WO2014147995A1 - Heat management system for vehicle - Google Patents

Heat management system for vehicle Download PDF

Info

Publication number
WO2014147995A1
WO2014147995A1 PCT/JP2014/001363 JP2014001363W WO2014147995A1 WO 2014147995 A1 WO2014147995 A1 WO 2014147995A1 JP 2014001363 W JP2014001363 W JP 2014001363W WO 2014147995 A1 WO2014147995 A1 WO 2014147995A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
pump
radiator
flow path
heat medium
Prior art date
Application number
PCT/JP2014/001363
Other languages
French (fr)
Japanese (ja)
Inventor
憲彦 榎本
梯 伸治
道夫 西川
加藤 吉毅
賢吾 杉村
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2014147995A1 publication Critical patent/WO2014147995A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32284Cooling devices using compression characterised by refrigerant circuit configurations comprising two or more secondary circuits, e.g. at evaporator and condenser side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P9/00Cooling having pertinent characteristics not provided for in, or of interest apart from, groups F01P1/00 - F01P7/00
    • F01P9/06Cooling having pertinent characteristics not provided for in, or of interest apart from, groups F01P1/00 - F01P7/00 by use of refrigerating apparatus, e.g. of compressor or absorber type

Definitions

  • This disclosure relates to a thermal management system used for a vehicle.
  • Patent Document 1 describes a heat management system used in a hybrid electric vehicle that can be driven by a drive motor.
  • the first cooling circuit provided with the first radiator for cooling the engine and the second cooling circuit provided with the second radiator for cooling the drive motor control unit are connected to the first bypass passage and the second cooling circuit. By connecting with the bypass passage, the cooling water flowing in the second cooling circuit can be guided into the first cooling circuit.
  • the engine can be warmed by the waste heat of the drive motor control section, and as a result, the startability of the engine and the power generation efficiency by the engine can be improved.
  • a radiator bypass passage through which cooling water that has passed through the engine bypasses the first radiator is provided separately from the first bypass passage and the second bypass passage.
  • This indication aims at simplifying the structure of the thermal management system for vehicles which can connect the cooling circuit which cools an engine, and the cooling circuit which cools a cooling object apparatus in view of the above-mentioned point.
  • the vehicle thermal management system of the present disclosure includes an engine cooling circuit, an engine pump, an engine radiator, a first cooling circuit, a first pump, a switching unit, and a first communication unit.
  • a heat medium for cooling the engine circulates.
  • the engine pump is disposed in the engine cooling circuit and sucks and discharges the heat medium.
  • the engine radiator is disposed in the engine cooling circuit and radiates heat of the heat medium to the outside air.
  • a heat medium for cooling the cooling target device circulates.
  • the first pump is disposed in the first cooling circuit and sucks and discharges the heat medium.
  • the switching unit switches the connection state between the first cooling circuit and the engine cooling circuit.
  • the first communication unit allows the engine cooling circuit and the first cooling circuit to communicate with each other.
  • the engine cooling circuit is configured such that the heat medium circulates through the engine pump, the engine cooling flow path formed in the engine, and the circulation path that circulates through the engine radiator, and the heat medium circulates through the engine radiator. And a radiator bypass channel connected to the circulation channel.
  • the switching unit switches a connection state between the first cooling circuit and the radiator bypass flow path.
  • the heat medium of the first cooling circuit can be guided to the engine cooling circuit by the radiator bypass flow path and the first communication portion, two separate from the radiator bypass passage as in the prior art described above.
  • the configuration can be simplified as compared with the case where the bypass passage is provided.
  • the switching unit is disposed in the middle of the radiator bypass flow path and in the middle of the first cooling circuit, and the switching section includes the first cooling circuit and the radiator bypass flow path. Is connected to the part of the first cooling circuit from the discharge side of the first pump to the switching part and the part of the radiator bypass flow path from the suction side of the engine pump to the switching part. Switching to the first connection mode is possible, and the first communication portion may be connected to the circulation channel.
  • the switching unit switches to the first connection mode
  • the heat medium discharged from the first pump flows through the radiator bypass flow path and is sucked into the engine pump
  • the heat medium discharged from the engine pump is It flows into a 1st cooling circuit through a 1st communication part, and is suck
  • the heat medium of the first cooling circuit can be circulated using the first pump of the first cooling circuit and the engine pump of the engine cooling circuit in series.
  • 1 is an overall configuration diagram of a vehicle thermal management system in a first embodiment. It is a figure which shows the non-connection mode of the thermal management system for vehicles in 1st Embodiment. It is a figure which shows the 1st connection mode of the thermal management system for vehicles in 1st Embodiment. It is a figure which shows the 2nd connection mode of the thermal management system for vehicles in 1st Embodiment. It is a block diagram which shows the electric control part of the thermal management system for vehicles in 1st Embodiment. It is a whole block diagram of the thermal management system for vehicles in 2nd Embodiment. It is a figure which shows the non-connection mode of the thermal management system for vehicles in 2nd Embodiment.
  • a vehicle thermal management system 10 shown in FIG. 1 is used to adjust various temperature adjustment target devices (a cooling target device that requires cooling, a heating target device that requires heating, etc.) included in the vehicle to an appropriate temperature.
  • various temperature adjustment target devices a cooling target device that requires cooling, a heating target device that requires heating, etc.
  • the thermal management system 10 is applied to a hybrid vehicle that obtains driving force for vehicle travel from an engine (internal combustion engine) and a travel motor.
  • the hybrid vehicle according to the present embodiment is configured as a plug-in hybrid vehicle that can charge power supplied from an external power source (commercial power source) when the vehicle is stopped to a battery (vehicle battery) mounted on the vehicle.
  • a battery vehicle battery
  • the battery for example, a lithium ion battery can be used.
  • the driving force output from the engine is used not only for driving the vehicle but also for operating the generator.
  • the electric power generated by the generator and the electric power supplied from the external power source can be stored in the battery, and the electric power stored in the battery is not only a motor for running but also an electric component device that constitutes a cooling system Supplied to various in-vehicle devices.
  • the thermal management system 10 includes a first pump 11, a second pump 12, a first flow path 13, and a second flow path 14.
  • the first pump 11 and the second pump 12 are electric pumps that suck and discharge cooling water.
  • the cooling water is a fluid as a heat medium.
  • a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanoparticles, or an antifreeze liquid is used as the cooling water.
  • the first flow path 13 and the second flow path 14 are cooling water flow paths through which cooling water flows, and are arranged in parallel to each other.
  • a first pump 11 is disposed in the first flow path 13.
  • a second pump 12 is disposed in the second flow path 14.
  • a first radiator 15 (heat radiator) is disposed in the first flow path 13.
  • the first radiator 15 is an outdoor heat exchanger (outside air heat medium heat exchanger) that radiates heat of the cooling water to the outside air by exchanging heat between the cooling water and outside air (hereinafter referred to as outside air). It is also possible to absorb heat from the outside air to the cooling water by the first radiator 15 by flowing cooling water below the outside air temperature to the first radiator 15.
  • the first radiator 15 has a large number of tubes through which cooling water flows and fins that are arranged between the large number of tubes and promote heat exchange with the outside air.
  • the outside air blower 16 blows outside air to the first radiator 15. Since the first radiator 15 is disposed at the foremost part of the vehicle, traveling wind can be applied to the first radiator 15 when the vehicle is traveling.
  • the downstream side of the first flow path 13 is connected to the first inlet 17a of the first switching valve 17, and the upstream side of the first flow path 13 is connected to the first outlet 18a of the second switching valve 18.
  • the downstream side of the second flow path 14 is connected to the second inlet 17 b of the first switching valve 17, and the upstream side of the second flow path 14 is connected to the second outlet 18 b of the second switching valve 18.
  • radiator bypass channel 19 One end of a radiator bypass channel 19 is connected to the third outlet 18c of the second switching valve 18. The other end of the radiator bypass channel 19 is connected to a portion of the first channel 13 between the first radiator 15 and the first pump 11. Thereby, the 1st radiator 15 can be bypassed and cooling water can flow.
  • the first switching valve 17 has four outlets 17d, 17e, 17f, and 17g through which cooling water flows out.
  • the first switching valve 17 flows the cooling water so that either the cooling water flowing in from the first inlet 17a or the cooling water flowing in from the second inlet 17b flows out from the outlets 17d, 17e, 17f, 17g. It has a function to switch.
  • the second switching valve 18 has four inlets 18d, 18e, 18f, and 18g into which cooling water flows.
  • the second switching valve 18 switches the flow of the cooling water so that the cooling water flowing in from the inlets 18d, 18e, 18f, 18g flows out of either the first outlet 18a or the second outlet 18b.
  • the first common flow path 21 connected between the first outlet 17d of the first switching valve 17 and the first inlet 18d of the second switching valve 18 has a cooling heat exchanger 30 ( A cooling water cooling heat exchanger) is arranged.
  • a heat exchanger 31 for heating which is a temperature adjustment target device ( A cooling water heating heat exchanger) and a heater core 32 are arranged.
  • the third common flow path 23 connected between the third outlet 17f of the first switching valve 17 and the third inlet 18f of the second switching valve 18 has a cooling heat exchanger 33 ( An air cooling heat exchanger) is arranged.
  • an inverter In the fourth common flow path 24 connected between the fourth outlet 17g of the first switching valve 17 and the fourth inlet 18g of the second switching valve 18, an inverter, a traveling motor, A battery, a regenerator, an intercooler, a turbo, an oil heat exchanger, and the like are arranged.
  • the number of outlets of the first switching valve 17 may be increased, and the other end of the common flow path connected to the outlet of the first switching valve 17 may not necessarily be connected to the inlet of the second switching valve 18. .
  • the number of inlets of the second switching valve 18 may be increased, and the other end of the common flow path connected to the inlet of the second switching valve 18 is not necessarily connected to the outlet of the first switching valve 17. May be.
  • the inverter is a power conversion device that converts DC power supplied from the battery into AC power and outputs the AC power to the traveling motor, and constitutes a power control unit.
  • the power control unit is a component that controls electric power supplied from the battery to drive the traveling motor.
  • the power control unit includes a boost converter that raises the voltage of the battery, a charger that converts a commercial power source into a direct current and boosts the voltage higher than the voltage of the battery in a plug-in hybrid vehicle.
  • the inverter has a flow path through which cooling water flows. Therefore, the inverter is cooled by exchanging heat with the cooling water flowing through the flow path.
  • a passage for cooling water is also formed in the traveling motor. Therefore, the traveling motor is cooled by exchanging heat with the cooling water flowing through the flow path.
  • the battery has a flow path through which cooling water flows, and the battery is cooled or heated by exchanging heat with the cooling water flowing through the flow path.
  • the battery is preferably maintained at a temperature of about 10-40 ° C. for reasons such as a reduction in output, a reduction in charging efficiency, and prevention of deterioration.
  • a battery heat exchanger may be arranged in the fourth common flow path 24 instead of the battery.
  • the battery heat exchanger is a heat exchanger that exchanges heat between cooling water and air, and can cool or heat the battery by introducing the air heat-exchanged by the battery heat exchanger to the battery. .
  • the cooling heat exchanger 30 constitutes a low-pressure side heat exchanger of the refrigeration cycle 35.
  • the cooling heat exchanger 30 is a cooler (heat medium cooler) that cools the cooling water by exchanging heat between the low-pressure refrigerant (low-temperature refrigerant) of the refrigeration cycle 35 and the cooling water.
  • the heating heat exchanger 31 constitutes a high-pressure side heat exchanger of the refrigeration cycle 35.
  • the heating heat exchanger 31 is a heater (heat medium heater) that heats the cooling water by exchanging heat between the high-pressure refrigerant (high-temperature refrigerant) of the refrigeration cycle 35 and the cooling water.
  • the refrigeration cycle 35 is a vapor compression refrigerator.
  • the refrigerant of the refrigeration cycle 35 is a chlorofluorocarbon refrigerant
  • the refrigeration cycle 35 constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant.
  • the refrigeration cycle 35 has a compressor 35a and an expansion valve 35b in addition to a cooling heat exchanger 30 that is a low-pressure side heat exchanger and a heating heat exchanger 31 that is a high-pressure side heat exchanger.
  • the compressor 35a is an electric compressor that is driven by electric power supplied from a battery, and sucks and compresses and discharges a gas-phase refrigerant.
  • the compressor 35a may be rotationally driven by the engine via a pulley, a belt, or the like.
  • the high-temperature and high-pressure gas-phase refrigerant discharged from the compressor 35a is absorbed and condensed by heat exchange with cooling water in the heating heat exchanger 31 which is a high-pressure side heat exchanger.
  • the expansion valve 35b is a decompressor that decompresses and expands the liquid refrigerant condensed in the heat exchanger 31 for heating.
  • the low-pressure refrigerant expanded under reduced pressure by the expansion valve 35b absorbs heat from the cooling water and evaporates by exchanging heat with the cooling water in the cooling heat exchanger 30 which is a low-pressure side heat exchanger.
  • the gas-phase refrigerant evaporated in the cooling heat exchanger 30 is sucked into the compressor 35a and compressed.
  • the cooling water In the first radiator 15, the cooling water is cooled by outside air, whereas in the cooling heat exchanger 30, the cooling water is cooled by the low-pressure side refrigerant of the refrigeration cycle 35. For this reason, the temperature of the cooling water cooled by the cooling heat exchanger 30 can be made lower than the temperature of the cooling water cooled by the first radiator 15.
  • the first radiator 15 cannot cool the cooling water to a temperature lower than the outside air temperature, whereas the cooling heat exchanger 30 cools the cooling water to a temperature lower than the outside air temperature. It is possible.
  • the cooling heat exchanger 33 is a heat exchanger that cools air by exchanging heat between cooling water and air, and is disposed inside the casing 37 of the indoor air conditioning unit.
  • the casing 37 forms an air passage through which air blown by the indoor blower 38 flows.
  • the heater core 32 is a heat exchanger (air heat medium heat exchanger) that heats air by exchanging heat between the cooling water heated by the heat exchanger 31 for heating and the air blown into the passenger compartment.
  • the heater core 32 is disposed on the downstream side of the heating heat exchanger 31 in the second common flow path 22.
  • the heater core 32 is disposed on the downstream side of the air flow from the cooling heat exchanger 33 inside the casing 37 of the indoor air conditioning unit.
  • an air mix door 39 is disposed on the downstream side of the air flow from the cooling heat exchanger 33 and the upstream side of the air flow from the heater core 32.
  • the air mix door 39 is an air volume ratio adjusting unit that adjusts the air volume ratio between the air passing through the heater core 32 and the air flowing by bypassing the cooling heat exchanger 33.
  • the first flow path 13 is connected with a sealed reserve tank 13a that can store cooling water and keep the pressure of the cooling water within an appropriate range.
  • the reserve tank 13a hermetically sealed, the effect of maintaining the pressure of the cooling water within a set value can be obtained, and the reserve tank 13a can be used even in an operating state in which the heads of the first pump 11 and the second pump 12 are significantly different. The effect of minimizing the liquid level fluctuation is obtained.
  • the reserve tank 13a has a function of gas-liquid separation of bubbles mixed in the cooling water.
  • the reserve tank 13a has a function of holding an appropriate pressure against an abnormal increase / decrease in pressure due to expansion / contraction due to a temperature change of the cooling water. By storing excess cooling water in the reserve tank 13a, it is possible to suppress a decrease in the amount of cooling water circulating through each flow path.
  • the thermal management system 10 includes a cooling circuit 40 (engine cooling circuit).
  • the cooling circuit 40 has a circulation channel 41 through which cooling water circulates.
  • the circulation channel 41 constitutes the main channel of the cooling circuit 40.
  • a pump 42 engine pump
  • the pump 42 is an electric pump that sucks and discharges cooling water.
  • the pump 42 may be driven by a power transmission mechanism via a belt or the like from the output shaft of the engine 43.
  • the power transmission mechanism is connected to an auxiliary motor so that the pump 42 can be driven even when the engine is stopped. Must be combined.
  • the auxiliary motor can be used to drive the compressor coupled to the power transmission mechanism while the engine is stopped, and can also be used as a starter motor when starting the engine 43. It can also be used as an alternator for power generation.
  • the radiator 44 has a large number of tubes through which cooling water flows and fins that are arranged between the large number of tubes and promote heat exchange with the outside air.
  • the outdoor fan 16 blows outside air to the radiator 44.
  • the radiator 44 is disposed downstream of the first radiator 15 in the outside air flow direction at the foremost part of the vehicle.
  • radiator bypass passage 45 engine radiator bypass passage
  • the other end of the radiator bypass channel 45 is connected to a portion of the circulation channel 41 between the radiator 44 and the suction part (suction port) of the pump 42. Thereby, the cooling water flowing out from the engine 43 can flow by bypassing the radiator 44.
  • a thermostat 46 is disposed at the connection portion between the other end of the radiator bypass passage 45 and the circulation passage 41.
  • the thermostat 46 is a valve configured by a mechanical mechanism that opens and closes the cooling water flow path by displacing the valve body with a thermo wax (temperature-sensitive member) that changes in volume according to temperature. That is, the valve body of the thermostat 46 is displaced according to the coolant temperature.
  • the thermostat 46 includes a cooling water passage (heat medium passage) through which the cooling water flowing out from the engine 43 flows through the radiator 44, and a cooling water passage (heat medium passage) through which the cooling water flowing out from the engine 43 flows through the radiator bypass passage 45. ) And switch according to the temperature of the cooling water.
  • the thermostat 46 switches the cooling water to the cooling water flow path that flows through the radiator bypass flow path 45.
  • a predetermined temperature for example, 60 ° C. or higher and lower than 80 ° C.
  • the radiator bypass channel 45 is connected to the first channel 13 via a four-way valve 47.
  • the four-way valve 47 is disposed in the middle of the radiator bypass flow path 45 and is disposed in the middle of the first flow path 13. Specifically, the four-way valve 47 is disposed at a site between the first pump 11 and the first inlet 17 a of the first switching valve 17 in the first flow path 13.
  • the four-way valve 47 is a switching unit that switches a connection state between the first flow path 13 and the radiator bypass flow path 45.
  • the connection state modes switched by the four-way valve 47 include a non-connection mode shown in FIG. 2, a first connection mode shown in FIG. 3, and a second connection mode shown in FIG.
  • the four-way valve 47 does not connect the first flow path 13 and the radiator bypass flow path 45.
  • the four-way valve 47 is configured such that the portion of the first flow path 13 that extends from the discharge side of the first pump 11 to the four-way valve 47 and the suction side of the pump 42 of the radiator bypass flow path 45. To the four-way valve 47 is connected.
  • the four-way valve 47 includes a portion of the first flow path 13 from the discharge side of the first pump 11 to the four-way valve 47, and a cooling water for the engine 43 in the radiator bypass flow path 45.
  • the part from the outlet side (discharge side of the first pump 11) to the four-way valve 47 is connected.
  • first communication path 48 is connected to a portion between the discharge portion (discharge port) of the first pump 11 and the engine 43 in the circulation flow path 41 of the cooling circuit 40.
  • the other end of the first communication path 48 is connected to a portion of the first flow path 13 between the four-way valve 47 and the first inlet 17 a of the first switching valve 17. Therefore, the first communication path 48 constitutes a communication part (first communication part) that communicates the cooling circuit 40 and the first flow path 13.
  • a reserve tank 41 a is connected to the circulation passage 41 of the cooling circuit 40. Since the structure and function of the reserve tank 41a are the same as those of the reserve tank 13a of the first flow path 13, the description thereof is omitted. Either one of the reserve tank 13a and the reserve tank 41a can be omitted.
  • the control device 50 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof, and performs various calculations and various processes based on an air conditioning control program stored in the ROM.
  • the control device 50 includes a first pump 11, a second pump 12, an outdoor fan 16, a first switching valve 17, a second switching valve 18, a compressor 35a, an indoor fan 38, an air mix door 39, which are connected to the output side. The operation of the pump 42 and the four-way valve 47 is controlled.
  • the control device 50 is configured integrally with a control unit that controls various control target devices connected to the output side thereof, but has a configuration (hardware and software) that controls the operation of each control target device.
  • operation of each control object apparatus is comprised.
  • the configuration (hardware and software) that controls the operation of the four-way valve 47 in particular is the switching control unit 50a.
  • the switching control unit 50a may be configured separately from the control device 50.
  • the configuration (hardware and software) that controls the operation of the outdoor blower 16 in particular is referred to as an air flow control unit 50b.
  • Detected signals of various sensors such as an inside air sensor 51, an outside air sensor 52, a solar radiation sensor 53, a humidity sensor 54, a first water temperature sensor 55, and a second water temperature sensor 56 are input to the input side of the control device 50.
  • the inside air sensor 51 is a detector (inside air temperature detector) that detects the inside air temperature (in-vehicle temperature).
  • the outside air sensor 52 is a detector (outside air temperature detector) that detects outside air temperature.
  • the solar radiation sensor 53 is a detector (a solar radiation amount detector) that detects the amount of solar radiation in the passenger compartment.
  • the humidity sensor 54 is a detector (inside air humidity detector) that detects the humidity of the inside air (in-vehicle humidity).
  • the first water temperature sensor 55 is a detector (heat medium temperature detector) that detects the temperature of the cooling water flowing through the first flow path 13.
  • the second water temperature sensor 56 is a detector (heat medium temperature detector) that detects the temperature of the cooling water flowing through the cooling circuit 40.
  • the first water temperature sensor 55 may detect a temperature related to the temperature of the cooling water flowing through the first flow path 13.
  • the second water temperature sensor 56 may detect a temperature related to the temperature of the cooling water flowing through the cooling circuit 40.
  • the first water temperature sensor 55 is disposed in a portion of the first flow path 13 that is located on the suction side of the first pump 11, and the second water temperature sensor 56 is a cooling water flow in the engine 43. It is arranged near the most downstream part of the road.
  • Operation signals from various air conditioning operation switches provided on the operation panel 59 disposed near the instrument panel in the front part of the vehicle interior are input to the input side of the control device 50.
  • various air conditioning operation switches provided on the operation panel 59 an air conditioner switch, an auto switch, an air volume setting switch of the indoor blower 38, a vehicle interior temperature setting switch, and the like are provided.
  • the air conditioner switch is a switch for switching on / off (on / off) of air conditioning (cooling or heating).
  • the auto switch is a switch for setting or canceling automatic control of air conditioning.
  • the vehicle interior temperature setting switch is a target temperature setting unit that sets the vehicle interior target temperature by the operation of the passenger.
  • the control device 50 is switched to various operation modes by controlling the operation of the first switching valve 17 and the second switching valve 18.
  • first cooling circuit C1 first heat medium circulation circuit
  • second heat medium circulation circuit second heat medium circulation circuit
  • Each of the common flow paths 21-24 is switched between the case where it is connected to the first cooling circuit C1 and the case where it is connected to the second cooling circuit C2, depending on the situation, so that each temperature adjustment target device 28-31.
  • the temperature can be adjusted to an appropriate temperature according to the situation.
  • the temperature adjustment target device can be cooled by the cooling water cooled by the cooling heat exchanger 30. it can.
  • the cooling heat exchanger 33 when the cooling heat exchanger 33 is connected to the same circuit as the cooling heat exchanger 30, the cooling heat exchanger 33 can cool the air into the vehicle interior to cool the vehicle interior.
  • the temperature adjustment target device can be heated by the cooling water heated by the heating heat exchanger 31.
  • the heater core 32 is connected to the same circuit as the heat exchanger 31 for heating, the air inside the vehicle interior can be heated by the heater core 32 to heat the vehicle interior.
  • the cooling water absorbs heat from the outside air by the first radiator 15. Then, the cooling water that has absorbed heat from the outside air by the first radiator 15 exchanges heat with the refrigerant of the refrigeration cycle 35 by the cooling heat exchanger 30 to radiate heat. Therefore, in the cooling heat exchanger 30, the refrigerant in the refrigeration cycle 35 absorbs heat from the outside air through the cooling water.
  • the refrigerant that has absorbed heat from the outside air in the cooling heat exchanger 30 exchanges heat with the cooling water in the second cooling circuit C2 in the cooling heat exchanger 30 to radiate heat. Therefore, it is possible to realize a heat pump operation that pumps up the heat of the outside air.
  • control device 50 controls the operation of the four-way valve 47, the connection state between the first cooling circuit C1 and the cooling circuit 40 is changed to the non-connection mode shown in FIG. 2, the first connection mode shown in FIG. The mode is switched to the second connection mode shown in FIG.
  • the disconnected mode is switched when the engine 43 is operating.
  • the first connection mode is switched when the engine 43 is stopped and the cooling water temperature of the first cooling circuit C1 and the cooling water temperature of the cooling circuit 40 are equal to or lower than a predetermined temperature.
  • the second connection mode is switched when the engine 43 is stopped and the cooling water temperature of the first cooling circuit C1 and the cooling water temperature of the cooling circuit 40 are equal to or higher than a predetermined temperature.
  • the first cooling circuit C ⁇ b> 1 communicates with the cooling circuit 40 only through the first communication path 48. Therefore, steady circulation of the cooling water does not occur between the first cooling circuit C1 and the cooling circuit 40.
  • the thermostat 46 switches between the case where the cooling water flowing out from the engine 43 flows through the radiator 44 and the case where it flows through the radiator bypass passage 45.
  • the cooling water temperature of the cooling circuit 40 when the cooling water temperature of the cooling circuit 40 is low (60 ° C. to 80 ° C. or lower), the cooling water flowing out from the engine 43 bypasses the radiator 44 and flows through the radiator bypass passage 45.
  • the thermostat 46 switches the cooling water flow path so that the cooling water flowing out from the engine 43 flows through the radiator 44.
  • the cooling water discharged from the first pump 11 is sucked into the pump 42 via the four-way valve 47 and the thermostat 46 as shown by the thick solid arrow in FIG.
  • the cooling water discharged from the air flows through the first communication passage 48 and flows into the first flow path 13. Therefore, in the first cooling circuit C1, the first pump 11 and the pump 42 can be connected in series to circulate the cooling water. Therefore, the first connection mode can be expressed as a pump serial mode.
  • the thermostat 46 switches to the cooling water flow path through which the cooling water flowing out from the engine 43 flows through the radiator 44. That is, the thermostat 46 separates the radiator bypass channel 45 from the circulation channel 41. In that case, the cooling water discharged from the first pump 11 cannot flow into the circulation flow path 41, so that the cooling water circulation in the first cooling circuit C1 is hindered.
  • the control device 50 cancels the first connection mode and switches to the non-connection mode.
  • the operation of the four-way valve 47 is controlled so as to shift.
  • the first pump 11 and the pump 42 can be connected in series in the first cooling circuit C1 to circulate the cooling water. Therefore, even if the cooling water has a very low temperature and the viscosity of the cooling water becomes high and the pressure loss of the first cooling circuit C1 increases, the circulation of the cooling water in the first cooling circuit C1. A decrease in flow rate can be suppressed.
  • the condition for cooling water to be low is, for example, when the heat pump operation is performed by the refrigeration cycle 35.
  • the first radiator 15 absorbs heat from the outside air into the cooling water, and the cooling heat exchanger 30 pumps up heat from the cooling water.
  • the first pump 11 and the pump 42 can be connected in series in the first cooling circuit C1 to circulate the cooling water. Therefore, when the cooling water is at a high temperature, the cooling water flow rate in the first radiator 15 can be increased to improve the cooling capacity (heat radiation capacity) in the first radiator 15.
  • the cooling water discharged from the first pump 11 flows into the engine 43 through the four-way valve 47 and flows out of the engine 43 as shown by the thick solid arrows in FIG. 4.
  • the cooling water flows through the first communication path 48 and flows into the first flow path 13. Therefore, in the first cooling circuit C1, the engine 43 can be warmed up by circulating the heated cooling water to the engine 43 with various temperature adjustment target devices as heat sources. Therefore, the second connection mode can be expressed as an engine warm-up mode.
  • the engine 43 is warmed up before the engine 43 is started by switching to the second connection mode before the engine 43 is started.
  • Can engine pre-warm up
  • the second switching valve 18 closes the inlet 18a and opens the third outlet 18c so that the cooling water bypasses the first radiator 15 and flows through the radiator bypass passage 19. Is preferred. In that case, it is possible to increase the temperature of the cooling water flowing into the engine 43 by avoiding that the cooling water of the first cooling circuit C ⁇ b> 1 dissipates heat in the first radiator 15.
  • the radiator bypass passage 45 and the first communication passage 48 can guide the cooling water of the first cooling circuit C1 to the cooling circuit 40. Compared with the case where two bypass passages are separately provided, the configuration can be simplified.
  • the four-way valve (switching unit) 47 is disposed in the middle of the radiator bypass passage 45 and in the middle of the first cooling circuit C1.
  • the four-way valve 47 includes a non-connection mode in which the first cooling circuit C1 and the radiator bypass passage 45 are not connected, a portion of the first cooling circuit C1 from the discharge side of the first pump 11 to the four-way valve 47, and a radiator bypass flow. It is possible to switch to the first connection mode in which the part of the passage 45 extending from the suction side of the pump 42 to the four-way valve 47 is connected.
  • the first communication path 48 is connected to the cooling circuit 40.
  • the cooling water discharged from the first pump 11 flows through the radiator bypass passage 45 and is sucked into the pump 42, and the cooling water discharged from the pump 42. Flows into the first cooling circuit C ⁇ b> 1 through the first communication passage 48 and is sucked into the first pump 11.
  • the cooling water can be circulated in the first cooling circuit C1 using the first pump 11 and the pump 42 in series.
  • the four-way valve 47 is arranged in the middle of the radiator bypass flow path 45, the four-way valve 47 can be easily added to the cooling circuit 40 as compared with the case where the four-way valve 47 is arranged in the middle of the circulation flow path 41. Can be arranged.
  • the four-way valve 47 is disposed in the middle of the radiator bypass passage 45, it is possible to prevent the four-way valve 47 from inhibiting the cooling water circulation in the circulation passage 41 even if the four-way valve 47 fails.
  • the engine cooling flow path 43 a is disposed in a portion of the circulation flow path 41 that extends from the discharge portion of the pump 42 to the radiator 44.
  • the radiator bypass passage 45 is connected to the circulation passage 41 so that the heat medium flowing out from the engine cooling passage 43 a bypasses the radiator 44 and is sucked into the pump 42.
  • the first communication passage 48 is connected to a portion of the circulation passage 41 that extends from the discharge portion of the pump 42 to the engine cooling passage 43a.
  • the four-way valve 47 includes a portion from the discharge side of the first pump 11 to the four-way valve 47 in the first cooling circuit C1 and a coolant outlet side of the engine cooling passage 43a in the radiator bypass passage 45 rather than the four-way valve 47.
  • the engine 43 can be warmed up using the cooling water heated by using the cooling target device 34 as a heat source in the first cooling circuit C1.
  • the thermostat 46 is disposed in the radiator bypass passage 45 at the connection portion between the end portion on the suction portion side of the pump 42 and the circulation passage 41.
  • the thermostat 46 flows through the radiator 44 when the cooling water flowing out from the engine cooling flow path 43a.
  • the thermostat 46 The cooling water flow path is switched so that the cooling water flowing out from 43a flows through the radiator bypass flow path 45.
  • the control apparatus 50 switches the action
  • the thermostat 46 switches to the cooling water flow path through which the cooling water flows through the radiator bypass flow path 45, and thus the first cooling circuit C1.
  • the circulation of the cooling water in is prevented.
  • switching to the non-connection mode is performed, so that it is possible to prevent the circulation of the cooling water in the first cooling circuit C1 from being hindered.
  • the control device 50 controls the operation of the four-way valve 47 so as to switch to the non-connection mode when it is determined that the temperature related to the temperature of the cooling water exceeds the predetermined temperature in the first connection mode. May be.
  • the four-way valve 47 is configured to perform the first connection mode. Control the operation of
  • the first pump 11 and the pump 42 can be connected in series, and as a result, a decrease in the flow rate of the cooling water can be suppressed.
  • the 1st radiator 15 and the cooling water cooler 30 are arrange
  • the control apparatus 50 switching control part 50a
  • the four-way valve is configured to perform the first connection mode.
  • the operation of 47 may be controlled.
  • the communication state between the first cooling circuit C1 and the cooling circuit 40 is switched by the four-way valve 47.
  • the communication state between the circuit C1 and the cooling circuit 40 is switched by a five-way valve (switching unit) 60.
  • one end of the second communication path 61 is connected to the five-way valve 60.
  • the other end of the second communication path 61 is connected between the radiator 44 and the thermostat 46 in the cooling circuit 40. Accordingly, the second communication path 61 constitutes a communication part (second communication part) that communicates the cooling circuit 40 and the first flow path 13.
  • the five-way valve 60 shows the connection state of the first flow path 13, the radiator bypass flow path 45, and the second communication path 61 in the non-connection mode shown in FIG. 7, the first connection mode shown in FIG. 8, and FIG. 9. Switching to the second connection mode and the third connection mode shown in FIG.
  • the five-way valve 60 does not connect the first flow path 13, the radiator bypass flow path 45, and the second communication path 61.
  • the five-way valve 60 includes a portion of the first flow path 13 that extends from the discharge side of the first pump 11 to the five-way valve 60 and a pump 42 of the radiator bypass flow path 45. The part from the suction side to the five-way valve 60 is connected.
  • the five-way valve 60 includes a portion of the first flow path 13 from the discharge side of the first pump 11 to the five-way valve 60 and a portion of the radiator bypass flow path 45 of the engine 43. The part from the cooling water outlet side (discharge side of the first pump 11) to the five-way valve 60 is connected.
  • the five-way valve 60 connects the portion of the first flow path 13 from the discharge side of the first pump 11 to the five-way valve 60 and the second communication path 61. Further, the five-way valve 60 includes a portion from the first switching valve 17 side to the five-way valve 60 in the first flow path 13 and a cooling water outlet side of the engine 43 in the radiator bypass flow path 45 (first pump 11). To the five-way valve 60 from the discharge side).
  • the operation of the five-way valve 60 is controlled by the control device 50.
  • the control device 50 controls the operation of the five-way valve 60, the connection state between the first cooling circuit C1 and the cooling circuit 40 is changed to the non-connection mode shown in FIG. 7, the first connection mode shown in FIG. And the third connection mode shown in FIG. 10.
  • the first cooling circuit C ⁇ b> 1 communicates with the cooling circuit 40 only through the first communication path 48. Therefore, steady circulation of the cooling water does not occur between the first cooling circuit C1 and the cooling circuit 40.
  • the cooling water discharged from the first pump 11 is sucked into the pump 42 via the five-way valve 60 and the thermostat 46, and the cooling water discharged from the pump 42 is the first It flows through the communication path 48 and flows into the first flow path 13. Therefore, in the first cooling circuit C1, the first pump 11 and the pump 42 can be connected in series to circulate the cooling water. Therefore, the first connection mode can be expressed as a pump serial mode.
  • the control device 50 cancels the first connection mode and disconnects the connection mode.
  • the operation of the five-way valve 60 is controlled so as to shift to.
  • the cooling water discharged from the first pump 11 flows into the engine 43 through the five-way valve 60, and the cooling water flowing out from the engine 43 passes through the first communication path 48. Flows into the first flow path 13. Therefore, in the first cooling circuit C1, the engine 43 can be warmed up by circulating the cooling water heated using the various temperature adjustment target devices as the heat source. Therefore, the second connection mode can be expressed as an engine warm-up mode.
  • the second switching valve 18 closes the inlet 18a and opens the third outlet 18c, whereby the coolant bypasses the first radiator 15 and radiator bypass. It is preferable to flow through the flow path 19.
  • the cooling water discharged from the first pump 11 flows into the radiator 44 through the five-way valve 60 and the second communication path 61. Cooling water flowing out of the radiator 44 flows through the radiator bypass flow path 45 and the five-way valve 60 and flows into the first flow path 13, and flows through the engine 43 and the first communication path 48 to the first flow path 13. Branches into the inflow path. The ratio of branching to these two paths follows the pressure loss ratio of each path.
  • the third connection mode can be expressed as a radiator series mode.
  • the switching conditions of the radiator series mode and the pump series mode will be described.
  • the threshold value predetermined temperature
  • the pump is switched to the pump serial mode.
  • the cooling water temperature of the first cooling circuit C1 is low, the viscosity of the cooling water increases. Therefore, when the radiator series mode is set, the pressure loss of the cooling water increases and the flow rate of the cooling water decreases, and thus the temperature distribution in the heat exchanger. This is because this increases the performance.
  • the cooling water temperature threshold (predetermined temperature) depends on the characteristics of the first pump 11. That is, it is desirable to set the cooling water temperature at the time when the required cooling water flow rate cannot be secured even when the first pump 11 is at the maximum output.
  • the mode is switched to the mode in which the heat radiation amount is higher between the radiator series mode and the pump series mode.
  • a control map is created by acquiring a large number of graphs shown in FIG. 11 in advance using the cooling water temperature as a parameter.
  • the graph shown in FIG. 11 is a graph showing the relationship between the cooling water flow rate and the heat radiation amount of the first cooling circuit C1 when the radiator is configured in series and when the radiator is configured independently.
  • the time when the radiator is configured in series means that the first radiator 15 and the radiator 44 are connected in series to the first cooling circuit C1.
  • the time when the radiator alone is configured means that the first radiator 15 is connected to the first cooling circuit C1, but the radiator 44 is not connected to the first cooling circuit C1.
  • the time of the pump series configuration means that the first pump 11 and the pump 42 are connected in series to the first cooling circuit C1.
  • the reason why the coolant flow rate in the case of the radiator series configuration and the pump single configuration is smaller than the coolant flow rate in the case of the radiator single configuration and the pump single configuration is that the first radiator 15 and the radiator 44 are This is because the pressure loss increases with the series connection, and as a result, the discharge flow rate of the first pump 11 decreases.
  • the curve of the graph shown in FIG. 11 varies depending on the specifications of the first radiator 15 and the radiator 44, the outside temperature, and the like.
  • the specifications of the first radiator 15 and the radiator 44 are different for each vehicle.
  • the output values of the first pump 11 and the pump 42 are also different for each vehicle.
  • the same effects as those of the first embodiment can be achieved in the first connection mode and the second connection mode.
  • the 1st radiator 15 is arrange
  • the 2nd communicating path 61 has a part from the radiator 44 to the suction
  • the first communication passage 48 is connected to a portion of the circulation passage 41 from the discharge portion of the pump 42 to the radiator 44, and the five-way valve 60 is connected to the first cooling circuit C1.
  • the cooling water discharged from the first pump 11 flows in the order of the second communication path 61, the radiator 44, and the first communication path 48, flows into the first cooling circuit C 1, and is sucked into the first pump 11. .
  • the first radiator 15 of the first cooling circuit C1 and the radiator 44 of the cooling circuit 40 are used in series to cool the cooling water of the first cooling circuit C1. Can be cooled. Therefore, it is possible to improve the heat dissipation amount and the heat absorption amount in the first radiator 15 and the radiator 44.
  • the five-way valve 60 and the thermostat 46 are provided separately, but the third embodiment includes the function of the thermostat 46 in the second embodiment as shown in FIG. A five-way valve 65 is provided.
  • the five-way valve 65 is disposed at the downstream end of the radiator bypass passage 45.
  • the five-way valve 65 is disposed in a portion of the first flow path 13 between the first pump 11 and the first inlet 17 a of the first switching valve 17.
  • the five-way valve 65 is disposed in a portion of the circulation channel 41 of the cooling circuit 40 that is located on the suction side of the pump 42 with respect to the radiator 44.
  • the five-way valve 65 is disposed at the connection portion J2 between the circulation bypass passage 41 and the end of the radiator bypass passage 45 closer to the suction portion of the pump 42.
  • the second communication path 61 in the second embodiment is not provided.
  • the five-way valve 65 changes the connection state of the first flow path 13, the circulation flow path 41, and the radiator bypass flow path 45 to the first non-connection mode shown in FIG. 13, the second non-connection mode shown in FIG. Are switched to the first connection mode shown in FIG. 16, the second connection mode shown in FIG. 16, and the third connection mode shown in FIG.
  • the five-way valve 65 does not connect the first flow path 13, the circulation flow path 41, and the radiator bypass flow path 45, and communicates the first flow path 13 as it is.
  • the circulation channel 41 is communicated as it is.
  • the five-way valve 65 communicates the first flow path 13 as it is, and a part of the circulation flow path 41 from the suction side of the pump 42 to the five-way valve 65 and a radiator bypass.
  • the flow path 45 is connected.
  • the five-way valve 65 includes a portion from the discharge side of the first pump 11 to the five-way valve 65 in the first flow path 13 and a suction of the pump 42 in the circulation flow path 41. The part from the side to the five-way valve 65 is connected.
  • the five-way valve 65 includes a portion from the discharge side of the first pump 11 to the five-way valve 65 in the first flow path 13, a radiator bypass flow path 45, and a circulation flow path. 41 is connected to a portion from the cooling water outlet side of the radiator 44 (the discharge side of the pump 42) to the five-way valve 65.
  • the five-way valve 65 is configured to cool the radiator 44 in the circulation passage 41 and the portion of the first passage 13 from the discharge side of the first pump 11 to the five-way valve 65. A portion from the water outlet side (discharge side of the pump 42) to the five-way valve 65 is connected.
  • the operation of the five-way valve 65 is controlled by the control device 50.
  • the control device 50 controls the operation of the five-way valve 65, the connection state between the first cooling circuit C1 and the cooling circuit 40 is changed to the non-connection mode shown in FIGS. 13 and 14 and the first connection mode shown in FIG.
  • the second connection mode shown in FIG. 16 and the third connection mode shown in FIG. 17 are switched.
  • the non-connection mode includes a first non-connection mode shown in FIG. 13 and a second non-connection mode shown in FIG.
  • the first cooling circuit C ⁇ b> 1 communicates with the cooling circuit 40 only through the first communication path 48, so that the cooling water between the first cooling circuit C ⁇ b> 1 and the cooling circuit 40 is used. There is no steady circulation.
  • the first non-connection mode can be expressed as a non-bypass mode.
  • the first cooling circuit C1 communicates with the cooling circuit 40 only by the first communication path 48, as in the first non-connection mode. Therefore, steady circulation of the cooling water does not occur between the first cooling circuit C1 and the cooling circuit 40.
  • the five-way valve 65 connects the radiator bypass passage 45 with a portion of the circulation passage 41 that extends from the suction side of the pump 42 to the five-way valve 65. Therefore, in the cooling circuit 40, the cooling water flowing out from the engine 43 bypasses the radiator 44 and flows through the radiator bypass passage 45. Therefore, the second non-connection mode can be expressed as a bypass mode.
  • the control device 50 switches to the second non-connection mode (bypass mode).
  • the control device 50 switches to the first non-connection mode (non-bypass mode).
  • the operation of the five-way valve 65 is controlled.
  • the amount of heat released by the radiator 44 can be adjusted according to the cooling water temperature of the cooling circuit 40, and the cooling water temperature of the cooling circuit 40 can be maintained in an appropriate temperature range.
  • control device 50 determines that the temperature difference obtained by subtracting the temperature of the outside air that has flowed out of the first radiator 15 from the temperature of the outside air that has flowed out of the first radiator 15 in the first non-connection mode (non-bypass mode) has a predetermined value.
  • the operation of the five-way valve 65 is controlled so as to switch to the second non-connection mode (bypass mode).
  • the control device 50 in the second non-connection mode (bypass mode), the temperature difference obtained by subtracting the temperature of the outside air that has flowed out of the first radiator 15 from the temperature of the outside air before flowing into the first radiator 15 exceeds a predetermined value. If so, the operation of the five-way valve 65 is controlled to switch to the first non-connection mode (non-bypass mode).
  • the waste heat of the first radiator 15 can be transmitted to the radiator 44 via the air, so that the engine 43 can be operated using the waste heat of the first radiator 15. Can warm up.
  • the cooling water discharged from the first pump 11 is sucked into the pump 42 via the five-way valve 65, and the cooling water discharged from the pump 42 passes through the first communication path 48. And flows into the first flow path 13. Therefore, in the first cooling circuit C1, the first pump 11 and the pump 42 can be connected in series to circulate the cooling water. Therefore, the first connection mode can be expressed as a pump serial mode.
  • the cooling water discharged from the first pump 11 flows into the engine 43 via the five-way valve 65 and the radiator bypass passage 45, and the cooling water flowing out from the engine 43 is It flows through the first communication path 48 and flows into the first flow path 13. Therefore, in the first cooling circuit C1, the engine 43 can be warmed up by circulating the cooling water heated using the various temperature adjustment target devices as the heat source. Therefore, the second connection mode can be expressed as an engine warm-up mode.
  • the second switching valve 18 closes the inlet 18a and opens the third outlet 18c, whereby the coolant bypasses the first radiator 15. It is preferable to flow through the radiator bypass channel 19.
  • the cooling water also flows through the radiator 44. Normally, however, only a very small amount of cooling water flows through the radiator 44 because the pressure loss of the radiator 44 is much higher than the pressure loss of the radiator bypass passage 45. It will be.
  • the control device 50 may stop or reversely rotate the outdoor blower 16 or block an air guide path that guides outside air to the radiator 44 by an air guide path opening / closing member (not shown).
  • the cooling water discharged from the first pump 11 flows into the radiator 44 through the five-way valve 65.
  • the cooling water flowing out from the radiator 44 flows through the engine 43 and the first communication passage 48 and flows into the first flow path 13.
  • the third connection mode can be expressed as a radiator series mode.
  • the same operational effects as those of the second embodiment can be obtained. Further, since the five-way valve 65 includes the function of the thermostat 46 in the second embodiment, the thermostat 46 can be eliminated and the number of parts can be reduced.
  • the five-way valve 65 is disposed in the middle of the circulation channel 41 and in the middle of the first cooling circuit C1.
  • the five-way valve 65 circulates in a non-connected mode in which the first cooling circuit C1 and the radiator bypass passage 45 are not connected, and a part of the first cooling circuit C1 from the discharge side of the first pump 11 to the five-way valve 65.
  • the flow path 41 can be switched to the first connection mode in which the part from the suction side of the pump 42 to the five-way valve 65 is connected.
  • the first communication path 48 is connected to the circulation channel 41.
  • the cooling water discharged from the first pump 11 flows through the circulation channel 41 and is sucked into the pump 42, and the cooling water discharged from the pump 42. Flows into the first cooling circuit C ⁇ b> 1 through the first communication passage 48 and is sucked into the first pump 11. Therefore, the cooling water of the first cooling circuit C1 can be circulated using the first pump 11 of the first cooling circuit C1 and the pump 42 of the cooling circuit 40 in series.
  • the engine cooling flow path 43 a is disposed in a portion of the circulation flow path 41 that extends from the discharge portion of the pump 42 to the radiator 44.
  • the five-way valve 65 is disposed at a connection portion between the end of the radiator bypass passage 45 on the side close to the suction portion of the pump 42 and the circulation passage 41.
  • the end of the radiator bypass passage 45 closer to the discharge portion of the pump 42 is connected to a portion of the circulation passage 41 that reaches the radiator 44 from the engine cooling passage 43a toward the suction portion of the pump 42.
  • the first communication passage 48 is connected to a portion of the circulation passage 41 that extends from the discharge portion of the pump 42 to the engine cooling passage 43a.
  • the five-way valve 65 can be switched to a second connection mode in which a portion from the discharge side of the first pump 11 to the five-way valve 65 in the first cooling circuit C1 and the radiator bypass passage 45 are connected.
  • the cooling water discharged from the first pump 11 flows in the order of the radiator bypass flow path 45, the engine cooling flow path 43a, and the first communication path 48, and thereby the first cooling circuit. It flows into C1 and is sucked into the first pump 11.
  • the engine 43 can be warmed up using the cooling water heated by using the cooling target device 34 as a heat source in the first cooling circuit C1.
  • the first radiator 15 is disposed in the first cooling circuit C1.
  • the first communication passage 48 is connected to a portion of the circulation flow path 41 that extends from the discharge portion of the pump 42 to the radiator 44.
  • the five-way valve 65 includes five parts from the discharge side of the first pump 11 to the five-way valve 65 in the first cooling circuit C1 and from the radiator 44 to the suction part side of the pump 42 in the circulation passage 41. It is possible to switch to the third connection mode in which the part reaching the valve 65 is connected. When the five-way valve 65 is switched to the third connection mode, the cooling water discharged from the first pump 11 flows in the order of the radiator 44 and the first communication path 48 and flows into the first cooling circuit C1 and flows into the first cooling circuit C1. Inhaled.
  • the first radiator 15 of the first cooling circuit C1 and the radiator 44 of the cooling circuit 40 are used in series to cool the cooling water of the first cooling circuit C1. Can be cooled. Therefore, it is possible to improve the heat dissipation amount and the heat absorption amount in the first radiator 15 and the radiator 44.
  • the five-way valve 65 includes a non-bypass mode in which the radiator bypass passage 45 and the circulation passage 41 are not connected, and a portion of the circulation passage 41 that extends from the five-way valve 65 to the suction portion of the pump 42. Switching to a bypass mode in which the radiator bypass flow path 45 is connected is possible.
  • the five-way valve 65 can have a thermostat function.
  • the first radiator 15 is disposed in the first cooling circuit C1, and the radiator 44 is disposed on the downstream side in the flow direction of the outside air with respect to the first radiator 15.
  • the control device 50 determines that the temperature difference obtained by subtracting the temperature of the outside air before flowing into the first radiator 15 from the temperature of the outside air flowing out of the first radiator 15 is below a predetermined value. Switch to bypass mode.
  • the control device 50 determines that the temperature difference obtained by subtracting the temperature of the outside air before flowing into the first radiator 15 from the temperature of the outside air flowing out of the first radiator 15 exceeds a predetermined value, the non-bypass mode
  • the operation of the five-way valve 65 is controlled so as to switch to.
  • the waste heat of the 1st radiator 15 can be transmitted to the radiator 44 via air. Therefore, the engine 43 can be warmed up using the waste heat of the first radiator 15.
  • the control device 50 determines that the four-way valve 65 is switched to the second connection mode and the temperature of the cooling water flowing through the radiator 44 is equal to or higher than the temperature of the outside air.
  • the amount of outside air blown to the radiator 44 is limited.
  • the control device 50 determines that the four-way valve 65 is switched to the second connection mode and the temperature related to the temperature of the cooling water flowing through the radiator 44 is equal to or higher than the temperature of the outside air. In this case, the amount of outside air blown to the radiator 44 may be limited.
  • one end of the first communication passage 48 is connected between the first pump 11 and the engine 43 in the cooling circuit 40.
  • one end of the first communication path 48 is connected in the middle of the flow path 70 branched from the engine 43.
  • the flow path 70 is an existing flow path, and supplies cooling water heated by the engine 43 to various devices such as an ATF warmer.
  • the first communication path 48 can be connected to the cooling circuit 40 using the flow path 70.
  • the reserve tank 13 a is connected to the first flow path 13 and the circulation flow path 41.
  • a pressurizing valve 71 is disposed at a connection portion between the reserve tank 13 a and the circulation channel 41.
  • the pressurizing valve 71 is closed when the internal pressure of the circulation flow path 41 is less than a set pressure greater than the atmospheric pressure, and is opened when the internal pressure of the circulation flow path 41 becomes equal to or higher than the set pressure. Therefore, when the internal pressure of the cooling circuit 40 becomes equal to or higher than the set pressure, the cooling water of the cooling circuit 40 is discharged to the reserve tank 13a.
  • one end of the first communication path 48 is connected between the first pump 11 and the engine 43 in the cooling circuit 40.
  • one end of the first communication path 48 is connected to a portion of the cooling circuit 40 between the engine 43 and the radiator 44.
  • one end of the first communication path 48 may be connected in the middle of the radiator bypass flow path 45.
  • the first pump 11 and the pump 42 when switching to the first connection mode, can be connected in series to circulate the cooling water, and the first cooling circuit.
  • the engine 43 can be warmed up by circulating the cooling water heated by C1 to the engine 43.
  • the four-way valve 47 is four-way from the discharge side of the first pump 11 to the four-way valve 47 in the first flow path 13 and from the suction side of the pump 42 in the radiator bypass flow path 45. The part reaching the valve 47 is connected.
  • the cooling water discharged from the first pump 11 is sucked into the pump 42 via the four-way valve 47 and the thermostat 46.
  • the cooling water discharged from the pump 42 flows through the engine 43 and the first communication path 48 and flows into the first flow path 13.
  • the cooling water can be circulated by connecting the first pump 11 and the pump 42 in series, and the cooling water heated by the first cooling circuit C1 is circulated to the engine 43 to warm up the engine 43.
  • the arrangement of the cooling heat exchanger 30, the heating heat exchanger 31, and the first radiator 15 is changed with respect to the first embodiment.
  • the cooling heat exchanger 30 is disposed in the first flow path 13.
  • the heating heat exchanger 31 is disposed in the second flow path 14.
  • the first radiator 15 is disposed in the fifth common flow path 25.
  • the fifth common flow path 25 is connected to the fifth outlet 17 h of the first switching valve 17 and the fifth inlet 18 h of the second switching valve 18.
  • the arrangement of the cooling heat exchanger 30, the heating heat exchanger 31, and the first radiator 15 is changed with respect to the first embodiment, but the second and third embodiments are changed. Also with respect to the form, the arrangement of the cooling heat exchanger 30, the heating heat exchanger 31, and the first radiator 15 may be changed as in the example shown in FIG.
  • the connection state between the first flow path 13 and the cooling circuit 40 is switched by the four-way valve 47 or the five-way valves 60 and 65.
  • FIGS. As shown in FIG. 3, the connection state between the first flow path 13 and the cooling circuit 40 is switched by the three-way valve 75.
  • the three-way valve 75 is arranged in the middle of the circulation channel 41 of the cooling circuit 40. Specifically, the three-way valve 75 is disposed in a portion of the circulation channel 41 that is located on the suction side of the pump 42.
  • One end of the second communication passage 76 is connected to the three-way valve 75.
  • the other end of the second communication path 76 is connected to a portion of the first flow path 13 that is located on the discharge side of the first pump 11.
  • an opening / closing valve 77 is disposed between the connection portion of the second communication passage 76 and the connection portion of the first communication passage 48.
  • the on-off valve 77 opens and closes a portion of the first flow path 13 between the connection portion of the second communication passage 76 and the connection portion of the first communication passage 48.
  • the three-way valve 75 is a switching unit that switches the connection state between the second communication path 76 and the circulation flow path 41 of the cooling circuit 40.
  • the connection state modes switched by the three-way valve 75 include a non-connection mode shown in FIG. 21 and a connection mode shown in FIG.
  • the three-way valve 75 does not connect the second communication path 76 and the circulation flow path 41. That is, the second communication path 76 is closed and the circulation flow path 41 is communicated as it is. At this time, the on-off valve 77 opens the first flow path 13. Thereby, the cooling water circulates separately in the first cooling circuit C1 and the cooling circuit 40.
  • the three-way valve 75 connects the second communication path 76 and the second communication path 76 to the portion of the circulation channel 41 that extends from the suction side of the pump 42 to the three-way valve 75.
  • the on-off valve 77 closes the first flow path 13.
  • the cooling water discharged from the first pump 11 is sucked into the pump 42 via the second communication path 76 and the three-way valve 75, and the cooling water discharged from the pump 42 flows through the first communication path 48.
  • the first cooling circuit C1 the first pump 11 and the pump 42 can be connected in series to circulate the cooling water. Therefore, the connection mode can be expressed as a pump serial mode.
  • the three-way valve 75 is disposed in the middle of the circulation flow path 41 of the cooling circuit 40.
  • FIGS. It is arranged in the middle of one flow path 13.
  • One end of the second communication path 76 is connected to the three-way valve 75, and the other end of the second communication path 76 is connected to a portion of the circulation channel 41 of the cooling circuit 40 that is located on the suction side of the pump 42.
  • the on-off valve 77 is disposed in a portion of the circulation channel 41 that is located on the downstream side of the coolant flow with respect to the connection portion of the first communication passage 48.
  • the three-way valve 75 does not connect the first flow path 13 and the second communication path 76 in the non-connection mode shown in FIG. That is, the second communication path 76 is closed and the first flow path 13 is communicated as it is. At this time, the on-off valve 77 opens the first flow path 13. Thereby, the cooling water circulates separately in the first cooling circuit C1 and the cooling circuit 40.
  • the three-way valve 75 connects the portion of the first flow path 13 from the discharge side of the first pump 11 to the three-way valve 75 and the second communication path 76. At this time, the on-off valve 77 closes the circulation channel 41.
  • the cooling water discharged from the first pump 11 is sucked into the pump 42 via the three-way valve 75 and the second communication path 76, and the cooling water discharged from the pump 42 flows through the first communication path 48.
  • the first cooling circuit C1 the first pump 11 and the pump 42 can be connected in series to circulate the cooling water. Therefore, the connection mode can be expressed as a pump serial mode.
  • thermo adjustment target device Various devices can be used as the temperature adjustment target device.
  • a heat exchanger that is built in a seat on which an occupant is seated and that cools and heats the seat with cooling water may be used as the temperature adjustment target device.
  • the arrangement of the temperature adjustment target devices can be variously changed.
  • the heat exchange capacity for the temperature adjustment target device may be controlled by intermittently circulating cooling water through the temperature adjustment target device.
  • the cooling heat exchanger 30 that cools the cooling water with the low-pressure refrigerant of the refrigeration cycle 35 is used as a cooling device that cools the cooling water, but a Peltier element may be used as the cooling device. Good.
  • cooling water is used as the heat medium, but various media such as oil may be used as the heat medium.
  • Nanofluid may be used as the cooling water (heat medium).
  • a nanofluid is a fluid in which nanoparticles having a particle size of the order of nanometers are mixed.
  • antifreeze liquid ethylene glycol
  • the effect of improving the thermal conductivity in a specific temperature range the effect of increasing the heat capacity of the cooling water, the effect of preventing the corrosion of the metal pipe and the deterioration of the rubber pipe, and the cooling water at a cryogenic temperature
  • liquidity of can be acquired.
  • Such an effect varies depending on the particle configuration, particle shape, blending ratio, and additional substance of the nanoparticles.
  • the thermal conductivity can be improved, it is possible to obtain the same cooling efficiency even with a small amount of cooling water as compared with the cooling water using ethylene glycol.
  • the amount of cold storage heat of the cooling water itself can be increased.
  • the aspect ratio of the nanoparticles is preferably 50 or more.
  • the aspect ratio is a shape index that represents the ratio of the vertical and horizontal dimensions of the nanoparticles.
  • Nanoparticles containing any of Au, Ag, Cu and C can be used. Specifically, Au nanoparticle, Ag nanowire, CNT (carbon nanotube), graphene, graphite core-shell nanoparticle (a structure such as a carbon nanotube surrounding the above atom is included as a constituent atom of the nanoparticle. Particles), Au nanoparticle-containing CNTs, and the like can be used.
  • a chlorofluorocarbon refrigerant is used as the refrigerant.
  • the type of the refrigerant is not limited to this, and natural refrigerant such as carbon dioxide, hydrocarbon refrigerant, or the like is used. It may be used.
  • the refrigeration cycle 35 of each of the above embodiments constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant, but the supercritical refrigeration cycle in which the high-pressure side refrigerant pressure exceeds the critical pressure of the refrigerant. May be configured.
  • the vehicle thermal management system 10 is applied to a hybrid vehicle.
  • an electric vehicle or a fuel cell that does not include an engine and obtains driving force for vehicle traveling from a traveling motor is provided.
  • the vehicle thermal management system 10 may be applied to a fuel cell vehicle or the like used as a travel energy generating unit.
  • the common flow paths 21, 22, 23, 24, and 25 in each of the above embodiments may be provided with a heat storage device that stores cold or warm heat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

The present invention is provided with the following: a switching part (47) that switches the connection state of a first refrigeration circuit (C1) and an engine refrigeration circuit (40); and a first communication part (48) that causes the engine refrigeration circuit (40) and the first refrigeration circuit (C1) to communicate with each other. The engine refrigeration circuit (40) has the following: a circulation flow path (41) in which a heat medium circulates and flows through an engine pump (42), an engine refrigeration flow path (43a) formed in an engine (43), and an engine radiator (44); and a radiator bypass flow path (45) connected to the circulation flow path (41) so that the heat medium bypasses the engine radiator (44) and circulates. The switching part (47) switches the connection state of the first refrigeration circuit (C1) and the radiator bypass flow path (45).

Description

車両用熱管理システムThermal management system for vehicles 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2013年3月18日に出願された日本特許出願2013-54940を基にしている。 This application is based on Japanese Patent Application No. 2013-54940 filed on March 18, 2013, the disclosure of which is incorporated herein by reference.
 本開示は、車両に用いられる熱管理システムに関する。 This disclosure relates to a thermal management system used for a vehicle.
 従来、特許文献1には、駆動モータにより走行可能なハイブリッド型電気自動車に用いられる熱管理システムが記載されている。この従来技術によると、エンジンを冷却する第1ラジエータが設けられた第1冷却回路と、駆動モータ制御部を冷却する第2ラジエータが設けられた第2冷却回路とを第1バイパス通路および第2バイパス通路で繋ぐことによって、第2冷却回路内を流れる冷却水を第1冷却回路内に導くことができるようになっている。 Conventionally, Patent Document 1 describes a heat management system used in a hybrid electric vehicle that can be driven by a drive motor. According to this prior art, the first cooling circuit provided with the first radiator for cooling the engine and the second cooling circuit provided with the second radiator for cooling the drive motor control unit are connected to the first bypass passage and the second cooling circuit. By connecting with the bypass passage, the cooling water flowing in the second cooling circuit can be guided into the first cooling circuit.
 このため、駆動モータ制御部の廃熱によってエンジンを暖めることができ、ひいてはエンジンの始動性およびエンジンによる発電効率を向上することができる。 For this reason, the engine can be warmed by the waste heat of the drive motor control section, and as a result, the startability of the engine and the power generation efficiency by the engine can be improved.
 なお、この従来技術では、第1冷却回路において、エンジンを通過した冷却水が第1ラジエータをバイパスして流れるラジエータバイパス通路が、第1バイパス通路および第2バイパス通路とは別個に設けられている。 In this prior art, in the first cooling circuit, a radiator bypass passage through which cooling water that has passed through the engine bypasses the first radiator is provided separately from the first bypass passage and the second bypass passage. .
特許第3817844号公報Japanese Patent No. 3817844
 本願発明者らの検討によると、上記従来技術では、第1冷却回路と第2冷却回路を繋ぐために2つのバイパス通路を設けているので、システム全体として通路構成が複雑化する。そのため、システム全体の体格が大型化して車両への搭載性の悪化を招いたり、配管接続構造が複雑化して組立性の悪化を招いたりする場合がある。 According to the study by the inventors of the present application, in the above-described conventional technology, since two bypass passages are provided to connect the first cooling circuit and the second cooling circuit, the passage configuration is complicated as a whole system. For this reason, the physique of the entire system may increase in size, leading to deterioration in mountability on a vehicle, or the piping connection structure may be complicated, resulting in deterioration in assemblability.
 本開示は上記点に鑑みて、エンジンを冷却する冷却回路と冷却対象機器を冷却する冷却回路とを接続可能な車両用熱管理システムの構成を簡素化することを目的とする。 This indication aims at simplifying the structure of the thermal management system for vehicles which can connect the cooling circuit which cools an engine, and the cooling circuit which cools a cooling object apparatus in view of the above-mentioned point.
 上記目的を達成するため、本開示の車両用熱管理システムでは、エンジン用冷却回路、エンジン用ポンプ、エンジン用ラジエータ、第1冷却回路、第1ポンプ、切替部、および第1連通部を備える。エンジン用冷却回路はエンジンを冷却する熱媒体が循環する。エンジン用ポンプは、エンジン用冷却回路に配置され、熱媒体を吸入して吐出する。エンジン用ラジエータは、エンジン用冷却回路に配置され、熱媒体が持つ熱を外気に放熱する。第1冷却回路は、冷却対象機器を冷却する熱媒体が循環する。第1ポンプは、第1冷却回路に配置され、熱媒体を吸入して吐出する。切替部は、第1冷却回路とエンジン用冷却回路との接続状態を切り替え。第1連通部は、エンジン用冷却回路と第1冷却回路とを連通させる。 In order to achieve the above object, the vehicle thermal management system of the present disclosure includes an engine cooling circuit, an engine pump, an engine radiator, a first cooling circuit, a first pump, a switching unit, and a first communication unit. In the engine cooling circuit, a heat medium for cooling the engine circulates. The engine pump is disposed in the engine cooling circuit and sucks and discharges the heat medium. The engine radiator is disposed in the engine cooling circuit and radiates heat of the heat medium to the outside air. In the first cooling circuit, a heat medium for cooling the cooling target device circulates. The first pump is disposed in the first cooling circuit and sucks and discharges the heat medium. The switching unit switches the connection state between the first cooling circuit and the engine cooling circuit. The first communication unit allows the engine cooling circuit and the first cooling circuit to communicate with each other.
 エンジン用冷却回路は、熱媒体がエンジン用ポンプ、エンジンに形成されたエンジン冷却流路、およびエンジン用ラジエータを循環して流れる循環流路と、熱媒体がエンジン用ラジエータをバイパスして循環するように循環流路に接続されたラジエータバイパス流路とを有する。切替部は、第1冷却回路とラジエータバイパス流路との接続状態を切り替える。 The engine cooling circuit is configured such that the heat medium circulates through the engine pump, the engine cooling flow path formed in the engine, and the circulation path that circulates through the engine radiator, and the heat medium circulates through the engine radiator. And a radiator bypass channel connected to the circulation channel. The switching unit switches a connection state between the first cooling circuit and the radiator bypass flow path.
 これによると、ラジエータバイパス流路と第1連通部とによって、第1冷却回路の熱媒体をエンジン用冷却回路に導くことができるので、上記従来技術のようにラジエータバイパス通路とは別個に2つのバイパス通路を設ける場合と比較して構成を簡素化できる。 According to this, since the heat medium of the first cooling circuit can be guided to the engine cooling circuit by the radiator bypass flow path and the first communication portion, two separate from the radiator bypass passage as in the prior art described above. The configuration can be simplified as compared with the case where the bypass passage is provided.
 あるいは、本開示の車両用熱管理システムでは、切替部は、ラジエータバイパス流路の途中、および第1冷却回路の途中に配置されており、切替部は、第1冷却回路とラジエータバイパス流路とが接続されない非接続モードと、第1冷却回路のうち第1ポンプの吐出側から切替部に至る部位とラジエータバイパス流路のうちエンジン用ポンプの吸入側から切替部に至る部位とが接続される第1接続モードとに切り替え可能になっており、第1連通部は、循環流路に接続されていてもよい。 Alternatively, in the vehicle thermal management system according to the present disclosure, the switching unit is disposed in the middle of the radiator bypass flow path and in the middle of the first cooling circuit, and the switching section includes the first cooling circuit and the radiator bypass flow path. Is connected to the part of the first cooling circuit from the discharge side of the first pump to the switching part and the part of the radiator bypass flow path from the suction side of the engine pump to the switching part. Switching to the first connection mode is possible, and the first communication portion may be connected to the circulation channel.
 これによると、切替部が第1接続モードに切り替えることによって、第1ポンプから吐出された熱媒体がラジエータバイパス流路を流れてエンジン用ポンプに吸入され、エンジン用ポンプから吐出された熱媒体が第1連通部を通じて第1冷却回路に流入して第1ポンプに吸入される。 According to this, when the switching unit switches to the first connection mode, the heat medium discharged from the first pump flows through the radiator bypass flow path and is sucked into the engine pump, and the heat medium discharged from the engine pump is It flows into a 1st cooling circuit through a 1st communication part, and is suck | inhaled by the 1st pump.
 したがって、第1冷却回路の第1ポンプとエンジン用冷却回路のエンジン用ポンプとを直列的に用いて第1冷却回路の熱媒体を循環させることができる。 Therefore, the heat medium of the first cooling circuit can be circulated using the first pump of the first cooling circuit and the engine pump of the engine cooling circuit in series.
第1実施形態における車両用熱管理システムの全体構成図である。1 is an overall configuration diagram of a vehicle thermal management system in a first embodiment. 第1実施形態における車両用熱管理システムの非接続モードを示す図である。It is a figure which shows the non-connection mode of the thermal management system for vehicles in 1st Embodiment. 第1実施形態における車両用熱管理システムの第1接続モードを示す図である。It is a figure which shows the 1st connection mode of the thermal management system for vehicles in 1st Embodiment. 第1実施形態における車両用熱管理システムの第2接続モードを示す図である。It is a figure which shows the 2nd connection mode of the thermal management system for vehicles in 1st Embodiment. 第1実施形態における車両用熱管理システムの電気制御部を示すブロック図である。It is a block diagram which shows the electric control part of the thermal management system for vehicles in 1st Embodiment. 第2実施形態における車両用熱管理システムの全体構成図である。It is a whole block diagram of the thermal management system for vehicles in 2nd Embodiment. 第2実施形態における車両用熱管理システムの非接続モードを示す図である。It is a figure which shows the non-connection mode of the thermal management system for vehicles in 2nd Embodiment. 第2実施形態における車両用熱管理システムの第1接続モードを示す図である。It is a figure which shows the 1st connection mode of the thermal management system for vehicles in 2nd Embodiment. 第2実施形態における車両用熱管理システムの第2接続モードを示す図である。It is a figure which shows the 2nd connection mode of the thermal management system for vehicles in 2nd Embodiment. 第2実施形態における車両用熱管理システムの第3接続モードを示す図である。It is a figure which shows the 3rd connection mode of the thermal management system for vehicles in 2nd Embodiment. 第2実施形態における車両用熱管理システムにおける冷却水流量と放熱量との関係を示すグラフである。It is a graph which shows the relationship between the cooling water flow volume and heat dissipation in the thermal management system for vehicles in 2nd Embodiment. 第3実施形態における車両用熱管理システムの全体構成図である。It is a whole block diagram of the thermal management system for vehicles in 3rd Embodiment. 第3実施形態における車両用熱管理システムの第1非接続モードを示す図である。It is a figure which shows the 1st non-connection mode of the thermal management system for vehicles in 3rd Embodiment. 第3実施形態における車両用熱管理システムの第2非接続モードを示す図である。It is a figure which shows the 2nd non-connection mode of the thermal management system for vehicles in 3rd Embodiment. 第3実施形態における車両用熱管理システムの第1接続モードを示す図である。It is a figure which shows the 1st connection mode of the thermal management system for vehicles in 3rd Embodiment. 第3実施形態における車両用熱管理システムの第2接続モードを示す図である。It is a figure which shows the 2nd connection mode of the thermal management system for vehicles in 3rd Embodiment. 第3実施形態における車両用熱管理システムの第3接続モードを示す図である。It is a figure which shows the 3rd connection mode of the thermal management system for vehicles in 3rd Embodiment. 第4実施形態における車両用熱管理システムの要部を示す構成図である。It is a block diagram which shows the principal part of the thermal management system for vehicles in 4th Embodiment. 第5実施形態における車両用熱管理システムの要部を示す構成図である。It is a block diagram which shows the principal part of the thermal management system for vehicles in 5th Embodiment. 第6実施形態における車両用熱管理システムの全体構成図である。It is a whole block diagram of the thermal management system for vehicles in 6th Embodiment. 第7実施形態における車両用熱管理システムの非接続モードを示す図である。It is a figure which shows the non-connection mode of the thermal management system for vehicles in 7th Embodiment. 第7実施形態における車両用熱管理システムの接続モードを示す図である。It is a figure which shows the connection mode of the thermal management system for vehicles in 7th Embodiment. 第8実施形態における車両用熱管理システムの非接続モードを示す図である。It is a figure which shows the non-connection mode of the thermal management system for vehicles in 8th Embodiment. 第8実施形態における車両用熱管理システムの接続モードを示す図である。It is a figure which shows the connection mode of the thermal management system for vehicles in 8th Embodiment.
 以下、実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には同一符号を付してある。
(第1実施形態)
 以下、第1実施形態を図1-図5に基づいて説明する。図1に示す車両用熱管理システム10は、車両が備える各種温度調整対象機器(冷却を要する冷却対象機器、および加熱を要する加熱対象機器等)を適切な温度に調整するために用いられる。
Hereinafter, embodiments will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals.
(First embodiment)
Hereinafter, the first embodiment will be described with reference to FIGS. A vehicle thermal management system 10 shown in FIG. 1 is used to adjust various temperature adjustment target devices (a cooling target device that requires cooling, a heating target device that requires heating, etc.) included in the vehicle to an appropriate temperature.
 本実施形態では、熱管理システム10を、エンジン(内燃機関)および走行用モータから車両走行用の駆動力を得るハイブリッド自動車に適用している。 In the present embodiment, the thermal management system 10 is applied to a hybrid vehicle that obtains driving force for vehicle travel from an engine (internal combustion engine) and a travel motor.
 本実施形態のハイブリッド自動車は、車両停車時に外部電源(商用電源)から供給された電力を、車両に搭載された電池(車載バッテリ)に充電可能なプラグインハイブリッド自動車として構成されている。電池としては、例えばリチウムイオン電池を用いることができる。 The hybrid vehicle according to the present embodiment is configured as a plug-in hybrid vehicle that can charge power supplied from an external power source (commercial power source) when the vehicle is stopped to a battery (vehicle battery) mounted on the vehicle. As the battery, for example, a lithium ion battery can be used.
 エンジンから出力される駆動力は、車両走行用として用いられるのみならず、発電機を作動させるためにも用いられる。そして、発電機にて発電された電力および外部電源から供給された電力を電池に蓄えることができ、電池に蓄えられた電力は、走行用モータのみならず、冷却システムを構成する電動式構成機器をはじめとする各種車載機器に供給される。 The driving force output from the engine is used not only for driving the vehicle but also for operating the generator. And the electric power generated by the generator and the electric power supplied from the external power source can be stored in the battery, and the electric power stored in the battery is not only a motor for running but also an electric component device that constitutes a cooling system Supplied to various in-vehicle devices.
 図1に示すように、熱管理システム10は、第1ポンプ11、第2ポンプ12、第1流路13および第2流路14を備えている。第1ポンプ11および第2ポンプ12は、冷却水を吸入して吐出する電動ポンプである。冷却水は、熱媒体としての流体である。本実施形態では、冷却水として、少なくともエチレングリコール、ジメチルポリシロキサンまたはナノ粒子を含む液体、または不凍化液体が用いられている。 As shown in FIG. 1, the thermal management system 10 includes a first pump 11, a second pump 12, a first flow path 13, and a second flow path 14. The first pump 11 and the second pump 12 are electric pumps that suck and discharge cooling water. The cooling water is a fluid as a heat medium. In the present embodiment, a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanoparticles, or an antifreeze liquid is used as the cooling water.
 第1流路13および第2流路14は、冷却水が流れる冷却水流路であり、互いに並列に配置されている。第1流路13には第1ポンプ11が配置されている。第2流路14には第2ポンプ12が配置されている。 The first flow path 13 and the second flow path 14 are cooling water flow paths through which cooling water flows, and are arranged in parallel to each other. A first pump 11 is disposed in the first flow path 13. A second pump 12 is disposed in the second flow path 14.
 第1流路13には第1ラジエータ15(放熱器)が配置されている。第1ラジエータ15は、冷却水と車室外空気(以下、外気と言う)とを熱交換することによって冷却水の熱を外気に放熱させる室外熱交換器(外気熱媒体熱交換器)である。第1ラジエータ15に外気温以下の冷却水を流すことにより、第1ラジエータ15にて外気から冷却水に吸熱することも可能である。 A first radiator 15 (heat radiator) is disposed in the first flow path 13. The first radiator 15 is an outdoor heat exchanger (outside air heat medium heat exchanger) that radiates heat of the cooling water to the outside air by exchanging heat between the cooling water and outside air (hereinafter referred to as outside air). It is also possible to absorb heat from the outside air to the cooling water by the first radiator 15 by flowing cooling water below the outside air temperature to the first radiator 15.
 第1ラジエータ15は、内部を冷却水が流れる多数本のチューブと、多数本のチューブ同士の間に配置されて外気との熱交換を促進するフィンとを有している。第1ラジエータ15への外気の送風は室外送風機16によって行われる。第1ラジエータ15は車両の最前部に配置されているので、車両の走行時には第1ラジエータ15に走行風を当てることができる。 The first radiator 15 has a large number of tubes through which cooling water flows and fins that are arranged between the large number of tubes and promote heat exchange with the outside air. The outside air blower 16 blows outside air to the first radiator 15. Since the first radiator 15 is disposed at the foremost part of the vehicle, traveling wind can be applied to the first radiator 15 when the vehicle is traveling.
 第1流路13の下流側は第1切替弁17の第1入口17aに接続され、第1流路13の上流側は第2切替弁18の第1出口18aに接続されている。第2流路14の下流側は第1切替弁17の第2入口17bに接続され、第2流路14の上流側は第2切替弁18の第2出口18bに接続されている。 The downstream side of the first flow path 13 is connected to the first inlet 17a of the first switching valve 17, and the upstream side of the first flow path 13 is connected to the first outlet 18a of the second switching valve 18. The downstream side of the second flow path 14 is connected to the second inlet 17 b of the first switching valve 17, and the upstream side of the second flow path 14 is connected to the second outlet 18 b of the second switching valve 18.
 第2切替弁18の第3出口18cには、ラジエータバイパス流路19の一端が接続されている。ラジエータバイパス流路19の他端は、第1流路13のうち第1ラジエータ15と第1ポンプ11との間の部位に接続されている。これにより、第1ラジエータ15をバイパスして冷却水が流れるようにすることができる。 One end of a radiator bypass channel 19 is connected to the third outlet 18c of the second switching valve 18. The other end of the radiator bypass channel 19 is connected to a portion of the first channel 13 between the first radiator 15 and the first pump 11. Thereby, the 1st radiator 15 can be bypassed and cooling water can flow.
 第1切替弁17は、冷却水が流出する4つの出口17d、17e、17f、17gを有している。第1切替弁17は、第1入口17aから流入した冷却水、および第2入口17bから流入した冷却水のいずれかが各出口17d、17e、17f、17gから流出するように冷却水の流れを切り替える機能を有している。 The first switching valve 17 has four outlets 17d, 17e, 17f, and 17g through which cooling water flows out. The first switching valve 17 flows the cooling water so that either the cooling water flowing in from the first inlet 17a or the cooling water flowing in from the second inlet 17b flows out from the outlets 17d, 17e, 17f, 17g. It has a function to switch.
 第2切替弁18は、冷却水が流入する4つの入口18d、18e、18f、18gを有している。第2切替弁18は、入口18d、18e、18f、18gから流入した冷却水が、第1出口18aおよび第2出口18bのいずれかから流出するように冷却水の流れを切り替える。 The second switching valve 18 has four inlets 18d, 18e, 18f, and 18g into which cooling water flows. The second switching valve 18 switches the flow of the cooling water so that the cooling water flowing in from the inlets 18d, 18e, 18f, 18g flows out of either the first outlet 18a or the second outlet 18b.
 第1切替弁17の4つの出口17d、17e、17f、17gと第2切替弁18の4つの入口18d、18e、18f、18gとの間には、4つの共通流路21、22、23、24が接続されている。 Between the four outlets 17d, 17e, 17f, 17g of the first switching valve 17 and the four inlets 18d, 18e, 18f, 18g of the second switching valve 18, there are four common flow paths 21, 22, 23, 24 is connected.
 第1切替弁17の第1出口17dと第2切替弁18の第1入口18dとの間に接続された第1共通流路21には、温度調整対象機器である冷却用熱交換器30(冷却水冷却用の熱交換器)が配置されている。 The first common flow path 21 connected between the first outlet 17d of the first switching valve 17 and the first inlet 18d of the second switching valve 18 has a cooling heat exchanger 30 ( A cooling water cooling heat exchanger) is arranged.
 第1切替弁17の第2出口17eと第2切替弁18の第2入口18eとの間に接続された第2共通流路22には、温度調整対象機器である加熱用熱交換器31(冷却水加熱用の熱交換器)およびヒータコア32が配置されている。 In the second common flow path 22 connected between the second outlet 17e of the first switching valve 17 and the second inlet 18e of the second switching valve 18, a heat exchanger 31 for heating, which is a temperature adjustment target device ( A cooling water heating heat exchanger) and a heater core 32 are arranged.
 第1切替弁17の第3出口17fと第2切替弁18の第3入口18fとの間に接続された第3共通流路23には、温度調整対象機器である冷却用熱交換器33(空気冷却用の熱交換器)が配置されている。 The third common flow path 23 connected between the third outlet 17f of the first switching valve 17 and the third inlet 18f of the second switching valve 18 has a cooling heat exchanger 33 ( An air cooling heat exchanger) is arranged.
 第1切替弁17の第4出口17gと第2切替弁18の第4入口18gとの間に接続された第4共通流路24には、温度調整対象機器34として、インバータ、走行用モータ、電池、蓄冷熱器、インタークーラ、ターボ、オイル熱交換器等が配置されている。 In the fourth common flow path 24 connected between the fourth outlet 17g of the first switching valve 17 and the fourth inlet 18g of the second switching valve 18, an inverter, a traveling motor, A battery, a regenerator, an intercooler, a turbo, an oil heat exchanger, and the like are arranged.
 第1切替弁17の出口の数を増やしても良いし、第1切替弁17の出口に接続された共通流路の他端は必ずしも第2切替弁18の入口に接続されていなくても良い。同様に、第2切替弁18の入口の数を増やしても良いし、第2切替弁18の入口に接続された共通流路の他端は必ずしも第1切替弁17の出口に接続されていなくても良い。 The number of outlets of the first switching valve 17 may be increased, and the other end of the common flow path connected to the outlet of the first switching valve 17 may not necessarily be connected to the inlet of the second switching valve 18. . Similarly, the number of inlets of the second switching valve 18 may be increased, and the other end of the common flow path connected to the inlet of the second switching valve 18 is not necessarily connected to the outlet of the first switching valve 17. May be.
 インバータは、電池から供給された直流電力を交流電力に変換して走行用モータに出力する電力変換装置であり、パワーコントロールユニットを構成している。パワーコントロールユニットは、走行用モータを駆動させるために電池から供給される電力を制御する部品である。パワーコントロールユニットは、インバータの他にも、電池の電圧を上げる昇圧コンバータや、プラグインハイブリッド車においては商用電源を直流に変換しかつ電池の電圧以上に昇圧させる充電器等を有している。 The inverter is a power conversion device that converts DC power supplied from the battery into AC power and outputs the AC power to the traveling motor, and constitutes a power control unit. The power control unit is a component that controls electric power supplied from the battery to drive the traveling motor. In addition to the inverter, the power control unit includes a boost converter that raises the voltage of the battery, a charger that converts a commercial power source into a direct current and boosts the voltage higher than the voltage of the battery in a plug-in hybrid vehicle.
 インバータには、冷却水が流れる流路が形成されている。したがって、インバータは、その流路を流れる冷却水と熱交換することによって冷却される。走行用モータにも、冷却水が流れる流路が形成されている。したがって走行用モータは、その流路を流れる冷却水と熱交換することによって冷却される。 The inverter has a flow path through which cooling water flows. Therefore, the inverter is cooled by exchanging heat with the cooling water flowing through the flow path. A passage for cooling water is also formed in the traveling motor. Therefore, the traveling motor is cooled by exchanging heat with the cooling water flowing through the flow path.
 電池には、冷却水が流れる流路が形成されており、その流路を流れる冷却水と熱交換することによって電池が冷却または加熱される。電池は、出力低下、充電効率低下および劣化防止等の理由から10-40℃程度の温度に維持されるのが好ましい。 The battery has a flow path through which cooling water flows, and the battery is cooled or heated by exchanging heat with the cooling water flowing through the flow path. The battery is preferably maintained at a temperature of about 10-40 ° C. for reasons such as a reduction in output, a reduction in charging efficiency, and prevention of deterioration.
 電池の代わりに、電池用熱交換器が第4共通流路24に配置されていてもよい。電池用熱交換器は、冷却水と空気とを熱交換させる熱交換器であり、電池用熱交換器で熱交換された空気を電池に導風することによって電池を冷却または加熱することができる。 A battery heat exchanger may be arranged in the fourth common flow path 24 instead of the battery. The battery heat exchanger is a heat exchanger that exchanges heat between cooling water and air, and can cool or heat the battery by introducing the air heat-exchanged by the battery heat exchanger to the battery. .
 冷却用熱交換器30は、冷凍サイクル35の低圧側熱交換器を構成している。冷却用熱交換器30は、冷凍サイクル35の低圧側冷媒(低温冷媒)と冷却水とを熱交換させることによって冷却水を冷却する冷却器(熱媒体冷却器)である。 The cooling heat exchanger 30 constitutes a low-pressure side heat exchanger of the refrigeration cycle 35. The cooling heat exchanger 30 is a cooler (heat medium cooler) that cools the cooling water by exchanging heat between the low-pressure refrigerant (low-temperature refrigerant) of the refrigeration cycle 35 and the cooling water.
 加熱用熱交換器31は、冷凍サイクル35の高圧側熱交換器を構成している。加熱用熱交換器31は、冷凍サイクル35の高圧側冷媒(高温冷媒)と冷却水とを熱交換させることによって冷却水を加熱する加熱器(熱媒体加熱器)である。 The heating heat exchanger 31 constitutes a high-pressure side heat exchanger of the refrigeration cycle 35. The heating heat exchanger 31 is a heater (heat medium heater) that heats the cooling water by exchanging heat between the high-pressure refrigerant (high-temperature refrigerant) of the refrigeration cycle 35 and the cooling water.
 冷凍サイクル35は蒸気圧縮式冷凍機である。本例では、冷凍サイクル35の冷媒はフロン系冷媒であり、冷凍サイクル35は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。 The refrigeration cycle 35 is a vapor compression refrigerator. In this example, the refrigerant of the refrigeration cycle 35 is a chlorofluorocarbon refrigerant, and the refrigeration cycle 35 constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant.
 冷凍サイクル35は、低圧側熱交換器である冷却用熱交換器30、および高圧側熱交換器である加熱用熱交換器31の他、圧縮機35aおよび膨張弁35bを有している。 The refrigeration cycle 35 has a compressor 35a and an expansion valve 35b in addition to a cooling heat exchanger 30 that is a low-pressure side heat exchanger and a heating heat exchanger 31 that is a high-pressure side heat exchanger.
 圧縮機35aは、電池から供給される電力によって駆動される電動圧縮機であり、気相冷媒を吸入して圧縮して吐出する。圧縮機35aは、プーリー、ベルト等を介してエンジンにより回転駆動されるようになっていてもよい。 The compressor 35a is an electric compressor that is driven by electric power supplied from a battery, and sucks and compresses and discharges a gas-phase refrigerant. The compressor 35a may be rotationally driven by the engine via a pulley, a belt, or the like.
 圧縮機35aから吐出された高温高圧の気相冷媒は、高圧側熱交換器である加熱用熱交換器31で冷却水と熱交換することによって吸熱されて凝縮する。 The high-temperature and high-pressure gas-phase refrigerant discharged from the compressor 35a is absorbed and condensed by heat exchange with cooling water in the heating heat exchanger 31 which is a high-pressure side heat exchanger.
 膨張弁35bは、加熱用熱交換器31で凝縮された液相冷媒を減圧膨張させる減圧器である。膨張弁35bで減圧膨張された低圧冷媒は、低圧側熱交換器である冷却用熱交換器30で冷却水と熱交換することによって冷却水から吸熱して蒸発する。冷却用熱交換器30で蒸発した気相冷媒は圧縮機35aに吸入されて圧縮される。 The expansion valve 35b is a decompressor that decompresses and expands the liquid refrigerant condensed in the heat exchanger 31 for heating. The low-pressure refrigerant expanded under reduced pressure by the expansion valve 35b absorbs heat from the cooling water and evaporates by exchanging heat with the cooling water in the cooling heat exchanger 30 which is a low-pressure side heat exchanger. The gas-phase refrigerant evaporated in the cooling heat exchanger 30 is sucked into the compressor 35a and compressed.
 第1ラジエータ15では外気によって冷却水を冷却するのに対し、冷却用熱交換器30では冷凍サイクル35の低圧側冷媒によって冷却水を冷却する。このため、冷却用熱交換器30で冷却された冷却水の温度を、第1ラジエータ15で冷却された冷却水の温度に比べて低くすることが可能である。 In the first radiator 15, the cooling water is cooled by outside air, whereas in the cooling heat exchanger 30, the cooling water is cooled by the low-pressure side refrigerant of the refrigeration cycle 35. For this reason, the temperature of the cooling water cooled by the cooling heat exchanger 30 can be made lower than the temperature of the cooling water cooled by the first radiator 15.
 具体的には、第1ラジエータ15では冷却水を外気の温度よりも低い温度まで冷却することはできないのに対し、冷却用熱交換器30では冷却水を外気の温度よりも低い温度まで冷却することが可能である。 Specifically, the first radiator 15 cannot cool the cooling water to a temperature lower than the outside air temperature, whereas the cooling heat exchanger 30 cools the cooling water to a temperature lower than the outside air temperature. It is possible.
 冷却用熱交換器33は、冷却水と空気とを熱交換させて空気を冷却する熱交換器であり、室内空調ユニットのケーシング37の内部に配置されている。ケーシング37は、室内送風機38によって送風された空気が流れる空気通路を形成している。 The cooling heat exchanger 33 is a heat exchanger that cools air by exchanging heat between cooling water and air, and is disposed inside the casing 37 of the indoor air conditioning unit. The casing 37 forms an air passage through which air blown by the indoor blower 38 flows.
 ヒータコア32は、加熱用熱交換器31で加熱された冷却水と車室内へ送風する空気とを熱交換させて空気を加熱する熱交換器(空気熱媒体熱交換器)である。 The heater core 32 is a heat exchanger (air heat medium heat exchanger) that heats air by exchanging heat between the cooling water heated by the heat exchanger 31 for heating and the air blown into the passenger compartment.
 ヒータコア32は、第2共通流路22において加熱用熱交換器31の下流側に配置されている。ヒータコア32は、室内空調ユニットのケーシング37の内部において、冷却用熱交換器33よりも空気流れ下流側に配置されている。
ケーシング37の内部において、冷却用熱交換器33よりも空気流れ下流側かつヒータコア32よりも空気流れ上流側には、エアミックスドア39が配置されている。エアミックスドア39は、ヒータコア32を通過する空気と冷却用熱交換器33をバイパスして流れる空気との風量割合を調整する風量割合調整部である。
The heater core 32 is disposed on the downstream side of the heating heat exchanger 31 in the second common flow path 22. The heater core 32 is disposed on the downstream side of the air flow from the cooling heat exchanger 33 inside the casing 37 of the indoor air conditioning unit.
Inside the casing 37, an air mix door 39 is disposed on the downstream side of the air flow from the cooling heat exchanger 33 and the upstream side of the air flow from the heater core 32. The air mix door 39 is an air volume ratio adjusting unit that adjusts the air volume ratio between the air passing through the heater core 32 and the air flowing by bypassing the cooling heat exchanger 33.
 第1流路13には、冷却水を溜めることや、冷却水の圧力を適正範囲に保つことのできる密閉式のリザーブタンク13aが接続されている。 The first flow path 13 is connected with a sealed reserve tank 13a that can store cooling water and keep the pressure of the cooling water within an appropriate range.
 リザーブタンク13aを密閉式とすることによって、冷却水の圧力を設定値以内に保つ効果が得られ、第1ポンプ11、第2ポンプ12の揚程が大幅に異なるような作動状態においてもリザーブタンク13a内の液面変動を最小限に留める作用が得られる。 By making the reserve tank 13a hermetically sealed, the effect of maintaining the pressure of the cooling water within a set value can be obtained, and the reserve tank 13a can be used even in an operating state in which the heads of the first pump 11 and the second pump 12 are significantly different. The effect of minimizing the liquid level fluctuation is obtained.
 リザーブタンク13aは、冷却水中に混入した気泡を気液分離する機能を有している。リザーブタンク13aは、冷却水の温度変化に伴う膨張収縮による圧力の異常上昇・低下に対して適切な圧力を保持する機能を有している。リザーブタンク13aに余剰冷却水を溜めておくことによって、各流路を循環する冷却水の液量の低下を抑制することができる。 The reserve tank 13a has a function of gas-liquid separation of bubbles mixed in the cooling water. The reserve tank 13a has a function of holding an appropriate pressure against an abnormal increase / decrease in pressure due to expansion / contraction due to a temperature change of the cooling water. By storing excess cooling water in the reserve tank 13a, it is possible to suppress a decrease in the amount of cooling water circulating through each flow path.
 熱管理システム10は、冷却回路40(エンジン用冷却回路)を備えている。冷却回路40は、冷却水が循環する循環流路41を有している。循環流路41は、冷却回路40の主流路を構成している。 The thermal management system 10 includes a cooling circuit 40 (engine cooling circuit). The cooling circuit 40 has a circulation channel 41 through which cooling water circulates. The circulation channel 41 constitutes the main channel of the cooling circuit 40.
 循環流路41には、ポンプ42(エンジン用ポンプ)、エンジン43およびラジエータ44(エンジン用ラジエータ)がこの順番で直列に配置されている。 In the circulation channel 41, a pump 42 (engine pump), an engine 43, and a radiator 44 (engine radiator) are arranged in series in this order.
 ポンプ42は、冷却水を吸入して吐出する電動ポンプである。ポンプ42は、エンジン43の出力軸からベルト等を介する動力伝達機構にて駆動されても良いが、この場合にはエンジン停止中もポンプ42を駆動可能にするために動力伝達機構が補助モータと結合されている必要がある。補助モータは、ポンプ42を駆動する以外にも、動力伝達機構に結合された圧縮機をエンジン停止中に駆動するために利用することができるし、エンジン43を始動する際のスタータモータとしても利用することができるし、発電用のオルタネータとしても利用することができる。 The pump 42 is an electric pump that sucks and discharges cooling water. The pump 42 may be driven by a power transmission mechanism via a belt or the like from the output shaft of the engine 43. In this case, the power transmission mechanism is connected to an auxiliary motor so that the pump 42 can be driven even when the engine is stopped. Must be combined. In addition to driving the pump 42, the auxiliary motor can be used to drive the compressor coupled to the power transmission mechanism while the engine is stopped, and can also be used as a starter motor when starting the engine 43. It can also be used as an alternator for power generation.
 エンジン43の内部には、冷却水が流れるエンジン冷却流路43aが形成されている。ラジエータ44は、内部を冷却水が流れる多数本のチューブと、多数本のチューブ同士の間に配置されて外気との熱交換を促進するフィンとを有している。ラジエータ44への外気の送風は室外送風機16によって行われる。ラジエータ44は、車両の最前部において、第1ラジエータ15よりも外気流れ方向下流側に配置されている。 Inside the engine 43, an engine cooling channel 43a through which cooling water flows is formed. The radiator 44 has a large number of tubes through which cooling water flows and fins that are arranged between the large number of tubes and promote heat exchange with the outside air. The outdoor fan 16 blows outside air to the radiator 44. The radiator 44 is disposed downstream of the first radiator 15 in the outside air flow direction at the foremost part of the vehicle.
 エンジン43の冷却水出口側には、ラジエータバイパス流路45(エンジン用ラジータバイパス流路)の一端が接続されている。ラジエータバイパス流路45の他端は、循環流路41のうちラジエータ44とポンプ42の吸入部(吸入口)との間の部位に接続されている。これにより、エンジン43から流出した冷却水がラジエータ44をバイパスして流れることができる。 One end of a radiator bypass passage 45 (engine radiator bypass passage) is connected to the coolant outlet side of the engine 43. The other end of the radiator bypass channel 45 is connected to a portion of the circulation channel 41 between the radiator 44 and the suction part (suction port) of the pump 42. Thereby, the cooling water flowing out from the engine 43 can flow by bypassing the radiator 44.
 ラジエータバイパス流路45の他端と循環流路41との接続部には、サーモスタット46が配置されている。サーモスタット46は、温度によって体積変化するサーモワックス(感温部材)によって弁体を変位させて冷却水流路を開閉する機械的機構で構成される弁である。つまり、サーモスタット46の弁体は、冷却水温度に応じて変位する。 A thermostat 46 is disposed at the connection portion between the other end of the radiator bypass passage 45 and the circulation passage 41. The thermostat 46 is a valve configured by a mechanical mechanism that opens and closes the cooling water flow path by displacing the valve body with a thermo wax (temperature-sensitive member) that changes in volume according to temperature. That is, the valve body of the thermostat 46 is displaced according to the coolant temperature.
 サーモスタット46は、エンジン43から流出した冷却水がラジエータ44を流れる冷却水流路(熱媒体流路)と、エンジン43から流出した冷却水がラジエータバイパス流路45を流れる冷却水流路(熱媒体流路)とを冷却水の温度に応じて切り替える。 The thermostat 46 includes a cooling water passage (heat medium passage) through which the cooling water flowing out from the engine 43 flows through the radiator 44, and a cooling water passage (heat medium passage) through which the cooling water flowing out from the engine 43 flows through the radiator bypass passage 45. ) And switch according to the temperature of the cooling water.
 具体的には、サーモスタット46は、冷却水の温度が所定温度を下回っている場合(例えば60℃以上80℃未満)、冷却水がラジエータバイパス流路45を流れる冷却水流路に切り替え、冷却水の温度が所定温度を上回っている場合(例えば80℃以上)、冷却水がラジエータ44を流れる冷却水流路に切り替える。 Specifically, when the temperature of the cooling water is lower than a predetermined temperature (for example, 60 ° C. or higher and lower than 80 ° C.), the thermostat 46 switches the cooling water to the cooling water flow path that flows through the radiator bypass flow path 45. When the temperature is higher than a predetermined temperature (for example, 80 ° C. or more), the cooling water is switched to the cooling water flow path through the radiator 44.
 ラジエータバイパス流路45は、四方弁47を介して第1流路13に接続されている。四方弁47は、ラジエータバイパス流路45の途中に配置されているとともに、第1流路13の途中に配置されている。具体的には、四方弁47は、第1流路13において第1ポンプ11と第1切替弁17の第1入口17aとの間の部位に配置されている。 The radiator bypass channel 45 is connected to the first channel 13 via a four-way valve 47. The four-way valve 47 is disposed in the middle of the radiator bypass flow path 45 and is disposed in the middle of the first flow path 13. Specifically, the four-way valve 47 is disposed at a site between the first pump 11 and the first inlet 17 a of the first switching valve 17 in the first flow path 13.
 四方弁47は、第1流路13とラジエータバイパス流路45との接続状態を切り替える切替部である。四方弁47によって切り替えられる接続状態のモードとしては、図2に示す非接続モード、図3に示す第1接続モード、および図4に示す第2接続モードがある。 The four-way valve 47 is a switching unit that switches a connection state between the first flow path 13 and the radiator bypass flow path 45. The connection state modes switched by the four-way valve 47 include a non-connection mode shown in FIG. 2, a first connection mode shown in FIG. 3, and a second connection mode shown in FIG.
 図2に示す非接続モードでは、四方弁47は、第1流路13とラジエータバイパス流路45とを接続させない。 In the non-connection mode shown in FIG. 2, the four-way valve 47 does not connect the first flow path 13 and the radiator bypass flow path 45.
 図3に示す第1接続モードでは、四方弁47は、第1流路13のうち第1ポンプ11の吐出側から四方弁47に至る部位と、ラジエータバイパス流路45のうちポンプ42の吸入側から四方弁47に至る部位とを接続させる。 In the first connection mode shown in FIG. 3, the four-way valve 47 is configured such that the portion of the first flow path 13 that extends from the discharge side of the first pump 11 to the four-way valve 47 and the suction side of the pump 42 of the radiator bypass flow path 45. To the four-way valve 47 is connected.
 図4に示す第2接続モードでは、四方弁47は、第1流路13のうち第1ポンプ11の吐出側から四方弁47に至る部位と、ラジエータバイパス流路45のうちエンジン43の冷却水出口側(第1ポンプ11の吐出側)から四方弁47に至る部位とを接続させる。 In the second connection mode shown in FIG. 4, the four-way valve 47 includes a portion of the first flow path 13 from the discharge side of the first pump 11 to the four-way valve 47, and a cooling water for the engine 43 in the radiator bypass flow path 45. The part from the outlet side (discharge side of the first pump 11) to the four-way valve 47 is connected.
 図1に示すように、冷却回路40の循環流路41のうち第1ポンプ11の吐出部(吐出口)とエンジン43との間の部位には第1連通路48の一端が接続されている。第1連通路48の他端は、第1流路13のうち四方弁47と第1切替弁17の第1入口17aとの間の部位に接続されている。したがって、第1連通路48は、冷却回路40と第1流路13とを連通する連通部(第1連通部)を構成している。 As shown in FIG. 1, one end of a first communication path 48 is connected to a portion between the discharge portion (discharge port) of the first pump 11 and the engine 43 in the circulation flow path 41 of the cooling circuit 40. . The other end of the first communication path 48 is connected to a portion of the first flow path 13 between the four-way valve 47 and the first inlet 17 a of the first switching valve 17. Therefore, the first communication path 48 constitutes a communication part (first communication part) that communicates the cooling circuit 40 and the first flow path 13.
 冷却回路40の循環流路41にはリザーブタンク41aが接続されている。リザーブタンク41aの構造および機能は、第1流路13のリザーブタンク13aと同様であるので説明を省略する。リザーブタンク13aおよびリザーブタンク41aは、どちらか片方を省略することも可能である。 A reserve tank 41 a is connected to the circulation passage 41 of the cooling circuit 40. Since the structure and function of the reserve tank 41a are the same as those of the reserve tank 13a of the first flow path 13, the description thereof is omitted. Either one of the reserve tank 13a and the reserve tank 41a can be omitted.
 次に、熱管理システム10の電気制御部を図5に基づいて説明する。制御装置50は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された空調制御プログラムに基づいて各種演算および各種処理を行う。制御装置50は、出力側に接続された第1ポンプ11、第2ポンプ12、室外送風機16、第1切替弁17、第2切替弁18、圧縮機35a、室内送風機38、エアミックスドア39、ポンプ42および四方弁47等の作動を制御する。 Next, the electric control unit of the thermal management system 10 will be described with reference to FIG. The control device 50 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof, and performs various calculations and various processes based on an air conditioning control program stored in the ROM. The control device 50 includes a first pump 11, a second pump 12, an outdoor fan 16, a first switching valve 17, a second switching valve 18, a compressor 35a, an indoor fan 38, an air mix door 39, which are connected to the output side. The operation of the pump 42 and the four-way valve 47 is controlled.
 制御装置50は、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されたものであるが、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。 The control device 50 is configured integrally with a control unit that controls various control target devices connected to the output side thereof, but has a configuration (hardware and software) that controls the operation of each control target device. The control part which controls the action | operation of each control object apparatus is comprised.
 本実施形態では、特に四方弁47の作動を制御する構成(ハードウェアおよびソフトウェア)を切替制御部50aとする。切替制御部50aを制御装置50に対して別体で構成してもよい。 In the present embodiment, the configuration (hardware and software) that controls the operation of the four-way valve 47 in particular is the switching control unit 50a. The switching control unit 50a may be configured separately from the control device 50.
 本実施形態では、特に室外送風機16の作動を制御する構成(ハードウェアおよびソフトウェア)を送風量制御部50bとする。送風量制御部50bを制御装置50に対して別体で構成してもよい。 In the present embodiment, the configuration (hardware and software) that controls the operation of the outdoor blower 16 in particular is referred to as an air flow control unit 50b. You may comprise the ventilation volume control part 50b with respect to the control apparatus 50 separately.
 制御装置50の入力側には、内気センサ51、外気センサ52、日射センサ53、湿度センサ54、第1水温センサ55および第2水温センサ56等の各種センサの検出信号が入力される。 Detected signals of various sensors such as an inside air sensor 51, an outside air sensor 52, a solar radiation sensor 53, a humidity sensor 54, a first water temperature sensor 55, and a second water temperature sensor 56 are input to the input side of the control device 50.
 内気センサ51は、内気温(車室内温度)を検出する検出器(内気温度検出器)である。外気センサ52は、外気温を検出する検出器(外気温度検出器)である。日射センサ53は、車室内の日射量を検出する検出器(日射量検出器)である。湿度センサ54は、内気の湿度(車室内湿度)を検出する検出器(内気湿度検出器)である。 The inside air sensor 51 is a detector (inside air temperature detector) that detects the inside air temperature (in-vehicle temperature). The outside air sensor 52 is a detector (outside air temperature detector) that detects outside air temperature. The solar radiation sensor 53 is a detector (a solar radiation amount detector) that detects the amount of solar radiation in the passenger compartment. The humidity sensor 54 is a detector (inside air humidity detector) that detects the humidity of the inside air (in-vehicle humidity).
 第1水温センサ55は、第1流路13を流通する冷却水の温度を検出する検出器(熱媒体温度検出器)である。第2水温センサ56は、冷却回路40を流通する冷却水の温度を検出する検出器(熱媒体温度検出器)である。 The first water temperature sensor 55 is a detector (heat medium temperature detector) that detects the temperature of the cooling water flowing through the first flow path 13. The second water temperature sensor 56 is a detector (heat medium temperature detector) that detects the temperature of the cooling water flowing through the cooling circuit 40.
 第1水温センサ55は、第1流路13を流通する冷却水の温度に関連する温度を検出するようになっていてもよい。第2水温センサ56は、冷却回路40を流通する冷却水の温度に関連する温度を検出するようになっていてもよい。 The first water temperature sensor 55 may detect a temperature related to the temperature of the cooling water flowing through the first flow path 13. The second water temperature sensor 56 may detect a temperature related to the temperature of the cooling water flowing through the cooling circuit 40.
 図1の例では、第1水温センサ55は、第1流路13のうち第1ポンプ11の吸入側に位置する部位に配置されており、第2水温センサ56は、エンジン43内の冷却水流路の最下流部近傍に配置されている。 In the example of FIG. 1, the first water temperature sensor 55 is disposed in a portion of the first flow path 13 that is located on the suction side of the first pump 11, and the second water temperature sensor 56 is a cooling water flow in the engine 43. It is arranged near the most downstream part of the road.
 制御装置50の入力側には、車室内前部の計器盤付近に配置された操作パネル59に設けられた各種空調操作スイッチからの操作信号が入力される。操作パネル59に設けられた各種空調操作スイッチとしては、エアコンスイッチ、オートスイッチ、室内送風機38の風量設定スイッチ、車室内温度設定スイッチ等が設けられている。 Operation signals from various air conditioning operation switches provided on the operation panel 59 disposed near the instrument panel in the front part of the vehicle interior are input to the input side of the control device 50. As various air conditioning operation switches provided on the operation panel 59, an air conditioner switch, an auto switch, an air volume setting switch of the indoor blower 38, a vehicle interior temperature setting switch, and the like are provided.
 エアコンスイッチは、空調(冷房または暖房)の作動・停止(オン・オフ)を切り替えるスイッチである。オートスイッチは、空調の自動制御を設定または解除するスイッチである。車室内温度設定スイッチは、乗員の操作によって車室内目標温度を設定する目標温度設定部である。 The air conditioner switch is a switch for switching on / off (on / off) of air conditioning (cooling or heating). The auto switch is a switch for setting or canceling automatic control of air conditioning. The vehicle interior temperature setting switch is a target temperature setting unit that sets the vehicle interior target temperature by the operation of the passenger.
 次に、上記構成における作動を説明する。制御装置50が第1切替弁17および第2切替弁18の作動を制御することによって、各種作動モードに切り替えられる。 Next, the operation in the above configuration will be described. The control device 50 is switched to various operation modes by controlling the operation of the first switching valve 17 and the second switching valve 18.
 具体的には、第1流路13と共通流路21-24のうち少なくとも1つの流路とで第1冷却回路C1(第1熱媒体循環回路)が形成され、第2流路14と共通流路21-24のうち少なくとも他の1つの流路とで第2冷却回路C2(第2熱媒体循環回路)が形成される。 Specifically, the first cooling circuit C1 (first heat medium circulation circuit) is formed by at least one of the first flow path 13 and the common flow path 21-24, and is shared with the second flow path 14. A second cooling circuit C2 (second heat medium circulation circuit) is formed by at least another one of the channels 21-24.
 共通流路21-24のそれぞれについて、第1冷却回路C1に接続される場合と、第2冷却回路C2に接続される場合とを状況に応じて切り替えることによって、各温度調整対象機器28-31の温度を状況に応じて適切な温度に調整することができる。 Each of the common flow paths 21-24 is switched between the case where it is connected to the first cooling circuit C1 and the case where it is connected to the second cooling circuit C2, depending on the situation, so that each temperature adjustment target device 28-31. The temperature can be adjusted to an appropriate temperature according to the situation.
 すなわち、第1冷却回路C1および第2冷却回路C2のうち冷却用熱交換器30が接続された回路では、冷却用熱交換器30で冷却された冷却水によって温度調整対象機器を冷却することができる。例えば、冷却用熱交換器33が冷却用熱交換器30と同じ回路に接続された場合、冷却用熱交換器33によって車室内への空気を冷却して、車室内を冷房することができる。 That is, in the circuit to which the cooling heat exchanger 30 is connected among the first cooling circuit C1 and the second cooling circuit C2, the temperature adjustment target device can be cooled by the cooling water cooled by the cooling heat exchanger 30. it can. For example, when the cooling heat exchanger 33 is connected to the same circuit as the cooling heat exchanger 30, the cooling heat exchanger 33 can cool the air into the vehicle interior to cool the vehicle interior.
 第1冷却回路C1および第2冷却回路C2のうち加熱用熱交換器31が接続された回路では、加熱用熱交換器31で加熱された冷却水によって温度調整対象機器を加熱することができる。例えば、ヒータコア32が加熱用熱交換器31と同じ回路に接続された場合、ヒータコア32によって車室内への空気を加熱して、車室内を暖房することができる。 In the circuit to which the heating heat exchanger 31 is connected among the first cooling circuit C1 and the second cooling circuit C2, the temperature adjustment target device can be heated by the cooling water heated by the heating heat exchanger 31. For example, when the heater core 32 is connected to the same circuit as the heat exchanger 31 for heating, the air inside the vehicle interior can be heated by the heater core 32 to heat the vehicle interior.
 冷却用熱交換器30を第1冷却回路C1に接続し、加熱用熱交換器31を第2冷却回路C2に接続した場合、冷凍サイクル35のヒートポンプ運転を行うことができる。 When the cooling heat exchanger 30 is connected to the first cooling circuit C1 and the heating heat exchanger 31 is connected to the second cooling circuit C2, the heat pump operation of the refrigeration cycle 35 can be performed.
 すなわち、第1冷却回路C1において、冷却用熱交換器30で冷却された低温冷却水が第1ラジエータ15を流れるので、第1ラジエータ15で冷却水が外気から吸熱する。そして、第1ラジエータ15にて外気から吸熱した冷却水は、冷却用熱交換器30で冷凍サイクル35の冷媒と熱交換して放熱する。したがって、冷却用熱交換器30では、冷凍サイクル35の冷媒が冷却水を介して外気から吸熱する。 That is, in the first cooling circuit C1, since the low-temperature cooling water cooled by the cooling heat exchanger 30 flows through the first radiator 15, the cooling water absorbs heat from the outside air by the first radiator 15. Then, the cooling water that has absorbed heat from the outside air by the first radiator 15 exchanges heat with the refrigerant of the refrigeration cycle 35 by the cooling heat exchanger 30 to radiate heat. Therefore, in the cooling heat exchanger 30, the refrigerant in the refrigeration cycle 35 absorbs heat from the outside air through the cooling water.
 冷却用熱交換器30にて外気から吸熱した冷媒は、冷却用熱交換器30にて第2冷却回路C2の冷却水と熱交換して放熱する。したがって、外気の熱を汲み上げるヒートポンプ運転を実現できる。 The refrigerant that has absorbed heat from the outside air in the cooling heat exchanger 30 exchanges heat with the cooling water in the second cooling circuit C2 in the cooling heat exchanger 30 to radiate heat. Therefore, it is possible to realize a heat pump operation that pumps up the heat of the outside air.
 さらに、制御装置50が四方弁47の作動を制御することによって、第1冷却回路C1と冷却回路40との接続状態が、図2に示す非接続モード、図3に示す第1接続モード、および図4に示す第2接続モードに切り替えられる。 Furthermore, when the control device 50 controls the operation of the four-way valve 47, the connection state between the first cooling circuit C1 and the cooling circuit 40 is changed to the non-connection mode shown in FIG. 2, the first connection mode shown in FIG. The mode is switched to the second connection mode shown in FIG.
 非接続モードは、エンジン43が作動中の場合に切り替えられる。第1接続モードは、エンジン43が停止中、かつ第1冷却回路C1の冷却水温度および冷却回路40の冷却水温度が所定温度以下である場合に切り替えられる。第2接続モードは、エンジン43が停止中、かつ第1冷却回路C1の冷却水温度および冷却回路40の冷却水温度が所定温度以上である場合に切り替えられる。 The disconnected mode is switched when the engine 43 is operating. The first connection mode is switched when the engine 43 is stopped and the cooling water temperature of the first cooling circuit C1 and the cooling water temperature of the cooling circuit 40 are equal to or lower than a predetermined temperature. The second connection mode is switched when the engine 43 is stopped and the cooling water temperature of the first cooling circuit C1 and the cooling water temperature of the cooling circuit 40 are equal to or higher than a predetermined temperature.
 図2に示す非接続モードでは、第1冷却回路C1は、冷却回路40と第1連通路48のみで連通する。そのため、第1冷却回路C1と冷却回路40との間での冷却水の定常的な循環は発生しない。 In the non-connection mode shown in FIG. 2, the first cooling circuit C <b> 1 communicates with the cooling circuit 40 only through the first communication path 48. Therefore, steady circulation of the cooling water does not occur between the first cooling circuit C1 and the cooling circuit 40.
 このとき、冷却回路40の冷却水温度に応じて、サーモスタット46が、エンジン43から流出した冷却水がラジエータ44を流れる場合と、ラジエータバイパス流路45を流れる場合とを切り替える。 At this time, according to the cooling water temperature of the cooling circuit 40, the thermostat 46 switches between the case where the cooling water flowing out from the engine 43 flows through the radiator 44 and the case where it flows through the radiator bypass passage 45.
 具体的には、冷却回路40の冷却水温度が低い場合(60℃-80℃以下)、エンジン43から流出した冷却水がラジエータ44をバイパスしてラジエータバイパス流路45を流れる。一方、冷却回路40の冷却水温度が高い場合(80℃以上)、エンジン43から流出した冷却水がラジエータ44を流れるようにサーモスタット46が冷却水流路を切り替える。 Specifically, when the cooling water temperature of the cooling circuit 40 is low (60 ° C. to 80 ° C. or lower), the cooling water flowing out from the engine 43 bypasses the radiator 44 and flows through the radiator bypass passage 45. On the other hand, when the cooling water temperature of the cooling circuit 40 is high (80 ° C. or higher), the thermostat 46 switches the cooling water flow path so that the cooling water flowing out from the engine 43 flows through the radiator 44.
 図3に示す第1接続モードでは、図3の太実線矢印に示すように、第1ポンプ11から吐出された冷却水は、四方弁47およびサーモスタット46を介してポンプ42に吸入され、ポンプ42から吐出された冷却水は、第1連通路48を流れて第1流路13に流入する。したがって、第1冷却回路C1において、第1ポンプ11およびポンプ42を直列に接続して冷却水を循環させることができる。したがって、第1接続モードをポンプ直列モードと表現することができる。 In the first connection mode shown in FIG. 3, the cooling water discharged from the first pump 11 is sucked into the pump 42 via the four-way valve 47 and the thermostat 46 as shown by the thick solid arrow in FIG. The cooling water discharged from the air flows through the first communication passage 48 and flows into the first flow path 13. Therefore, in the first cooling circuit C1, the first pump 11 and the pump 42 can be connected in series to circulate the cooling water. Therefore, the first connection mode can be expressed as a pump serial mode.
 ここで、サーモスタット46は、第1冷却回路C1における冷却水の温度が所定温度を超えるとエンジン43から流出した冷却水がラジエータ44を流れる冷却水流路に切り替える。すなわち、サーモスタット46は、ラジエータバイパス流路45を循環流路41から切り離す。その場合、第1ポンプ11から吐出された冷却水が循環流路41に流入することができなくなるので、第1冷却回路C1における冷却水の循環が妨げられてしまう。 Here, when the temperature of the cooling water in the first cooling circuit C1 exceeds a predetermined temperature, the thermostat 46 switches to the cooling water flow path through which the cooling water flowing out from the engine 43 flows through the radiator 44. That is, the thermostat 46 separates the radiator bypass channel 45 from the circulation channel 41. In that case, the cooling water discharged from the first pump 11 cannot flow into the circulation flow path 41, so that the cooling water circulation in the first cooling circuit C1 is hindered.
 その点に鑑みて、本実施形態では、第1接続モードにおいて第1冷却回路C1における冷却水の温度が所定温度を超えた場合、制御装置50は第1接続モードを解除して非接続モードに移行するように四方弁47の作動を制御する。 In view of that point, in this embodiment, when the temperature of the cooling water in the first cooling circuit C1 exceeds a predetermined temperature in the first connection mode, the control device 50 cancels the first connection mode and switches to the non-connection mode. The operation of the four-way valve 47 is controlled so as to shift.
 第1接続モードによると、第1冷却回路C1において、第1ポンプ11およびポンプ42を直列に接続して冷却水を循環させることができる。したがって、冷却水が極低温になっていることによって冷却水の粘性が高くなって第1冷却回路C1の圧力損失が大きくなるような場合であっても、第1冷却回路C1における冷却水の循環流量の低下を抑制できる。 According to the first connection mode, the first pump 11 and the pump 42 can be connected in series in the first cooling circuit C1 to circulate the cooling water. Therefore, even if the cooling water has a very low temperature and the viscosity of the cooling water becomes high and the pressure loss of the first cooling circuit C1 increases, the circulation of the cooling water in the first cooling circuit C1. A decrease in flow rate can be suppressed.
 冷却水が低温になる条件としては、例えば、冷凍サイクル35によってヒートポンプ運転を行っている場合である。すなわち、第1ラジエータ15で外気から冷却水に吸熱し、冷却用熱交換器30で冷却水から熱を汲み上げている場合である。 The condition for cooling water to be low is, for example, when the heat pump operation is performed by the refrigeration cycle 35. In other words, the first radiator 15 absorbs heat from the outside air into the cooling water, and the cooling heat exchanger 30 pumps up heat from the cooling water.
 特に、エンジン43が停止している状態においては、エンジン43の廃熱を利用した暖房を行うことができないので、ヒートポンプ運転の負荷が高い状態となる。すなわち、冷却水がより低温になり、かつ多くの冷却水流量が必要とされる状態となる。 Particularly, when the engine 43 is stopped, heating using the waste heat of the engine 43 cannot be performed, so that the load of the heat pump operation is high. In other words, the cooling water becomes cooler and a large amount of cooling water flow is required.
 エンジン43が停止している状態においては、冷却回路40に冷却水を循環させてエンジン43を冷却する必要がないので、第1接続モードに切り替えたりエンジン43への冷却水の供給を停止したりしても支障はない。 In a state where the engine 43 is stopped, it is not necessary to circulate cooling water through the cooling circuit 40 to cool the engine 43. Therefore, the engine 43 is switched to the first connection mode or the cooling water supply to the engine 43 is stopped. There is no hindrance.
 また、第1接続モードによると、第1冷却回路C1において、第1ポンプ11およびポンプ42を直列に接続して冷却水を循環させることができる。したがって、冷却水が高温になっている場合に第1ラジエータ15における冷却水流量を増加させて第1ラジエータ15での冷却能力(放熱能力)を向上させることができる。 Further, according to the first connection mode, the first pump 11 and the pump 42 can be connected in series in the first cooling circuit C1 to circulate the cooling water. Therefore, when the cooling water is at a high temperature, the cooling water flow rate in the first radiator 15 can be increased to improve the cooling capacity (heat radiation capacity) in the first radiator 15.
 図4に示す第2接続モードでは、図4の太実線矢印に示すように、第1ポンプ11から吐出された冷却水は、四方弁47を介してエンジン43に流入し、エンジン43から流出した冷却水は、第1連通路48を流れて第1流路13に流入する。したがって、第1冷却回路C1において、種々の温度調整対象機器を熱源として加熱された冷却水をエンジン43に循環させてエンジン43を暖機することができる。したがって、第2接続モードをエンジン暖機モードと表現することができる。エンジン43を暖機することにより、エンジンオイルの粘性を下げる効果が得られ、ピストン等の摺動部品の摺動摩擦低減や回転軸受けの摩擦を低減して燃費を改善する効果が得られる。 In the second connection mode shown in FIG. 4, the cooling water discharged from the first pump 11 flows into the engine 43 through the four-way valve 47 and flows out of the engine 43 as shown by the thick solid arrows in FIG. 4. The cooling water flows through the first communication path 48 and flows into the first flow path 13. Therefore, in the first cooling circuit C1, the engine 43 can be warmed up by circulating the heated cooling water to the engine 43 with various temperature adjustment target devices as heat sources. Therefore, the second connection mode can be expressed as an engine warm-up mode. By warming up the engine 43, the effect of lowering the viscosity of the engine oil is obtained, and the effect of improving the fuel consumption by reducing the sliding friction of the sliding parts such as the piston and the friction of the rotary bearing is obtained.
 例えば、主に走行用電動モータの駆動力によって走行するEV走行モードにおいて、エンジン43が始動する前に第2接続モードに切り替えることによって、エンジン43が始動する前にエンジン43を暖機しておくことができる(エンジンプレ暖機)。 For example, in the EV traveling mode in which the vehicle is driven mainly by the driving force of the traveling electric motor, the engine 43 is warmed up before the engine 43 is started by switching to the second connection mode before the engine 43 is started. Can (engine pre-warm up).
 なお、第2接続モードでは、第2切替弁18は入口18aを閉じて第3出口18cを開けることによって、冷却水が第1ラジエータ15をバイパスしてラジエータバイパス流路19を流れるようにするのが好ましい。その場合、第1冷却回路C1の冷却水が第1ラジエータ15で放熱するのを回避して、エンジン43に流入する冷却水の温度を高めることができる。 In the second connection mode, the second switching valve 18 closes the inlet 18a and opens the third outlet 18c so that the cooling water bypasses the first radiator 15 and flows through the radiator bypass passage 19. Is preferred. In that case, it is possible to increase the temperature of the cooling water flowing into the engine 43 by avoiding that the cooling water of the first cooling circuit C <b> 1 dissipates heat in the first radiator 15.
 本実施形態によると、ラジエータバイパス流路45と第1連通路48とによって、第1冷却回路C1の冷却水を冷却回路40に導くことができるので、上記従来技術のようにラジエータバイパス通路とは別個に2つのバイパス通路を設ける場合と比較して構成を簡素化できる。 According to this embodiment, the radiator bypass passage 45 and the first communication passage 48 can guide the cooling water of the first cooling circuit C1 to the cooling circuit 40. Compared with the case where two bypass passages are separately provided, the configuration can be simplified.
 本実施形態では、四方弁(切替部)47は、ラジエータバイパス流路45の途中、および第1冷却回路C1の途中に配置されている。四方弁47は、第1冷却回路C1とラジエータバイパス流路45とが接続されない非接続モードと、第1冷却回路C1のうち第1ポンプ11の吐出側から四方弁47に至る部位とラジエータバイパス流路45のうちポンプ42の吸入側から四方弁47に至る部位とが接続される第1接続モードとに切り替え可能になっている。第1連通路48は、冷却回路40に接続されている。 In this embodiment, the four-way valve (switching unit) 47 is disposed in the middle of the radiator bypass passage 45 and in the middle of the first cooling circuit C1. The four-way valve 47 includes a non-connection mode in which the first cooling circuit C1 and the radiator bypass passage 45 are not connected, a portion of the first cooling circuit C1 from the discharge side of the first pump 11 to the four-way valve 47, and a radiator bypass flow. It is possible to switch to the first connection mode in which the part of the passage 45 extending from the suction side of the pump 42 to the four-way valve 47 is connected. The first communication path 48 is connected to the cooling circuit 40.
 これによると、四方弁47が第1接続モードに切り替えることによって、第1ポンプ11から吐出された冷却水がラジエータバイパス流路45を流れてポンプ42に吸入され、ポンプ42から吐出された冷却水が第1連通路48を通じて第1冷却回路C1に流入して第1ポンプ11に吸入される。 According to this, when the four-way valve 47 is switched to the first connection mode, the cooling water discharged from the first pump 11 flows through the radiator bypass passage 45 and is sucked into the pump 42, and the cooling water discharged from the pump 42. Flows into the first cooling circuit C <b> 1 through the first communication passage 48 and is sucked into the first pump 11.
 したがって、第1ポンプ11とポンプ42とを直列的に用いて第1冷却回路C1に冷却水を循環させることができる。 Therefore, the cooling water can be circulated in the first cooling circuit C1 using the first pump 11 and the pump 42 in series.
 また、四方弁47がラジエータバイパス流路45の途中に配置されているので、四方弁47が循環流路41の途中に配置されている場合と比較して四方弁47を冷却回路40に容易に配置することができる。 Further, since the four-way valve 47 is arranged in the middle of the radiator bypass flow path 45, the four-way valve 47 can be easily added to the cooling circuit 40 as compared with the case where the four-way valve 47 is arranged in the middle of the circulation flow path 41. Can be arranged.
 また、四方弁47がラジエータバイパス流路45の途中に配置されているので、四方弁47が故障しても、四方弁47が循環流路41における冷却水の循環を阻害することを回避できる。 Further, since the four-way valve 47 is disposed in the middle of the radiator bypass passage 45, it is possible to prevent the four-way valve 47 from inhibiting the cooling water circulation in the circulation passage 41 even if the four-way valve 47 fails.
 本実施形態では、エンジン冷却流路43aは、循環流路41のうちポンプ42の吐出部からラジエータ44に至る部位に配置されている。ラジエータバイパス流路45は、エンジン冷却流路43aから流出した熱媒体がラジエータ44をバイパスしてポンプ42に吸入されるように循環流路41に接続されている。第1連通路48は、循環流路41のうちポンプ42の吐出部からエンジン冷却流路43aに至る部位に接続されている。四方弁47は、第1冷却回路C1のうち第1ポンプ11の吐出側から四方弁47に至る部位と、ラジエータバイパス流路45のうち四方弁47よりもエンジン冷却流路43aの冷却水出口側(ポンプ42の吐出側)に位置する部位とが接続される第2接続モードに切り替え可能になっている。四方弁47が第2接続モードに切り替えることによって、第1ポンプ11から吐出された冷却水がラジエータバイパス流路45、エンジン冷却流路43a、第1連通路48の順に流れて第1冷却回路C1に流入して第1ポンプ11に吸入される。 In the present embodiment, the engine cooling flow path 43 a is disposed in a portion of the circulation flow path 41 that extends from the discharge portion of the pump 42 to the radiator 44. The radiator bypass passage 45 is connected to the circulation passage 41 so that the heat medium flowing out from the engine cooling passage 43 a bypasses the radiator 44 and is sucked into the pump 42. The first communication passage 48 is connected to a portion of the circulation passage 41 that extends from the discharge portion of the pump 42 to the engine cooling passage 43a. The four-way valve 47 includes a portion from the discharge side of the first pump 11 to the four-way valve 47 in the first cooling circuit C1 and a coolant outlet side of the engine cooling passage 43a in the radiator bypass passage 45 rather than the four-way valve 47. It is possible to switch to the second connection mode in which the part located on the (the discharge side of the pump 42) is connected. When the four-way valve 47 is switched to the second connection mode, the cooling water discharged from the first pump 11 flows in the order of the radiator bypass flow path 45, the engine cooling flow path 43a, and the first communication path 48, and thereby the first cooling circuit C1. And is sucked into the first pump 11.
 これによると、四方弁47が第2接続モードに切り替えることによって、第1冷却回路C1において冷却対象機器34を熱源として加熱された冷却水を利用してエンジン43を暖機できる。 According to this, when the four-way valve 47 is switched to the second connection mode, the engine 43 can be warmed up using the cooling water heated by using the cooling target device 34 as a heat source in the first cooling circuit C1.
 本実施形態では、サーモスタット46は、ラジエータバイパス流路45のうちポンプ42の吸入部側の端部と循環流路41との接続部に配置されている。サーモスタット46は、冷却水の温度が所定温度を上回っている場合、エンジン冷却流路43aから流出した冷却水がラジエータ44を流れ、冷却水の温度が所定温度を下回っている場合、エンジン冷却流路43aから流出した冷却水がラジエータバイパス流路45を流れるように冷却水流路を切り替える。そして、制御装置50(切替制御部50a)は、第1接続モード時に冷却水の温度が所定温度を上回ったと判断した場合、非接続モードに切り替えるように四方弁47の作動を制御する。 In the present embodiment, the thermostat 46 is disposed in the radiator bypass passage 45 at the connection portion between the end portion on the suction portion side of the pump 42 and the circulation passage 41. When the temperature of the cooling water is higher than a predetermined temperature, the thermostat 46 flows through the radiator 44 when the cooling water flowing out from the engine cooling flow path 43a. When the temperature of the cooling water is lower than the predetermined temperature, the thermostat 46 The cooling water flow path is switched so that the cooling water flowing out from 43a flows through the radiator bypass flow path 45. And the control apparatus 50 (switch control part 50a) controls the action | operation of the four-way valve 47 so that it may switch to non-connection mode, when it is judged that the temperature of cooling water exceeded predetermined temperature at the time of 1st connection mode.
 これによると、第1接続モード時に冷却水の温度が所定温度を上回った場合、第1冷却回路C1における冷却水の循環が妨げられることを回避できる。 According to this, when the temperature of the cooling water exceeds the predetermined temperature in the first connection mode, it is possible to prevent the circulation of the cooling water in the first cooling circuit C1 from being hindered.
 しかしながら、第1接続モード時に第1冷却回路C1における冷却水の温度が所定温度を上回ると、サーモスタット46は、冷却水がラジエータバイパス流路45を流れる冷却水流路に切り替えるので、第1冷却回路C1における冷却水の循環が妨げられる。本実施形態では、第1接続モード時に冷却水の温度が所定温度を上回ったと判断した場合、非接続モードに切り替えるので、第1冷却回路C1における冷却水の循環が妨げられることを回避できる。 However, when the temperature of the cooling water in the first cooling circuit C1 exceeds the predetermined temperature in the first connection mode, the thermostat 46 switches to the cooling water flow path through which the cooling water flows through the radiator bypass flow path 45, and thus the first cooling circuit C1. The circulation of the cooling water in is prevented. In the present embodiment, when it is determined that the temperature of the cooling water has exceeded the predetermined temperature in the first connection mode, switching to the non-connection mode is performed, so that it is possible to prevent the circulation of the cooling water in the first cooling circuit C1 from being hindered.
 なお、制御装置50(切替制御部50a)は、第1接続モード時に冷却水の温度に関連する温度が所定温度を上回ったと判断した場合、非接続モードに切り替えるように四方弁47の作動を制御してもよい。 The control device 50 (the switching control unit 50a) controls the operation of the four-way valve 47 so as to switch to the non-connection mode when it is determined that the temperature related to the temperature of the cooling water exceeds the predetermined temperature in the first connection mode. May be.
 本実施形態では、制御装置50(切替制御部50a)は、第1冷却回路C1における冷却水の温度が所定温度を下回っていると判断した場合、第1接続モードを実施するように四方弁47の作動を制御する。 In the present embodiment, when the control device 50 (switching control unit 50a) determines that the temperature of the cooling water in the first cooling circuit C1 is lower than a predetermined temperature, the four-way valve 47 is configured to perform the first connection mode. Control the operation of
 これにより、冷却水が低温で圧損が大きくなる場合に第1ポンプ11とポンプ42とを直列に接続することができ、ひいては冷却水の流量低下を抑制することができる。 Thus, when the cooling water is low temperature and the pressure loss increases, the first pump 11 and the pump 42 can be connected in series, and as a result, a decrease in the flow rate of the cooling water can be suppressed.
 本実施形態では、第1ラジエータ15および冷却水冷却器30が第1冷却回路C1に配置されており、制御装置50(切替制御部50a)は、第1ラジエータ15において冷却水が外気から吸熱するヒートポンプ運転時であり、かつ第1冷却回路C1における冷却水の温度が所定温度以下であると判断した場合、第1接続モードを実施するように四方弁47の作動を制御する。 In this embodiment, the 1st radiator 15 and the cooling water cooler 30 are arrange | positioned at the 1st cooling circuit C1, and the control apparatus 50 (switching control part 50a) absorbs heat from outside air in the 1st radiator 15. When it is during heat pump operation and when it is determined that the temperature of the cooling water in the first cooling circuit C1 is equal to or lower than the predetermined temperature, the operation of the four-way valve 47 is controlled so as to implement the first connection mode.
 これにより、冷却水が極低温で圧損が非常に大きくなる場合に第1ポンプ11とポンプ42とを直列に接続することができ、ひいては冷却水の流量低下を抑制することができる。 This makes it possible to connect the first pump 11 and the pump 42 in series when the cooling water is at a very low temperature and the pressure loss becomes very large, and as a result, a decrease in the flow rate of the cooling water can be suppressed.
 なお、制御装置50(切替制御部50a)は、第1冷却回路C1における冷却水の温度に関連する温度が所定温度を下回っていると判断した場合、第1接続モードを実施するように四方弁47の作動を制御してもよい。
(第2実施形態)
 上記第1実施形態では、第1冷却回路C1と冷却回路40との連通状態の切り替えを四方弁47によって行うが、本第2実施形態では、図6-図11に示すように、第1冷却回路C1と冷却回路40との連通状態の切り替えを五方弁(切替部)60によって行う。
Note that when the control device 50 (the switching control unit 50a) determines that the temperature related to the temperature of the cooling water in the first cooling circuit C1 is lower than the predetermined temperature, the four-way valve is configured to perform the first connection mode. The operation of 47 may be controlled.
(Second Embodiment)
In the first embodiment, the communication state between the first cooling circuit C1 and the cooling circuit 40 is switched by the four-way valve 47. In the second embodiment, as shown in FIGS. The communication state between the circuit C1 and the cooling circuit 40 is switched by a five-way valve (switching unit) 60.
 図6に示すように、五方弁60には、第2連通路61の一端が接続されている。第2連通路61の他端は、冷却回路40のうちラジエータ44とサーモスタット46との間に接続されている。したがって、第2連通路61は、冷却回路40と第1流路13とを連通する連通部(第2連通部)を構成している。 As shown in FIG. 6, one end of the second communication path 61 is connected to the five-way valve 60. The other end of the second communication path 61 is connected between the radiator 44 and the thermostat 46 in the cooling circuit 40. Accordingly, the second communication path 61 constitutes a communication part (second communication part) that communicates the cooling circuit 40 and the first flow path 13.
 五方弁60は、第1流路13とラジエータバイパス流路45と第2連通路61との接続状態を、図7に示す非接続モード、図8に示す第1接続モード、図9に示す第2接続モード、および図10に示す第3接続モードに切り替える。 The five-way valve 60 shows the connection state of the first flow path 13, the radiator bypass flow path 45, and the second communication path 61 in the non-connection mode shown in FIG. 7, the first connection mode shown in FIG. 8, and FIG. 9. Switching to the second connection mode and the third connection mode shown in FIG.
 図7に示す非接続モードでは、五方弁60は、第1流路13とラジエータバイパス流路45と第2連通路61とを接続させない。 In the non-connection mode shown in FIG. 7, the five-way valve 60 does not connect the first flow path 13, the radiator bypass flow path 45, and the second communication path 61.
 図8に示す第1接続モードでは、五方弁60は、第1流路13のうち第1ポンプ11の吐出側から五方弁60に至る部位と、ラジエータバイパス流路45のうちポンプ42の吸入側から五方弁60に至る部位とを接続させる。 In the first connection mode shown in FIG. 8, the five-way valve 60 includes a portion of the first flow path 13 that extends from the discharge side of the first pump 11 to the five-way valve 60 and a pump 42 of the radiator bypass flow path 45. The part from the suction side to the five-way valve 60 is connected.
 図9に示す第2接続モードでは、五方弁60は、第1流路13のうち第1ポンプ11の吐出側から五方弁60に至る部位と、ラジエータバイパス流路45のうちエンジン43の冷却水出口側(第1ポンプ11の吐出側)から五方弁60に至る部位とを接続させる。 In the second connection mode shown in FIG. 9, the five-way valve 60 includes a portion of the first flow path 13 from the discharge side of the first pump 11 to the five-way valve 60 and a portion of the radiator bypass flow path 45 of the engine 43. The part from the cooling water outlet side (discharge side of the first pump 11) to the five-way valve 60 is connected.
 図10に示す第3接続モードでは、五方弁60は、第1流路13のうち第1ポンプ11の吐出側から五方弁60に至る部位と第2連通路61とを接続させる。さらに、五方弁60は、第1流路13のうち第1切替弁17側から五方弁60に至る部位と、ラジエータバイパス流路45のうちエンジン43の冷却水出口側(第1ポンプ11の吐出側)から五方弁60に至る部位とを接続させる。 In the third connection mode shown in FIG. 10, the five-way valve 60 connects the portion of the first flow path 13 from the discharge side of the first pump 11 to the five-way valve 60 and the second communication path 61. Further, the five-way valve 60 includes a portion from the first switching valve 17 side to the five-way valve 60 in the first flow path 13 and a cooling water outlet side of the engine 43 in the radiator bypass flow path 45 (first pump 11). To the five-way valve 60 from the discharge side).
 五方弁60の作動は、制御装置50によって制御される。制御装置50が五方弁60の作動を制御することによって、第1冷却回路C1と冷却回路40との接続状態が、図7に示す非接続モード、図8に示す第1接続モード、図9に示す第2接続モード、および図10に示す第3接続モードに切り替えられる。 The operation of the five-way valve 60 is controlled by the control device 50. When the control device 50 controls the operation of the five-way valve 60, the connection state between the first cooling circuit C1 and the cooling circuit 40 is changed to the non-connection mode shown in FIG. 7, the first connection mode shown in FIG. And the third connection mode shown in FIG. 10.
 図7に示す非接続モードでは、第1冷却回路C1は、冷却回路40と第1連通路48のみで連通する。そのため、第1冷却回路C1と冷却回路40との間での冷却水の定常的な循環は発生しない。 7, the first cooling circuit C <b> 1 communicates with the cooling circuit 40 only through the first communication path 48. Therefore, steady circulation of the cooling water does not occur between the first cooling circuit C1 and the cooling circuit 40.
 このとき、上記第1実施形態と同様に、冷却回路40の冷却水温度に応じて、サーモスタット46が、エンジン43から流出した冷却水がラジエータ44を流れる場合と、ラジエータバイパス流路45を流れる場合とを切り替える。 At this time, as in the first embodiment, when the thermostat 46 flows through the radiator 44 and the radiator bypass passage 45 according to the cooling water temperature of the cooling circuit 40, the cooling water flowing out from the engine 43 flows through the radiator 44. And switch.
 図8に示す第1接続モードでは、第1ポンプ11から吐出された冷却水は、五方弁60およびサーモスタット46を介してポンプ42に吸入され、ポンプ42から吐出された冷却水は、第1連通路48を流れて第1流路13に流入する。したがって、第1冷却回路C1において、第1ポンプ11およびポンプ42を直列に接続して冷却水を循環させることができる。したがって、第1接続モードをポンプ直列モードと表現することができる。 In the first connection mode shown in FIG. 8, the cooling water discharged from the first pump 11 is sucked into the pump 42 via the five-way valve 60 and the thermostat 46, and the cooling water discharged from the pump 42 is the first It flows through the communication path 48 and flows into the first flow path 13. Therefore, in the first cooling circuit C1, the first pump 11 and the pump 42 can be connected in series to circulate the cooling water. Therefore, the first connection mode can be expressed as a pump serial mode.
 ここで、上記第1実施形態と同様に、第1接続モードにおいて第1冷却回路C1における冷却水の温度が所定温度を超えた場合、制御装置50は第1接続モードを解除して非接続モードに移行するように五方弁60の作動を制御する。 Here, as in the first embodiment, when the temperature of the cooling water in the first cooling circuit C1 exceeds the predetermined temperature in the first connection mode, the control device 50 cancels the first connection mode and disconnects the connection mode. The operation of the five-way valve 60 is controlled so as to shift to.
 図9に示す第2接続モードでは、第1ポンプ11から吐出された冷却水は、五方弁60を介してエンジン43に流入し、エンジン43から流出した冷却水は、第1連通路48を流れて第1流路13に流入する。したがって、第1冷却回路C1において、種々の温度調整対象機器を熱源として加熱された冷却水をエンジン43に循環させて、エンジン43を暖機することができる。したがって、第2接続モードをエンジン暖機モードと表現することができる。 In the second connection mode shown in FIG. 9, the cooling water discharged from the first pump 11 flows into the engine 43 through the five-way valve 60, and the cooling water flowing out from the engine 43 passes through the first communication path 48. Flows into the first flow path 13. Therefore, in the first cooling circuit C1, the engine 43 can be warmed up by circulating the cooling water heated using the various temperature adjustment target devices as the heat source. Therefore, the second connection mode can be expressed as an engine warm-up mode.
 なお、上記第1実施形態と同様に、エンジン暖機モードでは、第2切替弁18は入口18aを閉じて第3出口18cを開けることによって、冷却水が第1ラジエータ15をバイパスしてラジエータバイパス流路19を流れるようにするのが好ましい。 As in the first embodiment, in the engine warm-up mode, the second switching valve 18 closes the inlet 18a and opens the third outlet 18c, whereby the coolant bypasses the first radiator 15 and radiator bypass. It is preferable to flow through the flow path 19.
 図10に示す第3接続モードでは、第1ポンプ11から吐出された冷却水は、五方弁60および第2連通路61を介してラジエータ44に流入する。ラジエータ44から流出した冷却水は、ラジエータバイパス流路45および五方弁60を流れて第1流路13に流入する経路と、エンジン43および第1連通路48を流れて第1流路13に流入する経路とに分岐する。この2つの経路に分岐する比率は、各経路の圧損比率に従うこととなる。 In the third connection mode shown in FIG. 10, the cooling water discharged from the first pump 11 flows into the radiator 44 through the five-way valve 60 and the second communication path 61. Cooling water flowing out of the radiator 44 flows through the radiator bypass flow path 45 and the five-way valve 60 and flows into the first flow path 13, and flows through the engine 43 and the first communication path 48 to the first flow path 13. Branches into the inflow path. The ratio of branching to these two paths follows the pressure loss ratio of each path.
 したがって、第1ラジエータ15およびラジエータ44を直列的に利用することができるので、第1ラジエータ15およびラジエータ44における放熱量の向上や、吸熱量の向上を実現することができる。したがって、第3接続モードをラジエータ直列モードと表現することができる。 Therefore, since the first radiator 15 and the radiator 44 can be used in series, the heat radiation amount and the heat absorption amount in the first radiator 15 and the radiator 44 can be improved. Therefore, the third connection mode can be expressed as a radiator series mode.
 ここで、ラジエータ直列モードおよびポンプ直列モードの切替条件を説明する。第1冷却回路C1の冷却水温度が閾値(所定温度)よりも低い場合、ポンプ直列モードに切り替える。第1冷却回路C1の冷却水温度が低いと冷却水の粘性が高くなるので、ラジエータ直列モードにすると冷却水の圧力損失が増加して冷却水流量が低下し、ひいては熱交換器内の温度分布が大きくなって性能の低下を招くからである。 Here, the switching conditions of the radiator series mode and the pump series mode will be described. When the cooling water temperature of the first cooling circuit C1 is lower than the threshold value (predetermined temperature), the pump is switched to the pump serial mode. When the cooling water temperature of the first cooling circuit C1 is low, the viscosity of the cooling water increases. Therefore, when the radiator series mode is set, the pressure loss of the cooling water increases and the flow rate of the cooling water decreases, and thus the temperature distribution in the heat exchanger. This is because this increases the performance.
 冷却水温度の閾値(所定温度)は、第1ポンプ11の特性による。すなわち、第1ポンプ11を最大出力にしても必要な冷却水流量を確保できなくなるときの冷却水温度とするのが望ましい。 The cooling water temperature threshold (predetermined temperature) depends on the characteristics of the first pump 11. That is, it is desirable to set the cooling water temperature at the time when the required cooling water flow rate cannot be secured even when the first pump 11 is at the maximum output.
 一方、第1冷却回路C1の冷却水温度が閾値(所定温度)よりも高い場合、ラジエータ直列モードおよびポンプ直列モードのうち放熱量が高くなる方のモードに切り替える。 On the other hand, when the cooling water temperature of the first cooling circuit C1 is higher than the threshold value (predetermined temperature), the mode is switched to the mode in which the heat radiation amount is higher between the radiator series mode and the pump series mode.
 具体的には、予め図11に示すグラフを、冷却水温度をパラメータとして多数取得することによって制御マップを作成する。図11に示すグラフは、第1冷却回路C1の冷却水流量と放熱量との関係を、ラジエータ直列構成時およびラジエータ単独構成時について表したグラフである。 Specifically, a control map is created by acquiring a large number of graphs shown in FIG. 11 in advance using the cooling water temperature as a parameter. The graph shown in FIG. 11 is a graph showing the relationship between the cooling water flow rate and the heat radiation amount of the first cooling circuit C1 when the radiator is configured in series and when the radiator is configured independently.
 図11に示すグラフにおいて、ラジエータ直列構成時とは、第1ラジエータ15およびラジエータ44が第1冷却回路C1に直列に接続されている時のことである。 In the graph shown in FIG. 11, the time when the radiator is configured in series means that the first radiator 15 and the radiator 44 are connected in series to the first cooling circuit C1.
 図11に示すグラフにおいて、ラジエータ単独構成時とは、第1ラジエータ15は第1冷却回路C1に接続されているがラジエータ44は第1冷却回路C1に接続されていない時のことである。 In the graph shown in FIG. 11, the time when the radiator alone is configured means that the first radiator 15 is connected to the first cooling circuit C1, but the radiator 44 is not connected to the first cooling circuit C1.
 図11に示すグラフにおいて、ポンプ直列構成時とは、第1ポンプ11およびポンプ42が第1冷却回路C1に直列に接続されている時のことである。 In the graph shown in FIG. 11, the time of the pump series configuration means that the first pump 11 and the pump 42 are connected in series to the first cooling circuit C1.
 図11に示すグラフにおいて、ポンプ単独構成時とは、第1ポンプ11は第1冷却回路C1に接続されているがポンプ42は第1冷却回路C1に接続されていない時のことである。 In the graph shown in FIG. 11, when the pump is configured alone, the first pump 11 is connected to the first cooling circuit C1, but the pump 42 is not connected to the first cooling circuit C1.
 図11に示すグラフにおいて、ラジエータ直列構成時かつポンプ単独構成時の冷却水流量が、ラジエータ単独構成時かつポンプ単独構成時の冷却水流量よりも小さくなる理由は、第1ラジエータ15およびラジエータ44が直列になることに伴って圧力損失が増加し、その結果、第1ポンプ11の吐出流量が低下するからである。 In the graph shown in FIG. 11, the reason why the coolant flow rate in the case of the radiator series configuration and the pump single configuration is smaller than the coolant flow rate in the case of the radiator single configuration and the pump single configuration is that the first radiator 15 and the radiator 44 are This is because the pressure loss increases with the series connection, and as a result, the discharge flow rate of the first pump 11 decreases.
 図11に示すグラフの曲線は、第1ラジエータ15およびラジエータ44の仕様や外気温等によって異なる。第1ラジエータ15およびラジエータ44の仕様は車両毎に異なる。第1ポンプ11およびポンプ42の出力値も車両毎に異なる。 The curve of the graph shown in FIG. 11 varies depending on the specifications of the first radiator 15 and the radiator 44, the outside temperature, and the like. The specifications of the first radiator 15 and the radiator 44 are different for each vehicle. The output values of the first pump 11 and the pump 42 are also different for each vehicle.
 本実施形態によると、第1接続モードおよび第2接続モードでは上記第1実施形態と同様の作用効果を奏することができる。 According to the present embodiment, the same effects as those of the first embodiment can be achieved in the first connection mode and the second connection mode.
 さらに、本実施形態では、第1ラジエータ15は第1冷却回路C1に配置されており、第2連通路61は、循環流路41のうちラジエータ44からポンプ42の吸入部に至る部位と五方弁60とを連通させており、第1連通路48は、循環流路41のうちポンプ42の吐出部からラジエータ44に至る部位に接続されており、五方弁60は、第1冷却回路C1のうち第1ポンプ11の吐出側から五方弁60に至る部位と第2連通路61とが接続される第3接続モードに切り替え可能になっており、五方弁60が第3接続モードに切り替えることによって、第1ポンプ11から吐出された冷却水が第2連通路61、ラジエータ44、第1連通路48の順に流れて第1冷却回路C1に流入して第1ポンプ11に吸入される。 Furthermore, in this embodiment, the 1st radiator 15 is arrange | positioned at the 1st cooling circuit C1, and the 2nd communicating path 61 has a part from the radiator 44 to the suction | inhalation part of the pump 42 among the circulation flow paths 41, and five directions. The first communication passage 48 is connected to a portion of the circulation passage 41 from the discharge portion of the pump 42 to the radiator 44, and the five-way valve 60 is connected to the first cooling circuit C1. Can be switched to the third connection mode in which the portion from the discharge side of the first pump 11 to the five-way valve 60 and the second communication passage 61 are connected, and the five-way valve 60 is switched to the third connection mode. By switching, the cooling water discharged from the first pump 11 flows in the order of the second communication path 61, the radiator 44, and the first communication path 48, flows into the first cooling circuit C 1, and is sucked into the first pump 11. .
 これによると、五方弁60が第3接続モードに切り替えることによって、第1冷却回路C1の第1ラジエータ15と冷却回路40のラジエータ44とを直列的に用いて第1冷却回路C1の冷却水を冷却することができる。そのため、第1ラジエータ15およびラジエータ44における放熱量の向上や、吸熱量の向上を実現することができる。
(第3実施形態)
 上記第2実施形態では、五方弁60とサーモスタット46とが別個に設けられているが、本第3実施形態では、図12に示すように、上記第2実施形態におけるサーモスタット46の機能を包含する五方弁65が設けられている。
According to this, when the five-way valve 60 is switched to the third connection mode, the first radiator 15 of the first cooling circuit C1 and the radiator 44 of the cooling circuit 40 are used in series to cool the cooling water of the first cooling circuit C1. Can be cooled. Therefore, it is possible to improve the heat dissipation amount and the heat absorption amount in the first radiator 15 and the radiator 44.
(Third embodiment)
In the second embodiment, the five-way valve 60 and the thermostat 46 are provided separately, but the third embodiment includes the function of the thermostat 46 in the second embodiment as shown in FIG. A five-way valve 65 is provided.
 五方弁65は、ラジエータバイパス流路45の下流側端部に配置されている。五方弁65は、第1流路13のうち第1ポンプ11と第1切替弁17の第1入口17aとの間の部位に配置されている。五方弁65は、冷却回路40の循環流路41のうちラジエータ44よりもポンプ42の吸入側に位置する部位に配置されている。つまり、五方弁65は、ラジエータバイパス流路45のうちポンプ42の吸入部に近い側の端部と、循環流路41との接続部J2に配置されている。本実施形態では、上記第2実施形態における第2連通路61は設けられていない。 The five-way valve 65 is disposed at the downstream end of the radiator bypass passage 45. The five-way valve 65 is disposed in a portion of the first flow path 13 between the first pump 11 and the first inlet 17 a of the first switching valve 17. The five-way valve 65 is disposed in a portion of the circulation channel 41 of the cooling circuit 40 that is located on the suction side of the pump 42 with respect to the radiator 44. In other words, the five-way valve 65 is disposed at the connection portion J2 between the circulation bypass passage 41 and the end of the radiator bypass passage 45 closer to the suction portion of the pump 42. In the present embodiment, the second communication path 61 in the second embodiment is not provided.
 五方弁65は、第1流路13と循環流路41とラジエータバイパス流路45との接続状態を、図13に示す第1非接続モード、図14に示す第2非接続モード、図15に示す第1接続モード、図16に示す第2接続モード、および図17に示す第3接続モードに切り替える。 The five-way valve 65 changes the connection state of the first flow path 13, the circulation flow path 41, and the radiator bypass flow path 45 to the first non-connection mode shown in FIG. 13, the second non-connection mode shown in FIG. Are switched to the first connection mode shown in FIG. 16, the second connection mode shown in FIG. 16, and the third connection mode shown in FIG.
 図13に示す第1非接続モードでは、五方弁65は、第1流路13と循環流路41とラジエータバイパス流路45とを接続させず、第1流路13をそのまま連通させるとともに、循環流路41をそのまま連通させる。 In the first non-connection mode shown in FIG. 13, the five-way valve 65 does not connect the first flow path 13, the circulation flow path 41, and the radiator bypass flow path 45, and communicates the first flow path 13 as it is. The circulation channel 41 is communicated as it is.
 図14に示す第2非接続モードでは、五方弁65は、第1流路13をそのまま連通させるとともに、循環流路41のうちポンプ42の吸入側から五方弁65に至る部位とラジエータバイパス流路45とを接続させる。 In the second non-connection mode shown in FIG. 14, the five-way valve 65 communicates the first flow path 13 as it is, and a part of the circulation flow path 41 from the suction side of the pump 42 to the five-way valve 65 and a radiator bypass. The flow path 45 is connected.
 図15に示す第1接続モードでは、五方弁65は、第1流路13のうち第1ポンプ11の吐出側から五方弁65に至る部位と、循環流路41のうちポンプ42の吸入側から五方弁65に至る部位とを接続させる。 In the first connection mode shown in FIG. 15, the five-way valve 65 includes a portion from the discharge side of the first pump 11 to the five-way valve 65 in the first flow path 13 and a suction of the pump 42 in the circulation flow path 41. The part from the side to the five-way valve 65 is connected.
 図16に示す第2接続モードでは、五方弁65は、第1流路13のうち第1ポンプ11の吐出側から五方弁65に至る部位と、ラジエータバイパス流路45と、循環流路41のうちラジエータ44の冷却水出口側(ポンプ42の吐出側)から五方弁65に至る部位とを接続させる。 In the second connection mode shown in FIG. 16, the five-way valve 65 includes a portion from the discharge side of the first pump 11 to the five-way valve 65 in the first flow path 13, a radiator bypass flow path 45, and a circulation flow path. 41 is connected to a portion from the cooling water outlet side of the radiator 44 (the discharge side of the pump 42) to the five-way valve 65.
 図17に示す第3接続モードでは、五方弁65は、第1流路13のう第1ポンプ11の吐出側から五方弁65に至る部位と、循環流路41のうちラジエータ44の冷却水出口側(ポンプ42の吐出側)から五方弁65に至る部位とを接続させる。 In the third connection mode shown in FIG. 17, the five-way valve 65 is configured to cool the radiator 44 in the circulation passage 41 and the portion of the first passage 13 from the discharge side of the first pump 11 to the five-way valve 65. A portion from the water outlet side (discharge side of the pump 42) to the five-way valve 65 is connected.
 五方弁65の作動は、制御装置50によって制御される。制御装置50が五方弁65の作動を制御することによって、第1冷却回路C1と冷却回路40との接続状態が、図13、図14に示す非接続モード、図15に示す第1接続モード、図16に示す第2接続モード、および図17に示す第3接続モードに切り替えられる。非接続モードとしては、図13に示す第1非接続モードおよび図14に示す第2非接続モードがある。 The operation of the five-way valve 65 is controlled by the control device 50. When the control device 50 controls the operation of the five-way valve 65, the connection state between the first cooling circuit C1 and the cooling circuit 40 is changed to the non-connection mode shown in FIGS. 13 and 14 and the first connection mode shown in FIG. The second connection mode shown in FIG. 16 and the third connection mode shown in FIG. 17 are switched. The non-connection mode includes a first non-connection mode shown in FIG. 13 and a second non-connection mode shown in FIG.
 図13に示す第1非接続モードでは、第1冷却回路C1は、冷却回路40と第1連通路48のみで連通するため、第1冷却回路C1と冷却回路40との間での冷却水の定常的な循環は発生しない。 In the first non-connection mode shown in FIG. 13, the first cooling circuit C <b> 1 communicates with the cooling circuit 40 only through the first communication path 48, so that the cooling water between the first cooling circuit C <b> 1 and the cooling circuit 40 is used. There is no steady circulation.
 このとき、ラジエータバイパス流路45は五方弁65によって閉じられるので、冷却回路40において、エンジン43から流出した冷却水はラジエータ44を流れる。したがって、第1非接続モードを非バイパスモードと表現することができる。 At this time, since the radiator bypass passage 45 is closed by the five-way valve 65, the cooling water flowing out from the engine 43 flows through the radiator 44 in the cooling circuit 40. Therefore, the first non-connection mode can be expressed as a non-bypass mode.
 図14に示す第2非接続モードでは、第1非接続モードと同様に、第1冷却回路C1は、冷却回路40と第1連通路48のみで連通する。そのため、第1冷却回路C1と冷却回路40との間での冷却水の定常的な循環は発生しない。 In the second non-connection mode shown in FIG. 14, the first cooling circuit C1 communicates with the cooling circuit 40 only by the first communication path 48, as in the first non-connection mode. Therefore, steady circulation of the cooling water does not occur between the first cooling circuit C1 and the cooling circuit 40.
 このとき、五方弁65は、循環流路41のうちポンプ42の吸入側から五方弁65に至る部位とラジエータバイパス流路45とを接続している。したがって、冷却回路40において、エンジン43から流出した冷却水はラジエータ44をバイパスしてラジエータバイパス流路45を流れる。したがって、第2非接続モードをバイパスモードと表現することができる。 At this time, the five-way valve 65 connects the radiator bypass passage 45 with a portion of the circulation passage 41 that extends from the suction side of the pump 42 to the five-way valve 65. Therefore, in the cooling circuit 40, the cooling water flowing out from the engine 43 bypasses the radiator 44 and flows through the radiator bypass passage 45. Therefore, the second non-connection mode can be expressed as a bypass mode.
 制御装置50は、第1非接続モード(非バイパスモード)において冷却回路40の冷却水温度が低くなったと判断した場合(60℃-80℃以下)、第2非接続モード(バイパスモード)に切り替える。一方、制御装置50は、第2非接続モード(バイパスモード)において冷却回路40の冷却水温度が高くなったと判断した場合(80℃以上)、第1非接続モード(非バイパスモード)に切り替えるように五方弁65の作動を制御する。 When it is determined that the cooling water temperature of the cooling circuit 40 has decreased in the first non-connection mode (non-bypass mode) (60 ° C. to 80 ° C. or less), the control device 50 switches to the second non-connection mode (bypass mode). . On the other hand, when it is determined that the cooling water temperature of the cooling circuit 40 has increased in the second non-connection mode (bypass mode) (80 ° C. or higher), the control device 50 switches to the first non-connection mode (non-bypass mode). The operation of the five-way valve 65 is controlled.
 これにより、冷却回路40の冷却水温度に応じてラジエータ44での放熱量を調整して、冷却回路40の冷却水温度を適正温度範囲に維持することができる。 Thus, the amount of heat released by the radiator 44 can be adjusted according to the cooling water temperature of the cooling circuit 40, and the cooling water temperature of the cooling circuit 40 can be maintained in an appropriate temperature range.
 また、制御装置50は、第1非接続モード(非バイパスモード)において第1ラジエータ15を流出した外気の温度から第1ラジエータ15に流入する前の外気の温度を減じた温度差が所定値を下回っていると判断した場合、第2非接続モード(バイパスモード)に切り替えるように五方弁65の作動を制御する。一方、制御装置50は、第2非接続モード(バイパスモード)において第1ラジエータ15を流出した外気の温度から第1ラジエータ15に流入する前の外気の温度を減じた温度差が所定値を上回っている場合、第1非接続モード(非バイパスモード)に切り替えるように五方弁65の作動を制御する。 Further, the control device 50 determines that the temperature difference obtained by subtracting the temperature of the outside air that has flowed out of the first radiator 15 from the temperature of the outside air that has flowed out of the first radiator 15 in the first non-connection mode (non-bypass mode) has a predetermined value. When it is determined that the value is lower, the operation of the five-way valve 65 is controlled so as to switch to the second non-connection mode (bypass mode). On the other hand, in the control device 50, in the second non-connection mode (bypass mode), the temperature difference obtained by subtracting the temperature of the outside air that has flowed out of the first radiator 15 from the temperature of the outside air before flowing into the first radiator 15 exceeds a predetermined value. If so, the operation of the five-way valve 65 is controlled to switch to the first non-connection mode (non-bypass mode).
 これにより、第1ラジエータ15での放熱量が多い場合、第1ラジエータ15の廃熱をラジエータ44へ空気を介して伝えることができるので、第1ラジエータ15の廃熱を利用してエンジン43を暖機することができる。 As a result, when the amount of heat released from the first radiator 15 is large, the waste heat of the first radiator 15 can be transmitted to the radiator 44 via the air, so that the engine 43 can be operated using the waste heat of the first radiator 15. Can warm up.
 図15に示す第1接続モードでは、第1ポンプ11から吐出された冷却水は、五方弁65を介してポンプ42に吸入され、ポンプ42から吐出された冷却水は、第1連通路48を流れて第1流路13に流入する。したがって、第1冷却回路C1において、第1ポンプ11およびポンプ42を直列に接続して冷却水を循環させることができる。したがって、第1接続モードをポンプ直列モードと表現することができる。 In the first connection mode shown in FIG. 15, the cooling water discharged from the first pump 11 is sucked into the pump 42 via the five-way valve 65, and the cooling water discharged from the pump 42 passes through the first communication path 48. And flows into the first flow path 13. Therefore, in the first cooling circuit C1, the first pump 11 and the pump 42 can be connected in series to circulate the cooling water. Therefore, the first connection mode can be expressed as a pump serial mode.
 図16に示す第2接続モードでは、第1ポンプ11から吐出された冷却水は、五方弁65およびラジエータバイパス流路45を介してエンジン43に流入し、エンジン43から流出した冷却水は、第1連通路48を流れて第1流路13に流入する。したがって、第1冷却回路C1において、種々の温度調整対象機器を熱源として加熱された冷却水をエンジン43に循環させて、エンジン43を暖機することができる。したがって、第2接続モードをエンジン暖機モードと表現することができる。 In the second connection mode shown in FIG. 16, the cooling water discharged from the first pump 11 flows into the engine 43 via the five-way valve 65 and the radiator bypass passage 45, and the cooling water flowing out from the engine 43 is It flows through the first communication path 48 and flows into the first flow path 13. Therefore, in the first cooling circuit C1, the engine 43 can be warmed up by circulating the cooling water heated using the various temperature adjustment target devices as the heat source. Therefore, the second connection mode can be expressed as an engine warm-up mode.
 なお、上記第1、第2実施形態と同様に、第2接続モードでは、第2切替弁18は入口18aを閉じて第3出口18cを開けることによって、冷却水が第1ラジエータ15をバイパスしてラジエータバイパス流路19を流れるようにするのが好ましい。 As in the first and second embodiments, in the second connection mode, the second switching valve 18 closes the inlet 18a and opens the third outlet 18c, whereby the coolant bypasses the first radiator 15. It is preferable to flow through the radiator bypass channel 19.
 第2接続モードでは、ラジエータ44にも冷却水が流れるが、通常、ラジエータ44の圧損はラジエータバイパス流路45の圧損に比べて格段に高いので、ラジエータ44には冷却水は微少量しか流れないこととなる。 In the second connection mode, the cooling water also flows through the radiator 44. Normally, however, only a very small amount of cooling water flows through the radiator 44 because the pressure loss of the radiator 44 is much higher than the pressure loss of the radiator bypass passage 45. It will be.
 第2接続モードにおいて、ラジエータ44を流れる冷却水の温度が外気の温度以上である場合、ラジエータ44へ外気の送風量を制限するのが好ましい。具体的には、制御装置50が室外送風機16を停止または逆回転させたり、ラジエータ44に外気を導く導風路を導風路開閉部材(図示せず)によって閉塞したりすればよい。 In the second connection mode, when the temperature of the cooling water flowing through the radiator 44 is equal to or higher than the temperature of the outside air, it is preferable to limit the amount of outside air blown to the radiator 44. Specifically, the control device 50 may stop or reversely rotate the outdoor blower 16 or block an air guide path that guides outside air to the radiator 44 by an air guide path opening / closing member (not shown).
 図17に示す第3接続モードでは、第1ポンプ11から吐出された冷却水は、五方弁65を介してラジエータ44に流入する。ラジエータ44から流出した冷却水は、エンジン43および第1連通路48を流れて第1流路13に流入する。 In the third connection mode shown in FIG. 17, the cooling water discharged from the first pump 11 flows into the radiator 44 through the five-way valve 65. The cooling water flowing out from the radiator 44 flows through the engine 43 and the first communication passage 48 and flows into the first flow path 13.
 したがって、第1ラジエータ15およびラジエータ44を直列的に利用することができるので、第1ラジエータ15およびラジエータ44における放熱量の向上や、吸熱量の向上を実現することができる。したがって、第3接続モードをラジエータ直列モードと表現することができる。 Therefore, since the first radiator 15 and the radiator 44 can be used in series, the heat radiation amount and the heat absorption amount in the first radiator 15 and the radiator 44 can be improved. Therefore, the third connection mode can be expressed as a radiator series mode.
 本実施形態によると、上記第2実施形態と同様の作用効果を奏することができる。さらに、本実施形態によると、五方弁65が上記第2実施形態におけるサーモスタット46の機能を包含しているので、サーモスタット46を廃止して部品点数を削減できる。 According to the present embodiment, the same operational effects as those of the second embodiment can be obtained. Further, according to the present embodiment, since the five-way valve 65 includes the function of the thermostat 46 in the second embodiment, the thermostat 46 can be eliminated and the number of parts can be reduced.
 本実施形態では、五方弁65は、循環流路41の途中、および第1冷却回路C1の途中に配置されている。五方弁65は、第1冷却回路C1とラジエータバイパス流路45とが接続されない非接続モードと、第1冷却回路C1のうち第1ポンプ11の吐出側から五方弁65に至る部位と循環流路41のうちポンプ42の吸入側から五方弁65に至る部位とが接続される第1接続モードとに切り替え可能になっている。第1連通路48は、循環流路41に接続されている。 In this embodiment, the five-way valve 65 is disposed in the middle of the circulation channel 41 and in the middle of the first cooling circuit C1. The five-way valve 65 circulates in a non-connected mode in which the first cooling circuit C1 and the radiator bypass passage 45 are not connected, and a part of the first cooling circuit C1 from the discharge side of the first pump 11 to the five-way valve 65. The flow path 41 can be switched to the first connection mode in which the part from the suction side of the pump 42 to the five-way valve 65 is connected. The first communication path 48 is connected to the circulation channel 41.
 これによると、五方弁65が第1接続モードに切り替えることによって、第1ポンプ11から吐出された冷却水が循環流路41を流れてポンプ42に吸入され、ポンプ42から吐出された冷却水が第1連通路48を通じて第1冷却回路C1に流入して第1ポンプ11に吸入される。したがって、第1冷却回路C1の第1ポンプ11と冷却回路40のポンプ42とを直列的に用いて第1冷却回路C1の冷却水を循環させることができる。 According to this, when the five-way valve 65 is switched to the first connection mode, the cooling water discharged from the first pump 11 flows through the circulation channel 41 and is sucked into the pump 42, and the cooling water discharged from the pump 42. Flows into the first cooling circuit C <b> 1 through the first communication passage 48 and is sucked into the first pump 11. Therefore, the cooling water of the first cooling circuit C1 can be circulated using the first pump 11 of the first cooling circuit C1 and the pump 42 of the cooling circuit 40 in series.
 本実施形態では、エンジン冷却流路43aは、循環流路41のうちポンプ42の吐出部からラジエータ44に至る部位に配置されている。五方弁65は、ラジエータバイパス流路45のうちポンプ42の吸入部に近い側の端部と循環流路41との接続部に配置されている。ラジエータバイパス流路45のうちポンプ42の吐出部に近い側の端部は、循環流路41のうちエンジン冷却流路43aからポンプ42の吸入部側へ向かってラジエータ44に至る部位に接続されている。第1連通路48は、循環流路41のうちポンプ42の吐出部からエンジン冷却流路43aに至る部位に接続されている。五方弁65は、第1冷却回路C1のうち第1ポンプ11の吐出側から五方弁65に至る部位とラジエータバイパス流路45とが接続される第2接続モードに切り替え可能である。五方弁65が第2接続モードに切り替えることによって、第1ポンプ11から吐出された冷却水がラジエータバイパス流路45、エンジン冷却流路43a、第1連通路48の順に流れて第1冷却回路C1に流入して第1ポンプ11に吸入される。 In the present embodiment, the engine cooling flow path 43 a is disposed in a portion of the circulation flow path 41 that extends from the discharge portion of the pump 42 to the radiator 44. The five-way valve 65 is disposed at a connection portion between the end of the radiator bypass passage 45 on the side close to the suction portion of the pump 42 and the circulation passage 41. The end of the radiator bypass passage 45 closer to the discharge portion of the pump 42 is connected to a portion of the circulation passage 41 that reaches the radiator 44 from the engine cooling passage 43a toward the suction portion of the pump 42. Yes. The first communication passage 48 is connected to a portion of the circulation passage 41 that extends from the discharge portion of the pump 42 to the engine cooling passage 43a. The five-way valve 65 can be switched to a second connection mode in which a portion from the discharge side of the first pump 11 to the five-way valve 65 in the first cooling circuit C1 and the radiator bypass passage 45 are connected. When the five-way valve 65 is switched to the second connection mode, the cooling water discharged from the first pump 11 flows in the order of the radiator bypass flow path 45, the engine cooling flow path 43a, and the first communication path 48, and thereby the first cooling circuit. It flows into C1 and is sucked into the first pump 11.
 これによると、五方弁65が第2接続モードに切り替えることによって、第1冷却回路C1において冷却対象機器34を熱源として加熱された冷却水を利用してエンジン43を暖機できる。 According to this, when the five-way valve 65 switches to the second connection mode, the engine 43 can be warmed up using the cooling water heated by using the cooling target device 34 as a heat source in the first cooling circuit C1.
 本実施形態では、第1ラジエータ15は第1冷却回路C1に配置されている。第1連通路48は、循環流路41のうちポンプ42の吐出部からラジエータ44に至る部位に接続されている。五方弁65は、第1冷却回路C1のうち第1ポンプ11の吐出側から五方弁65に至る部位と、循環流路41のうちラジエータ44からポンプ42の吸入部側へ向かって五方弁65に至る部位とが接続される第3接続モードに切り替え可能になっている。五方弁65が第3接続モードに切り替えることによって、第1ポンプ11から吐出された冷却水がラジエータ44、第1連通路48の順に流れて第1冷却回路C1に流入して第1ポンプ11に吸入される。 In the present embodiment, the first radiator 15 is disposed in the first cooling circuit C1. The first communication passage 48 is connected to a portion of the circulation flow path 41 that extends from the discharge portion of the pump 42 to the radiator 44. The five-way valve 65 includes five parts from the discharge side of the first pump 11 to the five-way valve 65 in the first cooling circuit C1 and from the radiator 44 to the suction part side of the pump 42 in the circulation passage 41. It is possible to switch to the third connection mode in which the part reaching the valve 65 is connected. When the five-way valve 65 is switched to the third connection mode, the cooling water discharged from the first pump 11 flows in the order of the radiator 44 and the first communication path 48 and flows into the first cooling circuit C1 and flows into the first cooling circuit C1. Inhaled.
 これによると、五方弁65が第3接続モードに切り替えることによって、第1冷却回路C1の第1ラジエータ15と冷却回路40のラジエータ44とを直列的に用いて第1冷却回路C1の冷却水を冷却することができる。そのため、第1ラジエータ15およびラジエータ44における放熱量の向上や、吸熱量の向上を実現することができる。 According to this, when the five-way valve 65 is switched to the third connection mode, the first radiator 15 of the first cooling circuit C1 and the radiator 44 of the cooling circuit 40 are used in series to cool the cooling water of the first cooling circuit C1. Can be cooled. Therefore, it is possible to improve the heat dissipation amount and the heat absorption amount in the first radiator 15 and the radiator 44.
 本実施形態では、五方弁65は、ラジエータバイパス流路45と循環流路41とが接続されない非バイパスモードと、循環流路41のうち五方弁65からポンプ42の吸入部に至る部位とラジエータバイパス流路45とが接続されるバイパスモードとに切り替え可能になっている。 In the present embodiment, the five-way valve 65 includes a non-bypass mode in which the radiator bypass passage 45 and the circulation passage 41 are not connected, and a portion of the circulation passage 41 that extends from the five-way valve 65 to the suction portion of the pump 42. Switching to a bypass mode in which the radiator bypass flow path 45 is connected is possible.
 これにより、エンジン43から流出した冷却水がラジエータ44を流れる場合と、エンジン43から流出した冷却水がラジエータバイパス流路45を流れる場合とを切り替えることができる。すなわち、五方弁65に、サーモスタットの機能を持たせることができる。 Thereby, it is possible to switch between the case where the cooling water flowing out from the engine 43 flows through the radiator 44 and the case where the cooling water flowing out from the engine 43 flows through the radiator bypass passage 45. That is, the five-way valve 65 can have a thermostat function.
 本実施形態では、第1ラジエータ15は第1冷却回路C1に配置されており、ラジエータ44は、第1ラジエータ15に対して外気の流れ方向下流側に配置されている。制御装置50(切替制御部50a)は、第1ラジエータ15を流出した外気の温度から第1ラジエータ15に流入する前の外気の温度を減じた温度差が所定値を下回っていると判断した場合、バイパスモードに切り替える。一方、制御装置50は、第1ラジエータ15を流出した外気の温度から第1ラジエータ15に流入する前の外気の温度を減じた温度差が所定値を上回っていると判断した場合、非バイパスモードに切り替えるように五方弁65の作動を制御する。 In the present embodiment, the first radiator 15 is disposed in the first cooling circuit C1, and the radiator 44 is disposed on the downstream side in the flow direction of the outside air with respect to the first radiator 15. When the control device 50 (the switching control unit 50a) determines that the temperature difference obtained by subtracting the temperature of the outside air before flowing into the first radiator 15 from the temperature of the outside air flowing out of the first radiator 15 is below a predetermined value. Switch to bypass mode. On the other hand, when the control device 50 determines that the temperature difference obtained by subtracting the temperature of the outside air before flowing into the first radiator 15 from the temperature of the outside air flowing out of the first radiator 15 exceeds a predetermined value, the non-bypass mode The operation of the five-way valve 65 is controlled so as to switch to.
 これにより、第1ラジエータ15での放熱量が多い場合、第1ラジエータ15の廃熱をラジエータ44へ空気を介して伝えることができる。したがって、第1ラジエータ15の廃熱を利用してエンジン43を暖機することができる。 Thereby, when there is much heat dissipation in the 1st radiator 15, the waste heat of the 1st radiator 15 can be transmitted to the radiator 44 via air. Therefore, the engine 43 can be warmed up using the waste heat of the first radiator 15.
 本実施形態では、制御装置50(送風量制御部50b)は、四方弁65が第2接続モードに切り替えており、かつラジエータ44を流れる冷却水の温度が外気の温度以上であると判断した場合、ラジエータ44への外気の送風量を制限する。 In the present embodiment, when the control device 50 (the air flow control unit 50b) determines that the four-way valve 65 is switched to the second connection mode and the temperature of the cooling water flowing through the radiator 44 is equal to or higher than the temperature of the outside air. The amount of outside air blown to the radiator 44 is limited.
 これにより、ラジエータ44における外気への放熱量を低減することができるので、エンジン43を効果的に暖機することができる。 Thereby, the amount of heat released to the outside air in the radiator 44 can be reduced, so that the engine 43 can be warmed up effectively.
 なお、制御装置50(送風量制御部50b)は、四方弁65が第2接続モードに切り替えており、かつラジエータ44を流れる冷却水の温度に関連する温度が外気の温度以上であると判断した場合、ラジエータ44への外気の送風量を制限してもよい。
(第4実施形態)
 上記第1-第3実施形態では、第1連通路48の一端が、冷却回路40のうち第1ポンプ11とエンジン43との間に接続されている。本第4実施形態では、図18に示すように、第1連通路48の一端が、エンジン43から分岐されている流路70の途中に接続されている。
The control device 50 (the air flow control unit 50b) determines that the four-way valve 65 is switched to the second connection mode and the temperature related to the temperature of the cooling water flowing through the radiator 44 is equal to or higher than the temperature of the outside air. In this case, the amount of outside air blown to the radiator 44 may be limited.
(Fourth embodiment)
In the first to third embodiments, one end of the first communication passage 48 is connected between the first pump 11 and the engine 43 in the cooling circuit 40. In the fourth embodiment, as shown in FIG. 18, one end of the first communication path 48 is connected in the middle of the flow path 70 branched from the engine 43.
 流路70は既存の流路であり、ATFウォーマ等の各種機器に、エンジン43で加熱された冷却水を供給する。 The flow path 70 is an existing flow path, and supplies cooling water heated by the engine 43 to various devices such as an ATF warmer.
 本実施形態によると、流路70を利用して、第1連通路48を冷却回路40に接続することができる。 According to this embodiment, the first communication path 48 can be connected to the cooling circuit 40 using the flow path 70.
 本実施形態では、リザーブタンク13aが第1流路13および循環流路41に接続されている。リザーブタンク13aと循環流路41との接続部には加圧弁71が配置されている。加圧弁71は、循環流路41の内部圧力が、大気圧よりも大きい設定圧未満の場合は閉弁し、循環流路41の内部圧力が設定圧以上になると開弁する。したがって、冷却回路40の内部圧力が設定圧以上になると、冷却回路40の冷却水がリザーブタンク13aへ排出される。
(第5実施形態)
 上記第1実施形態では、第1連通路48の一端が、冷却回路40のうち第1ポンプ11とエンジン43との間に接続されている。本第5実施形態では、図19に示すように、第1連通路48の一端が、冷却回路40のうちエンジン43とラジエータ44の間の部位に接続されている。
In the present embodiment, the reserve tank 13 a is connected to the first flow path 13 and the circulation flow path 41. A pressurizing valve 71 is disposed at a connection portion between the reserve tank 13 a and the circulation channel 41. The pressurizing valve 71 is closed when the internal pressure of the circulation flow path 41 is less than a set pressure greater than the atmospheric pressure, and is opened when the internal pressure of the circulation flow path 41 becomes equal to or higher than the set pressure. Therefore, when the internal pressure of the cooling circuit 40 becomes equal to or higher than the set pressure, the cooling water of the cooling circuit 40 is discharged to the reserve tank 13a.
(Fifth embodiment)
In the first embodiment, one end of the first communication path 48 is connected between the first pump 11 and the engine 43 in the cooling circuit 40. In the fifth embodiment, as shown in FIG. 19, one end of the first communication path 48 is connected to a portion of the cooling circuit 40 between the engine 43 and the radiator 44.
 図18中の二点鎖線に示すように、第1連通路48の一端は、ラジエータバイパス流路45の途中に接続されていてもよい。 As shown by a two-dot chain line in FIG. 18, one end of the first communication path 48 may be connected in the middle of the radiator bypass flow path 45.
 本実施形態によると、図示を省略しているが、第1接続モードに切り替えた場合、第1ポンプ11およびポンプ42を直列に接続して冷却水を循環させることができるとともに、第1冷却回路C1で加熱された冷却水をエンジン43に循環させてエンジン43を暖機することができる。 According to the present embodiment, although not shown, when switching to the first connection mode, the first pump 11 and the pump 42 can be connected in series to circulate the cooling water, and the first cooling circuit. The engine 43 can be warmed up by circulating the cooling water heated by C1 to the engine 43.
 すなわち、第1接続モードでは、四方弁47は、第1流路13のうち第1ポンプ11の吐出側から四方弁47に至る部位と、ラジエータバイパス流路45のうちポンプ42の吸入側から四方弁47に至る部位とを接続させる。 In other words, in the first connection mode, the four-way valve 47 is four-way from the discharge side of the first pump 11 to the four-way valve 47 in the first flow path 13 and from the suction side of the pump 42 in the radiator bypass flow path 45. The part reaching the valve 47 is connected.
 これにより、第1ポンプ11から吐出された冷却水は、四方弁47およびサーモスタット46を介してポンプ42に吸入される。ポンプ42から吐出された冷却水は、エンジン43および第1連通路48を流れて第1流路13に流入する。 Thereby, the cooling water discharged from the first pump 11 is sucked into the pump 42 via the four-way valve 47 and the thermostat 46. The cooling water discharged from the pump 42 flows through the engine 43 and the first communication path 48 and flows into the first flow path 13.
 したがって、第1ポンプ11およびポンプ42を直列に接続して冷却水を循環させることができるとともに、第1冷却回路C1で加熱された冷却水をエンジン43に循環させてエンジン43を暖機することができる。
(第6実施形態)
 本第6実施形態では、図20に示すように、上記第1実施形態に対して、冷却用熱交換器30、加熱用熱交換器31および第1ラジエータ15の配置を変更している。
Accordingly, the cooling water can be circulated by connecting the first pump 11 and the pump 42 in series, and the cooling water heated by the first cooling circuit C1 is circulated to the engine 43 to warm up the engine 43. Can do.
(Sixth embodiment)
In the sixth embodiment, as shown in FIG. 20, the arrangement of the cooling heat exchanger 30, the heating heat exchanger 31, and the first radiator 15 is changed with respect to the first embodiment.
 冷却用熱交換器30は第1流路13に配置されている。加熱用熱交換器31は第2流路14に配置されている。第1ラジエータ15は第5共通流路25に配置されている。第5共通流路25は、第1切替弁17の第5出口17hと第2切替弁18の第5入口18hとに接続されている。 The cooling heat exchanger 30 is disposed in the first flow path 13. The heating heat exchanger 31 is disposed in the second flow path 14. The first radiator 15 is disposed in the fifth common flow path 25. The fifth common flow path 25 is connected to the fifth outlet 17 h of the first switching valve 17 and the fifth inlet 18 h of the second switching valve 18.
 図20に示す例では、上記第1実施形態に対して、冷却用熱交換器30、加熱用熱交換器31および第1ラジエータ15の配置を変更しているが、上記第2、第3実施形態に対しても、図20に示す例と同様に冷却用熱交換器30、加熱用熱交換器31および第1ラジエータ15の配置を変更してもよい。 In the example shown in FIG. 20, the arrangement of the cooling heat exchanger 30, the heating heat exchanger 31, and the first radiator 15 is changed with respect to the first embodiment, but the second and third embodiments are changed. Also with respect to the form, the arrangement of the cooling heat exchanger 30, the heating heat exchanger 31, and the first radiator 15 may be changed as in the example shown in FIG.
 本実施形態においては、第1ラジエータ15およびラジエータ44を直列的に利用する場合、第1切替弁21および第2切替弁22によって第1流路13と第5共通流路25とを接続する必要がある。
(第7実施形態)
 上記第1-第6実施形態では、第1流路13と冷却回路40との接続状態を四方弁47または五方弁60、65によって切り替えるが、本第7実施形態では、図21、図22に示すように、第1流路13と冷却回路40との接続状態を三方弁75によって切り替える。
In the present embodiment, when the first radiator 15 and the radiator 44 are used in series, it is necessary to connect the first flow path 13 and the fifth common flow path 25 by the first switching valve 21 and the second switching valve 22. There is.
(Seventh embodiment)
In the first to sixth embodiments, the connection state between the first flow path 13 and the cooling circuit 40 is switched by the four-way valve 47 or the five- way valves 60 and 65. In the seventh embodiment, FIGS. As shown in FIG. 3, the connection state between the first flow path 13 and the cooling circuit 40 is switched by the three-way valve 75.
 三方弁75は、冷却回路40の循環流路41の途中に配置されている。具体的には、三方弁75は、循環流路41のうちポンプ42の吸入側に位置する部位に配置されている。 The three-way valve 75 is arranged in the middle of the circulation channel 41 of the cooling circuit 40. Specifically, the three-way valve 75 is disposed in a portion of the circulation channel 41 that is located on the suction side of the pump 42.
 三方弁75には、第2連通路76の一端が接続されている。第2連通路76の他端は、第1流路13のうち第1ポンプ11の吐出側に位置する部位に接続されている。 One end of the second communication passage 76 is connected to the three-way valve 75. The other end of the second communication path 76 is connected to a portion of the first flow path 13 that is located on the discharge side of the first pump 11.
 第1流路13のうち第2連通路76の接続部と第1連通路48の接続部との間には開閉弁77が配置されている。開閉弁77は、第1流路13のうち第2連通路76の接続部と第1連通路48の接続部との間の部位を開閉する。 In the first flow path 13, an opening / closing valve 77 is disposed between the connection portion of the second communication passage 76 and the connection portion of the first communication passage 48. The on-off valve 77 opens and closes a portion of the first flow path 13 between the connection portion of the second communication passage 76 and the connection portion of the first communication passage 48.
 三方弁75は、第2連通路76と冷却回路40の循環流路41との接続状態を切り替える切替部である。三方弁75によって切り替えられる接続状態のモードとしては、図21に示す非接続モード、および図22に示す接続モードがある。 The three-way valve 75 is a switching unit that switches the connection state between the second communication path 76 and the circulation flow path 41 of the cooling circuit 40. The connection state modes switched by the three-way valve 75 include a non-connection mode shown in FIG. 21 and a connection mode shown in FIG.
 図21に示す非接続モードでは、三方弁75は、第2連通路76と循環流路41とを接続させない。すなわち、第2連通路76を閉じるとともに循環流路41をそのまま連通させる。このとき、開閉弁77は第1流路13を開ける。これにより、第1冷却回路C1と冷却回路40とで冷却水が別々に循環する。 21. In the non-connection mode shown in FIG. 21, the three-way valve 75 does not connect the second communication path 76 and the circulation flow path 41. That is, the second communication path 76 is closed and the circulation flow path 41 is communicated as it is. At this time, the on-off valve 77 opens the first flow path 13. Thereby, the cooling water circulates separately in the first cooling circuit C1 and the cooling circuit 40.
 図22に示す接続モードでは、三方弁75は、第2連通路76と、循環流路41のうちポンプ42の吸入側から三方弁75に至る部位と第2連通路76とを接続させる。このとき、開閉弁77は第1流路13を閉じる。 In the connection mode shown in FIG. 22, the three-way valve 75 connects the second communication path 76 and the second communication path 76 to the portion of the circulation channel 41 that extends from the suction side of the pump 42 to the three-way valve 75. At this time, the on-off valve 77 closes the first flow path 13.
 これにより、第1ポンプ11から吐出された冷却水は、第2連通路76および三方弁75を介してポンプ42に吸入され、ポンプ42から吐出された冷却水は、第1連通路48を流れて第1流路13に流入する。したがって、第1冷却回路C1において、第1ポンプ11およびポンプ42を直列に接続して冷却水を循環させることができる。したがって、接続モードをポンプ直列モードと表現することができる。
(第8実施形態)
 上記第7実施形態では、三方弁75は冷却回路40の循環流路41の途中に配置されているが、本第8実施形態では、図23、図24に示すように、三方弁75は第1流路13の途中に配置されている。
Thereby, the cooling water discharged from the first pump 11 is sucked into the pump 42 via the second communication path 76 and the three-way valve 75, and the cooling water discharged from the pump 42 flows through the first communication path 48. Into the first flow path 13. Therefore, in the first cooling circuit C1, the first pump 11 and the pump 42 can be connected in series to circulate the cooling water. Therefore, the connection mode can be expressed as a pump serial mode.
(Eighth embodiment)
In the seventh embodiment, the three-way valve 75 is disposed in the middle of the circulation flow path 41 of the cooling circuit 40. However, in the eighth embodiment, as shown in FIGS. It is arranged in the middle of one flow path 13.
 第2連通路76の一端は三方弁75に接続され、第2連通路76の他端は、冷却回路40の循環流路41のうちポンプ42の吸入側に位置する部位に接続されている。 One end of the second communication path 76 is connected to the three-way valve 75, and the other end of the second communication path 76 is connected to a portion of the circulation channel 41 of the cooling circuit 40 that is located on the suction side of the pump 42.
 開閉弁77は、循環流路41のうち第1連通路48の接続部よりも冷却水流れ下流側に位置する部位に配置されている。 The on-off valve 77 is disposed in a portion of the circulation channel 41 that is located on the downstream side of the coolant flow with respect to the connection portion of the first communication passage 48.
 図23に示す非接続モードでは、三方弁75は、と第1流路13と第2連通路76を接続させない。すなわち、第2連通路76を閉じるとともに第1流路13をそのまま連通させる。このとき、開閉弁77は第1流路13を開ける。これにより、第1冷却回路C1と冷却回路40とで冷却水が別々に循環する。 23, the three-way valve 75 does not connect the first flow path 13 and the second communication path 76 in the non-connection mode shown in FIG. That is, the second communication path 76 is closed and the first flow path 13 is communicated as it is. At this time, the on-off valve 77 opens the first flow path 13. Thereby, the cooling water circulates separately in the first cooling circuit C1 and the cooling circuit 40.
 図24に示す接続モードでは、三方弁75は、第1流路13のうち第1ポンプ11の吐出側から三方弁75に至る部位と第2連通路76とを接続させる。このとき、開閉弁77は循環流路41を閉じる。 In the connection mode shown in FIG. 24, the three-way valve 75 connects the portion of the first flow path 13 from the discharge side of the first pump 11 to the three-way valve 75 and the second communication path 76. At this time, the on-off valve 77 closes the circulation channel 41.
 これにより、第1ポンプ11から吐出された冷却水は、三方弁75および第2連通路76を介してポンプ42に吸入され、ポンプ42から吐出された冷却水は、第1連通路48を流れて第1流路13に流入する。したがって、第1冷却回路C1において、第1ポンプ11およびポンプ42を直列に接続して冷却水を循環させることができる。したがって、接続モードをポンプ直列モードと表現することができる。
(他の実施形態)
 上記実施形態を適宜組み合わせることが可能である。上記実施形態は、例えば以下のように種々変形可能である。
Thus, the cooling water discharged from the first pump 11 is sucked into the pump 42 via the three-way valve 75 and the second communication path 76, and the cooling water discharged from the pump 42 flows through the first communication path 48. Into the first flow path 13. Therefore, in the first cooling circuit C1, the first pump 11 and the pump 42 can be connected in series to circulate the cooling water. Therefore, the connection mode can be expressed as a pump serial mode.
(Other embodiments)
The above embodiments can be combined as appropriate. The above embodiment can be variously modified as follows, for example.
 (1)温度調整対象機器として種々の機器を用いることができる。例えば、乗員が着座するシートに内蔵されて冷却水によりシートを冷却・加熱する熱交換器を温度調整対象機器として用いてもよい。また、温度調整対象機器の配置を様々に変更可能である。 (1) Various devices can be used as the temperature adjustment target device. For example, a heat exchanger that is built in a seat on which an occupant is seated and that cools and heats the seat with cooling water may be used as the temperature adjustment target device. In addition, the arrangement of the temperature adjustment target devices can be variously changed.
 (2)上記各実施形態において、温度調整対象機器に冷却水を間欠的に循環させることによって温度調整対象機器に対する熱交換能力を制御するようにしてもよい。 (2) In each of the embodiments described above, the heat exchange capacity for the temperature adjustment target device may be controlled by intermittently circulating cooling water through the temperature adjustment target device.
 (3)上記実施形態では、冷却水を冷却する冷却器として、冷凍サイクル35の低圧冷媒で冷却水を冷却する冷却用熱交換器30を用いているが、ペルチェ素子を冷却器として用いてもよい。 (3) In the above embodiment, the cooling heat exchanger 30 that cools the cooling water with the low-pressure refrigerant of the refrigeration cycle 35 is used as a cooling device that cools the cooling water, but a Peltier element may be used as the cooling device. Good.
 (4)上記各実施形態では、熱媒体として冷却水を用いているが、油などの各種媒体を熱媒体として用いてもよい。 (4) In each of the above embodiments, cooling water is used as the heat medium, but various media such as oil may be used as the heat medium.
 (5)冷却水(熱媒体)として、ナノ流体を用いてもよい。ナノ流体とは、粒子径がナノメートルオーダーのナノ粒子が混入された流体のことである。ナノ粒子を冷却水に混入させることで、エチレングリコールを用いた冷却水(いわゆる不凍液)のように凝固点を低下させる作用効果に加えて、次のような作用効果を得ることができる。 (5) Nanofluid may be used as the cooling water (heat medium). A nanofluid is a fluid in which nanoparticles having a particle size of the order of nanometers are mixed. In addition to the effect of lowering the freezing point as in the case of cooling water using ethylene glycol (so-called antifreeze liquid), the following effects can be obtained by mixing the nanoparticles with the cooling water.
 すなわち、特定の温度帯での熱伝導率を向上させる作用効果、冷却水の熱容量を増加させる作用効果、金属配管の防食効果やゴム配管の劣化を防止する作用効果、および極低温での冷却水の流動性を高める作用効果を得ることができる。 That is, the effect of improving the thermal conductivity in a specific temperature range, the effect of increasing the heat capacity of the cooling water, the effect of preventing the corrosion of the metal pipe and the deterioration of the rubber pipe, and the cooling water at a cryogenic temperature The effect which improves the fluidity | liquidity of can be acquired.
 このような作用効果は、ナノ粒子の粒子構成、粒子形状、配合比率、付加物質によって様々に変化する。 Such an effect varies depending on the particle configuration, particle shape, blending ratio, and additional substance of the nanoparticles.
 これによると、熱伝導率を向上させることができるので、エチレングリコールを用いた冷却水と比較して少ない量の冷却水であっても同等の冷却効率を得ることが可能になる。 According to this, since the thermal conductivity can be improved, it is possible to obtain the same cooling efficiency even with a small amount of cooling water as compared with the cooling water using ethylene glycol.
 また、冷却水の熱容量を増加させることができるので、冷却水自体の蓄冷熱量(顕熱による蓄冷熱)を増加させることができる。 Also, since the heat capacity of the cooling water can be increased, the amount of cold storage heat of the cooling water itself (cold storage heat by sensible heat) can be increased.
 十分な熱伝導率を得るために、ナノ粒子のアスペクト比は50以上であるのが好ましい。なお、アスペクト比は、ナノ粒子の縦×横の比率を表す形状指標である。 In order to obtain sufficient thermal conductivity, the aspect ratio of the nanoparticles is preferably 50 or more. The aspect ratio is a shape index that represents the ratio of the vertical and horizontal dimensions of the nanoparticles.
 ナノ粒子としては、Au、Ag、CuおよびCのいずれかを含むものを用いることができる。具体的には、ナノ粒子の構成原子として、Auナノ粒子、Agナノワイヤー、CNT(カーボンナノチューブ)、グラフェン、グラファイトコアシェル型ナノ粒子(上記原子を囲むようにカーボンナノチューブ等の構造体があるような粒子体)、およびAuナノ粒子含有CNTなどを用いることができる。 Nanoparticles containing any of Au, Ag, Cu and C can be used. Specifically, Au nanoparticle, Ag nanowire, CNT (carbon nanotube), graphene, graphite core-shell nanoparticle (a structure such as a carbon nanotube surrounding the above atom is included as a constituent atom of the nanoparticle. Particles), Au nanoparticle-containing CNTs, and the like can be used.
 (6)上記各実施形態の冷凍サイクル35では、冷媒としてフロン系冷媒を用いているが、冷媒の種類はこれに限定されるものではなく、二酸化炭素等の自然冷媒や炭化水素系冷媒等を用いてもよい。 (6) In the refrigeration cycle 35 of each of the above embodiments, a chlorofluorocarbon refrigerant is used as the refrigerant. However, the type of the refrigerant is not limited to this, and natural refrigerant such as carbon dioxide, hydrocarbon refrigerant, or the like is used. It may be used.
 また、上記各実施形態の冷凍サイクル35は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているが、高圧側冷媒圧力が冷媒の臨界圧力を超える超臨界冷凍サイクルを構成していてもよい。 Further, the refrigeration cycle 35 of each of the above embodiments constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant, but the supercritical refrigeration cycle in which the high-pressure side refrigerant pressure exceeds the critical pressure of the refrigerant. May be configured.
 (7)上記各実施形態では、車両用熱管理システム10をハイブリッド自動車に適用した例を示したが、エンジンを備えず走行用モータから車両走行用の駆動力を得る電気自動車や、燃料電池を走行用エネルギー発生部とする燃料電池自動車等に車両用熱管理システム10を適用してもよい。 (7) In each of the embodiments described above, an example in which the vehicle thermal management system 10 is applied to a hybrid vehicle has been described. However, an electric vehicle or a fuel cell that does not include an engine and obtains driving force for vehicle traveling from a traveling motor is provided. The vehicle thermal management system 10 may be applied to a fuel cell vehicle or the like used as a travel energy generating unit.
 (8)上記各実施形態における共通流路21、22、23、24、25に、冷熱または温熱を蓄える蓄熱機器が配置されていてもよい。 (8) The common flow paths 21, 22, 23, 24, and 25 in each of the above embodiments may be provided with a heat storage device that stores cold or warm heat.

Claims (14)

  1.  エンジン(43)を冷却する熱媒体が循環するエンジン用冷却回路(40)と、
     前記エンジン用冷却回路(40)に配置され、前記熱媒体を吸入して吐出するエンジン用ポンプ(42)と、
     前記エンジン用冷却回路(40)に配置され、前記熱媒体が持つ熱を外気に放熱するエンジン用ラジエータ(44)と、
     冷却対象機器(34)を冷却する熱媒体が循環する第1冷却回路(C1)と、
     前記第1冷却回路(C1)に配置され、前記熱媒体を吸入して吐出する第1ポンプ(11)と、
     前記第1冷却回路(C1)と前記エンジン用冷却回路(40)との接続状態を切り替える切替部(47、60、65)と、
     前記エンジン用冷却回路(40)と前記第1冷却回路(C1)とを連通させる第1連通部(48)とを備え、
     前記エンジン用冷却回路(40)は、前記熱媒体が前記エンジン用ポンプ(42)、前記エンジン(43)に形成されたエンジン冷却流路(43a)、および前記エンジン用ラジエータ(44)を循環して流れる循環流路(41)と、前記熱媒体が前記エンジン用ラジエータ(44)をバイパスして循環するように前記循環流路(41)に接続されたラジエータバイパス流路(45)とを有し、
     前記切替部(47、60、65)は、前記第1冷却回路(C1)と前記ラジエータバイパス流路(45)との接続状態を切り替える車両用熱管理システム。
    An engine cooling circuit (40) in which a heat medium for cooling the engine (43) circulates;
    An engine pump (42) disposed in the engine cooling circuit (40) for sucking and discharging the heat medium;
    An engine radiator (44) disposed in the engine cooling circuit (40) and dissipating heat of the heat medium to outside air;
    A first cooling circuit (C1) in which a heat medium for cooling the cooling target device (34) circulates;
    A first pump (11) disposed in the first cooling circuit (C1) and sucking and discharging the heat medium;
    A switching unit (47, 60, 65) for switching a connection state between the first cooling circuit (C1) and the engine cooling circuit (40);
    A first communication portion (48) for communicating the engine cooling circuit (40) and the first cooling circuit (C1);
    In the engine cooling circuit (40), the heat medium circulates through the engine pump (42), an engine cooling flow path (43a) formed in the engine (43), and the engine radiator (44). A circulation flow path (41) that flows through and a radiator bypass flow path (45) connected to the circulation flow path (41) so that the heat medium circulates bypassing the engine radiator (44). And
    The said switching part (47, 60, 65) is a thermal management system for vehicles which switches the connection state of the said 1st cooling circuit (C1) and the said radiator bypass flow path (45).
  2.  前記切替部(47、60)は、前記ラジエータバイパス流路(45)の途中、および前記第1冷却回路(C1)の途中に配置されており、
     前記切替部(47、60)は、前記第1冷却回路(C1)と前記ラジエータバイパス流路(45)とが接続されない非接続モードと、前記第1冷却回路(C1)のうち前記第1ポンプ(11)の吐出側から前記切替部(47、60)に至る部位と前記ラジエータバイパス流路(45)のうち前記エンジン用ポンプ(42)の吸入側から前記切替部(47、60)に至る部位とが接続される第1接続モードとに切り替え可能になっており、
     前記第1連通部(48)は、前記循環流路(41)に接続されている請求項1に記載の車両用熱管理システム。
    The switching unit (47, 60) is arranged in the middle of the radiator bypass channel (45) and in the middle of the first cooling circuit (C1),
    The switching unit (47, 60) includes a non-connection mode in which the first cooling circuit (C1) and the radiator bypass channel (45) are not connected, and the first pump of the first cooling circuit (C1). (11) From the discharge side to the switching part (47, 60) and the radiator bypass flow path (45), from the suction side of the engine pump (42) to the switching part (47, 60). It is possible to switch to the first connection mode in which the part is connected,
    The vehicle thermal management system according to claim 1, wherein the first communication portion (48) is connected to the circulation flow path (41).
  3.  前記エンジン冷却流路(43a)は、前記循環流路(41)のうち前記エンジン用ポンプ(42)の吐出部から前記エンジン用ラジエータ(44)に至る部位に配置されており、
     前記ラジエータバイパス流路(45)は、前記エンジン冷却流路(43a)から流出した前記熱媒体が前記エンジン用ラジエータ(44)をバイパスして前記エンジン用ポンプ(42)に吸入されるように前記循環流路(41)に接続されており、
     前記第1連通手段(48)は、前記循環流路(41)のうち前記エンジン用ポンプ(42)の吐出部から前記エンジン冷却流路(43a)に至る部位、または前記エンジン冷却流路(43a)から分岐されている流路(70)の途中に接続されており、 前記切替部(47、60)は、前記第1冷却回路(C1)のうち前記第1ポンプ(11)の吐出側から前記切替部(47、60、65)に至る部位と、前記ラジエータバイパス流路(45)のうち前記エンジン冷却流路(43a)の熱媒体出口側から前記切替部(47、60、65)に至る部位とが接続される第2接続モードに切り替え可能になっており、
     前記切替部(47、60、65)が前記第2接続モードに切り替えることによって、前記第1ポンプ(11)から吐出された前記熱媒体が前記ラジエータバイパス流路(45)、前記エンジン冷却流路(43a)、前記第1連通部(48)の順に流れて前記第1冷却回路(C1)に流入して前記第1ポンプ(11)に吸入される請求項2に記載の車両用熱管理システム。
    The engine cooling flow path (43a) is disposed in a portion of the circulation flow path (41) extending from a discharge portion of the engine pump (42) to the engine radiator (44),
    The radiator bypass channel (45) is configured so that the heat medium flowing out from the engine cooling channel (43a) bypasses the engine radiator (44) and is sucked into the engine pump (42). Connected to the circulation channel (41),
    The first communication means (48) is a portion of the circulation flow path (41) from the discharge part of the engine pump (42) to the engine cooling flow path (43a), or the engine cooling flow path (43a). ) Is connected in the middle of the flow path (70) branched from the first cooling circuit (C1) from the discharge side of the first pump (11). The switch part (47, 60, 65) is connected to the switching part (47, 60, 65) from the heat medium outlet side of the engine cooling flow path (43a) in the radiator bypass flow path (45). It is possible to switch to the second connection mode in which the parts to reach
    When the switching unit (47, 60, 65) switches to the second connection mode, the heat medium discharged from the first pump (11) is transferred to the radiator bypass channel (45), the engine cooling channel. The vehicle thermal management system according to claim 2, wherein the vehicle flows in the order of (43 a) and the first communication part (48), flows into the first cooling circuit (C 1), and is sucked into the first pump (11). .
  4.  前記第1冷却回路(C1)に配置され、前記熱媒体が持つ熱を外気に放熱する第1ラジエータ(15)と、
     前記循環流路(41)のうち前記エンジン用ラジエータ(44)から前記エンジン用ポンプ(42)の吸入部に至る部位と、前記切替部(60)とを連通させる第2連通部(61)とを備え、
     前記第1連通部(48)は、前記循環流路(41)のうち前記エンジン用ポンプ(42)の吐出部から前記エンジン用ラジエータ(44)に至る部位に接続されており、
     前記切替部(60)は、前記第1冷却回路(C1)のうち前記第1ポンプ(11)の吐出側から前記切替部(60)に至る部位と、前記第2連通部(61)とが接続される第3接続モードに切り替え可能になっており、
     前記切替部(60)が前記第3接続モードに切り替えることによって、前記第1ポンプ(11)から吐出された前記熱媒体が前記第2連通部(61)、前記エンジン用ラジエータ(44)、前記第1連通部(48)の順に流れて前記第1冷却回路(C1)に流入して前記第1ポンプ(11)に吸入される請求項2または3に記載の車両用熱管理システム。
    A first radiator (15) disposed in the first cooling circuit (C1) and radiating heat of the heat medium to the outside air;
    A second communication portion (61) for communicating a portion from the engine radiator (44) to the suction portion of the engine pump (42) in the circulation passage (41) and the switching portion (60); With
    The first communication part (48) is connected to a part of the circulation channel (41) from the discharge part of the engine pump (42) to the engine radiator (44),
    The switching unit (60) includes a portion from the discharge side of the first pump (11) to the switching unit (60) in the first cooling circuit (C1) and the second communication unit (61). It is possible to switch to the connected third connection mode,
    When the switching unit (60) switches to the third connection mode, the heat medium discharged from the first pump (11) is transferred to the second communication unit (61), the engine radiator (44), The thermal management system for vehicles according to claim 2 or 3 which flows in order of the 1st communicating part (48), flows into said 1st cooling circuit (C1), and is sucked into said 1st pump (11).
  5.  前記ラジエータバイパス流路(45)のうち前記エンジン用ポンプ(42)の吸入部側の端部と前記循環流路(41)との接続部に配置され、前記熱媒体の温度が所定温度を上回っている場合、前記エンジン冷却流路(43a)から流出した前記熱媒体が前記エンジン用ラジエータ(44)を流れ、前記熱媒体の温度が前記所定温度を下回っている場合、前記エンジン冷却流路(43a)から流出した前記熱媒体が前記ラジエータバイパス流路(45)を流れるように熱媒体流路を切り替えるサーモスタット(46)と、
     前記熱媒体の温度に関連する温度を検出する検出器(55、56)と、
     前記第1接続モード時に前記検出器(55、56)が検出した温度が前記所定温度を上回ったと判断した場合、前記非接続モードに切り替えるように前記切替部(47、60)の作動を制御する切替制御部(50a)とを備える請求項2ないし4のいずれか1つに記載の車両用熱管理システム。
    The radiator bypass passage (45) is disposed at a connection portion between the end of the engine pump (42) on the suction portion side and the circulation passage (41), and the temperature of the heat medium exceeds a predetermined temperature. When the heat medium flowing out from the engine cooling flow path (43a) flows through the engine radiator (44) and the temperature of the heat medium is lower than the predetermined temperature, the engine cooling flow path ( A thermostat (46) for switching the heat medium flow path so that the heat medium flowing out from 43a) flows through the radiator bypass flow path (45);
    Detectors (55, 56) for detecting a temperature related to the temperature of the heat medium;
    When it is determined that the temperature detected by the detector (55, 56) in the first connection mode exceeds the predetermined temperature, the operation of the switching unit (47, 60) is controlled so as to switch to the non-connection mode. The vehicle thermal management system according to any one of claims 2 to 4, further comprising a switching control unit (50a).
  6.  前記切替部(65)は、前記循環流路(41)の途中、および前記第1冷却回路(C1)の途中に配置されており、
     前記切替部(65)は、前記第1冷却回路(C1)と前記ラジエータバイパス流路(45)とが接続されない非接続モードと、前記第1冷却回路(C1)のうち前記第1ポンプ(11)の吐出側から前記切替部(65)に至る部位と前記循環流路(41)のうち前記エンジン用ポンプ(42)の吸入側から前記切替部(65)に至る部位とが接続される第1接続モードとに切り替え可能になっており、
     前記第1連通部(48)は、前記循環流路(41)に接続されている請求項1に記載の車両用熱管理システム。
    The switching unit (65) is disposed in the middle of the circulation channel (41) and in the middle of the first cooling circuit (C1),
    The switching unit (65) includes a non-connection mode in which the first cooling circuit (C1) and the radiator bypass flow path (45) are not connected, and the first pump (11 in the first cooling circuit (C1)). ) From the discharge side to the switching portion (65) and the portion of the circulation flow path (41) from the suction side of the engine pump (42) to the switching portion (65) is connected. It is possible to switch to 1 connection mode,
    The vehicle thermal management system according to claim 1, wherein the first communication portion (48) is connected to the circulation flow path (41).
  7.  前記エンジン冷却流路(43a)は、前記循環流路(41)のうち前記エンジン用ポンプ(42)の吐出部から前記エンジン用ラジエータ(44)に至る部位に配置されており、
     前記切替部(65)は、前記ラジエータバイパス流路(45)のうち前記エンジン用ポンプ(42)の吸入部に近い側の端部と、前記循環流路(41)との接続部(J2)に配置されており、
     前記ラジエータバイパス流路(45)のうち前記エンジン用ポンプ(42)の吐出部に近い側の端部は、前記循環流路(41)のうち前記エンジン冷却流路(43a)から前記ポンプ(42)の吸入部側へ向かって前記エンジン用ラジエータ(44)に至る部位に接続されており、
     前記第1連通手段(48)は、前記循環流路(41)のうち前記エンジン用ポンプ(42)の吐出部から前記エンジン冷却流路(43a)に至る部位、または前記エンジン冷却流路(43a)から分岐されている流路(70)の途中に接続されており、
     前記切替部(65)は、前記第1冷却回路(C1)のうち前記第1ポンプ(11)の吐出側から前記切替部(65)に至る部位と前記ラジエータバイパス流路(45)とが接続される第2接続モードに切り替え可能になっており、
     前記切替部(65)が前記第2接続モードに切り替えることによって、前記第1ポンプ(11)から吐出された前記熱媒体が前記ラジエータバイパス流路(45)、前記エンジン冷却流路(43a)、前記第1連通部(48)の順に流れて前記第1冷却回路(C1)に流入して前記第1ポンプ(11)に吸入される請求項6に記載の車両用熱管理システム。
    The engine cooling flow path (43a) is disposed in a portion of the circulation flow path (41) extending from a discharge portion of the engine pump (42) to the engine radiator (44),
    The switching section (65) is a connection section (J2) between the end of the radiator bypass flow path (45) near the suction section of the engine pump (42) and the circulation flow path (41). Are located in
    The end of the radiator bypass flow path (45) on the side close to the discharge part of the engine pump (42) is connected to the pump (42) from the engine cooling flow path (43a) of the circulation flow path (41). ) Toward the suction portion side of the engine radiator (44),
    The first communication means (48) is a portion of the circulation flow path (41) from the discharge part of the engine pump (42) to the engine cooling flow path (43a), or the engine cooling flow path (43a). ) Connected in the middle of the flow path (70) branched from
    The switching unit (65) connects a portion of the first cooling circuit (C1) from the discharge side of the first pump (11) to the switching unit (65) and the radiator bypass channel (45). Can be switched to the second connection mode,
    When the switching unit (65) switches to the second connection mode, the heat medium discharged from the first pump (11) becomes the radiator bypass channel (45), the engine cooling channel (43a), The vehicle thermal management system according to claim 6, wherein the vehicle thermal management system flows in the order of the first communication portion (48), flows into the first cooling circuit (C <b> 1), and is sucked into the first pump (11).
  8.  前記第1冷却回路(C1)に配置され、前記熱媒体と外気とを熱交換する第1ラジエータ(15)を備え、
     前記第1連通部(48)は、前記循環流路(41)のうち前記エンジン用ポンプ(42)の吐出部から前記エンジン用ラジエータ(44)に至る部位に接続されており、
     前記切替部(65)は、前記第1冷却回路(C1)のうち前記第1ポンプ(11)の吐出側から前記切替部(65)に至る部位と、前記循環流路(41)のうち前記エンジン用ラジエータ(44)から前記エンジン用ポンプ(42)の吸入部側へ向かって前記切替部(65)に至る部位とが接続される第3接続モードに切り替え可能になっており、
     前記切替部(65)が前記第3接続モードに切り替えることによって、前記第1ポンプ(11)から吐出された前記熱媒体が前記エンジン用ラジエータ(44)、前記第1連通部(48)の順に流れて前記第1冷却回路(C1)に流入して前記第1ポンプ(11)に吸入される請求項6または7に記載の車両用熱管理システム。
    A first radiator (15) disposed in the first cooling circuit (C1) for exchanging heat between the heat medium and outside air;
    The first communication part (48) is connected to a part of the circulation channel (41) from the discharge part of the engine pump (42) to the engine radiator (44),
    The switching unit (65) includes a portion from the discharge side of the first pump (11) to the switching unit (65) in the first cooling circuit (C1) and the circulation channel (41). It is possible to switch to a third connection mode in which a part from the engine radiator (44) to the switching part (65) toward the suction part side of the engine pump (42) is connected,
    When the switching unit (65) switches to the third connection mode, the heat medium discharged from the first pump (11) is transferred in the order of the radiator for the engine (44) and the first communication unit (48). The thermal management system for vehicles according to claim 6 or 7 which flows, flows into said 1st cooling circuit (C1), and is sucked into said 1st pump (11).
  9.  前記切替部(65)は、前記ラジエータバイパス流路(45)と前記循環流路(41)とが接続されない非バイパスモードと、前記循環流路(41)のうち前記エンジン用ポンプ(42)の吸入側から前記切替部(65)に至る部位と前記ラジエータバイパス流路(45)とが接続されるバイパスモードとに切り替え可能になっている請求項6ないし8のいずれか1つに記載の車両用熱管理システム。 The switching unit (65) includes a non-bypass mode in which the radiator bypass flow path (45) and the circulation flow path (41) are not connected, and the engine pump (42) in the circulation flow path (41). The vehicle according to any one of claims 6 to 8, wherein the vehicle can be switched to a bypass mode in which a portion from the suction side to the switching portion (65) and the radiator bypass flow path (45) are connected. Heat management system.
  10.  前記第1冷却回路(C1)に配置され、前記熱媒体と外気とを熱交換する第1ラジエータ(15)と、
     前記切替部(65)の作動を制御する切替制御部(50a)とを備え、
     前記エンジン用ラジエータ(44)は、前記第1ラジエータ(15)に対して前記外気の流れ方向下流側に配置されており、
     前記切替制御部(50a)は、前記第1ラジエータ(15)を流出した前記外気の温度から前記第1ラジエータ(15)に流入する前の前記外気の温度を減じた温度差が所定値を下回っていると判断した場合、前記バイパスモードに切り替え、
    前記切替制御部(50a)は、前記温度差が前記所定値を上回っていると判断した場合、前記非バイパスモードに切り替えるように前記切替部(65)の作動を制御する請求項9に記載の車両用熱管理システム。
    A first radiator (15) disposed in the first cooling circuit (C1) for exchanging heat between the heat medium and outside air;
    A switching control unit (50a) for controlling the operation of the switching unit (65),
    The engine radiator (44) is disposed on the downstream side in the flow direction of the outside air with respect to the first radiator (15),
    The switching control unit (50a) is configured such that a temperature difference obtained by subtracting a temperature of the outside air before flowing into the first radiator (15) from a temperature of the outside air flowing out of the first radiator (15) is less than a predetermined value. Switch to the bypass mode,
    The switch control unit (50a) according to claim 9, wherein when it is determined that the temperature difference exceeds the predetermined value, the switch control unit (65) controls the operation of the switch unit (65) to switch to the non-bypass mode. Vehicle thermal management system.
  11.  前記第1冷却回路(C1)における前記熱媒体の温度が所定温度を下回っていると判断した場合、前記第1接続モードを実施するように前記切替部(47、60、65)の作動を制御する切替制御部(50a)を備える請求項6ないし10のいずれか1つに記載の車両用熱管理システム。 When it is determined that the temperature of the heat medium in the first cooling circuit (C1) is lower than a predetermined temperature, the operation of the switching unit (47, 60, 65) is controlled so as to implement the first connection mode. The vehicle thermal management system according to any one of claims 6 to 10, further comprising a switching control unit (50a) for performing the switching.
  12.  前記第1冷却回路(C1)に配置され、前記熱媒体が持つ熱を外気に放熱する第1ラジエータ(15)と、
     前記第1冷却回路(C1)に配置され、前記熱媒体と冷凍サイクルの低圧側冷媒とを熱交換して前記熱媒体を冷却する熱媒体冷却器(30)と、
     前記第1ラジエータ(15)において前記熱媒体が前記外気から吸熱するヒートポンプ運転時であり、かつ前記第1冷却回路(C1)における前記熱媒体の温度が所定温度以下であると判断した場合、前記第1接続モードを実施するように前記切替部(47、60、65)の作動を制御する切替制御部(50a)とを備える請求項2、3、6および7のいずれか1つに記載の車両用熱管理システム。
    A first radiator (15) disposed in the first cooling circuit (C1) and radiating heat of the heat medium to the outside air;
    A heat medium cooler (30) disposed in the first cooling circuit (C1) and configured to exchange heat between the heat medium and a low-pressure side refrigerant of a refrigeration cycle to cool the heat medium;
    When the first radiator (15) is in a heat pump operation in which the heat medium absorbs heat from the outside air, and the temperature of the heat medium in the first cooling circuit (C1) is determined to be equal to or lower than a predetermined temperature, The switch control part (50a) which controls the action | operation of the said switch part (47, 60, 65) so that 1st connection mode may be implemented, and any one of Claim 2, 3, 6 and 7 is provided. Vehicle thermal management system.
  13.  前記切替部(47、60、65)が前記第2接続モードに切り替えており、かつ前記エンジン用ラジエータ(44)を流れる前記熱媒体の温度が前記外気の温度以上である場合、前記エンジン用ラジエータ(44)への前記外気の送風量を制限する送風量制御部(50b)を備える請求項1ないし12のいずれか1つに記載の車両用熱管理システム。 When the switching unit (47, 60, 65) is switched to the second connection mode and the temperature of the heat medium flowing through the engine radiator (44) is equal to or higher than the temperature of the outside air, the engine radiator The vehicle thermal management system according to any one of claims 1 to 12, further comprising an air volume control unit (50b) that restricts an air volume of the outside air to (44).
  14.  熱媒体を吸入して吐出する第2ポンプ(12)と、
     前記熱媒体と冷凍サイクルの低圧側冷媒とを熱交換して前記熱媒体を冷却する熱媒体冷却器(30)と、
     前記熱媒体と冷凍サイクルの高圧側冷媒とを熱交換して前記熱媒体を加熱する熱媒体加熱器(31)と、
     前記第1ポンプ(11)の熱媒体吐出側および前記第2ポンプ(12)の熱媒体吐出側が互いに並列に接続され、且つ前記冷却対象機器(34)の熱媒体入口側、前記熱媒体冷却器(30)の熱媒体入口側、および前記熱媒体加熱器(31)の熱媒体入口側が接続され、前記第1ポンプ(11)から吐出された熱媒体が前記冷却対象機器(34)に流入する場合と前記第2ポンプ(12)から吐出された前記熱媒体が前記冷却対象機器(34)に流入する場合とを切り替える第1切替弁(17)と、
     前記第1ポンプ(11)の熱媒体吸入側および前記第2ポンプ(12)の熱媒体吸入側が互いに並列に接続され且つ前記冷却対象機器(34)の熱媒体出口側、前記熱媒体冷却器(30)の熱媒体出口側、および前記熱媒体加熱器(31)の熱媒体出口側が接続され、前記冷却対象機器(34)から流出した前記熱媒体が前記第1ポンプ(11)に吸入される場合と前記冷却対象機器(34)から流出した前記熱媒体が前記第2ポンプ(12)に吸入される場合とを切り替える第2切替弁(18)とを備える請求項1ないし12のいずれか1つに記載の車両用熱管理システム。
    A second pump (12) for sucking and discharging the heat medium;
    A heat medium cooler (30) for exchanging heat between the heat medium and the low-pressure side refrigerant of the refrigeration cycle to cool the heat medium;
    A heat medium heater (31) for heating the heat medium by exchanging heat between the heat medium and the high-pressure side refrigerant of the refrigeration cycle;
    The heat medium discharge side of the first pump (11) and the heat medium discharge side of the second pump (12) are connected in parallel to each other, and the heat medium inlet side of the device to be cooled (34), the heat medium cooler The heat medium inlet side of (30) and the heat medium inlet side of the heat medium heater (31) are connected, and the heat medium discharged from the first pump (11) flows into the device to be cooled (34). A first switching valve (17) for switching between the case and the case where the heat medium discharged from the second pump (12) flows into the cooling target device (34);
    The heat medium suction side of the first pump (11) and the heat medium suction side of the second pump (12) are connected in parallel to each other, and the heat medium outlet side of the object to be cooled (34), the heat medium cooler ( The heat medium outlet side of 30) and the heat medium outlet side of the heat medium heater (31) are connected, and the heat medium flowing out from the cooling target device (34) is sucked into the first pump (11). A second switching valve (18) for switching between a case and a case where the heat medium flowing out from the device to be cooled (34) is sucked into the second pump (12). Thermal management system for vehicles as described in one.
PCT/JP2014/001363 2013-03-18 2014-03-11 Heat management system for vehicle WO2014147995A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-054940 2013-03-18
JP2013054940A JP6051984B2 (en) 2013-03-18 2013-03-18 Thermal management system for vehicles

Publications (1)

Publication Number Publication Date
WO2014147995A1 true WO2014147995A1 (en) 2014-09-25

Family

ID=51579695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001363 WO2014147995A1 (en) 2013-03-18 2014-03-11 Heat management system for vehicle

Country Status (2)

Country Link
JP (1) JP6051984B2 (en)
WO (1) WO2014147995A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076809A1 (en) * 2014-11-12 2016-05-19 Tofas Turk Otomobil Fabrikasi Anonim Sirketi Heat pump system for electric vehicles
EP3357726A4 (en) * 2015-10-02 2018-10-24 Denso Corporation Vehicular heat management device
CN109228817A (en) * 2017-07-10 2019-01-18 丰田自动车株式会社 The control device of heat-exchange system
CN111416173A (en) * 2019-01-08 2020-07-14 丰田自动车株式会社 Battery cooling system
CN113363537A (en) * 2021-05-13 2021-09-07 华中科技大学 Vehicle temperature control system based on small-particle Brownian motion nano fluid
CN113492661A (en) * 2020-03-19 2021-10-12 丰田自动车株式会社 Thermal management device
CN113993727A (en) * 2019-06-07 2022-01-28 株式会社电装 Fluid circulation system
CN114763063A (en) * 2021-01-13 2022-07-19 本田技研工业株式会社 Temperature adjustment system for vehicle
US11420535B2 (en) * 2019-02-25 2022-08-23 Honda Motor Co., Ltd. Battery temperature raising device for hybrid vehicle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6524982B2 (en) * 2015-09-03 2019-06-05 株式会社デンソー Vehicle heat management system
WO2017038593A1 (en) * 2015-09-03 2017-03-09 株式会社デンソー Heat management device for vehicle
JP7354580B2 (en) * 2019-05-14 2023-10-03 株式会社デンソー cooling water circuit
JP7388956B2 (en) 2020-03-13 2023-11-29 三菱重工サーマルシステムズ株式会社 Vehicle air conditioner
JP7361177B1 (en) * 2022-09-16 2023-10-13 三菱重工サーマルシステムズ株式会社 Vehicle temperature control system and temperature control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3817844B2 (en) * 1997-07-04 2006-09-06 日産自動車株式会社 Hybrid electric vehicle cooling system
JP2007009897A (en) * 2005-06-03 2007-01-18 Denso Corp Heat cycle device, and high pressure protective device
JP2010064527A (en) * 2008-09-08 2010-03-25 Denso Corp Vehicular cooling system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3817844B2 (en) * 1997-07-04 2006-09-06 日産自動車株式会社 Hybrid electric vehicle cooling system
JP2007009897A (en) * 2005-06-03 2007-01-18 Denso Corp Heat cycle device, and high pressure protective device
JP2010064527A (en) * 2008-09-08 2010-03-25 Denso Corp Vehicular cooling system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076809A1 (en) * 2014-11-12 2016-05-19 Tofas Turk Otomobil Fabrikasi Anonim Sirketi Heat pump system for electric vehicles
EP3357726A4 (en) * 2015-10-02 2018-10-24 Denso Corporation Vehicular heat management device
CN109228817A (en) * 2017-07-10 2019-01-18 丰田自动车株式会社 The control device of heat-exchange system
CN111416173A (en) * 2019-01-08 2020-07-14 丰田自动车株式会社 Battery cooling system
US11420535B2 (en) * 2019-02-25 2022-08-23 Honda Motor Co., Ltd. Battery temperature raising device for hybrid vehicle
CN113993727A (en) * 2019-06-07 2022-01-28 株式会社电装 Fluid circulation system
CN113492661A (en) * 2020-03-19 2021-10-12 丰田自动车株式会社 Thermal management device
CN113492661B (en) * 2020-03-19 2024-02-06 丰田自动车株式会社 Thermal management device
CN114763063A (en) * 2021-01-13 2022-07-19 本田技研工业株式会社 Temperature adjustment system for vehicle
CN114763063B (en) * 2021-01-13 2024-05-07 本田技研工业株式会社 Temperature adjustment system for vehicle
CN113363537A (en) * 2021-05-13 2021-09-07 华中科技大学 Vehicle temperature control system based on small-particle Brownian motion nano fluid
CN113363537B (en) * 2021-05-13 2023-03-10 华中科技大学 Vehicle temperature control system based on small-particle Brownian motion nanofluid

Also Published As

Publication number Publication date
JP2014181574A (en) 2014-09-29
JP6051984B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
JP6051984B2 (en) Thermal management system for vehicles
JP6112039B2 (en) Thermal management system for vehicles
US10391834B2 (en) Air conditioner
US9604627B2 (en) Thermal management system for vehicle
US9650940B2 (en) Thermal management system for vehicles
JP5983187B2 (en) Thermal management system for vehicles
US10183548B2 (en) Thermal management system for vehicle
US10065478B2 (en) Thermal management system for vehicle
JP6551374B2 (en) Vehicle thermal management device
US10703172B2 (en) Vehicular heat management system
US10457117B2 (en) Air conditioner for vehicle
WO2014196186A1 (en) Air conditioning device for vehicle
WO2015122137A1 (en) Vehicle heat management system
US20150101789A1 (en) Thermal management system for vehicle
WO2015115050A1 (en) Vehicle heat management system
JP6083304B2 (en) Thermal management system for vehicles
WO2016208550A1 (en) Heat management device for vehicle
WO2015097987A1 (en) Vehicle air-conditioning device
JP5929697B2 (en) Thermal management system for vehicles
JP5761129B2 (en) Thermal management system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14768621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14768621

Country of ref document: EP

Kind code of ref document: A1