WO2014148181A1 - ユーザ端末、無線基地局及び無線通信方法 - Google Patents

ユーザ端末、無線基地局及び無線通信方法 Download PDF

Info

Publication number
WO2014148181A1
WO2014148181A1 PCT/JP2014/053932 JP2014053932W WO2014148181A1 WO 2014148181 A1 WO2014148181 A1 WO 2014148181A1 JP 2014053932 W JP2014053932 W JP 2014053932W WO 2014148181 A1 WO2014148181 A1 WO 2014148181A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
user terminal
base station
cell
transmission power
Prior art date
Application number
PCT/JP2014/053932
Other languages
English (en)
French (fr)
Inventor
和晃 武田
佑太 寒河江
聡 永田
祥久 岸山
石井 啓之
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US14/777,767 priority Critical patent/US20160278021A1/en
Priority to EP14770553.7A priority patent/EP2978268A4/en
Publication of WO2014148181A1 publication Critical patent/WO2014148181A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/267TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the information rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter

Definitions

  • the present invention relates to a radio base station to which downlink transmission power control is applied, a user terminal connected to the radio base station, and a radio communication method.
  • LTE Long Term Evolution
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • LTE-A LTE advanced or LTE enhancement
  • a small cell for example, a pico cell, a femto cell, etc.
  • a macro cell having a wide coverage area with a radius of several kilometers.
  • Heterogeneous Network is being studied (for example, Non-Patent Document 2).
  • 3GPP TS 36.300 “Evolved UTRA and Evolved UTRAN Overall description”
  • 3GPP TR 36.814 E-UTRA further advancements for E-UTRA physical layer aspects”
  • HetNet a large number of small cells are arranged in a macro cell.
  • interference coordination technology is being studied in order to reduce interference between the small cells.
  • the traffic load and the number of users of each small cell vary with the moving speed and communication state of the user terminal. In this way, the user distribution and traffic load are not constant, but vary with time or place.
  • the utilization efficiency (spectrum utilization efficiency) of radio resources may be reduced.
  • DL TPC downlink transmission power control
  • the present invention has been made in view of such a point, and even when a plurality of cells apply downlink transmission power control, a user terminal, a radio base station, and a radio communication that can appropriately perform communication It aims to provide a method.
  • the user terminal of the present invention is a user terminal that communicates with a radio base station that performs downlink transmission power control, and is applied with a first reference signal and downlink transmission power control that are transmitted with constant transmission power.
  • a receiving unit that receives the second reference signal, a measuring unit that measures received power of the first reference signal and the second reference signal, the first reference signal, and the second reference signal And a transmission unit that feeds back information related to the received power as a measurement report.
  • communication between a radio base station and a user terminal can be appropriately performed even when a plurality of cells apply downlink transmission power control.
  • HetNet HetNet
  • the interference coordination which considered load balancing.
  • FIG. 1 is a conceptual diagram of HetNet.
  • HetNet is a wireless communication system in which at least a part of a macro cell M and a small cell S are arranged geographically overlapping.
  • the HetNet is a radio base station (hereinafter referred to as a macro base station) MeNB that forms a macro cell M, a radio base station (hereinafter referred to as a small base station) SeNB that forms a small cell S, a macro base station MeNB, and a small base station. It is comprised including the user terminal UE which communicates with SeNB.
  • a relatively low frequency band carrier such as 800 MHz or 2 GHz
  • a relatively high frequency band carrier hereinafter, referred to as a high frequency band carrier
  • 800 MHz, 2 GHz, and 3.5 GHz are just examples.
  • 3.5 GHz may be used, and as a carrier of the small cell S, 800 MHz, 2 GHz, 800 MHz, 2 GHz, 1.7 GHz, or the like may be used.
  • the user distribution and traffic load are not constant, but fluctuate in time or location. Therefore, when a large number of small cells S are arranged in the macro cell M, as shown in FIG. 1, the small cells are arranged in a form having different densities and environments (sparse and dense) depending on the location.
  • FIG. 2 shows an example of the number of user terminals connected to each small cell S arranged at high density.
  • FIG. 2A shows a case where the number of user terminals (or traffic load) is uniformly distributed to each small cell S.
  • the traffic load of each user terminal is the same.
  • radio resources can be effectively used in each small cell.
  • the number of user terminals (or traffic load) of each small cell S is not uniform according to the movement and communication state of each user terminal (see FIG. 2B). Therefore, as described above, it is desired to consider the traffic load / number of user terminals of each small cell S (apply load balancing) as interference coordination between small cells.
  • enhanced CC level coordination (Enhanced CC-level coordination) in which the frequency domain applied in each small cell S is controlled at the component carrier (CC) level has been studied (see FIG. 3A).
  • CC component carrier
  • Each small cell can control interference at the CC level in consideration of the traffic load of each small cell in addition to the CC applied by the neighboring cell.
  • the present inventors focused on a method (DL TPC) for controlling downlink transmission power in each small cell S (see FIG. 3B).
  • DL TPC downlink transmission power control
  • load balancing and interference between the small cells S can be suppressed.
  • the downlink transmission power of the small cell S1 and the small cell S2 when the downlink transmission power of the small cell S1 and the small cell S2 is the same (when the downlink coverage area is equal), four user terminals are connected to the small cell S1, and the small cell Two user terminals are connected to 2.
  • the downlink transmission power of the small cell S1 is reduced and the downlink transmission power of the small cell S2 is increased, so that the small cell S1 and the small cell S2 each have 3 It becomes possible to connect one user terminal.
  • DL TPC downlink transmission power control
  • the macro base station MeNB and the small base station SeNB may be connected by wire such as an optical fiber (Optical fiber) or a non-optical fiber (X2 interface), or may be connected wirelessly.
  • wire such as an optical fiber (Optical fiber) or a non-optical fiber (X2 interface)
  • an ideal backhaul a case where low delay is performed using an optical fiber
  • a case where an X2 interface is used is referred to as a non-ideal backhaul.
  • the ideal backhaul can control transmission / reception of information between base stations with a low delay compared to the non-ideal backhaul.
  • reception power RSRP
  • the transmission power applied to the downlink for example, the data channel, the control channel, etc.
  • the reference signal as the UL cell and DL cell to which the user terminal is connected
  • the user terminal is connected to a small cell connected by downlink transmission in uplink transmission. That is, the user terminal performs uplink transmission with respect to a small cell with a large path loss (distance away). As a result, the power consumption of the user terminal may increase.
  • the inventors select a cell in which traffic load / number of user terminals is considered as a cell to which the user terminal connects in downlink transmission (load balancing, transmission power control, interference control is applied),
  • the idea is to select a cell in which path loss is considered as a cell to which a user terminal connects by uplink transmission.
  • the present inventors have configured a signal (for example, a first downlink reference signal) for configuring a UL cell to which a user terminal is connected and a signal (for example, a first cell for configuring a DL cell). 2 downlink reference signals), and found that different transmission power is applied to each signal.
  • a signal for example, a first downlink reference signal
  • a signal for example, a first cell for configuring a DL cell. 2 downlink reference signals
  • the transmission power of the first downlink reference signal for UL cell setting transmitted from each cell is fixed in each cell.
  • downlink transmission power control applied in each cell is applied to the second downlink reference signal for DL cell setting transmitted from each cell.
  • a user terminal feeds back the information regarding the received power (RSRP) of a 1st downlink reference signal and a 2nd downlink reference signal as a measurement report. And based on the measurement report fed back from the user terminal, the UL cell and DL cell which a user terminal connects are selected.
  • RSRP received power
  • the cell with the smallest path loss (for example, the cell with the shortest distance) can be selected as the UL cell to which the user terminal is connected.
  • a cell to which downlink transmission power control is applied in consideration of traffic load / number of user terminals (for example, a cell different from the UL cell) can be selected as the DL cell to which the user terminal is connected.
  • the traffic load / number of user terminals is adjusted between the cells. (Application of load balancing) can improve the utilization efficiency of radio resources. Further, by determining the UL cell to which the user terminal is connected using a downlink reference signal to which a certain transmission power is applied, each user terminal can be connected to the UL cell with the smallest path loss. As a result, consumption of transmission power of each user terminal can be suppressed.
  • the present inventors use only a reference signal to which downlink transmission power control is applied (for example, the second reference signal), and information (for example, a difference value) regarding the transmission power and reception power of the reference signal.
  • the path loss is obtained from the above, and the UL cell to which the user terminal is connected is selected based on the information on the path loss and the received power of the reference signal.
  • FIG. 5 shows an example of the transmission power of the reference signal transmitted from each small cell when downlink transmission power control (here, Semi-static TPC) is applied to each small cell.
  • FIG. 5A illustrates a second downlink reference signal (DL RS # B) transmitted from each small cell by applying DL transmission power control applied in each small cell.
  • FIG. 5B has shown the 1st downlink reference signal (DL RS # A) transmitted with fixed transmission power from each small cell.
  • Downlink transmission power is applied to the second downlink reference signal (DL RS # B), similarly to the downlink shared channel (PDSCH), downlink control information (for example, EPDCCH), and the like.
  • PDSCH downlink shared channel
  • EPDCCH downlink control information
  • the user terminal measures RSRP (Reference Signal Received Power) using the first downlink reference signal (DL RS # A) and the second downlink reference signal (DL RS # B) transmitted from the small cell.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the user terminal feeds back information on the received power of the first downlink reference signal (RSRP # A) and the received power of the second downlink reference signal (RSRP # B) as a measurement report.
  • the information to be fed back may be RSRP # A (RSRP # B) and the difference between RSRP # A and RSRP # B.
  • the measurement report is fed back to the macro base station.
  • the small base station operates in a stand-alone manner
  • a measurement report can be fed back to the small base station. It is also possible to provide a control station for controlling a plurality of small base stations and feed back to the control station.
  • the configuration shown in FIG. 4 can be applied to the relationship between the macro base station and the small base station.
  • the user terminal feeds back information on RSRP of the reference signal transmitted from the small base station as a measurement report to a macro base station to which the applied frequency band is different (Inter-freq. Measurement).
  • each user terminal measures a downlink reference signal transmitted from each small cell and reports a measurement report during a predetermined period (measurement period).
  • the predetermined period can be notified from the radio base station to the user terminal. Further, the predetermined period is set during the DL transmission power control period applied by each small cell.
  • a radio base station (for example, a macro base station) that has received feedback information from a user terminal selects a cell (or radio base station, transmission / reception point) to which the user terminal is connected based on information related to RSRP.
  • a radio base station selects the small cell connected with an uplink based on RSRP # A, and selects the small cell connected with a downlink based on RSRP # B.
  • the information regarding the said UL cell and DL cell is notified to a user terminal and a small base station.
  • the cell selected as described above is configured as an SCell (Configure).
  • each user terminal uses the cell with the smallest path loss. Transmission can be performed. As a result, consumption of transmission power of each user terminal can be suppressed. Further, by determining the DL cell to which the user terminal is connected based on the received power of RS # B transmitted with the transmission power applied in each cell, interference between cells is suppressed and traffic between cells is reduced. The load / number of user terminals can be adjusted (load balancing). As a result, the utilization efficiency of radio resources can be improved.
  • DL RS # A and DL RS # B include Rel. 11 may be used, or may be defined as a new reference signal.
  • Existing downlink reference signals include cell-specific reference signals (CRS), channel state measurement (CSI-RS: CSI Reference Signals), and user-specific reference signals for PDSCH (UE-specific Reference Signals associated).
  • CRS cell-specific reference signals
  • CSI-RS CSI Reference Signals
  • UE-specific Reference Signals associated UE-specific Reference Signals associated
  • demodulation reference signals associated with EPDCCH demodulation reference signals associated with EPDCCH
  • PRS Positioning Reference Signals
  • DL RS # A can be CRS and DL RS # B can be CSI-RS.
  • CQI measurement at the user terminal can be performed using DL RS # B.
  • a radio base station When using the first mode, a radio base station (for example, a macro base station) adds an information element (IE: Information Element) for a user terminal to report a measurement report using a plurality of reference signals to MeasConfig. To do.
  • the user terminal feeds back information on RSRP of a plurality of reference signals based on an information element notified from the radio base station by an upper layer signal (for example, RRC signaling).
  • an upper layer signal for example, RRC signaling
  • a radio base station (for example, a macro base station) can notify the user terminal of information related to DL TPC with an upper layer signal (for example, RRC signaling or broadcast signal).
  • Information related to DL TPC includes a period of downlink transmission power control, a subframe index to which transmission power is applied, a measurement period, and the like.
  • the present embodiment is also applicable when a small base station is used as a small transmission power node (base station antenna device (RRH: Remote Radio Head)) installed at a location away from the macro base station.
  • a small base station is used as a small transmission power node (base station antenna device (RRH: Remote Radio Head)) installed at a location away from the macro base station.
  • RRH base station antenna device
  • selecting a UL cell means determining a cell for determining uplink transmission power.
  • a path loss is obtained from information (for example, a difference value) related to transmission power and reception power of a reference signal to which transmission power control of each cell is applied, and a UL cell to which a user terminal is connected is selected. To do.
  • Each small cell transmits a downlink reference signal transmitted with downlink transmission power applied in each small cell.
  • the downlink reference signal corresponds to the second downlink reference signal (DL RS # B) in the first aspect.
  • the user terminal measures the received power (RSRP) using the downlink reference signal (DL RS # B) transmitted from each small cell.
  • DL RS # B is excellent in orthogonality to some extent, and is desirably a reference signal (for example, CSI-RS) from which received power can be obtained with high accuracy.
  • a radio base station transmits information related to DL RS # B transmission power to a user terminal, such as an upper layer signal (for example, RRC signaling, a broadcast signal), and downlink control information (DCI: Downlink). Notification using Control Information).
  • the information regarding the transmission power may be any information that can identify the transmission power, and a transmission power value, an offset value from a transmission power reference value, or the like can be used.
  • the user terminal obtains a path loss based on the measured received power and the transmission power notified from the radio base station.
  • the user terminal feeds back information on the path loss and RSRP # B to the radio base station as a measurement report.
  • a measurement report is fed back to the macro base station.
  • the small base station operates stand-alone
  • a measurement report may be fed back to the macro base station.
  • the radio base station sets a small cell to be connected in the uplink based on the path loss reported from the user terminal, and selects a small cell to be connected in the downlink based on RSRP # B.
  • each user terminal can perform UL transmission using the cell with the smallest path loss. Further, by determining the DL cell to which the user terminal is connected based on the received power of the reference signal to which the transmission power of each cell is applied, the traffic load / number of user terminals is adjusted between cells (load balancing), and wireless Resource utilization efficiency can be improved. Further, in the second aspect, by using the transmission power and reception power of RSRP # B to which the transmission power of each cell is applied, the UL cell and the DL to which the user terminal connects using one type of reference signal A cell can be determined.
  • FIG. 6 is a schematic configuration diagram of the radio communication system according to the present embodiment.
  • the radio communication system shown in FIG. 6 is a system including, for example, an LTE system or SUPER 3G.
  • carrier aggregation (CA) in which a plurality of basic frequency blocks (component carriers) having the system bandwidth of the LTE system as one unit can be applied.
  • this wireless communication system may be called IMT-Advanced, or may be called 4G, FRA (Future Radio Access).
  • the radio communication system 1 shown in FIG. 6 includes a radio base station 11 that forms a macro cell C1, and radio base stations 12a and 12b that are arranged in the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. .
  • the user terminal 20 is arrange
  • the user terminal 20 can connect to both the radio base station 11 and the radio base station 12 (dual connectivity). In this case, it is assumed that the user terminal 20 simultaneously uses the macro cell C1 and the small cell C2 that use different frequencies by CA (carrier aggregation).
  • Communication between the user terminal 20 and the radio base station 11 is performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band (for example, 3.5 GHz) and a wide bandwidth may be used between the user terminal 20 and the radio base station 12, or between the user base 20 and the radio base station 11.
  • the same carrier may be used.
  • a new carrier type (NCT) may be used as a carrier type between the user terminal 20 and the radio base station 12.
  • the wireless base station 11 and the wireless base station 12 (or between the wireless base stations 12) are wired (Optical fiber, X2 interface, etc.) or wirelessly connected.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Further, each radio base station 12 may be connected to a higher station apparatus via the radio base station 11.
  • RNC radio network controller
  • MME mobility management entity
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be referred to as an eNodeB, a macro base station, a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, such as a small base station, a pico base station, a femto base station, a Home eNodeB, an RRH (Remote Radio Head), a micro base station, and a transmission / reception point. May be called.
  • RRH Remote Radio Head
  • Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the downlink communication channel includes a PDSCH (Physical Downlink Shared Channel) shared by each user terminal 20 and a downlink L1 / L2 control channel (PDCCH, PCFICH, PHICH, extended PDCCH).
  • PDSCH and PUSCH scheduling information and the like are transmitted by PDCCH (Physical Downlink Control Channel).
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH (Physical Control Format Indicator Channel).
  • the HARQ ACK / NACK for PUSCH is transmitted by PHICH (Physical Hybrid-ARQ Indicator Channel).
  • scheduling information of PDSCH and PUSCH may be transmitted by the extended PDCCH (EPDCCH). This EPDCCH is frequency division multiplexed with PDSCH (downlink shared data channel).
  • the uplink communication channel includes a PUSCH (Physical Uplink Shared Channel) as an uplink data channel shared by each user terminal 20 and a PUCCH (Physical Uplink Control Channel) as an uplink control channel.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • User data and higher control information are transmitted by this PUSCH.
  • downlink radio quality information CQI: Channel Quality Indicator
  • ACK / NACK and the like are transmitted by PUCCH.
  • FIG. 7 is an overall configuration diagram of the radio base station 10 (including the radio base stations 11 and 12) according to the present embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101 for MIMO transmission, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Yes.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • the baseband signal processing unit 104 performs PDCP layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control transmission processing, MAC (Medium Access Control) retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, and precoding processing are performed and transferred to each transceiver 103.
  • RLC layer transmission processing such as RLC (Radio Link Control) retransmission control transmission processing, MAC (Medium Access Control) retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, and precoding processing are performed and transferred to each transceiver 103.
  • HARQ transmission processing scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, and precoding processing are performed and transferred to each transceiver 103.
  • IFFT Inverse Fast Fourier Transform
  • the baseband signal processing unit 104 notifies the control information for communication in the cell to the user terminal 20 through the broadcast channel.
  • the information for communication in the cell includes, for example, the system bandwidth in the uplink or the downlink. Moreover, you may notify the information regarding TPC mentioned above to a user terminal using an alerting
  • the radio base station 12 functioning as a central control station can notify the user terminal of information using a broadcast channel. it can.
  • Each transmission / reception unit 103 converts the baseband signal output by precoding from the baseband signal processing unit 104 for each antenna to a radio frequency band.
  • the amplifier unit 102 amplifies the frequency-converted radio frequency signal and transmits the amplified signal using the transmission / reception antenna 101.
  • radio frequency signals received by the respective transmission / reception antennas 101 are amplified by the amplifier units 102 and frequency-converted by the respective transmission / reception units 103. It is converted into a baseband signal and input to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs FFT processing, IDFT processing, error correction decoding, MAC retransmission control reception processing, RLC layer, and PDCP layer reception processing on user data included in the input baseband signal.
  • the data is transferred to the higher station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, status management of the radio base station 10, and radio resource management.
  • FIG. 8 is a main functional configuration diagram of the baseband signal processing unit 104 included in the small base station (wireless base station 12) according to the present embodiment.
  • the functional configuration for downlink (transmission) is mainly shown, but the radio base station 10 may include a functional configuration for uplink (reception).
  • the baseband signal processing unit 104 included in the radio base station 12 includes a scheduler 301, a data signal generation unit 302, a control signal generation unit 303, a reference signal generation unit 304, and a transmission power control unit. 305.
  • the scheduler 301 schedules downlink user data transmitted on the PDSCH, downlink control information transmitted on the PDCCH and / or enhanced PDCCH (EPDCCH), and reference signals. Specifically, the scheduler 301 allocates radio resources based on instruction information from the higher station apparatus 30 and feedback information from each user terminal 20 (for example, CSI including CQI, RI, etc.). Note that when radio resources are allocated based on an instruction from the macro base station (radio base station 11), the scheduler 301 may not be provided.
  • the data signal generation unit 302 generates a data signal (PDSCH signal) determined to be allocated to the radio resource by the scheduler 301.
  • the data signal generated by the data signal generation unit 302 is subjected to an encoding process and a modulation process according to an encoding rate and a modulation scheme determined based on CSI from each user terminal 20 or the like.
  • the control signal generation unit 303 generates a control signal (PDSCH signal and / or EPDCCH signal) for the user terminal 20 that is determined to be assigned to each subframe by the scheduler 301.
  • the reference signal generation unit 304 generates various reference signals to be transmitted on the downlink.
  • the reference signal generation unit 304 includes a cell-specific reference signal (CRS), a channel state measurement (CSI-RS), a PDSCH user-specific reference signal (DM-RS), and an EPDCCH demodulation reference signal (DM- RS), position adjustment reference signal (PRS), and the like.
  • CRS cell-specific reference signal
  • CSI-RS channel state measurement
  • DM-RS PDSCH user-specific reference signal
  • DM- RS EPDCCH demodulation reference signal
  • PRS position adjustment reference signal
  • These reference signals or newly defined reference signals are used as the above-described first downlink reference signal (DL RS # A) for UL cell setting and second downlink reference signal (DL RS # B for DL cell setting). ) Can be used.
  • the transmission power control unit 305 determines the transmission power of the downlink data signal, downlink control signal, and reference signal.
  • the transmission power control unit 305 applies DL transmission power control to the downlink data signal (PDSCH signal), the downlink control signal (EPDCCH signal), and the second downlink reference signal (DL RS # B).
  • the transmission power control unit 305 applies constant transmission power to the first downlink reference signal (DL RS # A) without applying DL transmission power control.
  • the downlink data signal, downlink control signal, and reference signal to which the transmission power is applied are transmitted to the user terminal via the transmission / reception unit 103.
  • FIG. 9 is a main functional configuration diagram of the baseband signal processing unit 104 included in the macro base station (wireless base station 11) according to the present embodiment.
  • the baseband signal processing unit 104 included in the radio base station 11 includes a scheduler 311, a data signal generation unit 312, a control signal generation unit 313, a reference signal generation unit 314, and an upper control signal generation.
  • a unit 315 and a UE connected cell selection unit 316 are included.
  • the scheduler 311 schedules downlink user data transmitted on the PDSCH, downlink control information transmitted on the PDCCH and / or enhanced PDCCH (EPDCCH), and reference signals. Specifically, the scheduler 311 assigns radio resources based on instruction information from the higher station apparatus 30 and feedback information from each user terminal 20 (for example, CSI including CQI, RI, etc.). The scheduler 311 may be configured to perform scheduling of each small base station 12.
  • the upper control signal generation unit 315 generates information on DL TPC (period of downlink transmission power control, subframe index to which transmission power is applied, measurement period, etc.). Further, when the first aspect is applied, the upper control signal generation unit 315 generates an information element (IE: Information Element) for the user terminal to report a measurement report using a plurality of reference signals. Further, when the second aspect is applied, the higher control signal generation unit 315 generates information on the transmission power of DL RS # B.
  • IE Information Element
  • the radio base station 12 can be provided with the function of the higher control signal generation unit 315.
  • the data signal generation unit 312 generates a data signal (PDSCH) for the user terminal 20 for which assignment to each subframe is determined by the scheduler 311.
  • the data signal generated by the data signal generation unit 312 includes a higher control signal generated by the higher control signal generation unit 315.
  • the control signal generation unit 313 generates a control signal (PDSCH signal and / or EPDCCH signal) for the user terminal 20 for which assignment to each subframe is determined by the scheduler 311. Also, the reference signal generation unit 314 generates various reference signals to be transmitted on the downlink.
  • the UE connected cell selection unit 316 determines a small base station to which the user terminal is connected based on the measurement report fed back from the user terminal 20. In the case of applying the first aspect, the UE connected cell selection unit 316 connects with the uplink based on the received power (RSRP # A) of the first downlink reference signal (DL RS # A). And a small cell connected in the downlink is selected based on the received power (RSRP # B) of the second downlink reference signal (DL RS # B).
  • each user terminal performs UL transmission using the small cell with the smallest path loss. It can be performed. Further, by determining the DL cell to which the user terminal is connected based on RS # B transmitted with the transmission power applied in each small cell, it is possible to suppress interference between cells and to reduce traffic load / The number of user terminals can be adjusted (load balancing).
  • the UE connected cell selection unit 316 sets a small cell to which the user terminal connects in the uplink based on the path loss reported from the user terminal, and based on RSRP # B. The small cell which a user terminal connects with a downlink is selected.
  • FIG. 10 is an overall configuration diagram of the user terminal 20 according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit (reception unit) 203, a baseband signal processing unit 204, and an application unit 205.
  • radio frequency signals received by a plurality of transmission / reception antennas 201 are each amplified by an amplifier unit 202, converted in frequency by a transmission / reception unit 203, and converted into a baseband signal.
  • the baseband signal is subjected to FFT processing, error correction decoding, retransmission control reception processing, and the like by the baseband signal processing unit 204.
  • downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information in the downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • transmission processing for retransmission control H-ARQ (Hybrid ARQ)
  • channel coding precoding
  • DFT processing IFFT processing
  • the like are performed and transferred to each transmission / reception unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band.
  • the amplifier unit 202 amplifies the frequency-converted radio frequency signal and transmits the amplified signal using the transmitting / receiving antenna 201.
  • the transmission / reception unit 203 functions as a reception unit that receives information on the subframe type notified from the radio base station.
  • FIG. 11 is a main functional configuration diagram of the baseband signal processing unit 204 included in the user terminal 20.
  • the baseband signal processing unit 204 included in the user terminal 20 includes at least a received power measurement unit 401 and a feedback information generation unit 402.
  • the baseband signal processing unit 204 also includes functional units that perform retransmission control transmission processing, channel coding, precoding, DFT processing, IFFT processing, and the like.
  • the received power measuring unit 401 measures RSRP (or RSRQ) using a reference signal transmitted from the small base station.
  • the received power measurement unit 401 is configured to transmit information related to DL TPC notified from a radio base station (for example, a macro base station) by higher layer signaling (downlink transmission power control period, subframe index to apply transmission power, The received power of the reference signal is measured based on the measurement period.
  • the reception power measurement unit 401 receives the reception power (RSRP # A) of the first downlink reference signal (DL RS # A) and the second downlink reference signal (DL RS #). B) Received power (RSRP # B) is measured. Moreover, when applying the said 2nd aspect, the reception power measurement part 401 measures reception power (RSRP) using the downlink reference signal (DL RS # B) transmitted from each small cell.
  • the feedback information generation unit 402 generates information regarding the received power of the reference signal measured by the received power measuring unit 401 as feedback information.
  • the feedback information generation section 402 is information about the received power (RSRP # A) of the first downlink reference signal and the received power (RSRP # B) of the second downlink reference signal. Is generated.
  • the feedback information generating unit 402 is based on the received power (RSRP # B) measured by the received power measuring unit 401 and the transmission power notified from the radio base station. Find the path loss. In this case, the feedback information generation unit 402 functions as a calculation unit that calculates a path loss.
  • the information generated by the feedback information generation unit 402 is fed back to the radio base station (macro base station or small base station) as a measurement report via the transmission / reception unit 203.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 複数のセルが下りリンク送信電力制御を適用する場合であっても、通信を適切に行うこと。下りリンクの送信電力制御を行う無線基地局と通信を行うユーザ端末であって、一定の送信電力で送信される第1の参照信号と下りリンク送信電力制御が適用される第2の参照信号とを受信する受信部と、第1の参照信号と第2の参照信号の受信電力を測定する測定部と、第1の参照信号と第2の参照信号の受信電力に関する情報をメジャメントレポートとしてフィードバックする送信部とを設ける。

Description

ユーザ端末、無線基地局及び無線通信方法
 本発明は、下りリンク送信電力制御を適用する無線基地局、当該無線基地局と接続するユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。LTEではマルチアクセス方式として、下り回線(下りリンク)にOFDMA(Orthogonal Frequency Division Multiple Access)をベースとした方式を用い、上り回線(上りリンク)にSC-FDMA(Single Carrier Frequency Division Multiple Access)をベースとした方式を用いている。
 また、LTEからのさらなる広帯域化及び高速化を目的として、LTEの後継システムも検討されてきた(例えば、LTEアドバンスト又はLTEエンハンスメントと呼ぶこともある(以下、「LTE-A」という))。LTE-Aシステムでは、半径数キロメートル程度の広範囲のカバレッジエリアを有するマクロセル内に、半径数十メートル程度の局所的なカバレッジエリアを有するスモールセル(例えば、ピコセル、フェムトセルなど)が形成されるHetNet(Heterogeneous Network)が検討されている(例えば、非特許文献2)。
 上述のHetNetでは、マクロセル内に多数のスモールセルが配置される。スモールセルの配置密度が高い場所では、スモールセル間の干渉を低減するために、干渉コーディネーション技術が検討されている。
 ところで、マクロセルと比較してスモールセルのカバレッジエリアは小さいため、ユーザ端末の移動速度や通信状態に伴い、各スモールセルのトラヒックロードやユーザ数は変動する。このように、ユーザ分布やトラヒックロードは一定でなく、時間的、あるいは、場所的に変動する。特定のセルにユーザ数/トラヒックロードが偏る場合、無線リソースの利用効率(スペクトラム利用効率)が低減するおそれがある。
 そこで、スモールセル間の干渉コーディネーションとして、各スモールセルのトラヒック状況を考慮に入れた制御(ロードバランシング)を行うことが望まれている。このような、干渉コーディネーションの一つとして、各スモールセルの下りリンク送信電力制御(DL TPC)を適用することが考えられる。例えば、トラヒックの多いセルでは下りの送信電力を下げ、トラヒックの少ないセルでは下りの送信電力を上げることで、トラヒックの少ないセルにオフロードすることが考えられる。しかし、下りリンク送信電力制御を適用する場合、接続するセルの選択方法等をどのように行うかが問題となる。
 本発明は、かかる点に鑑みてなされたものであり、複数のセルが下りリンク送信電力制御を適用する場合であっても、通信を適切に行うことができるユーザ端末、無線基地局及び無線通信方法を提供することを目的とする。
 本発明のユーザ端末は、下りリンクの送信電力制御を行う無線基地局と通信を行うユーザ端末であって、一定の送信電力で送信される第1の参照信号と下りリンク送信電力制御が適用される第2の参照信号とを受信する受信部と、前記第1の参照信号と前記第2の参照信号の受信電力を測定する測定部と、前記第1の参照信号と前記第2の参照信号の受信電力に関する情報をメジャメントレポートとしてフィードバックする送信部と、を有することを特徴とする。
 本発明によれば、複数のセルが下りリンク送信電力制御を適用する場合であっても、無線基地局とユーザ端末間の通信を適切に行うことができる。
HetNetの概念図である。 各スモールセルに接続するユーザ端末数を説明する図である。 ロードバランシングを考慮した干渉コーディネーションの説明図である。 マクロ基地局とスモール基地局間、スモール基地局間の接続方法を説明する図である。 DL送信電力制御が適用される各スモールセルから送信される参照信号の送信電力の一例を示す図である。 本実施の形態に係る無線通信システムの一例を示す概略図である。 本実施の形態に係る無線基地局の全体構成の説明図である。 本実施の形態に係るマクロ基地局の機能構成の説明図である。 本実施の形態に係るスモール基地局の機能構成の説明図である。 本実施の形態に係るユーザ端末の全体構成の説明図である。 本実施の形態に係るユーザ端末の機能構成の説明図である。
 図1は、HetNetの概念図である。図1に示すように、HetNetは、マクロセルMとスモールセルSとの少なくとも一部が地理的に重複して配置される無線通信システムである。HetNetは、マクロセルMを形成する無線基地局(以下、マクロ基地局という)MeNBと、スモールセルSを形成する無線基地局(以下、スモール基地局という)SeNBと、マクロ基地局MeNBとスモール基地局SeNBと通信するユーザ端末UEとを含んで構成される。
 図1に示すように、マクロセルMでは、例えば、800MHzや2GHzなど、相対的に低い周波数帯のキャリア(以下、低周波数帯キャリアという)F1が用いられる。一方、多数のスモールセルSでは、例えば、3.5GHzなど、相対的に高い周波数帯のキャリア(以下、高周波数帯キャリアという)F2が用いられる。なお、800MHzや2GHz、3.5GHzはあくまでも一例である。マクロセルMのキャリアとして、3.5GHzが用いられてもよいし、スモールセルSのキャリアとして、800MHzや2GHz、800MHzや2GHz、1.7GHz等が用いられてもよい。
 一般に、ユーザ分布やトラヒックロードは一定でなく、時間的、あるいは、場所的に変動する。そのため、マクロセルM内に多数のスモールセルSを配置する場合、図1に示すように、場所に応じて密度や環境の異なる(sparse and dense)形態で、スモールセルが配置されることになる。
 例えば、ユーザ端末が多く集まる駅やショッピングモール等には、スモールセルSの配置密度を高くすること(Dense small cell)が考えられる。一方で、ユーザ端末が集まらない場所には、スモールセルSの配置密度を低くして(Sparse small cell)通信を行うことが考えられる。
 スモールセルSの配置密度が高い場所では、隣接するスモールセル間で干渉が生じるおそれがある。したがって、スモールセルS間の干渉を低減するために、干渉コーディネーションが検討されている。
 スモールセルSにおける干渉コーディネーションでは、無線リソースの利用効率の改善、容易なセルプランニング、ロードバランシング等も同時に考慮する必要がある。これは、カバレッジエリアが小さいスモールセルSにおいて、ユーザ端末の移動や通信状態に伴い、トラヒックロードやユーザ数が特定のスモールセルSに集中して無線リソースの利用効率(スペクトラム利用効率)が低減するおそれがあるためである。
 図2は、高密度に配置された各スモールセルSに接続するユーザ端末数の一例を示している。図2Aは、各スモールセルSに対してユーザ端末数(又は、トラヒックロード)が均一に分散される場合を示している。なお、ここでは、各ユーザ端末のトラヒックロードが同等の場合を想定している。このように、各スモールセルSにユーザ端末数(又は、トラヒックロード)が均一に分散される場合には、各スモールセルにおいて無線リソースを有効に利用することができる。
 しかし、スモールセルSのカバレッジエリアは小さいため、各ユーザ端末の移動や通信状態に応じて各スモールセルSのユーザ端末数(又は、トラヒックロード)は不均一となる(図2B参照)。そのため、上述したように、スモールセル間の干渉コーディネーションとして、各スモールセルSのトラヒックロード/ユーザ端末数を考慮すること(ロードバランシングを適用すること)が望まれている。
 このような干渉コーディネーションとして、各スモールセルSで適用する周波数領域をコンポーネントキャリア(CC:Component Carrier)レベルで制御する拡張CCレベルコーディネーション(Enhanced CC-level coordination)が検討されている(図3A参照)。各スモールセルは、隣接セルが適用するCCに加えて、各スモールセルのトラヒックロードを考慮して、CCレベルで干渉を制御することができる。
 また、他の干渉コーディネーションとして、本発明者等は、各スモールセルSにおける下りリンクの送信電力を制御する方法(DL TPC)に着目した(図3B参照)。下りリンク送信電力制御では、トラヒックロード/ユーザ端末数を考慮して各スモールセルSの下りリンク送信電力を制御することにより、ロードバランシングを行うと共にスモールセルS間の干渉を抑制することができる。
 例えば、図3Bでは、スモールセルS1とスモールセルS2の下りリンクの送信電力が同じである場合(下りリンクのカバレッジエリアが等しい場合)、スモールセルS1に4個のユーザ端末が接続し、スモールセル2に2個のユーザ端末が接続する。一方で、トラヒックロード/ユーザ端末数を考慮して、スモールセルS1の下り送信電力を小さくし、且つスモールセルS2の下りリンク送信電力を大きくすることにより、スモールセルS1とスモールセルS2にそれぞれ3個のユーザ端末を接続させることが可能となる。
 このように、トラヒックロード/ユーザ端末数を考慮して各スモールセルの下りリンク送信電力を制御することにより、ロードバランシングを適用すると共にセル間の干渉を抑制することができる。また、上述した下りリンク送信電力制御(DL TPC)は、拡張CCレベルコーディネーションにも適用することが可能である。
 このように、スモールセルS間の干渉コーディネーションとして、下りリンク送信電力制御を適用することが考えられる。以下に、下りリンク送信電力を適用する際の具体的な態様について説明する。
 例えば、スモールセルSとマクロセルMが異なる周波数を適用するシナリオ(Separate frequency)を想定する(図4参照)。この場合、異なる周波数を用いるマクロセルMとスモールセルSを、CA(キャリアアグリゲーション)により同時に使用することが想定される。この場合、マクロ基地局MeNBとスモール基地局SeNBは、光ファイバ(Optical fiber)や非光ファイバ(X2インターフェース)等の有線で接続されてもよいし、無線で接続されてもよい。
 なお、基地局間の接続において、光ファイバを用いて低遅延で行う場合をideal backhaul、X2インターフェースを用いて行う場合をNon-ideal backhaulと呼ぶ。ideal backhaulは、Non-ideal backhaulと比較して、基地局間の情報の送受信を低遅延で制御することができる。
 スモールセルS間の接続をideal backhaulで行う場合には、各スモールセルSの下りリンク送信電力制御をリソースブロック(RB)単位で動的に行うことが可能となる。一方で、スモールセルS間の接続をNon-ideal backhaulで行う場合には、各スモールセルSの下りリンク送信電力制御を比較的長い周期で制御(準静的送信電力制御)する必要がある。なお、準静的送信電力制御(Semi-static TPC)は、ideal backhaulの場合にも適用することが可能である。
 各スモールセルSの下りリンクの電力制御として、準静的送信電力制御を適用する場合、各ユーザ端末が接続するDLセルとULセルの選択(Measurement)をどのように行うかが問題となる。
 例えば、各スモールセルから送信される特定の下り参照信号の受信電力(RSRP)等に基づいて、ユーザ端末が接続するセル(又は、送受信ポイント、無線基地局であってもよい)を決定する場合を想定する。この場合、各スモールセルにおいて、下りリンク(例えば、データチャネル、制御チャネル等)に適用される送信電力を参照信号にも適用する場合、ユーザ端末が接続するULセル及びDLセルとして、下りリンクの送信電力が最も高いセルが設定される。
 しかし、この場合、ユーザ端末は、上りリンク伝送においても下りリンク伝送で接続するスモールセルに接続する。つまり、ユーザ端末は、パスロスが大きい(距離が離れた)スモールセルに対して、上りリンク伝送を行うこととなる。その結果、ユーザ端末の消費電力が増加するおそれがある。
 そこで、本発明者等は、ユーザ端末が下りリンク伝送で接続するセルとして、トラヒックロード/ユーザ端末数が考慮された(ロードバランシング、送信電力制御、干渉制御が適用された)セルを選択し、ユーザ端末が上りリンク伝送で接続するセルとして、パスロスが考慮されたセルを選択することを着想した。
 具体的に、本発明者等は、ユーザ端末が接続するULセルを設定(configure)するための信号(例えば、第1の下り参照信号)と、DLセルを設定するための信号(例えば、第2の下り参照信号)を用い、それぞれの信号に異なる送信電力を適用することを見出した。
 例えば、各セルからそれぞれ送信されるULセル設定用の第1の下り参照信号の送信電力を各セルで一定とする。また、各セルからそれぞれ送信されるDLセル設定用の第2の下り参照信号に対してそれぞれ各セルで適用される下りリンク送信電力制御を適用する。また、ユーザ端末は、第1の下り参照信号と第2の下り参照信号の受信電力(RSRP)に関する情報をメジャメントレポートとしてフィードバックする。そして、ユーザ端末からフィードバックされたメジャメントレポートに基づいて、ユーザ端末が接続するULセルとDLセルを選択する。
 この場合、ユーザ端末が接続するULセルとして、パスロスが最も小さいセル(例えば、距離が最も近いセル)を選択することができる。また、ユーザ端末が接続するDLセルとして、トラヒックロード/ユーザ端末数を考慮して下りリンク送信電力制御が適用されたセル(例えば、ULセルと異なるセル)を選択することができる。
 このように、セル毎に制御される下りリンク送信電力制御が適用された下り参照信号を用いてユーザ端末が接続するDLセルを決定することにより、セル間でトラヒックロード/ユーザ端末数を調整し(ロードバランシングを適用し)、無線リソースの利用効率を向上することができる。また、一定の送信電力が適用された下り参照信号を用いてユーザ端末が接続するULセルを決定することにより、各ユーザ端末はパスロスが最も小さいULセルに接続することができる。その結果、各ユーザ端末の送信電力の消費を抑制することができる。
 また、本発明者等は、下りリンク送信電力制御が適用された参照信号(例えば、上記第2の参照信号)のみを用いて、当該参照信号の送信電力と受信電力に関する情報(例えば、差分値)からパスロスを求め、当該パスロスと参照信号の受信電力に関する情報に基づいてユーザ端末が接続するULセルを選択することを見出した。
 以下に、本実施の形態について添付図面を参照して詳細に説明する。
(第1の態様)
 第1の態様では、DL送信電力制御(DL TPC)において、異なる送信電力が適用されるULセル設定用の参照信号と、DLセル設定用の参照信号を用いる場合について説明する。
 図5は、各スモールにおいて下りリンク送信電力制御(ここでは、Semi-static TPC)が適用される場合に、各スモールセルから送信される参照信号の送信電力の一例を示している。具体的に、図5Aは、各スモールセルから各々のスモールセルで適用されるDL送信電力制御が適用されて送信される第2の下り参照信号(DL RS#B)を示している。また、図5Bは、各スモールセルから一定の送信電力で送信される第1の下り参照信号(DL RS#A)を示している。第2の下り参照信号(DL RS#B)は、下り共有チャネル(PDSCH)、下り制御情報(例えば、EPDCCH)等と同様に、下り送信電力が適用される。
 ユーザ端末は、スモールセルから送信される第1の下り参照信号(DL RS#A)と第2の下り参照信号(DL RS#B)を用いて、RSRP(Reference Signal Received Power)を測定する。なお、RSRPの代わりにRSRQ(Reference Signal Received Quality)等それ以外のメトリックを測定してもよい。なお、以下の説明では、RSRPとして説明する。
 続いて、ユーザ端末は、第1の下り参照信号の受信電力(RSRP#A)と第2の下り参照信号の受信電力(RSRP#B)に関する情報をメジャメントレポート(measurement report)として、フィードバックする。なお、フィードバックする情報は、RSRP#A(RSRP#B)と、RSRP#AとRSRP#Bの差分でもよい。
 ユーザ端末がマクロ基地局に接続している場合(マクロ基地局に初期接続する場合)には、マクロ基地局にメジャメントレポートをフィードバックする。なお、ユーザ端末がスモール基地局に初期接続(スモール基地局がスタンドアローンで動作)する場合には、スモール基地局にメジャメントレポートをフィードバックすることも可能である。また、複数のスモール基地局を制御する制御局を設け、当該制御局にフィードバックすることも可能である。
 なお、マクロ基地局とスモール基地局との関係は、上記図4で示した構成を適用することができる。この場合、ユーザ端末は、スモール基地局から送信された参照信号のRSRPに関する情報を、適用する周波数帯が異なるマクロ基地局にメジャメントレポートとしてフィードバックする(Inter-freq. Measurement)。
 また、各ユーザ端末は、所定期間(measurement period)に、各スモールセルから送信される下り参照信号を測定してメジャメントレポートを報告する。所定期間は、無線基地局からユーザ端末に通知することができる。また、所定期間は、各スモールセルが適用するDL送信電力制御期間中に設定する。
 ユーザ端末からフィードバック情報を受信した無線基地局(例えば、マクロ基地局)は、RSRPに関する情報に基づいてユーザ端末が接続するセル(又は、無線基地局、送受信ポイント)を選択する。本実施の形態では、無線基地局は、RSRP#Aに基づいて上りリンクで接続するスモールセルを選択し、RSRP#Bに基づいて下りリンクで接続するスモールセルを選択する。なお、マクロ基地局において、ユーザ端末が接続するULセル及びDLセルを選択する場合には、当該ULセル及びDLセルに関する情報を、ユーザ端末やスモール基地局に通知する。なお、CAの場合は、上記のようにして選択したセルをSCellとして設定(Configure)する。
 このように、各セルから一定の送信電力で送信されるRS#Aの受信電力を用いてユーザ端末が接続するULセルを決定することにより、各ユーザ端末はパスロスが最も小さいセルを用いてUL伝送を行うことができる。その結果、各ユーザ端末の送信電力の消費を抑制することができる。また、各セルでそれぞれ適用される送信電力で送信されるRS#Bの受信電力に基づいてユーザ端末が接続するDLセルを決定することにより、セル間の干渉を抑制すると共に、セル間でトラヒックロード/ユーザ端末数を調整する(ロードバランシング)ことができる。その結果、無線リソースの利用効率を向上することができる。
 DL RS#A、DL RS#Bとしては、Rel.11で規定されている既存の下り参照信号を利用してもよいし、新しい参照信号として定義してもよい。既存の下り参照信号としては、セル固有参照信号(CRS:Cell-specific Reference Signals)、チャネル状態測定用(CSI-RS:CSI Reference Signals)、PDSCH用のユーザ固有参照信号(UE-specific Reference Signals associated with PDSCH)、EPDCCH用の復調用参照信号(Demodulation reference signals associated with EPDCCH)、位置調整用参照信号(PRS:Positioning Reference Signals)等が利用できる。
 例えば、DL RS#AをCRS、DL RS#BをCSI-RSとすることができる。また、ユーザ端末におけるCQIの測定は、DL RS#Bを用いて行うことができる。なお、CSI-RSを適用する場合には、DL RSとして複数のCSI-RS構成(CSI-RS configuration)で構成される参照信号を利用してもよい。また、DL RS#Aと、DL RS#Bとして、CSI-RS構成が異なるCSI-RSを用いることも可能である。
 第1の態様を利用する場合、無線基地局(例えば、マクロ基地局)は、ユーザ端末が複数の参照信号を用いてメジャメントレポートを報告するための情報エレメント(IE:Information Element)をMeasConfigに追加する。ユーザ端末は、無線基地局から上位レイヤ信号(例えば、RRCシグナリング)で通知される情報エレメントに基づいて、複数の参照信号のRSRPに関する情報をフィードバックする。
 また、無線基地局(例えば、マクロ基地局)は、ユーザ端末に対してDL TPCに関する情報を上位レイヤ信号(例えば、RRCシグナリング、報知信号)で通知することができる。DL TPCに関する情報としては、下り送信電力制御の周期、送信電力を適用するサブフレームインデックス、メジャメント期間等が挙げられる。
 なお、本実施の形態は、スモール基地局をマクロ基地局から離れた場所に設置される小送信電力ノード(基地局アンテナ装置(RRH:Remote Radio Head))として利用する場合にも適用可能である。この場合、ULセルを選択するとは、上りの送信電力を決めるためのセルを決定することを意味する。
(第2の態様)
 第2の態様では、各セルの送信電力制御が適用された参照信号の送信電力と受信電力に関する情報(例えば、差分値)からパスロスを求め、ユーザ端末が接続するULセルを選択する場合について説明する。
 各スモールセルは、各々のスモールセルで適用する下り送信電力で送信される下り参照信号を送信する。なお、当該下り参照信号は、上記第1の態様における第2の下り参照信号(DL RS#B)に相当する。
 ユーザ端末は、各スモールセルから送信される下り参照信号(DL RS#B)を用いて、受信電力(RSRP)を測定する。なお、DL RS#Bは、ある程度直交性に優れており、受信電力を高い精度で求めることができる参照信号(例えば、CSI-RS)とすることが望ましい。
 また、無線基地局(例えば、マクロ基地局)は、ユーザ端末に対して、DL RS#Bの送信電力に関する情報を上位レイヤ信号(例えば、RRCシグナリング、報知信号)、下り制御情報(DCI:Downlink Control Information)を用いて通知する。送信電力に関する情報は、送信電力を特定できる情報であればよく、送信電力の値や送信電力の基準値からのオフセット値等を利用することができる。
 ユーザ端末は、測定した受信電力と、無線基地局から通知された送信電力と、に基づいて、パスロスを求める。パスロスは、送信電力と受信電力との差分(Path Loss=送信電力-受信電力)から求めることができる。そして、ユーザ端末は、パスロスとRSRP#Bに関する情報を、メジャメントレポート(measurement report)として、無線基地局にフィードバックする。ユーザ端末がマクロ基地局に初期接続する場合には、マクロ基地局にメジャメントレポートをフィードバックする。なお、ユーザ端末がスモール基地局に初期接続(スモール基地局がスタンドアローンで動作)する場合には、マクロ基地局にメジャメントレポートをフィードバックしてもよい。
 無線基地局は、ユーザ端末から報告されたパスロスに基づいて上りリンクで接続するスモールセルを設定し、RSRP#Bに基づいて下りリンクで接続するスモールセルを選択する。
 このように、ユーザ端末が接続するULセルをパスロスに基づいて決定することにより、各ユーザ端末はパスロスが最も小さいセルを用いてUL伝送を行うことができる。また、ユーザ端末が接続するDLセルを各セルの送信電力が適用された参照信号の受信電力に基づいて決定することにより、セル間でトラヒックロード/ユーザ端末数を調整し(ロードバランシング)、無線リソースの利用効率を向上することができる。また、第2の態様では、各セルの送信電力が適用されたRSRP#Bの送信電力と受信電力を利用することにより、1種類の参照信号を利用してユーザ端末が接続するULセルとDLセルを決定することができる。
(無線通信システムの構成)
 以下、本実施の形態に係る無線通信システムについて、詳細に説明する。この無線通信システムでは、上述の第1、第2の態様に係るDL送信電力制御(準静的送信電力制御)が適用される。
 図6は、本実施の形態に係る無線通信システムの概略構成図である。なお、図6に示す無線通信システムは、例えば、LTEシステム或いは、SUPER 3Gが包含されるシステムである。この無線通信システムでは、LTEシステムのシステム帯域幅を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)が適用することができる。また、この無線通信システムは、IMT-Advancedと呼ばれても良いし、4G、FRA(Future Radio Access)と呼ばれても良い。
 図6に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a及び12bとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続すること(dual connectivity)ができる。この場合、ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA(キャリアアグリゲーション)により同時に使用することが想定される。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrier等と呼ばれる)を用いて通信が行なわれる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz等)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。ユーザ端末20と無線基地局12間のキャリアタイプとしてニューキャリアタイプ(NCT)を利用してもよい。無線基地局11と無線基地局12(又は、無線基地局12間)は、有線接続(Optical fiber、X2インターフェース等)又は無線接続されている。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)等が含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、eNodeB、マクロ基地局、送受信ポイントなどと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、ピコ基地局、フェムト基地局、Home eNodeB、RRH(Remote Radio Head)、マイクロ基地局、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでよい。
 無線通信システムにおいては、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が適用され、上りリンクについてはSC-FDMA(シングルキャリア-周波数分割多元接続)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。
 ここで、図6に示す無線通信システムで用いられる通信チャネルについて説明する。下りリンクの通信チャネルは、各ユーザ端末20で共有されるPDSCH(Physical Downlink Shared Channel)と、下りL1/L2制御チャネル(PDCCH、PCFICH、PHICH、拡張PDCCH)とを有する。PDSCHにより、ユーザデータ及び上位制御情報が伝送される。PDCCH(Physical Downlink Control Channel)により、PDSCHおよびPUSCHのスケジューリング情報等が伝送される。PCFICH(Physical Control Format Indicator Channel)により、PDCCHに用いるOFDMシンボル数が伝送される。PHICH(Physical Hybrid-ARQ Indicator Channel)により、PUSCHに対するHARQのACK/NACKが伝送される。また、拡張PDCCH(EPDCCH)により、PDSCH及びPUSCHのスケジューリング情報等が伝送されてもよい。このEPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重される。
 上りリンクの通信チャネルは、各ユーザ端末20で共有される上りデータチャネルとしてのPUSCH(Physical Uplink Shared Channel)と、上りリンクの制御チャネルであるPUCCH(Physical Uplink Control Channel)とを有する。このPUSCHにより、ユーザデータや上位制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、ACK/NACK等が伝送される。
 図7は、本実施の形態に係る無線基地局10(無線基地局11及び12を含む)の全体構成図である。無線基地局10は、MIMO伝送のための複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、PDCPレイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御の送信処理などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御、例えば、HARQの送信処理、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理が行われて各送受信部103に転送される。また、下りリンクの制御チャネルの信号に関しても、チャネル符号化や逆高速フーリエ変換等の送信処理が行われて、各送受信部103に転送される。
 また、ベースバンド信号処理部104は、報知チャネルにより、ユーザ端末20に対して、当該セルにおける通信のための制御情報を通知する。当該セルにおける通信のための情報には、例えば、上りリンク又は下りリンクにおけるシステム帯域幅等が含まれる。また、上述したTPCに関する情報を、報知チャネルを用いてユーザ端末に通知してもよい。なお、ユーザ端末が無線基地局11と無線基地局12の双方に接続する場合(dual connection)、中央制御局として機能する無線基地局12からユーザ端末へ報知チャネルを用いて情報を通知することができる。
 各送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換する。アンプ部102は、周波数変換された無線周波数信号を増幅して送受信アンテナ101により送信する。
 一方、上りリンクによりユーザ端末20から無線基地局10に送信されるデータについては、各送受信アンテナ101で受信された無線周波数信号がそれぞれアンプ部102で増幅され、各送受信部103で周波数変換されてベースバンド信号に変換され、ベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、入力されたベースバンド信号に含まれるユーザデータに対して、FFT処理、IDFT処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放等の呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 図8は、本実施の形態に係るスモール基地局(無線基地局12)が有するベースバンド信号処理部104の主な機能構成図である。なお、図8においては、下りリンク(送信)用の機能構成を主に示しているが、無線基地局10は、上りリンク(受信)用の機能構成を備えてもよい。
 図8に示すように、無線基地局12が有するベースバンド信号処理部104は、スケジューラ301と、データ信号生成部302と、制御信号生成部303と、参照信号生成部304と、送信電力制御部305と、を含んで構成されている。
 スケジューラ301は、PDSCHで伝送される下りユーザデータ、PDCCH及び/又は拡張PDCCH(EPDCCH)で伝送される下り制御情報、参照信号のスケジューリングを行う。具体的に、スケジューラ301は、上位局装置30からの指示情報や各ユーザ端末20からのフィードバック情報(例えば、CQI、RIなどを含むCSI)に基づいて、無線リソースの割り当てを行う。なお、マクロ基地局(無線基地局11)からの指示に基づいて無線リソースの割当てを行う場合には、スケジューラ301を設けない構成としてもよい。
 データ信号生成部302は、スケジューラ301により無線リソースへの割当てが決定されたデータ信号(PDSCH信号)を生成する。データ信号生成部302により生成されるデータ信号には、各ユーザ端末20からのCSI等に基づいて決定された符号化率、変調方式に従って符号化処理、変調処理が行われる。
 制御信号生成部303は、スケジューラ301により各サブフレームへの割当てが決定されたユーザ端末20に対する制御信号(PDSCH信号及び/又はEPDCCH信号)を生成する。
 参照信号生成部304は、下りリンクで送信する各種参照信号を生成する。例えば、参照信号生成部304は、セル固有参照信号(CRS)、チャネル状態測定用(CSI-RS)、PDSCH用のユーザ固有参照信号(DM-RS)、EPDCCH用の復調用参照信号(DM-RS)、位置調整用参照信号(PRS)等を生成する。これらの参照信号、又は新しく定義された参照信号を、上述したULセル設定用の第1の下り参照信号(DL RS#A)、DLセル設定用の第2の下り参照信号(DL RS#B)として利用することができる。
 送信電力制御部305は、下りデータ信号、下り制御信号及び参照信号の送信電力を決定する。送信電力制御部305は、下りデータ信号(PDSCH信号)、下り制御信号(EPDCCH信号)、上記第2の下り参照信号(DL RS#B)に対して、DL送信電力制御を適用する。一方で、送信電力制御部305は、上記第1の下り参照信号(DL RS#A)に対しては、DL送信電力制御の適用を行わず一定の送信電力を適用する。送信電力が適用された下りデータ信号、下り制御信号、参照信号は、送受信部103を介してユーザ端末に送信される。
 図9は、本実施の形態に係るマクロ基地局(無線基地局11)が有するベースバンド信号処理部104の主な機能構成図である。図9に示すように、無線基地局11が有するベースバンド信号処理部104は、スケジューラ311と、データ信号生成部312と、制御信号生成部313と、参照信号生成部314と、上位制御信号生成部315と、UE接続セル選択部316と、を含んで構成されている。
 スケジューラ311は、PDSCHで伝送される下りユーザデータ、PDCCH及び/又は拡張PDCCH(EPDCCH)で伝送される下り制御情報、参照信号のスケジューリングを行う。具体的に、スケジューラ311は、上位局装置30からの指示情報や各ユーザ端末20からのフィードバック情報(例えば、CQI、RIなどを含むCSI)に基づいて、無線リソースの割り当てを行う。なお、スケジューラ311が各スモール基地局12のスケジューリングを行う構成とすることもできる。
 上位制御信号生成部315は、DL TPCに関する情報(下り送信電力制御の周期、送信電力を適用するサブフレームインデックス、メジャメント期間等)を生成する。また、上記第1の態様を適用する場合、上位制御信号生成部315は、ユーザ端末が複数の参照信号を用いてメジャメントレポートを報告するための情報エレメント(IE:Information Element)を生成する。また、上記第2の態様を適用する場合、上位制御信号生成部315は、DL RS#Bの送信電力に関する情報を生成する。
 なお、ユーザ端末がスモール基地局に初期接続(スモール基地局がスタンドアローンで動作)する場合には、無線基地局12に上位制御信号生成部315の機能を設けることができる。
 データ信号生成部312は、スケジューラ311により各サブフレームへの割当てが決定されたユーザ端末20に対するデータ信号(PDSCH)を生成する。データ信号生成部312により生成されるデータ信号には、上位制御信号生成部315により生成される上位制御信号が含まれる。
 制御信号生成部313は、スケジューラ311により各サブフレームへの割当てが決定されたユーザ端末20に対する制御信号(PDSCH信号及び/又はEPDCCH信号)を生成する。また、参照信号生成部314は、下りリンクで送信する各種参照信号を生成する。
 UE接続セル選択部316は、ユーザ端末20からフィードバックされるメジャメントレポートに基づいて、ユーザ端末が接続するスモール基地局を決定する。上記第1の態様を適用する場合には、UE接続セル選択部316は、第1の下り参照信号(DL RS#A)の受信電力(RSRP#A)に基づいて上りリンクで接続するスモールセルを設定し、第2の下り参照信号(DL RS#B)の受信電力(RSRP#B)に基づいて下りリンクで接続するスモールセルを選択する。
 このように、各スモールセルから一定の送信電力で送信されるRS#Aを用いてユーザ端末が接続するULセルを決定することにより、各ユーザ端末はパスロスが最も小さいスモールセルを用いてUL伝送を行うことができる。また、各スモールセルでそれぞれ適用される送信電力で送信されるRS#Bに基づいてユーザ端末が接続するDLセルを決定することにより、セル間の干渉を抑制すると共に、セル間でトラヒックロード/ユーザ端末数を調整する(ロードバランシング)ことができる。
 上記第2の態様を適用する場合には、UE接続セル選択部316は、ユーザ端末から報告されたパスロスに基づいてユーザ端末が上りリンクで接続するスモールセルを設定し、RSRP#Bに基づいてユーザ端末が下りリンクで接続するスモールセルを選択する。
 図10は、本実施の形態に係るユーザ端末20の全体構成図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部(受信部)203と、ベースバンド信号処理部204と、アプリケーション部205とを備えている。
 下りリンクのデータについては、複数の送受信アンテナ201で受信された無線周波数信号がそれぞれアンプ部202で増幅され、送受信部203で周波数変換されてベースバンド信号に変換される。このベースバンド信号は、ベースバンド信号処理部204でFFT処理や、誤り訂正復号、再送制御の受信処理等がなされる。この下りリンクのデータの内、下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理等を行う。また、下りリンクのデータの内、報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御(H-ARQ (Hybrid ARQ))の送信処理や、チャネル符号化、プリコーディング、DFT処理、IFFT処理等が行われて各送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換する。その後、アンプ部202は、周波数変換された無線周波数信号を増幅して送受信アンテナ201により送信する。送受信部203は、無線基地局から通知されるサブフレーム種別に関する情報等を受信する受信部として機能する。
 図11は、ユーザ端末20が有するベースバンド信号処理部204の主な機能構成図である。図11に示すように、ユーザ端末20が有するベースバンド信号処理部204は、受信電力測定部401、フィードバック情報生成部402を少なくとも有している。なお、上述したように、ベースバンド信号処理部204は、再送制御の送信処理、チャネル符号化、プリコーディング、DFT処理、IFFT処理等を行う機能部も有している。
 受信電力測定部401は、スモール基地局から送信される参照信号を用いてRSRP(又は、RSRQ)を測定する。この際、受信電力測定部401は、無線基地局(例えば、マクロ基地局)から上位レイヤシグナリング等で通知されるDL TPCに関する情報(下り送信電力制御の周期、送信電力を適用するサブフレームインデックス、メジャメント期間等)に基づいて参照信号の受信電力を測定する。
 上記第1の態様を適用する場合には、受信電力測定部401は、第1の下り参照信号(DL RS#A)の受信電力(RSRP#A)と第2の下り参照信号(DL RS#B)の受信電力(RSRP#B)を測定する。また、上記第2の態様を適用する場合には、受信電力測定部401は、各スモールセルから送信される下り参照信号(DL RS#B)を用いて、受信電力(RSRP)を測定する。
 フィードバック情報生成部402は、受信電力測定部401で測定した参照信号の受信電力に関する情報をフィードバック情報として生成する。上記第1の態様を適用する場合には、フィードバック情報生成部402は、第1の下り参照信号の受信電力(RSRP#A)と第2の下り参照信号の受信電力(RSRP#B)に関する情報を生成する。上記第2の態様を適用する場合には、フィードバック情報生成部402は、受信電力測定部401で測定した受信電力(RSRP#B)と、無線基地局から通知された送信電力と、に基づいて、パスロスを求める。この場合、フィードバック情報生成部402は、パスロスを求める算出部として機能する。
 フィードバック情報生成部402で生成された情報は、送受信部203を介してメジャメントレポートとして無線基地局(マクロ基地局又はスモール基地局)にフィードバックされる。
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。例えば、上述した複数の態様を適宜組み合わせて適用することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2013年3月19日出願の特願2013-057109に基づく。この内容は、全てここに含めておく。

Claims (9)

  1.  下りリンクの送信電力制御を行う無線基地局と通信を行うユーザ端末であって、
     一定の送信電力で送信される第1の参照信号と下りリンク送信電力制御が適用される第2の参照信号とを受信する受信部と、
     前記第1の参照信号と前記第2の参照信号の受信電力を測定する測定部と、
     前記第1の参照信号と前記第2の参照信号の受信電力に関する情報をメジャメントレポートとしてフィードバックする送信部と、を有することを特徴とするユーザ端末。
  2.  前記受信部は、前記第1の参照信号の受信電力情報に基づいて決定された上りリンク接続セルと、前記第2の参照信号の受信電力情報に基づいて決定された下りリンク接続セルに関する情報を受信することを特徴とする請求項1に記載のユーザ端末。
  3.  前記第1の参照信号はセル固有参照信号(CRS)であり、前記第2の参照信号はチャネル状態測定用参照信号(CSI-RS)であることを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  前記受信部は、複数の参照信号を用いてメジャメントレポート報告を行うための情報エレメント(IE)を上位レイヤシグナリングで受信することを特徴とする請求項1に記載のユーザ端末。
  5.  前記受信部は、下りリンク送信電力制御に関する情報を上位レイヤシグナリングで受信することを特徴とする請求項1に記載のユーザ端末。
  6.  下りリンクの送信電力制御を行う無線基地局と通信を行うユーザ端末であって、
     下りリンク送信電力制御が適用される参照信号を受信する受信部と、
     前記参照信号の受信電力を測定する測定部と、
     前記参照信号の受信電力と送信電力に基づいてパスロスを求める算出部と、
     前記参照信号の受信電力と前記パスロスに関する情報をメジャメントレポートとしてフィードバックする送信部と、を有することを特徴とするユーザ端末。
  7.  前記受信部は、前記参照信号の送信電力に関する情報を上位レイヤシグナリング又は下り制御情報を用いて受信することを特徴とする請求項6に記載のユーザ端末。
  8.  下りリンク送信電力制御を行う無線基地局であって、
     第1の参照信号と第2の参照信号の送信を制御する送信部と、
     前記第1の参照信号に一定電力を適用し、前記第2の参照信号に下りリンクの送信電力制御を適用する電力制御部と、
     ユーザ端末からフィードバックされる第1の参照信号の受信電力情報に基づいてユーザ端末が上りリンクで接続するセルを決定すると共に、第2の参照信号の受信電力情報に基づいてユーザ端末が下りリンクで接続するセルを決定する決定部と、を有することを特徴とする無線基地局。
  9.  下りリンクの送信電力制御を行う無線基地局とユーザ端末との無線通信方法であって、
     前記無線基地局からユーザ端末に対して、一定電力が適用される第1の参照信号と、下りリンクの送信電力制御が適用される第2の参照信号とを送信する工程と、
     前記ユーザ端末が、前記第1の参照信号と前記第2の参照信号の受信電力を測定して、前記第1の参照信号と前記第2の参照信号の受信電力に関する情報をメジャメントレポートとしてフィードバックする工程と、
     メジャメントレポートを受信した無線基地局が、前記第1の参照信号の受信電力情報に基づいてユーザ端末が接続する上りリンクセルを決定し、前記第2の参照信号の受信電力情報に基づいてユーザ端末が接続する下りリンクセルを決定する工程と、を有することを特徴とする無線通信方法。
     
PCT/JP2014/053932 2013-03-19 2014-02-19 ユーザ端末、無線基地局及び無線通信方法 WO2014148181A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/777,767 US20160278021A1 (en) 2013-03-19 2014-02-19 User terminal, radio base station and radio communication method
EP14770553.7A EP2978268A4 (en) 2013-03-19 2014-02-19 USER DEVICE, RADIO BASIS STATION AND RADIO COMMUNICATION PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-057109 2013-03-19
JP2013057109A JP6161347B2 (ja) 2013-03-19 2013-03-19 ユーザ端末、無線基地局及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2014148181A1 true WO2014148181A1 (ja) 2014-09-25

Family

ID=51579874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053932 WO2014148181A1 (ja) 2013-03-19 2014-02-19 ユーザ端末、無線基地局及び無線通信方法

Country Status (4)

Country Link
US (1) US20160278021A1 (ja)
EP (1) EP2978268A4 (ja)
JP (1) JP6161347B2 (ja)
WO (1) WO2014148181A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9832711B2 (en) * 2013-08-21 2017-11-28 Lg Electronics Inc. Method of transmitting and receiving cell information by using synchronization signal and device supporting same
JP2018032887A (ja) * 2015-01-08 2018-03-01 シャープ株式会社 端末装置、基地局装置、制御方法及び集積回路
DE112016003210B4 (de) * 2015-07-16 2021-05-27 Communication Systems LLC Einrichtungen, verfahren und computerlesbares medium zur kommunikation in einem drahtlosen lokalen netzwerk
JP6578831B2 (ja) 2015-09-08 2019-09-25 ソニー株式会社 無線通信装置および無線通信方法
US20190059006A1 (en) * 2016-02-25 2019-02-21 Lg Electronics Inc. Method for performing measurement and device using same
JP6821796B2 (ja) * 2016-09-22 2021-01-27 エルジー エレクトロニクス インコーポレイティド 上りリンク信号と下りリンク信号の間の干渉を減少する方法及びそのための装置
CN108633042B (zh) * 2017-03-24 2021-03-30 华为技术有限公司 一种通信方法、终端及网络设备
CN110446226B (zh) 2017-06-16 2021-03-23 华为技术有限公司 传输方法、传输装置、终端设备和计算机可读存储介质
WO2020101266A1 (ko) * 2018-11-12 2020-05-22 엘지전자 주식회사 측위를 위한 상향링크 참조 신호를 송수신하는 방법 및 이를 위한 장치
CN113273262B (zh) * 2019-01-11 2023-04-28 中兴通讯股份有限公司 用于无线系统中的数据传输的定时调节

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003087840A (ja) * 2001-09-10 2003-03-20 Ntt Docomo Inc セル形状制御方法及び移動通信システム並びにそのシステムで用いられる基地局及び移動機
JP2011182009A (ja) * 2010-02-26 2011-09-15 Hitachi Ltd 基地局、無線通信システム及び干渉基準のハンドオーバ制御方法
WO2011125300A1 (ja) * 2010-04-05 2011-10-13 パナソニック株式会社 無線通信装置、及び無線通信方法
WO2013018831A1 (ja) * 2011-08-02 2013-02-07 シャープ株式会社 通信システム、端末および基地局

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6026415B2 (ja) * 2011-08-05 2016-11-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 端末、送信装置、受信品質報告方法および受信方法
US8983391B2 (en) * 2011-08-12 2015-03-17 Sharp Kabushiki Kaisha Signaling power allocation parameters for uplink coordinated multipoint (CoMP)
CN109890054B (zh) * 2012-01-21 2023-12-15 华为技术有限公司 无线通信系统中测量增强的方法和装置
US9143984B2 (en) * 2012-04-13 2015-09-22 Intel Corporation Mapping of enhanced physical downlink control channels in a wireless communication network
EP2883394A4 (en) * 2012-08-08 2016-07-13 Nokia Solutions & Networks Oy INTERFERENCE MITIGATION BY CELL ACTIVATION PROCEDURES IN HETEROGENIC NETWORKS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003087840A (ja) * 2001-09-10 2003-03-20 Ntt Docomo Inc セル形状制御方法及び移動通信システム並びにそのシステムで用いられる基地局及び移動機
JP2011182009A (ja) * 2010-02-26 2011-09-15 Hitachi Ltd 基地局、無線通信システム及び干渉基準のハンドオーバ制御方法
WO2011125300A1 (ja) * 2010-04-05 2011-10-13 パナソニック株式会社 無線通信装置、及び無線通信方法
WO2013018831A1 (ja) * 2011-08-02 2013-02-07 シャープ株式会社 通信システム、端末および基地局

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"E-UTRA Further Advancements for E-UTRA Physical Layer Aspects", 3GPP TR 36.814
"Evolved UTRA and Evolved UTRAN Overall Description", 3GPP TS 36.300
See also references of EP2978268A4
SHARP: "CSI-RS configuration for UL transmission", 3GPP- R1-114402, 21 November 2011 (2011-11-21), XP050562493 *

Also Published As

Publication number Publication date
EP2978268A4 (en) 2016-11-02
JP2014183486A (ja) 2014-09-29
EP2978268A1 (en) 2016-01-27
JP6161347B2 (ja) 2017-07-12
US20160278021A1 (en) 2016-09-22

Similar Documents

Publication Publication Date Title
JP6161347B2 (ja) ユーザ端末、無線基地局及び無線通信方法
US9813996B2 (en) Radio communication method, local area base station apparatus, mobile terminal apparatus and radio communication system
JP6204693B2 (ja) 無線基地局及び無線通信方法
JP5781103B2 (ja) 無線基地局、ユーザ端末、セル選択方法及び無線通信システム
JP6325249B2 (ja) ユーザ端末及び無線通信方法
JP6151108B2 (ja) 無線基地局、ユーザ端末及び参照信号送信方法
JP6289818B2 (ja) ユーザ端末及び無線通信方法
JP5899149B2 (ja) 無線基地局及びユーザ端末
JP6301065B2 (ja) 無線基地局、ユーザ端末および無線通信方法
WO2015174328A1 (ja) 無線基地局、ユーザ端末及び無線通信方法
WO2017130992A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6442140B2 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6153574B2 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2015015950A1 (ja) 無線基地局、ユーザ端末および無線通信方法
WO2017150448A1 (ja) ユーザ端末、無線基地局及び無線通信方法
US10609652B2 (en) User terminal, radio base station and radio communication method
JP6101082B2 (ja) 無線基地局、ユーザ端末及び無線通信方法
JPWO2016017357A1 (ja) 無線基地局、ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770553

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14777767

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014770553

Country of ref document: EP