WO2014148093A1 - 回転電機および電動車両 - Google Patents
回転電機および電動車両 Download PDFInfo
- Publication number
- WO2014148093A1 WO2014148093A1 PCT/JP2014/051174 JP2014051174W WO2014148093A1 WO 2014148093 A1 WO2014148093 A1 WO 2014148093A1 JP 2014051174 W JP2014051174 W JP 2014051174W WO 2014148093 A1 WO2014148093 A1 WO 2014148093A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slot
- teeth
- rotating electrical
- slots
- electrical machine
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/24—Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/14—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/16—Stator cores with slots for windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K29/00—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
- H02K29/03—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Definitions
- the present invention relates to a rotating electric machine and an electric vehicle equipped with the rotating electric machine.
- the present invention relates to a rotating electrical machine used for driving and driving electric vehicles such as HEV and EV.
- Rotating electrical machines are mounted on home appliances and various OA devices, and are recently mounted on electric vehicles such as hybrid vehicles (HEV) and electric vehicles (EV).
- HEV hybrid vehicles
- EV electric vehicles
- rotating electric machines for electric vehicles such as HEV and EV are required to have a large output.
- These rotating electric machines for electric vehicles have a wide operating rotational speed range, the excitation frequency of the electromagnetic excitation force varies in a wide range, and the natural frequency and the excitation frequency of the rotating electrical machine structure at a specific rotational speed Since they match, the generation of vibration and noise due to resonance is inevitable.
- the direction of the electromagnetic excitation force that causes vibration and noise generated from the rotating electrical machine main body is three directions: radial direction, tangential direction, and axial direction.
- radial direction radial direction
- tangential direction tangential direction
- axial direction axial direction
- the number of slots is two per phase and one pole, and between the center lines A extending in the radial direction of the openings (O1, O2) of adjacent slots. Are formed unevenly, and the first three-phase stator winding and the second three-phase stator winding are wound around the stator core with an electrical angle of 31 to 34 °, 12f component electromagnetic noise and wind noise are reduced.
- the number of slots of the stator core to which the present invention can be applied is limited by a function of the number of phases and the number of poles, and further contrivance is necessary to apply to other slots.
- the conventional method of changing the shape and pitch of the teeth on the stator side as a countermeasure against electromagnetic vibration noise cannot be applied flexibly to various combinations of the number of poles and the number of teeth (slots) of the stator.
- the invention according to claim 1 is a rotating electrical machine including a stator having a plurality of teeth and a plurality of slots, and the shape of the tip end portion of the teeth and the opening width of the slots are F times in the circumferential direction (however, F is a rotating electric machine characterized by being configured to change periodically (natural number of 2 or more).
- the present invention it is possible to reduce the amplitude of the tangential electromagnetic excitation force harmonics that affect the vibration and noise without changing the periodic boundary conditions, and as a result, it is possible to reduce the vibration and noise of the rotating electrical machine.
- FIG. 1 shows schematic structure of the hybrid electric vehicle carrying the rotary electric machine of one embodiment of this invention. It is a figure which shows the circuit diagram of the power converter device 600.
- FIG. It is a figure which shows the structure of the stator core of 72 slots, and the permanent magnet motor of 8 poles. It is a figure which shows the teeth and slot shape which form 1 group of Embodiment 1 of the rotary electric machine which becomes this invention. It is a figure which shows the teeth and slot shape which form 1 group of Embodiment 2 of the rotary electric machine which becomes this invention. It is a figure which shows the teeth and slot shape which form 1 group of Embodiment 3 of the rotary electric machine which becomes this invention.
- FIG. 5 is a diagram showing calculation results of electromagnetic excitation force harmonics in the tangential space 0th order of the rotating electrical machine including the stator cores having the teeth and slot shapes of Embodiments 1 to 3 and the prior art.
- FIG. 8 is a diagram in which a part of the calculation result of FIG. 7 is enlarged and displayed in dB. Acoustic power in the case where electromagnetic excitation force harmonics in the tangential space 0th order and rotation 72th order are input to the analysis model of the rotating electrical machine having the stator core and slot shape stator core according to the second embodiment. It is the figure which showed the calculation result of the level.
- FIG. 1 is a diagram showing a schematic configuration of a hybrid electric vehicle equipped with a rotating electric machine according to an embodiment of the present invention.
- the vehicle 100 is mounted with an engine 120, a first rotating electrical machine 200, a second rotating electrical machine 202, and a battery 180.
- the battery 180 supplies DC power to a power conversion device (inverter device) 600 for driving the rotary electric machines 200 and 202 when the driving force by the rotary electric machines 200 and 202 is required. Is converted into AC power and supplied to the rotating electrical machines 200 and 202, respectively.
- the rotating electrical machines 200 and 202 generate AC power based on the kinetic energy of the vehicle and supply the AC power to the power converter 600.
- the power conversion device 600 converts AC power into DC power and supplies it to the battery 180.
- the vehicle is equipped with a battery that supplies low-voltage power (for example, 14 volt power), and supplies DC power of constant voltage to a control circuit described below.
- Rotational torque generated by the engine 120 and the rotating electrical machines 200 and 202 is transmitted to the front wheels 110 via the transmission 130 and the differential gear 132.
- the transmission 130 is controlled by a transmission control device 134
- the engine 120 is controlled by an engine control device 124.
- the battery 180 is controlled by the battery control device 184.
- Transmission control device 134, engine control device 124, battery control device 184, power conversion device 600 and integrated control device 170 are connected by communication line 174.
- the integrated control device 170 transmits information representing each state from the transmission control device 134, the engine control device 124, the power conversion device 600, and the battery control device 184, which are subordinate control devices to the integrated control device 170, to the communication line. Receive via 174.
- the integrated control device 170 calculates a control command for each control device based on these pieces of information. The calculated control command is transmitted to each control device via the communication line 174.
- the high voltage battery 180 is composed of a secondary battery such as a lithium ion battery or a nickel metal hydride battery, and outputs a high voltage DC power of 250 to 600 volts or more.
- the battery control device 184 outputs the discharge status of the battery 180 and the status of each unit cell battery constituting the battery 180 to the integrated control device 170 via the communication line 174.
- the integrated control device 170 determines that the battery 180 needs to be charged based on the information from the battery control device 184, the integrated control device 170 instructs the power conversion device 600 to perform a power generation operation.
- the integrated control device 170 mainly manages the output torque of the engine 120 and the rotating electrical machines 200 and 202, and calculates the total torque and torque distribution ratio between the output torque of the engine 120 and the output torque of the rotating electrical machines 200 and 202. Then, a control command is transmitted to the transmission control device 134, the engine control device 124, and the power conversion device 600 based on the calculation processing result. Based on the torque command from the integrated control device 170, the power conversion device 600 controls the rotating electrical machines 200 and 202 so that torque output or generated power is generated according to the command.
- the power converter 600 is provided with a power semiconductor that constitutes an inverter in order to operate the rotating electrical machines 200 and 202.
- the power conversion device 600 controls the switching operation of the power semiconductor based on a command from the integrated control device 170. By such a power semiconductor switching operation, the rotating electric machines 200 and 202 are operated as an electric motor or a generator.
- DC power from the high voltage battery 180 is supplied to the DC terminal of the inverter of the power converter 600.
- the power conversion device 600 converts the supplied DC power into three-phase AC power by controlling the switching operation of the power semiconductor, and supplies it to the rotating electrical machines 200 and 202.
- the rotary electric machines 200 and 202 are operated as a generator, the rotors of the rotary electric machines 200 and 202 are rotationally driven by a rotational torque applied from the outside, and the stator windings of the rotary electric machines 200 and 202 are three-phased.
- AC power is generated.
- the generated three-phase AC power is converted into DC power by the power converter 600, and charging is performed by supplying the DC power to the high-voltage battery 180.
- the rotating electric machine 200 and the rotating electric machine 202 are independently controlled.
- the rotary electric machine 200 when the rotary electric machine 200 is operated as an electric motor, the rotary electric machine 202 can be operated as an electric motor or can be operated as a generator. It is also possible to set the operation stop state. Of course, the reverse is also possible.
- the integrated control device 170 determines in what mode the rotating electrical machine 200 and the rotating electrical machine 202 are operated, and instructs the power converter 600. Based on this command, power conversion device 600 is in the motor operation mode, the generator operation mode, or the operation stop mode.
- FIG. 2 conceptually shows a circuit diagram of the power conversion device 600 of FIG.
- the power conversion device 600 is provided with a first inverter device for the rotating electrical machine 200 and a second inverter device for the rotating electrical machine 202.
- the first inverter device includes a power module 610, a first drive circuit 652 that controls the switching operation of each power semiconductor 21 of the power module 610, and a current sensor 660 that detects the current of the rotating electrical machine 200.
- the drive circuit 652 is provided on the drive circuit board 650.
- the second inverter device includes a power module 620, a second drive circuit 656 that controls the switching operation of each power semiconductor 21 in the power module 620, and a current sensor 662 that detects the current of the rotating electrical machine 202.
- the drive circuit 656 is provided on the drive circuit board 654.
- the control circuit 648 provided on the control circuit board 646, the capacitor module 630, and the transmission / reception circuit 644 mounted on the connector board 642 are commonly used by the first inverter device and the second inverter device.
- the power modules 610 and 620 are operated by drive signals output from the corresponding drive circuits 652 and 656, respectively. Each of the power modules 610 and 620 converts DC power supplied from the battery 180 into three-phase AC power and supplies the power to stator windings that are armature windings of the corresponding rotating electric machines 200 and 202. Further, the power modules 610 and 620 convert AC power induced in the stator windings of the rotating electrical machines 200 and 202 into DC and supply it to the high voltage battery 180.
- the power modules 610 and 620 are each provided with a three-phase bridge circuit as shown in FIG. 2, and series circuits corresponding to the three phases are electrically connected in parallel between the positive electrode side and the negative electrode side of the battery 180, respectively. ing.
- Each series circuit includes a power semiconductor 21 constituting an upper arm and a power semiconductor 21 constituting a lower arm, and these power semiconductors 21 are connected in series.
- the power module 610 and the power module 620 have substantially the same circuit configuration as shown in FIG. 2, and the power module 610 will be described as a representative here.
- an IGBT (insulated gate bipolar transistor) 21 is used as a switching power semiconductor element.
- the IGBT 21 includes three electrodes, a collector electrode, an emitter electrode, and a gate electrode.
- a diode 38 is electrically connected between the collector electrode and the emitter electrode of the IGBT 21.
- the diode 38 includes two electrodes, a cathode electrode and an anode electrode.
- the cathode electrode is the collector electrode of the IGBT 21 and the anode electrode is the IGBT 21 so that the direction from the emitter electrode to the collector electrode of the IGBT 21 is the forward direction.
- Each is electrically connected to the emitter electrode.
- a MOSFET metal oxide semiconductor field effect transistor
- the MOSFET includes three electrodes, a drain electrode, a source electrode, and a gate electrode.
- a parasitic diode whose forward direction is from the drain electrode to the source electrode is provided between the source electrode and the drain electrode, so there is no need to provide the diode 38 of FIG.
- the arm of each phase is configured by electrically connecting the source electrode of the IGBT 21 and the drain electrode of the IGBT 21 in series.
- IGBT 21 the source electrode of the IGBT 21 and the drain electrode of the IGBT 21 in series.
- IGBTs are actually electrically connected in parallel. Has been. Below, in order to simplify description, it demonstrates as one power semiconductor.
- each upper and lower arm of each phase is composed of three IGBTs.
- the drain electrode of the IGBT 21 of each upper arm of each phase is electrically connected to the positive electrode side of the battery 180, and the source electrode of the IGBT 21 of each lower arm of each phase is electrically connected to the negative electrode side of the battery 180.
- the midpoint of each arm of each phase (the connection portion between the source electrode of the upper arm side IGBT and the drain electrode of the IGBT on the lower arm side) is the armature winding (fixed) of the corresponding phase of the corresponding rotating electric machine 200, 202. Is electrically connected to the secondary winding.
- the drive circuits 652 and 656 constitute a drive unit for controlling the corresponding inverter devices 610 and 620, and generate a drive signal for driving the IGBT 21 based on the control signal output from the control circuit 648. To do.
- the drive signals generated by the drive circuits 652 and 656 are output to the gates of the power semiconductor elements of the corresponding power modules 610 and 620, respectively.
- the driving circuits 652 and 656 are each provided with six integrated circuits that generate driving signals to be supplied to the gates of the upper and lower arms of each phase, and the six integrated circuits are configured as one block.
- the control circuit 648 constitutes a control unit of each inverter device 610, 620, and is constituted by a microcomputer that calculates a control signal (control value) for operating (turning on / off) a plurality of switching power semiconductor elements. ing.
- the control circuit 648 receives a torque command signal (torque command value) from the host controller, sensor outputs of the current sensors 660 and 662, and sensor outputs of the rotation sensors mounted on the rotating electrical machines 200 and 202.
- the control circuit 648 calculates a control value based on these input signals, and outputs a control signal for controlling the switching timing to the drive circuits 652 and 656.
- the transmission / reception circuit 644 mounted on the connector board 642 is for electrically connecting the power conversion apparatus 600 and an external control apparatus, and communicates information with other apparatuses via the communication line 174 in FIG. Send and receive.
- Capacitor module 630 constitutes a smoothing circuit for suppressing fluctuations in the DC voltage caused by the switching operation of IGBT 21, and is electrically connected to the DC side terminal of first power module 610 or second power module 620. Connected in parallel.
- FIG. 3 is a schematic cross-sectional view of a permanent magnet rotating electrical machine 10 as an example of the rotating electrical machine according to the present invention.
- the permanent magnet rotating electrical machine 10 is used as the rotating electrical machine 200 or the rotating electrical machine 202 of the hybrid vehicle (see FIGS. 1 and 2) described above.
- the configuration of the rotating electrical machine according to the present invention can be used not only for a permanent magnet rotating electrical machine but also for a synchronous reluctance motor and an induction motor.
- the coil wound around the teeth of the stator is distributed winding. Accordingly, the calculation results shown in FIGS. 7 to 10 and FIGS. 13 to 14 are for distributed winding coils.
- FIG. 3 shows Embodiment 1 of the rotating electrical machine according to the present invention.
- the rotating electrical machine shown in FIG. 3 is an example when the present invention is applied to a three-phase permanent magnet rotating electrical machine, and has a configuration of 8 poles and 72 slots.
- This group of teeth includes one group of teeth with and without a groove formed at the tip, and one group of slots includes slots with different opening widths.
- FIG. 1 shows Embodiment 1 of the rotating electrical machine according to the present invention.
- the rotating electrical machine shown in FIG. 3 is an example when the present invention is applied to a three-phase permanent magnet rotating electrical machine, and has a configuration of 8 poles and 72 slots.
- FIG. 4 shows an example of the groove shape at the tip of the nine teeth 5a to 5i constituting one tooth group 50.
- FIG. FIG. 4 shows an example of the opening widths of the nine slots 4a to 4i constituting one slot group 40.
- one tooth or slot that is not specified is simply referred to as a tooth 5 or a slot 4.
- symbol 8 of FIG. 3 shows a permanent magnet.
- stator core 1 shown in FIG. 3 is formed by periodically providing eight groups of nine teeth 5a to 5i shown in FIG. 4 in the circumferential direction. Note that the tip shapes of these teeth are omitted in FIG. Further, the stator coil wound around the slot 4 of the stator core 1 constituting the rotating electrical machine 10 is omitted.
- one slot group 40 is constituted by nine slots 4a to 4i corresponding to nine teeth 5a to 5i constituting one tooth group 50.
- the slot group 40 further constitutes one slot sub-group 42, which is a divisor d of a number m obtained by dividing the number S of slots by the greatest common divisor N.
- the opening width of each slot has the same opening width in each set of (41a, 41d, 41g), (41b, 41e, 41h), (41c, 41f, 41i).
- the slots 4a to 4c, 4d to 4f, and 4g to 4i constitute a slot subgroup 42, respectively.
- a subgroup 42 including a number of slots that is a divisor d ( ⁇ m) of m may exist in m slots of one slot group 40 (see FIG. 4).
- m teeth 5 constituting one tooth group 50 there may be a subgroup including a number of teeth that is a divisor d ( ⁇ m) of m.
- FIG. 7 shows the calculation result of the rotating electric machine (Embodiment 1) including the stator core 1 adopting the configuration of the tooth group 50 and the slot group 40 shown in FIG. 7 and 8 also show the calculation results of the rotating electric machine including the other embodiments (Embodiments 2 and 3) described later and the stator core 1 of the prior art.
- FIG. 5 is a view for explaining Embodiment 2 of the rotating electrical machine according to the present invention.
- Three stator teeth 5j to 5l constitute one tooth group 51, and three slots 4j to 4l (slot openings 41j to 41l) constitute one slot group 43.
- Grooves 6 (6k, 6l) are provided at the tips of the teeth 5 constituting one tooth group 51, as shown in FIG.
- grooves 6k and 6l having the same shape are formed at the tips of the teeth 5k and 5l.
- the opening widths of the slot openings 41j and 41k are the same, and the opening widths of the slot openings 41l are different.
- the teeth constituting the tooth group 51 shown in FIG. 5 and the slot groups 43 (4j to 4l) corresponding to the teeth group 51 are arranged in three groups in the circumferential direction of the stator core 1, as shown in FIG. Such one tooth group 50 can be formed.
- the stator core 1 shown in FIG. 3 is formed by periodically arranging 24 groups of teeth 5 and slots 4 constituting one tooth group 51 shown in FIG. 5 in the circumferential direction.
- the calculation result of this configuration (Embodiment 2) is indicated by a symbol “ ⁇ ” in FIG.
- FIG. 6 is a view for explaining Embodiment 3 of the rotating electrical machine according to the present invention.
- Three teeth 5m to 5o constitute one tooth group 51, and three slots 4m to 4o (slot openings 41m to 41o) constitute one slot group 44.
- Grooves 6 (6n, 6o) are provided at the tips of the teeth 5 constituting one tooth group 51.
- grooves 6n and 6o having the same shape are formed at the tips of the teeth 5n and 5o.
- This groove shape is the same as the groove 6 (6k, 6l) in FIG.
- the opening width of the center slot of the three slots is different from the opening widths of the other slots. That is, the opening widths of the slot openings 41m and 41o are the same, and the opening width of the slot opening 41n is different from these.
- the opening widths of the slot openings 41j and 41k are the same, and the slot openings 41l are different.
- the opening widths of the slot openings 41m and 41o are the same, and the opening width of the slot opening 41n is different. That is, in FIG. 5 (Embodiment 2) and FIG. 6 (Embodiment 3), one slot group 43, 44 has a configuration in which the position of the slot opening having a different opening width from the other slot opening is different. Yes. In other words, the change pattern of the tooth groove shape of each tooth of one tooth group and the change pattern of the opening width of the slot opening of one slot group corresponding thereto are different in FIGS.
- the tooth groove shape changing pattern and the opening width changing pattern of the slot opening portion are different from each other in FIGS.
- the tooth groove shape and the opening width of the slot opening are symmetric with respect to the radius passing through the center of the slot 4 n at the center of one slot group 44. It is possible to invert and laminate the laminated steel plates constituting 1.
- the stator core 1 shown in FIG. 3 is formed by periodically arranging 24 groups of teeth 5 and slots 4 constituting one tooth group 51 shown in FIG. 6 in the circumferential direction.
- the calculation result of this configuration is indicated by a symbol ⁇ in FIG.
- the tooth groove shape of each tooth of one tooth group and / or the opening width of the opening of one slot group are not all the same, but one tooth group 50, 51 as in the first to third embodiments, And one slot group 40, 43, 44 is arranged around the entire circumference of the stator core 1, thereby changing the periodic boundary condition of the geometric shape combined with the rotor core 2 and the magnet 8 to the periodic boundary condition of the prior art.
- the amplitude of the electromagnetic force harmonics can be changed without changing from 1/8.
- the air gap (the inner diameter of the stator core 1 and the outer diameter of the rotor core 2 is changed by providing a groove at the tip of the tooth 5 or changing the opening width of the slot opening 41.
- the magnetoresistance of the space between them can be changed.
- FIG. 7 shows the results obtained by analysis of the tangential space zeroth-order electromagnetic force harmonic amplitude of the rotating electrical machine provided with the stator core 1 having teeth and slots in the cases of Embodiments 1 to 3 and the prior art. Show. In FIG. 7, the electromagnetic force harmonic amplitude is made dimensionless based on the rotational 72nd harmonic amplitude of the prior art. From FIG.
- the electromagnetic force harmonic component amplitude of the rotational order of the 72nd order of rotation is the largest among the electromagnetic force harmonics of the 0th order of the tangential space of the prior art, and the excitation frequency of the rotational 72nd order electromagnetic force harmonics, If the natural frequency of the rotating electrical machine excited by this excitation force matches, it is considered that excellent vibration and noise are generated.
- FIG. 8 shows a result obtained by extracting the rotation 72th-order tangential space 0th-order harmonic amplitude and displaying it in dB.
- the amplitude of electromagnetic force harmonics is reduced from 3.6 dB in the first embodiment, 4.7 dB in the second embodiment, and 3.8 dB in the third embodiment. Therefore, in Embodiments 1 to 3, vibrations and noises caused by electromagnetic force harmonics in the tangential space 0th order and rotation 72th order can be reduced as compared with the prior art.
- FIG. 9 shows the teeth and slot-shaped stator core 1 according to the second embodiment when the tangential space 0th order and rotation 72th order electromagnetic force harmonics are inputted, and the prior art teeth and slot shaped stator.
- produces from each rotary electric machine provided with the core 1 is shown.
- it is made dimensionless on the basis of the maximum value of the sound power level of the prior art. From FIG. 9, the sound power level peak in the vicinity of 2000 r / min is the second embodiment, which is reduced as compared with the prior art.
- FIG. 10 shows the calculation result of the sound power level generated from the rotating electric machine according to the second embodiment and the prior art. From FIG. 10, the peak of the rotational 24th order acoustic power level is present at 5000 r / min or more, and the peak value of the acoustic power level is about 10 dB greater than the rotational 72nd order peak value of the prior art.
- ⁇ Vehicle noise is affected more by wind noise and road noise as speed increases, and noise tolerance increases in relation to speed, noise, and human senses. Furthermore, when the vehicle on which the rotating electrical machine is mounted is HEV, the engine operates when the rotational speed increases, so it is considered that the engine sound is larger than the electromagnetic sound generated by the rotating electrical machine in the region of 5000 r / min or higher. From this point, there is no problem if the increase in the acoustic power level of the 24th order electromagnetic sound is about 10 dB with respect to the 72nd order rotation.
- Grooves 6q, 6r, 6t, 6u are provided at the tips of the four teeth (5q, 5r, 5t, 5u) of the teeth 5 (5p-5u), and the opening widths of the slots 4 (41p-41u) are different. Make it.
- the stator core 1 shown in FIG. 11 is formed by periodically providing eight groups of teeth 5 and slots 4 constituting one group 50 shown in FIG. 12 in the circumferential direction of the stator core 1.
- the calculation result of the rotating electrical machine having the stator core 1 (Embodiment 4) is represented by a symbol ⁇ in FIG. 13, and the calculation result of the rotating electrical machine having the stator core 1 of the prior art is represented by the symbol ⁇ . It is shown.
- the stator core 1 shown in FIG. 11 has one tooth group 50 configured as shown in FIG. 12 and a slot group 45 corresponding to the tooth group 50 is included in the stator core 1.
- the air gap (the inner diameter of the stator core 1 and the rotor core) is changed.
- the magnetoresistance of the space between the two outer diameters can be changed.
- FIG. 13 shows the results obtained by analyzing the tangential space 0th-order electromagnetic force harmonic amplitudes for the rotating electrical machine including the stator core 1 having teeth and slots in the case of Embodiment 4 and the prior art.
- the electromagnetic force harmonic amplitude is made dimensionless based on the rotational 48th harmonic amplitude of the prior art. From FIG. 13, it can be seen that the fourth embodiment can reduce the rotation 48th harmonic amplitude compared to the prior art. Further, the other harmonic amplitude is smaller in the fourth embodiment than the rotation 48th harmonic amplitude of the prior art, and vibration and noise can be reduced.
- the shape of the tip of the tooth and the opening width of the slot are periodically changed F times (where F is a natural number greater than or equal to 2) in the circumferential direction, so that vibration and noise can be achieved without changing the periodic boundary condition. It is possible to reduce the amplitude of the tangential electromagnetic excitation force harmonics affecting the frequency.
- F a natural number greater than or equal to 2
- the tangential spatial zero-order electromagnetic force harmonic amplitude affecting vibration and noise can be reduced, and vibration and noise can be reduced. Further, according to the present invention, the tangential electromagnetic force harmonic amplitude is also applied to a rotating electrical machine having a combination of the number of poles and the number of slots that deviates from the application target of Patent Document 1 (the number of slots in n poles and s phases is 2n ⁇ s). Can reduce vibration and noise.
- the present invention it is possible to realize various rotating electric machines including a stator composed of a tooth group in which the shapes of various stator teeth tips and the opening widths of the slot openings described in the first to fourth embodiments are combined. it can. Therefore, the present invention is not limited to the number of phases, the number of poles, and the number of slots of the rotating electrical machine of the above-described embodiment.
- the coil wound around each stator tooth is distributed winding, but the present invention is also applied to a concentrated winding coil or as described in JP-A-2009-247196. It can be applied to various distributed windings.
- Stator core 2 Rotor core 4, 4a to 4o: Stator slot 5, 5a to 5l, 15: Stator teeth 6, 6c to 6h, 6k, 6l, 6n, 6o, 6q, 6r, 6t, 6u: Teeth groove 8: Permanent magnet 9: Conductor 10: Rotating electric machine 15: Conventional general stator teeth 21: Power semiconductor 38: Diodes 40, 43, 44, 45: One group of stator slots 42: Fixed Sub-group 41, 41a to 41u of child slot group 40: Slot opening 50, 51: One group of stator teeth
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
Abstract
様々な極数とスロット数の回転子および固定子を備えた回転電機に対応し、振動・騒音を低減できる構成の回転電機を提供する。 本発明による回転電機は、複数のティースと複数のスロットとを有する固定子を備え、ティースの先端部の形状とスロットの開口幅とが周方向にF回(ただしFは2以上の自然数)周期的に変化するように構成されている。
Description
本発明は回転電機、および、回転電機が搭載された電動車両に関する。
本発明はHEV・EV等の電動車両の走行駆動に用いられる回転電機に関する。
回転電機は家電製品、各種OA機器に搭載されており、また、近年ハイブリッド自動車(HEV)や電気自動車(EV)などの電動車両に搭載されている。
とりわけHEVやEVなどの電動車両用の回転電機は出力が大きいものが要求される。これらの電動車両用の回転電機は、使用回転数範囲が広く、電磁加振力の加振周波数が広い範囲で変化し、特定の回転数で回転電機の構造の固有振動数と加振周波数が一致するため、共振による振動・騒音の発生が不可避である。
回転電機は家電製品、各種OA機器に搭載されており、また、近年ハイブリッド自動車(HEV)や電気自動車(EV)などの電動車両に搭載されている。
とりわけHEVやEVなどの電動車両用の回転電機は出力が大きいものが要求される。これらの電動車両用の回転電機は、使用回転数範囲が広く、電磁加振力の加振周波数が広い範囲で変化し、特定の回転数で回転電機の構造の固有振動数と加振周波数が一致するため、共振による振動・騒音の発生が不可避である。
一方、車室内の快適環境の追求により振動・騒音低減の要求が高まっており、回転電機本体からの振動・騒音を低減する技術も多数開発されている。
回転電機本体から発生する振動・騒音の原因となる電磁加振力の向きは径方向、接線方向、軸方向の3方向である。特に可聴帯域の騒音を低減するには、これら電磁加振力の高調波振幅を低減する必要がある。
回転電機本体から発生する振動・騒音の原因となる電磁加振力の向きは径方向、接線方向、軸方向の3方向である。特に可聴帯域の騒音を低減するには、これら電磁加振力の高調波振幅を低減する必要がある。
特許文献1に開示されている交流回転電機は、そのスロット数が、一相、1極当たり2であり、隣接した各スロットの開口部(O1、O2)の径方向に延びた中心線A間の間隔が不均等に形成され、第1の三相固定子巻線及び第2の三相固定子巻線は、電気角31~34°の位相差で固定子鉄心に巻装されており、12f成分の電磁音及び風音を低減している。この発明が適用可能な固定子コアのスロット数は、相数、極数の関数で限定されており、それ以外のスロット数のものに適用するには、更なる工夫が必要である。
従来の電磁振動音対策で固定子側のティースの形状やピッチを変更する方法は、様々な極数と固定子のティース(スロット)の数の組み合わせに対し、フレキシブルに適用できなかった。
請求項1に記載の発明は、複数のティースと複数のスロットとを有する固定子を備えた回転電機であって、ティースの先端部の形状とスロットの開口幅とが周方向にF回(ただしFは2以上の自然数)周期的に変化するように構成されていることを特徴とする回転電機である。
本発明により、周期境界条件を変えることなく振動・騒音に影響する接線方向電磁加振力高調波の振幅を低減でき、その結果、回転電機の振動・騒音を低減できる。
図1は、本発明の一実施の形態の回転電機を搭載したハイブリッド型電気自動車の概略構成を示す図である。車両100には、エンジン120と第1の回転電機200と第2の回転電機202とバッテリ180とが搭載されている。バッテリ180は、回転電機200、202による駆動力が必要な場合には回転電機200、202を駆動するための電力変換装置(インバータ装置)600に直流電力を供給し、電力変換装置600は直流電力を交流電力に変換して回転電機200、202にそれぞれ供給する。一方回生走行時には回転電機200、202が車両の運動エネルギーに基づいて交流電力を発生し、前記電力変換装置600に供給する。前記電力変換装置600は交流電力を直流電力に変換し、バッテリ180に供給する。また、図示していないが、車両には低電圧電力(例えば、14ボルト系電力)を供給するバッテリが搭載されており、以下に説明する制御回路に定電圧の直流電力を供給する。
エンジン120および回転電機200、202による回転トルクは、変速機130とディファレンシャルギア132を介して前輪110に伝達される。変速機130は変速機制御装置134により制御され、エンジン120はエンジン制御装置124により制御される。バッテリ180は、バッテリ制御装置184により制御される。変速機制御装置134、エンジン制御装置124、バッテリ制御装置184、電力変換装置600および統合制御装置170は、通信回線174によって接続されている。
統合制御装置170は、統合制御装置170より下位の制御装置である、変速機制御装置134、エンジン制御装置124、電力変換装置600およびバッテリ制御装置184から、それぞれの状態を表す情報を、通信回線174を介して受け取る。統合制御装置170は、これらの情報に基づき各制御装置の制御指令を演算する。演算された制御指令は通信回線174を介してそれぞれの制御装置へ送信される。
高電圧のバッテリ180はリチウムイオン電池あるいはニッケル水素電池などの2次電池で構成され、250ボルトから600ボルト、あるいはそれ以上の高電圧の直流電力を出力する。バッテリ制御装置184は、バッテリ180の放電状況やバッテリ180を構成する各単位セル電池の状態を、通信回線174を介して統合制御装置170に出力する。
統合制御装置170は、バッテリ制御装置184からの情報に基づいてバッテリ180の充電が必要と判断すると、電力変換装置600に発電運転の指示を出す。また、統合制御装置170は、主に、エンジン120および回転電機200、202の出力トルクの管理、エンジン120の出力トルクと回転電機200、202の出力トルクとの総合トルクやトルク分配比の演算処理、その演算処理結果に基づく変速機制御装置134、エンジン制御装置124および電力変換装置600への制御指令の送信を行う。電力変換装置600は、統合制御装置170からのトルク指令に基づき、指令通りのトルク出力あるいは発電電力が発生するように回転電機200、202を制御する。
電力変換装置600には回転電機200、202を運転するためにインバータを構成するパワー半導体が設けられている。電力変換装置600は、統合制御装置170からの指令に基づきパワー半導体のスイッチング動作を制御する。このようなパワー半導体のスイッチング動作により、回転電機200、202が電動機としてあるいは発電機として運転される。
回転電機200、202を電動機として運転する場合は、高電圧のバッテリ180からの直流電力が電力変換装置600のインバータの直流端子に供給される。電力変換装置600は、パワー半導体のスイッチング動作を制御することにより、供給された直流電力を3相交流電力に変換し回転電機200、202に供給する。一方、回転電機200、202を発電機として運転する場合には、回転電機200、202の回転子が外部から加えられる回転トルクで回転駆動され、回転電機200、202の固定子巻線に3相交流電力が発生する。発生した3相交流電力は電力変換装置600で直流電力に変換され、その直流電力が高電圧のバッテリ180に供給されることにより充電が行われる。
なお、回転電機200と回転電機202はそれぞれ独立して制御される。例えば回転電機200が電動機として運転される場合に、回転電機202は電動機として運転できるし、発電機としても運転できる。また運転停止状態とすることも可能である。当然ではあるがこの逆も可能である。回転電機200と回転電機202をどのようなモードで運転するかは統合制御装置170が決定し、電力変換装置600に指令する。この指令に基づき電力変換装置600は電動機の運転モードあるいは発電機の運転モードあるいは運転休止モードの状態となる。
図2は、図1の電力変換装置600の回路図を概念的に示す。電力変換装置600には、回転電機200のための第1のインバータ装置と、回転電機202のための第2のインバータ装置とが設けられている。第1のインバータ装置は、パワーモジュール610と、パワーモジュール610の各パワー半導体21のスイッチング動作を制御する第1の駆動回路652と、回転電機200の電流を検知する電流センサ660とを備えている。駆動回路652は駆動回路基板650に設けられている。一方、第2のインバータ装置は、パワーモジュール620と、パワーモジュール620における各パワー半導体21のスイッチング動作を制御する第2の駆動回路656と、回転電機202の電流を検知する電流センサ662とを備えている。駆動回路656は駆動回路基板654に設けられている。制御回路基板646に設けられた制御回路648、コンデンサモジュール630およびコネクタ基板642に実装された送受信回路644は、第1のインバータ装置と第2のインバータ装置とで共通に使用される。
パワーモジュール610、620は、それぞれ対応する駆動回路652、656から出力された駆動信号によって動作する。パワーモジュール610、620は、それぞれバッテリ180から供給された直流電力を三相交流電力に変換し、その電力を対応する回転電機200、202の電機子巻線である固定子巻線に供給する。また、パワーモジュール610、620は、回転電機200、202の固定子巻線に誘起された交流電力を直流に変換し、高電圧バッテリ180に供給する。
パワーモジュール610、620は図2に記載のごとく3相ブリッジ回路を備えており、3相に対応した直列回路が、それぞれバッテリ180の正極側と負極側との間に電気的に並列に接続されている。各直列回路は上アームを構成するパワー半導体21と下アームを構成するパワー半導体21とを備え、それらのパワー半導体21は直列に接続されている。パワーモジュール610とパワーモジュール620とは、図2に示す如く回路構成がほぼ同じであり、ここではパワーモジュール610で代表して説明する。
本実施の形態では、スイッチング用パワー半導体素子としてIGBT(絶縁ゲート型バイポーラトランジスタ)21を用いている。IGBT21は、コレクタ電極、エミッタ電極及びゲート電極の3つの電極を備えている。IGBT21のコレクタ電極とエミッタ電極との間にはダイオード38が電気的に接続されている。ダイオード38は、カソード電極及びアノード電極の2つの電極を備えており、IGBT21のエミッタ電極からコレクタ電極に向かう方向が順方向となるように、カソード電極がIGBT21のコレクタ電極に、アノード電極がIGBT21のエミッタ電極にそれぞれ電気的に接続されている。
なお、スイッチング用パワー半導体素子として、MOSFET(金属酸化物半導体型電界効果トランジスタ)を用いてもよい。MOSFETは、ドレイン電極、ソース電極及びゲート電極の3つの電極を備えている。MOSFETの場合には、ソース電極とドレイン電極との間に、ドレイン電極からソース電極に向かう方向が順方向となる寄生ダイオードを備えているので、図2のダイオード38を設ける必要がない。
各相のアームは、IGBT21のソース電極とIGBT21のドレイン電極とが電気的に直列に接続されて構成されている。尚、本実施の形態では、各相の各上下アームのIGBTを1つしか図示していないが、制御する電流容量が大きいので、実際には複数のIGBTが電気的に並列に接続されて構成されている。以下では、説明を簡単にするため、1個のパワー半導体として説明する。
図2に示す例では、各相の各上下アームはそれぞれ3個のIGBTによって構成されている。各相の各上アームのIGBT21のドレイン電極はバッテリ180の正極側に、各相の各下アームのIGBT21のソース電極はバッテリ180の負極側にそれぞれ電気的に接続されている。各相の各アームの中点(上アーム側IGBTのソース電極と下アーム側のIGBTのドレイン電極との接続部分)は、対応する回転電機200、202の対応する相の電機子巻線(固定子巻線)に電気的に接続されている。
駆動回路652、656は、対応するインバータ装置610、620を制御するための駆動部を構成しており、制御回路648から出力された制御信号に基づいて、IGBT21を駆動させるための駆動信号を発生する。それぞれの駆動回路652、656で発生した駆動信号は、対応するパワーモジュール610、620の各パワー半導体素子のゲートにそれぞれ出力される。駆動回路652、656には、各相の各上下アームのゲートに供給する駆動信号を発生する集積回路がそれぞれ6個設けられており、6個の集積回路を1ブロックとして構成されている。
制御回路648は各インバータ装置610、620の制御部を構成しており、複数のスイッチング用パワー半導体素子を動作(オン・オフ)させるための制御信号(制御値)を演算するマイクロコンピュータによって構成されている。制御回路648には、上位制御装置からのトルク指令信号(トルク指令値)、電流センサ660、662のセンサ出力、回転電機200、202に搭載された回転センサのセンサ出力が入力される。制御回路648はそれらの入力信号に基づいて制御値を演算し、駆動回路652、656にスイッチングタイミングを制御するための制御信号を出力する。
コネクタ基板642に実装された送受信回路644は、電力変換装置600と外部の制御装置との間を電気的に接続するためのもので、図1の通信回線174を介して他の装置と情報の送受信を行う。コンデンサモジュール630は、IGBT21のスイッチング動作によって生じる直流電圧の変動を抑制するための平滑回路を構成するもので、第1のパワーモジュール610や第2のパワーモジュール620における直流側の端子に電気的に並列に接続されている。
図3は本発明による回転電機の一例の永久磁石回転電機10の断面概略図である。この永久磁石回転電機10は上記で説明したハイブリッド自動車(図1、図2参照)の回転電機200あるいは回転電機202として用いられる。なお、以下で説明するように、本発明による回転電機の構成は永久磁石回転電機だけでなくシンクロナスリラクタンスモータや誘導電動機にも用いることができる。
以下、図3~図14を参照して本発明の特徴的構成について、実施形態1~4に基づいて説明する。なお、以下の実施形態では、固定子のティースに捲回されるコイルは分布巻きとしている。したがって、図7~10および図13~14で示す計算結果は、分布巻きコイルに対するものである。
(実施形態1)
図3は本発明による回転電機の実施形態1を示す。図3に示す回転電機は、本発明を三相の永久磁石回転電機に適用した場合の例であり、8極72スロットの構成となっている。極数Pと固定子スロット数Sの最大公約数N(=8)で固定子スロット数S(=72)を除算した商m(=9)、またはmの約数d(=3)の個数のティースを1グループとし、この1グループのティースは、先端に溝が形成されているものと形成されていないものを含み、また1グループのスロットには異なる開口幅のスロットを含んでいる。図4は、1つのティースグループ50を構成する9個のティース5a~5iの先端の溝形状の一例を示す。また、図4は、1つのスロットグループ40を構成する9個のスロット4a~4iの開口幅の一例を示す。なお、以下では特に指定しない1個のティースあるいはスロットに対し単にティース5あるいはスロット4と呼称する。なお、図3の符号8は永久磁石を示す。
図3は本発明による回転電機の実施形態1を示す。図3に示す回転電機は、本発明を三相の永久磁石回転電機に適用した場合の例であり、8極72スロットの構成となっている。極数Pと固定子スロット数Sの最大公約数N(=8)で固定子スロット数S(=72)を除算した商m(=9)、またはmの約数d(=3)の個数のティースを1グループとし、この1グループのティースは、先端に溝が形成されているものと形成されていないものを含み、また1グループのスロットには異なる開口幅のスロットを含んでいる。図4は、1つのティースグループ50を構成する9個のティース5a~5iの先端の溝形状の一例を示す。また、図4は、1つのスロットグループ40を構成する9個のスロット4a~4iの開口幅の一例を示す。なお、以下では特に指定しない1個のティースあるいはスロットに対し単にティース5あるいはスロット4と呼称する。なお、図3の符号8は永久磁石を示す。
図4では、1つのティースグループ50を構成する9個のティース5a~5iのうち、6個のティース5c~5h先端に溝6c~6hが設けられている。図3に示す固定子コア1は、図4に示す9個のティース5a~5iを周方向に周期的に8グループ周設することにより形成される。なお、これらのティースの先端形状は図3では省略されている。さらに、回転電機10を構成する固定子コア1のスロット4に捲回される固定子コイルは省略されている。
また、図4では1つのティースグループ50を構成する9個のティース5a~5iに対応して、9個のスロット4a~4iで1つのスロットグループ40を構成する。スロットグループ40は、さらにスロット数Sを最大公約数Nで割った個数mの約数dである3個で1つのスロットサブグループ42を構成している。各々のスロットの開口部は、(41a、41d、41g)、(41b、41e、41h)、(41c、41f、41i)のそれぞれの組で開口幅は同じとなっている。また、スロット4a~4c、4d~4f、4g~4iそれぞれでスロットサブグループ42を構成している。このように、1つのスロットグループ40のm個のスロットの中に、mの約数d(≠m)である個数のスロットからなるサブグループ42が存在しても良い(図4参照)。同様に、1つのティースグループ50を構成するm個のティース5の中に、mの約数d(≠m)である個数のティースからなるサブグループが存在しても良い。
図4に示すティースグループ50、スロットグループ40の構成を採用した固定子コア1を備えた回転電機(実施形態1)の計算結果を□の記号で図7に示す。なお、図7、図8には、後述する他の実施形態(実施形態2、3)および従来技術の固定子コア1を備えた回転電機の計算結果も示してある。
(実施形態2)
図5は本発明による回転電機の実施形態2を説明する図である。3個の固定子ティース5j~5lで1つのティースグループ51を構成し、3個のスロット4j~4l(スロット開口部41j~41l)で1つのスロットグループ43を構成する。1つのティースグループ51を構成するティース5の先端には図5に示すように溝6(6k、6l)を設ける。図5の例では、ティース5k、5lの先端に同じ形状の溝6k、6lが形成されている。また、図5の例ではスロット開口部41j、41kの開口幅は同じであり、スロット開口部41lの開口幅は異なっている。図5に示すティースグループ51を構成するティースと、このティースグループ51に対応した、スロットグループ43(4j~4l)を固定子コア1の周方向に3グループ周設することにより、図3に示すような1つのティースグループ50を形成することができる。
図5は本発明による回転電機の実施形態2を説明する図である。3個の固定子ティース5j~5lで1つのティースグループ51を構成し、3個のスロット4j~4l(スロット開口部41j~41l)で1つのスロットグループ43を構成する。1つのティースグループ51を構成するティース5の先端には図5に示すように溝6(6k、6l)を設ける。図5の例では、ティース5k、5lの先端に同じ形状の溝6k、6lが形成されている。また、図5の例ではスロット開口部41j、41kの開口幅は同じであり、スロット開口部41lの開口幅は異なっている。図5に示すティースグループ51を構成するティースと、このティースグループ51に対応した、スロットグループ43(4j~4l)を固定子コア1の周方向に3グループ周設することにより、図3に示すような1つのティースグループ50を形成することができる。
したがって、実施形態2では、図3に示す固定子コア1は、図5に示す1つのティースグループ51を構成するティース5、スロット4を周方向に周期的に24グループ周設することにより形成される。この構成(実施形態2)による計算結果を、図7中では○の記号で示してある。
(実施形態3)
図6は本発明による回転電機の実施形態3を説明する図である。3個のティース5m~5oで1つのティースグループ51を、3個のスロット4m~4o(スロット開口部41m~41o)で1つのスロットグループ44を構成する。1つのティースグループ51を構成するティース5の先端には、溝6(6n、6o)を設ける。図6の例では、ティース5n、5oの先端に同じ形状の溝6n、6oが形成されている。この溝形状は図5の溝6(6k、6l)と同じである。ただし、図6の例では、図5の例とは異なり、3つのスロットの中央のスロットの開口幅が他のスロットの開口幅と異なっている。すなわち、スロット開口部41m、41oの開口幅は同じであり、スロット開口部41nの開口幅はこれらと異なっている。
図6は本発明による回転電機の実施形態3を説明する図である。3個のティース5m~5oで1つのティースグループ51を、3個のスロット4m~4o(スロット開口部41m~41o)で1つのスロットグループ44を構成する。1つのティースグループ51を構成するティース5の先端には、溝6(6n、6o)を設ける。図6の例では、ティース5n、5oの先端に同じ形状の溝6n、6oが形成されている。この溝形状は図5の溝6(6k、6l)と同じである。ただし、図6の例では、図5の例とは異なり、3つのスロットの中央のスロットの開口幅が他のスロットの開口幅と異なっている。すなわち、スロット開口部41m、41oの開口幅は同じであり、スロット開口部41nの開口幅はこれらと異なっている。
図5の例では、スロット開口部41jと41kの開口幅は同じであり、スロット開口部41lは異なっている。図6の例では、スロット開口部41mと41oの開口幅は同じであり、スロット開口部41nの開口幅は異なっている。すなわち、図5(実施形態2)と図6(実施形態3)とでは、1つのスロットグループ43、44で、開口幅が他のスロット開口部と異なるスロット開口部の位置が異なる構成となっている。言い換えれば、1つのティースグループの各ティースのティース溝形状の変化パターンと、これに対応する1つのスロットグループのスロット開口部の開口幅の変化パターンが、図5と図6で異なっている。あるいは、ティース溝形状の変化パターンとスロット開口部の開口幅の変化パターンとが図5と図6とではずれた構成となっている。なお、図6の構成では、ティースの溝形状とスロット開口部の開口幅が、1つのスロットグループ44の中央にあるスロット4nの中心を通る半径に対して対称となっているので、固定子コア1を構成する積層鋼鈑を、反転して積層することが可能である。
実施形態3において、図3に示す固定子コア1は、図6に示す1つのティースグループ51を構成するティース5、スロット4を周方向に周期的に24グループ周設することにより形成される。この構成(実施形態3)による計算結果を、図7中では◇の記号で示してある。
従来技術では、全てのティース5、スロット4の形状が同じ構成となっており、回転子コア2、磁石8と組み合わせた幾何学的形状の周期境界条件が1/8となっている。本発明では、1つのティースグループの各ティースのティース溝形状および/または1つのスロットグループの開口部の開口幅は全て同一ではないが実施形態1~3のような1つのティースグループ50、51、および1つのスロットグループ40、43、44を固定子コア1の全周に配設することにより、回転子コア2、磁石8と組み合わせた幾何学的形状の周期境界条件を従来技術の周期境界条件1/8から変更せずに、電磁力高調波の振幅を変更することができる。
実施形態1~3では、ティース5の先端に溝を設けたり、スロット開口部41の開口幅を変化させたりすることにより、エアギャップ(固定子コア1の内径と回転子コア2の外径の間の空間)の磁気抵抗を変化させることができる。磁気抵抗を変化させることにより、磁束高調波の振幅や位相が変化し、その結果、電磁力高調波の振幅が変化する。
(本発明による回転電機での電磁加振力高調波低減効果)
実施形態1~3と従来技術それぞれの場合のティース、スロット形状を持つ固定子コア1を備えた回転電機の接線方向空間0次の電磁力高調波振幅を、解析により求めた結果を図7に示す。図7では電磁力高調波振幅を、従来技術の回転72次高調波振幅を基準に無次元化している。図7より、従来技術の接線方向空間0次の電磁力高調波の中で回転72次の回転次数の電磁力高調波成分振幅が最大となり、回転72次電磁力高調波の加振周波数と、この加振力により励起される回転電機の固有振動数とが一致すると、卓越した振動・騒音が発生すると考えられる。
実施形態1~3と従来技術それぞれの場合のティース、スロット形状を持つ固定子コア1を備えた回転電機の接線方向空間0次の電磁力高調波振幅を、解析により求めた結果を図7に示す。図7では電磁力高調波振幅を、従来技術の回転72次高調波振幅を基準に無次元化している。図7より、従来技術の接線方向空間0次の電磁力高調波の中で回転72次の回転次数の電磁力高調波成分振幅が最大となり、回転72次電磁力高調波の加振周波数と、この加振力により励起される回転電機の固有振動数とが一致すると、卓越した振動・騒音が発生すると考えられる。
そこで、図8に回転72次の接線方向空間0次高調波振幅を抜き出してdB表示したものを示す。図8では、実施形態1で3.6dB、実施形態2で4.7dB、実施形態3で3.8dB、従来技術より電磁力高調波振幅が低減している。したがって、実施形態1~3では従来技術よりも接線方向空間0次、回転72次の電磁力高調波に起因する振動・騒音を低減できることになる。
図9に、接線方向空間0次、回転72次の電磁力高調波を入力したときの実施形態2のティース、スロット形状を持つ固定子コア1と、従来技術のティース、スロット形状を持つ固定子コア1を備えたそれぞれの回転電機から発生する音響パワーレベルの計算結果を示す。図9では従来技術の音響パワーレベル最大値を基準に無次元化している。図9より2000r/min近傍の音響パワーレベルピークが実施形態2で、従来技術より低減する結果となっている。
一方、図7より実施形態2の回転24次高調波が回転72次より振幅が大きくなっている。そこで、図10に実施形態2と従来技術の回転電機から発生する音響パワーレベルの計算結果を示す。図10より、回転24次の音響パワーレベルのピークは5000r/min以上のところに存在し、音響パワーレベルのピーク値は従来技術の回転72次ピーク値より約10dB大きくなっている。
車両の騒音はスピードが上がるほど風きり音やロードノイズなどの他の音源からの影響が大きくなり、またスピード・騒音・人間の感覚との関連から騒音の許容値も上がる。さらには、回転電機を搭載する車両がHEVの場合、回転数が上がるとエンジンが作動するため、5000r/min以上の領域ではエンジン音のほうが回転電機より発生する電磁音より大きくなると考えられる。この点から、回転24次の電磁音の音響パワーレベルの上昇が回転72次に対して10dB程度であれば問題ない。
(実施形態4)
本発明の適用対象として、図11に示す三相の永久磁石回転電機、極数P=8、スロット数S=48、最大公約数N=8のものを例にとり、従来技術との比較を行う。図11では、簡略化のため、ティースを全て参照番号5で示している。回転電機を構成する固定子および回転子のうち特に固定子コア1と回転子コア2、磁石8に参照番号を付与して示している。
本発明の適用対象として、図11に示す三相の永久磁石回転電機、極数P=8、スロット数S=48、最大公約数N=8のものを例にとり、従来技術との比較を行う。図11では、簡略化のため、ティースを全て参照番号5で示している。回転電機を構成する固定子および回転子のうち特に固定子コア1と回転子コア2、磁石8に参照番号を付与して示している。
実施形態4では、図12に示すように、ティースの1グループ50を構成するティース5、スロット4の個数を、スロット数Sを最大公約数N=8で割った個数mである6個とし、ティース5(5p~5u)のうち4個(5q、5r、5t、5u)の先端に溝6q、6r、6t、6uを設け、またスロット4の開口部(41p~41u)の開口幅を異ならせる。
図11に示す固定子コア1は、図12に示す1グループ50を構成するティース5、スロット4を固定子コア1の周方向に周期的に8グループ周設することにより形成される。この固定子コア1を備えた回転電機(実施形態4)の計算結果を図13中に□の記号で表記し、従来技術の固定子コア1を備えた回転電機の計算結果を◆の記号で示してある。
実施形態1~3と同様に、実施形態4でも、図11の固定子コア1は図12のように構成した1つのティースグループ50、ティースグループ50に対応するスロットグループ45を固定子コア1の全周に配設することにより、回転子コア2、磁石8と組み合わせた幾何学的形状の周期境界条件を従来技術の1/8から変更せずに、電磁力高調波の振幅を変更することができる。
実施形態4においても、実施形態1~3と同様に、ティース先端に溝を設けたり、スロット開口部の開口幅を変化させたりすることにより、エアギャップ(固定子コア1の内径と回転子コア2の外径の間の空間)の磁気抵抗を変化させることができる。磁気抵抗を変化させることにより、磁束高調波の振幅や位相が変化し、その結果、電磁力高調波の振幅が変化する。
実施形態4および従来技術それぞれの場合のティース、スロット形状を持つ固定子コア1を備えた回転電機について、接線方向空間0次の電磁力高調波振幅を解析により求めた結果を図13に示す。図13では電磁力高調波振幅を、従来技術の回転48次高調波振幅を基準に無次元化している。図13より、実施形態4のほうが従来技術より回転48次高調波振幅を低減できることが分かる。また、他の高調波振幅も実施形態4のほうが従来技術の回転48次高調波振幅より小さく、振動・騒音が低減できる。
図14に回転48次の電磁力高調波を入力したときの、実施形態4および従来技術それぞれの場合のティース、スロット形状を持つ固定子コア1を備えた回転電機から発生する音響パワーレベルの計算結果を示す。図14では従来技術の音響パワーレベル最大値を基準に無次元化している。図14より3000r/min近傍の音響パワーレベルピークが実施形態4では、従来技術より低減される結果となる。
上記の実施形態1~4の説明をまとめると以下の通りである。本発明では、ティースの先端部の形状とスロットの開口幅とを周方向にF回(ただしFは2以上の自然数)周期的に変化させることにより、周期境界条件を変えることなく、振動・騒音に影響する接線方向電磁加振力高調波の振幅を低減できる。上記では説明していないが、8極12スロットあるいは8極10スロットの回転電機においても、本発明による回転電機の構成が適用できることが分かっている。
以上より、本発明により、振動・騒音に影響する接線方向の空間0次電磁力高調波振幅を低減し、振動・騒音を低減できる。
また、特許文献1の適用対象(n極、s相におけるスロット数は2n×s個)から外れる極数、スロット数の組み合わせの回転電機に対しても、本発明により接線方向電磁力高調波振幅を低減し、振動・騒音を低減できる。
また、特許文献1の適用対象(n極、s相におけるスロット数は2n×s個)から外れる極数、スロット数の組み合わせの回転電機に対しても、本発明により接線方向電磁力高調波振幅を低減し、振動・騒音を低減できる。
以上の説明は本発明の実施形態の例であり、本発明はこれらの実施形態に限定されない。当業者であれば、本発明の特徴を損なわずに様々な変形実施が可能である。
とりわけ本発明では、実施形態1~4で説明した様々な固定子ティース先端の形状およびスロット開口部の開口幅を組み合わせたティースグループから構成された固定子を備える種々の回転電機を実現することができる。したがって、本発明は上記した実施形態の回転電機の相数、極数、スロット数に限定されるものではない。なお、上記の実施形態では、各固定子ティースに捲回するコイルは、分布巻きとしているが、本発明は、集中巻きのコイルにも、あるいは特開2009-247196号公報に記載されているような分散巻きにも適用できる。
1:固定子コア
2:回転子コア
4、4a~4o:固定子スロット
5、5a~5l、15:固定子ティース
6、6c~6h、6k、6l、6n、6o、6q、6r、6t、6u:ティース溝
8:永久磁石
9:導電体
10:回転電機
15:従来の一般的な固定子ティース
21:パワー半導体
38:ダイオード
40、43、44、45:固定子スロットの1グループ
42:固定子スロットのグループ40のサブグループ
41、41a~41u:スロット開口部
50、51:固定子ティースの1グループ
2:回転子コア
4、4a~4o:固定子スロット
5、5a~5l、15:固定子ティース
6、6c~6h、6k、6l、6n、6o、6q、6r、6t、6u:ティース溝
8:永久磁石
9:導電体
10:回転電機
15:従来の一般的な固定子ティース
21:パワー半導体
38:ダイオード
40、43、44、45:固定子スロットの1グループ
42:固定子スロットのグループ40のサブグループ
41、41a~41u:スロット開口部
50、51:固定子ティースの1グループ
Claims (5)
- 複数のティースと複数のスロットとを有する固定子を備えた回転電機であって、
前記ティースの先端部の形状と前記スロットの開口幅とが周方向にF回(ただしFは2以上の自然数)周期的に変化するように構成されていることを特徴とする回転電機。 - 請求項1に記載の回転電機において、
前記Fは、極数Pと前記固定子のスロット数Sの最大公約数Nであることを特徴とする回転電機。 - 請求項2に記載の回転電機において、
前記ティースは前記スロット数Sを前記最大公約数Nで割った個数m、または前記個数mの約数dの数で複数のティースグループにグループ化され、前記スロットは前記個数m、または前記約数dの数で複数のスロットグループにグループ化され、前記複数のティースグループ、および前記複数のスロットグループの各々のグループは、それぞれが同じ構成のティースグループおよびスロットグループであることを特徴とする回転電機。 - 請求項3に記載の回転電機において、
前記ティースグループにおいて、少なくとも1つのティースは、当該ティースグループの他のティースと異なる形状の溝を有し、前記スロットグループにおいて、少なくとも1つのスロットは、当該スロットグループの他のスロットと異なる開口幅を有することを特徴とする回転電機。 - 請求項1乃至4のいずれか1項に記載の回転電機を備えることを特徴とする電動車両。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/778,820 US9917487B2 (en) | 2013-03-21 | 2014-01-22 | Rotating electric machine and electrically driven vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-058318 | 2013-03-21 | ||
JP2013058318A JP5926699B2 (ja) | 2013-03-21 | 2013-03-21 | 回転電機および電動車両 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014148093A1 true WO2014148093A1 (ja) | 2014-09-25 |
Family
ID=51579789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/051174 WO2014148093A1 (ja) | 2013-03-21 | 2014-01-22 | 回転電機および電動車両 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9917487B2 (ja) |
JP (1) | JP5926699B2 (ja) |
WO (1) | WO2014148093A1 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10293804B2 (en) | 2016-05-19 | 2019-05-21 | GM Global Technology Operations LLC | Hybrid vehicle engine starter systems and methods |
US10184442B2 (en) * | 2016-05-19 | 2019-01-22 | GM Global Technology Operations LLC | Permanent magnet electric machine |
US10505415B2 (en) | 2016-05-19 | 2019-12-10 | GM Global Technology Operations LLC | Permanent magnet electric machine |
US10063180B2 (en) * | 2017-01-31 | 2018-08-28 | Ford Global Technologies, Llc | Multiple inverter hybrid drive system |
US10605217B2 (en) | 2017-03-07 | 2020-03-31 | GM Global Technology Operations LLC | Vehicle engine starter control systems and methods |
US10480476B2 (en) | 2018-04-24 | 2019-11-19 | GM Global Technology Operations LLC | Starter system and method of control |
US10436167B1 (en) | 2018-04-24 | 2019-10-08 | GM Global Technology Operations LLC | Starter system and method of control |
US20200044497A1 (en) * | 2018-08-06 | 2020-02-06 | GM Global Technology Operations LLC | Electric motor |
FR3128073B1 (fr) * | 2021-10-12 | 2024-07-12 | Nidec Psa Emotors | Stator de machine électrique tournante |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06113512A (ja) * | 1992-09-30 | 1994-04-22 | Hitachi Ltd | 多相交流回転電機 |
JP2005073450A (ja) * | 2003-08-27 | 2005-03-17 | Matsushita Electric Ind Co Ltd | モータジェネレータ |
JP2012210105A (ja) * | 2011-03-30 | 2012-10-25 | Nippon Densan Corp | 3相ブラシレスモータ |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3490659B2 (ja) * | 2000-02-29 | 2004-01-26 | 三菱電機株式会社 | 交流発電機 |
JP2007166710A (ja) | 2005-12-09 | 2007-06-28 | Toyota Motor Corp | 回転電機 |
JP5469873B2 (ja) | 2008-03-11 | 2014-04-16 | 株式会社日立製作所 | 回転電機 |
JP5939913B2 (ja) | 2012-07-17 | 2016-06-22 | 日立オートモティブシステムズ株式会社 | 回転電機および電動車両 |
-
2013
- 2013-03-21 JP JP2013058318A patent/JP5926699B2/ja active Active
-
2014
- 2014-01-22 US US14/778,820 patent/US9917487B2/en active Active
- 2014-01-22 WO PCT/JP2014/051174 patent/WO2014148093A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06113512A (ja) * | 1992-09-30 | 1994-04-22 | Hitachi Ltd | 多相交流回転電機 |
JP2005073450A (ja) * | 2003-08-27 | 2005-03-17 | Matsushita Electric Ind Co Ltd | モータジェネレータ |
JP2012210105A (ja) * | 2011-03-30 | 2012-10-25 | Nippon Densan Corp | 3相ブラシレスモータ |
Also Published As
Publication number | Publication date |
---|---|
JP5926699B2 (ja) | 2016-05-25 |
US20160056684A1 (en) | 2016-02-25 |
US9917487B2 (en) | 2018-03-13 |
JP2014183704A (ja) | 2014-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5926699B2 (ja) | 回転電機および電動車両 | |
JP5939913B2 (ja) | 回転電機および電動車両 | |
US10056794B2 (en) | Rotating electric machine and vehicle equipped with the rotating electric machine | |
US11811284B2 (en) | Stator for rotary electric machine and rotary electric machine using same | |
JP5730736B2 (ja) | 永久磁石式回転電機および永久磁石式回転電機を備えた車両 | |
JP5723524B2 (ja) | 回転電機及び電気自動車 | |
JP5674540B2 (ja) | 固定子および回転電機 | |
US20170353071A1 (en) | Rotary Electric Machine and Vehicle Provided with the Same | |
CN109327088B (zh) | 旋转电机和具备该旋转电机的电动车辆 | |
JP5490559B2 (ja) | 回転子およびその回転子を用いた回転電機 | |
US20190027977A1 (en) | Dynamo-electric machine and vehicle | |
US10511198B2 (en) | Rotary electrical machine, and rotor for rotary electrical machine | |
US10727709B2 (en) | Rotor of rotary electrical machine, rotary electrical machine, and vehicle | |
WO2018159181A1 (ja) | 回転電機の回転子及びこれを備えた回転電機 | |
US20220069651A1 (en) | Rotary Electric Machine and Vehicle Provided with the Same | |
JP6670767B2 (ja) | 回転電機 | |
US20240266893A1 (en) | Rotor for rotary electric machine, and rotary electric machine | |
JP2014113045A (ja) | 回転子およびその回転子を用いた回転電機 | |
WO2023238312A1 (ja) | 回転電機の回転子、回転電機及びこの回転電機を備えた電動車両 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14768433 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14778820 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14768433 Country of ref document: EP Kind code of ref document: A1 |