の顕著な上昇が観察され、15サイクル終了した段階ではさらに上昇する傾向にある、という結果が得られた。
 一方、バーンイン試験の所定サイクル数終了後における改良コンタクトピンの電気抵抗値変化については、図9(B)に示すように、電気抵抗値が顕著に上昇しているとはいえない、という結果が得られた。
 以上の結果から、バーンイン試験の試験温度を高くした場合、コンタクトピンとICパッケージの接続端子との間において電気抵抗値の急激な上昇を生じるまでの試験回数が減少することを抑制できることが明らかになった。これにより、従来のコンタクトピンが設けられたICソケットと比較すると、改良コンタクトピンが設けられたICソケット12の寿命を延ばせることが明らかになった。
 なお、ICパッケージ10が装着される電気部品用ソケットとして、オープントップ型のICソケット12を一例として説明したが、これに限定するものではない。ICパッケージ10が収容されるソケット本体と、ソケット本体に設けられ、収容されたICパッケージ10の接続端子30と接触する、前述の実施形態に係るコンタクトピン32と同様の層構造を有している電気接触子と、を備えているICソケットであれば、例えば、クラムシェル型など他の型のソケットでもよい。
 また、電気接触子としてのコンタクトピン32をICソケット12に適用したが、ICソケット以外の用途に適用してもよい。
10 ICパッケージ
12 ICソケット
14 ソケット本体
30 接続端子
32 コンタクトピン
42 第1の接触部
46 第2の接触部
62 基材
64 下地層
66 表層
68 第1層
70 第2層

Claims (14)

  1.  基材に対して複数層が積層されて構成される電気接触子であって、
     前記複数層は、
     熱を加えることによりスズが溶け込んで拡散する材料のうち、スズの拡散速度がパラジウムよりも遅い材料で形成される第1層と、
     前記第1層のうち前記基材と反対側において、前記拡散速度が前記第1層よりも遅い材料で形成される第2層と、
    を含んで構成される電気接触子。
  2.  前記第1層は、パラジウム及びニッケルを主成分とするPd-Ni合金で形成されていることを特徴とする請求項1に記載の電気接触子。
  3.  前記第1層は、パラジウム及びコバルトを主成分とするPd-Co合金で形成されていることを特徴とする請求項1に記載の電気接触子。
  4.  前記第2層は、銀で形成されていることを特徴とする請求項1に記載の電気接触子。
  5.  前記第2層は、銀を主成分とするAg合金で形成されていることを特徴とする請求項1に記載の電気接触子。
  6.  前記Pd-Ni合金において、パラジウムの重量比率はニッケルの重量比率よりも高いことを特徴とする請求項2に記載の電気接触子。
  7.  前記パラジウムの重量比率は60~90重量%であり、前記ニッケルの重量比率は10~40重量%であることを特徴とする請求項6に記載の電気接触子。
  8.  前記Pd-Co合金において、パラジウムの重量比率はコバルトの重量比率よりも高いことを特徴とする請求項3に記載の電気接触子。
  9.  前記Ag合金には、ニッケルが添加されていることを特徴とする請求項5に記載の電気接触子。
  10.  前記Ag合金には、銅が添加されていることを特徴とする請求項5に記載の電気接触子。
  11.  前記Ag合金には、鉄が添加されていることを特徴とする請求項5に記載の電気接触子。
  12.  前記Ag合金には、アンチモンが添加されていることを特徴とする請求項5に記載の電気接触子。
  13.  前記基材と前記第1層との間に形成され、ニッケルを含んでなる下地層を更に含んで構成され、
     前記第1層は、前記下地層に対するメッキにより形成され、
     前記第2層は、前記第1層に対するメッキにより形成されていることを特徴とする請求項1に記載の電気接触子。
  14.  スズを含んでなる接続端子を備えた電気部品が収容されるソケット本体と、
     前記ソケット本体に設けられ、収容された前記電気部品の前記接続端子に接触する請求項1に記載の電気接触子と、
    を含んで構成される電気部品用ソケット。
PCT/JP2014/056788 2013-03-21 2014-03-13 電気接触子及び電気部品用ソケット WO2014148365A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/778,573 US20160285186A1 (en) 2013-03-21 2014-03-13 Electrical connector and socket for electrical component
EP14770603.0A EP2978076B1 (en) 2013-03-21 2014-03-13 Electrical connector, and socket for electric component
KR1020157027479A KR20150135336A (ko) 2013-03-21 2014-03-13 전기 접촉자 및 전기 부품용 소켓
CN201480017235.XA CN105051982B (zh) 2013-03-21 2014-03-13 电接触元件及电气部件用插座

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-057696 2013-03-21
JP2013057696A JP2014182976A (ja) 2013-03-21 2013-03-21 電気接触子及び電気部品用ソケット

Publications (1)

Publication Number Publication Date
WO2014148365A1 true WO2014148365A1 (ja) 2014-09-25

Family

ID=51580051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056788 WO2014148365A1 (ja) 2013-03-21 2014-03-13 電気接触子及び電気部品用ソケット

Country Status (7)

Country Link
US (1) US20160285186A1 (ja)
EP (1) EP2978076B1 (ja)
JP (1) JP2014182976A (ja)
KR (1) KR20150135336A (ja)
CN (1) CN105051982B (ja)
TW (1) TWI620380B (ja)
WO (1) WO2014148365A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3343704A4 (en) * 2015-08-25 2019-04-24 Enplas Corporation ELECTRIC CONTACT AND SOCKET FOR ELECTRICAL COMPONENT

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101558256B1 (ko) * 2015-05-18 2015-10-12 주식회사 기가레인 고정 가능한 프로브 핀 및 프로브 핀 고정 어셈블리
JP6755096B2 (ja) * 2016-01-22 2020-09-16 日立オートモティブシステムズ株式会社 車載用電子モジュール、カードエッジコネクタ、およびコネクタ
JP6733491B2 (ja) * 2016-10-20 2020-07-29 株式会社オートネットワーク技術研究所 接続端子および接続端子の製造方法
KR101723975B1 (ko) * 2016-12-15 2017-04-07 주식회사 제이미크론 휴대폰 방수용 충전단자 및 이의 제조방법
JP6653340B2 (ja) * 2018-02-01 2020-02-26 Jx金属株式会社 バーンインテストソケット用表面処理金属材料、それを用いたバーンインテストソケット用コネクタ及びバーンインテストソケット

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180908A (ja) * 1983-03-30 1984-10-15 古河電気工業株式会社 銀被覆導体とその製造方法
JPS6037605A (ja) * 1983-08-11 1985-02-27 古河電気工業株式会社 Ag被覆Cu系電子部品材料
WO2007034921A1 (ja) 2005-09-22 2007-03-29 Enplas Corporation 電気接触子及び電気部品用ソケット
WO2008123260A1 (ja) * 2007-03-27 2008-10-16 The Furukawa Electric Co., Ltd. 可動接点部品用銀被覆材およびその製造方法
WO2011112939A1 (en) * 2010-03-12 2011-09-15 Xtalic Corporation Coated articles and methods
WO2014003003A1 (ja) * 2012-06-25 2014-01-03 山一電機株式会社 電気テスト用コンタクトおよびそれを用いた電気テスト用ソケット

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951872A (en) * 1973-12-03 1976-04-20 P. R. Mallory & Co., Inc. Electrical contact material
US4628165A (en) * 1985-09-11 1986-12-09 Learonal, Inc. Electrical contacts and methods of making contacts by electrodeposition
US4911798A (en) * 1988-12-20 1990-03-27 At&T Bell Laboratories Palladium alloy plating process
GB9102062D0 (en) * 1991-01-31 1991-03-13 Otter Controls Ltd Improvements relating to conductors for switching applications
DE19543223C1 (de) * 1995-11-20 1997-02-20 Degussa Silber-Eisen-Werkstoff für elektrische Schaltkontakte (III)
PT1047523E (pt) * 1998-06-10 2002-06-28 Heraeus Gmbh W C Metodo para a producao de um substrato isento de chumbo
US20020185716A1 (en) * 2001-05-11 2002-12-12 Abys Joseph Anthony Metal article coated with multilayer finish inhibiting whisker growth
US7391116B2 (en) * 2003-10-14 2008-06-24 Gbc Metals, Llc Fretting and whisker resistant coating system and method
JP4728571B2 (ja) * 2003-10-31 2011-07-20 古河電気工業株式会社 可動接点用銀被覆ステンレス条の製造方法
CN104364660B (zh) * 2012-06-06 2018-09-21 恩普乐股份有限公司 电触头和电气部件用插座

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180908A (ja) * 1983-03-30 1984-10-15 古河電気工業株式会社 銀被覆導体とその製造方法
JPS6037605A (ja) * 1983-08-11 1985-02-27 古河電気工業株式会社 Ag被覆Cu系電子部品材料
WO2007034921A1 (ja) 2005-09-22 2007-03-29 Enplas Corporation 電気接触子及び電気部品用ソケット
JP2012230117A (ja) * 2005-09-22 2012-11-22 Enplas Corp 電気接触子及び電気部品用ソケット
WO2008123260A1 (ja) * 2007-03-27 2008-10-16 The Furukawa Electric Co., Ltd. 可動接点部品用銀被覆材およびその製造方法
WO2011112939A1 (en) * 2010-03-12 2011-09-15 Xtalic Corporation Coated articles and methods
WO2014003003A1 (ja) * 2012-06-25 2014-01-03 山一電機株式会社 電気テスト用コンタクトおよびそれを用いた電気テスト用ソケット

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3343704A4 (en) * 2015-08-25 2019-04-24 Enplas Corporation ELECTRIC CONTACT AND SOCKET FOR ELECTRICAL COMPONENT
US10431918B2 (en) 2015-08-25 2019-10-01 Enplas Corporation Electrical contact terminal and electronic component socket

Also Published As

Publication number Publication date
TW201503492A (zh) 2015-01-16
JP2014182976A (ja) 2014-09-29
CN105051982B (zh) 2018-09-14
TWI620380B (zh) 2018-04-01
CN105051982A (zh) 2015-11-11
EP2978076A4 (en) 2016-11-02
US20160285186A1 (en) 2016-09-29
EP2978076A1 (en) 2016-01-27
EP2978076B1 (en) 2019-01-02
KR20150135336A (ko) 2015-12-02

Similar Documents

Publication Publication Date Title
JP5334416B2 (ja) 電気接触子及び電気部品用ソケット
WO2014148365A1 (ja) 電気接触子及び電気部品用ソケット
JP6502667B2 (ja) 電気接触子及び電気部品用ソケット
JP6241502B2 (ja) 電気テスト用コンタクトおよびそれを用いた電気テスト用ソケット
JP2008064754A (ja) ポゴピン及びそのポゴピンを備える半導体素子テスト用コンタクター
KR20080027182A (ko) 접속 장치
WO2013140699A1 (ja) 電気接触子及び電気部品用ソケット
TWI697155B (zh) 電子連接器及電子零件插座
JP2005268090A (ja) コンタクトピン及び電気部品用ソケット
JP2012184987A (ja) 半導体装置の検査方法
JP6506590B2 (ja) 電気接触子及び電気部品用ソケット
KR101446429B1 (ko) 클래드 메탈을 이용한 콘택터 및 이를 이용한 소켓
JP2011226863A (ja) コンタクトピン

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017235.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770603

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14778573

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157027479

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014770603

Country of ref document: EP