WO2014148219A1 - Power steering device - Google Patents

Power steering device Download PDF

Info

Publication number
WO2014148219A1
WO2014148219A1 PCT/JP2014/054811 JP2014054811W WO2014148219A1 WO 2014148219 A1 WO2014148219 A1 WO 2014148219A1 JP 2014054811 W JP2014054811 W JP 2014054811W WO 2014148219 A1 WO2014148219 A1 WO 2014148219A1
Authority
WO
WIPO (PCT)
Prior art keywords
pitch circle
circle radius
sector gear
tooth
pressure chamber
Prior art date
Application number
PCT/JP2014/054811
Other languages
French (fr)
Japanese (ja)
Inventor
新居 利洋
石川 正吾
Original Assignee
日立オートモティブシステムズステアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズステアリング株式会社 filed Critical 日立オートモティブシステムズステアリング株式会社
Priority to DE112014001565.2T priority Critical patent/DE112014001565T5/en
Publication of WO2014148219A1 publication Critical patent/WO2014148219A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/20Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle specially adapted for particular type of steering gear or particular application
    • B62D5/24Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle specially adapted for particular type of steering gear or particular application for worm type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/061Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle provided with effort, steering lock, or end-of-stroke limiters

Definitions

  • the present invention relates to a power steering device.
  • Patent Document 1 Conventionally, in a power steering apparatus, the technique of Patent Document 1 is known as a technique for eliminating a steering torque difference between left and right steering operations.
  • the left-right torque difference is eliminated by giving a characteristic that cancels the left-right difference of the steering load of the vehicle.
  • Patent Document 1 Japanese Utility Model Publication No. 10-278818
  • a hydraulic power steering device that is not an electric type and has a rotary valve has a problem that the left-right torque difference cannot be eliminated by the electronic control as described above.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an integral type power steering device capable of eliminating the left-right torque difference.
  • the volume of the second pressure chamber increases.
  • the first pitch circle radius which is the pitch circle radius when the piston moves in the direction of
  • the second pitch circle radius which is the pitch circle radius when the piston moves in the direction in which the volume of the second pressure chamber decreases.
  • the radii were formed at different radii so that the difference between the magnitude of the output torque of the sector gear with respect to the steering operation in one direction of the wheel rotation and the magnitude of the output torque with respect to the steering operation in the other direction of the steering wheel was reduced.
  • the piston moves in the direction in which the volume of the second pressure chamber increases.
  • the first pitch circle radius which is the pitch circle radius
  • the second pitch circle radius which is the pitch circle radius when the piston moves in the direction in which the volume of the second pressure chamber decreases, is one of the rotational directions of the steering wheel.
  • the teeth are formed in tooth surfaces having different radii so that the difference between the magnitude of the output torque of the sector gear with respect to the steering operation toward the side and the magnitude of the output torque with respect to the steering operation toward the other side in the rotation direction of the steering wheel is reduced.
  • FIG. 1 is a cross-sectional view of an integral power steering apparatus according to a first embodiment. It is an expanded sectional view of the sector gear of Example 1.
  • FIG. 3 is a pitch circle radius characteristic diagram showing the relationship between the steering angle of the steering wheel and the pitch circle radius in the power steering apparatus of the first embodiment.
  • FIG. 5 is a schematic diagram illustrating a state in which the rack 70 moves to the right side in FIG. 4 when the left steering is turned in the first embodiment.
  • FIG. 6 is a schematic diagram illustrating a state in which switching is performed after left steering in the first embodiment and the rack moves to the left in FIG. 5.
  • FIG. 7 is a schematic diagram illustrating a state in which the rack 70 moves to the right side in FIG. 6 when the right steering is turned in the first embodiment.
  • FIG. 8 is a schematic diagram illustrating a state in which switching is performed after the right steering in the first embodiment and the rack moves to the left side in FIG. 7. It is a characteristic view showing the gear characteristic of the variable gear ratio gear of Example 1.
  • FIG. 1 is a longitudinal sectional view of the device 1 before being mounted on a vehicle, cut along a plane that passes through the rotation center of the input shaft 2 and is perpendicular to the rotation axis of the sector gear 8.
  • the x-axis is provided in the direction in which the input shaft 2 extends, and the side of the steering wheel (the right side in FIG. 1) is the positive direction.
  • the apparatus 1 is housed in a housing 10, an input shaft (stub shaft) 2 connected to a steering hole, and the housing 10, and the cylindrical interior of the housing 10 is divided into a first pressure chamber 16 and a second pressure chamber 17.
  • the first reduction gear ball screw mechanism 5
  • the rack 70 is provided, and the sector gear 8 that meshes with the rack teeth 71 of the rack 70 to convert the axial motion of the rack 70 (piston 7) into rotational motion and is disposed in the second pressure chamber 17.
  • the second reduction gear, the control valve 6 that selectively supplies hydraulic oil supplied from an external hydraulic source to the first pressure chamber 16 and the second pressure chamber 17, and the rotational movement of the sector gear 8 are linked to each other Transmission mechanism (pitman arm) ), And when the steering wheel rotation angle (steering angle) reaches the required steering angle, the pressure chamber on the high pressure side is depressurized (the pressure chamber on the low pressure side is increased), and the stroke of the piston 7 (moving in the x-axis direction) And a limiter valve 9 which is a stroke limiter to be limited.
  • the rack teeth 71 of the rack 70 are rack teeth in which a plurality of teeth arranged in the axial direction have substantially the same reduction ratio, that is, a constant gear ratio (CGR).
  • the device 1 is accommodated in the housing 10.
  • the housing 10 is formed in a cylindrical shape with a metal material such as aluminum, and includes a steering housing 11 that houses the piston 7 and the sector gear 8, and a valve housing 12 that is provided on the x-axis positive direction side of the steering housing 11 and houses the control valve 6. And a cover 13 for sealing the opening of the valve housing 12 on the positive side of the x-axis in a liquid-tight manner.
  • the input shaft 2 is rotatably supported on the cover 13 via a ball bearing 130.
  • a hollow portion 20 is formed at the end of the input shaft 2 on the negative side of the x axis, and the end of the torsion bar 3 on the positive side of the x axis is inserted into the hollow portion 20.
  • the outer periphery of the input shaft 2 on the x-axis negative direction side is inserted inside the rotor 60 formed in a substantially cylindrical shape.
  • the input shaft 2, the torsion bar 3, and the rotor 60 are fixed by a pin 30 so as to rotate integrally.
  • a screw shaft 4 is connected to the input shaft 2 via a torsion bar 3.
  • a valve body 61 is formed integrally with the screw shaft 4 on the positive side of the screw shaft 4 in the x-axis direction.
  • the valve body 61 is rotatably supported on the valve housing 12 via a ball bearing 120.
  • a hollow rotor accommodating portion 610 is formed in the valve body 61, and the rotor 60 is rotatably accommodated in the rotor accommodating portion 610.
  • a hollow torsion bar accommodating portion 40 is formed on the screw shaft 4 so as to communicate with the rotor accommodating portion 610, and the torsion bar 3 is accommodated in the torsion bar accommodating portion 40.
  • the outer periphery of the x-axis negative direction end of the input shaft 2 is inserted inside the x-axis positive direction end of the torsion bar accommodating portion 40 and is rotatably supported by a bearing 41.
  • the end of the torsion bar 3 on the negative side of the x axis is fixed to the end of the screw shaft 4 on the negative side of the x axis by a pin 31.
  • a piston 7 is provided on the screw shaft 4 via a ball screw mechanism 5 so as to be movable in the x-axis direction.
  • the piston 7 is accommodated in a cylindrical cylinder portion 14 formed in the steering housing 11.
  • the end of the cylinder part 14 on the x-axis positive direction side is open, but the end of the x-axis negative direction side is closed by the bottom part 140.
  • the sector gear 8 is accommodated in a gear chamber 15 formed in the steering housing 11 and in a direction orthogonal to the cylinder portion 14.
  • a pitman arm is connected to the sector gear 8.
  • a piston seal 70 a is attached to the outer periphery of the piston 7.
  • the cylinder portion 14 is divided into a first pressure chamber 16 and a second pressure chamber 17 by the piston seal 70a to constitute a power cylinder.
  • the first pressure chamber 16 is located on the x-axis negative direction side of the piston seal 70 a of the cylinder portion 14, and the second pressure chamber 17 is located on the x-axis positive direction side of the piston seal 70 a of the cylinder portion 14 and the gear chamber 15.
  • the control valve 6 has a rotor 60 and a valve body 61.
  • a plurality of switching grooves 600 extending in the x-axis direction are provided at predetermined intervals.
  • a plurality of first axial grooves 611 and second axial grooves 612 extending in the x-axis direction are formed at predetermined intervals on the inner periphery of the rotor housing portion 610 of the valve body 61 facing the outer periphery of the rotor 60.
  • a suction side circumferential groove 121 and a first pressure chamber side circumferential groove 122 extending in the circumferential direction are formed on the inner circumferential surface of the valve housing 12 facing the outer circumference of the valve body 61 so as to be separated from each other in the x-axis direction. ing.
  • the valve body 61 has a first oil passage 613 communicating with the first axial groove 611 and the first pressure chamber side circumferential groove 122, and a second oil communicating with the second axial groove 612 and the second pressure chamber 17.
  • a third oil passage 615 that connects the passage 614 and the inner periphery and the outer periphery of the valve body 61 is formed.
  • the valve housing 12 is connected to a suction port 123 connected to an external oil pump, a fourth oil passage 124 communicating the suction port 123 and the suction side circumferential groove 121, and a first pressure chamber side circumferential groove 122.
  • a fifth oil passage 125 is formed.
  • a sixth oil passage 126 that connects the fifth oil passage 125 and the first pressure chamber 16 is formed in the steering housing 11.
  • the switching groove 600 of the rotor 60, the first axial groove 611 of the valve body 61, and the second axial groove 612 of the hydraulic oil from the oil pump are caused by relative rotation between the input shaft 2 (rotor 60) and the valve body 61.
  • a control valve 6 for switching the supply destination between the first pressure chamber 16 and the second pressure chamber 17 is formed.
  • the piston 7 is provided with a communication passage provided so as to communicate the first pressure chamber 16 and the second pressure chamber 17, and a first bleeding valve 21 is provided on the communication passage.
  • the first bleeding valve 21 is composed of a spherical valve body provided in the middle of the communication path, valve seats formed on both sides of the valve body, and a pair of springs that urge the valve body from both sides. Yes.
  • the pair of springs causes the valve body to float from the valve seats on both sides.
  • the pressure chamber 16 and the second pressure chamber 17 are in communication with each other. Since the device 1 is mounted on the vehicle so that the input shaft 2 faces vertically upward, the air accumulated in the first pressure chamber 16 is discharged to the second pressure chamber 17 side through the first bleeding valve 21. Is done.
  • valve housing 21 is provided with a communication passage that communicates the second pressure chamber 17 and a discharge port (not shown), and a second bleeding valve having the same structure as the first bleeding valve 21 is provided on the communication passage. 22 is provided. Therefore, in the state where no differential pressure is generated between the second pressure chamber 17 and the discharge port, the air accumulated in the second pressure chamber 17 or the air discharged into the second pressure chamber via the first bleeding valve 21 Is discharged to the reservoir tank through the second bleeding valve and the discharge port.
  • the first bleeding valve 21 and the second bleeding valve 22 are seated on the valve seat and block the communication of the communication path.
  • the pressures in the first pressure chamber 16 and the second pressure chamber 17 can be appropriately maintained.
  • the second bleeding valve 22 can be omitted if necessary.
  • the limiter valve 9 reduces the pressure in the second pressure chamber 17 to the first pressure chamber 16 side when the piston 7 moves to the first predetermined position in the direction in which the volume of the first pressure chamber 16 decreases (x-axis negative direction).
  • the pressure in the first pressure chamber 16 is And a second valve 9b that discharges to the pressure chamber 17 side.
  • a first valve 9a is mounted on the steering housing 11 toward the first pressure chamber 16, and a second valve 9b is mounted on the second pressure chamber 17 (gear chamber 15).
  • the first valve 9a and the second valve 9b are connected by a seventh oil passage 18 formed in the steering housing 11.
  • FIG. 1 shows the first valve 9a and the second valve 9b in a state before the device 1 is mounted on the vehicle (before the position of the valve body 91 or the pin 95 is adjusted).
  • Steping assist function When the steering wheel is steered so that the piston 7 moves to the first pressure chamber 16 side (x-axis negative direction side), hydraulic oil is supplied to the second pressure chamber 17 by the control valve 6. That is, the hydraulic oil discharged from the oil pump is suction port 123 ⁇ fourth oil passage 124 ⁇ first axial groove 611 ⁇ third oil passage 615 ⁇ switching groove 600 ⁇ second axial groove 612 ⁇ second oil passage. It passes through 614 and is supplied to the second pressure chamber 17. Since the pressure in the second pressure chamber 17 rises and an assist force that moves the piston 7 toward the first pressure chamber 16 acts by this pressure, the driver can steer the steering wheel with a light force.
  • hydraulic oil is supplied to the first pressure chamber 16 by the control valve 6. That is, the hydraulic oil discharged from the oil pump is suction port 123 ⁇ fourth oil passage 124 ⁇ first axial groove 611 ⁇ third oil passage 615 ⁇ switching groove 600 ⁇ first axial groove 611 ⁇ first oil passage 613 ⁇ the first pressure chamber side circumferential groove 122 ⁇ the fifth oil passage 125 ⁇ the sixth oil passage 126 is passed through and supplied to the first pressure chamber 16. Since the pressure in the first pressure chamber 16 rises and an assist force that moves the piston 7 toward the second pressure chamber 17 acts by this pressure, the driver can steer the steering wheel with a light force.
  • the first pressure chamber 16 has a smaller hydraulic chamber volume and higher hydraulic rigidity than the second pressure chamber 17 in which the rack 70 and the sector gear 8 are accommodated.
  • the rack 70 and the sector gear 8 are accommodated in the second pressure chamber 17, the housing volume becomes relatively large with respect to the first pressure chamber 16.
  • the tooth surface shape of the sector gear 8 has been devised, thereby eliminating the left-right torque difference and providing a variable gear ratio (variable gear ratio) to change the steering gear ratio. It was decided to.
  • the tooth surface shape of the sector gear 8 will be described.
  • FIG. 2 is an enlarged sectional view of the sector gear according to the first embodiment.
  • the sector gear 8 has a center O1 that is a connection point of the pitman arms and serves as a rotational center of the rotational motion. And it has a plurality of teeth which are arranged in the circumferential direction of the circumference having the center O1 and meshes with the rack teeth 71 of the rack 70, and in this embodiment, three teeth are provided. Further, a variable gear ratio is provided in which the plurality of teeth arranged in the circumferential direction have different reduction ratios.
  • the steering gear ratio which is the ratio of the amount of rotation of the sector gear 8 to the amount of movement of the rack 70, differs between right steering and left operation. It is formed (see FIG. 8).
  • the left tooth in FIG. 2 is a tooth a
  • the central tooth is a tooth b
  • the right tooth is a tooth c.
  • the teeth a and c are formed in different shapes on the left and right tooth surfaces of each tooth a, tooth b, and tooth c, and the tooth b is formed in a symmetrical shape.
  • the rack teeth 71 and the sector gear 8 have meshing points at neutral positions b1 and b2 located substantially at the center of the tooth surface of the tooth b.
  • the angle at which the meshing point moves from the tooth surface b (1) of the tooth b to the tooth surface c (2) of the tooth c is set as a predetermined angle, and the output is different from when the tooth b is in contact with the tooth b.
  • the characteristic is set.
  • the tooth surface c (2) is formed on the tooth tip side with respect to the intermediate portion in the tooth height direction of the tooth c, and details will be described later.
  • the angle at which the meshing point moves from the tooth surface b (3) of the tooth b to the tooth surface a (4) of the tooth a is set as a predetermined angle, and the output is different from when the tooth b is in contact with the tooth b.
  • the characteristic is set.
  • the tooth surface a (4) is formed on the tooth tip side with respect to the intermediate portion in the tooth height direction of the tooth a, and details will be described later.
  • the distance connecting the rotation center O1 of the sector gear 8 and the mesh point is defined as the pitch circle radius PCR.
  • a large pitch circle radius means that the distance between the rotation center O1 and the meshing point is large, and the lever ratio increases, so that even if the same force is applied from the rack 70 to the sector gear 8, the pitman arm rotates. This means that the moving torque increases.
  • FIG. 3 is a pitch circle radius characteristic diagram showing the relationship between the steering angle of the steering wheel and the pitch circle radius in the power steering apparatus of the first embodiment. Near the center of the operating angle is a region achieved by the tooth b, the tooth surface of the tooth b has a symmetrical shape, and the pitch circle radius is also symmetrical on the left and right. Further, the (1) state and the (1-1) state are set to the same pitch circle radius PCR, and the (3) state and the (3-1) state are set to the same pitch circle radius PCR. FIG. 3 also shows the pitch circle radii in the teeth a and c in addition to the teeth b, and the setting of the pitch circle radius will be described later.
  • FIGS. 4 to 7 are schematic explanatory diagrams showing the hydraulic pressure relationship in the hydraulic chamber and the direction in which the force acts when turning and turning back at a certain steering angle during left and right steering.
  • FIG. 4 shows a state where the rack 70 moves to the right side in FIG. 4 when the left steering is turned. Since the first hydraulic chamber 16 is a high pressure chamber and the second hydraulic chamber 17 is a low pressure chamber, the meshing point is the tooth surface a (4) of the tooth a. At this time, high pressure is introduced into the first hydraulic pressure chamber 16 having high hydraulic rigidity, so that a large pitch circle radius is not necessary, and the pitch circle radius is set as r (small).
  • the state of FIG. 4 is defined as (i) state.
  • FIG. 5 shows a state in which switching back after left steering is performed and the rack 70 moves to the left side in FIG. Since the first hydraulic chamber 16 is a low-pressure chamber and the second hydraulic chamber 17 is a high-pressure chamber, the meshing point is on the tooth surface a (4-1) of the tooth a. At this time, since a high pressure is introduced into the second hydraulic chamber 17 having low hydraulic rigidity, a large pitch circle radius is required, and the pitch circle radius is set to r (large) (> r (small)). Yes.
  • the state of FIG. 5 is defined as (ii) state.
  • Fig. 6 shows a state in which the rack 70 moves to the left side in Fig. 6 when the right steering is turned. Since the first hydraulic chamber 16 is a low pressure chamber and the second hydraulic chamber 17 is a high pressure chamber, the meshing point is on the tooth surface c (2) of the tooth c. At this time, since the high pressure is introduced into the second hydraulic pressure chamber 17 with low hydraulic rigidity, and a larger pitch circle radius is required than when turning the left steering, the pitch circle radius is set as R (large). Yes.
  • the state of FIG. 6 is defined as (iii) state.
  • FIG. 7 shows a state in which switching is performed after the right steering and the rack 70 moves to the right side in FIG. Since the first hydraulic chamber 16 is a high pressure chamber and the second hydraulic chamber 17 is a low pressure chamber, the meshing point is on the tooth surface c (2-1) of the tooth c. At this time, since a high pressure is introduced into the first hydraulic chamber 16 having high hydraulic rigidity, a large pitch circle radius is not required, so the pitch circle radius is R (small) ( ⁇ R (large)). Is set.
  • the state of FIG. 7 is defined as (iv) state.
  • the state (ii) in FIG. 5 represents a state at an angle of the state (4-1) in FIG.
  • the second hydraulic chamber 17 having a large volume is a high-pressure chamber, so the lever ratio needs to be increased. Therefore, a larger pitch circle radius r (large) than the pitch circle radius r (small) in the state (i) is set.
  • the state (iii) in FIG. 6 represents the state at a certain angle of the state (2) in FIG. Since the high pressure is introduced into the second hydraulic chamber 17 having a low hydraulic rigidity during the right steering, it is necessary to increase the lever ratio as compared with the left steering. Therefore, pitch circle radii R (small) and R (large) larger than the pitch circle radii r (small) and r (large) during left steering are set.
  • the state (iv) in FIG. 7 represents the state at a certain angle of the state (2-1) in FIG.
  • the first hydraulic chamber 16 with high hydraulic rigidity is a high-pressure chamber, so there is no need to increase the lever ratio. Therefore, a pitch circle radius R (small) smaller than the pitch circle radius R (large) in the state (iii) is set.
  • the tooth surface profile of a (4) and c (2) is different from the tooth surface profile composed of a (4-1) and c (2-1).
  • the rack teeth 71 of the rack 70 are formed with a constant gear ratio, there is no need to adjust the molding of the rack 70 when changing the steering gear ratio, and the rack teeth can be easily formed.
  • FIG. 8 is a characteristic diagram showing gear characteristics of the variable gear ratio gear of the first embodiment.
  • the variable gear ratio with respect to the steering angle is set to be larger as the right steering is performed. Accordingly, the steering amount of the steered wheel with respect to the operation amount of the steering wheel maintains the same relationship regardless of whether the steering wheel is steered to the left or right.
  • regions where different pitch circle radii are formed on the teeth a and teeth c are the rack teeth 71 in both the cutting process for forming the tooth surface shape of the rack teeth 71 or the sector gear 8 by cutting and the polishing process for polishing. Alternatively, it is formed by processing the sector gear 8. By forming the region in the cutting process, a larger output characteristic difference can be corrected.
  • a housing 10 formed in a cylindrical shape with a metal material, an input shaft 2 connected to a steering wheel and a torsion bar 3 connected to the torsion bar housing portion 40 ( Output shaft) and the piston 7 provided in the housing 11 so as to be movable in the axial direction when the direction in which the rotation shaft of the torsion bar accommodating portion 40 extends is defined as the axial direction.
  • a piston seal 70a (seal part) that is divided into a first pressure chamber 16 provided on one side in the axial direction and a second pressure chamber 17 provided on the other side in the axial direction; Hydraulic fluid supplied from an external hydraulic pressure source, which is accommodated in the provided valve housing 12 (rotary valve accommodating portion), is actuated by relative rotation between the input shaft 2 and the torsion bar accommodating portion 40.
  • Hydraulic fluid supplied from an external hydraulic pressure source which is accommodated in the provided valve housing 12 (rotary valve accommodating portion)
  • the ball screw mechanism 5 (first shaft) that converts the rotational motion of the rotor 60 (rotary valve) supplied to the first pressure chamber 16 and the second pressure chamber 17 and the torsion bar housing portion 40 into the axial motion of the piston 7.
  • a rack tooth 71 formed on one side of the piston 7 in the axial direction from the piston seal 70a of the piston 7 and disposed in the second pressure chamber, and in the second pressure chamber 17 so as to mesh with the rack tooth 71
  • a second reduction gear configured to transmit a steering force to the steered wheels by converting the axial motion of the piston 7 into a rotational motion, and a rack tooth 71 and a sector gear 8.
  • the pitch circle radii r (small) and R (small) (second pitch circle radius) when the piston 7 moves in the direction are the magnitude of the output torque of the sector gear 8 with respect to the steering operation in one direction of the steering wheel rotation. And different radii so as to reduce the difference in the magnitude of the output torque with respect to the steering operation to the other side in the rotation direction of the steering wheel.
  • the pitch circle radii r (large) and R (large) are formed to be larger than the pitch circle radii r (small) and R (small).
  • the rack teeth 71 are constant gear ratio rack teeth in which a plurality of teeth arranged in the axial direction have substantially the same reduction ratio, and the sector gear 8 rotates.
  • Each of the plurality of 8 teeth is provided such that the profiles of the pair of tooth surfaces formed on both sides in the circumferential direction across the tooth tip are different from each other.
  • the rack tooth 71 side is composed of constant teeth, there is no need to adjust the pitch circle radius on the rack side, and the rack 70 can be easily formed.
  • the sector gear 8 is a variable gear having a plurality of teeth a, b, c arranged in the circumferential direction around the rotation center O1 of the rotational motion and having different reduction ratios.
  • the gear ratio sector gear, the difference between r (large), R (large) and r (small), R (small) is formed on both sides of the sector gear 8 across the tooth tip with each tooth
  • the pair of tooth surfaces are formed so as to have different profiles.
  • the sector gear 8 is a variable gear ratio gear, a tooth polishing work by computer position control is required for profile formation.
  • the variable gear ratio forming step and the pitch circle radius adjustment step can be performed simultaneously.
  • the difference between r (large), R (large) and r (small), R (small) is a plurality of teeth a, b, c of the sector gear 8
  • the pair of tooth surfaces are provided so that the profiles of the pair of tooth surfaces are different from each other on the tooth tip side with respect to the intermediate portion in the tooth height direction.
  • the intermediate portion of the tooth surface in the tooth height direction is near the meshing point when the handle is in the neutral position, and the meshing point when the steering angle is a predetermined angle or more is on the tooth tip side.
  • a difference in output characteristics for each steering direction is large. Therefore, adjustment according to the difference in output characteristics can be performed by adjusting the profile on the tooth tip side.
  • r (large), R (large) and r (small), R (small) are formed to be larger than r (small) and R (small) in the region where the rack teeth 71 and the sector gear 8 mesh.
  • the region formed so that r (large) and R (large) are larger than r (small) and R (small) is the rack teeth 71 or It is formed by processing the rack teeth 71 or the sector gear 8 in both the cutting process for forming the tooth surface shape of the sector gear 8 by cutting and the polishing process for polishing.
  • a larger output characteristic difference can be corrected by forming the region in the cutting process. Further, by forming the region in the polishing process, it is possible to correct the output characteristic difference more precisely.
  • the rack teeth 71 are constant gear ratio rack teeth in which a plurality of teeth arranged in the axial direction have substantially the same reduction ratio, and the sector gear 8 rotates.
  • a plurality of teeth a, b, c arranged in the circumferential direction around the rotation center O1 of the motion, and the difference between r (large), R (large) and r (small), R (small) is the sector gear
  • Each of the plurality of 8 teeth is provided such that the profiles of a pair of tooth surfaces formed on both sides in the circumferential direction across the tooth tip are different from each other.
  • the rack tooth 71 side is composed of constant teeth, there is no need to adjust the pitch circle radius on the rack side, and the rack 70 can be easily formed.
  • the sector gear 8 is a variable gear having a plurality of teeth a, b, and c arranged in the circumferential direction around the rotation center O1 of the rotational motion and having different reduction ratios.
  • the gear ratio sector gear, the difference between r (large), R (large) and r (small), R (small) is formed on both sides of the sector gear 8 across the tooth tip with each tooth
  • the pair of tooth surfaces are formed so that the profiles thereof are different from each other.
  • the sector gear 8 is a variable gear ratio gear, a tooth polishing work by computer position control is required for profile formation.
  • the variable gear ratio forming step and the pitch circle radius adjustment step can be performed simultaneously.
  • the difference between r (large), R (large) and r (small), R (small) is a plurality of teeth a, b, c of the sector gear 8 Of the pair of tooth surfaces, the profile of the pair of tooth surfaces is formed so as to be different from each other on the tooth tip side of the middle portion in the tooth height direction.
  • the middle portion in the tooth height direction of the tooth surface is near the handle neutral, and the tooth tip side is when the steering angle is equal to or greater than a predetermined angle.
  • a steering angle is equal to or greater than a predetermined angle, a difference in output characteristics for each steering direction is large. Therefore, adjustment according to the difference in output characteristics can be performed by performing adjustment on the tooth tip side.
  • the difference between r (large), R (large) and r (small), R (small) is predetermined in the clockwise direction from the neutral position of the steering wheel.
  • the first pitch circle radius and the second pitch circle radius in the region where the rack teeth 71 and the sector gear 8 mesh with each other are R (large) so that the difference between the magnitude of the output torque of the sector gear with respect to the steering operation in one direction of rotation of the steering wheel and the magnitude of the output torque with respect to the steering operation in the direction of rotation of the steering wheel is reduced.
  • R (large), r (small), and R (small) are formed at different radii.
  • the magnitude of the output torque of the sector gear 8 with respect to the steering operation in one direction of rotation of the steering wheel and the output torque with respect to the steering operation in the other direction of rotation of the steering wheel are the tooth surface shape of the rack tooth 71 or sector gear 8. It is formed by processing the rack teeth 71 or the sector gear 8 in both the cutting process formed by cutting and the polishing process for polishing.
  • a larger output characteristic difference can be corrected by forming the region in the cutting process. Further, by forming the region in the polishing process, it is possible to correct the output characteristic difference more precisely.
  • a housing 10 formed in a cylindrical shape with a metal material, an input shaft 2 connected to the steering wheel, and a torsion bar 3 connected to the torsion bar accommodating portion 40 ( Output shaft), and the direction in which the rotation axis of the torsion bar accommodating portion 40 extends is defined as the axial direction, the piston 7 provided in the housing 11 so as to be movable in the axial direction, A piston seal 70a (seal part) that is divided into a first pressure chamber 16 provided on one side in the axial direction and a second pressure chamber 17 provided on the other side in the axial direction, and a housing 10 are provided.
  • a second gear reducer configured to transmit a steering force to the steered wheels by converting the axial movement of the piston 7 into a rotational movement, and the meshing of the rack teeth 71 and the sector gear 8
  • the second speed reducer uses the pitch circle radius r when the piston 7 moves in the direction in which the volume of the second pressure chamber 17 increases.
  • the pitch circle radii r (small) and R (small) (second pitch radii) when the piston 7 moves are the magnitude of the output torque of the sector gear 8 and the steering for the steering operation in one direction of the steering wheel rotation. Tooth surfaces having different radii are formed so that the difference in the magnitude of the output torque with respect to the steering operation toward the other side in the rotational direction of the wheel is reduced.
  • the difference between r (large), R (large) and r (small), R (small) is predetermined in the clockwise direction from the neutral position of the steering wheel.
  • R (L), R (L) and r (S) in the region where the rack teeth 71 and the sector gear 8 mesh with each other when the wheel rotates more than an angle or when the steering wheel rotates more than a predetermined angle counterclockwise from the neutral position.
  • R (small) so that the difference between the magnitude of the output torque of the sector gear 8 for the steering operation in one direction of the steering wheel rotation and the magnitude of the output torque for the steering operation in the other direction of the steering wheel is reduced.
  • the magnitude of the output torque of the sector gear with respect to a steering operation in one direction of rotation of the steering wheel and the output torque with respect to the steering operation in the other direction of rotation of the steering wheel The region where r (large), R (large) and r (small), R (small) are formed at different radii so that the difference in size of the steering wheel is different from the neutral position of the steering wheel in the clockwise direction.
  • the magnitude of the output torque of the sector gear with respect to a steering operation in one direction of rotation of the steering wheel and the output torque with respect to the steering operation in the other direction of rotation of the steering wheel is the rack tooth 71 or the tooth of the sector gear 8 It is formed by processing the rack teeth 71 or the sector gear 8 in both the cutting process for forming the surface shape by cutting and the polishing process for polishing.
  • a larger output characteristic difference can be corrected by forming the region in the cutting process. Further, by forming the region in the polishing process, it is possible to correct the output characteristic difference more precisely.
  • the liquid leakage portion can be specified while generating a braking force.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Transmission Devices (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

The purpose of the present invention is to provide an integral power steering device in which left-right torque differences can be resolved. In this power steering device, when the distance between the meshing point of a rack tooth (71) and a sector gear (8) and the center of rotation (O1) of the sector gear (8) is the pitch radius, the pitch radii r (large) and R (large) when a piston moves in the direction in which the volume of one pressure chamber increases and the pitch radii r (small) and R (small) when the piston moves in the direction in which the volume of the one pressure chamber decreases are formed so as to be mutually differing radii, such that reduced is the difference between the size of the output torque of the sector gear (8) with respect to a steering operation in one turning direction of a steering wheel and the size of the output torque with respect to a steering operation in the other turning direction of the steering wheel.

Description

パワーステアリング装置Power steering device
 本発明は、パワーステアリング装置に関する。 The present invention relates to a power steering device.
 従来、パワーステアリング装置において、左右の操舵操作における操舵トルク差を解消する技術として特許文献1の技術が知られている。この公報には、電子制御によってアシストトルクを付与するにあたり、車両の操舵負荷の左右差を相殺する特性を与えることで左右トルク差を解消している。 Conventionally, in a power steering apparatus, the technique of Patent Document 1 is known as a technique for eliminating a steering torque difference between left and right steering operations. In this publication, when the assist torque is applied by electronic control, the left-right torque difference is eliminated by giving a characteristic that cancels the left-right difference of the steering load of the vehicle.
  特許文献1:実開平10-278818号公報 Patent Document 1: Japanese Utility Model Publication No. 10-278818
 しかし、電動式ではなく、ロータリバルブを備えた油圧式のパワーステアリング装置にあっては、上記のような電子制御によって左右トルク差を解消させることができないという問題が有った。 However, a hydraulic power steering device that is not an electric type and has a rotary valve has a problem that the left-right torque difference cannot be eliminated by the electronic control as described above.
 本発明は、上記課題に鑑みてなされたものであり、左右トルク差を解消可能なインテグラル型のパワーステアリング装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an integral type power steering device capable of eliminating the left-right torque difference.
 上記目的を達成するため、本発明のパワーステアリング装置では、ラック歯とセクタギアとの噛合い点とセクタギアの回転中心との距離をピッチ円半径としたとき、第2圧力室の容積が増大する方向にピストンが移動するときのピッチ円半径である第1ピッチ円半径と、第2圧力室の容積が減少する方向にピストンが移動するときのピッチ円半径である第2ピッチ円半径とを、ステアリングホイールの回転方向一方側への操舵操作に対するセクタギアの出力トルクの大きさとステアリングホイールの回転方向他方側への操舵操作に対する出力トルクの大きさとの差が減少するように互いに異なる半径に形成した。 In order to achieve the above object, in the power steering device of the present invention, when the distance between the meshing point of the rack teeth and the sector gear and the rotation center of the sector gear is the radius of the pitch circle, the volume of the second pressure chamber increases. The first pitch circle radius, which is the pitch circle radius when the piston moves in the direction of, and the second pitch circle radius, which is the pitch circle radius when the piston moves in the direction in which the volume of the second pressure chamber decreases, is steered. The radii were formed at different radii so that the difference between the magnitude of the output torque of the sector gear with respect to the steering operation in one direction of the wheel rotation and the magnitude of the output torque with respect to the steering operation in the other direction of the steering wheel was reduced.
 また、本発明のパワーステアリング装置では、ラック歯とセクタギアとの噛合い点とセクタギアの回転中心との距離をピッチ円半径としたとき、第2圧力室の容積が増大する方向にピストンが移動するときのピッチ円半径である第1ピッチ円半径と、第2圧力室の容積が減少する方向にピストンが移動するときのピッチ円半径である第2ピッチ円半径とが、ステアリングホイールの回転方向一方側への操舵操作に対するセクタギアの出力トルクの大きさとステアリングホイールの回転方向他方側への操舵操作に対する出力トルクの大きさとの差が減少するように互いに異なる半径を有する歯面形状に形成される。 In the power steering device of the present invention, when the distance between the meshing point of the rack teeth and the sector gear and the rotation center of the sector gear is the pitch circle radius, the piston moves in the direction in which the volume of the second pressure chamber increases. The first pitch circle radius, which is the pitch circle radius, and the second pitch circle radius, which is the pitch circle radius when the piston moves in the direction in which the volume of the second pressure chamber decreases, is one of the rotational directions of the steering wheel. The teeth are formed in tooth surfaces having different radii so that the difference between the magnitude of the output torque of the sector gear with respect to the steering operation toward the side and the magnitude of the output torque with respect to the steering operation toward the other side in the rotation direction of the steering wheel is reduced.
実施例1のインテグラル型パワーステアリング装置の断面図である。1 is a cross-sectional view of an integral power steering apparatus according to a first embodiment. 実施例1のセクタギアの拡大断面図である。It is an expanded sectional view of the sector gear of Example 1. 実施例1のパワーステアリング装置においてステアリングホイールの操舵角とピッチ円半径との関係を表すピッチ円半径特性図である。FIG. 3 is a pitch circle radius characteristic diagram showing the relationship between the steering angle of the steering wheel and the pitch circle radius in the power steering apparatus of the first embodiment. 実施例1の左操舵切り込み時にラック70が図4中右側に移動する状態を表す概略図である。FIG. 5 is a schematic diagram illustrating a state in which the rack 70 moves to the right side in FIG. 4 when the left steering is turned in the first embodiment. 実施例1の左操舵後に切り戻しを行い、ラックが図5中左側に移動する状態を表す概略図である。FIG. 6 is a schematic diagram illustrating a state in which switching is performed after left steering in the first embodiment and the rack moves to the left in FIG. 5. 実施例1の右操舵切り込み時にラック70が図6中右側に移動する状態を表す概略図である。FIG. 7 is a schematic diagram illustrating a state in which the rack 70 moves to the right side in FIG. 6 when the right steering is turned in the first embodiment. 実施例1の右操舵後に切り戻しを行い、ラックが図7中左側に移動する状態を表す概略図である。FIG. 8 is a schematic diagram illustrating a state in which switching is performed after the right steering in the first embodiment and the rack moves to the left side in FIG. 7. 実施例1のバリアブルギアレシオギアのギア特性を表す特性図である。発明を実施するための形態 以下、本発明のインテグラル型パワーステアリング装置を実現する形態を、図面に基づき説明する。It is a characteristic view showing the gear characteristic of the variable gear ratio gear of Example 1. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a mode for realizing an integral type power steering device of the present invention will be described with reference to the drawings.
  まず、図1を用いて実施例1のインテグラル型パワーステアリング装置(以下、装置1という)の全体構成について説明する。図1は、車両に装着する前の装置1を、入力軸2の回転中心を通りセクタギア8の回転軸に垂直な平面で切った縦断面図である。以下、説明のため、入力軸2が延びる方向にx軸を設け、ステアリングホイールの側(図1の右側)を正方向とする。 First, the overall configuration of the integral type power steering apparatus (hereinafter referred to as apparatus 1) of the first embodiment will be described with reference to FIG. FIG. 1 is a longitudinal sectional view of the device 1 before being mounted on a vehicle, cut along a plane that passes through the rotation center of the input shaft 2 and is perpendicular to the rotation axis of the sector gear 8. Hereinafter, for the sake of explanation, the x-axis is provided in the direction in which the input shaft 2 extends, and the side of the steering wheel (the right side in FIG. 1) is the positive direction.
 装置1は、ハウジング10と、ステアリングホールに接続される入力軸(スタブシャフト)2と、ハウジング10に収容され、ハウジング10の筒状内部を第1圧力室16及び第2圧力室17に隔成するピストン7と、入力軸2とピストン7の間に設けられ、入力軸2の回転運動をピストン7の軸方向運動に変換する第1減速機(ボールねじ機構5)と、ピストン7の外周に設けられたラック70と、ラック70のラック歯71に噛合いラック70(ピストン7)の軸方向運動を回転運動に変換すると共に、第2圧力室17内に配置されるセクタギア8とから構成される第2減速機と、外部の油圧源から供給される作動油を選択的に第1圧力室16と第2圧力室17とに供給するコントロールバルブ6と、セクタギア8の回転方向運動をリンク機構を介して操舵輪に伝達する伝達機構(ピットマンアーム)と、操舵輪の回転角(操舵角)が必要な操舵角に達すると高圧側の圧力室を減圧(低圧側の圧力室を増圧)してピストン7のストローク(x軸方向移動)を制限するストロークリミッタであるリミッタバルブ9と、から構成されている。尚、ラック70のラック歯71は、軸方向に並んだ複数の歯同士がほぼ同じ減速比を有する、すなわちコンスタントギアレシオ(CGR)を有するラック歯である。 The apparatus 1 is housed in a housing 10, an input shaft (stub shaft) 2 connected to a steering hole, and the housing 10, and the cylindrical interior of the housing 10 is divided into a first pressure chamber 16 and a second pressure chamber 17. On the outer periphery of the piston 7, the first reduction gear (ball screw mechanism 5) provided between the input shaft 2 and the piston 7 for converting the rotational motion of the input shaft 2 into the axial motion of the piston 7. The rack 70 is provided, and the sector gear 8 that meshes with the rack teeth 71 of the rack 70 to convert the axial motion of the rack 70 (piston 7) into rotational motion and is disposed in the second pressure chamber 17. The second reduction gear, the control valve 6 that selectively supplies hydraulic oil supplied from an external hydraulic source to the first pressure chamber 16 and the second pressure chamber 17, and the rotational movement of the sector gear 8 are linked to each other Transmission mechanism (pitman arm) ), And when the steering wheel rotation angle (steering angle) reaches the required steering angle, the pressure chamber on the high pressure side is depressurized (the pressure chamber on the low pressure side is increased), and the stroke of the piston 7 (moving in the x-axis direction) And a limiter valve 9 which is a stroke limiter to be limited. Note that the rack teeth 71 of the rack 70 are rack teeth in which a plurality of teeth arranged in the axial direction have substantially the same reduction ratio, that is, a constant gear ratio (CGR).
 装置1はハウジング10内に収容されている。ハウジング10はアルミ等の金属材料で筒状に形成され、ピストン7及びセクタギア8を収容するステアリングハウジング11と、ステアリングハウジング11のx軸正方向側に設けられ、コントロールバルブ6を収容するバルブハウジング12と、バルブハウジング12のx軸正方向側の開口部を液密に封止するカバー13とから構成されている。 The device 1 is accommodated in the housing 10. The housing 10 is formed in a cylindrical shape with a metal material such as aluminum, and includes a steering housing 11 that houses the piston 7 and the sector gear 8, and a valve housing 12 that is provided on the x-axis positive direction side of the steering housing 11 and houses the control valve 6. And a cover 13 for sealing the opening of the valve housing 12 on the positive side of the x-axis in a liquid-tight manner.
 入力軸2は、カバー13にボールベアリング130を介して回転自在に軸支されている。入力軸2のx軸負方向側の端部には中空部20が形成されており、この中空部20にトーションバー3のx軸正方向側の端部が挿入されている。入力軸2のx軸負方向側の外周は、略円筒状に形成されたロータ60の内側に挿入されている。入力軸2、トーションバー3、及びロータ60はピン30によって固定され、一体に回転するようになっている。入力軸2には、トーションバー3を介してねじ軸4が接続されている。ねじ軸4のx軸正方向側には、ねじ軸4と一体にバルブボディ61が形成されている。バルブボディ61は、バルブハウジング12にボールベアリング120を介して回転自在に軸支されている。バルブボディ61内には中空のロータ収容部610が形成されており、ロータ収容部610にはロータ60が回転自在に収容されている。ねじ軸4には、ロータ収容部610と連通して、中空のトーションバー収容部40が形成されており、トーションバー収容部40にはトーションバー3が収容されている。入力軸2のx軸負方向端の外周は、トーションバー収容部40のx軸正方向端の内側に挿入され、ベアリング41によって回転自在に軸支されている。トーションバー3のx軸負方向側の端部はねじ軸4のx軸負方向側の端部とピン31によって固定されている。 The input shaft 2 is rotatably supported on the cover 13 via a ball bearing 130. A hollow portion 20 is formed at the end of the input shaft 2 on the negative side of the x axis, and the end of the torsion bar 3 on the positive side of the x axis is inserted into the hollow portion 20. The outer periphery of the input shaft 2 on the x-axis negative direction side is inserted inside the rotor 60 formed in a substantially cylindrical shape. The input shaft 2, the torsion bar 3, and the rotor 60 are fixed by a pin 30 so as to rotate integrally. A screw shaft 4 is connected to the input shaft 2 via a torsion bar 3. A valve body 61 is formed integrally with the screw shaft 4 on the positive side of the screw shaft 4 in the x-axis direction. The valve body 61 is rotatably supported on the valve housing 12 via a ball bearing 120. A hollow rotor accommodating portion 610 is formed in the valve body 61, and the rotor 60 is rotatably accommodated in the rotor accommodating portion 610. A hollow torsion bar accommodating portion 40 is formed on the screw shaft 4 so as to communicate with the rotor accommodating portion 610, and the torsion bar 3 is accommodated in the torsion bar accommodating portion 40. The outer periphery of the x-axis negative direction end of the input shaft 2 is inserted inside the x-axis positive direction end of the torsion bar accommodating portion 40 and is rotatably supported by a bearing 41. The end of the torsion bar 3 on the negative side of the x axis is fixed to the end of the screw shaft 4 on the negative side of the x axis by a pin 31.
 ねじ軸4には、ボールねじ機構5を介してピストン7がx軸方向移動可能に設けられている。ピストン7は、ステアリングハウジング11内に形成された円筒状のシリンダ部14内に収容されている。シリンダ部14のx軸正方向側端は開口しているが、x軸負方向側端は底部140によって閉塞されている。セクタギア8は、ステアリングハウジング11内であってシリンダ部14と直交する方向に形成されたギア室15に収容されている。セクタギア8には、ピットマンアームが接続されている。ピストン7の外周には、ピストンシール70aが装着されている。ピストンシール70aにより、シリンダ部14が第1圧力室16と第2圧力室17とに隔成されてパワーシリンダを構成している。シリンダ部14のピストンシール70aよりx軸負方向側が第1圧力室16となり、シリンダ部14のピストンシール70aよりx軸正方向側及びギア室15が第2圧力室17となっている。 A piston 7 is provided on the screw shaft 4 via a ball screw mechanism 5 so as to be movable in the x-axis direction. The piston 7 is accommodated in a cylindrical cylinder portion 14 formed in the steering housing 11. The end of the cylinder part 14 on the x-axis positive direction side is open, but the end of the x-axis negative direction side is closed by the bottom part 140. The sector gear 8 is accommodated in a gear chamber 15 formed in the steering housing 11 and in a direction orthogonal to the cylinder portion 14. A pitman arm is connected to the sector gear 8. A piston seal 70 a is attached to the outer periphery of the piston 7. The cylinder portion 14 is divided into a first pressure chamber 16 and a second pressure chamber 17 by the piston seal 70a to constitute a power cylinder. The first pressure chamber 16 is located on the x-axis negative direction side of the piston seal 70 a of the cylinder portion 14, and the second pressure chamber 17 is located on the x-axis positive direction side of the piston seal 70 a of the cylinder portion 14 and the gear chamber 15.
 コントロールバルブ6は、ロータ60とバルブボディ61を有している。ロータ60の外周には、x軸方向に延びる切替溝600が複数所定の間隔で設けられている。ロータ60の外周に対向するバルブボディ61のロータ収容部610の内周には、x軸方向に延びる第1軸方向溝611と第2軸方向溝612が複数所定の間隔で形成されている。バルブボディ61の外周に対向するバルブハウジング12の内周面には、周方向に延びる吸入側周方向溝121と第1圧力室側周方向溝122とがx軸方向に互いに離間して形成されている。 The control valve 6 has a rotor 60 and a valve body 61. On the outer periphery of the rotor 60, a plurality of switching grooves 600 extending in the x-axis direction are provided at predetermined intervals. A plurality of first axial grooves 611 and second axial grooves 612 extending in the x-axis direction are formed at predetermined intervals on the inner periphery of the rotor housing portion 610 of the valve body 61 facing the outer periphery of the rotor 60. A suction side circumferential groove 121 and a first pressure chamber side circumferential groove 122 extending in the circumferential direction are formed on the inner circumferential surface of the valve housing 12 facing the outer circumference of the valve body 61 so as to be separated from each other in the x-axis direction. ing.
 バルブボディ61には、第1軸方向溝611と第1圧力室側周方向溝122とを連通する第1油路613、第2軸方向溝612と第2圧力室17と連通する第2油路614、及びバルブボディ61の内周と外周とを連通する第3油路615が形成されている。バルブハウジング12には、外部のオイルポンプと接続する吸入ポート123と、吸入ポート123と吸入側周方向溝121とを連通する第4油路124と、第1圧力室側周方向溝122に接続する第5油路125が形成されている。ステアリングハウジング11には、第5油路125と第1圧力室16とを連通する第6油路126が形成されている。ロータ60の切替溝600、バルブボディ61の第1軸方向溝611、第2軸方向溝612は、入力軸2(ロータ60)とバルブボディ61との相対回転によって、オイルポンプからの作動油の供給先を第1圧力室16または第2圧力室17との間で切り替えるコントロールバルブ6を形成している。 The valve body 61 has a first oil passage 613 communicating with the first axial groove 611 and the first pressure chamber side circumferential groove 122, and a second oil communicating with the second axial groove 612 and the second pressure chamber 17. A third oil passage 615 that connects the passage 614 and the inner periphery and the outer periphery of the valve body 61 is formed. The valve housing 12 is connected to a suction port 123 connected to an external oil pump, a fourth oil passage 124 communicating the suction port 123 and the suction side circumferential groove 121, and a first pressure chamber side circumferential groove 122. A fifth oil passage 125 is formed. A sixth oil passage 126 that connects the fifth oil passage 125 and the first pressure chamber 16 is formed in the steering housing 11. The switching groove 600 of the rotor 60, the first axial groove 611 of the valve body 61, and the second axial groove 612 of the hydraulic oil from the oil pump are caused by relative rotation between the input shaft 2 (rotor 60) and the valve body 61. A control valve 6 for switching the supply destination between the first pressure chamber 16 and the second pressure chamber 17 is formed.
 尚、ピストン7には、第1圧力室16と第2圧力室17とを連通するように設けられた連通路が設けられ、この連通路上には、第1ブリーディング弁21が設けられている。この第1ブリーディング弁21は、連通路の途中に設けられた球状の弁体、この弁体の両側に形成された弁座、更に弁体を両側から付勢する1対のスプリングから構成されている。エンジンオフ時や直進走行時等では、第1圧力室16と第2圧力室17との差圧が発生しないため、1対のスプリングにより弁体が両側の弁座から浮いた状態となり、第1圧力室16と第2圧力室17とは連通状態となる。装置1は、入力軸2が鉛直方向上側に向くように車両に搭載されるため、第1圧力室16内に溜まったエアは、第1ブリーディングバルブ21を介して第2圧力室17側に排出される。 The piston 7 is provided with a communication passage provided so as to communicate the first pressure chamber 16 and the second pressure chamber 17, and a first bleeding valve 21 is provided on the communication passage. The first bleeding valve 21 is composed of a spherical valve body provided in the middle of the communication path, valve seats formed on both sides of the valve body, and a pair of springs that urge the valve body from both sides. Yes. When the engine is off or running straight ahead, there is no differential pressure between the first pressure chamber 16 and the second pressure chamber 17, so the pair of springs causes the valve body to float from the valve seats on both sides. The pressure chamber 16 and the second pressure chamber 17 are in communication with each other. Since the device 1 is mounted on the vehicle so that the input shaft 2 faces vertically upward, the air accumulated in the first pressure chamber 16 is discharged to the second pressure chamber 17 side through the first bleeding valve 21. Is done.
 一方、バルブハウジング21には、第2圧力室17と排出ポート(不図示)とを連通する連通路が設けられ、この連通路上には、第1ブリーディング弁21と同じ構造を有する第2ブリーディング弁22が設けられている。よって、第2圧力室17と排出ポートとの間に差圧が発生しない状態では、第2圧力室17に溜まったエアや、第1ブリーディング弁21を介して第2圧力室に排出されたエアが、第2ブリーディング弁および排出ポートを介してリザーバタンクに排出される。 On the other hand, the valve housing 21 is provided with a communication passage that communicates the second pressure chamber 17 and a discharge port (not shown), and a second bleeding valve having the same structure as the first bleeding valve 21 is provided on the communication passage. 22 is provided. Therefore, in the state where no differential pressure is generated between the second pressure chamber 17 and the discharge port, the air accumulated in the second pressure chamber 17 or the air discharged into the second pressure chamber via the first bleeding valve 21 Is discharged to the reservoir tank through the second bleeding valve and the discharge port.
 第1ブリーディング弁21および第2ブリーディング弁22は、連通路の両側の室同士の間に差圧が発生した場合には、弁体が弁座に着座し、連通路の連通を遮断するため、第1圧力室16および第2圧力室17の圧力を適切に保持することができる。 When a differential pressure is generated between the chambers on both sides of the communication path, the first bleeding valve 21 and the second bleeding valve 22 are seated on the valve seat and block the communication of the communication path. The pressures in the first pressure chamber 16 and the second pressure chamber 17 can be appropriately maintained.
 尚、第2ブリーディング弁22は、必要に応じて省略することができる。 The second bleeding valve 22 can be omitted if necessary.
 リミッタバルブ9は、第1圧力室16の容積が減少する方向(x軸負方向)で第1所定位置までピストン7が移動するとき、第2圧力室17内の圧力を第1圧力室16側に排出する第1バルブ9aと、第2圧力室17の容積が減少する方向(x軸正方向)で第2所定位置までピストン7が移動するとき、第1圧力室16内の圧力を第2圧力室17側に排出する第2バルブ9bとを有している。ステアリングハウジング11には、第1圧力室16に向かって第1バルブ9aが装着され、第2圧力室17(ギヤ室15)に向かって第2バルブ9bが装着されている。第1バルブ9aと第2バルブ9bとはステアリングハウジング11内に形成された第7油路18によって接続されている。図1は、装置1が車両に装着される前(バルブ本体91ないしピン95の位置が調整される前)の状態における第1バルブ9a及び第2バルブ9bを示す。 The limiter valve 9 reduces the pressure in the second pressure chamber 17 to the first pressure chamber 16 side when the piston 7 moves to the first predetermined position in the direction in which the volume of the first pressure chamber 16 decreases (x-axis negative direction). When the piston 7 moves to the second predetermined position in the direction in which the volume of the first valve 9a and the second pressure chamber 17 decreases (the x-axis positive direction) decreases, the pressure in the first pressure chamber 16 is And a second valve 9b that discharges to the pressure chamber 17 side. A first valve 9a is mounted on the steering housing 11 toward the first pressure chamber 16, and a second valve 9b is mounted on the second pressure chamber 17 (gear chamber 15). The first valve 9a and the second valve 9b are connected by a seventh oil passage 18 formed in the steering housing 11. FIG. 1 shows the first valve 9a and the second valve 9b in a state before the device 1 is mounted on the vehicle (before the position of the valve body 91 or the pin 95 is adjusted).
 (ステアリングアシスト機能)
  ステアリングホイールをピストン7が第1圧力室16の側(x軸負方向側)に移動するように操舵すると、コントロールバルブ6により第2圧力室17に作動油が供給される。すなわち、オイルポンプから吐出された作動油は、吸入ポート123→第4油路124→第1軸方向溝611→第3油路615→切替溝600→第2軸方向溝612→第2油路614を通過して第2圧力室17に供給される。第2圧力室17内の圧力が上昇し、この圧力によりピストン7を第1圧力室16側に移動させるアシスト力が作用するため、ドライバはステアリングホイールを軽い力で操舵することができる。
(Steering assist function)
When the steering wheel is steered so that the piston 7 moves to the first pressure chamber 16 side (x-axis negative direction side), hydraulic oil is supplied to the second pressure chamber 17 by the control valve 6. That is, the hydraulic oil discharged from the oil pump is suction port 123 → fourth oil passage 124 → first axial groove 611 → third oil passage 615 → switching groove 600 → second axial groove 612 → second oil passage. It passes through 614 and is supplied to the second pressure chamber 17. Since the pressure in the second pressure chamber 17 rises and an assist force that moves the piston 7 toward the first pressure chamber 16 acts by this pressure, the driver can steer the steering wheel with a light force.
 一方、ステアリングホイールをピストン7が第2圧力室17の側(x軸正方向側)に移動するように操舵すると、コントロールバルブ6により第1圧力室16に作動油が供給される。すなわち、オイルポンプから吐出された作動油は、吸入ポート123→第4油路124→第1軸方向溝611→第3油路615→切替溝600→第1軸方向溝611→第1油路613→第1圧力室側周方向溝122→第5油路125→第6油路126を通過して第1圧力室16に供給される。第1圧力室16内の圧力が上昇し、この圧力によりピストン7を第2圧力室17側に移動させるアシスト力が作用するため、ドライバはステアリングホイールを軽い力で操舵することができる。 On the other hand, when the steering wheel is steered so that the piston 7 moves to the second pressure chamber 17 side (x-axis positive direction side), hydraulic oil is supplied to the first pressure chamber 16 by the control valve 6. That is, the hydraulic oil discharged from the oil pump is suction port 123 → fourth oil passage 124 → first axial groove 611 → third oil passage 615 → switching groove 600 → first axial groove 611 → first oil passage 613 → the first pressure chamber side circumferential groove 122 → the fifth oil passage 125 → the sixth oil passage 126 is passed through and supplied to the first pressure chamber 16. Since the pressure in the first pressure chamber 16 rises and an assist force that moves the piston 7 toward the second pressure chamber 17 acts by this pressure, the driver can steer the steering wheel with a light force.
 (セクタギアの構成について)
 次に、実施例1のセクタギア8の構成の詳細について説明する。上記構成により左右操舵時にアシストトルクを付与するにあたり、左右の操舵時に同じアシストトルクを付与していたとしても、実際の操舵時には若干左右にトルク差が生じることが判明した。実施例1の場合、第1圧力室16は、ラック70やセクタギア8が収装される第2圧力室17よりも液圧室の容積が小さく、液圧剛性が高い。一方、第2圧力室17には、ラック70やセクタギア8が収容されるため、ハウジング容積が第1圧力室16に対して相対的に大きくなる。その結果、圧力によるハウジングの膨張変形の影響度または圧力室からの作動液の漏れ量が大きくなる可能性があり、液圧剛性の低下によって操舵トルクの左右差を招くおそれがある。
(Sector gear configuration)
Next, details of the configuration of the sector gear 8 of the first embodiment will be described. When applying the assist torque during left and right steering with the above configuration, it has been found that even if the same assist torque is applied during left and right steering, a slight torque difference occurs between the left and right during actual steering. In the first embodiment, the first pressure chamber 16 has a smaller hydraulic chamber volume and higher hydraulic rigidity than the second pressure chamber 17 in which the rack 70 and the sector gear 8 are accommodated. On the other hand, since the rack 70 and the sector gear 8 are accommodated in the second pressure chamber 17, the housing volume becomes relatively large with respect to the first pressure chamber 16. As a result, there is a possibility that the degree of influence of expansion deformation of the housing due to pressure or the amount of hydraulic fluid leaking from the pressure chamber may increase, and a decrease in hydraulic rigidity may cause a difference in left and right steering torque.
 そこで、この左右トルク差を解消すべく、セクタギア8の歯面形状を工夫し、これにより左右トルク差の解消を図り、かつ、可変ギア比(バリアブルギアレシオ)を備えることで、ステアリングギア比を変更することとした。以下、セクタギア8の歯面形状について説明する。 Therefore, in order to eliminate this left-right torque difference, the tooth surface shape of the sector gear 8 has been devised, thereby eliminating the left-right torque difference and providing a variable gear ratio (variable gear ratio) to change the steering gear ratio. It was decided to. Hereinafter, the tooth surface shape of the sector gear 8 will be described.
 図2は実施例1のセクタギアの拡大断面図である。セクタギア8は、ピットマンアームの連結点であって回転運動の回転中心となる中心O1を有する。そして、中心O1を有する円周の円周方向に並び、ラック70のラック歯71と噛み合う複数の歯を有し、本実施例では3つの歯を備えている。更に、この円周方向に並んだ複数の歯同士が互いに異なる減速比を有するバリアブルギアレシオを備えている。この歯は、ラック歯71と噛み合ってセクタギア8を回動させる際、ラック70の移動量に対するセクタギア8の回動量の比であるステアリングギア比が、右操舵時と左操作時とで異なるように形成されている(図8参照)。 FIG. 2 is an enlarged sectional view of the sector gear according to the first embodiment. The sector gear 8 has a center O1 that is a connection point of the pitman arms and serves as a rotational center of the rotational motion. And it has a plurality of teeth which are arranged in the circumferential direction of the circumference having the center O1 and meshes with the rack teeth 71 of the rack 70, and in this embodiment, three teeth are provided. Further, a variable gear ratio is provided in which the plurality of teeth arranged in the circumferential direction have different reduction ratios. When this tooth meshes with the rack tooth 71 to rotate the sector gear 8, the steering gear ratio, which is the ratio of the amount of rotation of the sector gear 8 to the amount of movement of the rack 70, differs between right steering and left operation. It is formed (see FIG. 8).
 ここで、図2の左側の歯を歯a、中央の歯を歯b、右側の歯を歯cとする。歯a及び歯cは、各歯a、歯b、歯cの左右の歯面が異なる形状に形成され、歯bは左右対称形状に形成されている。ステアリングホイールが中立位置の状態では、ラック歯71とセクタギア8とは歯bの歯面略中央に位置する中立位置b1及びb2に噛み合い点を有する。 Here, the left tooth in FIG. 2 is a tooth a, the central tooth is a tooth b, and the right tooth is a tooth c. The teeth a and c are formed in different shapes on the left and right tooth surfaces of each tooth a, tooth b, and tooth c, and the tooth b is formed in a symmetrical shape. In the state where the steering wheel is in the neutral position, the rack teeth 71 and the sector gear 8 have meshing points at neutral positions b1 and b2 located substantially at the center of the tooth surface of the tooth b.
 ステアリングホイールを右側に操舵すると、ラック70が図1中の左側に進み、ラック歯71とセクタギア8とは、操舵開始時は歯bの歯面b(1)に噛み合い点を有し、この噛み合い点は歯面b(1)上を図2中右側下方に向けて移動する(以下、この移動状態を(1)状態と記載する。)。その後、ステアリングホイールを更に右側に操舵することで歯cの歯面c(2)とラック歯71との間に噛み合い点が移動し、この噛み合い点は歯面c(2)上を図2中右側下方に向けて移動する(以下、この移動状態を(2)状態と記載する。)。ここで、歯bの歯面b(1)から歯cの歯面c(2)に噛み合い点が移動する角度が所定角度として設定されており、歯bと当接しているときとは異なる出力特性が設定されている。歯面c(2)は歯cの歯丈方向における中間部よりも歯先側に形成されており、詳細については後述する。 When the steering wheel is steered to the right, the rack 70 moves to the left in FIG. 1, and the rack tooth 71 and the sector gear 8 have meshing points on the tooth surface b (1) of the tooth b at the start of steering. The point moves on the tooth surface b (1) toward the lower right side in FIG. 2 (hereinafter, this movement state is referred to as the (1) state). Thereafter, by further steering the steering wheel to the right, the mesh point moves between the tooth surface c (2) of the tooth c and the rack tooth 71, and this mesh point moves on the tooth surface c (2) in FIG. It moves toward the lower right side (hereinafter, this movement state is described as (2) state). Here, the angle at which the meshing point moves from the tooth surface b (1) of the tooth b to the tooth surface c (2) of the tooth c is set as a predetermined angle, and the output is different from when the tooth b is in contact with the tooth b. The characteristic is set. The tooth surface c (2) is formed on the tooth tip side with respect to the intermediate portion in the tooth height direction of the tooth c, and details will be described later.
 ステアリングホイールを右側に切り込んだ状態から、今度は中立位置に向けて切り戻しを行うと、ラック歯71と歯cの歯面c(2-1)との間に噛み合い点が移動する。そして、歯面c(2-1)上を噛み合い点が移動(以下、この移動状態を(2-1)状態と記載する。)した後、歯bの歯面b(1-1)に噛み合い点が移動し、その後中立位置b2まで移動(以下、この移動状態を(1-1)状態と記載する。)する。 When the steering wheel is cut to the right and then turned back toward the neutral position, the meshing point moves between the rack tooth 71 and the tooth surface c (2-1) of the tooth c. Then, after the meshing point moves on the tooth surface c (2-1) (hereinafter, this movement state is described as the (2-1) state), it meshes with the tooth surface b (1-1) of the tooth b. The point moves and then moves to the neutral position b2 (hereinafter, this moving state is referred to as the (1-1) state).
 同様に、ステアリングホイールを左側に操舵すると、ラック70が図1中の右側に進み、ラック歯71とセクタギア8とは、操舵開始時は歯bの歯面b(3)に噛み合い点を有し、この噛み合い点は歯面b(3)上を図2中左側下方に向けて移動する(以下、この移動状態を(3)状態と記載する。)。その後、ステアリングホイールを更に左側に操舵することで、歯面b(3)からラック歯71と歯aの歯面a(4)との間に噛み合い点が移動し、この噛み合い点は歯面a(4)上を図2中左側下方に向けて移動する(以下、この移動状態を(4)と記載する。)。ここで、歯bの歯面b(3)から歯aの歯面a(4)に噛み合い点が移動する角度が所定角度として設定されており、歯bと当接しているときとは異なる出力特性が設定されている。歯面a(4)は歯aの歯丈方向における中間部よりも歯先側に形成されており、詳細については後述する。 Similarly, when the steering wheel is steered to the left, the rack 70 advances to the right in FIG. 1, and the rack tooth 71 and the sector gear 8 have a meshing point on the tooth surface b (3) of the tooth b at the start of steering. The meshing point moves on the tooth surface b (3) toward the lower left side in FIG. 2 (hereinafter, this moving state is referred to as the (3) state). Thereafter, by further steering the steering wheel to the left side, the meshing point moves from the tooth surface b (3) between the rack tooth 71 and the tooth surface a (4) of the tooth a, and this meshing point is the tooth surface a. (4) Move upward on the left side in FIG. 2 (hereinafter, this movement state is described as (4)). Here, the angle at which the meshing point moves from the tooth surface b (3) of the tooth b to the tooth surface a (4) of the tooth a is set as a predetermined angle, and the output is different from when the tooth b is in contact with the tooth b. The characteristic is set. The tooth surface a (4) is formed on the tooth tip side with respect to the intermediate portion in the tooth height direction of the tooth a, and details will be described later.
 ステアリングホイールを左側に切り込んだ状態から、今度は中立位置に向けて切り戻しを行うと、ラック歯71と歯aの歯面a(4-1)との間に噛み合い点が移動する。そして、歯面a(4-1)上を噛み合い点が移動(以下、この移動状態を(4-1)状態と記載する。)した後、歯bの歯面b(3-1)に噛み合い点が移動し、その後中立位置b1まで移動(以下、この移動状態を(3-1)状態と記載する。)する。 When the steering wheel is cut to the left side and then turned back toward the neutral position, the meshing point moves between the rack tooth 71 and the tooth surface a (4-1) of the tooth a. Then, after the meshing point moves on the tooth surface a (4-1) (hereinafter, this movement state is described as the (4-1) state), it meshes with the tooth surface b (3-1) of the tooth b. The point moves and then moves to the neutral position b1 (hereinafter, this moving state is referred to as (3-1) state).
 ここで、セクタギア8の回転中心O1と噛み合い点とを結ぶ距離をピッチ円半径PCRと定義する。ピッチ円半径が大きいとは、回転中心O1と噛み合い点との距離が大きいことを意味し、レバー比が大きくなるため、ラック70からセクタギア8に対して同じ力が作用してもピットマンアームを回動するトルクが増大することを意味する。 Here, the distance connecting the rotation center O1 of the sector gear 8 and the mesh point is defined as the pitch circle radius PCR. A large pitch circle radius means that the distance between the rotation center O1 and the meshing point is large, and the lever ratio increases, so that even if the same force is applied from the rack 70 to the sector gear 8, the pitman arm rotates. This means that the moving torque increases.
 図3は実施例1のパワーステアリング装置においてステアリングホイールの操舵角とピッチ円半径との関係を表すピッチ円半径特性図である。作動角の中央付近は歯bによって達成される領域であり、歯bの歯面は左右対称形状であり、ピッチ円半径も左右で対称形状とされている。また、(1)状態と(1-1)状態とは同じピッチ円半径PCRに設定され、(3)状態と(3-1)状態とも同じピッチ円半径PCRに設定されている。図3には、歯bに加えて歯a及び歯cにおけるピッチ円半径も記載されており、このピッチ円半径の設定については後述する。 FIG. 3 is a pitch circle radius characteristic diagram showing the relationship between the steering angle of the steering wheel and the pitch circle radius in the power steering apparatus of the first embodiment. Near the center of the operating angle is a region achieved by the tooth b, the tooth surface of the tooth b has a symmetrical shape, and the pitch circle radius is also symmetrical on the left and right. Further, the (1) state and the (1-1) state are set to the same pitch circle radius PCR, and the (3) state and the (3-1) state are set to the same pitch circle radius PCR. FIG. 3 also shows the pitch circle radii in the teeth a and c in addition to the teeth b, and the setting of the pitch circle radius will be described later.
 図4~7は、左右操舵時のある操舵角における切り込み時及び切り戻し時の液圧室の液圧関係及び力の作用する方向を表す概略説明図である。図4は左操舵切り込み時にラック70が図4中右側に移動する状態を表す。第1液圧室16が高圧室となり、第2液圧室17が低圧室となっているため、噛み合い点は歯aの歯面a(4)である。このとき、液圧剛性の高い第1液圧室16に高圧が導入されており、さほど大きなピッチ円半径は必要なく、ピッチ円半径はr(小)として設定されている。この図4の状態を(i)状態と定義する。 FIGS. 4 to 7 are schematic explanatory diagrams showing the hydraulic pressure relationship in the hydraulic chamber and the direction in which the force acts when turning and turning back at a certain steering angle during left and right steering. FIG. 4 shows a state where the rack 70 moves to the right side in FIG. 4 when the left steering is turned. Since the first hydraulic chamber 16 is a high pressure chamber and the second hydraulic chamber 17 is a low pressure chamber, the meshing point is the tooth surface a (4) of the tooth a. At this time, high pressure is introduced into the first hydraulic pressure chamber 16 having high hydraulic rigidity, so that a large pitch circle radius is not necessary, and the pitch circle radius is set as r (small). The state of FIG. 4 is defined as (i) state.
 図5は左操舵後に切り戻しを行い、ラック70が図5中左側に移動する状態を表す。第1液圧室16が低圧室となり、第2液圧室17が高圧室となっているため、噛み合い点は歯aの歯面a(4-1)にある。このとき、液圧剛性の低い第2液圧室17に高圧が導入されているため、大きなピッチ円半径を必要とし、ピッチ円半径はr(大)(>r(小))に設定されている。この図5の状態を(ii)状態と定義する。 FIG. 5 shows a state in which switching back after left steering is performed and the rack 70 moves to the left side in FIG. Since the first hydraulic chamber 16 is a low-pressure chamber and the second hydraulic chamber 17 is a high-pressure chamber, the meshing point is on the tooth surface a (4-1) of the tooth a. At this time, since a high pressure is introduced into the second hydraulic chamber 17 having low hydraulic rigidity, a large pitch circle radius is required, and the pitch circle radius is set to r (large) (> r (small)). Yes. The state of FIG. 5 is defined as (ii) state.
 図6は右操舵切り込み時にラック70が図6中左側に移動する状態を表す。第1液圧室16が低圧室となり、第2液圧室17が高圧室となっているため、噛み合い点は歯cの歯面c(2)にある。このとき、液圧剛性の低い第2液圧室17に高圧が導入されており、左操舵切り込み時よりも大きなピッチ円半径を必要とするため、ピッチ円半径はR(大)として設定されている。この図6の状態を(iii)状態と定義する。 Fig. 6 shows a state in which the rack 70 moves to the left side in Fig. 6 when the right steering is turned. Since the first hydraulic chamber 16 is a low pressure chamber and the second hydraulic chamber 17 is a high pressure chamber, the meshing point is on the tooth surface c (2) of the tooth c. At this time, since the high pressure is introduced into the second hydraulic pressure chamber 17 with low hydraulic rigidity, and a larger pitch circle radius is required than when turning the left steering, the pitch circle radius is set as R (large). Yes. The state of FIG. 6 is defined as (iii) state.
 図7は右操舵後に切り戻しを行い、ラック70が図7中右側に移動する状態を表す。第1液圧室16が高圧室となり、第2液圧室17が低圧室となっているため、噛み合い点は歯cの歯面c(2-1)にある。このとき、液圧剛性の高い第1液圧室16に高圧が導入されているため、さほど大きなピッチ円半径を必要としないため、ピッチ円半径はR(小)(<R(大))に設定されている。この図7の状態を(iv)状態と定義する。 FIG. 7 shows a state in which switching is performed after the right steering and the rack 70 moves to the right side in FIG. Since the first hydraulic chamber 16 is a high pressure chamber and the second hydraulic chamber 17 is a low pressure chamber, the meshing point is on the tooth surface c (2-1) of the tooth c. At this time, since a high pressure is introduced into the first hydraulic chamber 16 having high hydraulic rigidity, a large pitch circle radius is not required, so the pitch circle radius is R (small) (<R (large)). Is set. The state of FIG. 7 is defined as (iv) state.
 図3に戻って歯a及び歯cのピッチ円半径の設定について説明する。中立位置から左操舵を開始すると、(3)状態を経て(4)状態へと移行する。図4の(i)状態は図3の(4)状態のある角度における状態を表している。左操舵時は液圧剛性の高い第1液圧室16に高圧が導入される制御であるため、右操舵時に比べてレバー比を小さくする必要がある。よって、右操舵時のピッチ円半径R(小),R(大)よりも小さなピッチ円半径r(小),r(大)が設定されている。 Referring back to FIG. 3, the setting of the pitch circle radius of the teeth a and c will be described. When left steering is started from the neutral position, the state shifts to the (4) state through the (3) state. The state (i) in FIG. 4 represents the state at a certain angle of the state (4) in FIG. During left steering, since the high pressure is introduced into the first hydraulic chamber 16 having high hydraulic rigidity, it is necessary to make the lever ratio smaller than that during right steering. Therefore, pitch circle radii r (small) and r (large) smaller than pitch circle radii R (small) and R (large) during right steering are set.
 次に、左操舵切り込み時から中立位置に戻す操舵を行うと、図3の(4-1)状態を経て、(3-1)状態へと移行する。図5の(ii)状態は図3の(4-1)状態のある角度における状態を表している。左操舵後の切り戻し時は、容積の大きな第2液圧室17が高圧室となっているため、レバー比を大きくする必要がある。よって、(i)状態のピッチ円半径r(小)よりも大きなピッチ円半径r(大)が設定されている。 Next, when steering is performed to return to the neutral position from the time of turning the left steering, the state shifts to the (3-1) state via the (4-1) state in FIG. The state (ii) in FIG. 5 represents a state at an angle of the state (4-1) in FIG. When switching back after left steering, the second hydraulic chamber 17 having a large volume is a high-pressure chamber, so the lever ratio needs to be increased. Therefore, a larger pitch circle radius r (large) than the pitch circle radius r (small) in the state (i) is set.
 中立状態から右操舵を開始すると、(1)状態を経て(2)状態へと移行する。図6の(iii)状態は図3の(2)状態のある角度における状態を表している。右操舵時は液圧剛性の低い第2液圧室17に高圧が導入される制御であるため、左操舵時に比べてレバー比を大きくする必要がある。よって、左操舵時のピッチ円半径r(小),r(大)よりも大きなピッチ円半径R(小),R(大)が設定されている。 When starting the right steering from the neutral state, it shifts to the (2) state via the (1) state. The state (iii) in FIG. 6 represents the state at a certain angle of the state (2) in FIG. Since the high pressure is introduced into the second hydraulic chamber 17 having a low hydraulic rigidity during the right steering, it is necessary to increase the lever ratio as compared with the left steering. Therefore, pitch circle radii R (small) and R (large) larger than the pitch circle radii r (small) and r (large) during left steering are set.
 次に、右操舵切り込み時から中立位置に戻す操舵を行うと、(2-1)状態を経て、(1-1)状態へと移行する。図7の(iv)状態は図3の(2-1)状態のある角度における状態を表している。 Next, when steering is performed to return to the neutral position from the time of turning the right steering, the state shifts to the (1-1) state via the (2-1) state. The state (iv) in FIG. 7 represents the state at a certain angle of the state (2-1) in FIG.
 右操舵後の切り戻し時は、液圧剛性の高い第1液圧室16が高圧室となっているため、レバー比を大きくする必要が無い。よって、(iii)状態のピッチ円半径R(大)よりも小さなピッチ円半径R(小)が設定されている。 When turning back after right steering, the first hydraulic chamber 16 with high hydraulic rigidity is a high-pressure chamber, so there is no need to increase the lever ratio. Therefore, a pitch circle radius R (small) smaller than the pitch circle radius R (large) in the state (iii) is set.
 すなわち、a(4)やc(2)の歯面プロファイルは、a(4-1)やc(2-1)から構成される歯面プロファイルと異なる形としている。このとき、ラック70のラック歯71はギア比一定に形成されているため、ステアリングギア比を変更する際に、ラック70を成形する際の調整が不要であり、ラック歯を容易に成形できる。 That is, the tooth surface profile of a (4) and c (2) is different from the tooth surface profile composed of a (4-1) and c (2-1). At this time, since the rack teeth 71 of the rack 70 are formed with a constant gear ratio, there is no need to adjust the molding of the rack 70 when changing the steering gear ratio, and the rack teeth can be easily formed.
 図8は実施例1のバリアブルギアレシオギアのギア特性を表す特性図である。上述のように、操舵角に応じてピッチ円半径を設定し、かつバリアブルギアレシオギアとして設定するにあたっては、大きなピッチ円半径となるほど、より多くセクタギア8を回転させる必要がある。よって、図8に示すように、操舵角に対するバリアブルギア比を右操舵ほど大きくなるように設定している。これにより、ステアリングホイールの操作量に対する操舵輪の操舵量は左右のどちらに操舵しても同じ関係を維持する。 FIG. 8 is a characteristic diagram showing gear characteristics of the variable gear ratio gear of the first embodiment. As described above, when the pitch circle radius is set according to the steering angle and is set as the variable gear ratio gear, it is necessary to rotate the sector gear 8 more as the pitch circle radius becomes larger. Therefore, as shown in FIG. 8, the variable gear ratio with respect to the steering angle is set to be larger as the right steering is performed. Accordingly, the steering amount of the steered wheel with respect to the operation amount of the steering wheel maintains the same relationship regardless of whether the steering wheel is steered to the left or right.
 また、歯aや歯cに異なるピッチ円半径が形成される領域は、ラック歯71またはセクタギア8の歯面形状を切削加工により形成する切削工程および研磨を行う研磨工程の両工程においてラック歯71またはセクタギア8を加工することにより形成される。切削工程において前記領域を形成することにより、より大きな出力特性差の補正をすることができる。 Further, regions where different pitch circle radii are formed on the teeth a and teeth c are the rack teeth 71 in both the cutting process for forming the tooth surface shape of the rack teeth 71 or the sector gear 8 by cutting and the polishing process for polishing. Alternatively, it is formed by processing the sector gear 8. By forming the region in the cutting process, a larger output characteristic difference can be corrected.
 更に研磨工程においても前記領域を形成することにより、より精密な出力特性差の補正をすることができる。
実施例1の効果
  以下、実施例1の装置1が奏する効果を列挙する。
Further, by forming the region in the polishing process, it is possible to correct the output characteristic difference more precisely.
Effects of First Embodiment Hereinafter, effects that the device 1 of the first embodiment has will be listed.
  (1)金属材料で筒状に形成されたハウジング10と、ステアリングホイールと接続される入力軸2とトーションバー3を介して接続され、ハウジング10内に回転自在に設けられるトーションバー収容部40(出力軸)と、トーションバー収容部40の回転軸が延びる方向を軸方向としたとき、ハウジング11内に軸方向に移動可能に設けられたピストン7と、ピストン7に設けられ、ハウジング11の内部を、軸方向の一方側に設けられた第1圧力室16と、軸方向の他方側に設けられた第2圧力室17と、に隔成するピストンシール70a(シール部)と、ハウジング10に設けられたバルブハウジング12(ロータリバルブ収容部)と、バルブハウジング12に収容され、入力軸2とトーションバー収容部40との相対回転に伴い作動し、外部の液圧源から供給される作動液を選択的に前記第1圧力室16と第2圧力室17とに供給するロータ60(ロータリバルブ)と、トーションバー収容部40の回転運動をピストン7の軸方向の運動へ変換するボールねじ機構5(第1減速機)と、ピストン7のピストンシール70aよりも軸方向の一方側に形成され、第2圧力室内に配置されるラック歯71と、ラック歯71と噛合うように第2圧力室17内に設けられ、ピストン7の軸方向の運動を回転運動に変換することにより転舵輪に操舵力を伝達するセクタギア8と、から構成される第2減速機と、を備え、ラック歯71とセクタギア8との噛合い点とセクタギア8の回転中心O1との距離をピッチ円半径PCRとしたとき、第2減速機は、第2圧力室17の容積が増大する方向にピストン7が移動するときのピッチ円半径r(大),R(大)(第1ピッチ円半径)と、第2圧力室17の容積が減少する方向にピストン7が移動するときのピッチ円半径r(小),R(小)(第2ピッチ円半径)とが、ステアリングホイールの回転方向一方側への操舵操作に対するセクタギア8の出力トルクの大きさとステアリングホイールの回転方向他方側への操舵操作に対する出力トルクの大きさの差が減少するように互いに異なる半径に形成される。 (1) A housing 10 formed in a cylindrical shape with a metal material, an input shaft 2 connected to a steering wheel and a torsion bar 3 connected to the torsion bar housing portion 40 ( Output shaft) and the piston 7 provided in the housing 11 so as to be movable in the axial direction when the direction in which the rotation shaft of the torsion bar accommodating portion 40 extends is defined as the axial direction. A piston seal 70a (seal part) that is divided into a first pressure chamber 16 provided on one side in the axial direction and a second pressure chamber 17 provided on the other side in the axial direction; Hydraulic fluid supplied from an external hydraulic pressure source, which is accommodated in the provided valve housing 12 (rotary valve accommodating portion), is actuated by relative rotation between the input shaft 2 and the torsion bar accommodating portion 40. Selective The ball screw mechanism 5 (first shaft) that converts the rotational motion of the rotor 60 (rotary valve) supplied to the first pressure chamber 16 and the second pressure chamber 17 and the torsion bar housing portion 40 into the axial motion of the piston 7. And a rack tooth 71 formed on one side of the piston 7 in the axial direction from the piston seal 70a of the piston 7 and disposed in the second pressure chamber, and in the second pressure chamber 17 so as to mesh with the rack tooth 71 A second reduction gear configured to transmit a steering force to the steered wheels by converting the axial motion of the piston 7 into a rotational motion, and a rack tooth 71 and a sector gear 8. Is the pitch circle radius PCR, the pitch circle when the piston 7 moves in the direction in which the volume of the second pressure chamber 17 increases. Radius r (large), R (large) (first pitch circle radius) and the volume of the second pressure chamber 17 are reduced. The pitch circle radii r (small) and R (small) (second pitch circle radius) when the piston 7 moves in the direction are the magnitude of the output torque of the sector gear 8 with respect to the steering operation in one direction of the steering wheel rotation. And different radii so as to reduce the difference in the magnitude of the output torque with respect to the steering operation to the other side in the rotation direction of the steering wheel.
 よって、ハウジング形状等によるステアリングホイールの回転方向毎の出力特性差を補正することができる。 Therefore, it is possible to correct the output characteristic difference for each rotation direction of the steering wheel due to the housing shape or the like.
 (2)上記(1)に記載のパワーステアリング装置において、ピッチ円半径r(大),R(大)は、ピッチ円半径r(小),R(小)より大きくなるように形成される。 (2) In the power steering device described in (1) above, the pitch circle radii r (large) and R (large) are formed to be larger than the pitch circle radii r (small) and R (small).
 すなわち、第2圧力室17側には、ラック70やセクタギア8が収容されるため、ハウジング容積が第1圧力室16側に対して相対的に大きくなる。その結果、圧力によるハウジング10の膨張変形の影響度または圧力室からの作動液の漏れ量が大きくなる可能性があるが、上記(2)の大小関係により、これら課題を解決できる。 That is, since the rack 70 and the sector gear 8 are accommodated on the second pressure chamber 17 side, the housing volume becomes relatively larger than the first pressure chamber 16 side. As a result, the influence of expansion deformation of the housing 10 due to pressure or the amount of hydraulic fluid leakage from the pressure chamber may increase, but these problems can be solved by the magnitude relationship of (2) above.
 (3)上記(2)に記載のパワーステアリング装置において、ラック歯71は、軸方向に並んだ複数の歯同士がほぼ同じ減速比を有するコンスタントギアレシオのラック歯であって、セクタギア8は、回転運動の回転中心O1を中心として円周方向に並んだ複数の歯a,b,cを備え、r(大),R(大)とr(小),R(小)との差は、セクタギア8の複数の歯毎に歯先を挟んで円周方向両側に形成された1対の歯面のプロファイルが互いに異なるように形成されることで設けられる。 (3) In the power steering apparatus described in (2) above, the rack teeth 71 are constant gear ratio rack teeth in which a plurality of teeth arranged in the axial direction have substantially the same reduction ratio, and the sector gear 8 rotates. A plurality of teeth a, b, c arranged in the circumferential direction around the rotation center O1 of the motion, and the difference between r (large), R (large) and r (small), R (small) is the sector gear Each of the plurality of 8 teeth is provided such that the profiles of the pair of tooth surfaces formed on both sides in the circumferential direction across the tooth tip are different from each other.
 ラック歯71側はコンスタント歯で構成されているため、ラック側のピッチ円半径の調整を行う必要が無く、ラック70の形成が容易となる。 Since the rack tooth 71 side is composed of constant teeth, there is no need to adjust the pitch circle radius on the rack side, and the rack 70 can be easily formed.
 (4)上記(2)に記載のパワーステアリング装置において、セクタギア8は、回転運動の回転中心O1を中心として円周方向に並んだ複数の歯a,b,cが互いに異なる減速比を有するバリアブルギアレシオのセクタギアであって、r(大),R(大)とr(小),R(小)との差は、セクタギア8の複数の歯毎に歯先を挟んで円周方向両側に形成された1対の歯面のプロファイルが互いに異なるように形成されることで設けられる。 (4) In the power steering device described in (2) above, the sector gear 8 is a variable gear having a plurality of teeth a, b, c arranged in the circumferential direction around the rotation center O1 of the rotational motion and having different reduction ratios. The gear ratio sector gear, the difference between r (large), R (large) and r (small), R (small) is formed on both sides of the sector gear 8 across the tooth tip with each tooth The pair of tooth surfaces are formed so as to have different profiles.
 すなわち、セクタギア8は、バリアブルギアレシオギアであるため、プロファイル形成にはコンピュータ位置制御による歯の研磨作業が必要となる。このセクタギア8にピッチ円半径調整分を盛り込むことで、バリアブルギアレシオ形成工程とピッチ円半径調整工程とを同時に行うことができる。 That is, since the sector gear 8 is a variable gear ratio gear, a tooth polishing work by computer position control is required for profile formation. By incorporating the pitch circle radius adjustment into the sector gear 8, the variable gear ratio forming step and the pitch circle radius adjustment step can be performed simultaneously.
 (5)上記(4)に記載のパワーステアリング装置において、r(大),R(大)とr(小),R(小)との差は、セクタギア8の複数の歯a,b,cの1対の歯面のうち、歯丈方向における中間部よりも歯先側において1対の歯面のプロファイルが互いに異なるように形成されることで設けられる。 (5) In the power steering device described in (4) above, the difference between r (large), R (large) and r (small), R (small) is a plurality of teeth a, b, c of the sector gear 8 Among the pair of tooth surfaces, the pair of tooth surfaces are provided so that the profiles of the pair of tooth surfaces are different from each other on the tooth tip side with respect to the intermediate portion in the tooth height direction.
 すなわち、歯面の歯丈方向における中間部はハンドルが中立位置にあるときの噛み合い点付近にあり、操舵角が所定角以上のときの噛み合い点は歯先側にある。このような操舵角が所定角以上のとき、操舵方向毎の出力特性差が大きく出るため、歯先側でプロファイルの調整を行うことにより、出力特性差に応じた調整を行うことができる。 That is, the intermediate portion of the tooth surface in the tooth height direction is near the meshing point when the handle is in the neutral position, and the meshing point when the steering angle is a predetermined angle or more is on the tooth tip side. When such a steering angle is equal to or larger than a predetermined angle, a difference in output characteristics for each steering direction is large. Therefore, adjustment according to the difference in output characteristics can be performed by adjusting the profile on the tooth tip side.
 (6)上記(2)に記載のパワーステアリング装置において、r(大),R(大)とr(小),R(小)との差は、ステアリングホイールが中立位置から時計周り方向および反時計周り方向に所定角度以上回転したとき、ラック歯71とセクタギア8が噛合う領域においてr(大),R(大)がr(小),R(小)よりも大きくなるように形成される。 (6) In the power steering device described in (2) above, the difference between r (large), R (large) and r (small), R (small) is that the steering wheel is clockwise and counterclockwise from the neutral position. When rotated clockwise by a predetermined angle or more, r (large) and R (large) are formed to be larger than r (small) and R (small) in the region where the rack teeth 71 and the sector gear 8 mesh. .
 よって、操舵角が所定角以上のとき、操舵方向毎の出力特性差が大きく出るため、この出力特性差に応じた調整を行うことができる。 Therefore, when the steering angle is equal to or larger than the predetermined angle, the output characteristic difference for each steering direction is large, so that adjustment according to the output characteristic difference can be performed.
 (7)上記(6)に記載のパワーステアリング装置において、r(大),R(大)がr(小),R(小)よりも大きくなるように形成される領域は、ステアリングホイールの中立位置から時計周り方向に操舵操作したときと、反時計周り方向に操舵操作したときで、同じ角度範囲に形成される。 (7) In the power steering device described in (6) above, the region formed so that r (large) and R (large) are larger than r (small) and R (small) When the steering operation is performed clockwise from the position and when the steering operation is performed counterclockwise, the same angle range is formed.
 よって、ステアリングホイールの回転方向毎の出力特性差の均一化を図ることができる。 Therefore, it is possible to make uniform the output characteristic difference for each rotation direction of the steering wheel.
 (8)上記(2)に記載のパワーステアリング装置において、r(大),R(大)がr(小),R(小)よりも大きくなるように形成される領域は、ラック歯71またはセクタギア8の歯面形状を切削加工により形成する切削工程および研磨を行う研磨工程の両工程においてラック歯71またはセクタギア8を加工することにより形成される。 (8) In the power steering device described in (2) above, the region formed so that r (large) and R (large) are larger than r (small) and R (small) is the rack teeth 71 or It is formed by processing the rack teeth 71 or the sector gear 8 in both the cutting process for forming the tooth surface shape of the sector gear 8 by cutting and the polishing process for polishing.
 すなわち、切削工程において前記領域を形成することにより、より大きな出力特性差の補正をすることができる。更に研磨工程においても前記領域を形成することにより、より精密な出力特性差の補正をすることができる。 That is, a larger output characteristic difference can be corrected by forming the region in the cutting process. Further, by forming the region in the polishing process, it is possible to correct the output characteristic difference more precisely.
 (9)上記(1)に記載のパワーステアリング装置において、r(大),R(大)とr(小),R(小)のうち、第1圧力室16と第2圧力室17のうち、容積が大きい側に作動液が供給されるときにラック歯71とセクタギア8とが噛合う側のピッチ円半径が他方のピッチ円半径よりも大きくなるように形成される。 (9) In the power steering device described in (1) above, of the first pressure chamber 16 and the second pressure chamber 17 out of r (large), R (large) and r (small), R (small) When the hydraulic fluid is supplied to the larger volume side, the pitch circle radius on the side where the rack teeth 71 and the sector gear 8 mesh is larger than the other pitch circle radius.
 すなわち、容積が大きい側の圧力室である第2圧力室17は、圧力によるハウジングの膨張変形の影響度または圧力室からの作動液の漏れ量が大きくなる可能性がある。そこで、容積が大きい側に作動液が供給される場合のラック歯71とセクタギア8とが噛合う側のピッチ円半径を大きくすることで、この課題を解決することができる。 That is, in the second pressure chamber 17, which is the pressure chamber on the larger volume side, there is a possibility that the influence of expansion deformation of the housing due to pressure or the amount of hydraulic fluid leaking from the pressure chamber will increase. Therefore, this problem can be solved by increasing the pitch circle radius on the side where the rack teeth 71 and the sector gear 8 mesh with each other when the hydraulic fluid is supplied to the larger volume side.
 (10)上記(9)に記載のパワーステアリング装置において、ラック歯71は、軸方向に並んだ複数の歯同士がほぼ同じ減速比を有するコンスタントギアレシオのラック歯であって、セクタギア8は、回転運動の回転中心O1を中心として円周方向に並んだ複数の歯a,b,cを備え、r(大),R(大)とr(小),R(小)との差は、セクタギア8の複数の歯毎に歯先を挟んで円周方向両側に形成された1対の歯面同士のプロファイルが互いに異なるように形成されることで設けられる。 (10) In the power steering apparatus described in (9) above, the rack teeth 71 are constant gear ratio rack teeth in which a plurality of teeth arranged in the axial direction have substantially the same reduction ratio, and the sector gear 8 rotates. A plurality of teeth a, b, c arranged in the circumferential direction around the rotation center O1 of the motion, and the difference between r (large), R (large) and r (small), R (small) is the sector gear Each of the plurality of 8 teeth is provided such that the profiles of a pair of tooth surfaces formed on both sides in the circumferential direction across the tooth tip are different from each other.
 ラック歯71側はコンスタント歯で構成されているため、ラック側のピッチ円半径の調整を行う必要が無く、ラック70の形成が容易となる。 Since the rack tooth 71 side is composed of constant teeth, there is no need to adjust the pitch circle radius on the rack side, and the rack 70 can be easily formed.
 (11)上記(9)に記載のパワーステアリング装置において、セクタギア8は、回転運動の回転中心O1を中心として円周方向に並んだ複数の歯a,b,c同士が異なる減速比を有するバリアブルギアレシオのセクタギアであって、r(大),R(大)とr(小),R(小)との差は、セクタギア8の複数の歯毎に歯先を挟んで円周方向両側に形成された1対の歯面同士のプロファイルが互いに異なるように形成されることで設けられる。 (11) In the power steering device according to (9), the sector gear 8 is a variable gear having a plurality of teeth a, b, and c arranged in the circumferential direction around the rotation center O1 of the rotational motion and having different reduction ratios. The gear ratio sector gear, the difference between r (large), R (large) and r (small), R (small) is formed on both sides of the sector gear 8 across the tooth tip with each tooth The pair of tooth surfaces are formed so that the profiles thereof are different from each other.
 すなわち、セクタギア8は、バリアブルギアレシオギアであるため、プロファイル形成にはコンピュータ位置制御による歯の研磨作業が必要となる。このセクタギア8にピッチ円半径調整分を盛り込むことで、バリアブルギアレシオ形成工程とピッチ円半径調整工程とを同時に行うことができる。 That is, since the sector gear 8 is a variable gear ratio gear, a tooth polishing work by computer position control is required for profile formation. By incorporating the pitch circle radius adjustment into the sector gear 8, the variable gear ratio forming step and the pitch circle radius adjustment step can be performed simultaneously.
 (12)上記(9)に記載のパワーステアリング装置において、r(大),R(大)とr(小),R(小)との差は、セクタギア8の複数の歯a,b,cの1対の歯面のうち、歯丈方向中間部よりも歯先側において1対の歯面同士のプロファイルが互いに異なるように形成されることで設けられる。 (12) In the power steering device described in (9) above, the difference between r (large), R (large) and r (small), R (small) is a plurality of teeth a, b, c of the sector gear 8 Of the pair of tooth surfaces, the profile of the pair of tooth surfaces is formed so as to be different from each other on the tooth tip side of the middle portion in the tooth height direction.
 すなわち、歯面の歯丈方向中間部は、ハンドル中立付近であり、歯先側は、操舵角が所定角以上のときである。このような操舵角が所定角以上のとき、操舵方向毎の出力特性差が大きく出るため、歯先側で調整を行うことにより、出力特性差に応じた調整を行うことができる。 That is, the middle portion in the tooth height direction of the tooth surface is near the handle neutral, and the tooth tip side is when the steering angle is equal to or greater than a predetermined angle. When such a steering angle is equal to or greater than a predetermined angle, a difference in output characteristics for each steering direction is large. Therefore, adjustment according to the difference in output characteristics can be performed by performing adjustment on the tooth tip side.
 (13)上記(9)に記載のパワーステアリング装置において、r(大),R(大)とr(小),R(小)との差は、ステアリングホイールが中立位置から時計周り方向に所定角度以上回転したときおよびステアリングホイールが中立位置から反時計周り方向に所定角度以上回転したとき、ラック歯71とセクタギア8とが噛合う領域において前記第1ピッチ円半径と前記第2ピッチ円半径は、ステアリングホイールの回転方向一方側への操舵操作に対する前記セクタギアの出力トルクの大きさとステアリングホイールの回転方向他方側への操舵操作に対する前記出力トルクの大きさの差が減少するようにr(大),R(大)とr(小),R(小)とが互いに異なる半径に形成される。 (13) In the power steering device described in (9) above, the difference between r (large), R (large) and r (small), R (small) is predetermined in the clockwise direction from the neutral position of the steering wheel. When the steering wheel rotates more than a predetermined angle and when the steering wheel rotates more than a predetermined angle in the counterclockwise direction from the neutral position, the first pitch circle radius and the second pitch circle radius in the region where the rack teeth 71 and the sector gear 8 mesh with each other are R (large) so that the difference between the magnitude of the output torque of the sector gear with respect to the steering operation in one direction of rotation of the steering wheel and the magnitude of the output torque with respect to the steering operation in the direction of rotation of the steering wheel is reduced. , R (large), r (small), and R (small) are formed at different radii.
 よって、操舵角が所定角以上のとき、操舵方向毎の出力特性差が大きく出るため、この出力特性差に応じた調整を行うことができる。 Therefore, when the steering angle is equal to or larger than the predetermined angle, the output characteristic difference for each steering direction is large, so that adjustment according to the output characteristic difference can be performed.
 (14)上記(13)に記載のパワーステアリング装置において、ステアリングホイールの回転方向一方側への操舵操作に対するセクタギア8の出力トルクの大きさとステアリングホイールの回転方向他方側への操舵操作に対する出力トルクの大きさとの差が減少するようにr(大),R(大)とr(小),R(小)が互いに異なる半径に形成される領域は、ステアリングホイールの中立位置から時計周り方向に操舵操作したときと、反時計周り方向に操舵操作したときで、同じ角度範囲に形成される。 (14) In the power steering device described in (13) above, the magnitude of the output torque of the sector gear 8 with respect to the steering operation in one direction of the rotation of the steering wheel and the output torque with respect to the steering operation in the other direction of the steering wheel. The region where r (large), R (large), r (small), and R (small) are formed at different radii is steered clockwise from the neutral position of the steering wheel so that the difference from the size decreases. The same angle range is formed when the operation is performed and when the steering operation is performed counterclockwise.
 よって、ステアリングホイールの回転方向毎の出力特性差の均一化を図ることができる。 Therefore, it is possible to make uniform the output characteristic difference for each rotation direction of the steering wheel.
 (15)上記(9)に記載のパワーステアリング装置において、ステアリングホイールの回転方向一方側への操舵操作に対するセクタギア8の出力トルクの大きさとステアリングホイールの回転方向他方側への操舵操作に対する出力トルクの大きさとの差が減少するようにr(大),R(大)とr(小),R(小)が互いに異なる半径に形成される領域は、ラック歯71またはセクタギア8の歯面形状を切削加工により形成する切削工程および研磨を行う研磨工程の両工程においてラック歯71またはセクタギア8を加工することにより形成される。 (15) In the power steering device described in (9) above, the magnitude of the output torque of the sector gear 8 with respect to the steering operation in one direction of rotation of the steering wheel and the output torque with respect to the steering operation in the other direction of rotation of the steering wheel. The areas where r (large), R (large) and r (small), R (small) are formed at different radii so that the difference from the size is reduced are the tooth surface shape of the rack tooth 71 or sector gear 8. It is formed by processing the rack teeth 71 or the sector gear 8 in both the cutting process formed by cutting and the polishing process for polishing.
 すなわち、切削工程において前記領域を形成することにより、より大きな出力特性差の補正をすることができる。更に研磨工程においても前記領域を形成することにより、より精密な出力特性差の補正をすることができる。 That is, a larger output characteristic difference can be corrected by forming the region in the cutting process. Further, by forming the region in the polishing process, it is possible to correct the output characteristic difference more precisely.
 (16) 金属材料で筒状に形成されたハウジング10と、ステアリングホイールと接続される入力軸2とトーションバー3を介して接続され、ハウジング10内に回転自在に設けられるトーションバー収容部40(出力軸)と、トーションバー収容部40の回転軸が延びる方向を軸方向としたとき、ハウジング11内に軸方向移動可能に設けられたピストン7と、ピストン7に設けられ、ハウジング11内部を、軸方向の一方側に設けられた第1圧力室16と、軸方向の他方側に設けられた第2圧力室17と、に隔成するピストンシール70a(シール部)と、ハウジング10に設けられたバルブハウジング12(ロータリバルブ収容部)と、バルブハウジング12に収容され、入力軸2とトーションバー収容部40との相対回転に伴い作動し、外部の液圧源から供給される作動液を選択的に前記第1圧力室16と第2圧力室17とに供給するロータ60(ロータリバルブ)と、トーションバー収容部40の回転運動をピストン7の軸方向の運動へ変換するボールねじ機構5(第1減速機)と、ピストン7のピストンシール70aよりも軸方向の一方側に形成され、第2圧力室内に配置されるラック歯71と、ラック歯71と噛合うように第2圧力室17内に設けられ、ピストン7の軸方向の運動を回転運動に変換することにより転舵輪に操舵力を伝達するセクタギア8と、から構成される第2減速機と、を備え、ラック歯71とセクタギア8との噛合い点とセクタギア8の回転中心O1との距離をピッチ円半径PCRとしたとき、第2減速機は、第2圧力室17の容積が増大する方向にピストン7が移動するときのピッチ円半径r(大),R(大)(第1ピッチ円半径)と、第2圧力室17の容積が減少する方向にピストン7が移動するときのピッチ円半径r(小),R(小)(第2ピッチ円半径)とが、ステアリングホイールの回転方向一方側への操
舵操作に対するセクタギア8の出力トルクの大きさとステアリングホイールの回転方向他方側への操舵操作に対する出力トルクの大きさの差が減少するように互いに異なる半径を有する歯面形状に形成される。
(16) A housing 10 formed in a cylindrical shape with a metal material, an input shaft 2 connected to the steering wheel, and a torsion bar 3 connected to the torsion bar accommodating portion 40 ( Output shaft), and the direction in which the rotation axis of the torsion bar accommodating portion 40 extends is defined as the axial direction, the piston 7 provided in the housing 11 so as to be movable in the axial direction, A piston seal 70a (seal part) that is divided into a first pressure chamber 16 provided on one side in the axial direction and a second pressure chamber 17 provided on the other side in the axial direction, and a housing 10 are provided. Selects the hydraulic fluid supplied from an external hydraulic pressure source, which is accommodated in the valve housing 12 (rotary valve accommodating portion) and the valve housing 12 and operates with relative rotation between the input shaft 2 and the torsion bar accommodating portion 40. Above A ball screw mechanism 5 (first reduction gear) that converts the rotational motion of the rotor 60 (rotary valve) supplied to the first pressure chamber 16 and the second pressure chamber 17 and the rotational motion of the torsion bar housing 40 into the axial motion of the piston 7 ) And a rack tooth 71 formed on one side of the piston 7 in the axial direction from the piston seal 70a of the piston 7 and disposed in the second pressure chamber, and provided in the second pressure chamber 17 so as to mesh with the rack tooth 71. A second gear reducer configured to transmit a steering force to the steered wheels by converting the axial movement of the piston 7 into a rotational movement, and the meshing of the rack teeth 71 and the sector gear 8 When the distance between the center point and the rotation center O1 of the sector gear 8 is the pitch circle radius PCR, the second speed reducer uses the pitch circle radius r when the piston 7 moves in the direction in which the volume of the second pressure chamber 17 increases. (Large), R (Large) (first pitch circle radius) and the direction in which the volume of the second pressure chamber 17 decreases The pitch circle radii r (small) and R (small) (second pitch radii) when the piston 7 moves are the magnitude of the output torque of the sector gear 8 and the steering for the steering operation in one direction of the steering wheel rotation. Tooth surfaces having different radii are formed so that the difference in the magnitude of the output torque with respect to the steering operation toward the other side in the rotational direction of the wheel is reduced.
 よって、ハウジング形状等によるステアリングホイールの回転方向毎の出力特性差を補正することができる。 Therefore, it is possible to correct the output characteristic difference for each rotation direction of the steering wheel due to the housing shape or the like.
 (17)上記(16)に記載のパワーステアリング装置において、r(大),R(大)とr(小),R(小)との差は、ステアリングホイールが中立位置から時計周り方向に所定角度以上回転したときおよびステアリングホイールが中立位置から反時計周り方向に所定角度以上回転したとき、ラック歯71とセクタギア8が噛合う領域において、r(大),R(大)とr(小),R(小)は、ステアリングホイールの回転方向一方側への操舵操作に対するセクタギア8の出力トルクの大きさとステアリングホイールの回転方向他方側への操舵操作に対する出力トルクの大きさの差が減少するように互いに異なる半径に形成される。 (17) In the power steering device described in (16) above, the difference between r (large), R (large) and r (small), R (small) is predetermined in the clockwise direction from the neutral position of the steering wheel. R (L), R (L) and r (S) in the region where the rack teeth 71 and the sector gear 8 mesh with each other when the wheel rotates more than an angle or when the steering wheel rotates more than a predetermined angle counterclockwise from the neutral position. , R (small) so that the difference between the magnitude of the output torque of the sector gear 8 for the steering operation in one direction of the steering wheel rotation and the magnitude of the output torque for the steering operation in the other direction of the steering wheel is reduced. Are formed at different radii.
 よって、操舵角が所定角以上のとき、操舵方向毎の出力特性差が大きく出るため、この出力特性差に応じた調整を行うことができる。 Therefore, when the steering angle is equal to or larger than the predetermined angle, the output characteristic difference for each steering direction is large, so that adjustment according to the output characteristic difference can be performed.
 (18)上記(17)に記載のパワーステアリング装置において、ステアリングホイールの回転方向一方側への操舵操作に対する前記セクタギアの出力トルクの大きさとステアリングホイールの回転方向他方側への操舵操作に対する前記出力トルクの大きさの差が減少するようにr(大),R(大)とr(小),R(小)とが互いに異なる半径に形成される領域は、ステアリングホイールの中立位置から時計周り方向に操舵操作したときと、反時計周り方向に操舵操作したときで、同じ角度範囲に形成される。 (18) In the power steering device according to (17), the magnitude of the output torque of the sector gear with respect to a steering operation in one direction of rotation of the steering wheel and the output torque with respect to the steering operation in the other direction of rotation of the steering wheel The region where r (large), R (large) and r (small), R (small) are formed at different radii so that the difference in size of the steering wheel is different from the neutral position of the steering wheel in the clockwise direction. When the steering operation is performed in the same direction and when the steering operation is performed in the counterclockwise direction, the same angle range is formed.
 よって、ステアリングホイールの回転方向毎の出力特性差の均一化を図ることができる。 Therefore, it is possible to make uniform the output characteristic difference for each rotation direction of the steering wheel.
 (19)上記(16)に記載のパワーステアリング装置において、ステアリングホイールの回転方向一方側への操舵操作に対する前記セクタギアの出力トルクの大きさとステアリングホイールの回転方向他方側への操舵操作に対する前記出力トルクの大きさの差が減少するように、r(大),R(大)とr(小),R(小)とが互いに異なる半径に形成される領域は、ラック歯71またはセクタギア8の歯面形状を切削加工により形成する切削工程および研磨を行う研磨工程の両工程においてラック歯71またはセクタギア8を加工することにより形成される。 (19) In the power steering device described in (16) above, the magnitude of the output torque of the sector gear with respect to a steering operation in one direction of rotation of the steering wheel and the output torque with respect to the steering operation in the other direction of rotation of the steering wheel In order to reduce the difference in size, the area where r (large), R (large) and r (small), R (small) are formed at different radii is the rack tooth 71 or the tooth of the sector gear 8 It is formed by processing the rack teeth 71 or the sector gear 8 in both the cutting process for forming the surface shape by cutting and the polishing process for polishing.
 すなわち、切削工程において前記領域を形成することにより、より大きな出力特性差の補正をすることができる。更に研磨工程においても前記領域を形成することにより、より精密な出力特性差の補正をすることができる。 That is, a larger output characteristic difference can be corrected by forming the region in the cutting process. Further, by forming the region in the polishing process, it is possible to correct the output characteristic difference more precisely.
 よって、本発明の上述した各実施形態に係るブレーキ装置では、制動力を発生させつつ液漏れ部を特定できる。 Therefore, in the brake device according to each of the above-described embodiments of the present invention, the liquid leakage portion can be specified while generating a braking force.
 以上、本発明を実施するための形態を実施例に基づいて説明したが、本発明の具体的な構成は実施例に示した構成に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。 As mentioned above, although the form for implementing this invention was demonstrated based on the Example, the concrete structure of this invention is not limited to the structure shown in the Example, and is the range which does not deviate from the summary of invention. Any design changes are included in the present invention.
 本願は、2013年3月22日付出願の日本国特許出願第2013-060852号に基づく優先権を主張する。2013年3月22日付出願の日本国特許出願第2013-060852号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。 This application claims priority based on Japanese Patent Application No. 2013-060852 filed on Mar. 22, 2013. The entire disclosure including the specification, claims, drawings, and abstract of Japanese Patent Application No. 2013-060852 filed on March 22, 2013 is incorporated herein by reference in its entirety.
 実開平10-278818号公報の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。
符号の説明
2   入力軸
5   ボールねじ機構(第1減速機)
6   コントロールバルブ
7   ピストン
70  ラック(第2減速機)
8   セクタギア(第2減速機)
10  ハウジング
11  ステアリングハウジング
12  バルブハウジング(ロータリバルブ収容部)
16  第1圧力室
17  第2圧力室
60  ロータ(ロータリバルブ)
70a  ピストンシール(シール部)


 
 
 
The entire disclosure including the specification, claims, drawings, and abstract of Japanese Utility Model Publication No. 10-278818 is incorporated herein by reference in its entirety.
Explanation of symbols
2 Input shaft
5 Ball screw mechanism (first reduction gear)
6 Control valve
7 Piston
70 racks (second reducer)
8 Sector gear (second reducer)
10 Housing
11 Steering housing
12 Valve housing (rotary valve housing)
16 First pressure chamber
17 Second pressure chamber
60 Rotor (rotary valve)
70a Piston seal (seal part)




Claims (19)

  1. 金属材料で筒状に形成されたハウジングと、
    ステアリングホイールと接続される入力軸とトーションバーを介して接続され、前記ハウジング内に回転自在に設けられる出力軸と、
    前記出力軸の回転軸が延びる方向を軸方向としたとき、前記ハウジング内に前記軸方向移動可能に設けられたピストンと、
    前記ピストンに設けられ、前記ハウジング内部を、前記軸方向の一方側に設けられた第1圧力室と、前記軸方向の他方側に設けられた第2圧力室と、に隔成するシール部と、
    前記ハウジングに設けられたロータリバルブ収容部と、
    前記ロータリバルブ収容部に収容され、前記入力軸と前記出力軸との相対回転に伴い作動し、外部の液圧源から供給される作動液を選択的に前記第1圧力室と第2圧力室とに供給するロータリバルブと、
    前記出力軸の回転運動を前記ピストンの前記軸方向の運動へ変換する第1減速機と、
    前記ピストンの前記シール部よりも前記軸方向の前記他方側に形成され、前記第2圧力室内に配置されるラック歯と、前記ラック歯と噛合うように前記第2圧力室内に設けられ、前記ピストンの前記軸方向の運動を回転運動に変換することにより転舵輪に操舵力を伝達するセクタギアと、から構成される第2減速機と、を備え、
    前記ラック歯と前記セクタギアとの噛合い点と前記セクタギアの回転中心との距離をピッチ円半径としたとき、
    前記第2減速機は、前記第2圧力室の容積が増大する方向に前記ピストンが移動するときの前記ピッチ円半径である第1ピッチ円半径と、前記第2圧力室の容積が減少する方向に前記ピストンが移動するときの前記ピッチ円半径である第2ピッチ円半径とが、ステアリングホイールの回転方向一方側への操舵操作に対する前記セクタギアの出力トルクの大きさとステアリングホイールの回転方向他方側への操舵操作に対する前記出力トルクの大きさとの差が減少するように互いに異なる半径に形成されることを特徴とするパワーステアリング装置。
    A housing formed in a cylindrical shape with a metal material;
    An input shaft connected to the steering wheel and an output shaft connected via a torsion bar and provided rotatably in the housing;
    When the direction in which the rotation shaft of the output shaft extends is an axial direction, a piston provided in the housing so as to be movable in the axial direction;
    A seal portion provided in the piston, the interior of the housing being separated into a first pressure chamber provided on one side in the axial direction and a second pressure chamber provided on the other side in the axial direction; ,
    A rotary valve housing provided in the housing;
    The first pressure chamber and the second pressure chamber are accommodated in the rotary valve accommodating portion, operate according to the relative rotation of the input shaft and the output shaft, and selectively supply hydraulic fluid supplied from an external hydraulic pressure source. A rotary valve to be supplied to
    A first speed reducer that converts rotational movement of the output shaft into movement of the piston in the axial direction;
    A rack tooth that is formed on the other side in the axial direction from the seal portion of the piston and is disposed in the second pressure chamber; and is provided in the second pressure chamber so as to mesh with the rack tooth, A sector gear that transmits a steering force to the steered wheels by converting the axial motion of the piston into a rotational motion, and a second speed reducer comprising:
    When the distance between the meshing point of the rack teeth and the sector gear and the rotation center of the sector gear is the pitch circle radius,
    The second speed reducer includes a first pitch circle radius that is the pitch circle radius when the piston moves in a direction in which the volume of the second pressure chamber increases, and a direction in which the volume of the second pressure chamber decreases. The second pitch circle radius, which is the pitch circle radius when the piston moves, is the magnitude of the output torque of the sector gear with respect to the steering operation to one side of the rotation direction of the steering wheel and to the other side of the rotation direction of the steering wheel. A power steering device having different radii so as to reduce a difference between the magnitude of the output torque and the steering operation.
  2. 請求項1に記載のパワーステアリング装置において、前記第1ピッチ円半径は、前記第2ピッチ円半径より大きくなるように形成されることを特徴とするパワーステアリング装置。 2. The power steering device according to claim 1, wherein the first pitch circle radius is formed to be larger than the second pitch circle radius.
  3. 請求項2に記載のパワーステアリング装置において、前記ラック歯は、前記軸方向に並んだ複数の歯同士がほぼ同じ減速比を有するコンスタントギアレシオのラック歯であって、
    前記セクタギアは、前記回転運動の回転中心を中心として円周方向に並んだ複数の歯を備え、
    前記第1ピッチ円半径と前記第2ピッチ円半径との差は、前記セクタギアの前記複数の歯毎に歯先を挟んで前記円周方向両側に形成された1対の歯面同士のプロファイルが互いに異なるように形成されることで設けられることを特徴とするパワーステアリング装置。
    3. The power steering apparatus according to claim 2, wherein the rack teeth are constant gear ratio rack teeth in which a plurality of teeth arranged in the axial direction have substantially the same reduction ratio,
    The sector gear includes a plurality of teeth arranged in a circumferential direction around the rotational center of the rotational movement,
    The difference between the first pitch circle radius and the second pitch circle radius is that a profile of a pair of tooth surfaces formed on both sides in the circumferential direction across the tooth tip for each of the plurality of teeth of the sector gear. A power steering device provided by being formed differently from each other.
  4. 請求項2に記載のパワーステアリング装置において、前記セクタギアは、前記回転運動の回転中心を中心として円周方向に並んだ複数の歯が互いに異なる減速比を有するバリアブルギアレシオのセクタギアであって、
    前記第1ピッチ円半径と前記第2ピッチ円半径との差は、前記セクタギアの前記複数の歯毎に歯先を挟んで前記円周方向両側に形成された1対の歯面のプロファイルが互いに異なるように形成されることで設けられることを特徴とするパワーステアリング装置。
    The power steering device according to claim 2, wherein the sector gear is a variable gear ratio sector gear in which a plurality of teeth arranged in a circumferential direction around the rotation center of the rotational motion have different reduction ratios,
    The difference between the first pitch circle radius and the second pitch circle radius is that the profile of the pair of tooth surfaces formed on both sides in the circumferential direction across the tooth tips for each of the plurality of teeth of the sector gear is mutually A power steering device provided by being formed differently.
  5. 請求項4に記載のパワーステアリング装置において、前記第1ピッチ円半径と前記第2ピッチ円半径との差は、前記セクタギアの前記複数の歯の前記1対の歯面のうち、歯丈方向における中間部よりも歯先側において前記1対の歯面のプロファイルが互いに異なるように形成されることで設けられることを特徴とするパワーステアリング装置。 5. The power steering device according to claim 4, wherein a difference between the first pitch circle radius and the second pitch circle radius is a tooth height direction of the pair of tooth surfaces of the plurality of teeth of the sector gear. A power steering device, wherein the pair of tooth surfaces are formed so as to be different from each other on the tooth tip side with respect to the intermediate portion.
  6. 請求項2に記載のパワーステアリング装置において、前記第1ピッチ延半径と前記第2ピッチ円半径との差は、ステアリングホイールが中立位置から時計周り方向および反時計周り方向に所定角度以上回転したとき前記ラック歯と前記セクタギアが噛合う領域において前記第1ピッチ円半径が前記第2ピッチ円半径よりも大きくなるように形成されることを特徴とするパワーステアリング装置。 3. The power steering device according to claim 2, wherein a difference between the first pitch extension radius and the second pitch circle radius is obtained when the steering wheel rotates a predetermined angle or more in a clockwise direction and a counterclockwise direction from a neutral position. The power steering apparatus according to claim 1, wherein the first pitch circle radius is larger than the second pitch circle radius in a region where the rack teeth and the sector gear mesh.
  7. 請求項6に記載のパワーステアリング装置において、前記第1ピッチ円半径が前記第2ピッチ円半径よりも大きくなるように形成される領域は、ステアリングホイールの中立位置から時計周り方向に操舵操作したときと、反時計周り方向に操舵操作したときで、同じ角度範囲に形成されることを特徴とするパワーステアリング装置。 7. The power steering device according to claim 6, wherein the region formed such that the first pitch circle radius is larger than the second pitch circle radius is when the steering operation is performed clockwise from a neutral position of a steering wheel. And a power steering device formed in the same angle range when the steering operation is performed counterclockwise.
  8. 請求項2に記載のパワーステアリング装置において、前記第1ピッチ円半径が前記第2ピッチ円半径よりも大きくなるように形成される領域は、前記ラック歯または前記セクタギアの歯面形状を切削加工により形成する切削工程および研磨を行う研磨工程の両工程において前記ラック歯または前記セクタギアを加工することにより形成されることを特徴とするパワーステアリング装置。 3. The power steering device according to claim 2, wherein the region formed so that the first pitch circle radius is larger than the second pitch circle radius is obtained by cutting a tooth surface shape of the rack tooth or the sector gear. A power steering device characterized by being formed by processing the rack teeth or the sector gear in both the cutting step to be formed and the polishing step to perform polishing.
  9. 請求項1に記載のパワーステアリング装置において、前記第1ピッチ半径と前記第2ピッチ円半径のうち、前記第1圧力室と前記第2圧力室のうち、容積が大きい側に作動液が供給されるときに前記ラック歯と前記セクタギアとが噛合う側のピッチ円半径が他方のピッチ円半径よりも大きくなるように形成されることを特徴とするパワーステアリング装置。 2. The power steering device according to claim 1, wherein hydraulic fluid is supplied to a larger volume side of the first pressure chamber and the second pressure chamber of the first pitch radius and the second pitch circle radius. The power steering device is characterized in that the pitch circle radius on the side where the rack teeth and the sector gear mesh with each other is larger than the other pitch circle radius.
  10. 請求項9に記載のパワーステアリング装置において、前記ラック歯は、前記軸方向に並んだ複数の歯同士がほぼ同じ減速比を有するコンスタントギアレシオのラック歯であって、
    前記セクタギアは、前記回転運動の回転中心を中心として円周方向に並んだ複数の歯を備え、
    前記第1ピッチ円半径と前記第2ピッチ円半径との差は、前記セクタギアの前記複数の歯毎に歯先を挟んで前記円周方向両側に形成された1対の歯面同士のプロファイルが互いに異なるように形成されることで設けられることを特徴とするパワーステアリング装置。
    10. The power steering device according to claim 9, wherein the rack teeth are constant gear ratio rack teeth in which a plurality of teeth arranged in the axial direction have substantially the same reduction ratio,
    The sector gear includes a plurality of teeth arranged in a circumferential direction around the rotational center of the rotational movement,
    The difference between the first pitch circle radius and the second pitch circle radius is that a profile of a pair of tooth surfaces formed on both sides in the circumferential direction across the tooth tip for each of the plurality of teeth of the sector gear. A power steering device provided by being formed differently from each other.
  11. 請求項9に記載のパワーステアリング装置において、前記セクタギアは、前記回転運動の回転中心を中心として円周方向に並んだ複数の歯同士が異なる減速比を有するバリアブルギアレシオのセクタギアであって、
    前記第1ピッチ円半径と前記第2ピッチ円半径との差は、前記セクタギアの前記複数の歯毎に歯先を挟んで前記円周方向両側に形成された1対の歯面同士のプロファイルが互いに異なるように形成されることで設けられることを特徴とするパワーステアリング装置。
    The power steering device according to claim 9, wherein the sector gear is a variable gear ratio sector gear in which a plurality of teeth arranged in a circumferential direction around the rotation center of the rotational motion have different reduction ratios,
    The difference between the first pitch circle radius and the second pitch circle radius is that a profile of a pair of tooth surfaces formed on both sides in the circumferential direction across the tooth tip for each of the plurality of teeth of the sector gear. A power steering device provided by being formed differently from each other.
  12. 請求項9に記載のパワーステアリング装置において、前記第1ピッチ円半径と前記第2ピッチ円半径との差は、前記セクタギアの前記複数の歯の前記1対の歯面のうち、歯丈方向中間部よりも歯先側において前記1対の歯面同士のプロファイルが互いに異なるように形成されることで設けられることを特徴とするパワーステアリング装置。 10. The power steering device according to claim 9, wherein a difference between the first pitch circle radius and the second pitch circle radius is an intermediate in a tooth height direction among the pair of tooth surfaces of the plurality of teeth of the sector gear. The power steering device is provided by forming the pair of tooth surfaces so that the profiles of the pair of tooth surfaces are different from each other on the tooth tip side of the portion.
  13. 請求項9に記載のパワーステアリング装置において、ステアリングホイールが中立位置から時計周り方向に所定角度以上回転したときおよびステアリングホイールが中立位置から反時計周り方向に所定角度以上回転したとき、前記ラック歯と前記セクタギアが噛合う領域において、前記第1ピッチ円半径と前記第2ピッチ円半径は、ステアリングホイールの回転方向一方側への操舵操作に対する前記セクタギアの出力トルクの大きさとステアリングホイールの回転方向他方側への操舵操作に対する前記出力トルクの大きさの差が減少するように互いに異なる半径に形成されることを特徴とするパワーステアリング装置。 10. The power steering device according to claim 9, wherein when the steering wheel rotates a predetermined angle or more clockwise from the neutral position and when the steering wheel rotates a predetermined angle or more counterclockwise from the neutral position, the rack teeth and In the region where the sector gear meshes, the first pitch circle radius and the second pitch circle radius are the magnitude of the output torque of the sector gear with respect to the steering operation to one side of the steering wheel rotation direction and the other side of the steering wheel rotation direction. A power steering device having different radii so as to reduce a difference in magnitude of the output torque with respect to a steering operation.
  14. 請求項13に記載のパワーステアリング装置において、ステアリングホイールの回転方向一方側への操舵操作に対する前記セクタギアの出力トルクの大きさとステアリングホイールの回転方向他方側への操舵操作に対する前記出力トルクの大きさの差が減少するように前記第1ピッチ円半径と前記第2ピッチ円半径とが互いに異なる半径に形成される領域は、ステアリングホイールの中立位置から時計周り方向に操舵操作したときと、反時計周り方向に操舵操作したときで、同じ角度範囲に形成されることを特徴とするパワーステアリング装置。 14. The power steering device according to claim 13, wherein the magnitude of the output torque of the sector gear with respect to a steering operation in one direction of rotation of the steering wheel and the magnitude of the output torque with respect to a steering operation in the other direction of rotation of the steering wheel. The first pitch circle radius and the second pitch circle radius are formed in different radii so that the difference is reduced when the steering wheel is steered clockwise from the neutral position of the steering wheel and counterclockwise. A power steering device characterized by being formed in the same angle range when a steering operation is performed in a direction.
  15. 請求項9に記載のパワーステアリング装置において、ステアリングホイールの回転方向一方側への操舵操作に対する前記セクタギアの出力トルクの大きさとステアリングホイールの回転方向他方側への操舵操作に対する前記出力トルクの大きさの差が減少するように前記第1ピッチ円半径と前記第2ピッチ円半径とが互いに異なる半径に形成される領域は、前記ラック歯または前記セクタギアの歯面形状を切削加工により形成する切削工程および研磨を行う研磨工程の両工程において前記ラック歯または前記セクタギアを加工することにより形成されることを特徴とするパワーステアリング装置。 10. The power steering apparatus according to claim 9, wherein the magnitude of the output torque of the sector gear with respect to a steering operation in one direction of rotation of the steering wheel and the magnitude of the output torque with respect to a steering operation in the other direction of rotation of the steering wheel. A region in which the first pitch circle radius and the second pitch circle radius are formed to have different radii so as to reduce the difference is a cutting step of forming a tooth surface shape of the rack tooth or the sector gear by cutting, and The power steering device is formed by processing the rack teeth or the sector gear in both of the polishing steps for polishing.
  16. 金属材料で筒状に形成されたハウジングと、
    ステアリングホイールと接続される入力軸とトーションバーを介して接続され、前記ハウジング内に回転自在に設けられる出力軸と、
    前記出力軸の回転軸が延びる方向を軸方向としたとき、前記ハウジング内に前記軸方向移動可能に設けられたピストンと、
    前記ピストンに設けられ、前記ハウジング内部を、前記軸方向の一方側に設けられた第1圧力室と、前記軸方向の他方側に設けられた第2圧力室と、に隔成するシール部と、
    前記ハウジングに設けられたロータリバルブ収容部と、
    前記ロータリバルブ収容部に収容され、前記入力軸と前記出力軸との相対回転に伴い作動し、外部の液圧源から供給される作動液を選択的に前記第1圧力室と第2圧力室とに供給するロータリバルブと、
    前記出力軸の回転運動を前記ピストンの前記軸方向の運動へ変換する第1減速機と、
    前記ピストンの前記シール部よりも前記軸方向の前記他方側に形成され、前記第2圧力室内に配置されるラック歯と、前記ラック歯と噛合うように前記第2圧力室内に設けられ、前記ピストンの前記軸方向の運動を回転運動に変換することにより転舵輪に操舵力を伝達するセクタギアと、から構成される第2減速機と、を備え、
    前記ラック歯と前記セクタギアとの噛合い点と前記セクタギアの回転中心との距離をピッチ円半径としたとき、
    前記第2減速機は、前記第2圧力室の容積が増大する方向に前記ピストンが移動するときの前記ピッチ円半径である第1ピッチ円半径と、前記第2圧力室の容積が減少する方向に前記ピストンが移動するときの前記ピッチ円半径である第2ピッチ円半径とが、ステアリングホイールの回転方向一方側への操舵操作に対する前記セクタギアの出力トルクの大きさとステアリングホイールの回転方向他方側への操舵操作に対する前記出力トルクの大きさの差が減少するように互いに異なる半径を有する歯面形状に形成されることを特徴とするパワーステアリング装置。
    A housing formed in a cylindrical shape with a metal material;
    An input shaft connected to the steering wheel and an output shaft connected via a torsion bar and provided rotatably in the housing;
    When the direction in which the rotation shaft of the output shaft extends is an axial direction, a piston provided in the housing so as to be movable in the axial direction;
    A seal portion provided in the piston, the interior of the housing being separated into a first pressure chamber provided on one side in the axial direction and a second pressure chamber provided on the other side in the axial direction; ,
    A rotary valve housing provided in the housing;
    The first pressure chamber and the second pressure chamber are accommodated in the rotary valve accommodating portion, operate according to the relative rotation of the input shaft and the output shaft, and selectively supply hydraulic fluid supplied from an external hydraulic pressure source. A rotary valve to be supplied to
    A first speed reducer that converts rotational movement of the output shaft into movement of the piston in the axial direction;
    A rack tooth that is formed on the other side in the axial direction from the seal portion of the piston and is disposed in the second pressure chamber; and is provided in the second pressure chamber so as to mesh with the rack tooth, A sector gear that transmits a steering force to the steered wheels by converting the axial motion of the piston into a rotational motion, and a second speed reducer comprising:
    When the distance between the meshing point of the rack teeth and the sector gear and the rotation center of the sector gear is the pitch circle radius,
    The second speed reducer includes a first pitch circle radius that is the pitch circle radius when the piston moves in a direction in which the volume of the second pressure chamber increases, and a direction in which the volume of the second pressure chamber decreases. The second pitch circle radius, which is the pitch circle radius when the piston moves, is the magnitude of the output torque of the sector gear with respect to the steering operation to one side of the steering wheel rotation direction and the other side of the steering wheel rotation direction. A power steering device having a tooth surface shape having different radii so as to reduce a difference in magnitude of the output torque with respect to the steering operation.
  17. 請求項16に記載のパワーステアリング装置において、ステアリングホイールが中立位置から時計周り方向に所定角度以上回転したときおよびステアリングホイールが中立位置から反時計周り方向に所定角度以上回転したとき前記ラック歯と前記セクタギアが噛合う領域において、前記第1ピッチ円半径と前記第2ピッチ円半径は、ステアリングホイールの回転方向一方側への操舵操作に対する前記セクタギアの出力トルクの大きさとステアリングホイールの回転方向他方側への操舵操作に対する前記出力トルクの大きさの差が減少するように互いに異なる半径に形成されることを特徴とするパワーステアリング装置。 17. The power steering device according to claim 16, wherein the rack teeth and the steering wheel are rotated when the steering wheel is rotated by a predetermined angle or more clockwise from the neutral position and when the steering wheel is rotated by a predetermined angle or more counterclockwise from the neutral position. In the region where the sector gear is engaged, the first pitch circle radius and the second pitch circle radius are the magnitude of the output torque of the sector gear with respect to the steering operation in one direction of the steering wheel rotation and the other direction in the rotation direction of the steering wheel. A power steering device having different radii so as to reduce a difference in magnitude of the output torque with respect to the steering operation.
  18. 請求項17に記載のパワーステアリング装置において、ステアリングホイールの回転方向一方側への操舵操作に対する前記セクタギアの出力トルクの大きさとステアリングホイールの回転方向他方側への操舵操作に対する前記出力トルクの大きさの差が減少するように前記第1ピッチ円半径と前記第2ピッチ円半径とが互いに異なる半径に形成される領域は、ステアリングホイールの中立位置から時計周り方向に操舵操作したときと、反時計周り方向に操舵操作したときで、同じ角度範囲に形成されることを特徴とするパワーステアリング装置。 18. The power steering device according to claim 17, wherein the magnitude of the output torque of the sector gear with respect to a steering operation in one direction of rotation of the steering wheel and the magnitude of the output torque with respect to a steering operation in the other direction of rotation of the steering wheel. The first pitch circle radius and the second pitch circle radius are formed in different radii so that the difference is reduced when the steering wheel is steered clockwise from the neutral position of the steering wheel and counterclockwise. A power steering device characterized by being formed in the same angle range when a steering operation is performed in a direction.
  19. 請求項16に記載のパワーステアリング装置において、ステアリングホイールの回転方向一方側への操舵操作に対する前記セクタギアの出力トルクの大きさとステアリングホイールの回転方向他方側への操舵操作に対する前記出力トルクの大きさの差が減少するように前記第1ピッチ円半径と前記第2ピッチ円半径とが互いに異なる半径に形成される領域は、前記ラック歯または前記セクタギアの歯面形状を切削加工により形成する切削工程および研磨を行う研磨工程の両工程において前記ラック歯または前記セクタギアを加工することにより形成されることを特徴とするパワーステアリング装置。 17. The power steering device according to claim 16, wherein the magnitude of the output torque of the sector gear with respect to a steering operation in one direction of rotation of the steering wheel and the magnitude of the output torque with respect to a steering operation in the other direction of rotation of the steering wheel. A region in which the first pitch circle radius and the second pitch circle radius are formed to have different radii so as to reduce the difference is a cutting step of forming a tooth surface shape of the rack tooth or the sector gear by cutting, and The power steering device is formed by processing the rack teeth or the sector gear in both of the polishing steps for polishing.
PCT/JP2014/054811 2013-03-22 2014-02-27 Power steering device WO2014148219A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112014001565.2T DE112014001565T5 (en) 2013-03-22 2014-02-27 Power steering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-060852 2013-03-22
JP2013060852A JP5964775B2 (en) 2013-03-22 2013-03-22 Power steering device

Publications (1)

Publication Number Publication Date
WO2014148219A1 true WO2014148219A1 (en) 2014-09-25

Family

ID=51579910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054811 WO2014148219A1 (en) 2013-03-22 2014-02-27 Power steering device

Country Status (3)

Country Link
JP (1) JP5964775B2 (en)
DE (1) DE112014001565T5 (en)
WO (1) WO2014148219A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11148710B2 (en) * 2017-05-31 2021-10-19 R.H. Sheppard Co., Inc. Plunger assembly for a power steering system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726051A (en) * 1980-07-24 1982-02-12 Jidosha Kiki Co Ltd Steering gear
JPS60252068A (en) * 1984-05-26 1985-12-12 Mazda Motor Corp Steering gear for automobile
JPH10278818A (en) * 1997-04-11 1998-10-20 Kayaba Ind Co Ltd Power steering device for vehicle
JP2006248425A (en) * 2005-03-11 2006-09-21 Hitachi Ltd Integral-type power steering device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726051A (en) * 1980-07-24 1982-02-12 Jidosha Kiki Co Ltd Steering gear
JPS60252068A (en) * 1984-05-26 1985-12-12 Mazda Motor Corp Steering gear for automobile
JPH10278818A (en) * 1997-04-11 1998-10-20 Kayaba Ind Co Ltd Power steering device for vehicle
JP2006248425A (en) * 2005-03-11 2006-09-21 Hitachi Ltd Integral-type power steering device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11148710B2 (en) * 2017-05-31 2021-10-19 R.H. Sheppard Co., Inc. Plunger assembly for a power steering system

Also Published As

Publication number Publication date
JP2014184848A (en) 2014-10-02
JP5964775B2 (en) 2016-08-03
DE112014001565T5 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
WO2016132854A1 (en) Power steering device
JP4902309B2 (en) Steering device
JP5945871B2 (en) Electric actuator and vehicle brake system
JP5592319B2 (en) Integral power steering system
JP2007055455A (en) Pumping device
US7665569B2 (en) Power steering system
US20090101430A1 (en) Power steering apparatus
JP2006306239A (en) Power steering device
WO2015085870A1 (en) Self-adaptive horizontal stabilizing device and vehicle suspension system using same
WO2009122877A1 (en) Power steering device
WO2014148219A1 (en) Power steering device
JP2009073229A (en) Hydraulic control valve and power steering device
JP5771119B2 (en) Work vehicle
JPH07117694A (en) Power steering device
JP2009006948A (en) Power steering device
CN211494219U (en) Vehicle double-loop steering hydraulic system
JP2004506563A (en) Piston for hydraulic power assisted rack and pinion steering system
JP2008001251A (en) Pump device and power steering device applied with pump device
JP7242239B2 (en) power steering valve
JP2014152721A (en) Variable displacement pump
CN111003061A (en) Vehicle double-loop steering hydraulic system
WO2022264890A1 (en) Steering device
JPH0550924A (en) Steering device
JP2010137603A (en) Power steering device
JP5012196B2 (en) Power steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14767317

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014001565

Country of ref document: DE

Ref document number: 1120140015652

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14767317

Country of ref document: EP

Kind code of ref document: A1