WO2015122137A1 - Vehicle heat management system - Google Patents

Vehicle heat management system Download PDF

Info

Publication number
WO2015122137A1
WO2015122137A1 PCT/JP2015/000395 JP2015000395W WO2015122137A1 WO 2015122137 A1 WO2015122137 A1 WO 2015122137A1 JP 2015000395 W JP2015000395 W JP 2015000395W WO 2015122137 A1 WO2015122137 A1 WO 2015122137A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
cooling water
heat medium
battery
temperature
Prior art date
Application number
PCT/JP2015/000395
Other languages
French (fr)
Japanese (ja)
Inventor
山中 隆
梯 伸治
功嗣 三浦
康光 大見
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2015122137A1 publication Critical patent/WO2015122137A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32284Cooling devices using compression characterised by refrigerant circuit configurations comprising two or more secondary circuits, e.g. at evaporator and condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/44Heat storages, e.g. for cabin heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/246Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present disclosure relates to a heat management system used for a vehicle.
  • Hybrid vehicles and electric vehicles are equipped with a plurality of devices that require temperature adjustment (hereinafter referred to as temperature adjustment target devices) such as batteries, inverters, cooler cores, and heater cores.
  • temperature adjustment target devices such as batteries, inverters, cooler cores, and heater cores.
  • target devices for temperature adjustment have different target temperature ranges.
  • the temperature of the battery needs to be adjusted to a low temperature range of about 40 ° C.
  • the temperature of the inverter needs to be adjusted to a medium temperature range of about 60 ° C.
  • Patent Document 1 discloses a vehicle thermal management system capable of switching between a state in which low-temperature cooling water circulates and a state in which high-temperature cooling water circulates for each of a plurality of temperature adjustment target devices. Has been proposed.
  • a plurality of temperature adjustment target devices are connected in parallel between the first switching valve and the second switching valve.
  • a 1st switching valve and a 2nd switching valve switch the flow of a cooling water with respect to each of several temperature adjustment object apparatus.
  • the temperature adjustment target device can be heated with the waste heat of the engine, or the engine can be warmed up with the waste heat of the temperature adjustment target device.
  • the battery can be heated with the waste heat of the engine, or the engine can be warmed up with the waste heat of the battery.
  • the input characteristics of batteries mounted on hybrid and electric vehicles deteriorate at low temperatures (generally 10 ° C or lower). Therefore, when charging the battery in winter, it is necessary to heat the battery in order to ensure the input characteristics of the battery.
  • This indication aims at providing the thermal management system for vehicles which can heat a battery efficiently when charging a battery in view of the above-mentioned point.
  • a thermal management system for a vehicle includes: A pump for sucking and discharging the heat medium; A battery heat transfer part for transferring heat between the battery and the heat medium; A heat transfer unit for a heat-generating device that transfers heat between a heat-generating device that generates heat when charging the battery and the heat medium; A heat medium outside air heat exchanger for exchanging heat between the heat medium and the outside air; The first circulation mode in which the heat medium circulates between the heat transfer unit for the heat generating device and the heat medium outside air heat exchanger, and the first heat medium circulates between the heat transfer unit for the heat generating device and the heat transfer unit for the battery.
  • a switching device for switching between two circulation modes; A switching control unit that controls the operation of the switching device when the battery is charged.
  • the switching device when the switching device is switched to the second circulation mode, the waste heat generated from the heat generating device when the battery is charged is transmitted to the battery, so that the battery can be heated using the waste heat of the heat generating device. . Therefore, the battery can be efficiently heated when charging the battery.
  • the switching device When the switching device is switched to the first circulation mode, the waste heat of the heat generating device is radiated to the outside air, so that the battery can be prevented from being excessively heated by the waste heat of the heat generating device.
  • 1 is an overall configuration diagram of a vehicle thermal management system in a first embodiment. It is a block diagram which shows the electric control part in the thermal management system for vehicles of 1st Embodiment. It is a figure which shows the relationship between the temperature and input-output characteristic in the battery of 1st Embodiment. It is a flowchart which shows the control processing which a control apparatus performs in 1st Embodiment. It is a figure which shows the cooling water circulation state in the thermal radiation mode of 1st Embodiment. It is a figure which shows the cooling water circulation state in the battery warm-up mode of 1st Embodiment. It is a figure which shows the transition example of the charging electric power and battery temperature in 1st Embodiment.
  • the vehicle thermal management system 10 shown in FIG. 1 is used to adjust various devices and vehicle interiors provided in the vehicle to appropriate temperatures.
  • the vehicle thermal management system 10 is applied to a hybrid vehicle that obtains a driving force for vehicle travel from an engine (internal combustion engine) and a travel electric motor (motor generator).
  • the hybrid vehicle according to the present embodiment is configured as a plug-in hybrid vehicle that can charge power supplied from an external power source (commercial power source) when the vehicle is stopped to a battery (vehicle battery) mounted on the vehicle.
  • a battery vehicle battery
  • the battery for example, a lithium ion battery can be used.
  • the driving force output from the engine is used not only for driving the vehicle, but also for operating the generator.
  • the electric power generated with the generator and the electric power supplied from the external power supply can be stored in the battery.
  • the battery can also store electric power (regenerative energy) regenerated by the traveling electric motor during deceleration or downhill.
  • the electric power stored in the battery is supplied not only to the electric motor for traveling but also to various in-vehicle devices such as electric components constituting the thermal management system 10 for vehicles.
  • the plug-in hybrid vehicle charges the battery from an external power source when the vehicle is stopped before the vehicle starts running, so that the remaining battery charge SOC of the battery becomes equal to or greater than a predetermined reference running balance as at the start of driving.
  • the EV travel mode is a travel mode in which the vehicle travels by the driving force output from the travel electric motor.
  • the HV travel mode is a travel mode in which the vehicle travels mainly by the driving force output by the engine 61.
  • the travel electric motor is operated to assist the engine 61. .
  • Switching between the EV traveling mode and the HV traveling mode is controlled by a driving force control device (not shown).
  • the vehicle thermal management system 10 includes a first pump 11, a second pump 12, a radiator 13, a cooling water cooler 14, a cooling water heater 15, a cooler core 16, a heater core 17, and cooling water cooling water.
  • a heat exchanger 18, an inverter 19, a battery temperature adjusting heat exchanger 20, a first switching valve 21 and a second switching valve 22 are provided.
  • the first pump 11 and the second pump 12 are electric pumps that suck and discharge cooling water (heat medium).
  • the cooling water is a fluid as a heat medium.
  • a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid is used as the cooling water.
  • the radiator 13, the cooling water cooler 14, the cooling water heater 15, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, and the battery temperature control heat exchanger 20 are distributed in the cooling water flow.
  • Equipment heat medium distribution equipment
  • the radiator 13 is a cooling water outside air heat exchanger (heat medium outside air heat exchanger) that performs heat exchange (sensible heat exchange) between cooling water and outside air (hereinafter referred to as outside air).
  • outside air cooling water outside air heat exchanger
  • heat exchange sensible heat exchange
  • the radiator 13 can exhibit a function as a radiator that radiates heat from the cooling water to the outside air and a function as a heat absorber that absorbs heat from the outside air to the cooling water.
  • the radiator 13 is a heat transfer device that has a flow path through which the cooling water flows and that transfers heat to and from the cooling water whose temperature has been adjusted by the cooling water cooler 14 or the cooling water heater 15.
  • the outdoor blower 30 is an electric blower (outside air blower) that blows outside air to the radiator 13.
  • the radiator 13 and the outdoor blower 30 are disposed in the foremost part of the vehicle. For this reason, the traveling wind can be applied to the radiator 13 when the vehicle is traveling.
  • the cooling water cooler 14 (heat medium cooler) and the cooling water heater 15 (heat medium heater) are heat exchangers for adjusting the temperature of the cooling water (heat medium) that adjust the temperature of the cooling water by exchanging heat of the cooling water. Temperature adjusting heat exchanger).
  • the cooling water cooler 14 is a cooling water cooling heat exchanger (heat medium cooling heat exchanger) that cools the cooling water.
  • the cooling water heater 15 is a cooling water heating heat exchanger (heat medium heating heat exchanger) for heating the cooling water.
  • the cooling water cooler 14 is a low pressure side heat exchanger (heat medium heat absorber) that absorbs heat from the cooling water to the low pressure side refrigerant by exchanging heat between the low pressure side refrigerant of the refrigeration cycle 31 and the cooling water.
  • the cooling water cooler 14 constitutes an evaporator of the refrigeration cycle 31.
  • the refrigeration cycle 31 is a vapor compression refrigerator that includes a compressor 32, a cooling water heater 15, an expansion valve 33, a cooling water cooler 14, and an internal heat exchanger 34.
  • a chlorofluorocarbon refrigerant is used as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant is configured.
  • the compressor 32 is an electric compressor driven by electric power supplied from a battery, and sucks, compresses and discharges the refrigerant of the refrigeration cycle 31.
  • the cooling water heater 15 is a condenser that condenses (changes latent heat) the high pressure side refrigerant by exchanging heat between the high pressure side refrigerant discharged from the compressor 32 and the cooling water.
  • the expansion valve 33 is a decompression device that decompresses and expands the liquid-phase refrigerant that has flowed out of the cooling water heater 15.
  • the expansion valve 33 includes a temperature sensing unit 33a that detects the degree of superheat of the coolant cooler 14 outlet side refrigerant based on the temperature and pressure of the coolant cooler 14 outlet side refrigerant, and the coolant cooler 14 outlet side refrigerant.
  • This is a temperature-type expansion valve that adjusts the throttle passage area by a mechanical mechanism so that the degree of superheat of the gas reaches a predetermined range.
  • the cooling water cooler 14 is an evaporator that evaporates (changes latent heat) the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant decompressed and expanded by the expansion valve 33 and the cooling water.
  • the gas phase refrigerant evaporated in the cooling water cooler 14 is sucked into the compressor 32 and compressed.
  • the internal heat exchanger 34 is a heat exchanger that exchanges heat between the refrigerant flowing out of the cooling water heater 15 and the refrigerant flowing out of the cooling water cooler 14.
  • the refrigeration cycle 31 is a cooling water cooling / heating unit (heat medium cooling / heating unit) having a cooling water cooler 14 for cooling the cooling water and a cooling water heater 15 for heating the cooling water.
  • the refrigeration cycle 31 is a low-temperature cooling water generation unit (low-temperature heat medium generation unit) that generates low-temperature cooling water by the cooling water cooler 14 and high-temperature cooling water that generates high-temperature cooling water by the cooling water heater 15. It is a generating part (high temperature heat medium generating part).
  • the cooling water In the radiator 13, the cooling water is cooled by outside air, whereas in the cooling water cooler 14, the cooling water is cooled by the low-pressure refrigerant of the refrigeration cycle 31. For this reason, the temperature of the cooling water cooled by the cooling water cooler 14 can be made lower than the temperature of the cooling water cooled by the radiator 13. Specifically, the radiator 13 cannot cool the cooling water to a temperature lower than the outside air temperature, whereas the cooling water cooler 14 can cool the cooling water to a temperature lower than the outside air temperature.
  • the cooler core 16 and the heater core 17 are heat medium air heat exchange that adjusts the temperature of the blown air by exchanging heat between the cooling water whose temperature is adjusted by the cooling water cooler 14 and the cooling water heater 15 and the blown air to the vehicle interior. It is a vessel.
  • the cooler core 16 is a heat exchanger for air cooling that cools the blown air into the vehicle interior by exchanging heat (sensible heat exchange) between the cooling water and the blown air into the vehicle interior.
  • the heater core 17 is an air heating heat exchanger that heats the air blown into the vehicle interior by exchanging heat (sensible heat exchange) between the air blown into the vehicle cabin and the cooling water.
  • the cooling water cooling water heat exchanger 18, the inverter 19, and the battery temperature control heat exchanger 20 have a flow path through which the cooling water flows, and a heat transfer device (a temperature adjustment target) that transfers heat to and from the cooling water. Equipment).
  • the cooling water cooling water heat exchanger 18 includes cooling water (cooling water circulated by the first pump 11 or the second pump 12) of the vehicle heat management system 10 and cooling water (engine heat medium for the engine cooling circuit 60). ) And a heat exchanger (heat medium heat medium heat exchanger).
  • the cooling water cooling water heat exchanger 18 constitutes an engine heat transfer unit that transfers heat between the cooling water circulated by the first pump 11 or the second pump 12 and the engine 61.
  • the inverter 19 is a power converter that converts DC power supplied from the battery into AC voltage and outputs the AC voltage to the traveling electric motor.
  • the inverter 19 is a heat generating device that generates heat when activated. The amount of heat generated by the inverter 19 changes depending on the traveling state of the vehicle.
  • the cooling water flow path of the inverter 19 constitutes a device heat transfer unit that transfers heat between the heat generating device and the cooling water.
  • the battery temperature control heat exchanger 20 is a heat exchanger that exchanges heat between the battery and the cooling water.
  • the battery temperature control heat exchanger 20 constitutes a battery heat transfer unit that transfers heat between the battery and the cooling water.
  • a battery is a heat-generating device that generates heat when activated.
  • the battery temperature control heat exchanger 20 may be a heat exchanger (heat medium air heat exchanger) that is disposed in the air blowing path to the battery and exchanges heat between the blown air and the cooling water.
  • the vehicle thermal management system 10 includes a charger 23 and a DC-DC converter 24.
  • the charger 23 and the DC-DC converter 24 are charging devices used when charging a battery with electric power supplied from an external power source.
  • the charger 23 and the DC-DC converter 24 are heat generating devices that generate heat when the battery is charged.
  • the charger 23 has a power supply circuit that converts AC power supplied from an external power source into DC power.
  • the DC-DC converter 24 is a transformer that converts the voltage of the DC power converted by the charger 23.
  • the charger 23 and the DC-DC converter 24 are heat transfer devices that have a flow path through which the cooling water flows and exchange heat with the cooling water.
  • the cooling water flow path of the charger 23 is a heat transfer section (heat transfer section for a heat generating device) that transfers heat between the charger 23 and the cooling water.
  • the cooling water flow path of the DC-DC converter 24 is a heat transfer unit (a heat transfer unit for a heating device) that transfers heat between the DC-DC converter 24 and the cooling water.
  • the first pump 11 is disposed in the first pump flow path 41.
  • a cooling water cooler 14 is disposed on the discharge side of the first pump 11 in the first pump flow path 41.
  • the second pump 12 is disposed in the second pump flow path 42.
  • a cooling water heater 15 is disposed on the discharge side of the second pump 12 in the second pump flow path 42.
  • the radiator 13 is disposed in the radiator flow path 43.
  • the cooler core 16 is disposed in the cooler core flow path 44.
  • the heater core 17 is disposed in the heater core flow path 45.
  • the cooling water cooling water heat exchanger 18 is disposed in the cooling water cooling water heat exchanger channel 46.
  • the inverter 19 is disposed in the inverter flow path 47.
  • the battery temperature adjustment heat exchanger 20 is disposed in the battery heat exchange channel 48.
  • the charger 23 and the DC-DC converter 24 are disposed in the charger flow path 49.
  • a reserve tank 43 a is connected to the radiator flow path 43.
  • the reserve tank 43a is an open-air container (heat medium storage unit) that stores cooling water. Therefore, the pressure at the liquid level of the cooling water stored in the reserve tank 43a becomes atmospheric pressure.
  • the reserve tank 43a may be configured such that the pressure at the coolant level stored in the reserve tank 43a is a predetermined pressure (a pressure different from the atmospheric pressure).
  • Storing excess cooling water in the reserve tank 43a can suppress a decrease in the amount of cooling water circulating through each flow path.
  • the reserve tank 43a has a function of gas-liquid separation of bubbles mixed in the cooling water.
  • the battery heat exchange channel 48 is connected to the first switching valve 21 and the second switching valve 22.
  • the first switching valve 21 and the second switching valve 22 are switching devices that switch the flow of cooling water (cooling water circulation state).
  • the first switching valve 21 has a first inlet 21a and a second inlet 21b as cooling water inlets, and a first outlet 21c, a second outlet 21d, a third outlet 21e, a fourth outlet 21f as cooling water outlets, It has a fifth outlet 21g, a sixth outlet 21h, and a seventh outlet 21i.
  • the second switching valve 22 has a first outlet 22a and a second outlet 22b as cooling water outlets, and a first inlet 22c, a second inlet 22d, a third inlet 22e, a fourth inlet 22f, as cooling water inlets, It has a fifth inlet 22g, a sixth inlet 22h, and a seventh inlet 22i.
  • One end of a first pump flow path 41 is connected to the first inlet 21 a of the first switching valve 21.
  • the cooling water outlet side of the cooling water cooler 14 is connected to the first inlet 21 a of the first switching valve 21.
  • One end of a second pump flow path 42 is connected to the second inlet 21b of the first switching valve 21.
  • the cooling water outlet side of the cooling water heater 15 is connected to the second inlet 21 b of the first switching valve 21.
  • One end of a radiator flow path 43 is connected to the first outlet 21c of the first switching valve 21.
  • the cooling water inlet side of the radiator 13 is connected to the first outlet 21 c of the first switching valve 21.
  • One end of the cooler core flow path 44 is connected to the second outlet 21d of the first switching valve 21.
  • the cooling water inlet side of the cooler core 16 is connected to the second outlet 21 d of the first switching valve 21.
  • One end of a heater core channel 45 is connected to the third outlet 21e of the first switching valve 21.
  • the cooling water inlet side of the heater core 17 is connected to the third outlet 21 e of the first switching valve 21.
  • One end of a cooling water / cooling water heat exchanger channel 46 is connected to the fourth outlet 21f of the first switching valve 21.
  • the cooling water inlet side of the cooling water cooling water heat exchanger 18 is connected to the fourth outlet 21 f of the first switching valve 21.
  • One end of an inverter flow path 47 is connected to the fifth outlet 21g of the first switching valve 21.
  • the cooling water inlet side of the inverter 19 is connected to the fifth outlet 21 g of the first switching valve 21.
  • One end of a battery heat exchange channel 48 is connected to the sixth outlet 21h of the first switching valve 21.
  • the sixth water outlet 21h of the first switching valve 21 is connected to the coolant inlet side of the battery temperature adjusting heat exchanger 20.
  • One end of a charger flow path 49 is connected to the seventh outlet 21 i of the first switching valve 21.
  • the cooling water inlet side of the charging devices 23 and 24 is connected to the seventh outlet 21 i of the first switching valve 21.
  • the other end of the first pump flow path 41 is connected to the first outlet 22a of the second switching valve 22.
  • the cooling water suction side of the first pump 11 is connected to the first outlet 22 a of the second switching valve 22.
  • the other end of the second pump flow path 42 is connected to the second outlet 22b of the second switching valve 22.
  • the cooling water suction side of the second pump 12 is connected to the second outlet 22 b of the second switching valve 22.
  • the other end of the radiator flow path 43 is connected to the first inlet 22c of the second switching valve 22.
  • the cooling water outlet side of the radiator 13 is connected to the first inlet 22 c of the second switching valve 22.
  • the other end of the cooler core flow path 44 is connected to the second inlet 22d of the second switching valve 22.
  • the cooling water outlet side of the cooler core 16 is connected to the second inlet 22 d of the second switching valve 22.
  • the other end of the heater core flow path 45 is connected to the third inlet 22e of the second switching valve 22.
  • the coolant outlet side of the heater core 17 is connected to the third inlet 22e of the second switching valve 22.
  • the other end of the cooling water / cooling water heat exchanger channel 46 is connected to the fourth inlet 22f of the second switching valve 22.
  • the cooling water outlet side of the cooling water cooling water heat exchanger 18 is connected to the fourth inlet 22 f of the second switching valve 22.
  • the other end of the inverter flow path 47 is connected to the fifth inlet 22g of the second switching valve 22.
  • the cooling water outlet side of the inverter 19 is connected to the fifth inlet 22 g of the second switching valve 22.
  • the other end of the battery heat exchange channel 48 is connected to the sixth inlet 22h of the second switching valve 22.
  • the cooling water outlet side of the battery temperature adjusting heat exchanger 20 is connected to the sixth inlet 22 h of the second switching valve 22.
  • the other end of the charger flow path 49 is connected to the seventh inlet 22i of the second switching valve 22.
  • the cooling water outlet side of the charging devices 23 and 24 is connected to the seventh inlet 22 i of the second switching valve 22.
  • the first switching valve 21 and the second switching valve 22 have a structure that can arbitrarily or selectively switch the communication state between each inlet and each outlet.
  • the first switching valve 21 is provided for each of the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, the battery temperature adjustment heat exchanger 20, and the charging devices 23 and 24.
  • the state in which the cooling water discharged from the first pump 11 flows in, the state in which the cooling water discharged from the second pump 12 flows in, the cooling water discharged from the first pump 11 and the discharge from the second pump 12 The state where the cooled cooling water does not flow is switched.
  • the second switching valve 22 is connected to the first pump 11 for each of the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, the battery temperature adjustment heat exchanger 20, and the charging devices 23 and 24.
  • the state in which the cooling water flows out, the state in which the cooling water flows out to the second pump 12, and the state in which the cooling water does not flow out to the first pump 11 and the second pump 12 are switched.
  • the valve opening degree of the first switching valve 21 and the second switching valve 22 can be adjusted. Thereby, the flow volume of the cooling water which flows through the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, the battery temperature control heat exchanger 20, and the charging devices 23 and 24 can be adjusted.
  • the 1st switching valve 21 and the 2nd switching valve 22 are the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, the battery temperature control heat exchanger 20, and the charging devices 23 and 24. It is a flow volume adjustment part which adjusts the flow volume of a cooling water with respect to each of these.
  • the first switching valve 21 mixes the cooling water discharged from the first pump 11 and the cooling water discharged from the second pump 12 at an arbitrary flow rate ratio, and the radiator 13, the cooler core 16, the heater core 17, and the cooling water.
  • the cooling water heat exchanger 18, the inverter 19, the battery temperature adjusting heat exchanger 20, and the charging devices 23 and 24 can be made to flow.
  • the 1st switching valve 21 and the 2nd switching valve 22 are the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, the battery temperature control heat exchanger 20, and the charging devices 23 and 24.
  • the flow rate ratio adjusting unit adjusts the flow rate ratio between the cooling water cooled by the cooling water cooler 14 and the cooling water heated by the cooling water heater 15.
  • the first switching valve 21 and the second switching valve 22 may be integrally formed to share a valve drive source.
  • the 1st switching valve 21 and the 2nd switching valve 22 may be comprised by the combination of many valves.
  • the cooler core 16 and the heater core 17 are accommodated in a case 51 of the indoor air conditioning unit 50 of the vehicle air conditioner.
  • the case 51 forms an air passage for the blown air that is blown into the vehicle interior, and is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
  • An inside / outside air switching box 52 is arranged on the most upstream side of the air flow in the case 51.
  • the inside / outside air switching box 52 is an inside / outside air introduction section that switches between and introduces inside air (vehicle compartment air) and outside air (vehicle compartment outside air).
  • the inside / outside air switching box 52 is formed with an inside air inlet 52a for introducing inside air into the case 51 and an outside air inlet 52b for introducing outside air.
  • An inside / outside air switching door 53 is arranged inside the inside / outside air switching box 52.
  • the inside / outside air switching door 53 is an air volume ratio changing unit that changes the air volume ratio between the air volume of the inside air introduced into the case 51 and the air volume of the outside air. Specifically, the inside / outside air switching door 53 continuously adjusts the opening areas of the inside air suction port 52a and the outside air suction port 52b to change the air volume ratio between the inside air volume and the outside air volume.
  • the inside / outside air switching door 53 is driven by an electric actuator (not shown).
  • An indoor blower 54 (blower) is disposed on the downstream side of the air flow in the inside / outside air switching box 52.
  • the indoor blower 54 blows air (inside air and outside air) sucked through the inside / outside air switching box 52 toward the vehicle interior.
  • the indoor blower 54 is an electric blower that drives a centrifugal multiblade fan (sirocco fan) with an electric motor.
  • the cooler core 16, the heater core 17, and the auxiliary heater 56 are disposed on the downstream side of the air flow of the indoor blower 54.
  • the auxiliary heater 56 has a PTC element (positive characteristic thermistor) and is a PTC heater (electric heater) that generates heat and heats air when electric power is supplied to the PTC element.
  • a heater core bypass passage 51a is formed at the downstream side of the air flow of the cooler core 16.
  • the heater core bypass passage 51 a is an air passage through which air that has passed through the cooler core 16 flows without passing through the heater core 17 and the auxiliary heater 56.
  • An air mix door 55 is arranged between the cooler core 16 and the heater core 17 in the case 51.
  • the air mix door 55 is an air volume ratio adjusting unit that continuously changes the air volume ratio between the air flowing into the heater core 17 and the auxiliary heater 56 and the air flowing into the heater core bypass passage 51a.
  • the air mix door 55 is a rotatable plate-like door, a slidable door, or the like, and is driven by an electric actuator (not shown).
  • the air mix door 55 is a temperature adjusting unit that adjusts the temperature of the blown air blown into the vehicle interior.
  • the blower outlet 51b which blows off blowing air to the vehicle interior which is air-conditioning object space is arrange
  • a defroster outlet, a face outlet, and a foot outlet are provided as the outlet 51b.
  • the defroster outlet blows air conditioned air toward the inner surface of the front window glass of the vehicle.
  • the face air outlet blows conditioned air toward the upper body of the passenger.
  • the air outlet blows air-conditioned air toward the passenger's feet.
  • An air outlet mode door (not shown) is disposed on the air flow upstream side of the air outlet 51b.
  • a blower outlet mode door is a blower outlet mode switching part which switches blower outlet mode.
  • the air outlet mode door is driven by an electric actuator (not shown).
  • the outlet mode switched by the outlet mode door for example, there are a face mode, a bi-level mode, a foot mode, and a foot defroster mode.
  • the face mode is a blowout mode in which the face blowout is fully opened and air is blown out from the face blowout toward the upper body of the passenger in the passenger compartment.
  • the bi-level mode is an air outlet mode in which both the face air outlet and the foot air outlet are opened and air is blown toward the upper body and the feet of the passengers in the passenger compartment.
  • the foot mode is a blowout mode in which the foot blowout opening is fully opened and the defroster blowout opening is opened by a small opening so that air is mainly blown out from the foot blowout opening.
  • the foot defroster mode is an air outlet mode in which the foot air outlet and the defroster air outlet are opened to the same extent and air is blown out from both the foot air outlet and the defroster air outlet.
  • the engine cooling circuit 60 is a cooling water circulation circuit for cooling the engine 61.
  • the engine cooling circuit 60 has a circulation passage 62 through which cooling water circulates.
  • An engine 61, an engine pump 63, an engine radiator 64, and a cooling water / cooling water heat exchanger 18 are disposed in the circulation flow path 62.
  • the engine pump 63 is an electric pump that sucks and discharges cooling water.
  • the engine pump 63 may be a mechanical pump driven by power output from the engine 61.
  • the engine radiator 64 is a heat dissipation heat exchanger (heat medium air heat exchanger) that radiates heat of the cooling water to the outside air by exchanging heat between the cooling water and the outside air.
  • heat dissipation heat exchanger heat medium air heat exchanger
  • a radiator bypass channel 65 is connected to the circulation channel 62.
  • the radiator bypass passage 65 is a passage through which cooling water flows bypassing the engine radiator 64.
  • a thermostat 66 is disposed at the connection between the radiator bypass channel 65 and the circulation channel 62.
  • the thermostat 66 is a cooling water temperature responsive valve configured by a mechanical mechanism that opens and closes the cooling water flow path by displacing the valve body by a thermo wax (temperature sensitive member) whose volume changes with temperature.
  • the thermostat 66 closes the radiator bypass channel 65 when the temperature of the cooling water is higher than a predetermined temperature (for example, 80 ° C. or more), and when the temperature of the cooling water is lower than the predetermined temperature (for example, (Less than 80 ° C.), the radiator bypass passage 65 is opened.
  • a predetermined temperature for example, 80 ° C. or more
  • the predetermined temperature for example, (Less than 80 ° C.
  • the circulation passage 62 is connected with an engine auxiliary passage 67.
  • the engine accessory flow path 67 is a flow path in which cooling water flows in parallel with the cooling water cooling water heat exchanger 18.
  • An engine accessory 68 is disposed in the engine accessory flow path 67.
  • the engine accessory 68 is an oil heat exchanger, an EGR cooler, a throttle cooler (warmer), a turbo cooler, an engine auxiliary motor, or the like.
  • the oil heat exchanger is a heat exchanger that adjusts the temperature of oil by exchanging heat between engine oil or transmission oil and cooling water.
  • the EGR cooler is a heat exchanger that constitutes an EGR (exhaust gas recirculation) device that recirculates a part of the exhaust gas of the engine to the intake side to reduce the pumping loss generated by the throttle valve. It is a heat exchanger that adjusts the temperature of the reflux gas by exchanging heat with water.
  • EGR exhaust gas recirculation
  • a throttle cooler protects the throttle valve components from heat damage when the throttle valve is hot (eg, 100 ° C. or higher), and the throttle valve component freezes when the throttle valve is cold (eg, below freezing point).
  • the temperature adjusting device adjusts the temperature of the throttle valve component by exchanging heat between the throttle valve component and the cooling water through a water jacket provided inside the throttle.
  • the turbo cooler is a cooler for cooling the turbocharger by exchanging heat between the heat generated in the turbocharger and the cooling water.
  • the engine auxiliary motor is a large motor that allows the engine belt to rotate even when the engine is stopped.
  • the compressor or water pump driven by the engine belt can be operated even when there is no engine driving force, or the engine can be started. Sometimes used.
  • An engine reserve tank 64a is connected to the engine radiator 64.
  • the structure and function of the engine reserve tank 64a are the same as those of the above-described reserve tank 43a.
  • the control device 70 is composed of a well-known microcomputer including a CPU, ROM, RAM, etc. and its peripheral circuits, and performs various calculations and processing based on an air conditioning control program stored in the ROM, and is connected to the output side. It is a control part which controls operation of various control object equipment.
  • Control target devices controlled by the control device 70 include the first pump 11, the second pump 12, the first switching valve 21, the second switching valve 22, the outdoor blower 30, the compressor 32, the indoor blower 54, and the inside of the case 51.
  • the electric actuator which drives the various doors (inside / outside air switching door 53, air mix door 55, blower outlet mode door, etc.) arranged in, and the inverter 19 and the like.
  • the control device 70 includes control units 70a, 70b, 70c, 70d, 70e, 70f, 70g, 70h, and 70i that control various devices to be controlled connected to the output side.
  • Each of the control units 70a, 70b, 70c, 70d, 70e, 70f, 70g, 70h, and 70i is a control unit (hardware and software) that controls the operation of each control target device.
  • the pump control unit 70 a is a pump control unit that controls the operation of the first pump 11 and the second pump 12.
  • the 1st pump 11, the 2nd pump 12, and the pump control part 70a are cooling water flow volume control parts (heat medium flow volume adjustment part) which controls the flow volume of the cooling water which flows through each cooling water circulation apparatus.
  • the switching valve control unit 70 b is a switching control unit that controls the operation of the first switching valve 21 and the second switching valve 22.
  • the 1st switching valve 21, the 2nd switching valve 22, and the switching valve control part 70b are cooling water flow volume adjustment parts (heat medium flow volume adjustment part) which adjust the flow volume of the cooling water which flows through each cooling water distribution
  • the outdoor blower control unit 70c is an outdoor blower control unit (outside air blower control unit) that controls the operation of the outdoor blower 30.
  • the outdoor blower 30 and the outdoor blower control unit 70 c are outdoor air flow rate adjusting units that adjust the flow rate of the outside air flowing through the radiator 13.
  • the compressor control unit 70 d is a compressor control unit that controls the operation of the compressor 32.
  • the compressor 32 and the compressor control unit 70d are refrigerant flow rate adjusting units that adjust the flow rate of the refrigerant circulating in the refrigeration cycle 31.
  • the indoor fan control unit 70e is an indoor fan control unit that controls the operation of the indoor fan 54.
  • the indoor blower 54 and the indoor blower control unit 70e are blown air volume adjusting units that adjust the air volume of the blown air blown into the vehicle interior.
  • the door control unit 70f is a door control unit that controls the operation of various doors (inside / outside air switching door 53, air mix door 55, air outlet mode door, etc.) arranged inside the case 51.
  • the air mix door 55 and the door control unit 70 f are air volume ratio adjusting units that adjust the air volume ratio between the blown air flowing through the heater core 17 and the blown air flowing around the heater core 17 out of the blown air cooled by the cooler core 16. .
  • the inside / outside air switching door 53 and the air conditioning switching control unit 70f are inside / outside air ratio adjusting units that adjust the ratio between the inside air and the outside air in the blown air blown into the vehicle interior.
  • the auxiliary heater control unit 70g is an auxiliary heater control unit 70g (electric heater control unit) that controls the operation of the auxiliary heater 56.
  • the inverter control unit 70 h is an inverter control unit (heating device control unit) that controls the operation of the inverter 19.
  • the charging device control unit 70i is a charging device control unit (heating device control unit) that controls the operation of the charger 23 and the DC-DC converter 24 (charging device).
  • control units 70a, 70b, 70c, 70d, 70e, 70f, 70g, 70h, and 70i may be configured separately from the control device 70.
  • the controller 70 includes an inside air temperature sensor 71, an inside air humidity sensor 72, an outside air temperature sensor 73, a solar radiation sensor 74, a first water temperature sensor 75, a second water temperature sensor 76, a radiator water temperature sensor 77, a cooler core temperature sensor 78, a heater core temperature sensor. 79, detection signals of sensor groups such as an engine water temperature sensor 80, an inverter temperature sensor 81, a battery temperature sensor 82, refrigerant temperature sensors 83 and 84, and refrigerant pressure sensors 85 and 86 are input.
  • sensor groups such as an engine water temperature sensor 80, an inverter temperature sensor 81, a battery temperature sensor 82, refrigerant temperature sensors 83 and 84, and refrigerant pressure sensors 85 and 86 are input.
  • the inside air temperature sensor 71 is a detector (inside air temperature detector) that detects the inside air temperature (vehicle compartment temperature).
  • the room air humidity sensor 72 is a detection unit (room air humidity detection unit) that detects the humidity of the room air.
  • the outside air temperature sensor 73 is a detector (outside air temperature detector) that detects the outside air temperature (the temperature outside the passenger compartment).
  • the solar radiation sensor 74 is a detector (a solar radiation amount detector) that detects the amount of solar radiation in the passenger compartment.
  • the first water temperature sensor 75 is a detector (first heat medium temperature detector) that detects the temperature of the cooling water flowing through the first pump passage 41 (for example, the temperature of the cooling water sucked into the first pump 11). is there.
  • the second water temperature sensor 76 is a detector (second heat medium temperature detector) that detects the temperature of the cooling water flowing through the second pump flow path 42 (for example, the temperature of the cooling water sucked into the second pump 12). is there.
  • the radiator water temperature sensor 77 is a detector (equipment-side heat medium temperature detector) that detects the temperature of the cooling water flowing through the radiator flow path 43 (for example, the temperature of the cooling water that has flowed out of the radiator 13).
  • the cooler core temperature sensor 78 is a detector (cooler core temperature detector) that detects the surface temperature of the cooler core 16.
  • the cooler core temperature sensor 78 is, for example, a fin thermistor that detects the temperature of the heat exchange fins of the cooler core 16, a water temperature sensor that detects the temperature of the cooling water flowing through the cooler core 16, or the like.
  • the heater core temperature sensor 79 is a detector (heater core temperature detector) that detects the surface temperature of the heater core 17.
  • the heater core temperature sensor 79 is, for example, a fin thermistor that detects the temperature of the heat exchange fins of the heater core 17 or a water temperature sensor that detects the temperature of the cooling water flowing through the heater core 17.
  • Engine water temperature sensor 80 is a detector (engine heat medium temperature detector) that detects the temperature of cooling water circulating in engine cooling circuit 60 (for example, the temperature of cooling water flowing inside engine 61).
  • the inverter temperature sensor 81 is a detector (equipment-side heat medium temperature detector) that detects the temperature of the cooling water flowing through the inverter flow path 47 (for example, the temperature of the cooling water flowing out of the inverter 19).
  • the battery temperature sensor 82 is a detector (device-side heat medium temperature detector) that detects the temperature of cooling water flowing through the battery heat exchange channel 48 (for example, the temperature of cooling water flowing into the battery temperature adjustment heat exchanger 20). It is.
  • the battery temperature sensor 82 may be a detector (battery representative temperature detector) that detects the temperature (battery representative temperature) of a specific part in a battery pack having temperature variations.
  • the refrigerant temperature sensors 83 and 84 are a discharge side refrigerant temperature sensor 83 that detects the temperature of the refrigerant discharged from the compressor 32, and a suction side refrigerant temperature sensor 84 that detects the temperature of the refrigerant sucked into the compressor 32. .
  • the refrigerant pressure sensors 85 and 86 are a discharge side refrigerant pressure sensor 85 that detects the pressure of the refrigerant discharged from the compressor 32, and a suction side refrigerant temperature sensor 86 that detects the pressure of the refrigerant sucked into the compressor 32. .
  • the control device 70 receives operation signals from various air conditioning operation switches provided on the operation panel 88.
  • the operation panel 88 is disposed in the vicinity of the instrument panel in the front part of the vehicle interior.
  • the various air conditioning operation switches provided on the operation panel 88 are an air conditioner switch, an auto switch, an air volume setting switch for the indoor fan 52, a vehicle interior temperature setting switch, an air conditioning stop switch, and the like.
  • the air conditioner switch is a switch for switching on / off (ON / OFF) of cooling or dehumidification.
  • the auto switch is a switch for setting or canceling automatic control of air conditioning.
  • the vehicle interior temperature setting switch is a target temperature setting unit that sets the vehicle interior target temperature by the operation of the passenger.
  • the air conditioning stop switch is a switch that stops air conditioning.
  • the various air conditioning operation switches provided on the operation panel 88 are an air conditioning request unit that performs a cooling request for cooling the blown air using the cooler core 16 and a heating request for heating the blown air using the heater core 17.
  • the battery control device 90 is a battery control unit that controls battery input / output.
  • the battery control device 90 is a charge mode switching unit that switches modes for charging the battery (CC charge mode and CV charge mode).
  • control device 70 receives a signal indicating whether or not the battery is being charged. For example, a signal indicating whether the CC charging mode or the CV charging mode is input to the control device 70.
  • CC charge mode is a charge mode that charges at a constant current.
  • the CV charging mode is a charging mode in which charging is performed at a constant voltage. In this embodiment, when the charging rate of the battery is less than 80%, charging is performed in the CC charging mode, and when the charging rate of the battery is 80% or more, charging is performed in the CV charging mode.
  • the control device 70 controls the operation of the first pump 11, the second pump 12, the compressor 32, the first switching valve 21, the second switching valve 22, and the like, thereby switching to various operation modes.
  • the cooling water sucked and discharged by the first pump 11 is converted into the cooling water cooler 14, the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, and the battery temperature adjustment heat exchange.
  • the first cooling water circuit (first heat medium circuit) that circulates between the battery 20 and at least one of the charging devices 23 and 24 is formed, and the cooling water sucked and discharged by the second pump 12
  • a second cooling water circuit (second heat medium circuit) circulating between the two is formed.
  • the first cooling water circuit In the first cooling water circuit, the low-temperature cooling water cooled by the cooling water cooler 14 circulates. In the second cooling water circuit, the high-temperature cooling water heated by the cooling water heater 15 circulates. Therefore, the first cooling water circuit can be expressed as a low temperature side cooling water circuit (low temperature side heat medium circuit), and the second cooling water circuit C1 can be expressed as a high temperature side cooling water circuit (high temperature side heat medium circuit).
  • Each of the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, the battery temperature adjusting heat exchanger 20 and the charging devices 23 and 24 is connected to the first cooling water circuit.
  • the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, the battery temperature adjusting heat exchanger 20 and the case where the second cooling water circuit is connected are switched according to the situation.
  • the charging devices 23 and 24 can be adjusted to an appropriate temperature depending on the situation.
  • the heat pump operation of the refrigeration cycle 31 can be performed. That is, in the first cooling water circuit, the cooling water cooled by the cooling water cooler 14 flows through the radiator 13, so that the cooling water absorbs heat from the outside air by the radiator 13.
  • the cooling water that has absorbed heat from the outside air by the radiator 13 exchanges heat with the refrigerant of the refrigeration cycle 31 by the cooling water cooler 14 and dissipates heat. Therefore, in the cooling water cooler 14, the refrigerant of the refrigeration cycle 31 absorbs heat from the outside air through the cooling water.
  • the refrigerant that has absorbed heat from the outside air in the cooling water cooler 14 radiates heat by exchanging heat with the cooling water in the second cooling water circuit in the cooling water heater 15. Therefore, it is possible to realize a heat pump operation that pumps up the heat of the outside air.
  • the radiator 13 When the radiator 13 is connected to the second cooling water circuit, the cooling water heated by the cooling water heater 15 flows through the radiator 13, so that the heat of the cooling water can be radiated to the outside air by the radiator 13.
  • the cooling water cooled by the cooling water cooler 14 flows through the cooler core 16, so that the air blown into the vehicle compartment can be cooled by the cooler core 16. That is, the passenger compartment can be cooled.
  • the cooling water heated by the cooling water heater 15 flows through the heater core 17, so that the air blown into the vehicle compartment can be heated by the heater core 17. That is, the passenger compartment can be heated.
  • the cooling water cooling water heat exchanger 18 When the cooling water cooling water heat exchanger 18 is connected to the first cooling water circuit, the cooling water cooled by the cooling water cooler 14 flows through the cooling water cooling water heat exchanger 18, so that the engine cooling water can be cooled. In other words, since the cooling water in the first cooling water circuit can absorb heat from the engine cooling water in the cooling water cooling water heat exchanger 18, a heat pump operation for pumping up the waste heat of the engine 61 can be realized.
  • the cooling water cooling water heat exchanger 18 When the cooling water cooling water heat exchanger 18 is connected to the second cooling water circuit, the cooling water heated by the cooling water heater 15 flows through the cooling water cooling water heat exchanger 18, so that the engine cooling water can be heated. Therefore, the engine 61 can be heated (warmed up).
  • the cooling water cooled by the cooling water cooler 14 flows through the inverter 19, so that the inverter 19 can be cooled.
  • a heat pump operation that pumps up the waste heat of the inverter 19 can be realized.
  • the inverter 19 When the inverter 19 is connected to the second cooling water circuit, since the cooling water heated by the cooling water heater 15 flows through the inverter 19, the inverter 19 can be heated (warmed up).
  • the cooling water cooled by the cooling water cooler 14 flows through the battery temperature adjustment heat exchanger 20, so that the battery can be cooled.
  • a heat pump operation that pumps up the waste heat of the battery can be realized.
  • the cooling water heated by the cooling water heater 15 flows through the battery temperature adjusting heat exchanger 20, so that the battery can be heated (warmed up).
  • the driving comfort is deteriorated due to a decrease in the battery output, or the regenerative energy cannot be sufficiently recovered due to the deterioration of the input characteristics of the battery, resulting in a deterioration in the EV travel distance.
  • the power input to the battery is about 1.2 kW at the maximum considering the charging efficiency and the power consumption of the electrical equipment for charging.
  • control device 70 executes a control process shown in the flowchart of FIG.
  • step S100 it is determined based on a signal input from the battery control device 90 whether the battery is being charged.
  • the process proceeds to step S110, and it is determined whether or not the battery temperature is equal to or lower than a predetermined temperature ⁇ 1 (first predetermined temperature).
  • the predetermined temperature ⁇ 1 is a lower limit value (for example, 10 ° C.) of the battery management temperature range.
  • step S120 When it is determined that the temperature of the battery is not equal to or lower than the predetermined temperature ⁇ 1, the process proceeds to step S120 to switch to the heat dissipation mode shown in FIG. In the heat dissipation mode, the first switching valve 21 and the second switching valve 22 connect the charger 23 and the DC-DC converter 24 to the radiator 13.
  • step S130 when it is determined that the temperature of the battery is equal to or lower than the predetermined temperature ⁇ 1, the process proceeds to step S130 to switch to the battery warm-up mode shown in FIG.
  • the first switching valve 21 and the second switching valve 22 connect the charger 23 and the DC-DC converter 24 to the battery temperature adjustment heat exchanger 20.
  • step S140 it is determined based on a signal input from the battery control device 90 whether or not the battery charging mode is the CV charging mode.
  • step S150 If it is determined that the charging mode is not the CV charging mode, that is, if it is determined that the charging mode is the CC charging mode, the process proceeds to step S150, and the efficiency of the charger 23 and the DC-DC converter 24 is set to a normal value (eg, 90%).
  • a normal value eg, 90%
  • step S160 the efficiency of the charger 23 and the DC-DC converter 24 is set to a value lower than the normal value.
  • the efficiency of the DC-DC converter 24 is determined based on the difference between the actual temperature of the battery and the target temperature.
  • the charger 23 and the DC -The amount of waste heat of the DC converter 24 can be increased to increase the battery warming function.
  • the battery can be raised to the target temperature even when a large battery warming function is required, such as when the outside air temperature is extremely low or when the battery is charged outdoors, where the wind hits.
  • FIG. 7 is a graph showing a transition example of charging power and battery temperature in the present embodiment. From the start of charging until the charging rate reaches 80%, charging is performed in the CC charging mode. In this case, since the charging power is maximized in order to shorten the charging time as much as possible, the efficiency of the charger 23 and the DC-DC converter 24 is set to a normal value.
  • the first switching valve 21, the second switching valve 22, and the switching valve control unit 70b are charged devices 23 and 24 (the charger 23 and the DC-DC converter 24) when charging the battery.
  • a radiator release mode in which cooling water circulates between the radiator 13 and a battery warm-up mode in which cooling water circulates between the charging devices 23 and 24 and the battery temperature control heat exchanger 20 ( (Second circulation mode) is switched (steps S120 and S130).
  • waste heat generated from the charging devices 23 and 24 is transmitted to the battery when the battery is being charged, so the waste heat of the charging devices 23 and 24 is used. Can heat the battery. Therefore, the battery can be efficiently heated when charging the battery.
  • the waste heat of the charging devices 23 and 24 is radiated to the outside air, so that the battery can be prevented from being excessively heated by the waste heat of the charging devices 23 and 24.
  • the switching control unit 70b controls the operation of the switching devices 21 and 22 so as to enter the battery warm-up mode when the battery temperature is equal to or lower than the predetermined temperature ⁇ 1 while charging the battery. (Steps S110 and S130).
  • the charging device control unit 70i decreases the device efficiency of the charging device 24 when the battery warming function (capability to heat the battery) is insufficient in the battery warming-up mode (step S160). ). Thereby, the amount of waste heat of the charging device 24 can be increased, and the battery warming function can be increased.
  • the first switching valve 21 and the second switching valve 22 are connected to the cold temperature side cooling water circuit C1 for each of the radiator 13, the battery temperature adjusting heat exchanger 20, the charger 23, and the DC-DC converter 24. And a state connected to the high temperature side cooling water circuit C2.
  • the temperature of the radiator 13, the battery temperature adjusting heat exchanger 20, the charger 23, and the DC-DC converter 24 can be appropriately adjusted.
  • the control device 70 executes the control process shown in the flowchart of FIG. In step S200, it is determined whether or not the ignition switch 91 is in an off state. That is, it is determined whether or not the vehicle is parked.
  • the predetermined temperature ⁇ 1 is a temperature higher than the temperature of the cooling water (for example, 0 to 10 ° C.) produced by the low-temperature side cooling water circuit, for example, 20 ° C.
  • step S220 When it is determined that the temperature of the outside air is equal to or higher than the predetermined temperature ⁇ 1, the process proceeds to step S220, and the mode is switched to the cold water circulation mode shown in FIG.
  • the first switching valve 21 and the second switching valve 22 connect the battery temperature adjusting heat exchanger 20 to the low temperature side cooling water circuit C1.
  • the battery temperature control heat exchanger 20 since the cold water of the low temperature side cooling water circuit C1 circulates through the battery temperature control heat exchanger 20, the battery can be cooled using the cold heat of the cooling water of the low temperature side cooling water circuit C1 when the vehicle is parked.
  • step S230 it is determined whether or not the battery temperature is equal to or lower than a predetermined temperature ⁇ 1.
  • the predetermined temperature ⁇ 1 is a lower limit value (for example, 10 ° C.) of the battery management temperature range.
  • step S210 determines whether or not the outside air temperature is equal to or higher than the predetermined temperature ⁇ 1
  • the process proceeds to step S250, and it is determined whether or not the outside air temperature is equal to or higher than the predetermined temperature ⁇ 2.
  • the predetermined temperature ⁇ 2 is a temperature lower than the temperature (for example, about 60 ° C.) of the cooling water produced by the high temperature side cooling water circuit, and is 0 ° C., for example.
  • step S260 When it is determined that the temperature of the outside air is equal to or higher than the predetermined temperature ⁇ 2, the process proceeds to step S260, and the mode is switched to the hot water circulation mode shown in FIG.
  • the first switching valve 21 and the second switching valve 22 connect the battery temperature adjusting heat exchanger 20 to the high temperature side cooling water circuit C2.
  • the battery can be heated using the warm heat of the cooling water of the high temperature side cooling water circuit C2 when the vehicle is parked.
  • step S270 it is determined whether or not the battery temperature is equal to or higher than a predetermined temperature ⁇ 2 (second predetermined temperature ⁇ 2).
  • the predetermined temperature ⁇ 2 is an upper limit value (for example, 40 ° C.) of the battery management temperature range.
  • FIG. 11 shows an example of battery temperature transition over time of one day.
  • the alternate long and two short dashes line is a comparative example, and shows the battery temperature transition when the cold water circulation mode is not executed.
  • the battery When the cold water circulation mode is executed after the vehicle is parked, the battery is cooled by the cold heat of the cooling water in the low-temperature side cooling water circuit C1, so that an increase in battery temperature during vehicle parking in summer can be suppressed. Therefore, the maximum temperature and average temperature of the battery can be kept low.
  • FIG. 12 shows an example of battery temperature transition when the hot water circulation mode is executed in winter.
  • FIG. 12 shows an example of battery temperature transition over time of one day.
  • the two-dot chain line is a comparative example, and shows the battery temperature transition when the hot water circulation mode is not executed.
  • the hot water circulation mode When the hot water circulation mode is executed after the vehicle is parked, the battery is heated by the heat of the cooling water in the high-temperature side cooling water circuit C2, so that a decrease in battery temperature during vehicle parking in winter can be suppressed. Therefore, the time that can be maintained at a temperature (for example, 0 ° C. or higher) that can secure battery input / output can be extended.
  • a temperature for example, 0 ° C. or higher
  • the first switching valve 21, the second switching valve 22, and the switching control unit 70 b are configured such that when the temperature of the outside air is higher than the temperature of the cooling water in the cold temperature side cooling water circuit C ⁇ b> 1 when the vehicle is stopped.
  • the conditioning heat exchanger 20 is connected to the cold temperature side cooling water circuit C1 (steps S210 and S220).
  • the battery can be cooled by using the cold heat of the cooling water of the low temperature side cooling water circuit C1.
  • the first switching valve 21, the second switching valve 22, and the switching control unit 70b are configured such that when the temperature of the outside air is lower than the temperature of the cooling water in the high-temperature side cooling water circuit C2 when the vehicle is stopped,
  • the conditioning heat exchanger 20 is connected to the high temperature side cooling water circuit C2 (steps S250 and S260).
  • the battery can be heated using the heat of the cooling water of the high temperature side cooling water circuit C2.
  • the battery when the vehicle is parked, the battery is heated using the warm heat of the cooling water.
  • the radiator 13 is defrosted using the warm heat of the cooling water when the vehicle is parked. .
  • the vehicle thermal management system 10 When there is a heating request for air conditioning, the vehicle thermal management system 10 absorbs heat from the outside air by the radiator 13 and pumps it by the refrigeration cycle 31, and sets the cooling water in the high-temperature side cooling water circuit C2 to about 60 ° C. Car interior heating.
  • the control device 70 In order to melt (defrost) the frost adhering to the radiator 13, the control device 70 enters the radiator defrost mode shown in FIG. 13 after the vehicle is parked (after the ignition switch 91 is turned off). Thus, the operation of the first switching valve 21 and the second switching valve 22 is controlled.
  • the first switching valve 21 and the second switching valve 22 connect the radiator 13 to the high temperature side cooling water circuit C2.
  • the frost adhering to the radiator 13 is melted using the heat of the cooling water in the high-temperature side cooling water circuit C2 when the vehicle is parked (removal). Frost). Therefore, when the vehicle interior is heated during the next travel, the heat absorption performance of the radiator 13 can be sufficiently exhibited.
  • the first switching valve 21, the second switching valve 22, and the switching control unit 70b connect the radiator 13 to the high temperature side cooling water circuit C2 when the vehicle is stopped.
  • the frost adhering to the radiator 13 can be thawed (defrosted) using the heat of the cooling water in the high temperature side cooling water circuit C2 when the vehicle is stopped.
  • the radiator 13 is defrosted using the warm heat of the cooling water when the vehicle is parked.
  • the cooler core 16 is dried using the warm heat of the cooling water when the vehicle is parked. -Sanitize.
  • the cooler core 16 cools the blown air by exchanging heat between the cooling water in the low-temperature side cooling water circuit C1 and the blown air into the passenger compartment, so that condensed water is generated on the surface of the cooler core 16. To do.
  • the condensed water generated in the cooler core 16 drifts in the indoor air conditioning unit 50, so that the interior of the indoor air conditioning unit 50 is in a high temperature and high humidity state, and an environment in which mold fungi easily propagate.
  • the control device 70 performs the cooler core sterilization drying shown in FIG. 14 after the vehicle is parked (after the ignition switch 91 is turned off). The operation of the first switching valve 21 and the second switching valve 22 is controlled so as to be in the mode.
  • the first switching valve 21 and the second switching valve 22 connect the cooler core 16 to the high temperature side cooling water circuit C2.
  • the blower volume of the indoor blower 54 is set to a low air volume (for example, Lo air volume).
  • the first switching valve 21, the second switching valve 22, and the switching control unit 70b connect the cooler core 16 to the high temperature side cooling water circuit C2 when the vehicle is stopped. Thereby, the cooler core 16 can be dried and sterilized by the heat of the cooling water in the high temperature side cooling water circuit C2.
  • the cold and warm heat of the cooling water is stored when the vehicle is parked, and the stored cold and warm heat is returned to the cooling water during the next run.
  • the vehicle thermal management system 10 of the present embodiment includes a low temperature side heat storage device 95 and a high temperature side heat storage device 96.
  • the low temperature side heat storage device 95 and the high temperature side heat storage device 96 are heat storage units that store the heat of the cooling water.
  • the low temperature side heat accumulator 95 stores the cold heat of the cooling water of the low temperature side cooling water circuit C1 when the vehicle is parked.
  • the cold energy stored in the low temperature side heat accumulator 95 is returned to the cooling water circulating in the cooler core 16 and used for cooling the passenger compartment during the next run.
  • the cooling water temperature of the low-temperature side cooling water circuit C1 is about 0 to 5 ° C., and the temperature at which the passenger feels cold during cooling is 15 to 20 ° C. Therefore, as the heat storage agent used for the low temperature side heat storage device 95, a material capable of storing latent heat at a temperature of 5 to 15 ° C. between these two temperature zones (material that changes phase between solid and liquid) is suitable.
  • the high temperature side heat accumulator 96 stores the heat of the cooling water in the high temperature side cooling water circuit C2 when the vehicle is parked.
  • the warm heat stored in the high temperature side heat accumulator 96 is returned to the cooling water that circulates through the heater core 17 and used for vehicle interior heating during the next travel.
  • the cooling water temperature of the high-temperature side cooling water circuit C2 is about 60 to 65 ° C., and the temperature at which the passenger feels warm during heating is 45 ° C. or more. Therefore, as the heat storage agent used for the high temperature side heat storage device 96, a material capable of storing latent heat at 45 to 60 ° C. between these two temperature zones (material that changes phase between solid and liquid) is suitable.
  • the low temperature side regenerator 95 is disposed in the low temperature side regenerator flow path 97.
  • the high temperature side heat accumulator 96 is disposed in the high temperature side heat accumulator flow path 98.
  • One end of the low temperature side heat accumulator flow path 97 is connected to the sixth outlet 21 h of the first switching valve 21.
  • the cooling water inlet side of the low temperature side heat accumulator 95 is connected to the sixth outlet 21 h of the first switching valve 21.
  • the other end of the low temperature side heat accumulator flow path 97 is connected to the sixth inlet 22 h of the second switching valve 22.
  • the sixth water inlet 22 h of the second switching valve 22 is connected to the coolant outlet side of the low temperature side heat accumulator 95.
  • One end of the high-temperature side heat accumulator flow path 98 is connected to the seventh outlet 21 i of the first switching valve 21.
  • the coolant outlet side of the high temperature side heat accumulator 96 is connected to the seventh outlet 21 i of the first switching valve 21.
  • the other end of the high-temperature side heat accumulator flow path 98 is connected to the seventh inlet 22 i of the second switching valve 22.
  • the coolant outlet side of the high temperature side heat accumulator 96 is connected to the seventh inlet 22 i of the second switching valve 22.
  • the control device 70 controls the operation of the first switching valve 21 and the second switching valve 22 so as to be in the heat storage mode shown in FIG. 15 after the vehicle is parked (after the ignition switch 91 is turned off). .
  • the first switching valve 21 and the second switching valve 22 connect the low temperature side heat storage device 95 to the low temperature side cooling water circuit C1, and connect the high temperature side heat storage device 96 to the high temperature side cooling water circuit C2.
  • the cold heat of the cooling water in the low-temperature side cooling water circuit C1 is stored in the low-temperature side heat storage device 95
  • the warm heat of the cooling water in the high-temperature side cooling water circuit C2 is stored in the high-temperature side heat storage device 96.
  • the temperature of the cooling water in the low-temperature side cooling water circuit C1 can be quickly lowered to an appropriate temperature range (0 to 5 ° C.) using the cold energy stored in the low-temperature side heat accumulator 95 during the next run.
  • the cooler core 16 can quickly start cooling.
  • the temperature of the cooling water in the high temperature side cooling water circuit C2 can be quickly raised to an appropriate temperature range (about 60 ° C.) using the heat stored in the high temperature side heat accumulator 96. Heating can be started promptly at 17. The battery and the engine 61 can also be warmed up using the warm heat stored in the high temperature side heat accumulator 96.
  • Hot water of about 60 ° C. (medium temperature zone) flows through the cooling water heater 15, the heater core 16, and the inverter 19, and 80 to 100 ° C. passes through the engine cooling circuit 60 and the cooling water cooling water heat exchanger 18. Hot water (high temperature zone) is flowing.
  • the high-temperature cooling water is circulated between the intermediate-temperature inverter 19 and the heater core 17 and the high-temperature side heat accumulator 96 to generate intermediate-temperature heat.
  • the high temperature side heat storage device 96 can efficiently recover the warm heat of the cooling water. .
  • the first switching valve 21, the second switching valve 22, and the switching control unit 70b connect the low temperature side heat accumulator 95 to the cold temperature side cooling water circuit C1 when the vehicle is stopped. Thereby, the cold heat which the cooling water of the low temperature side cooling water circuit C1 has can be stored in the low temperature side heat accumulator 95.
  • the first switching valve 21, the second switching valve 22, and the switching control unit 70b connect the low temperature side heat accumulator 95 to the cooler core 16 when the vehicle travels. Thereby, since the temperature of the cooling water of the low temperature side cooling water circuit C1 can be rapidly reduced using the cold energy stored in the low temperature side heat accumulator 95, the cooler core 16 can start cooling quickly. .
  • the first switching valve 21, the second switching valve 22, and the switching control unit 70b connect the high temperature side heat accumulator 96 to the high temperature side cooling water circuit C2 when the vehicle is stopped. Thereby, the heat which the cooling water of the high temperature side cooling water circuit C2 has can be stored in the high temperature side heat accumulator 96.
  • the first switching valve 21, the second switching valve 22, and the switching control unit 70b connect the high temperature side heat accumulator 96 to the heater core 17 when the vehicle travels. Thereby, since the temperature of the cooling water of the high temperature side cooling water circuit C2 can be rapidly raised using the heat stored in the high temperature side heat accumulator 96, the heater core 17 can start heating quickly. .
  • the first switching valve 21, the second switching valve 22, and the switching control unit 70 b connect the high temperature side heat accumulator 96 to the battery temperature adjustment heat exchanger 20 when the vehicle travels, and the heat stored in the high temperature side heat accumulator 96 is stored. Can be used to warm up the battery.
  • the first switching valve 21, the second switching valve 22, and the switching control unit 70b are stored in the high temperature side heat accumulator 96 if the high temperature side heat accumulator 96 is connected to the cooling water cooling water heat exchanger 18 during vehicle travel.
  • the engine 61 can be warmed up using the heat.
  • cooling water is used as a heat medium for adjusting the temperature of the temperature adjustment target device, but various media such as oil may be used as the heat medium.
  • Nanofluid may be used as the heat medium.
  • a nanofluid is a fluid in which nanoparticles having a particle size of the order of nanometers are mixed.
  • antifreeze liquid ethylene glycol
  • the effect of improving the thermal conductivity in a specific temperature range the effect of increasing the heat capacity of the heat medium, the effect of preventing the corrosion of metal pipes and the deterioration of rubber pipes, and the heat medium at an extremely low temperature
  • liquidity of can be acquired.
  • Such an effect varies depending on the particle configuration, particle shape, blending ratio, and additional substance of the nanoparticles.
  • the thermal conductivity can be improved, it is possible to obtain the same cooling efficiency even with a small amount of heat medium as compared with the cooling water using ethylene glycol.
  • the amount of heat stored in the heat medium itself can be increased.
  • the cooling and heating temperature control of the equipment using the cold storage heat can be carried out for a certain amount of time. Can be realized.
  • the aspect ratio of the nanoparticles is preferably 50 or more. This is because sufficient thermal conductivity can be obtained.
  • the aspect ratio is a shape index that represents the ratio of the vertical and horizontal dimensions of the nanoparticles.
  • Nanoparticles containing any of Au, Ag, Cu and C can be used. Specifically, Au nanoparticle, Ag nanowire, CNT (carbon nanotube), graphene, graphite core-shell nanoparticle (a structure such as a carbon nanotube surrounding the above atom is included as a constituent atom of the nanoparticle. Particles), Au nanoparticle-containing CNTs, and the like can be used.
  • a chlorofluorocarbon refrigerant is used as the refrigerant.
  • the type of the refrigerant is not limited to this, and natural refrigerant such as carbon dioxide, hydrocarbon refrigerant, or the like is used. It may be used.
  • the refrigeration cycle 31 of each of the above embodiments constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant, but the supercritical refrigeration cycle in which the high-pressure side refrigerant pressure exceeds the critical pressure of the refrigerant. May be configured.
  • the cooling water discharged from the first pump 11 or the second pump 12 exchanges heat with the engine cooling water of the engine cooling circuit 60 via the cooling water cooling water heat exchanger 18.
  • the cooling water discharged from the first pump 11 or the second pump 12 may circulate through the engine cooling circuit 60 via the flow path switching valve.
  • the cooling water flow path of the engine 61 constitutes an engine heat transfer unit that transfers heat between the engine 61 and the cooling water.
  • the flow path switching valve is a switching device that switches between when the cooling water discharged from the first pump 11 or the second pump 12 circulates through the engine cooling circuit 60 and when it does not circulate.
  • the inverter 19 is provided as the heat generating device, but various heat generating devices may be provided in addition to the inverter 19.
  • Other examples of the heat generating device include a traveling electric motor and various engine devices.
  • Various engine devices include turbochargers, intercoolers, EGR coolers, CVT warmers, CVT coolers, exhaust heat recovery devices, and the like.
  • the turbocharger is a supercharger that supercharges engine intake air (intake).
  • the intercooler is an intake air cooler (intake heat medium heat exchanger) that cools the supercharged intake air by exchanging heat between the supercharged intake air that has been compressed by the turbocharger and becomes high temperature and the cooling water.
  • the EGR cooler is an exhaust cooling water heat exchanger (exhaust heat medium heat exchanger) that cools exhaust gas by exchanging heat between engine exhaust gas (exhaust gas) returned to the intake side of the engine and cooling water.
  • CVT warmer is a lubricating oil cooling water heat exchanger (lubricating oil heat medium heat exchanger) that heats CVT oil by exchanging heat between lubricating oil (CVT oil) that lubricates CVT (continuously variable transmission) and cooling water. It is.
  • the CVT cooler is a lubricating oil cooling water heat exchanger (lubricating oil heat medium heat exchanger) that cools the CVT oil by exchanging heat between the CVT oil and the cooling water.
  • lubricating oil cooling water heat exchanger lubricating oil heat medium heat exchanger
  • the exhaust heat recovery unit is an exhaust cooling water heat exchanger (exhaust heat medium heat exchanger) that exchanges heat between the exhaust and the cooling water to absorb the heat of the exhaust into the cooling water.
  • exhaust cooling water heat exchanger exhaust heat medium heat exchanger
  • the vehicle thermal management system 10 is applied to a hybrid vehicle that obtains vehicle driving force from the engine and the electric motor for traveling.
  • the driving force for vehicle traveling is used as electric power for traveling.
  • the vehicle thermal management system 10 may be applied to an electric vehicle obtained from a motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

The present invention comprises: pumps (11, 12) which draw in and discharge a heat medium; a battery temperature adjustment heat exchanger (20) which transfers heat between a battery and the heat medium; a charger (23) and a DC-DC converter (24) which transfer heat between the heat medium and a heat generator that generates heat when the battery charges; a heat medium/outside air heat exchanger (13) which exchanges heat between the heat medium and the outside air; switching devices (21, 22) which switch between a first circulation mode, in which the heat medium is circulated between the charger (23) and DC-DC converter (24) and the heat medium/outside air heat exchanger (13), and a second circulation mode, in which the heat medium is circulated between the charger (23) and DC-DC converter (24) and the battery temperature adjustment heat exchanger (20); and a switching control unit (70b) which controls the operation of the switching devices (21, 22) when the battery is being charged.

Description

車両用熱管理システムThermal management system for vehicles 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年2月12日に出願された日本特許出願2014-024215を基にしている。 This application is based on Japanese Patent Application No. 2014-024215 filed on February 12, 2014, the disclosure of which is incorporated herein by reference.
 本開示は、車両に用いられる熱管理システムに関するものである。 The present disclosure relates to a heat management system used for a vehicle.
 ハイブリッド自動車や電気自動車では、電池、インバータ、クーラコアおよびヒータコア等といった温度調整を必要とする機器(以下、温度調整対象機器と言う。)が複数個搭載されている。 Hybrid vehicles and electric vehicles are equipped with a plurality of devices that require temperature adjustment (hereinafter referred to as temperature adjustment target devices) such as batteries, inverters, cooler cores, and heater cores.
 これらの温度調整対象機器は、目標温度帯が同じではなく様々である。例えば、電池は40℃程度の低温帯に温度調整する必要があり、インバータは60℃程度の中温帯に温度調整する必要がある。 These target devices for temperature adjustment have different target temperature ranges. For example, the temperature of the battery needs to be adjusted to a low temperature range of about 40 ° C., and the temperature of the inverter needs to be adjusted to a medium temperature range of about 60 ° C.
 これらの温度調整対象機器の目標温度帯毎に個別の冷却回路を設けた場合、冷却回路の複雑化や搭載性の悪化を招く。 When providing individual cooling circuits for each target temperature zone of these temperature adjustment target devices, the cooling circuit becomes complicated and mountability deteriorates.
 そこで、従来、特許文献1には、複数個の温度調整対象機器のそれぞれに対して、低温冷却水が循環する状態と、高温冷却水が循環する状態とを切り替えることのできる車両用熱管理システムが提案されている。 Therefore, conventionally, Patent Document 1 discloses a vehicle thermal management system capable of switching between a state in which low-temperature cooling water circulates and a state in which high-temperature cooling water circulates for each of a plurality of temperature adjustment target devices. Has been proposed.
 この従来技術では、複数個の温度調整対象機器が、第1切替弁と第2切替弁との間に並列に接続されている。第1切替弁と第2切替弁は、複数個の温度調整対象機器のそれぞれに対して冷却水の流れを切り替える。 In this prior art, a plurality of temperature adjustment target devices are connected in parallel between the first switching valve and the second switching valve. A 1st switching valve and a 2nd switching valve switch the flow of a cooling water with respect to each of several temperature adjustment object apparatus.
特開2013-230805号公報JP 2013-230805 A
 さらに、本出願人は、先に特願2012-278552号(以下、先願例と言う。)にて、複数個の温度調整対象機器を循環する冷却水と、エンジン冷却回路を循環するエンジン冷却水とを熱交換可能にした車両用熱管理システムを提案している。 Further, the applicant of the present application previously described in Japanese Patent Application No. 2012-278552 (hereinafter referred to as the prior application example), cooling water circulating through a plurality of temperature adjustment target devices and engine cooling circulating through an engine cooling circuit. We have proposed a vehicle thermal management system that enables heat exchange with water.
 この先願例によると、温度調整対象機器をエンジンの廃熱で加熱したり、温度調整対象機器の廃熱でエンジンを暖機したりすることができる。例えば、電池をエンジンの廃熱で加熱したり、電池の廃熱でエンジンを暖機したりすることができる。 According to this prior application example, the temperature adjustment target device can be heated with the waste heat of the engine, or the engine can be warmed up with the waste heat of the temperature adjustment target device. For example, the battery can be heated with the waste heat of the engine, or the engine can be warmed up with the waste heat of the battery.
 ハイブリッド自動車や電気自動車に搭載されている電池は、低温(一般的には10℃以下)になると入力特性が悪化する。そのため、冬期に電池を充電する場合、電池の入力特性を確保するために電池を加熱する必要がある。 The input characteristics of batteries mounted on hybrid and electric vehicles deteriorate at low temperatures (generally 10 ° C or lower). Therefore, when charging the battery in winter, it is necessary to heat the battery in order to ensure the input characteristics of the battery.
 しかしながら、上記先願例では、冬期に電池を充電する場合、電池を加熱するために必要なエネルギをいかにして確保するかが問題となる。すなわち、ハイブリッド自動車において、車両駐車中に電池を充電する場合、車両駐車中はエンジンが停止していてエンジンの廃熱が発生しないので、電池をエンジンの廃熱で加熱することができない。電気自動車はそもそもエンジンを有していない。 However, in the above-mentioned prior application example, when the battery is charged in winter, there is a problem of how to secure the energy necessary for heating the battery. That is, in a hybrid vehicle, when charging a battery while the vehicle is parked, the engine is stopped and the engine waste heat is not generated while the vehicle is parked, and therefore the battery cannot be heated by the waste heat of the engine. Electric cars have no engine in the first place.
 この対策として、充電に利用できる電力の一部を電気ヒータに供給することによって電池を加熱することが考えられるが、この対策によると、電気ヒータに供給する電力の分、電池への入力電力量が少なくなって充電に要する時間が長くなってしまう。 As a countermeasure, it is conceivable to heat the battery by supplying a part of the power that can be used for charging to the electric heater. Will decrease and the time required for charging will become longer.
 本開示は上記点に鑑みて、電池を充電する際に電池を効率的に加熱することのできる車両用熱管理システムを提供することを目的とする。 This indication aims at providing the thermal management system for vehicles which can heat a battery efficiently when charging a battery in view of the above-mentioned point.
 本開示の一態様による車両用熱管理システムは、
 熱媒体を吸入して吐出するポンプと、
 電池と熱媒体との間で熱授受が行われる電池用熱授受部と、
 電池を充電する際に発熱する発熱機器と熱媒体との間で熱授受が行われる発熱機器用熱授受部と、
 熱媒体と外気とを熱交換させる熱媒体外気熱交換器と、
 発熱機器用熱授受部と熱媒体外気熱交換器との間で熱媒体が循環する第1循環モードと、発熱機器用熱授受部と電池用熱授受部との間で熱媒体が循環する第2循環モードとを切り替える切替装置と、
 電池を充電しているときに切替装置の作動を制御する切替制御部とを備える。
A thermal management system for a vehicle according to an aspect of the present disclosure includes:
A pump for sucking and discharging the heat medium;
A battery heat transfer part for transferring heat between the battery and the heat medium;
A heat transfer unit for a heat-generating device that transfers heat between a heat-generating device that generates heat when charging the battery and the heat medium;
A heat medium outside air heat exchanger for exchanging heat between the heat medium and the outside air;
The first circulation mode in which the heat medium circulates between the heat transfer unit for the heat generating device and the heat medium outside air heat exchanger, and the first heat medium circulates between the heat transfer unit for the heat generating device and the heat transfer unit for the battery. A switching device for switching between two circulation modes;
A switching control unit that controls the operation of the switching device when the battery is charged.
 これによると、切替装置が第2循環モードに切り替えると、電池を充電しているときに発熱機器から発生する廃熱が電池に伝えられるので、発熱機器の廃熱を利用して電池を加熱できる。そのため、電池を充電する際に電池を効率的に加熱できる。 According to this, when the switching device is switched to the second circulation mode, the waste heat generated from the heat generating device when the battery is charged is transmitted to the battery, so that the battery can be heated using the waste heat of the heat generating device. . Therefore, the battery can be efficiently heated when charging the battery.
 切替装置が第1循環モードに切り替えると、発熱機器の廃熱が外気に放熱されるので、電池が発熱機器の廃熱によって過度に加熱されることを防止できる。 When the switching device is switched to the first circulation mode, the waste heat of the heat generating device is radiated to the outside air, so that the battery can be prevented from being excessively heated by the waste heat of the heat generating device.
第1実施形態における車両用熱管理システムの全体構成図である。1 is an overall configuration diagram of a vehicle thermal management system in a first embodiment. 第1実施形態の車両用熱管理システムにおける電気制御部を示すブロック図である。It is a block diagram which shows the electric control part in the thermal management system for vehicles of 1st Embodiment. 第1実施形態の電池における温度と入出力特性との関係を示す図である。It is a figure which shows the relationship between the temperature and input-output characteristic in the battery of 1st Embodiment. 第1実施形態において制御装置が実行する制御処理を示すフローチャートである。It is a flowchart which shows the control processing which a control apparatus performs in 1st Embodiment. 第1実施形態の放熱モードにおける冷却水循環状態を示す図である。It is a figure which shows the cooling water circulation state in the thermal radiation mode of 1st Embodiment. 第1実施形態の電池暖機モードにおける冷却水循環状態を示す図である。It is a figure which shows the cooling water circulation state in the battery warm-up mode of 1st Embodiment. 第1実施形態における充電電力および電池温度の推移例を示す図である。It is a figure which shows the transition example of the charging electric power and battery temperature in 1st Embodiment. 第2実施形態において制御装置が実行する制御処理を示すフローチャートである。It is a flowchart which shows the control processing which a control apparatus performs in 2nd Embodiment. 第2実施形態の冷水循環モードにおける冷却水循環状態を示す図である。It is a figure which shows the cooling water circulation state in the cold water circulation mode of 2nd Embodiment. 第2実施形態の温水循環モードにおける冷却水循環状態を示す図である。It is a figure which shows the cooling water circulation state in the warm water circulation mode of 2nd Embodiment. 冷水循環モードを実行した場合における電池温度推移の例を示す図である。It is a figure which shows the example of battery temperature transition in the case of performing cold water circulation mode. 温水循環モードを実行した場合における電池温度推移の例を示す図である。It is a figure which shows the example of battery temperature transition in the case of performing warm water circulation mode. 第3実施形態のラジエータ除霜モードにおける冷却水循環状態を示す図である。It is a figure which shows the cooling water circulation state in the radiator defrost mode of 3rd Embodiment. 第4実施形態のクーラコア乾燥除菌モードにおける冷却水循環状態を示す図である。It is a figure which shows the cooling water circulation state in the cooler core dry sanitization mode of 4th Embodiment. 第5実施形態の蓄熱モードにおける冷却水循環状態を示す図である。It is a figure which shows the cooling water circulation state in the heat storage mode of 5th Embodiment.
 以下、実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, embodiments will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.
 (第1実施形態)
 図1に示す車両用熱管理システム10は、車両が備える各種機器や車室内を適切な温度に調整するために用いられる。本実施形態では、車両用熱管理システム10を、エンジン(内燃機関)および走行用電動モータ(モータージェネレータ)から車両走行用駆動力を得るハイブリッド自動車に適用している。
(First embodiment)
The vehicle thermal management system 10 shown in FIG. 1 is used to adjust various devices and vehicle interiors provided in the vehicle to appropriate temperatures. In the present embodiment, the vehicle thermal management system 10 is applied to a hybrid vehicle that obtains a driving force for vehicle travel from an engine (internal combustion engine) and a travel electric motor (motor generator).
 本実施形態のハイブリッド自動車は、車両停車時に外部電源(商用電源)から供給された電力を、車両に搭載された電池(車載バッテリ)に充電可能なプラグインハイブリッド自動車として構成されている。電池としては、例えばリチウムイオン電池を用いることができる。 The hybrid vehicle according to the present embodiment is configured as a plug-in hybrid vehicle that can charge power supplied from an external power source (commercial power source) when the vehicle is stopped to a battery (vehicle battery) mounted on the vehicle. As the battery, for example, a lithium ion battery can be used.
 エンジンから出力される駆動力は、車両走行用駆動力として用いられるのみならず、発電機を作動させるためにも用いられる。そして、発電機にて発電された電力および外部電源から供給された電力を電池に蓄わえることができる。電池は、減速時や降坂時に走行用電動モータにて回生された電力(回生エネルギ)を蓄えることもできる。 The driving force output from the engine is used not only for driving the vehicle, but also for operating the generator. And the electric power generated with the generator and the electric power supplied from the external power supply can be stored in the battery. The battery can also store electric power (regenerative energy) regenerated by the traveling electric motor during deceleration or downhill.
 電池に蓄えられた電力は、走行用電動モータのみならず、車両用熱管理システム10を構成する電動式構成機器をはじめとする各種車載機器に供給される。 The electric power stored in the battery is supplied not only to the electric motor for traveling but also to various in-vehicle devices such as electric components constituting the thermal management system 10 for vehicles.
 プラグインハイブリッド自動車は、車両走行開始前の車両停車時に外部電源から電池に充電しておくことによって、走行開始時のように電池の蓄電残量SOCが予め定めた走行用基準残量以上になっているときにはEV走行モードとなる。EV走行モードは、走行用電動モータが出力する駆動力によって車両を走行させる走行モードである。 The plug-in hybrid vehicle charges the battery from an external power source when the vehicle is stopped before the vehicle starts running, so that the remaining battery charge SOC of the battery becomes equal to or greater than a predetermined reference running balance as at the start of driving. When the vehicle is in the EV travel mode. The EV travel mode is a travel mode in which the vehicle travels by the driving force output from the travel electric motor.
 一方、車両走行中に電池の蓄電残量SOCが走行用基準残量よりも低くなっているときにはHV走行モードとなる。HV走行モードは、主にエンジン61が出力する駆動力によって車両を走行させる走行モードであるが、車両走行負荷が高負荷となった際には走行用電動モータを作動させてエンジン61を補助する。 On the other hand, when the remaining battery charge SOC of the battery is lower than the reference running remaining amount during vehicle travel, the HV travel mode is set. The HV travel mode is a travel mode in which the vehicle travels mainly by the driving force output by the engine 61. When the vehicle travel load becomes high, the travel electric motor is operated to assist the engine 61. .
 本実施形態のプラグインハイブリッド自動車では、このようにEV走行モードとHV走行モードとを切り替えることによって、車両走行用の駆動力をエンジン61のみから得る通常の車両に対してエンジン61の燃料消費量を抑制して、車両燃費を向上させている。EV走行モードとHV走行モードとの切り替えは、駆動力制御装置(図示せず)によって制御される。 In the plug-in hybrid vehicle of the present embodiment, the fuel consumption of the engine 61 with respect to a normal vehicle that obtains the driving force for vehicle travel only from the engine 61 by switching between the EV travel mode and the HV travel mode in this way. This suppresses vehicle fuel efficiency. Switching between the EV traveling mode and the HV traveling mode is controlled by a driving force control device (not shown).
 図1に示すように、車両用熱管理システム10は、第1ポンプ11、第2ポンプ12、ラジエータ13、冷却水冷却器14、冷却水加熱器15、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19、電池温調用熱交換器20、第1切替弁21および第2切替弁22を備えている。 As shown in FIG. 1, the vehicle thermal management system 10 includes a first pump 11, a second pump 12, a radiator 13, a cooling water cooler 14, a cooling water heater 15, a cooler core 16, a heater core 17, and cooling water cooling water. A heat exchanger 18, an inverter 19, a battery temperature adjusting heat exchanger 20, a first switching valve 21 and a second switching valve 22 are provided.
 第1ポンプ11および第2ポンプ12は、冷却水(熱媒体)を吸入して吐出する電動ポンプである。冷却水は、熱媒体としての流体である。本実施形態では、冷却水として、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体が用いられている。 The first pump 11 and the second pump 12 are electric pumps that suck and discharge cooling water (heat medium). The cooling water is a fluid as a heat medium. In the present embodiment, as the cooling water, a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid is used.
 ラジエータ13、冷却水冷却器14、冷却水加熱器15、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19および電池温調用熱交換器20は、冷却水が流通する冷却水流通機器(熱媒体流通機器)である。 The radiator 13, the cooling water cooler 14, the cooling water heater 15, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, and the battery temperature control heat exchanger 20 are distributed in the cooling water flow. Equipment (heat medium distribution equipment).
 ラジエータ13は、冷却水と車室外空気(以下、外気と言う。)とを熱交換(顕熱交換)させる冷却水外気熱交換器(熱媒体外気熱交換器)である。ラジエータ13に外気温以上の温度の冷却水を流すことにより、冷却水から外気に放熱させることが可能である。ラジエータ13に外気温以下の冷却水を流すことにより、外気から冷却水に吸熱させることが可能である。換言すれば、ラジエータ13は、冷却水から外気に放熱させる放熱器としての機能、および外気から冷却水に吸熱させる吸熱器としての機能を発揮できる。 The radiator 13 is a cooling water outside air heat exchanger (heat medium outside air heat exchanger) that performs heat exchange (sensible heat exchange) between cooling water and outside air (hereinafter referred to as outside air). By flowing cooling water having a temperature equal to or higher than the outside air temperature to the radiator 13, heat can be radiated from the cooling water to the outside air. By flowing cooling water below the outside air temperature through the radiator 13, it is possible to absorb heat from the outside air to the cooling water. In other words, the radiator 13 can exhibit a function as a radiator that radiates heat from the cooling water to the outside air and a function as a heat absorber that absorbs heat from the outside air to the cooling water.
 ラジエータ13は、冷却水が流通する流路を有し、冷却水冷却器14や冷却水加熱器15で温度調整された冷却水との間で熱授受が行われる熱授受機器である。 The radiator 13 is a heat transfer device that has a flow path through which the cooling water flows and that transfers heat to and from the cooling water whose temperature has been adjusted by the cooling water cooler 14 or the cooling water heater 15.
 室外送風機30は、ラジエータ13へ外気を送風する電動送風機(外気送風機)である。ラジエータ13および室外送風機30は車両の最前部に配置されている。このため、車両の走行時にはラジエータ13に走行風を当てることができる。 The outdoor blower 30 is an electric blower (outside air blower) that blows outside air to the radiator 13. The radiator 13 and the outdoor blower 30 are disposed in the foremost part of the vehicle. For this reason, the traveling wind can be applied to the radiator 13 when the vehicle is traveling.
 冷却水冷却器14(熱媒体冷却器)および冷却水加熱器15(熱媒体加熱器)は、冷却水を熱交換させて冷却水の温度を調整する冷却水温度調整用熱交換器(熱媒体温度調整用熱交換器)である。冷却水冷却器14は、冷却水を冷却する冷却水冷却用熱交換器(熱媒体冷却用熱交換器)である。冷却水加熱器15は、冷却水を加熱する冷却水加熱用熱交換器(熱媒体加熱用熱交換器)である。 The cooling water cooler 14 (heat medium cooler) and the cooling water heater 15 (heat medium heater) are heat exchangers for adjusting the temperature of the cooling water (heat medium) that adjust the temperature of the cooling water by exchanging heat of the cooling water. Temperature adjusting heat exchanger). The cooling water cooler 14 is a cooling water cooling heat exchanger (heat medium cooling heat exchanger) that cools the cooling water. The cooling water heater 15 is a cooling water heating heat exchanger (heat medium heating heat exchanger) for heating the cooling water.
 冷却水冷却器14は、冷凍サイクル31の低圧側冷媒と冷却水とを熱交換させることによって冷却水から低圧側冷媒に吸熱させる低圧側熱交換器(熱媒体用吸熱器)である。冷却水冷却器14は、冷凍サイクル31の蒸発器を構成している。 The cooling water cooler 14 is a low pressure side heat exchanger (heat medium heat absorber) that absorbs heat from the cooling water to the low pressure side refrigerant by exchanging heat between the low pressure side refrigerant of the refrigeration cycle 31 and the cooling water. The cooling water cooler 14 constitutes an evaporator of the refrigeration cycle 31.
 冷凍サイクル31は、圧縮機32、冷却水加熱器15、膨張弁33、冷却水冷却器14および内部熱交換器34を備える蒸気圧縮式冷凍機である。本実施形態の冷凍サイクル31では、冷媒としてフロン系冷媒を用いており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。 The refrigeration cycle 31 is a vapor compression refrigerator that includes a compressor 32, a cooling water heater 15, an expansion valve 33, a cooling water cooler 14, and an internal heat exchanger 34. In the refrigeration cycle 31 of the present embodiment, a chlorofluorocarbon refrigerant is used as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant is configured.
 圧縮機32は、電池から供給される電力によって駆動される電動圧縮機であり、冷凍サイクル31の冷媒を吸入して圧縮して吐出する。 The compressor 32 is an electric compressor driven by electric power supplied from a battery, and sucks, compresses and discharges the refrigerant of the refrigeration cycle 31.
 冷却水加熱器15は、圧縮機32から吐出された高圧側冷媒と冷却水とを熱交換させることによって高圧側冷媒を凝縮(潜熱変化)させる凝縮器である。 The cooling water heater 15 is a condenser that condenses (changes latent heat) the high pressure side refrigerant by exchanging heat between the high pressure side refrigerant discharged from the compressor 32 and the cooling water.
 膨張弁33は、冷却水加熱器15から流出した液相冷媒を減圧膨張させる減圧装置である。膨張弁33は、冷却水冷却器14出口側冷媒の温度および圧力に基づいて冷却水冷却器14出口側冷媒の過熱度を検出する感温部33aを有し、冷却水冷却器14出口側冷媒の過熱度が予め定めた所定範囲となるように機械的機構によって絞り通路面積を調整する温度式膨張弁である。 The expansion valve 33 is a decompression device that decompresses and expands the liquid-phase refrigerant that has flowed out of the cooling water heater 15. The expansion valve 33 includes a temperature sensing unit 33a that detects the degree of superheat of the coolant cooler 14 outlet side refrigerant based on the temperature and pressure of the coolant cooler 14 outlet side refrigerant, and the coolant cooler 14 outlet side refrigerant. This is a temperature-type expansion valve that adjusts the throttle passage area by a mechanical mechanism so that the degree of superheat of the gas reaches a predetermined range.
 冷却水冷却器14は、膨張弁33で減圧膨張された低圧冷媒と冷却水とを熱交換させることによって低圧冷媒を蒸発(潜熱変化)させる蒸発器である。冷却水冷却器14で蒸発した気相冷媒は圧縮機32に吸入されて圧縮される。 The cooling water cooler 14 is an evaporator that evaporates (changes latent heat) the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant decompressed and expanded by the expansion valve 33 and the cooling water. The gas phase refrigerant evaporated in the cooling water cooler 14 is sucked into the compressor 32 and compressed.
 内部熱交換器34は、冷却水加熱器15から流出した冷媒と、冷却水冷却器14から流出した冷媒とを熱交換させる熱交換器である。 The internal heat exchanger 34 is a heat exchanger that exchanges heat between the refrigerant flowing out of the cooling water heater 15 and the refrigerant flowing out of the cooling water cooler 14.
 冷凍サイクル31は、冷却水を冷却する冷却水冷却器14と、冷却水を加熱する冷却水加熱器15とを有する冷却水冷却加熱部(熱媒体冷却加熱部)である。換言すれば、冷凍サイクル31は、冷却水冷却器14で低温冷却水を作り出す低温冷却水発生部(低温熱媒体発生部)であるとともに、冷却水加熱器15で高温冷却水を作り出す高温冷却水発生部(高温熱媒体発生部)である。 The refrigeration cycle 31 is a cooling water cooling / heating unit (heat medium cooling / heating unit) having a cooling water cooler 14 for cooling the cooling water and a cooling water heater 15 for heating the cooling water. In other words, the refrigeration cycle 31 is a low-temperature cooling water generation unit (low-temperature heat medium generation unit) that generates low-temperature cooling water by the cooling water cooler 14 and high-temperature cooling water that generates high-temperature cooling water by the cooling water heater 15. It is a generating part (high temperature heat medium generating part).
 ラジエータ13では外気によって冷却水を冷却するのに対し、冷却水冷却器14では冷凍サイクル31の低圧冷媒によって冷却水を冷却する。このため、冷却水冷却器14で冷却された冷却水の温度を、ラジエータ13で冷却された冷却水の温度に比べて低くできる。具体的には、ラジエータ13では冷却水を外気の温度よりも低い温度まで冷却できないのに対し、冷却水冷却器14では冷却水を外気の温度よりも低い温度まで冷却できる。 In the radiator 13, the cooling water is cooled by outside air, whereas in the cooling water cooler 14, the cooling water is cooled by the low-pressure refrigerant of the refrigeration cycle 31. For this reason, the temperature of the cooling water cooled by the cooling water cooler 14 can be made lower than the temperature of the cooling water cooled by the radiator 13. Specifically, the radiator 13 cannot cool the cooling water to a temperature lower than the outside air temperature, whereas the cooling water cooler 14 can cool the cooling water to a temperature lower than the outside air temperature.
 クーラコア16およびヒータコア17は、冷却水冷却器14および冷却水加熱器15で温度調整された冷却水と車室内への送風空気とを熱交換させて送風空気の温度を調整する熱媒体空気熱交換器である。 The cooler core 16 and the heater core 17 are heat medium air heat exchange that adjusts the temperature of the blown air by exchanging heat between the cooling water whose temperature is adjusted by the cooling water cooler 14 and the cooling water heater 15 and the blown air to the vehicle interior. It is a vessel.
 クーラコア16は、冷却水と車室内への送風空気とを熱交換(顕熱交換)させて車室内への送風空気を冷却する空気冷却用熱交換器である。ヒータコア17は、車室内への送風空気と冷却水とを熱交換(顕熱交換)させて車室内への送風空気を加熱する空気加熱用熱交換器である。 The cooler core 16 is a heat exchanger for air cooling that cools the blown air into the vehicle interior by exchanging heat (sensible heat exchange) between the cooling water and the blown air into the vehicle interior. The heater core 17 is an air heating heat exchanger that heats the air blown into the vehicle interior by exchanging heat (sensible heat exchange) between the air blown into the vehicle cabin and the cooling water.
 冷却水冷却水熱交換器18、インバータ19および電池温調用熱交換器20は、冷却水が流通する流路を有し、冷却水との間で熱授受が行われる熱授受機器(温度調整対象機器)である。 The cooling water cooling water heat exchanger 18, the inverter 19, and the battery temperature control heat exchanger 20 have a flow path through which the cooling water flows, and a heat transfer device (a temperature adjustment target) that transfers heat to and from the cooling water. Equipment).
 冷却水冷却水熱交換器18は、車両用熱管理システム10の冷却水(第1ポンプ11または第2ポンプ12によって循環される冷却水)と、エンジン冷却回路60の冷却水(エンジン用熱媒体)とを熱交換する熱交換器(熱媒体熱媒体熱交換器)である。 The cooling water cooling water heat exchanger 18 includes cooling water (cooling water circulated by the first pump 11 or the second pump 12) of the vehicle heat management system 10 and cooling water (engine heat medium for the engine cooling circuit 60). ) And a heat exchanger (heat medium heat medium heat exchanger).
 冷却水冷却水熱交換器18は、第1ポンプ11または第2ポンプ12によって循環される冷却水とエンジン61との間で熱授受が行われるエンジン用熱授受部を構成している。 The cooling water cooling water heat exchanger 18 constitutes an engine heat transfer unit that transfers heat between the cooling water circulated by the first pump 11 or the second pump 12 and the engine 61.
 インバータ19は、電池から供給された直流電力を交流電圧に変換して走行用電動モータに出力する電力変換装置である。インバータ19は、作動に伴って発熱する発熱機器である。インバータ19の発熱量は、車両の走行状況によって変化するようになっている。インバータ19の冷却水流路は、発熱機器と冷却水との間で熱授受が行われる機器用熱授受部を構成している。 The inverter 19 is a power converter that converts DC power supplied from the battery into AC voltage and outputs the AC voltage to the traveling electric motor. The inverter 19 is a heat generating device that generates heat when activated. The amount of heat generated by the inverter 19 changes depending on the traveling state of the vehicle. The cooling water flow path of the inverter 19 constitutes a device heat transfer unit that transfers heat between the heat generating device and the cooling water.
 電池温調用熱交換器20は、電池と冷却水とを熱交換する熱交換器である。電池温調用熱交換器20は、電池と冷却水との間で熱授受が行われる電池用熱授受部を構成している。電池は、作動に伴って発熱する発熱機器である。電池温調用熱交換器20は、電池への送風経路に配置され、送風空気と冷却水とを熱交換する熱交換器(熱媒体空気熱交換器)であってもよい。 The battery temperature control heat exchanger 20 is a heat exchanger that exchanges heat between the battery and the cooling water. The battery temperature control heat exchanger 20 constitutes a battery heat transfer unit that transfers heat between the battery and the cooling water. A battery is a heat-generating device that generates heat when activated. The battery temperature control heat exchanger 20 may be a heat exchanger (heat medium air heat exchanger) that is disposed in the air blowing path to the battery and exchanges heat between the blown air and the cooling water.
 車両用熱管理システム10は、充電器23およびDC-DCコンバータ24を備えている。充電器23およびDC-DCコンバータ24は、外部電源から供給された電力を電池に充電する際に用いられる充電用機器である。充電器23およびDC-DCコンバータ24は、電池を充電する際に発熱する発熱機器である。 The vehicle thermal management system 10 includes a charger 23 and a DC-DC converter 24. The charger 23 and the DC-DC converter 24 are charging devices used when charging a battery with electric power supplied from an external power source. The charger 23 and the DC-DC converter 24 are heat generating devices that generate heat when the battery is charged.
 充電器23は、外部電源から供給される交流電力を直流電力に変換する電源回路を有している。DC-DCコンバータ24は、充電器23で変換された直流電力の電圧を変換する変圧器である。 The charger 23 has a power supply circuit that converts AC power supplied from an external power source into DC power. The DC-DC converter 24 is a transformer that converts the voltage of the DC power converted by the charger 23.
 充電器23およびDC-DCコンバータ24は、冷却水が流通する流路を有し、冷却水との間で熱授受が行われる熱授受機器である。充電器23の冷却水流路は、充電器23と冷却水との間で熱授受が行われる熱授受部(発熱機器用熱授受部)である。DC-DCコンバータ24の冷却水流路は、DC-DCコンバータ24と冷却水との間で熱授受が行われる熱授受部(発熱機器用熱授受部)である。 The charger 23 and the DC-DC converter 24 are heat transfer devices that have a flow path through which the cooling water flows and exchange heat with the cooling water. The cooling water flow path of the charger 23 is a heat transfer section (heat transfer section for a heat generating device) that transfers heat between the charger 23 and the cooling water. The cooling water flow path of the DC-DC converter 24 is a heat transfer unit (a heat transfer unit for a heating device) that transfers heat between the DC-DC converter 24 and the cooling water.
 第1ポンプ11は、第1ポンプ用流路41に配置されている。第1ポンプ用流路41において第1ポンプ11の吐出側には、冷却水冷却器14が配置されている。 The first pump 11 is disposed in the first pump flow path 41. A cooling water cooler 14 is disposed on the discharge side of the first pump 11 in the first pump flow path 41.
 第2ポンプ12は、第2ポンプ用流路42に配置されている。第2ポンプ用流路42において第2ポンプ12の吐出側には、冷却水加熱器15が配置されている。 The second pump 12 is disposed in the second pump flow path 42. A cooling water heater 15 is disposed on the discharge side of the second pump 12 in the second pump flow path 42.
 ラジエータ13は、ラジエータ用流路43に配置されている。クーラコア16は、クーラコア用流路44に配置されている。ヒータコア17は、ヒータコア用流路45に配置されている。 The radiator 13 is disposed in the radiator flow path 43. The cooler core 16 is disposed in the cooler core flow path 44. The heater core 17 is disposed in the heater core flow path 45.
 冷却水冷却水熱交換器18は、冷却水冷却水熱交換器用流路46に配置されている。インバータ19は、インバータ用流路47に配置されている。電池温調用熱交換器20は、電池熱交換用流路48に配置されている。充電器23およびDC-DCコンバータ24は、充電器用流路49に配置されている。 The cooling water cooling water heat exchanger 18 is disposed in the cooling water cooling water heat exchanger channel 46. The inverter 19 is disposed in the inverter flow path 47. The battery temperature adjustment heat exchanger 20 is disposed in the battery heat exchange channel 48. The charger 23 and the DC-DC converter 24 are disposed in the charger flow path 49.
 ラジエータ用流路43には、リザーブタンク43aが接続されている。リザーブタンク43aは、冷却水を貯留する大気開放式の容器(熱媒体貯留部)である。したがって、リザーブタンク43aに蓄えている冷却水の液面における圧力は大気圧になる。 A reserve tank 43 a is connected to the radiator flow path 43. The reserve tank 43a is an open-air container (heat medium storage unit) that stores cooling water. Therefore, the pressure at the liquid level of the cooling water stored in the reserve tank 43a becomes atmospheric pressure.
 リザーブタンク43aに蓄えている冷却水の液面における圧力が所定圧力(大気圧とは異なる圧力)になるようにリザーブタンク43aが構成されていてもよい。 The reserve tank 43a may be configured such that the pressure at the coolant level stored in the reserve tank 43a is a predetermined pressure (a pressure different from the atmospheric pressure).
 リザーブタンク43aに余剰冷却水を貯留しておくことによって、各流路を循環する冷却水の液量の低下を抑制することができる。リザーブタンク43aは、冷却水中に混入した気泡を気液分離する機能を有している。 Storing excess cooling water in the reserve tank 43a can suppress a decrease in the amount of cooling water circulating through each flow path. The reserve tank 43a has a function of gas-liquid separation of bubbles mixed in the cooling water.
 第1ポンプ用流路41、第2ポンプ用流路42、ラジエータ用流路43、クーラコア用流路44、ヒータコア用流路45、冷却水冷却水熱交換器用流路46、インバータ用流路47および電池熱交換用流路48は、第1切替弁21および第2切替弁22に接続されている。第1切替弁21および第2切替弁22は、冷却水の流れ(冷却水循環状態)を切り替える切替装置である。 1st pump flow path 41, 2nd pump flow path 42, radiator flow path 43, cooler core flow path 44, heater core flow path 45, cooling water cooling water heat exchanger flow path 46, inverter flow path 47 The battery heat exchange channel 48 is connected to the first switching valve 21 and the second switching valve 22. The first switching valve 21 and the second switching valve 22 are switching devices that switch the flow of cooling water (cooling water circulation state).
 第1切替弁21は、冷却水の入口として第1入口21aおよび第2入口21bを有し、冷却水の出口として第1出口21c、第2出口21d、第3出口21e、第4出口21f、第5出口21g、第6出口21hおよび第7出口21iを有している。 The first switching valve 21 has a first inlet 21a and a second inlet 21b as cooling water inlets, and a first outlet 21c, a second outlet 21d, a third outlet 21e, a fourth outlet 21f as cooling water outlets, It has a fifth outlet 21g, a sixth outlet 21h, and a seventh outlet 21i.
 第2切替弁22は、冷却水の出口として第1出口22aおよび第2出口22bを有し、冷却水の入口として第1入口22c、第2入口22d、第3入口22e、第4入口22f、第5入口22g、第6入口22hおよび第7入口22iを有している。 The second switching valve 22 has a first outlet 22a and a second outlet 22b as cooling water outlets, and a first inlet 22c, a second inlet 22d, a third inlet 22e, a fourth inlet 22f, as cooling water inlets, It has a fifth inlet 22g, a sixth inlet 22h, and a seventh inlet 22i.
 第1切替弁21の第1入口21aには、第1ポンプ用流路41の一端が接続されている。換言すれば、第1切替弁21の第1入口21aには、冷却水冷却器14の冷却水出口側が接続されている。 One end of a first pump flow path 41 is connected to the first inlet 21 a of the first switching valve 21. In other words, the cooling water outlet side of the cooling water cooler 14 is connected to the first inlet 21 a of the first switching valve 21.
 第1切替弁21の第2入口21bには、第2ポンプ用流路42の一端が接続されている。換言すれば、第1切替弁21の第2入口21bには、冷却水加熱器15の冷却水出口側が接続されている。 One end of a second pump flow path 42 is connected to the second inlet 21b of the first switching valve 21. In other words, the cooling water outlet side of the cooling water heater 15 is connected to the second inlet 21 b of the first switching valve 21.
 第1切替弁21の第1出口21cには、ラジエータ用流路43の一端が接続されている。換言すれば、第1切替弁21の第1出口21cにはラジエータ13の冷却水入口側が接続されている。 One end of a radiator flow path 43 is connected to the first outlet 21c of the first switching valve 21. In other words, the cooling water inlet side of the radiator 13 is connected to the first outlet 21 c of the first switching valve 21.
 第1切替弁21の第2出口21dには、クーラコア用流路44の一端が接続されている。換言すれば、第1切替弁21の第2出口21dにはクーラコア16の冷却水入口側が接続されている。 One end of the cooler core flow path 44 is connected to the second outlet 21d of the first switching valve 21. In other words, the cooling water inlet side of the cooler core 16 is connected to the second outlet 21 d of the first switching valve 21.
 第1切替弁21の第3出口21eには、ヒータコア用流路45の一端が接続されている。換言すれば、第1切替弁21の第3出口21eにはヒータコア17の冷却水入口側が接続されている。 One end of a heater core channel 45 is connected to the third outlet 21e of the first switching valve 21. In other words, the cooling water inlet side of the heater core 17 is connected to the third outlet 21 e of the first switching valve 21.
 第1切替弁21の第4出口21fには、冷却水冷却水熱交換器用流路46の一端が接続されている。換言すれば、第1切替弁21の第4出口21fには冷却水冷却水熱交換器18の冷却水入口側が接続されている。 One end of a cooling water / cooling water heat exchanger channel 46 is connected to the fourth outlet 21f of the first switching valve 21. In other words, the cooling water inlet side of the cooling water cooling water heat exchanger 18 is connected to the fourth outlet 21 f of the first switching valve 21.
 第1切替弁21の第5出口21gには、インバータ用流路47の一端が接続されている。換言すれば、第1切替弁21の第5出口21gにはインバータ19の冷却水入口側が接続されている。 One end of an inverter flow path 47 is connected to the fifth outlet 21g of the first switching valve 21. In other words, the cooling water inlet side of the inverter 19 is connected to the fifth outlet 21 g of the first switching valve 21.
 第1切替弁21の第6出口21hには、電池熱交換用流路48の一端が接続されている。換言すれば、第1切替弁21の第6出口21hには電池温調用熱交換器20の冷却水入口側が接続されている。 One end of a battery heat exchange channel 48 is connected to the sixth outlet 21h of the first switching valve 21. In other words, the sixth water outlet 21h of the first switching valve 21 is connected to the coolant inlet side of the battery temperature adjusting heat exchanger 20.
 第1切替弁21の第7出口21iには、充電器用流路49の一端が接続されている。換言すれば、第1切替弁21の第7出口21iには充電用機器23、24の冷却水入口側が接続されている。 One end of a charger flow path 49 is connected to the seventh outlet 21 i of the first switching valve 21. In other words, the cooling water inlet side of the charging devices 23 and 24 is connected to the seventh outlet 21 i of the first switching valve 21.
 第2切替弁22の第1出口22aには、第1ポンプ用流路41の他端が接続されている。換言すれば、第2切替弁22の第1出口22aには、第1ポンプ11の冷却水吸入側が接続されている。 The other end of the first pump flow path 41 is connected to the first outlet 22a of the second switching valve 22. In other words, the cooling water suction side of the first pump 11 is connected to the first outlet 22 a of the second switching valve 22.
 第2切替弁22の第2出口22bには、第2ポンプ用流路42の他端が接続されている。換言すれば、第2切替弁22の第2出口22bには、第2ポンプ12の冷却水吸入側が接続されている。 The other end of the second pump flow path 42 is connected to the second outlet 22b of the second switching valve 22. In other words, the cooling water suction side of the second pump 12 is connected to the second outlet 22 b of the second switching valve 22.
 第2切替弁22の第1入口22cには、ラジエータ用流路43の他端が接続されている。換言すれば、第2切替弁22の第1入口22cにはラジエータ13の冷却水出口側が接続されている。 The other end of the radiator flow path 43 is connected to the first inlet 22c of the second switching valve 22. In other words, the cooling water outlet side of the radiator 13 is connected to the first inlet 22 c of the second switching valve 22.
 第2切替弁22の第2入口22dには、クーラコア用流路44の他端が接続されている。換言すれば、第2切替弁22の第2入口22dにはクーラコア16の冷却水出口側が接続されている。 The other end of the cooler core flow path 44 is connected to the second inlet 22d of the second switching valve 22. In other words, the cooling water outlet side of the cooler core 16 is connected to the second inlet 22 d of the second switching valve 22.
 第2切替弁22の第3入口22eには、ヒータコア用流路45の他端が接続されている。換言すれば、第2切替弁22の第3入口22eにはヒータコア17の冷却水出口側が接続されている。 The other end of the heater core flow path 45 is connected to the third inlet 22e of the second switching valve 22. In other words, the coolant outlet side of the heater core 17 is connected to the third inlet 22e of the second switching valve 22.
 第2切替弁22の第4入口22fには、冷却水冷却水熱交換器用流路46の他端が接続されている。換言すれば、第2切替弁22の第4入口22fには冷却水冷却水熱交換器18の冷却水出口側が接続されている。 The other end of the cooling water / cooling water heat exchanger channel 46 is connected to the fourth inlet 22f of the second switching valve 22. In other words, the cooling water outlet side of the cooling water cooling water heat exchanger 18 is connected to the fourth inlet 22 f of the second switching valve 22.
 第2切替弁22の第5入口22gには、インバータ用流路47の他端が接続されている。換言すれば、第2切替弁22の第5入口22gにはインバータ19の冷却水出口側が接続されている。 The other end of the inverter flow path 47 is connected to the fifth inlet 22g of the second switching valve 22. In other words, the cooling water outlet side of the inverter 19 is connected to the fifth inlet 22 g of the second switching valve 22.
 第2切替弁22の第6入口22hには、電池熱交換用流路48の他端が接続されている。換言すれば、第2切替弁22の第6入口22hには電池温調用熱交換器20の冷却水出口側が接続されている。 The other end of the battery heat exchange channel 48 is connected to the sixth inlet 22h of the second switching valve 22. In other words, the cooling water outlet side of the battery temperature adjusting heat exchanger 20 is connected to the sixth inlet 22 h of the second switching valve 22.
 第2切替弁22の第7入口22iには、充電器用流路49の他端が接続されている。換言すれば、第2切替弁22の第7入口22iには充電用機器23、24の冷却水出口側が接続されている。 The other end of the charger flow path 49 is connected to the seventh inlet 22i of the second switching valve 22. In other words, the cooling water outlet side of the charging devices 23 and 24 is connected to the seventh inlet 22 i of the second switching valve 22.
 第1切替弁21および第2切替弁22は、各入口と各出口との連通状態を任意または選択的に切り替え可能な構造になっている。 The first switching valve 21 and the second switching valve 22 have a structure that can arbitrarily or selectively switch the communication state between each inlet and each outlet.
 具体的には、第1切替弁21は、ラジエータ13、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19、電池温調用熱交換器20および充電用機器23、24のそれぞれについて、第1ポンプ11から吐出された冷却水が流入する状態と、第2ポンプ12から吐出された冷却水が流入する状態と、第1ポンプ11から吐出された冷却水および第2ポンプ12から吐出された冷却水が流入しない状態とを切り替える。 Specifically, the first switching valve 21 is provided for each of the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, the battery temperature adjustment heat exchanger 20, and the charging devices 23 and 24. The state in which the cooling water discharged from the first pump 11 flows in, the state in which the cooling water discharged from the second pump 12 flows in, the cooling water discharged from the first pump 11 and the discharge from the second pump 12 The state where the cooled cooling water does not flow is switched.
 第2切替弁22は、ラジエータ13、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19、電池温調用熱交換器20および充電用機器23、24のそれぞれについて、第1ポンプ11へ冷却水が流出する状態と、第2ポンプ12へ冷却水が流出する状態と、第1ポンプ11および第2ポンプ12へ冷却水が流出しない状態とを切り替える。 The second switching valve 22 is connected to the first pump 11 for each of the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, the battery temperature adjustment heat exchanger 20, and the charging devices 23 and 24. The state in which the cooling water flows out, the state in which the cooling water flows out to the second pump 12, and the state in which the cooling water does not flow out to the first pump 11 and the second pump 12 are switched.
 第1切替弁21および第2切替弁22は、弁開度を調整可能になっている。これにより、ラジエータ13、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19、電池温調用熱交換器20および充電用機器23、24を流れる冷却水の流量を調整できる。 The valve opening degree of the first switching valve 21 and the second switching valve 22 can be adjusted. Thereby, the flow volume of the cooling water which flows through the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, the battery temperature control heat exchanger 20, and the charging devices 23 and 24 can be adjusted.
 すなわち、第1切替弁21および第2切替弁22は、ラジエータ13、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19、電池温調用熱交換器20および充電用機器23、24のそれぞれに対して、冷却水の流量を調整する流量調整部である。 That is, the 1st switching valve 21 and the 2nd switching valve 22 are the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, the battery temperature control heat exchanger 20, and the charging devices 23 and 24. It is a flow volume adjustment part which adjusts the flow volume of a cooling water with respect to each of these.
 第1切替弁21は、第1ポンプ11から吐出された冷却水と、第2ポンプ12から吐出された冷却水とを任意の流量割合で混合して、ラジエータ13、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19、電池温調用熱交換器20および充電用機器23、24に流入させることが可能になっている。 The first switching valve 21 mixes the cooling water discharged from the first pump 11 and the cooling water discharged from the second pump 12 at an arbitrary flow rate ratio, and the radiator 13, the cooler core 16, the heater core 17, and the cooling water. The cooling water heat exchanger 18, the inverter 19, the battery temperature adjusting heat exchanger 20, and the charging devices 23 and 24 can be made to flow.
 すなわち、第1切替弁21および第2切替弁22は、ラジエータ13、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19、電池温調用熱交換器20および充電用機器23、24のそれぞれに対して、冷却水冷却器14で冷却された冷却水と、冷却水加熱器15で加熱された冷却水との流量割合を調整する流量割合調整部である。 That is, the 1st switching valve 21 and the 2nd switching valve 22 are the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, the battery temperature control heat exchanger 20, and the charging devices 23 and 24. The flow rate ratio adjusting unit adjusts the flow rate ratio between the cooling water cooled by the cooling water cooler 14 and the cooling water heated by the cooling water heater 15.
 第1切替弁21および第2切替弁22は、一体的に形成されて弁駆動源が共用化されていてもよい。第1切替弁21および第2切替弁22は、多数の弁の組み合わせで構成されていてもよい。 The first switching valve 21 and the second switching valve 22 may be integrally formed to share a valve drive source. The 1st switching valve 21 and the 2nd switching valve 22 may be comprised by the combination of many valves.
 クーラコア16およびヒータコア17は、車両用空調装置の室内空調ユニット50のケース51に収容されている。 The cooler core 16 and the heater core 17 are accommodated in a case 51 of the indoor air conditioning unit 50 of the vehicle air conditioner.
 ケース51は、車室内に送風される送風空気の空気通路を形成しており、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。ケース51内の空気流れ最上流側には、内外気切替箱52が配置されている。内外気切替箱52は、内気(車室内空気)と外気(車室外空気)とを切替導入する内外気導入部である。 The case 51 forms an air passage for the blown air that is blown into the vehicle interior, and is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength. An inside / outside air switching box 52 is arranged on the most upstream side of the air flow in the case 51. The inside / outside air switching box 52 is an inside / outside air introduction section that switches between and introduces inside air (vehicle compartment air) and outside air (vehicle compartment outside air).
 内外気切替箱52には、ケース51内に内気を導入させる内気吸込口52aおよび外気を導入させる外気吸込口52bが形成されている。内外気切替箱52の内部には、内外気切替ドア53が配置されている。 The inside / outside air switching box 52 is formed with an inside air inlet 52a for introducing inside air into the case 51 and an outside air inlet 52b for introducing outside air. An inside / outside air switching door 53 is arranged inside the inside / outside air switching box 52.
 内外気切替ドア53は、ケース51内に導入される内気の風量と外気の風量との風量割合を変化させる風量割合変更部である。具体的には、内外気切替ドア53は、内気吸込口52aおよび外気吸込口52bの開口面積を連続的に調整して、内気の風量と外気の風量との風量割合を変化させる。内外気切替ドア53は、電動アクチュエータ(図示せず)によって駆動される。 The inside / outside air switching door 53 is an air volume ratio changing unit that changes the air volume ratio between the air volume of the inside air introduced into the case 51 and the air volume of the outside air. Specifically, the inside / outside air switching door 53 continuously adjusts the opening areas of the inside air suction port 52a and the outside air suction port 52b to change the air volume ratio between the inside air volume and the outside air volume. The inside / outside air switching door 53 is driven by an electric actuator (not shown).
 内外気切替箱52の空気流れ下流側には、室内送風機54(ブロワ)が配置されている。室内送風機54は、内外気切替箱52を介して吸入した空気(内気および外気)を車室内へ向けて送風する。室内送風機54は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機である。 An indoor blower 54 (blower) is disposed on the downstream side of the air flow in the inside / outside air switching box 52. The indoor blower 54 blows air (inside air and outside air) sucked through the inside / outside air switching box 52 toward the vehicle interior. The indoor blower 54 is an electric blower that drives a centrifugal multiblade fan (sirocco fan) with an electric motor.
 ケース51内において室内送風機54の空気流れ下流側には、クーラコア16、ヒータコア17および補助ヒータ56が配置されている。補助ヒータ56は、PTC素子(正特性サーミスタ)を有し、このPTC素子に電力が供給されることによって発熱して空気を加熱するPTCヒータ(電気ヒータ)である。 In the case 51, the cooler core 16, the heater core 17, and the auxiliary heater 56 are disposed on the downstream side of the air flow of the indoor blower 54. The auxiliary heater 56 has a PTC element (positive characteristic thermistor) and is a PTC heater (electric heater) that generates heat and heats air when electric power is supplied to the PTC element.
 ケース51の内部においてクーラコア16の空気流れ下流側部位には、ヒータコアバイパス通路51aが形成されている。ヒータコアバイパス通路51aは、クーラコア16を通過した空気を、ヒータコア17および補助ヒータ56を通過させずに流す空気通路である。 In the case 51, a heater core bypass passage 51a is formed at the downstream side of the air flow of the cooler core 16. The heater core bypass passage 51 a is an air passage through which air that has passed through the cooler core 16 flows without passing through the heater core 17 and the auxiliary heater 56.
 ケース51の内部においてクーラコア16とヒータコア17との間には、エアミックスドア55が配置されている。 An air mix door 55 is arranged between the cooler core 16 and the heater core 17 in the case 51.
 エアミックスドア55は、ヒータコア17および補助ヒータ56へ流入させる空気と、ヒータコアバイパス通路51aへ流入させる空気との風量割合を連続的に変化させる風量割合調整部である。エアミックスドア55は、回動可能な板状ドアや、スライド可能なドア等であり、電動アクチュエータ(図示せず)によって駆動される。 The air mix door 55 is an air volume ratio adjusting unit that continuously changes the air volume ratio between the air flowing into the heater core 17 and the auxiliary heater 56 and the air flowing into the heater core bypass passage 51a. The air mix door 55 is a rotatable plate-like door, a slidable door, or the like, and is driven by an electric actuator (not shown).
 ヒータコア17および補助ヒータ56を通過する空気とヒータコアバイパス通路51aを通過する空気との風量割合によって、車室内へ吹き出される吹出空気の温度が変化する。したがって、エアミックスドア55は、車室内へ吹き出される吹出空気の温度を調整する温度調整部である。 The temperature of the blown air blown into the passenger compartment changes depending on the air volume ratio between the air passing through the heater core 17 and the auxiliary heater 56 and the air passing through the heater core bypass passage 51a. Therefore, the air mix door 55 is a temperature adjusting unit that adjusts the temperature of the blown air blown into the vehicle interior.
 ケース51の空気流れ最下流部には、空調対象空間である車室内へ送風空気を吹き出す吹出口51bが配置されている。この吹出口51bとしては、具体的には、デフロスタ吹出口、フェイス吹出口およびフット吹出口が設けられている。 The blower outlet 51b which blows off blowing air to the vehicle interior which is air-conditioning object space is arrange | positioned in the most downstream part of the air flow of case 51. FIG. Specifically, a defroster outlet, a face outlet, and a foot outlet are provided as the outlet 51b.
 デフロスタ吹出口は、車両前面窓ガラスの内側の面に向けて空調風を吹き出す。フェイス吹出口は、乗員の上半身に向けて空調風を吹き出す。フット吹出口は、乗員の足元に向けて空調風を吹き出す。 The defroster outlet blows air conditioned air toward the inner surface of the front window glass of the vehicle. The face air outlet blows conditioned air toward the upper body of the passenger. The air outlet blows air-conditioned air toward the passenger's feet.
 吹出口51bの空気流れ上流側には、吹出口モードドア(図示せず)が配置されている。吹出口モードドアは、吹出口モードを切り替える吹出口モード切替部である。吹出口モードドアは、電動アクチュエータ(図示せず)によって駆動される。 An air outlet mode door (not shown) is disposed on the air flow upstream side of the air outlet 51b. A blower outlet mode door is a blower outlet mode switching part which switches blower outlet mode. The air outlet mode door is driven by an electric actuator (not shown).
 吹出口モードドアによって切り替えられる吹出口モードとしては、例えば、フェイスモード、バイレベルモード、フットモードおよびフットデフロスタモードがある。 As the outlet mode switched by the outlet mode door, for example, there are a face mode, a bi-level mode, a foot mode, and a foot defroster mode.
 フェイスモードは、フェイス吹出口を全開してフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出す吹出口モードである。バイレベルモードは、フェイス吹出口とフット吹出口の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出す吹出口モードである。 The face mode is a blowout mode in which the face blowout is fully opened and air is blown out from the face blowout toward the upper body of the passenger in the passenger compartment. The bi-level mode is an air outlet mode in which both the face air outlet and the foot air outlet are opened and air is blown toward the upper body and the feet of the passengers in the passenger compartment.
 フットモードは、フット吹出口を全開するとともにデフロスタ吹出口を小開度だけ開口して、フット吹出口から主に空気を吹き出す吹出口モードである。フットデフロスタモードは、フット吹出口およびデフロスタ吹出口を同程度開口して、フット吹出口およびデフロスタ吹出口の双方から空気を吹き出す吹出口モードである。 The foot mode is a blowout mode in which the foot blowout opening is fully opened and the defroster blowout opening is opened by a small opening so that air is mainly blown out from the foot blowout opening. The foot defroster mode is an air outlet mode in which the foot air outlet and the defroster air outlet are opened to the same extent and air is blown out from both the foot air outlet and the defroster air outlet.
 エンジン冷却回路60は、エンジン61を冷却するための冷却水循環回路である。エンジン冷却回路60は、冷却水が循環する循環流路62を有している。循環流路62には、エンジン61、エンジン用ポンプ63、エンジン用ラジエータ64および冷却水冷却水熱交換器18が配置されている。 The engine cooling circuit 60 is a cooling water circulation circuit for cooling the engine 61. The engine cooling circuit 60 has a circulation passage 62 through which cooling water circulates. An engine 61, an engine pump 63, an engine radiator 64, and a cooling water / cooling water heat exchanger 18 are disposed in the circulation flow path 62.
 エンジン用ポンプ63は、冷却水を吸入して吐出する電動ポンプである。エンジン用ポンプ63は、エンジン61から出力される動力によって駆動される機械式ポンプであってもよい。 The engine pump 63 is an electric pump that sucks and discharges cooling water. The engine pump 63 may be a mechanical pump driven by power output from the engine 61.
 エンジン用ラジエータ64は、冷却水と外気とを熱交換することによって冷却水の熱を外気に放熱させる放熱用熱交換器(熱媒体空気熱交換器)である。 The engine radiator 64 is a heat dissipation heat exchanger (heat medium air heat exchanger) that radiates heat of the cooling water to the outside air by exchanging heat between the cooling water and the outside air.
 循環流路62には、ラジエータバイパス流路65が接続されている。ラジエータバイパス流路65は、冷却水がエンジン用ラジエータ64をバイパスして流れる流路である。 A radiator bypass channel 65 is connected to the circulation channel 62. The radiator bypass passage 65 is a passage through which cooling water flows bypassing the engine radiator 64.
 ラジエータバイパス流路65と循環流路62との接続部にはサーモスタット66が配置されている。サーモスタット66は、温度によって体積変化するサーモワックス(感温部材)によって弁体を変位させて冷却水流路を開閉する機械的機構で構成される冷却水温度応動弁である。 A thermostat 66 is disposed at the connection between the radiator bypass channel 65 and the circulation channel 62. The thermostat 66 is a cooling water temperature responsive valve configured by a mechanical mechanism that opens and closes the cooling water flow path by displacing the valve body by a thermo wax (temperature sensitive member) whose volume changes with temperature.
 具体的には、サーモスタット66は、冷却水の温度が所定温度を上回っている場合(例えば80℃以上)、ラジエータバイパス流路65を閉じ、冷却水の温度が所定温度を下回っている場合(例えば80℃未満)、ラジエータバイパス流路65を開ける。 Specifically, the thermostat 66 closes the radiator bypass channel 65 when the temperature of the cooling water is higher than a predetermined temperature (for example, 80 ° C. or more), and when the temperature of the cooling water is lower than the predetermined temperature (for example, (Less than 80 ° C.), the radiator bypass passage 65 is opened.
 循環流路62には、エンジン補機用流路67が接続されている。エンジン補機用流路67は、冷却水が冷却水冷却水熱交換器18と並列に流れる流路である。エンジン補機用流路67にはエンジン補機68が配置されている。エンジン補機68は、オイル熱交換器、EGRクーラ、スロットルクーラ(ウォーマ)、ターボクーラ、エンジン補助モータ等である。オイル熱交換器は、エンジンオイルまたはトランスミッションオイルと冷却水とを熱交換してオイルの温度を調整する熱交換器である。 The circulation passage 62 is connected with an engine auxiliary passage 67. The engine accessory flow path 67 is a flow path in which cooling water flows in parallel with the cooling water cooling water heat exchanger 18. An engine accessory 68 is disposed in the engine accessory flow path 67. The engine accessory 68 is an oil heat exchanger, an EGR cooler, a throttle cooler (warmer), a turbo cooler, an engine auxiliary motor, or the like. The oil heat exchanger is a heat exchanger that adjusts the temperature of oil by exchanging heat between engine oil or transmission oil and cooling water.
 EGRクーラは、エンジンの排気ガスの一部を吸気側に還流させてスロットルバルブで発生するポンピングロスを低減させるEGR(排気ガス再循環)装置を構成する熱交換器であって、還流ガスと冷却水とを熱交換させて還流ガスの温度を調整する熱交換器である。 The EGR cooler is a heat exchanger that constitutes an EGR (exhaust gas recirculation) device that recirculates a part of the exhaust gas of the engine to the intake side to reduce the pumping loss generated by the throttle valve. It is a heat exchanger that adjusts the temperature of the reflux gas by exchanging heat with water.
 スロットルクーラ(ウォーマ)は、スロットルバルブが高温時(例えば100℃以上)にスロットルバルブ構成部品を熱害から守り、かつスロットルバルブが低温時(たとえば氷点下未満時)にスロットルバルブ構成部品が凍結して作動不良となること防止するために、スロットル内部に設けたウォータジャケットを介してスロットルバルブ構成部品と冷却水とを熱交換させてスロットルバルブ構成部品を温度調整する温調機器である。 A throttle cooler (warmer) protects the throttle valve components from heat damage when the throttle valve is hot (eg, 100 ° C. or higher), and the throttle valve component freezes when the throttle valve is cold (eg, below freezing point). In order to prevent malfunction, the temperature adjusting device adjusts the temperature of the throttle valve component by exchanging heat between the throttle valve component and the cooling water through a water jacket provided inside the throttle.
 ターボクーラはターボチャージャで発生する熱と冷却水とを熱交換させてターボチャージャを冷却するための冷却器である。 The turbo cooler is a cooler for cooling the turbocharger by exchanging heat between the heat generated in the turbocharger and the cooling water.
 エンジン補助モータは、エンジン停止中でもエンジンベルトを回せるようにするための大型モータであり、エンジンベルトで駆動される圧縮機やウォータポンプなどをエンジンの駆動力が無い状態でも作動させたり、エンジンの始動時に利用される。 The engine auxiliary motor is a large motor that allows the engine belt to rotate even when the engine is stopped. The compressor or water pump driven by the engine belt can be operated even when there is no engine driving force, or the engine can be started. Sometimes used.
 エンジン用ラジエータ64にはエンジン用リザーブタンク64aが接続されている。エンジン用リザーブタンク64aの構造および機能は、上述のリザーブタンク43aと同様である。 An engine reserve tank 64a is connected to the engine radiator 64. The structure and function of the engine reserve tank 64a are the same as those of the above-described reserve tank 43a.
 次に、車両用熱管理システム10の電気制御部を図2に基づいて説明する。制御装置70は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器の作動を制御する制御部である。 Next, the electric control unit of the vehicle thermal management system 10 will be described with reference to FIG. The control device 70 is composed of a well-known microcomputer including a CPU, ROM, RAM, etc. and its peripheral circuits, and performs various calculations and processing based on an air conditioning control program stored in the ROM, and is connected to the output side. It is a control part which controls operation of various control object equipment.
 制御装置70によって制御される制御対象機器は、第1ポンプ11、第2ポンプ12、第1切替弁21、第2切替弁22、室外送風機30、圧縮機32、室内送風機54、ケース51の内部に配置された各種ドア(内外気切替ドア53、エアミックスドア55、吹出口モードドア等)を駆動する電動アクチュエータ、およびインバータ19等である。 Control target devices controlled by the control device 70 include the first pump 11, the second pump 12, the first switching valve 21, the second switching valve 22, the outdoor blower 30, the compressor 32, the indoor blower 54, and the inside of the case 51. The electric actuator which drives the various doors (inside / outside air switching door 53, air mix door 55, blower outlet mode door, etc.) arranged in, and the inverter 19 and the like.
 制御装置70は、その出力側に接続された各種制御対象機器を制御する制御部70a、70b、70c、70d、70e、70f、70g、70h、70iを有している。各制御部70a、70b、70c、70d、70e、70f、70g、70h、70iは、各制御対象機器の作動を制御する制御部(ハードウェアおよびソフトウェア)である。 The control device 70 includes control units 70a, 70b, 70c, 70d, 70e, 70f, 70g, 70h, and 70i that control various devices to be controlled connected to the output side. Each of the control units 70a, 70b, 70c, 70d, 70e, 70f, 70g, 70h, and 70i is a control unit (hardware and software) that controls the operation of each control target device.
 ポンプ制御部70aは、第1ポンプ11および第2ポンプ12の作動を制御するポンプ制御部である。第1ポンプ11、第2ポンプ12およびポンプ制御部70aは、各冷却水流通機器を流れる冷却水の流量を制御する冷却水流量制御部(熱媒体流量調整部)である。 The pump control unit 70 a is a pump control unit that controls the operation of the first pump 11 and the second pump 12. The 1st pump 11, the 2nd pump 12, and the pump control part 70a are cooling water flow volume control parts (heat medium flow volume adjustment part) which controls the flow volume of the cooling water which flows through each cooling water circulation apparatus.
 切替弁制御部70bは、第1切替弁21および第2切替弁22の作動を制御する切替制御部である。第1切替弁21、第2切替弁22および切替弁制御部70bは、各冷却水流通機器を流れる冷却水の流量を調整する冷却水流量調整部(熱媒体流量調整部)である。 The switching valve control unit 70 b is a switching control unit that controls the operation of the first switching valve 21 and the second switching valve 22. The 1st switching valve 21, the 2nd switching valve 22, and the switching valve control part 70b are cooling water flow volume adjustment parts (heat medium flow volume adjustment part) which adjust the flow volume of the cooling water which flows through each cooling water distribution | circulation apparatus.
 室外送風機制御部70cは、室外送風機30の作動を制御する室外送風機制御部(外気送風機制御部)である。室外送風機30および室外送風機制御部70cは、ラジエータ13を流れる外気の流量を調整する外気流量調整部である。 The outdoor blower control unit 70c is an outdoor blower control unit (outside air blower control unit) that controls the operation of the outdoor blower 30. The outdoor blower 30 and the outdoor blower control unit 70 c are outdoor air flow rate adjusting units that adjust the flow rate of the outside air flowing through the radiator 13.
 圧縮機制御部70dは、圧縮機32の作動を制御する圧縮機制御部である。圧縮機32および圧縮機制御部70dは、冷凍サイクル31を循環する冷媒の流量を調整する冷媒流量調整部である。 The compressor control unit 70 d is a compressor control unit that controls the operation of the compressor 32. The compressor 32 and the compressor control unit 70d are refrigerant flow rate adjusting units that adjust the flow rate of the refrigerant circulating in the refrigeration cycle 31.
 室内送風機制御部70eは、室内送風機54の作動を制御する室内送風機制御部である。室内送風機54および室内送風機制御部70eは、車室内へ吹き出される送風空気の風量を調整する吹出風量調整部である。 The indoor fan control unit 70e is an indoor fan control unit that controls the operation of the indoor fan 54. The indoor blower 54 and the indoor blower control unit 70e are blown air volume adjusting units that adjust the air volume of the blown air blown into the vehicle interior.
 ドア制御部70fは、ケース51の内部に配置された各種ドア(内外気切替ドア53、エアミックスドア55、吹出口モードドア等)の作動を制御するドア制御部である。エアミックスドア55およびドア制御部70fは、クーラコア16で冷却された送風空気のうちヒータコア17を流れる送風空気とヒータコア17を迂回して流れる送風空気との風量割合を調整する風量割合調整部である。 The door control unit 70f is a door control unit that controls the operation of various doors (inside / outside air switching door 53, air mix door 55, air outlet mode door, etc.) arranged inside the case 51. The air mix door 55 and the door control unit 70 f are air volume ratio adjusting units that adjust the air volume ratio between the blown air flowing through the heater core 17 and the blown air flowing around the heater core 17 out of the blown air cooled by the cooler core 16. .
 内外気切替ドア53および空調切替制御部70fは、車室内へ吹き出される送風空気のうち内気と外気との割合を調整する内外気割合調整部である。 The inside / outside air switching door 53 and the air conditioning switching control unit 70f are inside / outside air ratio adjusting units that adjust the ratio between the inside air and the outside air in the blown air blown into the vehicle interior.
 補助ヒータ制御部70gは、補助ヒータ56の作動を制御する補助ヒータ制御部70g(電気ヒータ制御部)である。 The auxiliary heater control unit 70g is an auxiliary heater control unit 70g (electric heater control unit) that controls the operation of the auxiliary heater 56.
 インバータ制御部70hは、インバータ19の作動を制御するインバータ制御部(発熱機器制御部)である。 The inverter control unit 70 h is an inverter control unit (heating device control unit) that controls the operation of the inverter 19.
 充電用機器制御部70iは、充電器23およびDC-DCコンバータ24(充電用機器)の作動を制御する充電用機器制御部(発熱機器制御部)である。 The charging device control unit 70i is a charging device control unit (heating device control unit) that controls the operation of the charger 23 and the DC-DC converter 24 (charging device).
 各制御部70a、70b、70c、70d、70e、70f、70g、70h、70iを制御装置70に対して別体で構成してもよい。 The control units 70a, 70b, 70c, 70d, 70e, 70f, 70g, 70h, and 70i may be configured separately from the control device 70.
 制御装置70には、内気温度センサ71、内気湿度センサ72、外気温度センサ73、日射センサ74、第1水温センサ75、第2水温センサ76、ラジエータ水温センサ77、クーラコア温度センサ78、ヒータコア温度センサ79、エンジン水温センサ80、インバータ温度センサ81、電池温度センサ82、冷媒温度センサ83、84および冷媒圧力センサ85、86等のセンサ群の検出信号が入力される。 The controller 70 includes an inside air temperature sensor 71, an inside air humidity sensor 72, an outside air temperature sensor 73, a solar radiation sensor 74, a first water temperature sensor 75, a second water temperature sensor 76, a radiator water temperature sensor 77, a cooler core temperature sensor 78, a heater core temperature sensor. 79, detection signals of sensor groups such as an engine water temperature sensor 80, an inverter temperature sensor 81, a battery temperature sensor 82, refrigerant temperature sensors 83 and 84, and refrigerant pressure sensors 85 and 86 are input.
 内気温度センサ71は、内気の温度(車室内温度)を検出する検出器(内気温度検出器)である。内気湿度センサ72は、内気の湿度を検出する検出部(内気湿度検出部)である。 The inside air temperature sensor 71 is a detector (inside air temperature detector) that detects the inside air temperature (vehicle compartment temperature). The room air humidity sensor 72 is a detection unit (room air humidity detection unit) that detects the humidity of the room air.
 外気温度センサ73は、外気の温度(車室外温度)を検出する検出器(外気温度検出器)である。日射センサ74は、車室内の日射量を検出する検出器(日射量検出器)である。 The outside air temperature sensor 73 is a detector (outside air temperature detector) that detects the outside air temperature (the temperature outside the passenger compartment). The solar radiation sensor 74 is a detector (a solar radiation amount detector) that detects the amount of solar radiation in the passenger compartment.
 第1水温センサ75は、第1ポンプ用流路41を流れる冷却水の温度(例えば第1ポンプ11に吸入される冷却水の温度)を検出する検出器(第1熱媒体温度検出器)である。 The first water temperature sensor 75 is a detector (first heat medium temperature detector) that detects the temperature of the cooling water flowing through the first pump passage 41 (for example, the temperature of the cooling water sucked into the first pump 11). is there.
 第2水温センサ76は、第2ポンプ用流路42を流れる冷却水の温度(例えば第2ポンプ12に吸入される冷却水の温度)を検出する検出器(第2熱媒体温度検出器)である。 The second water temperature sensor 76 is a detector (second heat medium temperature detector) that detects the temperature of the cooling water flowing through the second pump flow path 42 (for example, the temperature of the cooling water sucked into the second pump 12). is there.
 ラジエータ水温センサ77は、ラジエータ用流路43を流れる冷却水の温度(例えばラジエータ13から流出した冷却水の温度)を検出する検出器(機器側熱媒体温度検出器)である。 The radiator water temperature sensor 77 is a detector (equipment-side heat medium temperature detector) that detects the temperature of the cooling water flowing through the radiator flow path 43 (for example, the temperature of the cooling water that has flowed out of the radiator 13).
 クーラコア温度センサ78は、クーラコア16の表面温度を検出する検出器(クーラコア温度検出器)である。クーラコア温度センサ78は、例えば、クーラコア16の熱交換フィンの温度を検出するフィンサーミスタや、クーラコア16を流れる冷却水の温度を検出する水温センサ等である。 The cooler core temperature sensor 78 is a detector (cooler core temperature detector) that detects the surface temperature of the cooler core 16. The cooler core temperature sensor 78 is, for example, a fin thermistor that detects the temperature of the heat exchange fins of the cooler core 16, a water temperature sensor that detects the temperature of the cooling water flowing through the cooler core 16, or the like.
 ヒータコア温度センサ79は、ヒータコア17の表面温度を検出する検出器(ヒータコア温度検出器)である。ヒータコア温度センサ79は、例えば、ヒータコア17の熱交換フィンの温度を検出するフィンサーミスタや、ヒータコア17を流れる冷却水の温度を検出する水温センサ等である。 The heater core temperature sensor 79 is a detector (heater core temperature detector) that detects the surface temperature of the heater core 17. The heater core temperature sensor 79 is, for example, a fin thermistor that detects the temperature of the heat exchange fins of the heater core 17 or a water temperature sensor that detects the temperature of the cooling water flowing through the heater core 17.
 エンジン水温センサ80は、エンジン冷却回路60を循環する冷却水の温度(例えばエンジン61の内部を流れる冷却水の温度)を検出する検出器(エンジン熱媒体温度検出器)である。 Engine water temperature sensor 80 is a detector (engine heat medium temperature detector) that detects the temperature of cooling water circulating in engine cooling circuit 60 (for example, the temperature of cooling water flowing inside engine 61).
 インバータ温度センサ81は、インバータ用流路47を流れる冷却水の温度(例えばインバータ19から流出した冷却水の温度)を検出する検出器(機器側熱媒体温度検出器)である。 The inverter temperature sensor 81 is a detector (equipment-side heat medium temperature detector) that detects the temperature of the cooling water flowing through the inverter flow path 47 (for example, the temperature of the cooling water flowing out of the inverter 19).
 電池温度センサ82は、電池熱交換用流路48を流れる冷却水の温度(例えば電池温調用熱交換器20に流入する冷却水の温度)を検出する検出器(機器側熱媒体温度検出器)である。電池温度センサ82は、温度バラツキのある電池パック内において特定の部位の温度(電池代表温度)を検出する検出器(電池代表温度検出器)であってもよい。 The battery temperature sensor 82 is a detector (device-side heat medium temperature detector) that detects the temperature of cooling water flowing through the battery heat exchange channel 48 (for example, the temperature of cooling water flowing into the battery temperature adjustment heat exchanger 20). It is. The battery temperature sensor 82 may be a detector (battery representative temperature detector) that detects the temperature (battery representative temperature) of a specific part in a battery pack having temperature variations.
 冷媒温度センサ83、84は、圧縮機32から吐出された冷媒の温度を検出する吐出側冷媒温度センサ83、および圧縮機32に吸入される冷媒の温度を検出する吸入側冷媒温度センサ84である。 The refrigerant temperature sensors 83 and 84 are a discharge side refrigerant temperature sensor 83 that detects the temperature of the refrigerant discharged from the compressor 32, and a suction side refrigerant temperature sensor 84 that detects the temperature of the refrigerant sucked into the compressor 32. .
 冷媒圧力センサ85、86は、圧縮機32から吐出された冷媒の圧力を検出する吐出側冷媒圧力センサ85、および圧縮機32に吸入される冷媒の圧力を検出する吸入側冷媒温度センサ86である。 The refrigerant pressure sensors 85 and 86 are a discharge side refrigerant pressure sensor 85 that detects the pressure of the refrigerant discharged from the compressor 32, and a suction side refrigerant temperature sensor 86 that detects the pressure of the refrigerant sucked into the compressor 32. .
 制御装置70には、操作パネル88に設けられた各種空調操作スイッチからの操作信号が入力される。例えば、操作パネル88は、車室内前部の計器盤付近に配置されている。 The control device 70 receives operation signals from various air conditioning operation switches provided on the operation panel 88. For example, the operation panel 88 is disposed in the vicinity of the instrument panel in the front part of the vehicle interior.
 操作パネル88に設けられた各種空調操作スイッチは、エアコンスイッチ、オートスイッチ、室内送風機52の風量設定スイッチ、車室内温度設定スイッチ、空調停止スイッチ等である。 The various air conditioning operation switches provided on the operation panel 88 are an air conditioner switch, an auto switch, an air volume setting switch for the indoor fan 52, a vehicle interior temperature setting switch, an air conditioning stop switch, and the like.
 エアコンスイッチは、冷房または除湿の作動・停止(オン・オフ)を切り替えるスイッチである。オートスイッチは、空調の自動制御を設定または解除するスイッチである。車室内温度設定スイッチは、乗員の操作によって車室内目標温度を設定する目標温度設定部である。空調停止スイッチは、空調を停止させるスイッチである。 The air conditioner switch is a switch for switching on / off (ON / OFF) of cooling or dehumidification. The auto switch is a switch for setting or canceling automatic control of air conditioning. The vehicle interior temperature setting switch is a target temperature setting unit that sets the vehicle interior target temperature by the operation of the passenger. The air conditioning stop switch is a switch that stops air conditioning.
 操作パネル88に設けられた各種空調操作スイッチは、クーラコア16で送風空気を冷却する冷却要求、およびヒータコア17で送風空気を加熱する加熱要求を行う空調要求部である。 The various air conditioning operation switches provided on the operation panel 88 are an air conditioning request unit that performs a cooling request for cooling the blown air using the cooler core 16 and a heating request for heating the blown air using the heater core 17.
 制御装置70には、電池制御装置90からの各種信号、およびイグニッションスイッチ91からの操作信号が入力される。電池制御装置90は、電池の入出力を制御する電池制御部である。電池制御装置90は、電池を充電するモード(CC充電モードおよびCV充電モード)を切り替える充電モード切替部である。 Various signals from the battery control device 90 and operation signals from the ignition switch 91 are input to the control device 70. The battery control device 90 is a battery control unit that controls battery input / output. The battery control device 90 is a charge mode switching unit that switches modes for charging the battery (CC charge mode and CV charge mode).
 例えば、制御装置70には、電池が充電中であるか否かを表す信号が入力される。例えば、制御装置70には、CC充電モードおよびCV充電モードのいずれであるかを表す信号が入力される。 For example, the control device 70 receives a signal indicating whether or not the battery is being charged. For example, a signal indicating whether the CC charging mode or the CV charging mode is input to the control device 70.
 CC充電モードは、定電流で充電する充電モードである。CV充電モードは、定電圧で充電する充電モードである。本実施形態では、電池の充電率が80%未満の場合、CC充電モードで充電し、電池の充電率が80%以上の場合、CV充電モードで充電する。 CC charge mode is a charge mode that charges at a constant current. The CV charging mode is a charging mode in which charging is performed at a constant voltage. In this embodiment, when the charging rate of the battery is less than 80%, charging is performed in the CC charging mode, and when the charging rate of the battery is 80% or more, charging is performed in the CV charging mode.
 次に、上記構成における作動を説明する。制御装置70が第1ポンプ11、第2ポンプ12、圧縮機32、第1切替弁21および第2切替弁22等の作動を制御することによって、種々の作動モードに切り替えられる。 Next, the operation in the above configuration will be described. The control device 70 controls the operation of the first pump 11, the second pump 12, the compressor 32, the first switching valve 21, the second switching valve 22, and the like, thereby switching to various operation modes.
 例えば、第1ポンプ11によって吸入されて吐出された冷却水が、冷却水冷却器14と、ラジエータ13、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19、電池温調用熱交換器20および充電用機器23、24のうち少なくとも1つの機器との間で循環する第1冷却水回路(第1熱媒体回路)が形成され、第2ポンプ12によって吸入されて吐出された冷却水が、冷却水加熱器15と、ラジエータ13、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19、電池温調用熱交換器20および充電用機器23、24のうち少なくとも1つの機器との間で循環する第2冷却水回路(第2熱媒体回路)が形成される。 For example, the cooling water sucked and discharged by the first pump 11 is converted into the cooling water cooler 14, the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, and the battery temperature adjustment heat exchange. The first cooling water circuit (first heat medium circuit) that circulates between the battery 20 and at least one of the charging devices 23 and 24 is formed, and the cooling water sucked and discharged by the second pump 12 However, at least one of the cooling water heater 15, the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, the battery temperature adjustment heat exchanger 20, and the charging devices 23 and 24. A second cooling water circuit (second heat medium circuit) circulating between the two is formed.
 第1冷却水回路では、冷却水冷却器14で冷却された低温冷却水が循環する。第2冷却水回路では、冷却水加熱器15で加熱された高温冷却水が循環する。したがって、第1冷却水回路を低温側冷却水回路(低温側熱媒体回路)と表現でき、第2冷却水回路C1を高温側冷却水回路(高温側熱媒体回路)と表現できる。 In the first cooling water circuit, the low-temperature cooling water cooled by the cooling water cooler 14 circulates. In the second cooling water circuit, the high-temperature cooling water heated by the cooling water heater 15 circulates. Therefore, the first cooling water circuit can be expressed as a low temperature side cooling water circuit (low temperature side heat medium circuit), and the second cooling water circuit C1 can be expressed as a high temperature side cooling water circuit (high temperature side heat medium circuit).
 ラジエータ13、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19、電池温調用熱交換器20および充電用機器23、24のそれぞれについて、第1冷却水回路に接続される場合と、第2冷却水回路に接続される場合とを状況に応じて切り替えることによって、ラジエータ13、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19、電池温調用熱交換器20および充電用機器23、24を状況に応じて適切な温度に調整できる。 Each of the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, the battery temperature adjusting heat exchanger 20 and the charging devices 23 and 24 is connected to the first cooling water circuit. The radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, the battery temperature adjusting heat exchanger 20 and the case where the second cooling water circuit is connected are switched according to the situation. The charging devices 23 and 24 can be adjusted to an appropriate temperature depending on the situation.
 ラジエータ13が第1冷却水回路に接続された場合、冷凍サイクル31のヒートポンプ運転を行うことができる。すなわち、第1冷却水回路では、冷却水冷却器14で冷却された冷却水がラジエータ13を流れるので、ラジエータ13で冷却水が外気から吸熱する。 When the radiator 13 is connected to the first cooling water circuit, the heat pump operation of the refrigeration cycle 31 can be performed. That is, in the first cooling water circuit, the cooling water cooled by the cooling water cooler 14 flows through the radiator 13, so that the cooling water absorbs heat from the outside air by the radiator 13.
 そして、ラジエータ13にて外気から吸熱した冷却水は、冷却水冷却器14で冷凍サイクル31の冷媒と熱交換して放熱する。したがって、冷却水冷却器14では、冷凍サイクル31の冷媒が冷却水を介して外気から吸熱する。 Then, the cooling water that has absorbed heat from the outside air by the radiator 13 exchanges heat with the refrigerant of the refrigeration cycle 31 by the cooling water cooler 14 and dissipates heat. Therefore, in the cooling water cooler 14, the refrigerant of the refrigeration cycle 31 absorbs heat from the outside air through the cooling water.
 冷却水冷却器14にて外気から吸熱した冷媒は、冷却水加熱器15にて第2冷却水回路の冷却水と熱交換して放熱する。したがって、外気の熱を汲み上げるヒートポンプ運転を実現できる。 The refrigerant that has absorbed heat from the outside air in the cooling water cooler 14 radiates heat by exchanging heat with the cooling water in the second cooling water circuit in the cooling water heater 15. Therefore, it is possible to realize a heat pump operation that pumps up the heat of the outside air.
 ラジエータ13が第2冷却水回路に接続された場合、冷却水加熱器15で加熱された冷却水がラジエータ13を流れるので、ラジエータ13で冷却水の熱を外気に放熱できる。 When the radiator 13 is connected to the second cooling water circuit, the cooling water heated by the cooling water heater 15 flows through the radiator 13, so that the heat of the cooling water can be radiated to the outside air by the radiator 13.
 クーラコア16が第1冷却水回路に接続された場合、冷却水冷却器14で冷却された冷却水がクーラコア16を流れるので、クーラコア16で車室内への送風空気を冷却できる。すなわち車室内を冷房できる。 When the cooler core 16 is connected to the first cooling water circuit, the cooling water cooled by the cooling water cooler 14 flows through the cooler core 16, so that the air blown into the vehicle compartment can be cooled by the cooler core 16. That is, the passenger compartment can be cooled.
 ヒータコア17が第2冷却水回路に接続された場合、冷却水加熱器15で加熱された冷却水がヒータコア17を流れるので、ヒータコア17で車室内への送風空気を加熱できる。すなわち車室内を暖房できる。 When the heater core 17 is connected to the second cooling water circuit, the cooling water heated by the cooling water heater 15 flows through the heater core 17, so that the air blown into the vehicle compartment can be heated by the heater core 17. That is, the passenger compartment can be heated.
 冷却水冷却水熱交換器18が第1冷却水回路に接続された場合、冷却水冷却器14で冷却された冷却水が冷却水冷却水熱交換器18を流れるのでエンジン冷却水を冷却できる。換言すれば、冷却水冷却水熱交換器18で第1冷却水回路の冷却水がエンジン冷却水から吸熱できるので、エンジン61の廃熱を汲み上げるヒートポンプ運転を実現できる。 When the cooling water cooling water heat exchanger 18 is connected to the first cooling water circuit, the cooling water cooled by the cooling water cooler 14 flows through the cooling water cooling water heat exchanger 18, so that the engine cooling water can be cooled. In other words, since the cooling water in the first cooling water circuit can absorb heat from the engine cooling water in the cooling water cooling water heat exchanger 18, a heat pump operation for pumping up the waste heat of the engine 61 can be realized.
 冷却水冷却水熱交換器18が第2冷却水回路に接続された場合、冷却水加熱器15で加熱された冷却水が冷却水冷却水熱交換器18を流れるのでエンジン冷却水を加熱できる。したがって、エンジン61を加熱(暖機)できる。 When the cooling water cooling water heat exchanger 18 is connected to the second cooling water circuit, the cooling water heated by the cooling water heater 15 flows through the cooling water cooling water heat exchanger 18, so that the engine cooling water can be heated. Therefore, the engine 61 can be heated (warmed up).
 インバータ19が第1冷却水回路に接続された場合、冷却水冷却器14で冷却された冷却水がインバータ19を流れるのでインバータ19を冷却できる。換言すれば、インバータ19の廃熱を汲み上げるヒートポンプ運転を実現できる。 When the inverter 19 is connected to the first cooling water circuit, the cooling water cooled by the cooling water cooler 14 flows through the inverter 19, so that the inverter 19 can be cooled. In other words, a heat pump operation that pumps up the waste heat of the inverter 19 can be realized.
 インバータ19が第2冷却水回路に接続された場合、冷却水加熱器15で加熱された冷却水がインバータ19を流れるのでインバータ19を加熱(暖機)できる。 When the inverter 19 is connected to the second cooling water circuit, since the cooling water heated by the cooling water heater 15 flows through the inverter 19, the inverter 19 can be heated (warmed up).
 電池温調用熱交換器20が第1冷却水回路に接続された場合、冷却水冷却器14で冷却された冷却水が電池温調用熱交換器20を流れるので電池を冷却できる。換言すれば、電池の廃熱を汲み上げるヒートポンプ運転を実現できる。 When the battery temperature adjustment heat exchanger 20 is connected to the first cooling water circuit, the cooling water cooled by the cooling water cooler 14 flows through the battery temperature adjustment heat exchanger 20, so that the battery can be cooled. In other words, a heat pump operation that pumps up the waste heat of the battery can be realized.
 電池温調用熱交換器20が第2冷却水回路に接続された場合、冷却水加熱器15で加熱された冷却水が電池温調用熱交換器20を流れるので電池を加熱(暖機)できる。 When the battery temperature adjusting heat exchanger 20 is connected to the second cooling water circuit, the cooling water heated by the cooling water heater 15 flows through the battery temperature adjusting heat exchanger 20, so that the battery can be heated (warmed up).
 図3に示すように、電池は低温になると入出力特性が悪化し、高温になると劣化が加速するため、電池の入出力特性を最大限活用するには、ある温度範囲(一般に10~40℃)に電池の温度を管理する必要がある。 As shown in FIG. 3, since the input / output characteristics deteriorate when the temperature is low, and the deterioration accelerates when the temperature is high, in order to make maximum use of the input / output characteristics of the battery, a certain temperature range (generally 10 to 40 ° C.). ) It is necessary to manage the battery temperature.
 この適正温度範囲を外れると、電池出力が低下することによって運転快適性が悪化したり、電池の入力特性が悪化することによって回生エネルギを十分に回収できなくなってEV走行距離が悪化したりする。 If the temperature is outside this proper temperature range, the driving comfort is deteriorated due to a decrease in the battery output, or the regenerative energy cannot be sufficiently recovered due to the deterioration of the input characteristics of the battery, resulting in a deterioration in the EV travel distance.
 冬期では、車両が走行する前に電池を最適な温度(10℃程度)に管理する必要があるが、電池の熱容量が大きいことから、数十kWという莫大なエネルギーが必要となる。そこで、外部電源による充電中に電池を200W程度で加熱・保温する方法が最も現実的である。 In winter, it is necessary to manage the battery at an optimum temperature (about 10 ° C.) before the vehicle travels. However, since the heat capacity of the battery is large, enormous energy of several tens of kW is required. Therefore, the most realistic method is to heat and keep the battery at about 200 W during charging with an external power source.
 しかし、電池の加熱・保温に電力を使用してしまうと、充電に使用できる電力が少なくなり充電時間が長くなってしまう。 However, if power is used to heat or keep the battery, the power that can be used for charging decreases and the charging time becomes longer.
 例えば、普通充電(100V-15A、1.5kW)の場合、充電効率や充電用電気機器の電力使用量を考慮すると、電池に入力される電力は最大で1.2kW程度である。このうち、電池の加熱・保温に200Wを使ってしまうと、電池パックに入力される電力は1.0kW程度となってしまい、満充電までの時間は1.2kW÷1.0kW=1.2倍になってしまう。 For example, in the case of normal charging (100V-15A, 1.5 kW), the power input to the battery is about 1.2 kW at the maximum considering the charging efficiency and the power consumption of the electrical equipment for charging. Of these, if 200 W is used for heating and keeping the battery, the power input to the battery pack is about 1.0 kW, and the time until full charge is 1.2 kW / 1.0 kW = 1.2. It will be doubled.
 電池を外部電源で充電する場合、充電器23やDC-DCコンバータ24等の電気機器が作動する。一般的に、充電器23やDC-DCコンバータ24の効率は90%程度である。したがって、例えば一般家庭での普通充電(100V-15A、1.5kW)においては充電器23やDC-DCコンバータ24から200W程度の廃熱が発生する。 When charging the battery with an external power source, electrical devices such as the charger 23 and the DC-DC converter 24 are activated. Generally, the efficiency of the charger 23 and the DC-DC converter 24 is about 90%. Therefore, for example, in ordinary charging (100 V-15A, 1.5 kW) in a general household, waste heat of about 200 W is generated from the charger 23 and the DC-DC converter 24.
 200V充電(200V-15A、3.0kW)の場合、充電器23やDC-DCコンバータ24の効率は普通充電(100V-15A、1.5kW)の場合と変わらないので、充電器23やDC-DCコンバータ24からの廃熱が多くなる。 In the case of 200V charging (200V-15A, 3.0 kW), the efficiency of the charger 23 and the DC-DC converter 24 is not different from the case of normal charging (100V-15A, 1.5 kW). Waste heat from the DC converter 24 increases.
 この廃熱を電池の暖機(加熱・保温)に有効利用するために、制御装置70は、図4のフローチャートに示す制御処理を実行する。 In order to effectively use the waste heat for warming up the battery (heating / warming), the control device 70 executes a control process shown in the flowchart of FIG.
 ステップS100では、電池が充電中であるかを、電池制御装置90から入力される信号に基づいて判定する。電池が充電中であると判定した場合、ステップS110へ進み、電池の温度が所定温度α1(第1所定温度)以下であるか否かを判定する。所定温度α1は、電池の管理温度範囲の下限値(例えば10℃)である。 In step S100, it is determined based on a signal input from the battery control device 90 whether the battery is being charged. When it is determined that the battery is being charged, the process proceeds to step S110, and it is determined whether or not the battery temperature is equal to or lower than a predetermined temperature α1 (first predetermined temperature). The predetermined temperature α1 is a lower limit value (for example, 10 ° C.) of the battery management temperature range.
 電池の温度が所定温度α1以下でないと判定した場合、ステップS120へ進み、図5に示す放熱モードに切り替える。放熱モードでは、第1切替弁21および第2切替弁22は、充電器23およびDC-DCコンバータ24をラジエータ13と接続させる。 When it is determined that the temperature of the battery is not equal to or lower than the predetermined temperature α1, the process proceeds to step S120 to switch to the heat dissipation mode shown in FIG. In the heat dissipation mode, the first switching valve 21 and the second switching valve 22 connect the charger 23 and the DC-DC converter 24 to the radiator 13.
 これにより、電池の温度が管理温度範囲の下限値を上回っていて電池を暖機する必要がない場合、充電器23およびDC-DCコンバータ24の廃熱がラジエータ13にて外気に放熱される。 Thereby, when the temperature of the battery exceeds the lower limit value of the control temperature range and it is not necessary to warm up the battery, the waste heat of the charger 23 and the DC-DC converter 24 is radiated to the outside air by the radiator 13.
 一方、電池の温度が所定温度α1以下であると判定した場合、ステップS130へ進み、図6に示す電池暖機モードに切り替える。電池暖機モードでは、第1切替弁21および第2切替弁22は、充電器23およびDC-DCコンバータ24を電池温調用熱交換器20と接続させる。 On the other hand, when it is determined that the temperature of the battery is equal to or lower than the predetermined temperature α1, the process proceeds to step S130 to switch to the battery warm-up mode shown in FIG. In the battery warm-up mode, the first switching valve 21 and the second switching valve 22 connect the charger 23 and the DC-DC converter 24 to the battery temperature adjustment heat exchanger 20.
 これにより、電池の温度が管理温度範囲の下限値以下になっていて電池を暖機する必要がある場合、充電器23およびDC-DCコンバータ24の廃熱が電池温調用熱交換器20を介して電池に伝えられるので、充電器23およびDC-DCコンバータ24の廃熱を利用して電池が暖機される。 Thereby, when the temperature of the battery is below the lower limit value of the control temperature range and the battery needs to be warmed up, the waste heat of the charger 23 and the DC-DC converter 24 passes through the battery temperature adjustment heat exchanger 20. Therefore, the battery is warmed up using the waste heat of the charger 23 and the DC-DC converter 24.
 続くステップS140では、電池を充電するモードがCV充電モードであるか否かを、電池制御装置90から入力される信号に基づいて判定する。 In the subsequent step S140, it is determined based on a signal input from the battery control device 90 whether or not the battery charging mode is the CV charging mode.
 CV充電モードでないと判定した場合、すなわちCC充電モードであると判定した場合、ステップS150へ進み、充電器23およびDC-DCコンバータ24の効率を通常値(例えば90%)に設定する。 If it is determined that the charging mode is not the CV charging mode, that is, if it is determined that the charging mode is the CC charging mode, the process proceeds to step S150, and the efficiency of the charger 23 and the DC-DC converter 24 is set to a normal value (eg, 90%).
 一方、CV充電モードであると判定した場合、ステップS160へ進み、充電器23およびDC-DCコンバータ24の効率を通常値よりも低い値に設定する。DC-DCコンバータ24の効率は、電池の実際の温度と目標温度との差に基づいて決定される。 On the other hand, if it is determined that the charging mode is the CV charging mode, the process proceeds to step S160, and the efficiency of the charger 23 and the DC-DC converter 24 is set to a value lower than the normal value. The efficiency of the DC-DC converter 24 is determined based on the difference between the actual temperature of the battery and the target temperature.
 これにより、CV充電モードにおいて電池の温度が所定温度α1以下である場合(換言すれば、電池暖機能力が不足していて、電池暖機能力を増やす必要がある場合)、充電器23およびDC-DCコンバータ24の廃熱量を増加させて電池暖機能力を増加させることができる。 Thus, when the battery temperature is equal to or lower than the predetermined temperature α1 in the CV charging mode (in other words, when the battery warming function power is insufficient and the battery warming function power needs to be increased), the charger 23 and the DC -The amount of waste heat of the DC converter 24 can be increased to increase the battery warming function.
 そのため、外気温度が極めて低い場合や、風が当たる屋外で充電する場合等のように大きな電池暖機能力が必要とされる場合であっても電池を目標温度まで昇温させることができる。 Therefore, the battery can be raised to the target temperature even when a large battery warming function is required, such as when the outside air temperature is extremely low or when the battery is charged outdoors, where the wind hits.
 図7は、本実施形態における充電電力および電池温度の推移例を示すグラフである。充電を開始してから充電率が80%になるまではCC充電モードで充電する。この場合、充電時間を極力短くするために充電電力を最大にするので、充電器23およびDC-DCコンバータ24の効率を通常値に設定する。 FIG. 7 is a graph showing a transition example of charging power and battery temperature in the present embodiment. From the start of charging until the charging rate reaches 80%, charging is performed in the CC charging mode. In this case, since the charging power is maximized in order to shorten the charging time as much as possible, the efficiency of the charger 23 and the DC-DC converter 24 is set to a normal value.
 充電率が80%を超えたらCV充電モードで充電する。この場合、CC充電モードと比較して充電電力が低下するので、電力に余力が生じる。そのため、電池の暖機能力を増加させるためにDC-DCコンバータ24の効率を増加させても、充電時間が長くなることを抑制できる。 When the charge rate exceeds 80%, charge in CV charge mode. In this case, since the charging power is reduced as compared with the CC charging mode, there is a surplus power. Therefore, even if the efficiency of the DC-DC converter 24 is increased in order to increase the warming function of the battery, it is possible to suppress an increase in the charging time.
 本実施形態では、第1切替弁21、第2切替弁22および切替弁制御部70bは、電池を充電しているときに、充電用機器23、24(充電器23およびDC-DCコンバータ24)とラジエータ13との間で冷却水が循環する放熱モード(第1循環モード)と、充電用機器23、24と電池温調用熱交換器20との間で冷却水が循環する電池暖機モード(第2循環モード)とを切り替える(ステップS120、S130)。 In the present embodiment, the first switching valve 21, the second switching valve 22, and the switching valve control unit 70b are charged devices 23 and 24 (the charger 23 and the DC-DC converter 24) when charging the battery. And a radiator release mode (first circulation mode) in which cooling water circulates between the radiator 13 and a battery warm-up mode in which cooling water circulates between the charging devices 23 and 24 and the battery temperature control heat exchanger 20 ( (Second circulation mode) is switched (steps S120 and S130).
 これによると、電池暖機モードに切り替えると、電池を充電しているときに充電用機器23、24から発生する廃熱が電池に伝えられるので、充電用機器23、24の廃熱を利用して電池を加熱できる。そのため、電池を充電する際に電池を効率的に加熱できる。 According to this, when switching to the battery warm-up mode, waste heat generated from the charging devices 23 and 24 is transmitted to the battery when the battery is being charged, so the waste heat of the charging devices 23 and 24 is used. Can heat the battery. Therefore, the battery can be efficiently heated when charging the battery.
 放熱モードに切り替えると、充電用機器23、24の廃熱が外気に放熱されるので、電池が充電用機器23、24の廃熱によって過度に加熱されることを防止できる。 When switching to the heat dissipation mode, the waste heat of the charging devices 23 and 24 is radiated to the outside air, so that the battery can be prevented from being excessively heated by the waste heat of the charging devices 23 and 24.
 本実施形態では、切替制御部70bは、電池を充電しているときに電池の温度が所定温度α1以下になっている場合、電池暖機モードになるように切替装置21、22の作動を制御する(ステップS110、S130)。 In the present embodiment, the switching control unit 70b controls the operation of the switching devices 21 and 22 so as to enter the battery warm-up mode when the battery temperature is equal to or lower than the predetermined temperature α1 while charging the battery. (Steps S110 and S130).
 これにより、電池が低温になっている場合に充電用機器23、24の廃熱で電池を加熱できる。 This makes it possible to heat the battery with the waste heat of the charging devices 23 and 24 when the battery is at a low temperature.
 本実施形態では、充電用機器制御部70iは、電池暖機モードにおいて、電池暖機能力(電池を加熱する能力)が不足している場合、充電用機器24の機器効率を低下させる(ステップS160)。これにより、充電用機器24の廃熱量を増やして、電池暖機能力を増やすことができる。 In the present embodiment, the charging device control unit 70i decreases the device efficiency of the charging device 24 when the battery warming function (capability to heat the battery) is insufficient in the battery warming-up mode (step S160). ). Thereby, the amount of waste heat of the charging device 24 can be increased, and the battery warming function can be increased.
 本実施形態では、第1切替弁21および第2切替弁22は、ラジエータ13、電池温調用熱交換器20、充電器23およびDC-DCコンバータ24のそれぞれについて、冷温側冷却水回路C1に接続される状態と、高温側冷却水回路C2に接続される状態とを切り替える。 In the present embodiment, the first switching valve 21 and the second switching valve 22 are connected to the cold temperature side cooling water circuit C1 for each of the radiator 13, the battery temperature adjusting heat exchanger 20, the charger 23, and the DC-DC converter 24. And a state connected to the high temperature side cooling water circuit C2.
 これにより、ラジエータ13、電池温調用熱交換器20、充電器23およびDC-DCコンバータ24のそれぞれについて、冷却水冷却器14で冷却された低温の冷却水が循環する状態と、冷却水加熱器15で加熱された高温の冷却水が循環する状態とを切り替えることができるので、ラジエータ13、電池温調用熱交換器20、充電器23およびDC-DCコンバータ24を適切に温度調整できる。 Thus, for each of the radiator 13, the battery temperature adjusting heat exchanger 20, the charger 23, and the DC-DC converter 24, a state in which the low-temperature cooling water cooled by the cooling water cooler 14 circulates, and the cooling water heater Therefore, the temperature of the radiator 13, the battery temperature adjusting heat exchanger 20, the charger 23, and the DC-DC converter 24 can be appropriately adjusted.
 (第2実施形態)
 上記第1実施形態では、充電時に発生する廃熱を利用して電池を暖機するが、本実施形態では、車両駐車時に、冷却水がもつ冷熱および温熱を利用して電池を温度調整する。
(Second Embodiment)
In the said 1st Embodiment, although a battery is warmed up using the waste heat which generate | occur | produces at the time of charge, in this embodiment, the temperature of a battery is adjusted using the cold and warm heat which cooling water has at the time of vehicle parking.
 すなわち、車両走行時の空調要求等に応じて車両用熱管理システム10が作動している場合、低温側冷却水回路には0~10℃程度の冷水が作られ、高温側冷却水回路には60℃程度の温水が作られる。冷水がもつ冷熱および温水がもつ温熱は、車両が駐車された後(乗員が降車した後)は不要になるため、この冷熱および温熱を電池に伝えることによって、廃熱を有効活用して電池を温度調整する。 That is, when the vehicle thermal management system 10 is operating according to the air conditioning requirements during vehicle travel, cold water of about 0 to 10 ° C. is created in the low temperature side cooling water circuit, Hot water of about 60 ° C is made. The cold heat and the warm water that the cold water has become unnecessary after the vehicle is parked (after the occupant gets off), so by transferring this cold and heat to the battery, the waste heat can be used effectively to save the battery. Adjust the temperature.
 制御装置70は、図8のフローチャートに示す制御処理を実行する。ステップS200では、イグニッションスイッチ91がオフ状態であるか否かを判定する。すなわち、車両が駐車中であるか否かを判定する。 The control device 70 executes the control process shown in the flowchart of FIG. In step S200, it is determined whether or not the ignition switch 91 is in an off state. That is, it is determined whether or not the vehicle is parked.
 イグニッションスイッチ91がオフ状態であると判定した場合、ステップS210へ進み、外気の温度が所定温度β1以上であるか否かを判定する。所定温度β1は、低温側冷却水回路で作られる冷却水の温度(例えば0~10℃)よりも高い温度であり、例えば20℃である。 If it is determined that the ignition switch 91 is off, the process proceeds to step S210, and it is determined whether or not the temperature of the outside air is equal to or higher than the predetermined temperature β1. The predetermined temperature β1 is a temperature higher than the temperature of the cooling water (for example, 0 to 10 ° C.) produced by the low-temperature side cooling water circuit, for example, 20 ° C.
 外気の温度が所定温度β1以上であると判定した場合、ステップS220へ進み、図9に示す冷水循環モードに切り替える。冷水循環モードでは、第1切替弁21および第2切替弁22は、電池温調用熱交換器20を低温側冷却水回路C1に接続する。これにより、低温側冷却水回路C1の冷水が電池温調用熱交換器20を循環するので、車両駐車時に、低温側冷却水回路C1の冷却水がもつ冷熱を利用して電池を冷却できる。 When it is determined that the temperature of the outside air is equal to or higher than the predetermined temperature β1, the process proceeds to step S220, and the mode is switched to the cold water circulation mode shown in FIG. In the cold water circulation mode, the first switching valve 21 and the second switching valve 22 connect the battery temperature adjusting heat exchanger 20 to the low temperature side cooling water circuit C1. Thereby, since the cold water of the low temperature side cooling water circuit C1 circulates through the battery temperature control heat exchanger 20, the battery can be cooled using the cold heat of the cooling water of the low temperature side cooling water circuit C1 when the vehicle is parked.
 続くステップS230では、電池温度が所定温度α1以下であるか否かを判定する。所定温度α1は、電池の管理温度範囲の下限値(例えば10℃)である。電池温度が所定温度α1以下であると判定した場合、ステップS240へ進み、第1ポンプ11を停止する。これにより、低温側冷却水回路C1の冷却水の循環が停止するので、電池を冷却する必要がない場合に第1ポンプ11で電力が無駄に消費されることを防止できる。 In subsequent step S230, it is determined whether or not the battery temperature is equal to or lower than a predetermined temperature α1. The predetermined temperature α1 is a lower limit value (for example, 10 ° C.) of the battery management temperature range. When it determines with battery temperature being below predetermined temperature (alpha) 1, it progresses to step S240 and the 1st pump 11 is stopped. Thereby, since the circulation of the cooling water in the low temperature side cooling water circuit C1 is stopped, it is possible to prevent the first pump 11 from consuming electric power wastefully when it is not necessary to cool the battery.
 一方、ステップS210にて外気の温度が所定温度β1以上でないと判定した場合、ステップS250へ進み、外気の温度が所定温度β2以上であるか否かを判定する。所定温度β2は、高温側冷却水回路で作られる冷却水の温度(例えば60℃程度)よりも低い温度であり、例えば0℃である。 On the other hand, if it is determined in step S210 that the outside air temperature is not equal to or higher than the predetermined temperature β1, the process proceeds to step S250, and it is determined whether or not the outside air temperature is equal to or higher than the predetermined temperature β2. The predetermined temperature β2 is a temperature lower than the temperature (for example, about 60 ° C.) of the cooling water produced by the high temperature side cooling water circuit, and is 0 ° C., for example.
 外気の温度が所定温度β2以上であると判定した場合、ステップS260へ進み、図10に示す温水循環モードに切り替える。温水循環モードでは、第1切替弁21および第2切替弁22は、電池温調用熱交換器20を高温側冷却水回路C2に接続する。これにより、高温側冷却水回路C2の温水が電池温調用熱交換器20を循環するので、車両駐車時に、高温側冷却水回路C2の冷却水がもつ温熱を利用して電池を加熱できる。 When it is determined that the temperature of the outside air is equal to or higher than the predetermined temperature β2, the process proceeds to step S260, and the mode is switched to the hot water circulation mode shown in FIG. In the warm water circulation mode, the first switching valve 21 and the second switching valve 22 connect the battery temperature adjusting heat exchanger 20 to the high temperature side cooling water circuit C2. Thereby, since the warm water of the high temperature side cooling water circuit C2 circulates through the battery temperature control heat exchanger 20, the battery can be heated using the warm heat of the cooling water of the high temperature side cooling water circuit C2 when the vehicle is parked.
 続くステップS270では、電池温度が所定温度α2(第2所定温度α2)以上であるか否かを判定する。所定温度α2は、電池の管理温度範囲の上限値(例えば40℃)である。電池温度が所定温度α2以上であると判定した場合、ステップS280へ進み、第2ポンプ12を停止する。これにより、高温側冷却水回路C2の冷却水の循環が停止するので、電池を加熱する必要がない場合に第2ポンプ12で電力が無駄に消費されることを防止できる。 In subsequent step S270, it is determined whether or not the battery temperature is equal to or higher than a predetermined temperature α2 (second predetermined temperature α2). The predetermined temperature α2 is an upper limit value (for example, 40 ° C.) of the battery management temperature range. When it determines with battery temperature being more than predetermined temperature (alpha) 2, it progresses to step S280 and the 2nd pump 12 is stopped. Thereby, since the circulation of the cooling water in the high temperature side cooling water circuit C2 is stopped, it is possible to prevent the second pump 12 from consuming electric power wastefully when it is not necessary to heat the battery.
 夏期に冷水循環モードを実行した場合における電池温度推移の例を図11に示す。図11では、1日の時間経過に伴う電池温度推移の例を示している。図11中、二点鎖線は比較例であり、冷水循環モードを実行しなかった場合における電池温度推移を示している。 An example of battery temperature transition when the cold water circulation mode is executed in summer is shown in FIG. FIG. 11 shows an example of battery temperature transition over time of one day. In FIG. 11, the alternate long and two short dashes line is a comparative example, and shows the battery temperature transition when the cold water circulation mode is not executed.
 車両駐車後に冷水循環モードを実行した場合、低温側冷却水回路C1の冷却水がもつ冷熱によって電池が冷却されるので、夏期の車両駐車時における電池温度上昇を抑制できる。そのため、電池の最高温度や平均温度を低く抑えることができる。 When the cold water circulation mode is executed after the vehicle is parked, the battery is cooled by the cold heat of the cooling water in the low-temperature side cooling water circuit C1, so that an increase in battery temperature during vehicle parking in summer can be suppressed. Therefore, the maximum temperature and average temperature of the battery can be kept low.
 冬期に温水循環モードを実行した場合における電池温度推移の例を図12に示す。図12では、1日の時間経過に伴う電池温度推移の例を示している。図12中、二点鎖線は比較例であり、温水循環モードを実行しなかった場合における電池温度推移を示している。 FIG. 12 shows an example of battery temperature transition when the hot water circulation mode is executed in winter. FIG. 12 shows an example of battery temperature transition over time of one day. In FIG. 12, the two-dot chain line is a comparative example, and shows the battery temperature transition when the hot water circulation mode is not executed.
 車両駐車後に温水循環モードを実行した場合、高温側冷却水回路C2の冷却水がもつ温熱によって電池が加熱されるので、冬期の車両駐車時における電池温度低下を抑制できる。そのため、電池入出力を確保できる温度(例えば0℃以上)に維持できる時間を長くすることができる。 When the hot water circulation mode is executed after the vehicle is parked, the battery is heated by the heat of the cooling water in the high-temperature side cooling water circuit C2, so that a decrease in battery temperature during vehicle parking in winter can be suppressed. Therefore, the time that can be maintained at a temperature (for example, 0 ° C. or higher) that can secure battery input / output can be extended.
 本実施形態では、第1切替弁21、第2切替弁22および切替制御部70bは、車両停止時において、外気の温度が冷温側冷却水回路C1の冷却水の温度よりも高い場合、電池温調用熱交換器20を冷温側冷却水回路C1に接続する(ステップS210、S220)。 In the present embodiment, the first switching valve 21, the second switching valve 22, and the switching control unit 70 b are configured such that when the temperature of the outside air is higher than the temperature of the cooling water in the cold temperature side cooling water circuit C <b> 1 when the vehicle is stopped. The conditioning heat exchanger 20 is connected to the cold temperature side cooling water circuit C1 (steps S210 and S220).
 これにより、車両停止時に、低温側冷却水回路C1の冷却水がもつ冷熱を利用して電池を冷却できる。 Thereby, when the vehicle is stopped, the battery can be cooled by using the cold heat of the cooling water of the low temperature side cooling water circuit C1.
 本実施形態では、第1切替弁21、第2切替弁22および切替制御部70bは、車両停止時において、外気の温度が高温側冷却水回路C2の冷却水の温度よりも低い場合、電池温調用熱交換器20を高温側冷却水回路C2に接続する(ステップS250、S260)。 In the present embodiment, the first switching valve 21, the second switching valve 22, and the switching control unit 70b are configured such that when the temperature of the outside air is lower than the temperature of the cooling water in the high-temperature side cooling water circuit C2 when the vehicle is stopped, The conditioning heat exchanger 20 is connected to the high temperature side cooling water circuit C2 (steps S250 and S260).
 これにより、車両停止時に、高温側冷却水回路C2の冷却水がもつ温熱を利用して電池を加熱できる。 Thereby, when the vehicle is stopped, the battery can be heated using the heat of the cooling water of the high temperature side cooling water circuit C2.
 (第3実施形態)
 上記第2実施形態では、車両駐車時に、冷却水がもつ温熱を利用して電池を加熱するが、本実施形態では、車両駐車時に、冷却水がもつ温熱を利用してラジエータ13を除霜する。
(Third embodiment)
In the second embodiment, when the vehicle is parked, the battery is heated using the warm heat of the cooling water. In the present embodiment, the radiator 13 is defrosted using the warm heat of the cooling water when the vehicle is parked. .
 車両用熱管理システム10は、空調の暖房要求がある場合、ラジエータ13にて外気から熱を吸熱して冷凍サイクル31で汲み上げ、高温側冷却水回路C2の冷却水を60℃程度にすることによって車室内暖房を行う。 When there is a heating request for air conditioning, the vehicle thermal management system 10 absorbs heat from the outside air by the radiator 13 and pumps it by the refrigeration cycle 31, and sets the cooling water in the high-temperature side cooling water circuit C2 to about 60 ° C. Car interior heating.
 この場合、ラジエータ13に大気中の蒸気が凍結して霜となって付着する。長時間運転するにつれて着霜量が増加してラジエータ13の空気通路を塞ぐため、ラジエータ13を通過する風量が低下して外気からの吸熱量が低下してしまう。 In this case, steam in the atmosphere freezes and adheres to the radiator 13 as frost. As the operation is continued for a long time, the amount of frost increases and the air passage of the radiator 13 is blocked, so that the amount of air passing through the radiator 13 is reduced and the amount of heat absorbed from the outside air is reduced.
 ラジエータ13に付着した霜を融かす(除霜する)ため、制御装置70は、車両が駐車された後(イグニッションスイッチ91がオフ状態になった後)、図13に示すラジエータ除霜モードになるように第1切替弁21および第2切替弁22の作動を制御する。 In order to melt (defrost) the frost adhering to the radiator 13, the control device 70 enters the radiator defrost mode shown in FIG. 13 after the vehicle is parked (after the ignition switch 91 is turned off). Thus, the operation of the first switching valve 21 and the second switching valve 22 is controlled.
 ラジエータ除霜モードでは、第1切替弁21および第2切替弁22は、ラジエータ13を高温側冷却水回路C2に接続する。 In the radiator defrost mode, the first switching valve 21 and the second switching valve 22 connect the radiator 13 to the high temperature side cooling water circuit C2.
 これにより、高温側冷却水回路C2の温水がラジエータ13を循環するので、車両駐車時に、高温側冷却水回路C2の冷却水がもつ温熱を利用してラジエータ13に付着した霜を融かす(除霜する)ことができる。そのため、次の走行時に車室内暖房を行う場合、ラジエータ13の吸熱性能を十分に発揮できる。 As a result, since the hot water in the high-temperature side cooling water circuit C2 circulates in the radiator 13, the frost adhering to the radiator 13 is melted using the heat of the cooling water in the high-temperature side cooling water circuit C2 when the vehicle is parked (removal). Frost). Therefore, when the vehicle interior is heated during the next travel, the heat absorption performance of the radiator 13 can be sufficiently exhibited.
 駐車中は走行風がないことから、ラジエータ13における冷却水から外気への放熱量が少なくなる。そのため、冷却水がもつ温熱のほとんどが、ラジエータ13に付着した霜を融かすために使われるので、冷却水のもつ熱量が少なくても有効に除霜できる。 Since there is no running wind during parking, the amount of heat released from the cooling water to the outside air in the radiator 13 is reduced. For this reason, most of the heat of the cooling water is used to melt the frost adhering to the radiator 13, so that it can be effectively defrosted even if the amount of heat of the cooling water is small.
 本実施形態では、第1切替弁21、第2切替弁22および切替制御部70bは、車両停止時に、ラジエータ13を高温側冷却水回路C2に接続する。これにより、車両停車時に、高温側冷却水回路C2の冷却水がもつ温熱を利用してラジエータ13に付着した霜を融かす(除霜する)ことができる。 In the present embodiment, the first switching valve 21, the second switching valve 22, and the switching control unit 70b connect the radiator 13 to the high temperature side cooling water circuit C2 when the vehicle is stopped. Thereby, the frost adhering to the radiator 13 can be thawed (defrosted) using the heat of the cooling water in the high temperature side cooling water circuit C2 when the vehicle is stopped.
 (第4実施形態)
 上記第3実施形態では、車両駐車時に、冷却水がもつ温熱を利用してラジエータ13を除霜するが、本実施形態では、車両駐車時に、冷却水がもつ温熱を利用してクーラコア16を乾燥・除菌する。
(Fourth embodiment)
In the third embodiment, the radiator 13 is defrosted using the warm heat of the cooling water when the vehicle is parked. In this embodiment, the cooler core 16 is dried using the warm heat of the cooling water when the vehicle is parked. -Sanitize.
 空調の冷房要求がある場合、クーラコア16は、低温側冷却水回路C1の冷却水と車室内への送風空気とを熱交換させて送風空気を冷却するので、クーラコア16の表面に凝縮水が発生する。駐車中は、クーラコア16で発生した凝縮水が室内空調ユニット50内を漂うので、室内空調ユニット50内が高温・高湿度の状態になってカビ菌が繁殖し易い環境となる。 When there is a cooling request for air conditioning, the cooler core 16 cools the blown air by exchanging heat between the cooling water in the low-temperature side cooling water circuit C1 and the blown air into the passenger compartment, so that condensed water is generated on the surface of the cooler core 16. To do. During parking, the condensed water generated in the cooler core 16 drifts in the indoor air conditioning unit 50, so that the interior of the indoor air conditioning unit 50 is in a high temperature and high humidity state, and an environment in which mold fungi easily propagate.
 クーラコア16表面の凝縮水を蒸発させるとともにカビ菌を除菌するため、制御装置70は、車両が駐車された後(イグニッションスイッチ91がオフ状態になった後)、図14に示すクーラコア除菌乾燥モードになるように第1切替弁21および第2切替弁22の作動を制御する。 In order to evaporate the condensed water on the surface of the cooler core 16 and sterilize mold fungi, the control device 70 performs the cooler core sterilization drying shown in FIG. 14 after the vehicle is parked (after the ignition switch 91 is turned off). The operation of the first switching valve 21 and the second switching valve 22 is controlled so as to be in the mode.
 クーラコア乾燥除菌モードでは、第1切替弁21および第2切替弁22は、クーラコア16を高温側冷却水回路C2に接続する。クーラコア乾燥除菌モードでは、室内送風機54の送風量を低風量(例えばLo風量)にする。 In the cooler core dry sterilization mode, the first switching valve 21 and the second switching valve 22 connect the cooler core 16 to the high temperature side cooling water circuit C2. In the cooler core dry sterilization mode, the blower volume of the indoor blower 54 is set to a low air volume (for example, Lo air volume).
 これにより、高温側冷却水回路C2の冷却水がもつ温熱でクーラコア16の凝縮水を蒸発させるとともにカビ菌を除菌できるので、悪臭の発生を防止できる。 This makes it possible to evaporate the condensed water of the cooler core 16 with the heat of the cooling water of the high-temperature side cooling water circuit C2 and to disinfect the fungus, thereby preventing the generation of malodor.
 本実施形態では、第1切替弁21、第2切替弁22および切替制御部70bは、車両停止時に、クーラコア16を高温側冷却水回路C2に接続する。これにより、高温側冷却水回路C2の冷却水がもつ温熱でクーラコア16を乾燥・除菌できる。 In the present embodiment, the first switching valve 21, the second switching valve 22, and the switching control unit 70b connect the cooler core 16 to the high temperature side cooling water circuit C2 when the vehicle is stopped. Thereby, the cooler core 16 can be dried and sterilized by the heat of the cooling water in the high temperature side cooling water circuit C2.
 (第5実施形態)
 本実施形態では、車両駐車時に、冷却水がもつ冷熱および温熱を蓄えておき、次の走行時に、蓄えた冷熱および温熱を冷却水に戻す。図15に示すように、本実施形態の車両用熱管理システム10は、低温側蓄熱器95および高温側蓄熱器96を備えている。低温側蓄熱器95および高温側蓄熱器96は、冷却水がもつ熱を蓄える蓄熱部である。
(Fifth embodiment)
In the present embodiment, the cold and warm heat of the cooling water is stored when the vehicle is parked, and the stored cold and warm heat is returned to the cooling water during the next run. As shown in FIG. 15, the vehicle thermal management system 10 of the present embodiment includes a low temperature side heat storage device 95 and a high temperature side heat storage device 96. The low temperature side heat storage device 95 and the high temperature side heat storage device 96 are heat storage units that store the heat of the cooling water.
 低温側蓄熱器95は、車両駐車時に、低温側冷却水回路C1の冷却水がもつ冷熱を蓄える。低温側蓄熱器95に蓄えられた冷熱は、次の走行時に、クーラコア16を循環する冷却水に戻されて車室内冷房に用いられる。 The low temperature side heat accumulator 95 stores the cold heat of the cooling water of the low temperature side cooling water circuit C1 when the vehicle is parked. The cold energy stored in the low temperature side heat accumulator 95 is returned to the cooling water circulating in the cooler core 16 and used for cooling the passenger compartment during the next run.
 低温側冷却水回路C1の冷却水温度は0~5℃程度であり、冷房時に乗員が冷たさを感じる温度は15~20℃である。したがって、低温側蓄熱器95に用いられる蓄熱剤は、この2つの温度帯の間である5~15℃で潜熱蓄熱できる材料(固体と液体とに相変化する材料)が適している。 The cooling water temperature of the low-temperature side cooling water circuit C1 is about 0 to 5 ° C., and the temperature at which the passenger feels cold during cooling is 15 to 20 ° C. Therefore, as the heat storage agent used for the low temperature side heat storage device 95, a material capable of storing latent heat at a temperature of 5 to 15 ° C. between these two temperature zones (material that changes phase between solid and liquid) is suitable.
 高温側蓄熱器96は、車両駐車時に、高温側冷却水回路C2の冷却水がもつ温熱を蓄える。高温側蓄熱器96に蓄えられた温熱は、次の走行時に、ヒータコア17を循環する冷却水に戻されて車室内暖房に用いられる。 The high temperature side heat accumulator 96 stores the heat of the cooling water in the high temperature side cooling water circuit C2 when the vehicle is parked. The warm heat stored in the high temperature side heat accumulator 96 is returned to the cooling water that circulates through the heater core 17 and used for vehicle interior heating during the next travel.
 高温側冷却水回路C2の冷却水温度は60~65℃程度であり、暖房時に乗員が暖かさを感じる温度は45℃以上である。したがって、高温側蓄熱器96に用いられる蓄熱剤は、この2つの温度帯の間である45~60℃で潜熱蓄熱できる材料(固体と液体とに相変化する材料)が適している。 The cooling water temperature of the high-temperature side cooling water circuit C2 is about 60 to 65 ° C., and the temperature at which the passenger feels warm during heating is 45 ° C. or more. Therefore, as the heat storage agent used for the high temperature side heat storage device 96, a material capable of storing latent heat at 45 to 60 ° C. between these two temperature zones (material that changes phase between solid and liquid) is suitable.
 低温側蓄熱器95は、低温側蓄熱器用流路97に配置されている。高温側蓄熱器96は、高温側蓄熱器用流路98に配置されている。 The low temperature side regenerator 95 is disposed in the low temperature side regenerator flow path 97. The high temperature side heat accumulator 96 is disposed in the high temperature side heat accumulator flow path 98.
 低温側蓄熱器用流路97の一端は、第1切替弁21の第6出口21hに接続されている。換言すれば、第1切替弁21の第6出口21hには、低温側蓄熱器95の冷却水入口側が接続されている。 One end of the low temperature side heat accumulator flow path 97 is connected to the sixth outlet 21 h of the first switching valve 21. In other words, the cooling water inlet side of the low temperature side heat accumulator 95 is connected to the sixth outlet 21 h of the first switching valve 21.
 低温側蓄熱器用流路97の他端は、第2切替弁22の第6入口22hに接続されている。換言すれば、第2切替弁22の第6入口22hには、低温側蓄熱器95の冷却水出口側が接続されている。 The other end of the low temperature side heat accumulator flow path 97 is connected to the sixth inlet 22 h of the second switching valve 22. In other words, the sixth water inlet 22 h of the second switching valve 22 is connected to the coolant outlet side of the low temperature side heat accumulator 95.
 高温側蓄熱器用流路98の一端は、第1切替弁21の第7出口21iに接続されている。換言すれば、第1切替弁21の第7出口21iには、高温側蓄熱器96の冷却水入口側が接続されている。 One end of the high-temperature side heat accumulator flow path 98 is connected to the seventh outlet 21 i of the first switching valve 21. In other words, the coolant outlet side of the high temperature side heat accumulator 96 is connected to the seventh outlet 21 i of the first switching valve 21.
 高温側蓄熱器用流路98の他端は、第2切替弁22の第7入口22iに接続されている。換言すれば、第2切替弁22の第7入口22iには、高温側蓄熱器96の冷却水出口側が接続されている。 The other end of the high-temperature side heat accumulator flow path 98 is connected to the seventh inlet 22 i of the second switching valve 22. In other words, the coolant outlet side of the high temperature side heat accumulator 96 is connected to the seventh inlet 22 i of the second switching valve 22.
 制御装置70は、車両が駐車された後(イグニッションスイッチ91がオフ状態になった後)、図15に示す蓄熱モードになるように第1切替弁21および第2切替弁22の作動を制御する。 The control device 70 controls the operation of the first switching valve 21 and the second switching valve 22 so as to be in the heat storage mode shown in FIG. 15 after the vehicle is parked (after the ignition switch 91 is turned off). .
 蓄熱モードでは、第1切替弁21および第2切替弁22は、低温側蓄熱器95を低温側冷却水回路C1に接続し、高温側蓄熱器96を高温側冷却水回路C2に接続する。これにより、低温側冷却水回路C1の冷却水がもつ冷熱が低温側蓄熱器95に蓄えられ、高温側冷却水回路C2の冷却水がもつ温熱が高温側蓄熱器96に蓄えられる。 In the heat storage mode, the first switching valve 21 and the second switching valve 22 connect the low temperature side heat storage device 95 to the low temperature side cooling water circuit C1, and connect the high temperature side heat storage device 96 to the high temperature side cooling water circuit C2. As a result, the cold heat of the cooling water in the low-temperature side cooling water circuit C1 is stored in the low-temperature side heat storage device 95, and the warm heat of the cooling water in the high-temperature side cooling water circuit C2 is stored in the high-temperature side heat storage device 96.
 そのため、次の走行時、低温側蓄熱器95に蓄えられた冷熱を利用して低温側冷却水回路C1の冷却水の温度を速やかに適正温度範囲(0~5℃)に低下させることができるので、クーラコア16で速やかに冷房を開始することができる。 Therefore, the temperature of the cooling water in the low-temperature side cooling water circuit C1 can be quickly lowered to an appropriate temperature range (0 to 5 ° C.) using the cold energy stored in the low-temperature side heat accumulator 95 during the next run. As a result, the cooler core 16 can quickly start cooling.
 次の走行時、高温側蓄熱器96に蓄えられた温熱を利用して高温側冷却水回路C2の冷却水の温度を速やかに適正温度範囲(60℃程度)に上昇させることができるので、ヒータコア17で速やかに暖房を開始することができる。高温側蓄熱器96に蓄えられた温熱を利用して電池やエンジン61を暖機することもできる。 During the next run, the temperature of the cooling water in the high temperature side cooling water circuit C2 can be quickly raised to an appropriate temperature range (about 60 ° C.) using the heat stored in the high temperature side heat accumulator 96. Heating can be started promptly at 17. The battery and the engine 61 can also be warmed up using the warm heat stored in the high temperature side heat accumulator 96.
 走行中、冷却水加熱器15、ヒータコア16およびインバータ19には60℃程度(中温帯)の温水が流れており、エンジン冷却回路60および冷却水冷却水熱交換器18には、80~100℃(高温帯)の温水が流れている。 During traveling, hot water of about 60 ° C. (medium temperature zone) flows through the cooling water heater 15, the heater core 16, and the inverter 19, and 80 to 100 ° C. passes through the engine cooling circuit 60 and the cooling water cooling water heat exchanger 18. Hot water (high temperature zone) is flowing.
 したがって、エンジン61の廃熱を高温側蓄熱器96に蓄熱させる場合には、中温帯のインバータ19およびヒータコア17と高温側蓄熱器96との間で高温冷却水を循環させて中温帯の熱を蓄熱した後、高温帯の冷却水冷却水熱交換器18と高温側蓄熱器96との間で冷却水を循環させることによって、冷却水がもつ温熱を高温側蓄熱器96で効率的に回収できる。 Therefore, when the waste heat of the engine 61 is stored in the high-temperature side heat accumulator 96, the high-temperature cooling water is circulated between the intermediate-temperature inverter 19 and the heater core 17 and the high-temperature side heat accumulator 96 to generate intermediate-temperature heat. After the heat is stored, by circulating the cooling water between the high-temperature zone cooling water cooling water heat exchanger 18 and the high temperature side heat storage device 96, the high temperature side heat storage device 96 can efficiently recover the warm heat of the cooling water. .
 本実施形態では、第1切替弁21、第2切替弁22および切替制御部70bは、車両停止時に、低温側蓄熱器95を冷温側冷却水回路C1に接続する。これにより、低温側冷却水回路C1の冷却水がもつ冷熱を低温側蓄熱器95に蓄えることができる。 In the present embodiment, the first switching valve 21, the second switching valve 22, and the switching control unit 70b connect the low temperature side heat accumulator 95 to the cold temperature side cooling water circuit C1 when the vehicle is stopped. Thereby, the cold heat which the cooling water of the low temperature side cooling water circuit C1 has can be stored in the low temperature side heat accumulator 95.
 本実施形態では、第1切替弁21、第2切替弁22および切替制御部70bは、車両走行時に、低温側蓄熱器95をクーラコア16に接続する。これにより、低温側蓄熱器95に蓄えられた冷熱を利用して低温側冷却水回路C1の冷却水の温度を速やかに低下させることができるので、クーラコア16で速やかに冷房を開始することができる。 In the present embodiment, the first switching valve 21, the second switching valve 22, and the switching control unit 70b connect the low temperature side heat accumulator 95 to the cooler core 16 when the vehicle travels. Thereby, since the temperature of the cooling water of the low temperature side cooling water circuit C1 can be rapidly reduced using the cold energy stored in the low temperature side heat accumulator 95, the cooler core 16 can start cooling quickly. .
 本実施形態では、第1切替弁21、第2切替弁22および切替制御部70bは、車両停止時に、高温側蓄熱器96を高温側冷却水回路C2に接続する。これにより、高温側冷却水回路C2の冷却水がもつ温熱を高温側蓄熱器96に蓄えることができる。 In the present embodiment, the first switching valve 21, the second switching valve 22, and the switching control unit 70b connect the high temperature side heat accumulator 96 to the high temperature side cooling water circuit C2 when the vehicle is stopped. Thereby, the heat which the cooling water of the high temperature side cooling water circuit C2 has can be stored in the high temperature side heat accumulator 96.
 本実施形態では、第1切替弁21、第2切替弁22および切替制御部70bは、車両走行時に、高温側蓄熱器96をヒータコア17に接続する。これにより、高温側蓄熱器96に蓄えられた温熱を利用して高温側冷却水回路C2の冷却水の温度を速やかに上昇させることができるので、ヒータコア17で速やかに暖房を開始することができる。 In the present embodiment, the first switching valve 21, the second switching valve 22, and the switching control unit 70b connect the high temperature side heat accumulator 96 to the heater core 17 when the vehicle travels. Thereby, since the temperature of the cooling water of the high temperature side cooling water circuit C2 can be rapidly raised using the heat stored in the high temperature side heat accumulator 96, the heater core 17 can start heating quickly. .
 第1切替弁21、第2切替弁22および切替制御部70bは、車両走行時に、高温側蓄熱器96を電池温調用熱交換器20に接続すれば、高温側蓄熱器96に蓄えられた温熱を利用して電池を暖機することができる。 The first switching valve 21, the second switching valve 22, and the switching control unit 70 b connect the high temperature side heat accumulator 96 to the battery temperature adjustment heat exchanger 20 when the vehicle travels, and the heat stored in the high temperature side heat accumulator 96 is stored. Can be used to warm up the battery.
 第1切替弁21、第2切替弁22および切替制御部70bは、車両走行時に、高温側蓄熱器96を冷却水冷却水熱交換器18に接続すれば、高温側蓄熱器96に蓄えられた温熱を利用してエンジン61を暖機することができる。 The first switching valve 21, the second switching valve 22, and the switching control unit 70b are stored in the high temperature side heat accumulator 96 if the high temperature side heat accumulator 96 is connected to the cooling water cooling water heat exchanger 18 during vehicle travel. The engine 61 can be warmed up using the heat.
 (他の実施形態)
 上記実施形態を、例えば以下のように種々変形可能である。
(Other embodiments)
The above embodiment can be variously modified as follows, for example.
 (1)上記各実施形態では、温度調整対象機器を温度調整するための熱媒体として冷却水を用いているが、油などの各種媒体を熱媒体として用いてもよい。 (1) In each of the above embodiments, cooling water is used as a heat medium for adjusting the temperature of the temperature adjustment target device, but various media such as oil may be used as the heat medium.
 熱媒体として、ナノ流体を用いてもよい。ナノ流体とは、粒子径がナノメートルオーダーのナノ粒子が混入された流体のことである。ナノ粒子を熱媒体に混入させることで、エチレングリコールを用いた冷却水(いわゆる不凍液)のように凝固点を低下させる作用効果に加えて、次のような作用効果を得ることができる。 Nanofluid may be used as the heat medium. A nanofluid is a fluid in which nanoparticles having a particle size of the order of nanometers are mixed. In addition to the effect of lowering the freezing point as in the case of cooling water using ethylene glycol (so-called antifreeze liquid), the following effects can be obtained by mixing the nanoparticles with the heat medium.
 すなわち、特定の温度帯での熱伝導率を向上させる作用効果、熱媒体の熱容量を増加させる作用効果、金属配管の防食効果やゴム配管の劣化を防止する作用効果、および極低温での熱媒体の流動性を高める作用効果を得ることができる。 That is, the effect of improving the thermal conductivity in a specific temperature range, the effect of increasing the heat capacity of the heat medium, the effect of preventing the corrosion of metal pipes and the deterioration of rubber pipes, and the heat medium at an extremely low temperature The effect which improves the fluidity | liquidity of can be acquired.
 このような作用効果は、ナノ粒子の粒子構成、粒子形状、配合比率、付加物質によって様々に変化する。 Such an effect varies depending on the particle configuration, particle shape, blending ratio, and additional substance of the nanoparticles.
 これによると、熱伝導率を向上させることができるので、エチレングリコールを用いた冷却水と比較して少ない量の熱媒体であっても同等の冷却効率を得ることが可能になる。 According to this, since the thermal conductivity can be improved, it is possible to obtain the same cooling efficiency even with a small amount of heat medium as compared with the cooling water using ethylene glycol.
 また、熱媒体の熱容量を増加させることができるので、熱媒体自体の蓄冷熱量(顕熱による蓄冷熱)を増加させることができる。 In addition, since the heat capacity of the heat medium can be increased, the amount of heat stored in the heat medium itself (cold heat stored by sensible heat) can be increased.
 蓄冷熱量を増加させることにより、圧縮機32を作動させない状態であっても、ある程度の時間は蓄冷熱を利用した機器の冷却、加熱の温調が実施できるため、車両用熱管理システムの省動力化が可能になる。 By increasing the amount of cold storage heat, even when the compressor 32 is not operated, the cooling and heating temperature control of the equipment using the cold storage heat can be carried out for a certain amount of time. Can be realized.
 ナノ粒子のアスペクト比は50以上であるのが好ましい。十分な熱伝導率を得ることができるからである。なお、アスペクト比は、ナノ粒子の縦×横の比率を表す形状指標である。 The aspect ratio of the nanoparticles is preferably 50 or more. This is because sufficient thermal conductivity can be obtained. The aspect ratio is a shape index that represents the ratio of the vertical and horizontal dimensions of the nanoparticles.
 ナノ粒子としては、Au、Ag、CuおよびCのいずれかを含むものを用いることができる。具体的には、ナノ粒子の構成原子として、Auナノ粒子、Agナノワイヤー、CNT(カーボンナノチューブ)、グラフェン、グラファイトコアシェル型ナノ粒子(上記原子を囲むようにカーボンナノチューブ等の構造体があるような粒子体)、およびAuナノ粒子含有CNTなどを用いることができる。 Nanoparticles containing any of Au, Ag, Cu and C can be used. Specifically, Au nanoparticle, Ag nanowire, CNT (carbon nanotube), graphene, graphite core-shell nanoparticle (a structure such as a carbon nanotube surrounding the above atom is included as a constituent atom of the nanoparticle. Particles), Au nanoparticle-containing CNTs, and the like can be used.
 (2)上記各実施形態の冷凍サイクル31では、冷媒としてフロン系冷媒を用いているが、冷媒の種類はこれに限定されるものではなく、二酸化炭素等の自然冷媒や炭化水素系冷媒等を用いてもよい。 (2) In the refrigeration cycle 31 of each of the above embodiments, a chlorofluorocarbon refrigerant is used as the refrigerant. However, the type of the refrigerant is not limited to this, and natural refrigerant such as carbon dioxide, hydrocarbon refrigerant, or the like is used. It may be used.
 また、上記各実施形態の冷凍サイクル31は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているが、高圧側冷媒圧力が冷媒の臨界圧力を超える超臨界冷凍サイクルを構成していてもよい。 Further, the refrigeration cycle 31 of each of the above embodiments constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant, but the supercritical refrigeration cycle in which the high-pressure side refrigerant pressure exceeds the critical pressure of the refrigerant. May be configured.
 (3)上記実施形態では、第1ポンプ11または第2ポンプ12から吐出された冷却水が、冷却水冷却水熱交換器18を介してエンジン冷却回路60のエンジン冷却水と熱交換するようになっているが、第1ポンプ11または第2ポンプ12から吐出された冷却水が流路切替弁を介してエンジン冷却回路60を循環するようになっていてもよい。 (3) In the above embodiment, the cooling water discharged from the first pump 11 or the second pump 12 exchanges heat with the engine cooling water of the engine cooling circuit 60 via the cooling water cooling water heat exchanger 18. However, the cooling water discharged from the first pump 11 or the second pump 12 may circulate through the engine cooling circuit 60 via the flow path switching valve.
 この実施形態では、エンジン61の冷却水流路は、エンジン61と冷却水との間で熱授受が行われるエンジン用熱授受部を構成している。 In this embodiment, the cooling water flow path of the engine 61 constitutes an engine heat transfer unit that transfers heat between the engine 61 and the cooling water.
 流路切替弁は、第1ポンプ11または第2ポンプ12から吐出された冷却水がエンジン冷却回路60を循環する場合と循環しない場合とを切り替える切替装置である。 The flow path switching valve is a switching device that switches between when the cooling water discharged from the first pump 11 or the second pump 12 circulates through the engine cooling circuit 60 and when it does not circulate.
 (4)上記実施形態において、発熱機器としてインバータ19を備えているが、インバータ19の他に種々の発熱機器を備えていてもよい。発熱機器の他の例としては、走行用電動モータや各種エンジン機器などが挙げられる。 (4) In the above embodiment, the inverter 19 is provided as the heat generating device, but various heat generating devices may be provided in addition to the inverter 19. Other examples of the heat generating device include a traveling electric motor and various engine devices.
 各種エンジン機器としては、ターボチャージャ、インタークーラ、EGRクーラ、CVTウォーマ、CVTクーラ、排気熱回収器などが挙げられる。 Various engine devices include turbochargers, intercoolers, EGR coolers, CVT warmers, CVT coolers, exhaust heat recovery devices, and the like.
 ターボチャージャは、エンジンの吸入空気(吸気)を過給する過給機である。インタークーラは、ターボチャージャで圧縮されて高温になった過給吸気と冷却水とを熱交換して過給吸気を冷却する吸気冷却器(吸気熱媒体熱交換器)である。 The turbocharger is a supercharger that supercharges engine intake air (intake). The intercooler is an intake air cooler (intake heat medium heat exchanger) that cools the supercharged intake air by exchanging heat between the supercharged intake air that has been compressed by the turbocharger and becomes high temperature and the cooling water.
 EGRクーラは、エンジンの吸気側に戻されるエンジン排気ガス(排気)と冷却水とを熱交換して排気を冷却する排気冷却水熱交換器(排気熱媒体熱交換器)である。 The EGR cooler is an exhaust cooling water heat exchanger (exhaust heat medium heat exchanger) that cools exhaust gas by exchanging heat between engine exhaust gas (exhaust gas) returned to the intake side of the engine and cooling water.
 CVTウォーマは、CVT(無段変速機)を潤滑する潤滑油(CVTオイル)と冷却水とを熱交換してCVTオイルを加熱する潤滑油冷却水熱交換器(潤滑油熱媒体熱交換器)である。 CVT warmer is a lubricating oil cooling water heat exchanger (lubricating oil heat medium heat exchanger) that heats CVT oil by exchanging heat between lubricating oil (CVT oil) that lubricates CVT (continuously variable transmission) and cooling water. It is.
 CVTクーラは、CVTオイルと冷却水とを熱交換してCVTオイルを冷却する潤滑油冷却水熱交換器(潤滑油熱媒体熱交換器)である。 The CVT cooler is a lubricating oil cooling water heat exchanger (lubricating oil heat medium heat exchanger) that cools the CVT oil by exchanging heat between the CVT oil and the cooling water.
 排気熱回収器は、排気と冷却水とを熱交換して冷却水に排気の熱を吸熱させる排気冷却水熱交換器(排気熱媒体熱交換器)である。 The exhaust heat recovery unit is an exhaust cooling water heat exchanger (exhaust heat medium heat exchanger) that exchanges heat between the exhaust and the cooling water to absorb the heat of the exhaust into the cooling water.
 (5)上記実施形態では、車両用熱管理システム10を、エンジンおよび走行用電動モータから車両走行用駆動力を得るハイブリッド自動車に適用しているが、車両走行用の駆動力を走行用の電動モータから得る電気自動車に車両用熱管理システム10を適用してもよい。 (5) In the above embodiment, the vehicle thermal management system 10 is applied to a hybrid vehicle that obtains vehicle driving force from the engine and the electric motor for traveling. However, the driving force for vehicle traveling is used as electric power for traveling. The vehicle thermal management system 10 may be applied to an electric vehicle obtained from a motor.

Claims (14)

  1.  熱媒体を吸入して吐出するポンプ(11、12)と、
     電池と前記熱媒体との間で熱授受が行われる電池用熱授受部(20)と、
     前記電池を充電する際に発熱する発熱機器と前記熱媒体との間で熱授受が行われる発熱機器用熱授受部(23、24)と、
     前記熱媒体と外気とを熱交換させる熱媒体外気熱交換器(13)と、
     前記発熱機器用熱授受部(23、24)と前記熱媒体外気熱交換器(13)との間で前記熱媒体が循環する第1循環モードと、前記発熱機器用熱授受部(23、24)と前記電池用熱授受部(20)との間で前記熱媒体が循環する第2循環モードとを切り替える切替装置(21、22)と、
     前記電池を充電しているときに前記切替装置(21、22)の作動を制御する切替制御部(70b)とを備える車両用熱管理システム。
    Pumps (11, 12) for sucking and discharging the heat medium;
    A battery heat transfer section (20) for transferring heat between the battery and the heat medium;
    A heat transfer unit (23, 24) for heat generation equipment that performs heat transfer between the heat generation device that generates heat when the battery is charged and the heat medium;
    A heat medium outside air heat exchanger (13) for exchanging heat between the heat medium and the outside air;
    A first circulation mode in which the heat medium circulates between the heat exchanger for heat-generating equipment (23, 24) and the heat exchanger outside air heat exchanger (13), and a heat exchanger for heat-generating equipment (23, 24) ) And the battery heat transfer section (20), a switching device (21, 22) for switching between the second circulation mode in which the heat medium circulates;
    A vehicle thermal management system comprising: a switching control unit (70b) that controls the operation of the switching device (21, 22) when charging the battery.
  2.  前記切替制御部(70b)は、前記電池を充電しているときに前記電池の温度が所定温度(α1)以下になっている場合、前記第2循環モードになるように前記切替装置(21、22)の作動を制御する請求項1に記載の車両用熱管理システム。 When the battery temperature is equal to or lower than a predetermined temperature (α1) when charging the battery, the switching control unit (70b) is configured to switch the switching device (21, The vehicle thermal management system according to claim 1, which controls the operation of 22).
  3.  前記第2循環モードにおいて、前記電池を加熱する能力が不足している場合、前記発熱機器の機器効率を低下させる発熱機器制御部(70i)を備える請求項2に記載の車両用熱管理システム。 The vehicle thermal management system according to claim 2, further comprising a heat generating device control unit (70i) that reduces device efficiency of the heat generating device when the battery heating capability is insufficient in the second circulation mode.
  4.  前記熱媒体を冷却する熱媒体冷却器(14)と、
     前記熱媒体を加熱する熱媒体加熱器(15)とを備え、
     前記切替装置(21、22)は、前記熱媒体外気熱交換器(13)、前記電池用熱授受部(20)および前記発熱機器用熱授受部(23、24)のそれぞれについて、前記熱媒体冷却器(14)で冷却された前記熱媒体が循環する低温側熱媒体回路(C1)に接続される状態と、前記熱媒体加熱器(15)で加熱された前記熱媒体が循環する高温側熱媒体回路(C2)に接続される状態とを切り替える請求項1ないし3のいずれか1つに記載の車両用熱管理システム。
    A heat medium cooler (14) for cooling the heat medium;
    A heat medium heater (15) for heating the heat medium,
    The switching device (21, 22) includes the heat medium for each of the heat medium outside air heat exchanger (13), the battery heat transfer unit (20), and the heat generating unit heat transfer unit (23, 24). The state connected to the low temperature side heat medium circuit (C1) through which the heat medium cooled by the cooler (14) circulates, and the high temperature side through which the heat medium heated by the heat medium heater (15) circulates The vehicle thermal management system according to any one of claims 1 to 3, wherein a state connected to the heat medium circuit (C2) is switched.
  5.  前記切替制御部(70b)は、車両停止時において、外気の温度が前記低温側熱媒体回路(C1)の前記熱媒体の温度よりも高い場合、前記電池用熱授受部(20)が前記低温側熱媒体回路(C1)に接続されるように前記切替装置(21、22)の作動を制御する請求項4に記載の車両用熱管理システム。 When the temperature of the outside air is higher than the temperature of the heat medium of the low temperature side heat medium circuit (C1) when the vehicle is stopped, the switching control unit (70b) causes the battery heat transfer unit (20) to perform the low temperature operation. The vehicle thermal management system according to claim 4, wherein the operation of the switching device (21, 22) is controlled so as to be connected to a side heat medium circuit (C1).
  6.  前記切替制御部(70b)は、車両停止時において、外気の温度が前記高温側熱媒体回路(C2)の前記熱媒体の温度よりも低い場合、前記電池用熱授受部(20)が前記高温側熱媒体回路(C2)に接続されるように前記切替装置(21、22)の作動を制御する請求項4に記載の車両用熱管理システム。 When the temperature of the outside air is lower than the temperature of the heat medium of the high temperature side heat medium circuit (C2) when the vehicle is stopped, the switching control unit (70b) causes the battery heat transfer unit (20) to perform the high temperature. The vehicle thermal management system according to claim 4, wherein the operation of the switching device (21, 22) is controlled so as to be connected to a side heat medium circuit (C2).
  7.  前記切替制御部(70b)は、車両停止時に、前記熱媒体外気熱交換器(13)が前記高温側熱媒体回路(C2)に接続されるように前記切替装置(21、22)の作動を制御する請求項4に記載の車両用熱管理システム。 The switching control unit (70b) operates the switching devices (21, 22) so that the heat medium outside air heat exchanger (13) is connected to the high temperature side heat medium circuit (C2) when the vehicle is stopped. The vehicle thermal management system according to claim 4 to be controlled.
  8.  前記熱媒体冷却器(14)で冷却された前記熱媒体と車室内への送風空気とを熱交換して前記送風空気を冷却するクーラコア(16)を備え、
     前記切替装置(21、22)は、前記クーラコア(16)が前記低温側熱媒体回路(C1)に接続される状態と、前記クーラコア(16)が前記高温側熱媒体回路(C2)に接続される状態とを切り替えるようになっており、
     前記切替制御部(70b)は、車両停止時に、前記クーラコア(16)が前記高温側熱媒体回路(C2)に接続されるように前記切替装置(21、22)の作動を制御する請求項4に記載の車両用熱管理システム。
    A cooler core (16) for exchanging heat between the heat medium cooled by the heat medium cooler (14) and the blown air into the passenger compartment to cool the blown air;
    In the switching device (21, 22), the cooler core (16) is connected to the low temperature side heat medium circuit (C1), and the cooler core (16) is connected to the high temperature side heat medium circuit (C2). It is designed to switch between
    The said switching control part (70b) controls the action | operation of the said switching apparatus (21, 22) so that the said cooler core (16) may be connected to the said high temperature side heat medium circuit (C2) at the time of a vehicle stop. The vehicle thermal management system described in 1.
  9.  前記熱媒体がもつ冷熱を蓄える低温側蓄熱器(95)を備え、
     前記切替装置(21、22)は、前記低温側蓄熱器(95)が前記低温側熱媒体回路(C1)に接続される状態と接続されない状態とを切り替えるようになっており、
     前記切替制御部(70b)は、車両停止時に、前記低温側蓄熱器(95)が前記低温側熱媒体回路(C1)に接続されるように前記切替装置(21、22)の作動を制御する請求項4に記載の車両用熱管理システム。
    A low temperature side heat accumulator (95) for storing the cold energy of the heat medium;
    The switching device (21, 22) is configured to switch between a state where the low temperature side heat accumulator (95) is connected to the low temperature side heat medium circuit (C1) and a state where it is not connected,
    The switching control unit (70b) controls the operation of the switching device (21, 22) so that the low temperature side heat accumulator (95) is connected to the low temperature side heat medium circuit (C1) when the vehicle is stopped. The vehicle thermal management system according to claim 4.
  10.  前記熱媒体冷却器(14)で冷却された前記熱媒体と車室内への送風空気とを熱交換して前記送風空気を冷却するクーラコア(16)を備え、
     前記切替装置(21、22)は、前記クーラコア(16)が前記低温側熱媒体回路(C1)に接続される状態と接続されない状態とを切り替えるようになっており、
     前記切替制御部(70b)は、車両走行時に、前記低温側蓄熱器(95)が前記クーラコア(16)に接続されるように前記切替装置(21、22)の作動を制御する請求項9に記載の車両用熱管理システム。
    A cooler core (16) for exchanging heat between the heat medium cooled by the heat medium cooler (14) and the blown air into the passenger compartment to cool the blown air;
    The switching device (21, 22) is configured to switch between a state where the cooler core (16) is connected to the low temperature side heat medium circuit (C1) and a state where it is not connected,
    The switch control unit (70b) controls the operation of the switching device (21, 22) so that the low temperature side heat accumulator (95) is connected to the cooler core (16) when the vehicle travels. The thermal management system for vehicles as described.
  11.  前記熱媒体がもつ温熱を蓄える高温側蓄熱器(96)を備え、
     前記切替装置(21、22)は、前記高温側蓄熱器(96)が前記高温側熱媒体回路(C2)に接続される状態と接続されない状態とを切り替えるようになっており、
     前記切替制御部(70b)は、車両停止時に、前記高温側蓄熱器(96)が前記高温側熱媒体回路(C2)に接続されるように前記切替装置(21、22)の作動を制御する請求項4、9および10のうちいずれか1つに記載の車両用熱管理システム。
    A high temperature side heat accumulator (96) for accumulating the heat of the heat medium;
    The switching device (21, 22) is configured to switch between a state where the high temperature side heat accumulator (96) is connected to the high temperature side heat medium circuit (C2) and a state where it is not connected.
    The switching control unit (70b) controls the operation of the switching device (21, 22) so that the high temperature side heat accumulator (96) is connected to the high temperature side heat medium circuit (C2) when the vehicle is stopped. The thermal management system for vehicles as described in any one of Claim 4, 9, and 10.
  12.  前記熱媒体加熱器(15)で加熱された前記熱媒体と車室内への送風空気とを熱交換して前記送風空気を加熱するヒータコア(17)を備え、
     前記切替装置(21、22)は、前記ヒータコア(17)が前記高温側熱媒体回路(C2)に接続される状態と接続されない状態とを切り替えるようになっており、
     前記切替制御部(70b)は、車両走行時に、前記高温側蓄熱器(96)が前記ヒータコア(17)に接続されるように前記切替装置(21、22)の作動を制御する請求項11に記載の車両用熱管理システム。
    A heater core (17) for exchanging heat between the heat medium heated by the heat medium heater (15) and the blown air into the passenger compartment to heat the blown air;
    The switching device (21, 22) is configured to switch between a state where the heater core (17) is connected to the high temperature side heat medium circuit (C2) and a state where it is not connected.
    The said switching control part (70b) controls the action | operation of the said switching apparatus (21, 22) so that the said high temperature side heat accumulator (96) may be connected to the said heater core (17) at the time of vehicle travel. The thermal management system for vehicles as described.
  13.  前記切替制御部(70b)は、車両走行時に、前記高温側蓄熱器(96)が前記電池用熱授受部(20)に接続されるように前記切替装置(21、22)の作動を制御する請求項11に記載の車両用熱管理システム。 The switching control unit (70b) controls the operation of the switching device (21, 22) so that the high temperature side heat accumulator (96) is connected to the battery heat transfer unit (20) when the vehicle travels. The vehicle thermal management system according to claim 11.
  14.  エンジン(61)と前記熱媒体との間で熱授受が行われるエンジン用熱授受部(18)を備え、
     前記切替装置(21、22)は、前記エンジン用熱授受部(18)が前記高温側熱媒体回路(C2)に接続される状態と接続されない状態とを切り替えるようになっており、
     前記切替制御部(70b)は、車両走行時に、前記高温側蓄熱器(96)が前記エンジン用熱授受部(18)に接続されるように前記切替装置(21、22)の作動を制御する請求項11に記載の車両用熱管理システム。
    An engine heat transfer section (18) for transferring heat between the engine (61) and the heat medium;
    The switching device (21, 22) is configured to switch between a state where the engine heat transfer section (18) is connected to the high temperature side heat medium circuit (C2) and a state where it is not connected.
    The switching control unit (70b) controls the operation of the switching device (21, 22) so that the high-temperature side heat accumulator (96) is connected to the engine heat transfer unit (18) during vehicle travel. The vehicle thermal management system according to claim 11.
PCT/JP2015/000395 2014-02-12 2015-01-29 Vehicle heat management system WO2015122137A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-024215 2014-02-12
JP2014024215A JP6206231B2 (en) 2014-02-12 2014-02-12 Thermal management system for vehicles

Publications (1)

Publication Number Publication Date
WO2015122137A1 true WO2015122137A1 (en) 2015-08-20

Family

ID=53799890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000395 WO2015122137A1 (en) 2014-02-12 2015-01-29 Vehicle heat management system

Country Status (2)

Country Link
JP (1) JP6206231B2 (en)
WO (1) WO2015122137A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098796A1 (en) * 2015-12-11 2017-06-15 株式会社デンソー Refrigeration cycle device
CN109795300A (en) * 2017-11-17 2019-05-24 爱信精机株式会社 Vehicle heat-exchange device
WO2019158316A1 (en) * 2018-02-16 2019-08-22 Jaguar Land Rover Limited Apparatus and method for low grade heat recovery in an electric vehicle
CN111065540A (en) * 2017-08-31 2020-04-24 戴姆勒股份公司 Vehicle temperature management device
CN111094028A (en) * 2017-08-31 2020-05-01 株式会社电装 Air conditioner for vehicle
WO2020108532A1 (en) * 2018-11-29 2020-06-04 比亚迪股份有限公司 Vehicle thermal management system and control method therefor, and vehicle
EP3711986A1 (en) * 2019-03-20 2020-09-23 Toyota Jidosha Kabushiki Kaisha Thermal request mediating device
CN111902303A (en) * 2018-03-22 2020-11-06 株式会社电装 Cooling device
EP3753764A1 (en) * 2019-06-21 2020-12-23 Hyundai Motor Company Thermal management system for vehicle
CN112440706A (en) * 2019-09-04 2021-03-05 本田技研工业株式会社 Vehicle with a steering wheel
EP3647679A4 (en) * 2017-06-27 2021-03-17 Hangzhou Sanhua Research Institute Co., Ltd. Thermal management system
CN112639376A (en) * 2018-11-13 2021-04-09 Nok株式会社 Thermal management system
CN113226836A (en) * 2018-12-26 2021-08-06 株式会社电装 Thermal management system for vehicle
CN113226832A (en) * 2018-12-21 2021-08-06 本田技研工业株式会社 Vehicle with a steering wheel
CN113844234A (en) * 2021-10-20 2021-12-28 广州小鹏汽车科技有限公司 Electric automobile whole-automobile thermal management system and method and electric automobile
JP2022541495A (en) * 2019-07-17 2022-09-26 ヴィテスコ テクノロジーズ ゲー・エム・ベー・ハー A thermal management system, a vehicle, and a method for operating two cooling circuits of the thermal management system
AU2022283667B1 (en) * 2021-08-10 2023-02-09 Knorr-Bremse Australia Pty Ltd A cooling system for cooling the battery of an electric vehicle
CN115962527A (en) * 2023-01-04 2023-04-14 新疆华奕新能源科技有限公司 Built-in driving assembly of evaporative cooling air conditioning equipment

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128297A (en) * 2016-01-22 2017-07-27 トヨタ自動車株式会社 Hybrid vehicle
WO2018066276A1 (en) * 2016-10-05 2018-04-12 株式会社デンソー Air-conditioning device for vehicle
KR101846924B1 (en) 2016-11-01 2018-05-24 현대자동차 주식회사 Heat pump system for vehicle
JP6624107B2 (en) 2017-02-10 2019-12-25 株式会社豊田中央研究所 Vehicle heat management control device, heat management control program
JP2018152201A (en) 2017-03-10 2018-09-27 本田技研工業株式会社 Charge and discharge control device
JP6637005B2 (en) * 2017-09-25 2020-01-29 トヨタ自動車株式会社 Vehicle cooling system
JP2019104394A (en) * 2017-12-13 2019-06-27 株式会社デンソー Heat management system
US20210031589A1 (en) * 2018-01-24 2021-02-04 Pranav Vikas (India) Pvt. Ltd. Electric vehicle thermal management system for hot climate regions
JP7190350B2 (en) * 2018-12-28 2022-12-15 マーレジャパン株式会社 Heat exchange system for vehicles
WO2020175263A1 (en) 2019-02-28 2020-09-03 株式会社デンソー Heat management system
JP7173064B2 (en) * 2019-02-28 2022-11-16 株式会社デンソー thermal management system
DE102019210577A1 (en) * 2019-07-17 2021-01-21 Vitesco Technologies GmbH Thermal management system, vehicle and method for operating two cooling circuits of a thermal management system
HUP1900419A1 (en) * 2019-12-11 2021-07-28 Zoltan Andrassy Method and arrangement for heat control of the parts of an electric car
JP6946535B1 (en) 2020-10-08 2021-10-06 マレリ株式会社 Temperature control system
CN116457982A (en) * 2020-11-20 2023-07-18 尼得科株式会社 Temperature adjusting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250484A (en) * 2006-03-20 2007-09-27 Fujitsu Ten Ltd Battery temperature control device
JP2010064651A (en) * 2008-09-11 2010-03-25 Fuji Heavy Ind Ltd Temperature conditioning control device of motor driving system for vehicle
JP2010272289A (en) * 2009-05-20 2010-12-02 Nissan Motor Co Ltd Battery temperature control device
JP2011255879A (en) * 2010-06-04 2011-12-22 Tesla Motors Inc Thermal management system with dual mode coolant loops
JP2012093047A (en) * 2010-10-28 2012-05-17 Mitsubishi Electric Corp Cooling system
JP2012232730A (en) * 2011-04-18 2012-11-29 Denso Corp Vehicle temperature adjusting apparatus, and vehicle-mounted thermal system
JP2013018419A (en) * 2011-07-13 2013-01-31 Mazda Motor Corp Battery temperature rise device of electric drive vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250484A (en) * 2006-03-20 2007-09-27 Fujitsu Ten Ltd Battery temperature control device
JP2010064651A (en) * 2008-09-11 2010-03-25 Fuji Heavy Ind Ltd Temperature conditioning control device of motor driving system for vehicle
JP2010272289A (en) * 2009-05-20 2010-12-02 Nissan Motor Co Ltd Battery temperature control device
JP2011255879A (en) * 2010-06-04 2011-12-22 Tesla Motors Inc Thermal management system with dual mode coolant loops
JP2012093047A (en) * 2010-10-28 2012-05-17 Mitsubishi Electric Corp Cooling system
JP2012232730A (en) * 2011-04-18 2012-11-29 Denso Corp Vehicle temperature adjusting apparatus, and vehicle-mounted thermal system
JP2013018419A (en) * 2011-07-13 2013-01-31 Mazda Motor Corp Battery temperature rise device of electric drive vehicle

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108369047B (en) * 2015-12-11 2020-11-03 株式会社电装 Refrigeration cycle device
WO2017098796A1 (en) * 2015-12-11 2017-06-15 株式会社デンソー Refrigeration cycle device
US10562376B2 (en) 2015-12-11 2020-02-18 Denso Corporation Refrigeration cycle device
CN108369047A (en) * 2015-12-11 2018-08-03 株式会社电装 Refrigerating circulatory device
JP2017106693A (en) * 2015-12-11 2017-06-15 株式会社デンソー Refrigeration cycle device
EP3647679A4 (en) * 2017-06-27 2021-03-17 Hangzhou Sanhua Research Institute Co., Ltd. Thermal management system
US11981180B2 (en) 2017-06-27 2024-05-14 Hangzhou Sanhua Research Institute Co., Ltd. Thermal management system
CN111065540B (en) * 2017-08-31 2022-11-22 戴姆勒股份公司 Vehicle temperature management device
CN111065540A (en) * 2017-08-31 2020-04-24 戴姆勒股份公司 Vehicle temperature management device
CN111094028A (en) * 2017-08-31 2020-05-01 株式会社电装 Air conditioner for vehicle
CN111094028B (en) * 2017-08-31 2023-06-06 株式会社电装 Air conditioner for vehicle
CN109795300A (en) * 2017-11-17 2019-05-24 爱信精机株式会社 Vehicle heat-exchange device
WO2019158316A1 (en) * 2018-02-16 2019-08-22 Jaguar Land Rover Limited Apparatus and method for low grade heat recovery in an electric vehicle
US11958334B2 (en) 2018-02-16 2024-04-16 Jaguar Land Rover Limited Apparatus and method for low grade heat recovery in an electric vehicle
CN111727128B (en) * 2018-02-16 2023-12-22 捷豹路虎有限公司 Apparatus and method for low grade heat recovery in an electric vehicle
CN111727128A (en) * 2018-02-16 2020-09-29 捷豹路虎有限公司 Apparatus and method for low-grade heat recovery in electric vehicles
CN111902303B (en) * 2018-03-22 2023-05-16 株式会社电装 Cooling device
CN111902303A (en) * 2018-03-22 2020-11-06 株式会社电装 Cooling device
CN112639376A (en) * 2018-11-13 2021-04-09 Nok株式会社 Thermal management system
WO2020108532A1 (en) * 2018-11-29 2020-06-04 比亚迪股份有限公司 Vehicle thermal management system and control method therefor, and vehicle
CN113226832B (en) * 2018-12-21 2023-12-22 本田技研工业株式会社 Vehicle with a vehicle body having a vehicle body support
CN113226832A (en) * 2018-12-21 2021-08-06 本田技研工业株式会社 Vehicle with a steering wheel
CN113226836A (en) * 2018-12-26 2021-08-06 株式会社电装 Thermal management system for vehicle
CN111716984B (en) * 2019-03-20 2023-03-31 丰田自动车株式会社 Heat request mediation device
EP3711986A1 (en) * 2019-03-20 2020-09-23 Toyota Jidosha Kabushiki Kaisha Thermal request mediating device
CN111716984A (en) * 2019-03-20 2020-09-29 丰田自动车株式会社 Heat request mediation device
US10987998B2 (en) 2019-06-21 2021-04-27 Hyundai Motor Company Thermal management system for vehicle
EP3753764A1 (en) * 2019-06-21 2020-12-23 Hyundai Motor Company Thermal management system for vehicle
JP7223204B2 (en) 2019-07-17 2023-02-15 ヴィテスコ テクノロジーズ ゲー・エム・ベー・ハー A thermal management system, a vehicle, and a method for operating two cooling circuits of the thermal management system
JP2022541495A (en) * 2019-07-17 2022-09-26 ヴィテスコ テクノロジーズ ゲー・エム・ベー・ハー A thermal management system, a vehicle, and a method for operating two cooling circuits of the thermal management system
CN112440706A (en) * 2019-09-04 2021-03-05 本田技研工业株式会社 Vehicle with a steering wheel
WO2023015339A1 (en) * 2021-08-10 2023-02-16 Knorr-Bremse Australia Pty Ltd A cooling system for cooling the battery of an electric vehicle
AU2022283667B1 (en) * 2021-08-10 2023-02-09 Knorr-Bremse Australia Pty Ltd A cooling system for cooling the battery of an electric vehicle
CN113844234A (en) * 2021-10-20 2021-12-28 广州小鹏汽车科技有限公司 Electric automobile whole-automobile thermal management system and method and electric automobile
CN115962527A (en) * 2023-01-04 2023-04-14 新疆华奕新能源科技有限公司 Built-in driving assembly of evaporative cooling air conditioning equipment

Also Published As

Publication number Publication date
JP6206231B2 (en) 2017-10-04
JP2015154521A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
JP6206231B2 (en) Thermal management system for vehicles
JP6252186B2 (en) Thermal management system for vehicles
JP6197671B2 (en) Air conditioner
JP6197657B2 (en) Thermal management system for vehicles
US10371419B2 (en) Vehicle air conditioner with programmed flow controller
JP6303615B2 (en) Thermal management system for vehicles
US10220681B2 (en) Refrigeration cycle device for vehicle
JP6233009B2 (en) Air conditioner for vehicles
JP6540180B2 (en) Vehicle thermal management system
WO2015115082A1 (en) Air conditioning apparatus for vehicle
WO2014196138A1 (en) Vehicular heat management system
WO2015115050A1 (en) Vehicle heat management system
WO2015097987A1 (en) Vehicle air-conditioning device
WO2015004904A1 (en) Vehicle air conditioning device
WO2016006174A1 (en) Temperature control device for vehicle
JP6350236B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15748787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15748787

Country of ref document: EP

Kind code of ref document: A1