WO2014147753A1 - 二次電池の内部情報検出装置 - Google Patents

二次電池の内部情報検出装置 Download PDF

Info

Publication number
WO2014147753A1
WO2014147753A1 PCT/JP2013/057867 JP2013057867W WO2014147753A1 WO 2014147753 A1 WO2014147753 A1 WO 2014147753A1 JP 2013057867 W JP2013057867 W JP 2013057867W WO 2014147753 A1 WO2014147753 A1 WO 2014147753A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
charge
voltage
secondary battery
battery
Prior art date
Application number
PCT/JP2013/057867
Other languages
English (en)
French (fr)
Inventor
耕平 本蔵
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2015506449A priority Critical patent/JP6034954B2/ja
Priority to PCT/JP2013/057867 priority patent/WO2014147753A1/ja
Publication of WO2014147753A1 publication Critical patent/WO2014147753A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC

Definitions

  • the present invention relates to an internal information detection device for a secondary battery.
  • secondary batteries such as lithium-ion batteries as power sources for mounting on vehicles and power sources for power storage in smart houses.
  • secondary batteries are known to deteriorate characteristics due to charge / discharge and storage. Since it is assumed that the power source for the above uses will last for a long time, it is important to suppress the deterioration of the characteristics of the secondary battery.
  • Patent Document 1 describes a method for quantitatively evaluating the deterioration states of the positive electrode, the negative electrode, and the electrolytic solution in a nondestructive manner by using a charge / discharge curve of a secondary battery (see Patent Document 1).
  • Patent Document 1 describes a method for determining a state of a secondary battery. Based on a charge / discharge curve of a positive electrode and a negative electrode stored in advance, the charge / discharge curve of the secondary battery is reproduced by calculation. It describes a method for obtaining the effective weight of the positive electrode active material, the effective weight of the negative electrode active material, the amount of change in the use position between the positive electrode and the negative electrode, or the value of the parameter corresponding thereto.
  • Patent Document 1 does not clearly disclose a specific method for acquiring a charge / discharge curve of a secondary battery used for state determination. In the state determination method described in Patent Document 1, it is necessary to eliminate as much as possible the influence of internal resistance included in the charge / discharge curve of the secondary battery. For that purpose, the current value at the time of measuring the charge / discharge curve must be reduced, and the measurement takes a long time. For this reason, it is difficult to determine the deterioration state every day and update the optimum battery usage method accordingly.
  • the internal information detecting device of the secondary battery corrects the charging characteristic specific to the positive electrode material and the charging characteristic specific to the negative electrode material, and the charging characteristic specific to the positive electrode material and the charging characteristic specific to the negative electrode material.
  • a device that reproduces the charging characteristics of the battery to be detected as an actual measurement value based on a correction parameter group that is a parameter group to output, and outputs information related to the reproduction as internal information of the battery to be tested.
  • a charge control unit that performs intermittent charge control so that the detected battery is intermittently charged by repeating charging of a certain capacity and suspension of charging, and the voltage of the detected battery during intermittent charge control by the charge control unit.
  • the internal information detection device of the secondary battery includes the charge / discharge characteristics specific to the positive electrode material, the charge / discharge characteristics specific to the negative electrode material, the charge / discharge characteristics specific to the positive electrode material, and the charge / discharge characteristics specific to the negative electrode material.
  • Charging / discharging for intermittent charging / discharging control such that intermittent charging of the detected battery including charging and charging pause and intermittent discharging of the detected battery including discharging and discharging pause are performed.
  • the voltage detection unit for detecting the voltage of the detected battery and the charge / discharge capacity of the detected battery during the intermittent charge / discharge control by the charge / discharge control unit are calculated.
  • Charge / discharge capacity calculator and voltage A battery to be detected as an actual measurement value based on the storage device that stores the results of the output unit and the charge / discharge capacity calculation unit, and the voltage of the battery to be detected and the charge / discharge capacity of the battery to be detected stored in the storage device
  • the charge / discharge characteristic acquisition part which acquires the charge / discharge characteristic of this.
  • the present invention is configured as described above, the following effects can be obtained. That is, according to the present invention, since the charging characteristics of the secondary battery can be easily obtained in a wide range of charging rates, it becomes easy to investigate the deterioration state of the secondary battery, which can contribute to the extension of the life of the secondary battery. Further, according to the present invention, even when charging / discharging of the irregular secondary battery 1 is repeated, the charge / discharge characteristics of the secondary battery can be obtained, which can contribute to extending the life of the secondary battery 1.
  • FIG. 1 is a diagram showing an example of an embodiment of an internal information detection device for a secondary battery.
  • FIG. 2 is a flowchart showing the operation of the control unit.
  • FIG. 3 is a diagram illustrating an example of a charging pattern when charging from full discharge to full charge.
  • FIG. 4 is a graph showing the relationship between the accumulated charge capacity and the equilibrium voltage OCV when a 0.3 Ah class secondary battery is charged under three different conditions.
  • FIG. 6 is a graph showing the relationship between the accumulated charge capacity and the short-time internal resistance ⁇ VS / I when charged under two different conditions.
  • FIG. 7 is a graph showing the relationship between the accumulated charge capacity and long-time internal resistance ⁇ VL / I when charged under the same charging conditions as in FIG.
  • FIG. 8 is a graph showing open circuit potential change rates gp (qp) and gn (qn) with respect to capacities qp and qn per unit mass of positive and negative electrodes used in the secondary battery.
  • FIG. 9 is a diagram illustrating a diagnosis result of the secondary battery obtained by optimizing the value of the correction parameter group.
  • FIG. 10 is a flowchart illustrating the operation of the control unit according to the second embodiment.
  • FIG. 11 is a graph illustrating an example of a charging pattern by charging control according to the second embodiment.
  • FIG. 12 is a diagram illustrating a configuration of an internal information detection apparatus according to the third embodiment.
  • FIG. 13 is a flowchart illustrating the operation of the control unit according to the third embodiment.
  • FIG. 1 shows an example of an embodiment of an internal information detecting device for a secondary battery according to the present invention.
  • a lithium ion secondary battery will be described as a secondary battery, but the present invention is not limited to this.
  • the lithium ion secondary battery is also simply referred to as a secondary battery.
  • the internal information detection apparatus 100 includes a charging control unit 10, a control unit 30, a memory 40, and an output unit 50, and are connected to each other by a bus or the like.
  • the control unit 30 is a control unit that controls each unit of the internal information detection apparatus 100. The control unit 30 will be described later.
  • the charge control unit 10 repeats charging and pause while controlling the charging current, the charging time, and the pause time according to a command from the control unit 30, and is a secondary battery that is intermittently detected until reaching a predetermined voltage.
  • the battery 1 is charged.
  • the charging control unit 10 measures the voltage of the secondary battery 1 during charging and during suspension of charging according to a command from the control unit 30 and stores the voltage in the memory 40 described later as appropriate. Further, the charging control unit 10 measures the capacity charged in the secondary battery 1 in accordance with a command from the control unit 30 and stores it in the memory 40 as necessary.
  • the voltage of the secondary battery 1 being charged is also referred to as a charging voltage
  • the voltage of the secondary battery 1 being charged is also referred to as a charging suspension voltage.
  • the memory 40 is a storage device that stores the above-described data, data tables, and the like.
  • the memory 40 also stores each data to be described later.
  • the output unit 50 outputs the correction parameter group value adjusted by the control unit 30 as will be described later, and the charging characteristics of the positive electrode, the negative electrode, and the battery calculated based on the correction parameter value to an external device or the like. .
  • the control unit 30 is a control unit that controls each unit of the internal information detection apparatus 100, and includes a CPU (not shown) and peripheral circuits such as a working memory.
  • the control unit 30 mainly performs the following processing. That is, during charging of the secondary battery 1, the control unit 30 repeats charging and pause while controlling the charging current, the charging time, and the pause time regardless of the charge rate of the secondary battery 1, and the predetermined voltage
  • the charging control unit 10 is controlled so as to charge the secondary battery 1 intermittently until reaching the value.
  • the control unit 30 calculates the charging characteristic data of the secondary battery 1 based on the charging time, charging current, capacity, and voltage data stored in the memory 40 during charging, Store in memory 40.
  • the charging characteristic data of the secondary battery 1 calculated based on the measurement data during charging is also referred to as charging characteristic data A below.
  • the memory 40 stores in advance, for example, charging characteristics (charging curve) specific to the positive electrode active material, charging characteristics (charging curve) specific to the negative electrode active material, and initial values of correction parameter groups used for acquiring internal information.
  • the control unit 30 reads these data from the memory 40 as appropriate. Then, the control unit 30 estimates (calculates) the charging characteristics of the secondary battery based on the read charging characteristics specific to the active material of the positive and negative electrodes and the correction parameter group.
  • the charging characteristic data of the secondary battery calculated based on the data stored in advance in the memory 40 is also referred to as charging characteristic data B hereinafter.
  • the control unit 30 compares the charging characteristic data A of the secondary battery obtained by the above procedure with the charging characteristic data B of the secondary battery. Then, the calculation is repeated by adjusting the value of the correction parameter group so that the charging characteristic data B of the secondary battery matches the charging characteristic data A of the secondary battery.
  • FIG. 2 is a flowchart showing the operation of the control unit 30.
  • a charging start trigger is input, the program is executed by the control unit 30.
  • the program is executed by the control unit 30.
  • a charging start trigger is input when it is detected that an external power source (not shown) for charging is connected. It is also good to do.
  • step S1 a command signal is output to charge controller 10 to measure the voltage of secondary battery 1, and the process proceeds to step S3.
  • step S3 it is determined whether or not the voltage of the secondary battery 1 measured by the charging control unit 10 is equal to or higher than a predetermined voltage.
  • Step S3 If the voltage of the secondary battery 1 measured by the charge control unit 10 is equal to or higher than the predetermined voltage (Yes determination at Step S3), the process proceeds to Step S11 as charging of the secondary battery 1 is completed. If the voltage of the secondary battery 1 measured by the charging control unit 10 is equal to or lower than the predetermined voltage (No at Step S3), the battery is charged by a certain capacity ⁇ Q0 (Step S5), and then the charging is stopped for a certain time. In this manner (step S7), a command signal is output to the charging control unit 10. In addition, during charging and during charging suspension, a command signal is output to the charging control unit 10 so that the voltage of the secondary battery 1 is appropriately measured and stored in the memory 40 (steps S5 and S7).
  • the capacity ⁇ Q0 to be charged is desirably 10% or less with respect to the nominal capacity of the secondary battery 1, and most desirably 2% or less.
  • the charging current value I is arbitrary, it is desirable that the charging current value I is 1 hour rate or more and 1/20 hour rate or less with respect to the nominal capacity of the secondary battery 1.
  • the length of the suspension time (pause setting time) is arbitrary, but it is desirable that the suspension time is five times or longer than the charging time. More preferably, within the range of allowable rest time from the number of times of charging of the capacity ⁇ Q0 until the secondary battery 1 is fully charged, the allowable diagnosis time, the charging current I, the time required for charging the capacity ⁇ Q0, etc. Make the pause time as long as possible.
  • the capacity ⁇ Q0 is 1% of the nominal capacity
  • the charging current I is 1/10 hour rate with respect to the nominal capacity of the secondary battery 1.
  • the capacity ⁇ Q0 is 2% of the nominal capacity
  • the charging current I is the nominal capacity of the secondary battery 1.
  • the rate is 1/6 hour, and it is allowed to spend 8 hours for charging to acquire internal information.
  • (90 ⁇ 20) / 2 35 times of charging is performed in 8 hours, that is, 28800 seconds, so that the time spent for one charge / pause is 822 seconds.
  • Step S3 the process proceeds to Step S11, and it is determined whether or not the number of times of charging / pause so far is larger than the predetermined number N.
  • step S11 When the number of times of charging / suspending is greater than the predetermined number N (Yes determination in step S11), the process proceeds to step S13. If the number of times of charging / suspending is smaller than the predetermined number N (No at Step S11), the calculation is stopped and the program is terminated.
  • the predetermined number N is preferably 10 times or more, and more preferably 30 times or more.
  • FIG. 3 shows an example of the charging pattern when charging from full discharge to full charge when the capacity ⁇ Q0 is 1% of the nominal capacity, the charging current I is 1/6 hour rate, and the total time spent for charging is 6 hours.
  • FIG. 3 the charging time is 6 seconds and the pause time is 180 seconds.
  • the charging voltage described above is a voltage of the secondary battery 1 including a voltage increase due to an overvoltage while the charging current I is flowing.
  • the charging suspension voltage described above is the voltage of the secondary battery 1 after the charging current I is set to zero. Note that the charging suspension voltage includes the voltage of the secondary battery 1 immediately after the charging current I described later is set to 0 and the above-described equilibrium value.
  • the equilibrium values OCV1, OCV2, and OCV3 in FIG. 3 correspond to the open circuit voltages of the secondary battery 1 when the accumulated charge capacity is 0, 1, and 2%, respectively.
  • ⁇ OCV1, ⁇ OCV2, and ⁇ OCV3 in FIG. 3 are changes in the open circuit voltage due to the charging of the capacitor ⁇ Q0.
  • ⁇ VS1, ⁇ VS2, and ⁇ VS3 in FIG. 3 are voltage drops of the secondary battery 1 immediately after the charging current I is set to zero.
  • ⁇ VL1, ⁇ VL2, and ⁇ VL3 in FIG. 3 are the differences between the voltage immediately before the charging current I is set to 0 and the balanced value of the voltage at rest. In the following description, the balanced value of voltage is also called a balanced voltage.
  • the charge control unit 10 stores the accumulated charge capacity, OCV, ⁇ OCV, ⁇ VS, ⁇ VL and similar values in the memory 40.
  • the control unit 30 uses a value such as the accumulated charge capacity, OCV, ⁇ OCV, ⁇ VS, ⁇ VL stored in the memory 40 by the charge control unit 10 to indicate a data table or function indicating the charging characteristics of the secondary battery 1, that is, Charge characteristic data A is created (step 13).
  • the configuration of the charging characteristic data A can be arbitrarily selected, but a combination of the accumulated charging capacity and other elements is desirable. For example, integrated charge capacity and equilibrium voltage OCV, change rate between integrated charge capacity and equilibrium voltage ⁇ OCV / ⁇ Q, integrated charge capacity and short-time internal resistance ⁇ VS / I, integrated charge capacity and long-time internal resistance ⁇ VL / I, etc. . Or it may be a combination of the balanced voltage OCV and other elements.
  • FIG. 4 is a graph showing the relationship between the accumulated charge capacity and the equilibrium voltage OCV when a 0.3 Ah class secondary battery is charged under three different conditions.
  • the relationship between the accumulated charge capacity and the equilibrium voltage OCV is represented by a plot of ⁇ , a plot of ⁇ , and a solid line.
  • the charging characteristics by intermittent charging of the present invention show almost the same results as the charging characteristics by continuous charging.
  • FIG. 6 is a graph showing the relationship between the accumulated charging capacity and the short-time internal resistance ⁇ VS / I when charged under the charging conditions indicated by the ⁇ marks and the charging conditions indicated by the ⁇ marks. is there.
  • FIG. 7 is a graph showing the relationship between the accumulated charging capacity and the long-term internal resistance ⁇ VL / I when charged under the charging conditions represented by the plots of ⁇ and the charging conditions represented by the plot of ⁇ . is there.
  • the control unit 30 configures at least one type of charging characteristic data A in step S13 of FIG.
  • a data table indicating the relationship between the accumulated charge capacity and the change rate F of the equilibrium voltage is adopted as the charge characteristic data A.
  • step S ⁇ b> 15 the control unit 30 reads a positive / negative charge characteristic data table corresponding to the charge characteristic data A of the secondary battery 1 from the library of the memory 40. It is desirable that the charge characteristic data table for the positive electrode and the negative electrode is obtained by standardizing the charge characteristic data having the same physical quantity as the charge characteristic data A of the secondary battery 1 by an appropriate method.
  • FIG. 8 is a graph showing open circuit potential change rates gp (qp) and gn (qn) with respect to capacities qp and qn per unit mass of the positive and negative electrodes used in the secondary battery 1.
  • the control unit 30 sets the value of the parameter group used for acquiring the internal information.
  • the parameter group may be configured with parameters corresponding to the deterioration of the positive electrode and the negative electrode itself, and parameters indicating the correspondence between the positive electrode capacity and the negative electrode capacity.
  • Examples of the former in the present embodiment include total effective weights mp (g) and mn (g) of the positive and negative electrode active materials, and total effective volumes of the positive and negative electrode active materials.
  • Examples of the latter include differences ⁇ p, ⁇ n (Ah) between the capacity origin of the charge / discharge characteristics of the battery and the capacity origin of the charge / discharge characteristics of the positive and negative electrodes.
  • the total effective weights mp and mn of the positive and negative electrode active materials and the differences ⁇ p and ⁇ n between the positive and negative electrode capacity origins are used.
  • step S19 the control unit 30 obtains the secondary battery charge characteristic data table (charge characteristic data B) from the positive / negative charge characteristic data table read in step S15 and the correction parameter group values read in step S17. Calculate and proceed to step S21.
  • step S21 the charge characteristic data A configured in step S13 and the charge characteristic data B calculated in step S19 are compared, and whether or not the reproducibility of the charge characteristic data B with respect to the charge characteristic data A is good. That is, it is determined whether or not the charging characteristic data A and the charging characteristic data B can be regarded as matching.
  • step S21 When it can be considered that the charging characteristic data A and the charging characteristic data B coincide with each other (Yes in step S21), the process proceeds to step S23, and each data obtained as a result of the above-described calculation is stored in the memory 40 as described later.
  • the output unit 50 is controlled so as to be stored and output to an external device or the like.
  • the parameter group values used for acquiring the internal information are reset (step S17), and the charging characteristic data is set.
  • B is recalculated (step S19). That is, the charging characteristic data B is calculated by optimizing the value of the correction parameter group, and the charging characteristic data A is reproduced.
  • control unit 30 uses the charging characteristics of the whole positive electrode and the whole negative electrode inside the battery obtained as described above, and the difference between the positive and negative capacity origins ⁇ p ⁇ and ⁇ n, which are correction parameters, A calculated value of charging characteristics of the entire battery (that is, charging characteristics data B) is obtained.
  • charging characteristics data B A calculated value of charging characteristics of the entire battery
  • Q means the charge amount in the charge characteristic data B.
  • Gn (Qc) (1 / mn) ⁇ gn (qn).
  • control unit 30 compares the charging characteristic data A configured in step S13 with the charging characteristic data B calculated in step S19, and the reproducibility of the charging characteristic data B with respect to the charging characteristic data A is good. Whether or not (step S21).
  • FIG. 9 is a diagram illustrating a diagnosis result of the secondary battery obtained by optimizing the value of the correction parameter group.
  • the control unit 30 When the reproducibility of the charge characteristic data B with respect to the charge characteristic data A is good (Yes in step S21), the control unit 30 finally obtains the correction parameter group and the battery / positive electrode / negative electrode charge characteristic data table. Are output to the output unit 50 so as to be stored in the memory 40 and output to an external device, and the program is terminated.
  • the external device include a display device for a user, a battery operation control unit, and a battery life prediction unit.
  • the correction parameter group information, the internal resistance information, and the battery / positive electrode / negative electrode charging characteristics data table obtained in this way are used to estimate the degree of deterioration of the secondary battery 1. Information.
  • the internal information detection apparatus 100 has the following operational effects. (1) Conventionally, in order to obtain information on the charging characteristics of the secondary battery, in order to avoid the influence of internal resistance as much as possible, the voltage is measured while charging the secondary battery for a long time with a small current. There was a need. For this reason, it is difficult to obtain information on the charging characteristics of the secondary battery being used every day.
  • the secondary battery 1 when the secondary battery 1 is intermittently charged, the voltage and the charge capacity of the secondary battery 1 are detected and stored in the memory 40.
  • the information on the charging characteristics of the secondary battery 1 can be obtained, the information on the charging characteristics can be acquired simultaneously with the charging in a wide range of the charging rate at night when the power of the secondary battery 1 is not used. Therefore, since the charging characteristics of the secondary battery 1 can be easily obtained in a wide range of the charging rate, it becomes easy to investigate the deterioration state of the secondary battery 1 and contribute to the extension of the life of the secondary battery 1.
  • the secondary battery 1 When the secondary battery 1 is intermittently charged, it is configured to repeat a predetermined constant capacity ⁇ Q0 charging and a predetermined pause set time, so that the equilibrium voltage during charging pause The voltage of the secondary battery 1 settled in can be measured. Therefore, since the information on the charging characteristics of the secondary battery 1 can be easily acquired while performing intermittent charging, the determination of the state of the secondary battery 1 is facilitated, and the life of the secondary battery 1 can be extended. In addition, information on the charging characteristics of the secondary battery 1 can be acquired for each step of the capacity ⁇ Q0. Therefore, since the data of the charging characteristics of the secondary battery 1 can be acquired with high accuracy, the accuracy of the determination of the state of the secondary battery 1 is improved, and it is possible to contribute to extending the life of the secondary battery 1.
  • Second Embodiment A second embodiment of the internal information detection device for a secondary battery according to the present invention will be described with reference to FIGS.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and different points will be mainly described. Points that are not particularly described are the same as those in the first embodiment.
  • the present embodiment is different from the first embodiment in that charging is continued even after the voltage of the secondary battery 1 reaches a predetermined upper limit voltage.
  • FIG. 10 is a flowchart showing the operation of the control unit 30 of the present embodiment.
  • the program is executed by the control unit 30.
  • Steps S1 to S7 are the same as those in the first embodiment. If the voltage of the secondary battery 1 measured by the charging control unit 10 is equal to or higher than the predetermined voltage (Yes determination at Step S3), the process proceeds to Step S31, and it is determined whether or not the charging end condition is satisfied.
  • the predetermined voltage serving as a determination criterion in step S3 is hereinafter referred to as a first upper limit voltage.
  • step S31 If the charging condition is not satisfied (No in step S31), the charging current I is adjusted to flow at a predetermined time so as to keep the charging voltage at a predetermined second upper limit voltage, and as a result, only the capacity ⁇ Qa is charged ( Thereafter, a command signal is output to the charging control unit 10 so as to suspend charging for a predetermined time (step S35). In addition, during charging and during charging suspension, a command signal is output to the charging control unit 10 so that the voltage of the secondary battery 1 is appropriately measured and stored in the memory 40 (steps S33 and S35). In step S33, the constant capacity ⁇ Qb may be charged while adjusting the charging current I so as to keep the voltage at the second upper limit voltage.
  • step S3 By controlling the state of charge according to the voltage of the secondary battery 1 in this way, if the voltage of the secondary battery 1 is equal to or lower than the predetermined upper limit voltage (No determination in step S3), a constant capacity at a predetermined current value Charge only ⁇ Q0 (step S5). Further, if the voltage of the secondary battery 1 has reached the first upper limit voltage (step S3 affirmative determination), the charging current I is adjusted so as to keep the voltage at the second upper limit voltage, and is allowed to flow for a certain period of time, As a result, only the capacity ⁇ Qa is charged (step S33).
  • the charge termination conditions in step S31 for example, the number of times of charging / resting exceeds a predetermined number, the charging current I becomes smaller than a predetermined value, the accumulated charging capacity exceeds a predetermined value, and the battery voltage at rest is predetermined. It exceeds the value.
  • the first upper limit voltage and the second upper limit voltage may be appropriately determined in advance. Further, the magnitude relationship between the first upper limit voltage and the second upper limit voltage is not particularly limited.
  • FIG. 11 shows the present embodiment when the voltage of the secondary battery 1 has reached the upper limit voltage under charging conditions where the charging time is 6 seconds, the pause time is 180 seconds, and the upper limit voltage during charging is 4.1V. It is a graph which shows the example of the charge pattern by this charge control. Note that FIG. 11 shows a power reception pattern when the first upper limit voltage and the second upper limit voltage are both 4.1V. As shown in FIG. 11, the charging control unit 10 decreases the value of the charging current so that the voltage of the secondary battery does not exceed the upper limit voltage.
  • the internal information detection apparatus 100 has the following operational effects in addition to the operational effects of the first embodiment.
  • (1) When the voltage of the secondary battery 1 has reached the upper limit voltage, the secondary battery 1 is configured to be intermittently charged by adjusting the charging current I so as to keep the charging voltage constant. Thereby, since the integrated charge capacity of the secondary battery 1 can be increased, the amount of electric power that can be extracted from the secondary battery 1 can be increased. Therefore, the usable time of the device using the power stored in the secondary battery 1 can be extended, and the convenience of the device using the power stored in the secondary battery 1 is improved.
  • the secondary battery 1 when the voltage of the secondary battery 1 has reached the upper limit voltage, it is configured to be intermittently charged by adjusting the charging current I so as to keep the charging voltage constant.
  • the information inside the secondary battery 1 in a wider range of the charging rate can be acquired. Thereby, the accuracy of the determination of the state of the secondary battery 1 is improved, which can contribute to the extension of the life of the secondary battery 1.
  • FIGS. A third embodiment of the internal information detection device for a secondary battery according to the present invention will be described with reference to FIGS.
  • the same components as those in the first and second embodiments are denoted by the same reference numerals, and different points will be mainly described. Points that are not particularly described are the same as those in the first and second embodiments.
  • the present embodiment is different from the first and second embodiments in that the charge / discharge characteristics of the secondary battery 1 are obtained mainly in the process in which the secondary battery 1 is repeatedly charged and discharged intermittently. .
  • FIG. 12 is a diagram illustrating a configuration of the internal information detection apparatus 100 according to the third embodiment.
  • the internal information detection apparatus 100 according to the present embodiment includes a charge / discharge control unit 20, a control unit 30, a memory 40, and an output unit 50, which are connected to each other by a bus or the like.
  • the charge / discharge control unit 20 is a battery to be detected intermittently until a predetermined voltage is reached by repeating charging and resting while controlling the charging current, charging time and resting time according to a command from the control unit 30.
  • the secondary battery 1 is charged.
  • the charge / discharge control unit 20 measures the voltage of the secondary battery 1 during charging and suspension of charging according to a command from the control unit 30 and stores the voltage in the memory 40 as appropriate.
  • the charge / discharge control unit 20 measures the capacity charged in the secondary battery 1 according to a command from the control unit 30 and stores it in the memory 40 as necessary.
  • the charge / discharge control unit 20 measures the voltage of the secondary battery 1 during the discharge of the secondary battery 1 or during the pause of the discharge according to a command from the control unit 30 and stores it appropriately in the memory 40. . In addition, the charge / discharge control unit 20 sequentially calculates the energized capacity ⁇ Q according to a command from the control unit 30 and stores it in the memory 40 as appropriate.
  • FIG. 13 is a flowchart showing the operation of the control unit 30 in the present embodiment.
  • the program is executed by the control unit 30.
  • the control unit 30 detects that the power switch of the vehicle is turned on, an information acquisition start trigger is input. It is good.
  • step S41 a command signal is output to the charge / discharge control unit 20 so that the capacity Q0 of the secondary battery 1 and the voltage OCV0 of the secondary battery 1 at the information acquisition start time are stored in the memory 40. Then, it waits until the trigger which starts electricity supply is input (step S43 negative determination).
  • the trigger which starts electricity supply is input (step S43 negative determination).
  • PSV plug-in hybrid vehicle
  • a trigger for starting energization is input. Also good.
  • step S43 When a trigger for starting energization is input (Yes determination in step S43), the elapsed time from the end of the previous energization is equal to or longer than a predetermined time necessary for the voltage of the secondary battery 1 to converge to the balanced voltage. Whether or not (step S47).
  • step S47 When a predetermined time required for the voltage of the secondary battery 1 to converge to the balanced voltage has elapsed since the end of the previous energization (Yes in step S47), the secondary battery 1 immediately before the start of energization A command signal is output to the charge / discharge control unit 20 so as to measure the voltage OCV (step S47). Further, ⁇ VL which is the difference between the measured voltage OCV of the secondary battery 1 and the voltage of the secondary battery 1 immediately before the end of the previous energization is calculated and stored in the memory 40 together with the voltage OCV. A command signal is output to the discharge controller 20 (step S47). Thereafter, a command signal is output to the charge / discharge control unit 20 so as to start energization (step S51).
  • step S51 When the predetermined time required for the voltage of the secondary battery 1 to converge to the balanced voltage has not elapsed since the end of the previous energization (No determination in step S47), charging / discharging so as to start energization A command signal is output to the control unit 20 (step S51).
  • step S51 When outputting a command signal to the charge / discharge control unit 20 so as to start energization, while the secondary battery 1 is energized, the voltage V of the secondary battery 1 and the energized capacity ⁇ Q are sequentially measured to store the memory 40.
  • a command signal is output to the charge / discharge control unit 20 so as to be temporarily stored (step S51). Then, it waits until the trigger which complete
  • step S53 When a trigger for ending energization is input (Yes in step S53), the voltage V of the secondary battery 1 immediately before the end of energization is measured, and the integrated energization amount that is an integrated value of the capacity energized during the current energization period. ⁇ Qs is calculated, and a command signal is output to the charge / discharge control unit 20 so as to store each value in the memory 40 (step S55). Further, during the energization of the secondary battery 1, the charge / discharge control unit 20 is instructed to appropriately delete the information on the voltage V and the energization amount ⁇ Q of the secondary battery 1 that are sequentially measured and temporarily stored in the memory 40. A signal may be output (step S55).
  • a command signal is output to the charge / discharge control unit 20 so as to end the energization (step S57).
  • the voltage of the secondary battery 1 immediately after the end of energization is measured, and the measured voltage of the secondary battery 1 immediately after the end of energization and the voltage V of the secondary battery 1 immediately before the end of energization measured in step S55.
  • a command signal is output to the charge / discharge control unit 20 so as to calculate the difference ⁇ VS and store it in the memory 40 (step S59). Then, the accumulated energization amount ⁇ Q stored in the memory in step S55 is added to or subtracted from the capacity Q before energization is started, and the capacity of the secondary battery 1 is updated to the current value Q1 (step S61).
  • step S63 it is determined whether or not a trigger for starting calculation of internal information of the secondary battery 1 has been input.
  • a trigger for starting calculation of internal information of the secondary battery 1 For example, when the internal information detecting device 100 is mounted on a plug-in hybrid vehicle (PHV), when the control unit 30 detects that the power switch of the vehicle is turned off, the internal information of the secondary battery 1 is started to be calculated.
  • the trigger may be input.
  • step S63 When the trigger for starting the calculation of the internal information of the secondary battery 1 is input (Yes in step S63), the process proceeds to step S13.
  • the steps after step S13 are the same as those in the first embodiment.
  • the process returns to Step S43.
  • the internal information detection apparatus 100 has the following operational effects in addition to the operational effects of the first and second embodiments.
  • the secondary battery 1 is configured to acquire the charge / discharge characteristics of the secondary battery 1 in the process of intermittently charging and discharging.
  • EV electric vehicle
  • PSV plug-in hybrid vehicle
  • the charging of the irregular secondary battery 1 is performed as when the vehicle is traveling.
  • the discharge is repeated, the charge / discharge characteristics of the secondary battery 1 can be acquired. Therefore, even when the charging / discharging of the irregular secondary battery 1 is repeated, the deterioration state can be investigated based on the obtained charging / discharging characteristics of the secondary battery 1, so that the long life of the secondary battery 1 is achieved.
  • correction parameter group information, internal resistance information, battery / positive electrode / negative electrode charging characteristics data table, and the like obtained for a plurality of detected batteries are externally output from the output unit 50. May be output to other devices.
  • the lithium ion secondary battery has been described as an example of the secondary battery, the present invention is not limited to this.
  • the present invention can be applied to other secondary batteries such as nickel metal hydride batteries.
  • the remaining life of the battery can be determined based on the estimated values of the charge / discharge characteristics of the battery, the positive electrode, and the negative electrode obtained in each of the above-described embodiments.

Abstract

 二次電池の内部情報検出装置は、正極材料固有の充電特性および負極材料固有の充電特性と、これらの充電特性を補正する補正パラメータ群とに基づいて、実測値としての被検知電池の充電特性を再現して、再現に係る情報を被検電池の内部情報として出力する装置であって、あらかじめ定められた一定容量の充電と充電の休止とを繰り返すことで被検知電池を間欠的に充電するよう間欠充電制御を行う充電制御部と、間欠充電制御中に、被検知電池の電圧を検出する電圧検出部と、間欠充電制御中の被検知電池の充電容量を算出する充電容量算出部と、電圧検出部および充電容量算出部での結果を記憶する記憶装置と、記憶装置で記憶されている被検知電池の電圧と被検知電池の充電容量とに基づいて、実測値としての被検知電池の充電特性を取得する充電特性取得部とを有し、充電制御部は、被検知電池の充電率に関わらず、間欠充電制御を行う。

Description

二次電池の内部情報検出装置
 本発明は、二次電池の内部情報検出装置に関する。
 近年、リチウムイオン電池などの二次電池を車両の搭載用電源やスマートハウスの蓄電用電源に使用することにより、効率的にエネルギーを利用する取り組みが進められている。だだし,二次電池は充放電および保管によって特性劣化を生じることが知られている。上記用途の電源はその利用期間が長期に及ぶことが想定されるため、二次電池の特性劣化を抑制することが重要である。
 劣化抑制の手段として、二次電池における正極・負極の劣化状態を正確に検出し、検出した劣化状態に応じて最適な電池使用方法を選択することが有効である。たとえば特許文献1には、二次電池の充放電曲線を利用することにより、正極・負極・電解液の劣化状態を非破壊でそれぞれ定量評価する方法が記載されている(特許文献1参照)。
日本国特開2009-80093号公報
 上記特許文献1には二次電池の状態判定方法が記載されており、予め記憶した正極・負極単独の充放電曲線に基づいて当該二次電池の充放電曲線を計算で再現し、その過程で正極活物質の有効重量、負極活物質の有効重量、正極・負極間の利用位置変動量、またはこれらに対応するパラメータの値を取得する方法が記載されている。ただし上記特許文献1には、状態判定に用いる二次電池の充放電曲線を取得するための具体的な方法が明示されていない。上記特許文献1に記載された状態判定方法では,二次電池の充放電曲線に含まれる内部抵抗の影響を可能な限り排除する必要がある。そのためには充放電曲線を測定する際の電流値を小さくせざるを得ず、測定に長時間を要する。このため,劣化状態を日々判定し,これに応じて最適な電池使用方法を日々更新することが難しかった。
 本発明の第1の態様によると、二次電池の内部情報検出装置は、正極材料固有の充電特性および負極材料固有の充電特性と、正極材料固有の充電特性および負極材料固有の充電特性を補正するパラメータ群である補正パラメータ群とに基づいて、実測値としての被検知電池の充電特性を再現して、再現に係る情報を被検電池の内部情報として出力する装置であって、あらかじめ定められた一定容量の充電と充電の休止とを繰り返すことで被検知電池を間欠的に充電するよう間欠充電制御を行う充電制御部と、充電制御部による間欠充電制御中に、被検知電池の電圧を検出する電圧検出部と、充電制御部による間欠充電制御中の被検知電池の充電容量を算出する充電容量算出部と、電圧検出部および充電容量算出部での結果を記憶する記憶装置と、記憶装置で記憶されている被検知電池の電圧と被検知電池の充電容量とに基づいて、実測値としての被検知電池の充電特性を取得する充電特性取得部とを有し、充電制御部は、被検知電池の充電率に関わらず、間欠充電制御を行う。
 本発明の第2の態様によると、二次電池の内部情報検出装置は、正極材料固有の充放電特性および負極材料固有の充放電特性と、正極材料固有の充放電特性および負極材料固有の充放電特性を補正するパラメータ群である補正パラメータ群とに基づいて、実測値としての被検知電池の充放電特性を再現して、再現に係る情報を被検電池の内部情報として出力する装置であって、充電と充電の休止とを含む被検知電池の間欠的な充電、および、放電と放電の休止とを含む被検知電池の間欠的な放電が行われるように間欠充放電制御を行う充放電制御部と、充放電制御部による間欠充放電制御中に、被検知電池の電圧を検出する電圧検出部と、充放電制御部による間欠充放電制御中の被検知電池の充放電容量を算出する充放電容量算出部と、電圧検出部および充放電容量算出部での結果を記憶する記憶装置と、記憶装置で記憶されている被検知電池の電圧と被検知電池の充放電容量とに基づいて、実測値としての被検知電池の充放電特性を取得する充放電特性取得部とを有する。
 本発明は、以上説明したように構成しているので、次のような効果を奏する。すなわち、本発明によれば、充電率の広い範囲で二次電池の充電特性を容易に得られるので、二次電池の劣化状態の調査も容易となり、二次電池の長寿命化に貢献できる。
 また、本発明によれば、不規則な二次電池1の充放電を繰り返す場合であっても、二次電池の充放電特性を得られるので、二次電池1の長寿命化に貢献できる。
図1は、二次電池の内部情報検出装置の実施の形態の一例を示す図。 図2は、制御部の動作を示すフローチャート。 図3は、全放電から満充電まで充電する場合の充電パターンの例を示す図。 図4は、0.3Ah級の二次電池を3つの異なる条件で充電したときの積算充電容量と平衡電圧OCVの関係を示すグラフ。 図5は、図4と同じ充電条件で充電したときの積算充電容量と平衡電圧の変化率F=ΔOCV / ΔQとの関係を示すグラフ。 図6は、2つの異なる条件で充電したときの積算充電容量と短時間の内部抵抗ΔVS / Iの関係を示すグラフ。 図7は、図6と同じ充電条件で充電したときの積算充電容量と長時間の内部抵抗ΔVL / Iの関係を示すグラフ。 図8は、二次電池に使用した正極・負極の単位質量当たりの容量qp、qnに対する開回路電位変化率gp(qp)、gn(qn)を示すグラフ。 図9は、補正パラメータ群の値を最適化して得られた二次電池の診断結果を示す図である。 図10は、第2の実施の形態の制御部の動作を示すフローチャート。 図11は、第2の実施の形態の充電制御による充電パターンの例を示すグラフ。 図12は、第3の実施の形態における内部情報検出装置の構成を示す図。 図13は、第三の実施の形態における制御部の動作を示すフローチャート。
 以下、図面等を用いて、本発明の実施の形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
---第1の実施の形態---
 図1は、本発明に関わる二次電池の内部情報検出装置の実施の形態の一例を示したものである。以下の説明では、二次電池としてリチウムイオン二次電池について説明するが、本発明はこれに限られない。以下の説明では、リチウムイオン二次電池を単に二次電池とも呼ぶ。
---全体構成および各部の動作の概略について---
 内部情報検出装置100は、充電制御部10と、制御部30と、メモリ40と、出力部50とを備え、互いにバスなどによって接続されている。制御部30は、内部情報検出装置100の各部を制御する制御部である。制御部30については後述する。
 充電制御部10は、制御部30からの指令によって、充電電流と充電時間と休止時間を制御しつつ充電と休止を繰り返して、所定の電圧に到達するまで断続的に被検知電池である二次電池1を充電する。また、充電制御部10は、制御部30からの指令によって、充電中、および充電の休止中に二次電池1の電圧を測定し、後述するメモリ40に適宜格納する。また、充電制御部10は、制御部30からの指令によって、二次電池1に充電された容量を測定し必要に応じてメモリ40に格納する。なお、充電中の二次電池1の電圧を充電時電圧とも呼び、充電の休止中の二次電池1の電圧を充電休止時電圧とも呼ぶ。
 メモリ40は、上述した各データや、データテーブルなどを格納する記憶装置である。メモリ40は、後述する各データ等も格納する。出力部50は、後述するように制御部30で調節した補正パラメータ群の値、および、補正パラメータの値に基づいて計算された正極・負極・電池の充電特性などを外部の機器などに出力する。
---制御部30について---
 制御部30は、上述したように、内部情報検出装置100の各部を制御する制御部であり、不図示のCPUや、ワーキングメモリ等の周辺回路を備えている。制御部30は、主に次のような処理を行う。すなわち、二次電池1の充電中には、制御部30は、二次電池1の充電率に関わらず、充電電流と充電時間と休止時間を制御しつつ充電と休止を繰り返して、所定の電圧に到達するまで断続的に二次電池1を充電するように、充電制御部10を制御する。二次電池1の充電終了後には、制御部30は、充電中にメモリ40に格納した充電時間、充電電流、容量、電圧のデータに基づいて二次電池1の充電特性データを算出して、メモリ40に格納する。この、充電中の測定データに基づいて算出された二次電池1の充電特性データを、以下、充電特性データAとも呼ぶ。
 メモリ40には、正極活物質固有の充電特性(充電カーブ)、負極活物質固有の充電特性(充電カーブ)、内部情報の取得に用いる補正パラメータ群の初期値などが、あらかじめ格納されている。制御部30は、これらのデータをメモリ40から適宜読み込む。そして、制御部30は、読み込んだ正極と負極の活物質固有の充電特性、および、補正パラメータ群に基づき、二次電池の充電特性を推定(算出)する。この、あらかじめメモリ40に格納されているデータに基づいて算出された二次電池の充電特性データを、以下、充電特性データBとも呼ぶ。
 制御部30は、以上の手順で得られる二次電池の充電特性データAと、二次電池の充電特性データBとを比較する。そして、二次電池の充電特性データBが二次電池の充電特性データAと一致するように補正パラメータ群の値を調節して計算を繰り返す。
---制御部30の動作について---
 以下、図2を参照して、制御部30の動作を具体的に説明する。図2は、制御部30の動作を示すフローチャートである。充電開始のトリガが入力されると、本プログラムが制御部30で実行される。たとえば、内部情報検出装置100がプラグインハイブリッド車(PHV)に搭載されている場合には、充電用の不図示の外部電源が接続されたことが検出されると、充電開始のトリガが入力されることとしてもよい。ステップS1において、充電制御部10に二次電池1の電圧を測定するよう指令信号を出力してステップS3へ進む。ステップS3において、充電制御部10が測定した二次電池1の電圧が所定電圧以上か否かを判定する。
 充電制御部10で測定した二次電池1の電圧が所定電圧以上であれば(ステップS3肯定判断)、二次電池1の充電が完了しているものとしてステップS11へ進む。また、充電制御部10で測定した二次電池1の電圧が所定電圧以下であれば(ステップS3否定判断)、一定の容量ΔQ0だけ充電し(ステップS5)、その後、一定時間だけ充電を休止するように(ステップS7)、充電制御部10へ指令信号を出力する。また、充電中および充電休止中に、二次電池1の電圧等を適宜測定してメモリ40に格納するように充電制御部10へ指令信号を出力する(ステップS5,S7)。
 なお、充電する容量ΔQ0は、二次電池1の公称容量に対して10%以下であることが望ましく、2%以下であることが最も望ましい。また、充電電流値Iは任意であるが、二次電池1の公称容量に対して1時間率以上1/20時間率以下であることが望ましい。また、休止時間(休止設定時間)の長さも任意であるが、充電時間の5倍以上の長さであることが望ましい。より望ましくは、二次電池1が満充電になるまでの容量ΔQ0の充電回数、許容される診断時間、充電電流I、容量ΔQ0の充電に要する時間等から許容される休止時間の範囲内で、できる限り長い休止時間とする。
 たとえば、全放電されている二次電池1を満充電する場合に、容量ΔQ0が公称容量の1%であり、充電電流Iが二次電池1の公称容量に対して1/10時間率であり、8時間を内部情報の取得のための充電に費やすことが許容されているとする。この場合、8時間すなわち28800秒で100回の充電をすることになり、1回の充電・休止に費やされる時間は288秒である。また、1/10時間率で容量の1%だけ充電するために要する時間は1/10 × 3600 × 0.01 = 3.6 秒である。したがって、この場合の望ましい休止時間は284秒である。
 また、たとえば、満充電に対して20%だけ充電されている二次電池を90%まで充電する場合に、容量ΔQ0が公称容量の2%であり、充電電流Iが二次電池1の公称容量に対して1/6時間率であり、8時間を内部情報の取得のための充電に費やすことが許容されているとする。この場合、8時間すなわち28800秒で(90 - 20) / 2 = 35回の充電をすることになるので、1回の充電・休止に費やされる時間は822秒である。また、1/6時間率で公称容量の2%だけ充電するために要する時間は1/6 × 3600 × 0.02 = 12 秒である。したがって、この場合の望ましい休止時間は、822 - 12 = 810秒である。
 以上の手順で充電・休止を繰り返すと徐々に二次電池1の電圧が上昇する。二次電池1の電圧が所定電圧に到達すると(ステップS3肯定判断)、ステップS11へ進み、それまでの充電・休止回数が所定回数Nより大きいか否かを判断する。
 充電・休止回数が所定回数Nより大きい場合(ステップS11肯定判断)、ステップS13へ進む。また、充電・休止回数が所定回数Nより小さい場合(ステップS11否定判断)、計算を中止して本プログラムを終了する。なお、所定回数Nとしては10回以上であることが望ましく、30回以上であることがより望ましい。
 図3は、全放電から満充電まで充電する場合の、容量ΔQ0が公称容量の1%、充電電流Iが1/6時間率、充電に費やす総時間が6時間のときの充電パターンの例を示す図である。この場合の充電時間は6秒であり、休止時間は180秒である。図3に示すように、充電電流Iを流している間には過電圧により電圧が上昇し、休止中には平衡値に向かって電圧が下降する。なお、上述した充電時電圧は、充電電流Iを流している間の過電圧による電圧の上昇分も含めた二次電池1の電圧である。また、上述した充電休止時電圧は、充電電流Iを0にした後の二次電池1の電圧である。なお、充電休止時電圧には、後述する充電電流Iを0にした直後の二次電池1の電圧と、上記の平衡値とが含まれる。
 図3の平衡値OCV1、OCV2、OCV3が、積算充電容量0、1、2%のときの二次電池1の開回路電圧にそれぞれ対応する。図3のΔOCV1、ΔOCV2、ΔOCV3は、容量ΔQ0の充電による開回路電圧の変化である。図3のΔVS1、ΔVS2、ΔVS3は、充電電流Iを0にした直後の二次電池1の電圧降下である。図3のΔVL1、ΔVL2、ΔVL3は、充電電流Iを0にする直前の電圧と休止時の電圧の平衡値との差である。なお、以下の説明では、電圧の平衡値を平衡電圧とも呼ぶ。充電制御部10は、上記の積算充電容量、OCV、ΔOCV、ΔVS、ΔVLやこれらに類似の値をメモリ40に格納する。
 続いて、制御部30は、充電制御部10がメモリ40に格納した積算充電容量、OCV、ΔOCV、ΔVS、ΔVL等の値を用いて二次電池1の充電特性を示すデータテーブルまたは関数、すなわち充電特性データAを作成する(ステップ13)。充電特性データAの構成は任意に選ぶことができるが、積算充電容量とそれ以外の要素の組み合わせが望ましい。たとえば積算充電容量と平衡電圧OCV、積算充電容量と平衡電圧の変化率ΔOCV / ΔQ、積算充電容量と短時間の内部抵抗ΔVS / I、積算充電容量と長時間の内部抵抗ΔVL / Iなどが望ましい。または、平衡電圧OCVとそれ以外の要素の組み合わせとしてもよい。
 図4は、0.3Ah級の二次電池を3つの異なる条件で充電したときの積算充電容量と平衡電圧OCVの関係を示すグラフである。図4では、3つの異なる条件に対応して、積算充電容量と平衡電圧OCVの関係を、●印のプロット、■印のプロット、および実線で表している。
 ●印のプロットで表したグラフの充電条件は、I=1/6時間率、ΔQ0=1%、休止時間180秒、上限電圧4.1Vである。■印のプロットで表したグラフの充電条件は、I=1/10時間率、ΔQ0=2%、休止時間420秒、上限電圧4.1Vである。また実線で表したグラフの充電条件は、I=50時間率、上限電圧4.1Vの連続的な充電である。図4に示すように、本発明の間欠充電による充電特性は、連続充電による充電特性とほぼ同じ結果を示す。
 図5は、図4と同じ充電条件で充電したときの積算充電容量と平衡電圧の変化率F=ΔOCV / ΔQとの関係を示すグラフである。図5に示すように、本発明の間欠充電による充電特性は、連続充電による充電特性とほぼ同じ結果を示す。また、図6は、上述した●印のプロットで表した充電条件および■印のプロットで表した充電条件で充電したときの積算充電容量と短時間の内部抵抗ΔVS / Iの関係を示すグラフである。また、図7は、上述した●印のプロットで表した充電条件および■印のプロットで表した充電条件で充電したときの積算充電容量と長時間の内部抵抗ΔVL / Iの関係を示すグラフである。
 制御部30は、図2のステップS13において、少なくとも1種類の充電特性データAを構成する。本実施の形態では、積算充電容量と平衡電圧の変化率Fとの関係を示すデータテーブルを充電特性データAとして採用した場合について説明する。
 以下の説明では、添え字のpは正極、添え字のnは負極を表すものとする。ステップS15において、制御部30は、二次電池1の充電特性データAに対応する正極・負極の充電特性データテーブルをメモリ40のライブラリから読み込む。正極・負極の充電特性データテーブルは、二次電池1の充電特性データAと同じ物理量からなる充電特性データを適切な方法で規格化したものが望ましい。本実施の形態で望ましい正極・負極の充電特性データテーブルとしては、たとえば活物質の単位質量あたりの容量qp、qn(Ah/g)に対する電極の開回路電位OCPの変化率gp(qp)、gn(qn)(Vg/Ah)や、基準状態における正極・負極の容量Qp、Qn (Ah)に対する正極・負極の開回路電位変化率Gp(Qp)、Gn(Qn) (V/Ah)が挙げられる。
 本実施の形態では、単位質量あたりの容量qに対する電位変化率g(q)を用いた場合について説明する。図8は、二次電池1に使用した正極・負極の単位質量当たりの容量qp、qnに対する開回路電位変化率gp(qp)、gn(qn)を示すグラフである。
 ステップS17において、制御部30は、内部情報の取得に用いるパラメータ群の値を設定する。パラメータ群は、正極および負極自体の劣化に対応するパラメータと、正極の容量と負極の容量との対応を示すパラメータで構成すればよい。本実施の形態における前者の例としては、正極および負極の活物質の全有効重量mp(g)およびmn(g)、正極および負極の活物質の全有効体積などがある。また後者の例としては、電池の充放電特性の容量原点と正極および負極の充放電特性の容量原点との差δp 、δn (Ah)などがある。本実施の形態では、正極および負極の活物質の全有効重量mp、mnと、正極および負極の容量原点の差δp 、δn を用いた場合について説明する。
 ステップS19において、制御部30は、ステップS15で読み込んだ正極・負極の充電特性データテーブルと、ステップS17で読み込んだ補正パラメータ群の値から二次電池の充電特性データテーブル(充電特性データB)を計算してステップS21へ進む。ステップS21において、ステップS13で構成した充電特性データAと、ステップS19で算出した充電特性データBとを比較して、充電特性データAに対する充電特性データBの再現度が良好であるか否か、すなわち、充電特性データAと充電特性データBとが一致していると見なせるか否かを判断する。
 充電特性データAと充電特性データBとが一致していると見なせる場合(ステップS21肯定判断)、ステップS23へ進み、後述するように、上述した演算の結果として得られた各データをメモリ40へ格納するとともに、外部の機器等に出力するように出力部50を制御する。
 充電特性データAと充電特性データBとが一致していると見なせない場合(ステップS21否定判断)、内部情報の取得に用いるパラメータ群の値を再設定して(ステップS17)、充電特性データBを再計算する(ステップS19)。すなわち、補正パラメータ群の値を最適化して充電特性データBを算出し、充電特性データAを再現する。
 その方法は前記特許文献1に開示されている。すなわち、正極・負極全体の充電特性における充電量をそれぞれQp、Qnとすると、Qp = qp ×mp、Qn = qn × mn である。そこで、制御部30は、正極全体の充電量Qpと電位変化率Gp(Qp)との関係、すなわち正極全体の充電特性を、Gp(Qp) = (1/mp) × gp(qp) を用いて求める。同様に、負極全体の充電量Qnと電位変化率Gn(Qn)との関係、すなわち負極全体の充電特性を、Gn(Qn) = (1/mn) × gn(qn) を用いて求める。
 次に、制御部30は、上記のとおり得られた電池内部における正極全体の充電特性および負極全体の充電特性と、補正パラメータである正極および負極の容量原点の差δp 、δnとを用いて、電池全体の充電特性の計算値(すなわち充電特性データB)を求める。概略すると、ここでは、正極全体の充電特性を表すグラフと負極全体の充電特性を表すグラフとの位置関係を補正し、重ね合わせる(足し合わせる)という処理を行う。計算方法の一例を以下に述べる。
 まず、制御部30は、正極および負極の容量原点の差δp 、δnを用いて、QpおよびQnに対して、
   Q = Qp + δp = Qn + δn     ・・・(1)
と定める。
 ここでQは、充電特性データBにおける充電量を意味する。
 そして、制御部30は、Qに対する電池内部の正極全体の充電特性を、Gp(Qc) = (1/mp) × gp(qp) を用いて定め、Qに対する電池内部の負極全体の充電特性をGn(Qc) = (1/mn) × gn(qn) を用いて定める。制御部30は、充電特性データBを、
  F(Q) = (1/mp) × gp(qp)  -  (1/mn) ×gn(qn)   ・・・(2)
として求める。
 次に、制御部30は、ステップS13で構成した充電特性データAと、ステップS19で算出した充電特性データBとを比較して、充電特性データAに対する充電特性データBの再現度が良好であるか否かを判断する(ステップS21)。
 補正パラメータ群の値を調節するには、たとえば、同一の容量Qに対する電圧変化率F(Q)の差の二乗和を比較する方法がある。ある構成比および補正パラメータ群の値に対する上記の二乗和を保持しておき、この二乗和が最小になるような構成比および補正パラメータ群の値を探索すればよい。図9は、補正パラメータ群の値を最適化して得られた二次電池の診断結果を示す図である。
 充電特性データAに対する充電特性データBの再現度が良好である場合(ステップS21肯定判断)、制御部30は、最終的に得られた補正パラメータ群や、電池・正極・負極の充電特性データテーブルなどを、メモリ40に格納するとともに外部の機器に出力するように出力部50に指令信号を出力して本プログラムを終了する。なお、外部の機器としては、たとえば、ユーザーへの表示デバイスや、電池動作の制御部、電池寿命の予測部などが挙げられる。
 このようにして得られた補正パラメータ群の情報や、内部抵抗の情報、電池・正極・負極の充電特性データテーブルは二次電池1の劣化度合いを推定するための重要な二次電池1の内部情報である。
 第1の実施の形態の内部情報検出装置100では、次の作用効果を奏する。
(1) 従来、二次電池の充電特性の情報を得るためには、内部抵抗の影響をできる限り避けるために、微少な電流で長時間を掛けて二次電池を充電しながら電圧を測定する必要があった。そのため、利用中の二次電池の充電特性の情報を日々取得するのが困難であった。
 これに対して、本実施の形態では、二次電池1を間欠充電する際に、二次電池1の電圧と充電容量とを検出してメモリ40に格納するように構成したので、充電を行いながら二次電池1の充電特性の情報が得られるので、たとえば、二次電池1の電力を使用しない夜間に、充電と同時に充電特性の情報を充電率の広い範囲で取得できる。したがって、充電率の広い範囲で二次電池1の充電特性を容易に得られるので、二次電池1の劣化状態の調査も容易となり、二次電池1の長寿命化に貢献できる。
(2) 二次電池1の充電率に関わらず、充電電流と充電時間と休止時間を制御しつつ充電と休止を繰り返して、所定の電圧に到達するまで断続的に二次電池1を充電するように構成した。これにより、満充電までの一回の充電で充電率の広い範囲で充電特性の情報を取得できるので、二次電池1の状態の判断の精度が向上し、二次電池1の長寿命化に貢献できる。
(3) 二次電池1を間欠充電する際に、あらかじめ定められた一定の容量ΔQ0の充電と、あらかじめ定められた休止設定時間の休止とを繰り返すように構成したので、充電休止中に平衡電圧に落ち着いた二次電池1の電圧を測定できる。したがって、間欠充電を行いながら二次電池1の充電特性の情報を容易に取得できるので、二次電池1の状態の判断が容易となり、二次電池1の長寿命化に貢献できる。また、二次電池1の充電特性の情報を容量ΔQ0のステップ毎に取得できる。したがって、二次電池1の充電特性のデータを精度良く取得できるので、二次電池1の状態の判断の精度が向上し、二次電池1の長寿命化に貢献できる。
(4) 充電時電圧と、充電休止時電圧とを測定するように構成した。これにより、充電時電圧と充電休止時電圧との電圧差を電流値Iで除すことで二次電池1の内部抵抗の値を算出できる。したがって、充電率の広い範囲で二次電池1の内部抵抗の情報を容易に得られるので、二次電池1の劣化状態の調査も容易となり、二次電池1の長寿命化に貢献できる。
---第2の実施の形態---
 図10,11を参照して、本発明による二次電池の内部情報検出装置の第2の実施の形態を説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、主に、二次電池1の電圧が所定の上限電圧に到達した後も充電を続ける点で、第1の実施の形態と異なる。
 図10は、本実施の形態の制御部30の動作を示すフローチャートである。充電開始のトリガが入力されると、本プログラムが制御部30で実行される。ステップS1からステップS7までは、第1の実施の形態と同じである。充電制御部10で測定した二次電池1の電圧が所定電圧以上であれば(ステップS3肯定判断)、ステップS31へ進み、充電終了条件を満たしたか否かを判断する。充電条件については後述する。また、ステップS3における判断基準となる所定電圧を、以下、第1の上限電圧と呼ぶ。
 充電条件を満たしていない場合(ステップS31否定判断)、充電電圧をあらかじめ定められた第2の上限電圧に保つように充電電流Iを調節しつつ一定時間だけ流し、結果として容量ΔQaだけ充電し(ステップS33)、その後、一定時間だけ充電を休止するように(ステップS35)、充電制御部10へ指令信号を出力する。また、充電中および充電休止中に、二次電池1の電圧等を適宜測定してメモリ40に格納するように充電制御部10へ指令信号を出力する(ステップS33,S35)。なお、ステップS33では、電圧を第2の上限電圧に保つように充電電流Iを調節しつつ、一定の容量ΔQbを充電するようにしてもよい。
 このように二次電池1の電圧に応じて充電状態を制御することで、二次電池1の電圧が所定の上限電圧以下であれば(ステップS3否定判断)、所定の電流値で一定の容量ΔQ0だけ充電する(ステップS5)。また、二次電池1の電圧が第1の上限電圧に到達していれば(ステップS3肯定判断)、電圧を第2の上限電圧に保つように充電電流Iを調節しつつ一定時間だけ流し、結果として容量ΔQaだけ充電する(ステップS33)。
 ステップS31における充電終了条件としては、たとえば、充電・休止回数が所定数を上回ること、充電電流Iが所定値より小さくなること、積算充電容量が所定値を上回ること、休止時の電池電圧が所定値を上回ること等が挙げられる。なお、第1の上限電圧および第2の上限電圧については、あらかじめ適宜定めればよい。また、第1の上限電圧および第2の上限電圧の大小関係については、特に限定しない。
 図11は、充電時間が6秒、休止時間が180秒、充電中の上限電圧が4.1Vである充電条件において、二次電池1の電圧が上限電圧に到達しているときの本実施の形態の充電制御による充電パターンの例を示すグラフである。なお、図11は、第1の上限電圧と第2の上限電圧とがともに4.1Vの場合についての受電パターンを示している。図11に示すように、充電制御部10は、二次電池の電圧が上限電圧を超えないように充電電流の値を小さくする。
 第2の実施の形態の内部情報検出装置100では、第1の実施の形態の作用効果に加えて、次の作用効果を奏する。
(1) 二次電池1の電圧が上限電圧に到達している場合には、充電電圧を一定に保つように充電電流Iを調節することで間欠的に充電するように構成した。これにより、二次電池1の積算充電容量を増やせるので、二次電池1から取り出すことができる電力量を増やせる。したがって、二次電池1で蓄えた電力を使用する機器の使用可能な時間を延ばすことができ、二次電池1で蓄えた電力を使用する機器の利便性が向上する。
(2) また、二次電池1の電圧が上限電圧に到達している場合には、充電電圧を一定に保つように充電電流Iを調節することで間欠的に充電するように構成したことで、充電率のより広い範囲における二次電池1の内部の情報を取得できる。これにより、二次電池1の状態の判断の精度が向上し、二次電池1の長寿命化に貢献できる。
---第3の実施の形態---
 図12,13を参照して、本発明による二次電池の内部情報検出装置の第3の実施の形態を説明する。以下の説明では、第1および第2の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1および第2の実施の形態と同じである。本実施の形態では、主に、二次電池1が断続的に充電と放電を繰り返す過程において、二次電池1の充放電特性を取得する点で、第1および第2の実施の形態と異なる。
 図12は、第3の実施の形態における内部情報検出装置100の構成を示す図である。本実施の形態の内部情報検出装置100は、充放電制御部20と、制御部30と、メモリ40と、出力部50とを備え、互いにバスなどによって接続されている。
 充放電制御部20は、制御部30からの指令によって、充電電流と充電時間と休止時間を制御しつつ充電と休止を繰り返して、所定の電圧に到達するまで断続的に被検知電池である二次電池1を充電する。また、充放電制御部20は、制御部30からの指令によって、充電中、および充電の休止中に二次電池1の電圧を測定し、メモリ40に適宜格納する。また、充放電制御部20は、制御部30からの指令によって、二次電池1に充電された容量を測定し必要に応じてメモリ40に格納する。さらに充放電制御部20は、後述するように、制御部30からの指令によって、二次電池1の放電中または放電の休止中に二次電池1の電圧を測定し、メモリ40に適宜格納する。また、充放電制御部20は、制御部30からの指令によって、通電された容量ΔQを逐次算出し、メモリ40に適宜格納する。
 図13は、本実施の形態における制御部30の動作を示すフローチャートである。情報取得開始のトリガが入力されると、本プログラムが制御部30で実行される。たとえば、内部情報検出装置100がプラグインハイブリッド車(PHV)に搭載されている場合には、車両の電源スイッチがオンされたことを制御部30検出すると、情報取得開始のトリガが入力されることとしてもよい。
 以下の説明では、二次電池1への充電、および二次電池1からの放電を、単に通電とも呼ぶ。ステップS41において、情報取得開始時点での二次電池1の容量Q0と二次電池1の電圧OCV0とをメモリ40に格納するように充放電制御部20へ指令信号を出力する。その後、通電を開始するトリガが入力されるまで待機する(ステップS43否定判断)。たとえば、内部情報検出装置100がプラグインハイブリッド車(PHV)に搭載されている場合には、車両のアクセルペダルが踏み込まれたことが検出されると、通電を開始するトリガが入力されることとしてもよい。
 通電を開始するトリガが入力されると(ステップS43肯定判断)、前回の通電の終了からの経過時間が、二次電池1の電圧が平衡電圧に収束するのに必要な所定の時間以上であるか否かを判断する(ステップS47)。
 前回の通電の終了から、二次電池1の電圧が平衡電圧に収束するのに必要な所定の時間が経過していた場合には(ステップS47肯定判断)、通電開始直前の二次電池1の電圧OCVを測定するように充放電制御部20へ指令信号を出力する(ステップS47)。さらに、当該測定した二次電池1の電圧OCVと、前回の通電の終了直前の二次電池1の電圧との差である△VLを算出して、電圧OCVとともにメモリ40に格納するように充放電制御部20へ指令信号を出力する(ステップS47)。その後、通電を開始するように充放電制御部20へ指令信号を出力する(ステップS51)。
 前回の通電の終了から、二次電池1の電圧が平衡電圧に収束するのに必要な所定の時間が経過していなかった場合には(ステップS47否定判断)、通電を開始するように充放電制御部20へ指令信号を出力する(ステップS51)。
 通電を開始するように充放電制御部20へ指令信号を出力する際には、二次電池1の通電中に、二次電池1の電圧Vと通電された容量ΔQを逐次測定してメモリ40に一時的に格納するように充放電制御部20へ指令信号を出力する(ステップS51)。その後、通電を終了するトリガが入力されるまで待機する(ステップS53否定判断)。
 通電を終了するトリガが入力されると(ステップS53肯定判断)、通電終了直前の二次電池1の電圧Vを測定し、今回の通電期間中に通電された容量の積算値である積算通電量ΔQsを算出して、それぞれの値をメモリ40に格納するように充放電制御部20へ指令信号を出力する(ステップS55)。さらに、二次電池1の通電中に、逐次測定してメモリ40に一時的に格納された二次電池1の電圧Vおよび通電量ΔQの情報を適宜削除するように充放電制御部20へ指令信号を出力してもよい(ステップS55)。
 その後、通電を終了するように充放電制御部20へ指令信号を出力する(ステップS57)。通電終了後、通電終了直後の二次電池1の電圧を測定し、測定した通電終了直後の二次電池1の電圧と、ステップS55で測定した通電終了直前の二次電池1の電圧Vとの差である△VSを算出してメモリ40に格納するように充放電制御部20へ指令信号を出力する(ステップS59)。そして、ステップS55でメモリに格納された積算通電量△Qを通電開始前の容量Qに加算または減算して、二次電池1の容量を現時点での値Q1に更新する(ステップS61)。
 その後、二次電池1の内部情報を算出開始のトリガが入力されたか否かを判断する(ステップS63)。たとえば、内部情報検出装置100がプラグインハイブリッド車(PHV)に搭載されている場合には、車両の電源スイッチがオフされたことを制御部30検出すると、二次電池1の内部情報を算出開始のトリガが入力されることとしてもよい。
 二次電池1の内部情報を算出開始のトリガが入力された場合(ステップS63肯定判断)、ステップS13へ進む。なお、ステップS13以降のステップは、第1の実施の形態と同じである。二次電池1の内部情報を算出開始のトリガが入力されなかった場合(ステップS63否定判断)、ステップS43へ戻る。
 第3の実施の形態の内部情報検出装置100では、第1および第2の実施の形態の作用効果に加えて、次の作用効果を奏する。
(1) 二次電池1が断続的に充電と放電を繰り返す過程において、二次電池1の充放電特性を取得するように構成した。これにより、たとえば本実施の形態の内部情報検出装置100が電気自動車(EV)やプラグインハイブリッド車(PHV)に搭載された場合、車両の走行中のように不規則な二次電池1の充放電を繰り返す場合であっても、二次電池1の充放電特性を取得できる。したがって、このような不規則な二次電池1の充放電を繰り返す場合でも、取得した二次時電池1の充放電特性に基づいて劣化状態の調査を実施できるので、二次電池1の長寿命化に貢献できる。
 なお、上述した各実施の形態において、複数の被検知電池に関して得られた補正パラメータ群の情報や、内部抵抗の情報、電池・正極・負極の充電特性データテーブルなどを、それぞれ出力部50から外部の機器に出力されるようにしてもよい。
 また、二次電池として、リチウムイオン二次電池を一例に説明したが本発明はこれに限定されない。ニッケル水素電池などの他の二次電池に本発明を適用できる。
 上述した各実施の形態の内部情報検出装置100の出力部50から外部の機器に出力される補正パラメータ群の情報や、内部抵抗の情報、電池・正極・負極の充電特性データテーブルなどを、たとえば次のような用途に利用できる。
(a) たとえば、上述した各実施の形態で取得された電池・正極・負極の充放電特性の推定値に基づいて、正極・負極の使用可能電位領域を超えないように電池電圧の上下限を設定することも可能である。
(b) たとえば、上述した各実施の形態で取得された電池・正極・負極の充放電特性の推定値に基づいて、電池の余寿命を判定することも可能である。
 上述の説明では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。上述した種々の実施の形態および変形例を適宜組み合わせてもよく、本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。

Claims (6)

  1.  正極材料固有の充電特性および負極材料固有の充電特性と、前記正極材料固有の充電特性および前記負極材料固有の充電特性を補正するパラメータ群である補正パラメータ群とに基づいて、実測値としての被検知電池の充電特性を再現して、再現に係る情報を前記被検電池の内部情報として出力する装置であって、
     あらかじめ定められた一定容量の充電と充電の休止とを繰り返すことで前記被検知電池を間欠的に充電するよう間欠充電制御を行う充電制御部と、
     前記充電制御部による前記間欠充電制御中に、前記被検知電池の電圧を検出する電圧検出部と、
     前記充電制御部による前記間欠充電制御中の前記被検知電池の充電容量を算出する充電容量算出部と、
     前記電圧検出部および前記充電容量算出部での結果を記憶する記憶装置と、
     前記記憶装置で記憶されている前記被検知電池の電圧と前記被検知電池の充電容量とに基づいて、前記実測値としての被検知電池の充電特性を取得する充電特性取得部とを有し、
     前記充電制御部は、前記被検知電池の充電率に関わらず、間欠充電制御を行う二次電池の内部情報検出装置。
  2.  請求項1に記載の二次電池の内部情報検出装置において、
     前記充電制御部による前記間欠充電制御は、あらかじめ定められた一定の容量の充電と、あらかじめ定められた休止設定時間の休止とを繰り返す制御である二次電池の内部情報検出装置。
  3.  請求項1または請求項2に記載の二次電池の内部情報検出装置において、
     前記電圧検出部は、前記間欠充電制御中に前記被検知電池への充電を休止しているときの被検知電池の電圧である充電休止時電圧を検出し、
     前記記憶装置は、前記充電休止時電圧を記憶し、
     前記充電特性取得部は、前記記憶装置で記憶されている前記充電休止時電圧と前記被検知電池の充電容量とに基づいて、前記実測値としての被検知電池の充電特性を取得する二次電池の内部情報検出装置。
  4.  請求項3に記載の二次電池の内部情報検出装置において、
     前記電圧検出部は、前記間欠充電制御中に前記被検知電池に充電しているときの前記被検知電池の電圧である充電時電圧をさらに検出し、
     前記記憶装置は、前記充電時電圧をさらに記憶し、
     前記充電特性取得部は、前記記憶装置で記憶されている前記充電時電圧および前記充電休止時電圧に基づいて、さらに前記被検知電池の内部抵抗の情報を取得する二次電池の内部情報検出装置。
  5.  請求項2に記載の二次電池の内部情報検出装置において、
     前記充電制御部による前記間欠充電制御は、前記被検知電池に充電しているときの前記被検知電池の電圧があらかじめ定められた第1の上限電圧未満であれば、あらかじめ定められた一定の容量の充電と、あらかじめ定められた休止設定時間の休止とを繰り返す制御であり、
     前記充電制御部による前記間欠充電制御は、前記被検知電池に充電しているときの前記被検知電池の電圧が前記第1の上限電圧以上であれば、前記被検知電池の電圧があらかじめ定められた第2の上限電圧を保つように一定時間または一定容量の充電と、あらかじめ定められた休止設定時間の休止とを繰り返す制御である二次電池の内部情報検出装置。
  6.  正極材料固有の充放電特性および負極材料固有の充放電特性と、前記正極材料固有の充放電特性および前記負極材料固有の充放電特性を補正するパラメータ群である補正パラメータ群とに基づいて、実測値としての被検知電池の充放電特性を再現して、再現に係る情報を前記被検電池の内部情報として出力する装置であって、
     充電と充電の休止とを含む前記被検知電池の間欠的な充電、および、放電と放電の休止とを含む前記被検知電池の間欠的な放電が行われるように間欠充放電制御を行う充放電制御部と、
     前記充放電制御部による前記間欠充放電制御中に、前記被検知電池の電圧を検出する電圧検出部と、
     前記充放電制御部による前記間欠充放電制御中の前記被検知電池の充放電容量を算出する充放電容量算出部と、
     前記電圧検出部および前記充放電容量算出部での結果を記憶する記憶装置と、
     前記記憶装置で記憶されている前記被検知電池の電圧と前記被検知電池の充放電容量とに基づいて、前記実測値としての被検知電池の充放電特性を取得する充放電特性取得部とを有する二次電池の内部情報検出装置。
PCT/JP2013/057867 2013-03-19 2013-03-19 二次電池の内部情報検出装置 WO2014147753A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015506449A JP6034954B2 (ja) 2013-03-19 2013-03-19 二次電池の内部情報検出装置
PCT/JP2013/057867 WO2014147753A1 (ja) 2013-03-19 2013-03-19 二次電池の内部情報検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/057867 WO2014147753A1 (ja) 2013-03-19 2013-03-19 二次電池の内部情報検出装置

Publications (1)

Publication Number Publication Date
WO2014147753A1 true WO2014147753A1 (ja) 2014-09-25

Family

ID=51579485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057867 WO2014147753A1 (ja) 2013-03-19 2013-03-19 二次電池の内部情報検出装置

Country Status (2)

Country Link
JP (1) JP6034954B2 (ja)
WO (1) WO2014147753A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3297121A1 (en) * 2016-09-14 2018-03-21 Kabushiki Kaisha Toshiba Charge control apparatus, charge pattern creating device, method, computer program and power storage system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002142379A (ja) * 2000-11-06 2002-05-17 Sanyo Electric Co Ltd 電池の充電方法
JP2003059544A (ja) * 2001-05-29 2003-02-28 Canon Inc 二次電池の内部情報検知方法、内部情報検知装置、内部情報検知プログラム及び該プログラムを収めた媒体
JP2004152755A (ja) * 2002-10-11 2004-05-27 Canon Inc 二次電池の内部抵抗検知方法、内部抵抗検知装置、内部抵抗検知プログラム及び該プログラムを収めた媒体
JP2009080093A (ja) * 2007-09-07 2009-04-16 Hitachi Vehicle Energy Ltd 二次電池の内部情報検知方法及び装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002142379A (ja) * 2000-11-06 2002-05-17 Sanyo Electric Co Ltd 電池の充電方法
JP2003059544A (ja) * 2001-05-29 2003-02-28 Canon Inc 二次電池の内部情報検知方法、内部情報検知装置、内部情報検知プログラム及び該プログラムを収めた媒体
JP2004152755A (ja) * 2002-10-11 2004-05-27 Canon Inc 二次電池の内部抵抗検知方法、内部抵抗検知装置、内部抵抗検知プログラム及び該プログラムを収めた媒体
JP2009080093A (ja) * 2007-09-07 2009-04-16 Hitachi Vehicle Energy Ltd 二次電池の内部情報検知方法及び装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3297121A1 (en) * 2016-09-14 2018-03-21 Kabushiki Kaisha Toshiba Charge control apparatus, charge pattern creating device, method, computer program and power storage system
TWI670674B (zh) * 2016-09-14 2019-09-01 日商東芝股份有限公司 充電圖案作成裝置、充電控制裝置、充電圖案作成方法、記憶媒體、及蓄電系統
US10566815B2 (en) 2016-09-14 2020-02-18 Kabushiki Kaisha Toshiba Charge control apparatus, charge pattern creating device, method, non-transitory computer readable medium and power storage system

Also Published As

Publication number Publication date
JPWO2014147753A1 (ja) 2017-02-16
JP6034954B2 (ja) 2016-11-30

Similar Documents

Publication Publication Date Title
US8203305B1 (en) Enhanced voltage-based fuel gauges and methods
JP6414336B2 (ja) 劣化度推定装置及び劣化度推定方法
JP6430054B1 (ja) 蓄電池の容量把握方法および容量監視装置
JP6227309B2 (ja) 電池状態検出装置
US10444296B2 (en) Control device, control method, and recording medium
US20110210695A1 (en) Charging apparatus, program
JP2007526456A (ja) 充電状態を評価する方法、充電式バッテリーの残使用時間を評価する方法およびそのような方法を実施する機器
JP5535968B2 (ja) 充電率推定装置、充電率推定方法、及びプログラム
WO2019230033A1 (ja) パラメータ推定装置、パラメータ推定方法及びコンピュータプログラム
WO2008099298A1 (en) Method and apparatus for determination of the state-of-charge (soc) of a rechargeable battery
JP6789025B2 (ja) 診断用周波数決定方法、蓄電池劣化診断方法、診断用周波数決定システムおよび蓄電池劣化診断装置
JP2009121931A (ja) バッテリ状態管理方法及びバッテリ状態管理装置
KR20130129096A (ko) 개로 전압 추정 장치, 상태 추정 장치 및 개로 전압 추정 방법
JP5163542B2 (ja) 二次電池の入出力可能電力推定装置
JP2014068468A (ja) 充電制御装置
JP2018159572A (ja) バッテリ状態推定装置
JP2014025739A (ja) 電池状態推定装置
CN117222904A (zh) 电池状态推定装置、电力系统
JP6350174B2 (ja) 電池システム用制御装置および電池システムの制御方法
CN110687458A (zh) 终端电池电量确定方法及装置
JP2011172415A (ja) 二次電池装置
JP2015094710A (ja) バッテリの健全度推定装置及び健全度推定方法
JP2005195388A (ja) 電池の残量計測装置
JP6034954B2 (ja) 二次電池の内部情報検出装置
JP2020532936A (ja) 充電制御装置、充電制御方法、プログラム、制御回路及び蓄電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506449

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13878696

Country of ref document: EP

Kind code of ref document: A1