WO2014148326A1 - ズームレンズ及び撮像装置 - Google Patents

ズームレンズ及び撮像装置 Download PDF

Info

Publication number
WO2014148326A1
WO2014148326A1 PCT/JP2014/056420 JP2014056420W WO2014148326A1 WO 2014148326 A1 WO2014148326 A1 WO 2014148326A1 JP 2014056420 W JP2014056420 W JP 2014056420W WO 2014148326 A1 WO2014148326 A1 WO 2014148326A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
refractive power
zoom
object side
Prior art date
Application number
PCT/JP2014/056420
Other languages
English (en)
French (fr)
Inventor
広瀬 直樹
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201480016468.8A priority Critical patent/CN105190394B/zh
Priority to JP2015506717A priority patent/JPWO2014148326A1/ja
Publication of WO2014148326A1 publication Critical patent/WO2014148326A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144511Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -+-+

Definitions

  • the present invention relates to a high-performance and wide-angle zoom lens used for a digital still camera or the like.
  • negative / positive / negative / positive meaning a lens group having a negative refractive power, a lens group having a positive refractive power, a lens group having a negative refractive power, a lens group having a positive refractive power, a lens group having a positive refractive power, a zoom lens that attempts to achieve the above requirements while reducing the burden on each group by using a four-group configuration (hereinafter the same) is disclosed as shown in the following patent documents.
  • the zoom lens disclosed in Patent Document 1 has a large number of components, leading to an increase in cost and size.
  • the sensitivity to the eccentricity of the lens is high, it is difficult to ensure sufficient optical performance for manufacturing.
  • the zoom lens shown in Patent Document 2 although the size reduction has been achieved, since the second lens group bears most of the zooming action, the decentering sensitivity of this lens group is very high, There is a risk that the imaging performance will be significantly reduced.
  • the present invention has been made in view of such a problem, and it is possible to obtain a desired zoom ratio while reducing the number of lenses while reducing the number of lenses. Further, various aberrations are corrected well.
  • An object of the present invention is to provide a zoom lens and an imaging apparatus using the zoom lens.
  • the zoom lens according to the present invention includes a first lens group having negative refractive power, a second lens group having positive refractive power, a third lens group having negative refractive power, arranged in order from the object side, positive
  • the zoom lens includes a fourth lens group having a refractive power, and when zooming from the wide-angle end to the telephoto end, the distance between the first lens group and the second lens group decreases, and the second lens group and the third lens group Each lens group is moved in the optical axis direction so that the interval increases and the interval between the third lens unit and the fourth lens unit increases, and focusing is performed by moving the fourth lens unit. It is characterized by satisfying the formula.
  • f3 focal length (mm) of the third lens group
  • f4 Focal length (mm) of the fourth lens group
  • ⁇ 2w lateral magnification at the wide-angle end of the second lens group
  • ⁇ 2t lateral magnification at the telephoto end of the second lens group
  • ⁇ 3w lateral magnification at the wide-angle end of the third lens group
  • ⁇ 3t at the telephoto end of the third lens group
  • Conditional expression (1) is for appropriately defining the focal lengths of the third lens group and the fourth lens group.
  • the value of conditional expression (1) is less than the upper limit, the refractive power of the third lens unit does not become too strong, and coma correction at the telephoto end becomes easy.
  • the refractive power of the fourth lens group it is possible to suppress an increase in the amount of movement of the fourth lens group during focusing and to reduce the overall length of the lens.
  • the value of conditional expression (1) exceeds the lower limit, the refractive power of the third lens group does not become too weak, and a sufficient zooming action can be provided.
  • the refractive power of the fourth lens group does not become too strong, and aberration fluctuations during focusing can be sufficiently suppressed.
  • Conditional expression (2) defines the variable magnification burden of the second lens group and the third lens group.
  • the value of conditional expression (2) is less than the upper limit, the variable magnification share of the second lens group does not become too large, and correction of spherical aberration occurring in the second lens group at the telephoto end is facilitated.
  • the sensitivity of the second lens group to decentration is reduced, and quality deterioration due to manufacturing errors can be suppressed.
  • the value of conditional expression (2) exceeds the lower limit, the zooming effect shared by the second lens group becomes large, so that it becomes possible to earn a desired zooming ratio while maintaining good optical performance. .
  • An image pickup apparatus includes the zoom lens and an image pickup device that photoelectrically converts an image formed on an image pickup surface by the zoom lens.
  • a zoom lens in which a desired zoom ratio can be obtained while achieving a reduction in size while suppressing the number of lenses, and in which various aberrations are favorably corrected, and an imaging apparatus using the zoom lens. be able to.
  • FIG. 3A illustrates a wide-angle end state
  • FIG. 3B illustrates an intermediate state
  • FIG. 4 is an aberration diagram (spherical aberration, astigmatism, distortion) of the zoom lens of Example 1, (a) is an aberration diagram at the wide-angle end, (b) is an aberration diagram at the middle, and (c) is an aberration diagram at the telephoto end. It is.
  • FIG. 6 is a cross-sectional view of a zoom lens according to a second exemplary embodiment, where (a) illustrates a wide-angle end state, (b) illustrates an intermediate state, and (c) illustrates a telephoto end state.
  • FIG. 6 is an aberration diagram (spherical aberration, astigmatism, distortion) of the zoom lens of Example 2, (a) is an aberration diagram at the wide-angle end, (b) is an aberration diagram at the middle, and (c) is an aberration diagram at the telephoto end. It is.
  • FIG. 6 is an aberration diagram (spherical aberration, astigmatism, distortion) of the zoom lens of Example 2
  • (a) is an aberration diagram at the wide-angle end
  • (b) is an aberration diagram at the middle
  • (c) is an aberration diagram at the telephoto end. It is.
  • FIG. 4 is a cross-sectional view of a zoom lens according to a third exemplary embodiment, where (a) illustrates a wide-angle end state, (b) illustrates an intermediate state, and (c) illustrates a telephoto end state.
  • FIG. 6 is an aberration diagram (spherical aberration, astigmatism, distortion) of the zoom lens of Example 3, where (a) is an aberration diagram at the wide-angle end, (b) is an aberration diagram at the middle, and (c) is an aberration diagram at the telephoto end. It is.
  • FIG. 6 is an aberration diagram (spherical aberration, astigmatism, distortion) of the zoom lens of Example 3, where (a) is an aberration diagram at the wide-angle end, (b) is an aberration diagram at the middle, and (c) is an aberration diagram at the telephoto end. It is.
  • FIG. 6 is an aberration diagram (spherical aberration, astigmatism, distortion) of the zoom lens of Example 3, where (
  • FIG. 4 is a cross-sectional view of a zoom lens according to a fourth exemplary embodiment, where (a) shows a wide-angle end state, (b) shows an intermediate state, and (c) shows a telephoto end state.
  • FIG. 6 is an aberration diagram (spherical aberration, astigmatism, distortion) of the zoom lens of Example 4, where (a) is an aberration diagram at the wide-angle end, (b) is an aberration diagram at the middle, and (c) is an aberration diagram at the telephoto end. It is.
  • FIG. 7A is a cross-sectional view of a zoom lens according to a fifth exemplary embodiment.
  • FIG. 5A illustrates a wide-angle end state
  • 6A is an aberration diagram (spherical aberration, astigmatism, distortion aberration) of the zoom lens of Example 5, (a) is an aberration diagram at the wide-angle end, (b) is an aberration diagram at the middle, and (c) is an aberration diagram at the telephoto end. It is.
  • FIG. 1 is a perspective view (a) viewed from the front upper side and a perspective view (b) viewed from the lower rear side of the digital camera which is an example of the imaging apparatus according to the present embodiment.
  • FIG. 1 is a block diagram of an imaging apparatus having a zoom lens according to an embodiment.
  • a digital camera DC includes a retractable lens barrel 80 that includes a zoom lens 101 and retracts with respect to a camera body 81, a finder window 82, a release button 83, and a flash light emitting unit 84. , A strap attaching portion 87, a USB terminal 88, and a lens cover 89.
  • a switch (not shown) is turned on, and the lens barrel 80 is extended forward to enter a shooting state.
  • the switch (not shown) is turned off.
  • the lens barrel 80 is operated to retract.
  • the configuration for retracting the lens barrel 80 is well known and will not be described in detail below.
  • the digital camera DC includes a finder eyepiece 91 and red and green display lamps that display AF and AE information to the photographer by light emission or blinking when the release button 83 is pressed. 92, a zoom button 93 for zooming up and down according to the operation of the photographer, a menu / set button 95 for various settings, a four-way switch 96 as a selection button, an image, other character information, and the like.
  • the photographer can display various menus on the monitor LCD 112 with the menu / set button 95, select with the selection button 96, and confirm the setting with the menu / set button 95.
  • a battery for supplying power to the digital camera DC and a card-type removable memory for recording captured images are loaded.
  • the imaging apparatus 100 mounted on the digital camera DC includes a zoom lens 101, a solid-state imaging device 102, an A / D conversion unit 103, a control unit 104, and an optical system driving unit 105.
  • an operation unit 113 including a button group.
  • the zoom lens 101 has a function of forming a subject image on the imaging surface of the solid-state imaging device 102.
  • the zoom lens 101 of the present embodiment will be described in detail later, but in order from the object side, a first lens group having negative refractive power, a second lens group having positive refractive power, and a third lens having negative refractive power.
  • the lens group is composed of a fourth lens group having a positive refractive power.
  • f3 Focal length of the third lens group (mm)
  • f4 focal length of the fourth lens group (mm) ⁇ 2w: Lateral magnification at the wide-angle end of the second lens group
  • ⁇ 2t Lateral magnification at the telephoto end of the second lens group
  • ⁇ 3w Lateral magnification at the wide-angle end of the third lens group
  • ⁇ 3t Lateral magnification at the telephoto end of the third lens group
  • the solid-state image sensor 102 is an image sensor such as a CCD or CMOS, and includes an RGB color filter.
  • the solid-state image sensor 102 photoelectrically converts incident light for each of R, G, and B and outputs an analog signal thereof.
  • the A / D conversion unit 103 converts an analog signal into digital image data.
  • the control unit 104 controls each unit of the imaging apparatus 100.
  • the control unit 104 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory), and various programs read out from the ROM and expanded in the RAM, and various types in cooperation with the CPU. Execute the process.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the optical system driving unit 105 controls driving of the zoom lens 101 in zooming, focusing, exposure, and the like under the control of the control unit 104.
  • the timing generator 106 outputs a timing signal for analog signal output.
  • the image sensor driving unit 107 controls driving of the solid-state image sensor 102.
  • the image memory 108 stores image data so as to be readable and writable.
  • the image processing unit 109 performs various image processes on the image data.
  • the image compression unit 110 compresses the captured image data using a compression method such as JPEG (Joint Photographic Experts Group).
  • the image recording unit 111 records image data on a recording medium such as a memory card set in a slot (not shown).
  • the monitor LCD 112 is a color liquid crystal panel or the like, and displays image data after shooting, a through image before shooting, various operation screens, and the like.
  • the operation unit 113 outputs information input by the user to the control unit 104 via the button group described above with reference to FIG.
  • subject photographing subject monitoring (through image display) and image photographing execution are performed.
  • image photographing an image of the subject obtained through the zoom lens 101 is formed on the light receiving surface (imaging surface) of the solid-state image sensor 102.
  • the analog signal is appropriately gain-adjusted for each primary color component of RGB, and then converted into digital data by the A / D conversion unit 103.
  • the digital data is subjected to color process processing including pixel interpolation processing and ⁇ correction processing by the image processing unit 109 to generate a luminance signal Y and color difference signals Cb, Cr (image data) as digital values, and the image memory.
  • the signal is periodically read out, the video signal is generated, and output to the monitor LCD 112.
  • the control unit 104 which is also a white balance adjustment unit, adjusts the white balance of the captured image.
  • the monitor LCD 112 functions as an electronic viewfinder in monitoring, and displays captured images almost in real time. In this state, zooming, focusing, exposure, and the like of the zoom lens 101 are set by driving the optical system driving unit 105 based on input from the photographer via the operation unit 113 as needed.
  • the lens barrel 80 including the zoom lens 101 is driven so that the distance between the lens groups becomes narrow, and a retracting operation is performed.
  • the second lens group and / or the third lens group having a smaller diameter than the first and fourth lens groups are retracted from the optical path because the total length after the retracted lens becomes shorter.
  • the imaging apparatus can also be installed in a video camera.
  • Fno F number 2Y: diagonal length of imaging surface of solid-state imaging device (mm)
  • R radius of curvature (mm)
  • D Shaft upper surface distance (mm)
  • Nd Refractive index of lens material with respect to d-line
  • ⁇ d Lens material
  • Abbe number bf Back focus (mm) 2 ⁇ : Angle of view (°)
  • the surface described with “*” after each surface number is an aspheric surface
  • the aspheric shape indicates the amount of displacement in the optical axis direction with respect to the surface apex as X
  • light The direction orthogonal to the axis is Y
  • the paraxial radius of curvature is R
  • the cone coefficient is K
  • the fourth, sixth, eighth, tenth, and twelfth aspheric coefficients are A4, A6, A8, A10, and A12. It shall be represented by the following formula.
  • Example 1 shows lens data of Example 1.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 02
  • E for example, 2.5E-02
  • 3A and 3B are cross-sectional views of the zoom lens of Example 1.
  • FIG. 3A shows a wide-angle end state
  • FIG. 3B shows an intermediate state
  • FIG. 3C shows a telephoto end state.
  • Gr1 is a first lens group having negative refractive power, and comprises a negative meniscus lens L1 having a convex surface facing the object side, a negative lens L2, and a positive meniscus lens L3 having a convex surface facing the object side. .
  • Gr2 is a second lens group having a positive refractive power, and includes a lens L4 having a positive refractive power, a diaphragm S, a lens L5 having a negative refractive power and a lens L6 having a positive refractive power. It consists of a cemented lens having a positive refractive power.
  • Gr3 is a third lens group having negative refractive power, and includes a negative lens L7 having a concave surface facing the object side and a positive lens L8 having a convex surface facing the object side.
  • Gr4 is a fourth lens group having a positive refractive power, and is composed of only a positive single lens L9. I denotes an imaging surface, and f denotes a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, or the like.
  • FIG. 4 is an aberration diagram of Example 1 (spherical aberration, astigmatism, distortion).
  • FIG. 4A is an aberration diagram at the wide-angle end.
  • FIG. 4B is an aberration diagram in the middle.
  • FIG. 4C is an aberration diagram at the telephoto end.
  • the dotted line represents the amount of spherical aberration with respect to the g line
  • the solid line represents the amount of spherical aberration with respect to the d line.
  • the solid line S represents the sagittal plane
  • the two-dot chain line M represents the meridional plane (the same applies hereinafter).
  • the first lens group Gr1, the second lens group Gr2, the third lens group Gr3, and the fourth lens group Gr4 move along the optical axis direction during zooming from the wide-angle end to the telephoto end.
  • zooming can be performed by changing the interval between the lens groups. More specifically, when zooming from the wide-angle end to the telephoto end, the distance between the first lens group Gr1 and the second lens group Gr2 decreases, and the distance between the second lens group Gr2 and the third lens group Gr3 increases. Each lens group is moved in the optical axis direction so that the distance between the third lens group Gr3 and the fourth lens group Gr4 is increased. Further, focusing is performed by moving the fourth lens group Gr4.
  • Example 2 shows lens data of Example 2.
  • 5A and 5B are cross-sectional views of the zoom lens of Example 2, where FIG. 5A illustrates a wide-angle end state, FIG. 5B illustrates an intermediate state, and FIG. 5C illustrates a telephoto end state.
  • Gr1 is a first lens group having negative refractive power, and comprises a negative meniscus lens L1 having a convex surface facing the object side, a negative lens L2, and a positive meniscus lens L3 having a convex surface facing the object side. .
  • Gr2 is a second lens group having a positive refractive power, and includes a lens L4 having a positive refractive power, a diaphragm S, a lens L5 having a negative refractive power and a lens L6 having a positive refractive power. It consists of a cemented lens having a positive refractive power.
  • Gr3 is a third lens group having negative refractive power, and includes a negative lens L7 having a concave surface facing the object side and a positive lens L8 having a convex surface facing the object side.
  • Gr4 is a fourth lens group having a positive refractive power, and is composed of only a positive single lens L9. I denotes an imaging surface, and f denotes a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, or the like.
  • FIG. 6 is an aberration diagram of Example 2 (spherical aberration, astigmatism, distortion).
  • FIG. 6A is an aberration diagram at the wide-angle end.
  • FIG. 6B is an aberration diagram in the middle.
  • FIG. 6C is an aberration diagram at the telephoto end.
  • the first lens group Gr1, the second lens group Gr2, the third lens group Gr3, and the fourth lens group Gr4 move along the optical axis direction during zooming from the wide-angle end to the telephoto end.
  • zooming can be performed by changing the interval between the lens groups. More specifically, when zooming from the wide-angle end to the telephoto end, the distance between the first lens group Gr1 and the second lens group Gr2 decreases, and the distance between the second lens group Gr2 and the third lens group Gr3 increases. Each lens group is moved in the optical axis direction so that the distance between the third lens group Gr3 and the fourth lens group Gr4 is increased. Further, focusing is performed by moving the fourth lens group Gr4.
  • Table 3 shows lens data of Example 3.
  • 7A and 7B are cross-sectional views of the zoom lens of Example 3.
  • FIG. 7A shows a wide-angle end state
  • FIG. 7B shows an intermediate state
  • FIG. 7C shows a telephoto end state.
  • Gr1 is a first lens group having negative refractive power, and comprises a negative meniscus lens L1 having a convex surface facing the object side, a negative lens L2, and a positive meniscus lens L3 having a convex surface facing the object side. .
  • Gr2 is a second lens group having a positive refractive power, and includes a lens L4 having a positive refractive power, a diaphragm S, a lens L5 having a negative refractive power and a lens L6 having a positive refractive power. It consists of a cemented lens having a positive refractive power.
  • Gr3 is a third lens group having negative refractive power, and includes a negative lens L7 having a concave surface facing the object side and a positive lens L8 having a convex surface facing the object side.
  • Gr4 is a fourth lens group having a positive refractive power, and is composed of only a positive single lens L9. I denotes an imaging surface, and f denotes a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, or the like.
  • FIG. 8 is an aberration diagram of Example 3 (spherical aberration, astigmatism, distortion).
  • FIG. 8A is an aberration diagram at the wide-angle end.
  • FIG. 8B is an aberration diagram in the middle.
  • FIG. 8C is an aberration diagram at the telephoto end.
  • the first lens group Gr1, the second lens group Gr2, the third lens group Gr3, and the fourth lens group Gr4 move along the optical axis direction during zooming from the wide-angle end to the telephoto end.
  • zooming can be performed by changing the interval between the lens groups. More specifically, when zooming from the wide-angle end to the telephoto end, the distance between the first lens group Gr1 and the second lens group Gr2 decreases, and the distance between the second lens group Gr2 and the third lens group Gr3 increases. Each lens group is moved in the optical axis direction so that the distance between the third lens group Gr3 and the fourth lens group Gr4 is increased. Further, focusing is performed by moving the fourth lens group Gr4.
  • FIGS. 9A and 9B are cross-sectional views of the zoom lens of Example 4.
  • FIG. 9A illustrates the wide-angle end state
  • FIG. 9B illustrates the intermediate state
  • FIG. 9C illustrates the telephoto end state.
  • Gr1 is a first lens group having negative refractive power, and comprises a negative meniscus lens L1 having a convex surface facing the object side, a negative lens L2, and a positive meniscus lens L3 having a convex surface facing the object side. .
  • Gr2 is a second lens group having a positive refractive power, and includes a lens L4 having a positive refractive power, a diaphragm S, a lens L5 having a negative refractive power and a lens L6 having a positive refractive power. It consists of a cemented lens having a positive refractive power.
  • Gr3 is a third lens group having negative refractive power, and includes a negative lens L7 having a concave surface facing the object side and a positive lens L8 having a convex surface facing the object side.
  • Gr4 is a fourth lens group having a positive refractive power, and is composed of only a positive single lens L9. I denotes an imaging surface, and f denotes a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, or the like.
  • FIG. 10 is an aberration diagram of Example 4 (spherical aberration, astigmatism, distortion).
  • FIG. 10A is an aberration diagram at the wide-angle end.
  • FIG. 10B is an aberration diagram in the middle.
  • FIG. 10C is an aberration diagram at the telephoto end.
  • the first lens group Gr1, the second lens group Gr2, the third lens group Gr3, and the fourth lens group Gr4 move along the optical axis direction during zooming from the wide-angle end to the telephoto end.
  • zooming can be performed by changing the interval between the lens groups. More specifically, when zooming from the wide-angle end to the telephoto end, the distance between the first lens group Gr1 and the second lens group Gr2 decreases, and the distance between the second lens group Gr2 and the third lens group Gr3 increases. Each lens group is moved in the optical axis direction so that the distance between the third lens group Gr3 and the fourth lens group Gr4 is increased. Further, focusing is performed by moving the fourth lens group Gr4.
  • FIG. 11A and 11B are cross-sectional views of the zoom lens of Example 5.
  • FIG. 11A illustrates a wide-angle end state
  • FIG. 11B illustrates an intermediate state
  • FIG. 11C illustrates a telephoto end state.
  • Gr1 is a first lens group having negative refractive power, and comprises a negative meniscus lens L1 having a convex surface facing the object side, a negative lens L2, and a positive meniscus lens L3 having a convex surface facing the object side. .
  • Gr2 is a second lens group having a positive refractive power, and includes a lens L4 having a positive refractive power, a diaphragm S, a lens L5 having a negative refractive power and a lens L6 having a positive refractive power. It consists of a cemented lens having a positive refractive power.
  • Gr3 is a third lens group having negative refractive power, and includes a negative lens L7 having a concave surface facing the object side and a positive lens L8 having a convex surface facing the object side.
  • Gr4 is a fourth lens group having a positive refractive power, and is composed of only a positive single lens L9. I denotes an imaging surface, and f denotes a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state imaging device, or the like.
  • FIG. 12 is an aberration diagram of Example 5 (spherical aberration, astigmatism, distortion).
  • FIG. 12A is an aberration diagram at the wide-angle end.
  • FIG. 12B is an aberration diagram in the middle.
  • FIG. 12C is an aberration diagram at the telephoto end.
  • the first lens group Gr1, the second lens group Gr2, the third lens group Gr3, and the fourth lens group Gr4 move along the optical axis direction during zooming from the wide-angle end to the telephoto end.
  • zooming can be performed by changing the interval between the lens groups. More specifically, when zooming from the wide-angle end to the telephoto end, the distance between the first lens group Gr1 and the second lens group Gr2 decreases, and the distance between the second lens group Gr2 and the third lens group Gr3 increases. Each lens group is moved in the optical axis direction so that the distance between the third lens group Gr3 and the fourth lens group Gr4 is increased. Further, focusing is performed by moving the fourth lens group Gr4.
  • Table 6 shows the values of each example corresponding to each conditional expression.
  • the third lens group is preferably composed of a negative lens having a concave surface facing the object side and a positive lens having a convex surface facing the object side, which are arranged in order from the object side.
  • the third lens group has a two-lens configuration consisting of a negative lens having a concave surface facing the object side and a positive lens having a convex surface facing the object side, so that the zoom ratio necessary for the third lens group is maintained while maintaining compactness. It is possible to take charge of the burden and to achieve good optical performance.
  • Conditional expression (3) defines the magnification relationship between the third lens group and the fourth lens group at the telephoto end. If the value of conditional expression (3) is less than the upper limit, the magnification burden of the fourth lens group at the telephoto end does not become too large, and the short distance performance is maintained well when the fourth lens group is used as the focusing group. it can. On the other hand, if the value of conditional expression (3) exceeds the lower limit, the magnification burden at the telephoto end in the fourth lens group does not become too small, and the focal length at the telephoto end can be increased, resulting in sufficient zoom. Ratio can be secured.
  • Conditional expression (4) defines the refractive power of the first lens group and the fourth lens group in order to reduce the size of the optical system. If the value of conditional expression (4) is below the upper limit, the refractive power of the fourth lens group will not be too weak, and the increase in the amount of movement during focusing will be suppressed, leading to a reduction in the total lens length. Alternatively, the refractive power of the first lens group does not become too strong, and distortion can be maintained well. On the other hand, if the lower limit of conditional expression (4) is exceeded, the refractive power of the first lens group does not become too weak, so that a sufficient amount of light can be secured without increasing the diameter of the lens. Alternatively, the refractive power of the fourth lens group does not become too strong, and the field curvature can be corrected well.
  • fw focal length of whole system at wide angle end (mm)
  • ft focal length of the entire system at the telephoto end (mm)
  • Conditional expression (5) defines the refractive power of the first lens group for achieving good optical performance in the present invention.
  • the value of conditional expression (5) is below the upper limit, the negative refractive power of the first lens group does not become too weak, and the total lens length at the wide angle end can be sufficiently shortened.
  • the value of conditional expression (5) exceeds the lower limit, the negative refractive power of the first lens unit does not become too strong, and spherical aberration and coma aberration can be corrected well.
  • the fourth lens group is composed of a positive single lens.
  • the fourth lens group is composed of a positive single lens.
  • the second lens group has an aspherical surface.
  • the second lens group is mainly responsible for zooming from the wide-angle end to the telephoto end. If an attempt is made to increase the magnification while suppressing the amount of movement of the second lens group, the refractive power of each lens will increase, and as a result, the sensitivity to decentration will increase and the manufacturing difficulty may increase. Further, if the number of lenses is increased to achieve good aberration correction and decentration error sensitivity reduction, the size of the lens group will be increased.
  • At least one surface in the third lens group has an aspheric surface.
  • an aspherical surface for at least one surface in the third lens group it is possible to effectively correct field curvature and coma generated at the wide angle end.
  • the first lens group is preferably composed of a negative meniscus lens having a convex surface facing the object side, a negative lens, and a positive meniscus lens having a convex surface facing the object side, which are arranged in order from the object side. .
  • a negative meniscus lens having a convex surface facing the object side which requires a strong negative refractive power as the angle is increased
  • two negative lenses, a negative meniscus with a convex surface facing the object side and a negative lens are arranged in order from the object side. It is possible to share the burden and suppress the occurrence of distortion and curvature of field at the wide-angle end. Further, by arranging a positive meniscus lens having a convex surface facing the object side closest to the image side, spherical aberration and coma aberration can be effectively corrected in the first lens group.
  • the second lens group includes a lens having a positive refractive power, an aperture, a lens having a negative refractive power and a lens having a positive refractive power, which are arranged in order from the object side. It preferably consists of a cemented lens of force.
  • the second lens group mainly responsible for the zooming action has a strong positive refractive power. In order to suppress the error sensitivity in the second lens group, it is desirable to use a plurality of positive lenses. However, if the number of components is increased unnecessarily, the second lens group will be enlarged.
  • a lens having a positive refractive power, a diaphragm, a negative lens for correcting spherical aberration and a positive lens for sharing a refractive power are bonded together to perform achromaticity, and the number of components is small. So, miniaturization and aberration correction are achieved at the same time.
  • the present invention is not limited to the embodiments and examples described in the specification, and includes other examples and modifications based on the embodiments, examples, and technical ideas described in the present specification. It will be apparent to those skilled in the art. For example, even when a dummy lens having substantially no refractive power / power is further provided, it is within the scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

 レンズ群数を抑えつつ小型化を図りながらも、所望の変倍比を得ることができ、さらに諸収差が良好に補正されたズームレンズ及びそれを用いた撮像装置を提供する。ズームレンズ101は、物体側から順に負の屈折力を有する第1レンズ群Gr1、正の屈折力を有する第2レンズ群Gr2、負の屈折力を有する第3レンズ群Gr3、正の屈折力を有する第4レンズ群Gr4からなり、以下の条件式を満足する。 2.0<f4/|f3|<3.5 (1) 1.1<(β2t/β2w)/(β3t/β3w)<1.45 (2) 但し、 f3:第3レンズ群Gr3の焦点距離(mm) f4:第4レンズ群Gr4の焦点距離(mm) β2w:第2レンズ群Gr2の広角端における横倍率 β2t:第2レンズ群Gr2の望遠端における横倍率 β3w:第3レンズ群Gr3の広角端における横倍率 β3t:第3レンズ群Gr3の望遠端における横倍率

Description

ズームレンズ及び撮像装置
 本発明は、デジタルスチルカメラ等に用いられる高性能で広画角なズームレンズに関するものである。
 近年、CCD(Charge Coupled Device)型イメージセンサあるいはCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサ等の固体撮像素子を用いたデジタルスチルカメラやビデオカメラ等の撮像装置においては、大型撮像素子の採用と高画素化に伴い光学系に対する高性能化が求められている。また、依然として携帯性の面から光学系に対する小型化に対する要求も強い。
 このような背景から、撮像装置の光学系としては、広画角化に有利であり比較的少ない枚数で構成が可能になる負群先行タイプが採用される場合が多い。更には、負・正・負・正(負の屈折力を有するレンズ群、正の屈折力を有するレンズ群、負の屈折力を有するレンズ群、正の屈折力を有するレンズ群を意味する、以下同じ)の4群構成とすることで、各群の負担を軽減しつつ上記要請を達成しようと試みたズームレンズが,以下の特許文献に示すように開示されている。
特開2010-170063号公報 特開2012-58406号公報
 しかしながら、特許文献1に示されたズームレンズでは、構成枚数が多くコスト増や大型化につながっている。また、レンズの偏芯に対する感度が高いため、製造する上で十分な光学性能を確保することが困難である。一方、特許文献2に示されたズームレンズでは、小型化は達成しているものの、第2レンズ群に変倍作用のほとんどを負担させているためこのレンズ群の偏芯感度が非常に高く、著しい結像性能低下を招く恐れがある。
 本発明は、このような問題点に鑑みてなされたものであり、レンズ枚数を抑えつつ小型化を図りながらも、所望の変倍比を得ることができ、さらに諸収差が良好に補正されたズームレンズ及びそれを用いた撮像装置を提供することを目的としたものである。
 本発明によるズームレンズは、物体側から順に配置された、負の屈折力を有する第1レンズ群、正の屈折力を有する第2レンズ群、負の屈折力を有する第3レンズ群、正の屈折力を有する第4レンズ群からなり、広角端から望遠端に変倍する際、前記第1レンズ群と前記第2レンズ群の間隔が減少、前記第2レンズ群と前記第3レンズ群の間隔が増大、前記第3レンズ群と前記第4レンズ群の間隔が増大するように各レンズ群を光軸方向に移動させ、前記第4レンズ群を移動させることでフォーカシングを行い、以下の条件式を満足することを特徴とする。
 2.0<f4/|f3|<3.5   (1)
 1.1<(β2t/β2w)/(β3t/β3w)<1.45  (2)
但し、
f3:前記第3レンズ群の焦点距離(mm)
f4:前記第4レンズ群の焦点距離(mm)
β2w:前記第2レンズ群の広角端における横倍率
β2t:前記第2レンズ群の望遠端における横倍率
β3w:前記第3レンズ群の広角端における横倍率
β3t:前記第3レンズ群の望遠端における横倍率
 条件式(1)は、第3レンズ群と第4レンズ群の焦点距離を適切に規定するためのものである。条件式(1)の値が上限を下回ると、第3レンズ群の屈折力が強くなりすぎず、望遠端でのコマ収差補正が容易になる。また、第4レンズ群の屈折力を適切に保つことで、フォーカシングの際の第4レンズ群の移動量が大きくなることを抑え、レンズ全長の小型化を図れる。一方、条件式(1)の値が下限を上回ると、第3レンズ群の屈折力が弱くなりすぎず、十分な変倍作用を持たせることができる。あるいは、第4レンズ群の屈折力が強くなりすぎず、フォーカシングの際の収差変動を十分に抑えることができる。
 条件式(2)は、第2レンズ群と第3レンズ群の変倍負担に関して規定している。本発明においては、広角端から望遠端への変倍効果を第2レンズ群と第3レンズ群で適切に分担することで、各レンズ群で発生する収差を低減している。そのため、条件式(2)の値が上限を下回ると、第2レンズ群の変倍分担が大きくなりすぎず、望遠端において第2レンズ群で発生する球面収差の補正が容易となるばかりでなく、第2レンズ群の偏芯に対する感度が低くなり製造誤差に起因した品質低下を抑えることができる。一方、条件式(2)の値が下限を上回ると、第2レンズ群で分担する変倍作用が大きくなるため、良好な光学性能を維持しつつ所望の変倍比を稼ぐ事が可能になる。
 本発明による撮像装置は、上記ズームレンズと、前記ズームレンズにより撮像面に形成された画像を光電変換する撮像素子とを有することを特徴とする。
 本発明によれば、レンズ枚数を抑えつつ小型化を図りながらも、所望の変倍比を得ることができ、さらに諸収差が良好に補正されたズームレンズ及びそれを用いた撮像装置を提供することができる。
本実施の形態にかかる撮像装置を搭載したデジタルカメラの正面上部側から見た斜視図(a)及び背面下部側から見た斜視図(b)である。 本実施の形態にかかるズームレンズを有する撮像装置のブロック図である。 実施例1のズームレンズの断面図で、(a)は広角端の状態、(b)は中間の状態、(c)は望遠端の状態を示す。 実施例1のズームレンズの収差図(球面収差、非点収差、歪曲収差)で、(a)は広角端における収差図、(b)は中間における収差図、(c)は望遠端における収差図である。 実施例2のズームレンズの断面図で、(a)は広角端の状態、(b)は中間の状態、(c)は望遠端の状態を示す。 実施例2のズームレンズの収差図(球面収差、非点収差、歪曲収差)で、(a)は広角端における収差図、(b)は中間における収差図、(c)は望遠端における収差図である。 実施例3のズームレンズの断面図で、(a)は広角端の状態、(b)は中間の状態、(c)は望遠端の状態を示す。 実施例3のズームレンズの収差図(球面収差、非点収差、歪曲収差)で、(a)は広角端における収差図、(b)は中間における収差図、(c)は望遠端における収差図である。 実施例4のズームレンズの断面図で、(a)は広角端の状態、(b)は中間の状態、(c)は望遠端の状態を示す。 実施例4のズームレンズの収差図(球面収差、非点収差、歪曲収差)で、(a)は広角端における収差図、(b)は中間における収差図、(c)は望遠端における収差図である。 実施例5のズームレンズの断面図で、(a)は広角端の状態、(b)は中間の状態、(c)は望遠端の状態を示す。 実施例5のズームレンズの収差図(球面収差、非点収差、歪曲収差)で、(a)は広角端における収差図、(b)は中間における収差図、(c)は望遠端における収差図である。
 以下、本発明の実施の形態を図面に基づいて説明する。図1は、本実施の形態にかかる撮像装置の一例であるデジタルカメラの正面上部側から見た斜視図(a)及び背面下部側から見た斜視図(b)であり、図2は、本実施の形態にかかるズームレンズを有する撮像装置のブロック図である。
 図1(a)において、デジタルカメラDCは、ズームレンズ101を内蔵しカメラボディ81に対して沈胴する沈胴式のレンズ鏡胴80と、ファインダ窓82と、レリーズ釦83と、フラッシュ発光部84と、ストラップ取り付け部87と、USB端子88と、レンズカバー89とを有している。レンズカバー89を開くと、不図示のスイッチがオン操作され、レンズ鏡胴80が前方に繰り出されて撮影状態になり、一方、撮影終了後に、レンズカバー89を閉じると、不図示のスイッチがオフ操作されレンズ鏡胴80は沈胴するようになっている。尚、レンズ鏡胴80を沈胴させる構成については、良く知られているので以下に詳細は記載しない。
 更に、図1(b)において、デジタルカメラDCは、ファインダ接眼部91と、レリーズ釦83が押圧された時にAFやAEの情報を発光もしくは点滅により撮影者に表示する赤と緑の表示ランプ92と、撮影者の操作に応じてズームアップ、ズームダウンをおこなうズーム釦93と、各種設定用のメニュー/セット釦95と、選択釦である4方向スイッチ96と、画像やその他文字情報等を表示するモニターLCD112と、モニターLCD112において撮影した画像の再生を行うための再生釦97と、モニターLCD112に表示された画像やその他文字情報の表示や消去を選択するディスプレイ釦98と、撮影記録した画像の消去をおこなう消去釦99と、三脚穴71と、開閉自在な電池/カード蓋72とを有する。撮影者は、メニュー/セット釦95で、モニターLCD112上に各種のメニューを表示させ、選択釦96で選択し、メニュー/セット釦95で設定を確定することができる。電池/カード蓋72の内部には、デジタルカメラDCの電源を供給する電池と、撮影した画像を記録するカード型のリムーバブルメモリが装填されるようになっている。
 更に、デジタルカメラDCに搭載される撮像装置100は、図2に示すように、ズームレンズ101と、固体撮像素子102と、A/D変換部103と、制御部104と、光学系駆動部105と、タイミング発生部106と、撮像素子駆動部107と、画像メモリ108と、画像処理部109と、画像圧縮部110と、画像記録部111と、モニターLCD112と、図1を参照して上述した釦群を含む操作部113とを備えて構成される。
 ズームレンズ101は、被写体像を固体撮像素子102の撮像面に結像させる機能を有する。本実施の形態のズームレンズ101は、詳しくは後述するが、物体側から順に負の屈折力を有する第1レンズ群、正の屈折力を有する第2レンズ群、負の屈折力を有する第3レンズ群、正の屈折力を有する第4レンズ群からなり、広角端から望遠端に変倍する際、第1レンズ群と第2レンズ群の間隔が減少、第2レンズ群と第3レンズ群の間隔が増大、第3レンズ群と第4レンズ群の間隔が増大するように各レンズ群を光軸方向に移動させ、第4レンズ群を移動させることでフォーカシングを行い、以下の条件式を満足する。
 2.0<f4/|f3|<3.5   (1)
 1.1<(β2t/β2w)/(β3t/β3w)<1.45  (2)
但し、
f3:第3レンズ群の焦点距離(mm)
f4:第4レンズ群の焦点距離(mm)
β2w:第2レンズ群の広角端における横倍率
β2t:第2レンズ群の望遠端における横倍率
β3w:第3レンズ群の広角端における横倍率
β3t:第3レンズ群の望遠端における横倍率
 固体撮像素子102は、CCDやCMOS等の撮像素子であり、RGBカラーフィルターを備え、入射光をR、G、B毎に光電変換してそのアナログ信号を出力する。A/D変換部103は、アナログ信号をデジタルの画像データに変換する。
 制御部104は、撮像装置100の各部を制御する。制御部104は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)を含み、ROMから読み出されてRAMに展開された各種プログラムと、CPUとの協働で各種処理を実行する。
 光学系駆動部105は、制御部104の制御により、変倍、合焦、露出等において、ズームレンズ101を駆動制御する。タイミング発生部106は、アナログ信号出力用のタイミング信号を出力する。撮像素子駆動部107は、固体撮像素子102を駆動制御する。
 画像メモリ108は、画像データを読み出し及び書き込み可能に記憶する。画像処理部109は、画像データに各種画像処理を施す。画像圧縮部110は、JPEG(Joint Photographic Experts Group)等の圧縮方式により、撮像画像データを圧縮する。画像記録部111は、図示しないスロットにセットされた、メモリカード等の記録メディアに画像データを記録する。
 モニターLCD112は、カラー液晶パネル等であり、撮影後の画像データ、撮影前のスルー画像、各種操作画面等を表示する。操作部113は、図1を参照して上述した釦群を介して、ユーザにより操作入力された情報を制御部104に出力する。
 ここで、撮像装置100における動作を説明する。被写体撮影では、被写体のモニタリング(スルー画像表示)と、画像撮影実行とが行われる。モニタリングにおいては、ズームレンズ101を介して得られた被写体の像が、固体撮像素子102の受光面(撮像面)に結像される。ズームレンズ101の撮影光軸後方に配置された固体撮像素子102が、タイミング発生部106、撮像素子駆動部107によって駆動され、一定周期毎に結像した光像に対応する光電変換出力としてのアナログ信号を1画面分出力する。
 このアナログ信号は、RGBの各原色成分毎に適宜ゲイン調整された後に、A/D変換部103でデジタルデータに変換される。そのデジタルデータは、画像処理部109により、画素補間処理及びγ補正処理を含むカラープロセス処理が行なわれて、デジタル値の輝度信号Y及び色差信号Cb、Cr(画像データ)が生成されて画像メモリ108に格納され、定期的にその信号が読み出されてそのビデオ信号が生成されて、モニターLCD112に出力される。尚、ホワイトバランス調整手段でもある制御部104は、撮影画像のホワイトバランスを調整する。
 モニターLCD112は、モニタリングにおいては電子ファインダとして機能し、撮像画像を、ほぼリアルタイムに表示することとなる。この状態で、随時、撮影者による操作部113を介する入力に基づいて、光学系駆動部105の駆動によりズームレンズ101の変倍、合焦、露出等が設定される。
 このようなモニタリング状態において、静止画撮影を行ないたいタイミングで、ユーザがレリーズ釦83を操作することにより、静止画像データが撮影される。レリーズ釦83の操作に応じて、画像メモリ108に格納された1コマの画像データが読み出されて、画像圧縮部110により圧縮される。その圧縮された画像データが、画像記録部111によりリムーバブルメモリに記録される。
 尚、レンズカバー89の閉じ操作により、不図示のスイッチをオフ操作することで、ズームレンズ101を内包するレンズ鏡胴80は、互いのレンズ群間隔が狭くなるように駆動され、沈胴動作を行う。このとき、第1、第4レンズ群より径の小さい第2レンズ群及び/又は第3レンズ群を、光路から退避させるよう構成すると、沈胴後の全長がより短くなるので好ましい。
 なお、上記実施の形態及び各実施例における記述は、本発明に係る好適なズームレンズ及び撮像装置の一例であり、これに限定されるものではない。又、本撮像装置はビデオカメラにも搭載可能である。
(実施例)
 次に、上述した実施の形態に好適な実施例について説明する。但し、以下に示す実施例により本発明が限定されるものではない。
Fno:Fナンバー
2Y:固体撮像素子の撮像面対角線長(mm)
R :曲率半径(mm)
D :軸上面間隔(mm)
Nd:レンズ材料のd線に対する屈折率
νd:レンズ材料のアッベ数
bf:バックフォーカス(mm)
2ω:画角(°)
 各実施例において、各面番号の後に「*」が記載されている面が非球面形状を有する面であり、非球面形状は、面頂点を基準とした光軸方向の変位量をX、光軸に直交する方向をY、近軸曲率半径をR、円錐係数をK、4次、6次、8次、10次、12次の各非球面係数をA4、A6、A8、A10、A12としたとき、以下の式で表されるものとする。
[数1]
 X=(Y2/R)/[1+{1-(1+K)(Y/R)21/2]+A4Y4+A6Y6+A8Y8+A10Y10+A12Y12
(実施例1)
 実施例1のレンズデータを表1に示す。なお、これ以降(表のレンズデータを含む)において、10のべき乗数(たとえば2.5×10-02)を、E(たとえば2.5E-02)を用いて表すものとする。図3は、実施例1のズームレンズの断面図であり、(a)は広角端の状態を示し、(b)は中間の状態を示し、(c)は望遠端の状態を示す。図中Gr1は負の屈折力を有する第1レンズ群であり、物体側に凸面を向けたメニスカス形状の負レンズL1、負レンズL2、物体側に凸面を向けたメニスカス形状の正レンズL3からなる。又、Gr2は正の屈折力を有する第2レンズ群であり、正の屈折力を有するレンズL4、絞りS、負の屈折力を有するレンズL5と正の屈折力を有するレンズL6の貼り合せからなる正の屈折力の接合レンズからなる。更に、Gr3は負の屈折力を有する第3レンズ群であり、物体側に凹面を向けた負レンズL7、物体側に凸面を向けた正レンズL8からなる。又、Gr4は正の屈折力を有する第4レンズ群であり、正の単レンズL9のみからなる。Iは撮像面を示し、fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板を示す。
[表1]
実施例1 

面番号   R(mm)    D(mm)     Nd         νd
1        51.621    1.30    1.83481      42.72
2        16.298    6.33        
3       -90.612    1.00    1.48749      70.44
4        22.647    2.00        
5        25.952    3.34    1.90366      31.32
6        81.333   d6(可変)      
7*       14.556    2.86    1.59201      67.02
8*      157.540    3.75        
9(絞り)    ∞      1.50        
10       18.228    1.20    1.8061       33.27
11        7.780    3.53    1.56384      60.83
12      -42.903   d12(可変)     
13      -23.962    0.75    1.54072      47.2
14       15.286    1.50        
15*      17.629    1.43    1.88202      37.22
16*      25.343   d16(可変)     
17       45.141    5.40    1.48749      70.44
18      -78.890   d18(可変)     
19        ∞      2.96     1.51680      64.2
20        ∞      1.00        
像面   
 
各種データ   
            広角     中間     望遠    
焦点距離    18.86    29.03    48.42   
画角2ω     75.2     52.8     33.1    
Fno          3.61     4.56     5.85    
bf         1.00     1.00     1.00    
 
間隔データ 
            広角     中間     望遠    
d6         21.957    9.662    1.200   
d12         4.000    4.546    5.605   
d16        10.470   16.833   33.234  
d18         5.709    8.259    8.097   

非球面系数 
第7面              第8面   
K=0.0              K=0.0 
A4=-6.4725E-06     A4=1.9802E-05
A6=-1.5048E-07     A6=-1.2364E-07
A8=3.3821E-09      A8=4.5441E-09
                   A10=-7.3548E-12
 
第15面             第16面  
K=0.0              K=0.0 
A4=3.2477E-06      A4=3.0954E-05
A6=-4.4733E-07     A6=-4.4082E-07
A8=2.4181E-08      A8=8.2891E-09
A10=2.4668E-10     A10=5.4880E-10
 図4は実施例1の収差図(球面収差、非点収差、歪曲収差)である。ここで、図4(a)は広角端における収差図である。図4(b)は中間における収差図である。図4(c)は望遠端における収差図である。ここで、球面収差図において、点線はg線、実線はd線に対する球面収差量をそれぞれ表す。また、非点収差図において、実線Sはサジタル面、二点鎖線Mはメリディオナル面をそれぞれ表す(以下同じ)。
 実施例1のズームレンズでは、広角端から望遠端への変倍に際し、第1レンズ群Gr1、第2レンズ群Gr2、第3レンズ群Gr3、第4レンズ群Gr4が光軸方向に沿って移動し、各レンズ群の間隔を変えることにより変倍を行うことが出来る。より具体的には、広角端から望遠端に変倍する際、第1レンズ群Gr1と第2レンズ群Gr2の間隔が減少し、第2レンズ群Gr2と第3レンズ群Gr3の間隔が増大し、第3レンズ群Gr3と第4レンズ群Gr4の間隔が増大するように各レンズ群を光軸方向に移動させるようになっている。又、第4レンズ群Gr4を移動させることでフォーカシングを行う。
(実施例2)
 実施例2のレンズデータを表2に示す。図5は、実施例2のズームレンズの断面図であり、(a)は広角端の状態を示し、(b)は中間の状態を示し、(c)は望遠端の状態を示す。図中Gr1は負の屈折力を有する第1レンズ群であり、物体側に凸面を向けたメニスカス形状の負レンズL1、負レンズL2、物体側に凸面を向けたメニスカス形状の正レンズL3からなる。又、Gr2は正の屈折力を有する第2レンズ群であり、正の屈折力を有するレンズL4、絞りS、負の屈折力を有するレンズL5と正の屈折力を有するレンズL6の貼り合せからなる正の屈折力の接合レンズからなる。更に、Gr3は負の屈折力を有する第3レンズ群であり、物体側に凹面を向けた負レンズL7、物体側に凸面を向けた正レンズL8からなる。又、Gr4は正の屈折力を有する第4レンズ群であり、正の単レンズL9のみからなる。Iは撮像面を示し、fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板を示す。
[表2]
実施例2 

面番号   R(mm)    D(mm)     Nd         νd
1       39.845     1.20    1.83481      42.72
2       15.812     6.80        
3      -63.771     1.00    1.48749      70.44
4       19.951     2.00        
5       24.925     3.48    1.90366      31.32
6       79.804    d6(可変)      
7*      13.558     3.04    1.59201      67.02
8*     122.631     3.07        
9(絞り)   ∞       1.50        
10      16.571     1.20    1.8061       33.27
11      7.087      4.68    1.58913      61.25
12    325.752     d12(可変)     
13    -15.650      0.75    1.54072      47.2
14     31.242      1.50        
15*    25.515      1.56    1.88202      37.22
16*    71.792     d16(可変)     
17     50.191      4.09    1.48749      70.44
18   -114.233     d18(可変)     
19      ∞         2.96    1.51680      64.2
20      ∞         1.00        
像面  
 
各種データ     
            広角     中間     望遠    
焦点距離    18.86    29.12    48.41   
画角2ω     75.2     52.7     33.1    
Fno          3.3      4.18     5.83    
bf         1.00     1.00     1.00    

間隔データ   
            広角     中間     望遠    
d6          20.278    8.504    1.200   
d12         4.094     4.785    5.769   
d16         10.785   16.610   34.654  
d18         5.000     7.752    5.536   

非球面系数   
第7面              第8面   
K=0.0              K=0.0 
A4=-1.4233E-05     A4=-4.5151E-07
A6=-1.7267E-07     A6=-1.1106E-07
A8=1.7453E-09      A8=3.1940E-09
                   A10=-5.9987E-12

第15面             第16面  
K=0.0              K=0.0 
A4=2.2142E-05      A4=7.5647E-05
A6=-5.3613E-08     A6=-6.1898E-08
A8=1.8199E-08      A8=7.5138E-09
A10=1.3465E-10     A10=3.1418E-10
 図6は実施例2の収差図(球面収差、非点収差、歪曲収差)である。ここで、図6(a)は広角端における収差図である。図6(b)は中間における収差図である。図6(c)は望遠端における収差図である。
 実施例2のズームレンズでは、広角端から望遠端への変倍に際し、第1レンズ群Gr1、第2レンズ群Gr2、第3レンズ群Gr3、第4レンズ群Gr4が光軸方向に沿って移動し、各レンズ群の間隔を変えることにより変倍を行うことが出来る。より具体的には、広角端から望遠端に変倍する際、第1レンズ群Gr1と第2レンズ群Gr2の間隔が減少し、第2レンズ群Gr2と第3レンズ群Gr3の間隔が増大し、第3レンズ群Gr3と第4レンズ群Gr4の間隔が増大するように各レンズ群を光軸方向に移動させるようになっている。又、第4レンズ群Gr4を移動させることでフォーカシングを行う。
(実施例3)
 実施例3のレンズデータを表3に示す。図7は、実施例3のズームレンズの断面図であり、(a)は広角端の状態を示し、(b)は中間の状態を示し、(c)は望遠端の状態を示す。図中Gr1は負の屈折力を有する第1レンズ群であり、物体側に凸面を向けたメニスカス形状の負レンズL1、負レンズL2、物体側に凸面を向けたメニスカス形状の正レンズL3からなる。又、Gr2は正の屈折力を有する第2レンズ群であり、正の屈折力を有するレンズL4、絞りS、負の屈折力を有するレンズL5と正の屈折力を有するレンズL6の貼り合せからなる正の屈折力の接合レンズからなる。更に、Gr3は負の屈折力を有する第3レンズ群であり、物体側に凹面を向けた負レンズL7、物体側に凸面を向けた正レンズL8からなる。又、Gr4は正の屈折力を有する第4レンズ群であり、正の単レンズL9のみからなる。Iは撮像面を示し、fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板を示す。
[表3]
実施例3 
                
面番号   R(mm)    D(mm)     Nd         νd
1       52.810     1.25    1.83400      37.34
2       16.187     6.63        
3      -65.919     1.00    1.48749      70.44
4       31.698     2.33        
5       32.216     2.81    2.00069      25.46
6       96.818    d6(可変)      
7*      12.058     3.55    1.59201      67.02
8*    -790.529     2.00        
9(絞り)   ∞       1.50        
10      31.973     1.00    1.8061       40.73
11       7.095     5.25    1.59349      67.00 
12     -38.426    d12(可変)     
13     -15.057     0.75    1.83400      37.34
14      25.282     1.50        
15*     58.913     2.42    1.88202      37.22
16*    -30.487    d16(可変)     
17      57.760     3.71    1.48749      70.44
18    -124.374    d18(可変)     
19       ∞        2.96    1.51680      64.2
20       ∞        1.00        
像面 

各種データ 
            広角     中間     望遠    
焦点距離    18.85    29.01    48.40   
画角2ω     75.2     52.8     33.1    
Fno          3.61     4.54     5.83    
bf         1.00     1.00     1.00    

間隔データ   
            広角     中間     望遠    
d6          23.154   10.412    1.200   
d12          5.188    5.594    6.399   
d16          8.986   15.484   30.645  
d18          5.000    7.114    7.956   
  
非球面系数   
第7面              第8面   
K=0.0              K=0.0 
A4=-2.3758E-05     A4=3.2974E-05
A6=2.0258E-07      A6=2.5163E-07
A8=-8.9146E-09     A8=-7.2695E-09
A10=1.3691E-10     A10=1.4360E-10

第15面             第16面  
K=0.0              K=0.0 
A4=2.1014E-05      A4=1.2204E-05
A6=-6.5634E-07     A6=-1.7678E-07
A8=2.5014E-08      A8=-2.2522E-09
A10=-6.2793E-11    A10=2.5370E-10
 図8は実施例3の収差図(球面収差、非点収差、歪曲収差)である。ここで、図8(a)は広角端における収差図である。図8(b)は中間における収差図である。図8(c)は望遠端における収差図である。
 実施例3のズームレンズでは、広角端から望遠端への変倍に際し、第1レンズ群Gr1、第2レンズ群Gr2、第3レンズ群Gr3、第4レンズ群Gr4が光軸方向に沿って移動し、各レンズ群の間隔を変えることにより変倍を行うことが出来る。より具体的には、広角端から望遠端に変倍する際、第1レンズ群Gr1と第2レンズ群Gr2の間隔が減少し、第2レンズ群Gr2と第3レンズ群Gr3の間隔が増大し、第3レンズ群Gr3と第4レンズ群Gr4の間隔が増大するように各レンズ群を光軸方向に移動させるようになっている。又、第4レンズ群Gr4を移動させることでフォーカシングを行う。
(実施例4)
 実施例4のレンズデータを表4に示す。図9は、実施例4のズームレンズの断面図であり、(a)は広角端の状態を示し、(b)は中間の状態を示し、(c)は望遠端の状態を示す。図中Gr1は負の屈折力を有する第1レンズ群であり、物体側に凸面を向けたメニスカス形状の負レンズL1、負レンズL2、物体側に凸面を向けたメニスカス形状の正レンズL3からなる。又、Gr2は正の屈折力を有する第2レンズ群であり、正の屈折力を有するレンズL4、絞りS、負の屈折力を有するレンズL5と正の屈折力を有するレンズL6の貼り合せからなる正の屈折力の接合レンズからなる。更に、Gr3は負の屈折力を有する第3レンズ群であり、物体側に凹面を向けた負レンズL7、物体側に凸面を向けた正レンズL8からなる。又、Gr4は正の屈折力を有する第4レンズ群であり、正の単レンズL9のみからなる。Iは撮像面を示し、fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板を示す。
[表4]
実施例4   
  
面番号   R(mm)    D(mm)     Nd         νd
1       130.561    1.20    1.83400      37.34
2        17.672    5.00        
3      -265.024    1.00    1.48749      70.44
4        30.086    1.58        
5        27.459    2.94    2.00069      25.46
6        78.451   d6(可変)      
7*       11.449    3.63    1.59201      67.02
8*       93.446    2.00        
9(絞り)    ∞      1.50        
10       17.482    1.00    1.91082      35.25
11        6.528    5.25    1.62041      60.34 
12      321.098   d12(可変)     
13      -18.043    0.75    1.65844      50.86
14       28.155    1.50        
15*     106.133    2.08    1.8208       42.71
16*     -35.395   d16(可変)     
17      983.543    2.83    1.59349      67.00 
18      -83.671   d18(可変)     
19        ∞       2.96    1.51680      64.2
20        ∞       1.00        
像面   
   
各種データ   

            広角     中間     望遠    
焦点距離    20.19    32.02    51.84   
画角2ω     71.4     48.4     31.1    
Fno          3.61     4.63     5.83    
bf         1.00     1.00     1.00    
 
間隔データ 
            広角     中間     望遠    
d6          23.342    9.656    1.200   
d12         4.000     4.171    4.537   
d16        10.424    17.835   34.714  
d18         5.000     6.929    5.000   
 
非球面系数 
第7面              第8面   
K=0.0              K=0.0 
A4=-2.7286E-05     A4=1.0829E-05
A6=-3.1038E-08     A6=4.0153E-08
A8=-5.8323E-09     A8=-1.9424E-09
A10=8.1590E-11     A10=8.0370E-11
   
第15面             第16面  
K=0.0              K=0.0 
A4=-1.7193E-04     A4=-1.2690E-04
A6=-2.4811E-06     A6=-2.4233E-06
A8=5.0533E-09      A8=6.4298E-09
A10=-1.0866E-09    A10=-7.8492E-10
 図10は実施例4の収差図(球面収差、非点収差、歪曲収差)である。ここで、図10(a)は広角端における収差図である。図10(b)は中間における収差図である。図10(c)は望遠端における収差図である。
 実施例4のズームレンズでは、広角端から望遠端への変倍に際し、第1レンズ群Gr1、第2レンズ群Gr2、第3レンズ群Gr3、第4レンズ群Gr4が光軸方向に沿って移動し、各レンズ群の間隔を変えることにより変倍を行うことが出来る。より具体的には、広角端から望遠端に変倍する際、第1レンズ群Gr1と第2レンズ群Gr2の間隔が減少し、第2レンズ群Gr2と第3レンズ群Gr3の間隔が増大し、第3レンズ群Gr3と第4レンズ群Gr4の間隔が増大するように各レンズ群を光軸方向に移動させるようになっている。又、第4レンズ群Gr4を移動させることでフォーカシングを行う。
(実施例5)
 実施例5のレンズデータを表5に示す。図11は、実施例5のズームレンズの断面図であり、(a)は広角端の状態を示し、(b)は中間の状態を示し、(c)は望遠端の状態を示す。図中Gr1は負の屈折力を有する第1レンズ群であり、物体側に凸面を向けたメニスカス形状の負レンズL1、負レンズL2、物体側に凸面を向けたメニスカス形状の正レンズL3からなる。又、Gr2は正の屈折力を有する第2レンズ群であり、正の屈折力を有するレンズL4、絞りS、負の屈折力を有するレンズL5と正の屈折力を有するレンズL6の貼り合せからなる正の屈折力の接合レンズからなる。更に、Gr3は負の屈折力を有する第3レンズ群であり、物体側に凹面を向けた負レンズL7、物体側に凸面を向けた正レンズL8からなる。又、Gr4は正の屈折力を有する第4レンズ群であり、正の単レンズL9のみからなる。Iは撮像面を示し、fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板を示す。
[表5]
実施例5 

面番号   R(mm)    D(mm)     Nd         νd
1        86.931    1.20    1.83481      42.72
2        17.456    5.09        
3      -467.478    1.00    1.48749      70.44
4        23.521    1.50        
5        24.222    3.40    1.90366      31.32
6        82.339   d6(可変)      
7*       12.621    4.60    1.59201      67.02
8*       83.346    2.22        
9(絞り)    ∞      0.10        
10       13.755    1.20    1.8061       33.27
11        6.250    3.90    1.56384      60.83
12       53.290   d12(可変)     
13      -14.922    0.75    1.54072      47.2
14       29.251    1.00        
15*      17.860    1.65    1.88202      37.22
16*      43.838   d16(可変)     
17      157.930    3.05    1.49700      81.61 
18      -76.250   d18(可変)     
19        ∞       2.96    1.51680      64.2
20        ∞       1.00     
像面   
  
各種データ    
            広角     中間     望遠    
焦点距離    18.86    29.02    44.82   
画角2ω     75.2     52.8     35.6    
Fno          3.61     4.55     5.83    
bf         1.00     1.00     1.00    
 
 
間隔データ  
            広角     中間     望遠    
d6          22.692    9.393    1.200   
d12          4.000    4.189    4.324   
d16          7.871   14.786   28.256  
d18          6.814    7.388    5.852    
 
非球面系数   
第7面              第8面   
K=0.0              K=0.0 
A4=-4.9350E-05     A4=-7.2285E-05
A6=-9.0963E-07     A6=-6.9044E-07
A8=5.6337E-09      A8=-9.3291E-09
A10=-2.8268E-10    A10=-6.5352E-11
  
第15面             第16面  
K=0.0              K=0.0 
A4=1.5811E-05      A4=1.2925E-04
A6=-6.1068E-07     A6=-4.2725E-07
A8=1.4432E-08      A8=-1.2468E-08
A10=3.8587E-10     A10=7.9484E-10
 図12は実施例5の収差図(球面収差、非点収差、歪曲収差)である。ここで、図12(a)は広角端における収差図である。図12(b)は中間における収差図である。図12(c)は望遠端における収差図である。
 実施例5のズームレンズでは、広角端から望遠端への変倍に際し、第1レンズ群Gr1、第2レンズ群Gr2、第3レンズ群Gr3、第4レンズ群Gr4が光軸方向に沿って移動し、各レンズ群の間隔を変えることにより変倍を行うことが出来る。より具体的には、広角端から望遠端に変倍する際、第1レンズ群Gr1と第2レンズ群Gr2の間隔が減少し、第2レンズ群Gr2と第3レンズ群Gr3の間隔が増大し、第3レンズ群Gr3と第4レンズ群Gr4の間隔が増大するように各レンズ群を光軸方向に移動させるようになっている。又、第4レンズ群Gr4を移動させることでフォーカシングを行う。
 各条件式に対応する各実施例の値を表6に示す。
Figure JPOXMLDOC01-appb-T000001
 以下、好ましい実施態様についてまとめて説明する。
 前記第3群レンズ群は、物体側から順に配置された、物体側に凹面を向けた負レンズと物体側に凸面を向けた正レンズからなることが好ましい。第3群レンズ群を、物体側に凹面を向けた負レンズと物体側に凸面を向けた正レンズからなる2枚構成とすることで、コンパクト性を保ちつつ第3レンズ群で必要な変倍負担を受け持つことが可能となり、良好な光学性能の達成につなげることができる。
 また、以下の条件式を満足することが好ましい。
 0.20<β4t/β3t<0.50   (3)
但し、
β3t:前記第3レンズ群の望遠端における横倍率
β4t:前記第4レンズ群の望遠端における横倍率
 条件式(3)は、望遠端での第3レンズ群と第4レンズ群の倍率関係に関して規定している。条件式(3)の値が上限を下回ると、望遠端での第4レンズ群の倍率負担が大きくなりすぎず、フォーカシング群として第4レンズ群を使用した場合に、近距離性能を良好に維持できる。一方、条件式(3)の値が下限を上回ると、第4レンズ群での望遠端での倍率負担が小さくなりすぎず、望遠端での焦点距離を稼ぐ事ができ、結果として十分なズーム比を確保できる。
 また、以下の条件式を満足することが好ましい。
 2.0<f4/|f1|<4.5   (4)
但し、
f1:前記第1レンズ群の焦点距離(mm)
 条件式(4)は、光学系の小型化を図るべく第1レンズ群と第4レンズ群の屈折力について規定している。条件式(4)の値が上限を下回ると、第4レンズ群の屈折力が弱くなりすぎず、フォーカシングの際の移動量の増加を抑えることでレンズ全長の短縮化につながる。あるいは、第1レンズ群の屈折力が強くなりすぎず、歪曲収差を良好に維持できる。一方、条件式(4)の下限を上回ると、第1レンズ群の屈折力が弱くなりすぎないので、レンズを大径化しなくとも十分な光量を確保できる。あるいは、第4レンズ群の屈折力が強くなりすぎず、像面湾曲の補正を良好に行うことができる。
 また、以下の条件式を満足することが好ましい。
 0.9<|f1|/√(fw・ft)<1.20   (5)
但し、
fw:広角端における全系の焦点距離(mm)
ft:望遠端における全系の焦点距離(mm)
 条件式(5)は、本発明において良好な光学性能を達成する為の第1レンズ群の屈折力を規定している。条件式(5)の値が上限を下回ると、第1レンズ群の負の屈折力が弱くなりすぎず、広角端でのレンズ全長を十分に短くする事ができる。一方、条件式(5)の値が下限を上回ると、第1レンズ群の負の屈折力が強くなりすぎず、球面収差、コマ収差を良好に補正することができる。
 また、前記第4レンズ群は正の単レンズから成ることが好ましい。第4レンズ群を正の1枚のレンズで構成することで、ズームレンズ全体の構成枚数の増加を抑え、また、フォーカスレンズ群である第4レンズ群の軽量化ならびにフォーカシングの高速化を図ることが可能となる。
 また、前記第2レンズ群内の少なくとも1面に非球面を有することが好ましい。第2レンズ群は、主に広角端から望遠端への変倍を担っている。第2レンズ群の移動量を抑えつつ倍率を稼ごうとすると、各レンズの屈折力の増大を招き、結果偏芯に対する感度が高くなり製造難易度を高めてしまう恐れがある。また、レンズ枚数を増やし良好な収差補正と偏芯誤差感度の低下を図るとレンズ群の大型化を招くことになる。このような理由から、第2レンズ群内の少なくとも1面に非球面を用いて特に望遠端における球面収差を効果的に補正することで各レンズの収差負担の緩和につなげ、偏芯感度の増大を抑えることが可能となる。
 また、前記第3レンズ群内の少なくとも1面に非球面を有することが好ましい。第3レンズ群内の少なくとも1面に非球面を用いることで、広角端で発生する像面湾曲とコマ収差を効果的に補正する事が可能となる。特に像側に配置された正レンズに非球面を用いるのが効果的である。
 また、前記第1レンズ群は、物体側から順に配置された、物体側に凸面を向けたメニスカス形状の負レンズ、負レンズ、物体側に凸面を向けたメニスカス形状の正レンズからなることが好ましい。広角化に伴い負の強い屈折力が必要となる第1レンズ群においては、物体側から順に、物体側に凸面を向けた負メニスカス、負レンズの2枚の負レンズを配置することで、収差負担を分担し広角端での歪曲収差や像面湾曲の発生を抑える事が可能となる。また最も像側には物体側に凸面を向けた正のメニスカスレンズを配置する事で、第1レンズ群内で球面収差やコマ収差を効果的に補正できる。
 また、前記第2レンズ群は、物体側から順に配置された、正の屈折力を有するレンズ、絞り、負の屈折力を有するレンズと正の屈折力を有するレンズの貼り合せからなる正の屈折力の接合レンズからなることが好ましい。主として変倍作用を担う第2レンズ群は強い正の屈折力を有する。第2レンズ群中の誤差感度を抑えるためには複数枚の正レンズを用いることが望ましいが、むやみに構成枚数を増やすと第2レンズ群の大型化につながってしまう。そこで本発明では、物体側より、正の屈折力のレンズ、絞り、球面収差補正を目的とした負レンズと屈折力分担のための正レンズを貼り合せて色消しを行う構成とし、少ない構成枚数で小型化と収差補正を同時に達成している。
 本発明は、明細書に記載の実施態様・実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施態様や実施例や技術思想から本分野の当業者にとって明らかである。例えば、実質的に屈折力・パワーを持たないダミーレンズを更に付与した場合でも本発明の適用範囲内である。
71   三脚穴
72   カード蓋
80   レンズ鏡胴
81   カメラボディ
82   ファインダ窓
83   レリーズ釦
84   フラッシュ発光部
87   ストラップ取り付け部
88   USB端子
89   レンズカバー
91   ファインダ接眼部
92   表示ランプ
93   ズーム釦
95   セット釦
96   4方向スイッチ
96   選択釦
97   再生釦
98   ディスプレイ釦
99   消去釦
100  撮像装置
101  ズームレンズ
102  固体撮像素子
103  変換部
104  制御部
105  光学系駆動部
106  タイミング発生部
107  撮像素子駆動部
108  画像メモリ
109  画像処理部
110  画像圧縮部
111  画像記録部
112  モニターLCD
113  操作部
DC   デジタルカメラ
Gr1~Gr5 レンズ群
L1~L9   レンズ
S    開口絞り
I    撮像面
f    平行平板

Claims (12)

  1.  物体側から順に配置された、負の屈折力を有する第1レンズ群、正の屈折力を有する第2レンズ群、負の屈折力を有する第3レンズ群、正の屈折力を有する第4レンズ群からなり、広角端から望遠端に変倍する際、前記第1レンズ群と前記第2レンズ群の間隔が減少、前記第2レンズ群と前記第3レンズ群の間隔が増大、前記第3レンズ群と前記第4レンズ群の間隔が増大するように各レンズ群を光軸方向に移動させ、前記第4レンズ群を移動させることでフォーカシングを行い、以下の条件式を満足することを特徴とするズームレンズ。
     2.0<f4/|f3|<3.5   (1)
     1.1<(β2t/β2w)/(β3t/β3w)<1.45   (2)
    但し、
    f3:前記第3レンズ群の焦点距離(mm)
    f4:前記第4レンズ群の焦点距離(mm)
    β2w:前記第2レンズ群の広角端における横倍率
    β2t:前記第2レンズ群の望遠端における横倍率
    β3w:前記第3レンズ群の広角端における横倍率
    β3t:前記第3レンズ群の望遠端における横倍率
  2.  前記第3群レンズ群は、物体側から順に配置された、物体側に凹面を向けた負レンズと物体側に凸面を向けた正レンズからなることを特徴とする請求項1に記載のズームレンズ。
  3.  以下の条件式を満足することを特徴とする請求項1又は2に記載のズームレンズ。
     0.20<β4t/β3t<0.50   (3)
    但し、
    β3t:前記第3レンズ群の望遠端における横倍率
    β4t:前記第4レンズ群の望遠端における横倍率
  4.  以下の条件式を満足することを特徴とする請求項1から3のいずれかに記載のズームレンズ。
     2.0<f4/|f1|<4.5   (4)
    但し、
    f1:前記第1レンズ群の焦点距離(mm)
  5.  以下の条件式を満足することを特徴とする請求項1から4のいずれかに記載のズームレンズ。
     0.9<|f1|/√(fw・ft)<1.20   (5)
    但し、
    fw:広角端における全系の焦点距離(mm)
    ft:望遠端における全系の焦点距離(mm)
  6.  前記第4レンズ群は正の単レンズから成ることを特徴とする請求項1から5のいずれかに記載のズームレンズ。
  7.  前記第2レンズ群内の少なくとも1面に非球面を有することを特徴とする請求項1から6のいずれかに記載のズームレンズ。
  8.  前記第3レンズ群内の少なくとも1面に非球面を有することを特徴とする請求項1から7のいずれかに記載のズームレンズ。
  9.  前記第1レンズ群は、物体側から順に配置された、物体側に凸面を向けたメニスカス形状の負レンズ、負レンズ、物体側に凸面を向けたメニスカス形状の正レンズからなることを特徴とする請求項1から8のいずれかに記載のズームレンズ。
  10.  前記第2レンズ群は、物体側から順に配置された、正の屈折力を有するレンズ、絞り、負の屈折力を有するレンズと正の屈折力を有するレンズの貼り合せからなる正の屈折力の接合レンズからなることを特徴とする請求項1から9のいずれかに記載のズームレンズ。
  11.  実質的に屈折力を有しないレンズを有することを特徴とする請求項1から10のいずれかに記載のズームレンズ。
  12.  請求項1から11のいずれかに記載のズームレンズと、前記ズームレンズにより撮像面に形成された画像を光電変換する撮像素子とを有することを特徴とする撮像装置。
PCT/JP2014/056420 2013-03-18 2014-03-12 ズームレンズ及び撮像装置 WO2014148326A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480016468.8A CN105190394B (zh) 2013-03-18 2014-03-12 变焦镜头以及摄像装置
JP2015506717A JPWO2014148326A1 (ja) 2013-03-18 2014-03-12 ズームレンズ及び撮像装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013054658 2013-03-18
JP2013-054658 2013-03-18

Publications (1)

Publication Number Publication Date
WO2014148326A1 true WO2014148326A1 (ja) 2014-09-25

Family

ID=51580013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056420 WO2014148326A1 (ja) 2013-03-18 2014-03-12 ズームレンズ及び撮像装置

Country Status (3)

Country Link
JP (1) JPWO2014148326A1 (ja)
CN (1) CN105190394B (ja)
WO (1) WO2014148326A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017158899A1 (ja) * 2016-03-16 2017-09-21 富士フイルム株式会社 ズームレンズおよび撮像装置
US11061203B2 (en) 2018-01-09 2021-07-13 Canon Kabushiki Kaisha Zoom lens, and image pickup apparatus and image pickup system including the zoom lens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584113A (ja) * 1981-06-30 1983-01-11 Minolta Camera Co Ltd ズ−ムレンズ系
JP2001116992A (ja) * 1999-10-18 2001-04-27 Canon Inc ズームレンズ
JP2005283648A (ja) * 2004-03-26 2005-10-13 Ricoh Co Ltd ズーム光学系、画像入力装置および携帯情報端末装置
JP2007156367A (ja) * 2005-11-14 2007-06-21 Fujinon Corp ズームレンズ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5241281B2 (ja) * 2008-03-17 2013-07-17 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584113A (ja) * 1981-06-30 1983-01-11 Minolta Camera Co Ltd ズ−ムレンズ系
JP2001116992A (ja) * 1999-10-18 2001-04-27 Canon Inc ズームレンズ
JP2005283648A (ja) * 2004-03-26 2005-10-13 Ricoh Co Ltd ズーム光学系、画像入力装置および携帯情報端末装置
JP2007156367A (ja) * 2005-11-14 2007-06-21 Fujinon Corp ズームレンズ

Also Published As

Publication number Publication date
CN105190394A (zh) 2015-12-23
JPWO2014148326A1 (ja) 2017-02-16
CN105190394B (zh) 2017-09-01

Similar Documents

Publication Publication Date Title
JP5686298B2 (ja) ズームレンズ及び撮像装置
JP5871630B2 (ja) ズームレンズ及びそれを有する撮像装置
JP5692530B2 (ja) ズームレンズ及び撮像装置
JP5196306B2 (ja) 結像レンズ、カメラおよび携帯情報端末装置
US9182570B2 (en) Fish eye lens system and photographing apparatus including the same
JP6633075B2 (ja) ズームレンズ及びそれを有する撮像装置
JP5659992B2 (ja) 撮像レンズ及び撮像装置
JP2014178478A (ja) ズームレンズ及びそれを有する撮像装置
US8964304B2 (en) Zoom lens and image pickup apparatus equipped with the same
JP4847091B2 (ja) ズームレンズ及びそれを有する撮像装置
JP2010217506A (ja) 撮像光学系、カメラ装置および携帯情報端末装置
JP6127949B2 (ja) ズームレンズ、レンズユニット及び撮像装置
JP2015232664A (ja) ズームレンズ及びそれを有する撮像装置
JP6124028B2 (ja) ズームレンズ及び撮像装置
JP2019113609A (ja) ズームレンズ及び撮像装置
WO2014148326A1 (ja) ズームレンズ及び撮像装置
JP2007279183A (ja) ズームレンズ
JP2013231759A (ja) ズームレンズ及びそれを用いた撮像装置
JP5838500B2 (ja) ズームレンズ及び撮像装置
JP6156706B2 (ja) ズームレンズ及び撮像装置
JP2013242518A (ja) ズームレンズ及びそれを用いた撮像装置
JP5943212B2 (ja) ズームレンズ及び撮像装置
US8976228B2 (en) Zoom lens and image pickup apparatus equipped with same
JP2015169931A (ja) ズームレンズ及び撮像装置
JP2003015039A (ja) ズームレンズ及びそれを用いた光学機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480016468.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506717

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14770027

Country of ref document: EP

Kind code of ref document: A1