WO2014146300A1 - 数据传输的方法、用户设备、基站及系统 - Google Patents

数据传输的方法、用户设备、基站及系统 Download PDF

Info

Publication number
WO2014146300A1
WO2014146300A1 PCT/CN2013/073083 CN2013073083W WO2014146300A1 WO 2014146300 A1 WO2014146300 A1 WO 2014146300A1 CN 2013073083 W CN2013073083 W CN 2013073083W WO 2014146300 A1 WO2014146300 A1 WO 2014146300A1
Authority
WO
WIPO (PCT)
Prior art keywords
preamble sequence
base station
frequency resource
time
frequency resources
Prior art date
Application number
PCT/CN2013/073083
Other languages
English (en)
French (fr)
Inventor
吕永霞
汲桐
张雯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13879044.9A priority Critical patent/EP2953390B1/en
Priority to CN201380028067.XA priority patent/CN105264931B/zh
Priority to PCT/CN2013/073083 priority patent/WO2014146300A1/zh
Publication of WO2014146300A1 publication Critical patent/WO2014146300A1/zh
Priority to US14/860,257 priority patent/US9781702B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmission method, a user equipment, a base station, and a system. Background technique
  • the device to device realizes the information transmission through the network, which has the advantage of real-time comparison with the manual data collection.
  • the LTE-based M2M information transmission process in the prior art is based on connection, and consists of two processes: random access and data transmission.
  • the random access procedure includes four steps: 1. A user equipment (User Equipment, UE for short) sends a preamble sequence to the base station. 2. The base station performs a random access response (RAR). 3. The base station establishes a synchronous connection with the UE. 4. The base station resolves the collision of multiple UEs corresponding to the same preamble sequence, and sends a conflict resolution message to the UE.
  • a user equipment User Equipment, UE for short
  • RAR random access response
  • the base station establishes a synchronous connection with the UE.
  • the base station resolves the collision of multiple UEs corresponding to the same preamble sequence, and sends a conflict resolution message to the UE.
  • the information transmission of M2M has the characteristics of small data volume and many data transmission times. Since the signaling overhead in the random access process is unchanged, when the data volume of the data packet is relatively reduced, the proportion of signaling overhead in the information transmission process is increased, resulting in waste of resources.
  • the signaling overhead is lObit
  • the M2M data packet size is lObit
  • the ratio of signaling overhead to M2M data packet is 1:1
  • a normal data packet such as a short message data packet
  • signaling overhead It is still lObit
  • the SMS packet size is lOkb
  • the ratio of signaling overhead to SMS packet is 1: 1024.
  • the signaling overhead of lObit is similar to that of the short message packet sent by lkb.
  • the M2M packet that sends the lbit has a small amount of data packets sent by the signaling overhead, resulting in waste of resources.
  • the invention provides a data transmission method, a user equipment, a base station and a system, which can solve the problem of resource waste in the M2M data transmission process.
  • the present invention provides a method for data transmission, the method comprising: The user equipment UE selects a preamble sequence, and acquires an uplink time-frequency resource and a downlink time-frequency resource corresponding to the preamble sequence;
  • Transmitting the preamble sequence to the base station so that the base station decodes the preamble sequence and determines an uplink time-frequency resource and a downlink time-frequency resource corresponding to the decoded preamble sequence according to the decoded preamble sequence;
  • the data packet is sent to the base station by using the uplink time-frequency resource, where the decoding response information is used to indicate that the base station decodes the preamble sequence. success.
  • the acquiring the uplink time-frequency resource corresponding to the preamble sequence includes:
  • the acquiring downlink time-frequency resources corresponding to the preamble sequence includes:
  • the downlink time-frequency resource corresponding to the preamble sequence is obtained from the pre-stored second correspondence set, where the second correspondence set is used to indicate a correspondence between the at least one preamble sequence and the downlink time-frequency resource.
  • a second possible implementation of the first aspect is also provided, and a second possibility in the first aspect
  • the method further includes: after the sending the preamble sequence to the base station, the method further includes:
  • the UE If the decoding response information sent by the base station is not received by the downlink time-frequency resource within the first preset duration, the UE reselects the preamble sequence and acquires the preamble after the second preset duration
  • the uplink time-frequency resource and the downlink time-frequency resource corresponding to the sequence, the preamble sequence is sent to the base station, so that the base station decodes the preamble sequence and determines, according to the decoded preamble sequence, that the decoded preamble sequence corresponds to Uplink time-frequency resources and downlink time-frequency resources.
  • a third possible implementation of the first aspect is also provided, in the first aspect
  • the third possible implementation manner after the data packet is sent to the base station by using an uplink time-frequency resource corresponding to the preamble sequence, the method further includes:
  • the UE If the acknowledgment information sent by the base station is not received within the third preset duration, the UE reselects the preamble sequence after acquiring the uplink time-frequency resource and the downlink time corresponding to the preamble sequence.
  • the frequency resource, the preamble sequence is sent to the base station, so that the base station decodes the preamble sequence, and determines an uplink time-frequency resource and a downlink time-frequency resource corresponding to the decoded preamble sequence according to the decoded preamble sequence.
  • the confirmation information is used to indicate that the base station has successfully received the data packet sent by the UE.
  • the present invention also provides a data transmission method, including:
  • Decoding the preamble sequence if the decoding is successful, determining an uplink time-frequency resource and a downlink time-frequency resource corresponding to the decoded preamble sequence according to the decoded preamble sequence;
  • the method before the receiving, by the base station, the preamble sequence sent by the UE, the method further includes:
  • the UE Sending, to the UE, a first correspondence relationship set, where the first correspondence relationship set is used to indicate a correspondence between at least one preamble sequence and an uplink time-frequency resource, so that the UE determines an uplink according to the first correspondence relationship set.
  • Frequency resources are used to indicate a correspondence between at least one preamble sequence and an uplink time-frequency resource, so that the UE determines an uplink according to the first correspondence relationship set.
  • the second possible implementation manner of the second aspect is further provided, and the second possibility in the second aspect
  • the method further includes:
  • the present invention further provides a user equipment UE, including:
  • an acquiring unit configured to acquire an uplink time-frequency resource and a downlink time-frequency resource corresponding to the preamble sequence according to the corresponding relationship set and the preamble sequence selected by the selecting unit;
  • a sending unit configured to send the preamble sequence acquired by the acquiring unit to a base station, to enable the base station to decode the preamble sequence, and determine, according to the decoded preamble sequence, the decoded preamble sequence Uplink time-frequency resources and downlink time-frequency resources;
  • a receiving unit configured to receive, by using the downlink time-frequency resource, decoding response information that is sent by the base station, where the sending unit is further configured to: when the receiving unit receives the decoding response information sent by the base station, by using the uplink time-frequency resource Transmitting a data packet to the base station, where the decoding response information is used to indicate that the base station successfully decodes the preamble sequence.
  • the UE further includes:
  • a storage unit configured to store a correspondence set between the preamble sequence and an uplink time-frequency resource and a downlink time-frequency resource, and a preamble sequence set;
  • the storage unit is further configured to: pre-store a first correspondence set, where the first correspondence set is used to indicate a correspondence between at least one preamble sequence and an uplink time-frequency resource;
  • the obtaining unit is further configured to: obtain an uplink time-frequency resource corresponding to the preamble sequence from the first corresponding relationship set pre-stored by the storage unit;
  • the receiving unit is further configured to: receive the first correspondence set sent by the base station; the acquiring unit is further configured to: obtain, by using the first correspondence set received by the receiving unit, the corresponding sequence of the preamble Uplink time-frequency resources;
  • the storage unit is further configured to pre-store a second correspondence set, where the second correspondence set is used to indicate a correspondence between at least one preamble sequence and a downlink time-frequency resource;
  • the acquiring unit is further configured to: obtain the downlink time-frequency resource corresponding to the preamble sequence from the second corresponding relationship set pre-stored by the storage unit.
  • the selecting unit is further configured to: when the receiving unit passes the first preset duration When the downlink time-frequency resource corresponding to the preamble sequence does not receive the decoding response information sent by the base station, the preamble sequence is reselected after the second preset duration.
  • a third possible implementation of the third aspect is also provided, in the third aspect
  • the receiving unit is further configured to receive the acknowledgement information sent by the base station, where the acknowledgement information is used to indicate that the base station has successfully received the data packet sent by the sending unit;
  • the selecting unit is further configured to: when the receiving unit does not receive the confirmation information sent by the base station within the third preset duration, reselect the preamble sequence after the fourth preset duration.
  • the present invention provides a base station, including:
  • a receiving unit configured to receive a preamble sequence sent by the user equipment UE
  • a decoding unit configured to decode the preamble sequence received by the receiving unit, and a determining unit, configured to: when the decoding unit successfully decodes, the decoded preamble sequence and the storage unit according to the decoding unit And storing the corresponding relationship set, determining an uplink time-frequency resource and a downlink time-frequency resource corresponding to the decoded preamble sequence;
  • a sending unit configured to send, to the UE, decoding response information according to the downlink time-frequency resource determined by the determining unit, where the decoding response information is used to indicate that the decoding unit successfully decodes the preamble sequence
  • the receiving unit is further configured to receive, by using the uplink time-frequency resource determined by the determining unit, a data packet sent by the UE.
  • the storage unit is configured to store a correspondence set of the preamble sequence and an uplink time-frequency resource and a downlink time-frequency resource, and a preamble sequence set.
  • the sending unit is further configured to: send, to the UE, a first correspondence relationship set, where The first corresponding relationship set is used to indicate a correspondence between the at least one preamble sequence and the uplink time-frequency resource, so that the UE determines the uplink time-frequency resource according to the first correspondence relationship set.
  • the sending unit is further configured to: when the receiving unit successfully receives the data packet, send, to the UE, acknowledge information, where the acknowledgement information is used to indicate the receiving unit The packet has been successfully received.
  • the present invention further provides a system for data transmission, including a user equipment UE and a base station;
  • the UE is configured to select a preamble sequence, and acquire an uplink time-frequency resource and a downlink time-frequency resource corresponding to the preamble sequence; and send the preamble sequence to a base station;
  • the base station is configured to receive a preamble sequence sent by the user equipment UE, and decode the preamble sequence. If the decoding succeeds, determine, according to the decoded preamble sequence, the uplink time-frequency resource and the downlink time corresponding to the decoded preamble sequence.
  • the decoding response information is sent to the UE by using the downlink time-frequency resource, where the decoding response information is used to indicate that the base station successfully decodes the preamble sequence; and the UE is further configured to use the downlink when
  • the frequency resource sends a data packet to the base station by using an uplink time-frequency resource corresponding to the preamble sequence; the base station is further configured to receive the UE by using the uplink time-frequency resource. The packet sent.
  • the present invention further includes a user equipment UE, including:
  • a processor configured to select a preamble sequence according to the set of preamble sequences, and obtain an uplink time-frequency resource and a downlink time-frequency resource corresponding to the preamble sequence according to the corresponding relationship set and the selected preamble sequence;
  • a transmitter configured to send the preamble sequence acquired by the processor to a base station, to enable the base station to decode the preamble sequence, and determine, according to the decoded preamble sequence, the decoded preamble sequence Uplink time-frequency resources and downlink time-frequency resources; a receiver, configured to receive, by using the downlink time-frequency resource, decoding response information that is sent by the base station, where the decoding response information is used to indicate that the base station successfully decodes the preamble sequence;
  • the transmitter is further configured to: when the receiver receives the decoding response information sent by the base station, send the data packet to the base station by using an uplink time-frequency resource corresponding to the preamble sequence.
  • the UE further includes: a memory, configured to store a correspondence set of the preamble sequence and an uplink time-frequency resource and a downlink time-frequency resource, and a preamble sequence set;
  • the memory is further configured to: pre-store a first correspondence set, where the first correspondence set is used to indicate a correspondence between at least one preamble sequence and an uplink time-frequency resource;
  • the processor is further configured to: acquire the uplink time-frequency resource corresponding to the preamble sequence from the first pre-stored set of the first correspondence relationship;
  • the receiver is further configured to: receive the first correspondence set sent by the base station;
  • the processor is further configured to: obtain the uplink time-frequency resource corresponding to the preamble sequence from the first corresponding relationship set received by the receiver;
  • the memory is further configured to pre-store a second correspondence set, where the second correspondence set is used to indicate a correspondence between at least one preamble sequence and a downlink time-frequency resource;
  • the processor is further configured to: obtain the downlink time-frequency resource corresponding to the preamble sequence from the second corresponding relationship set pre-stored by the memory.
  • the processor is further configured to: when the receiver fails to receive the decoding response information sent by the base station by using the downlink time-frequency resource corresponding to the preamble sequence, in a first preset duration , reselect the preamble sequence after the second preset duration.
  • a third possible implementation manner of the sixth aspect is also provided, in the sixth aspect
  • the receiver is further configured to receive the acknowledgment information sent by the base station, where the acknowledgment information is used to indicate that the base station has successfully received the data packet sent by the UE;
  • the processor is further configured to reselect the preamble sequence after the fourth preset duration, when the receiver does not receive the acknowledgement information sent by the base station within the third preset duration.
  • the present invention provides a base station, including:
  • a receiver configured to receive a preamble sequence sent by the user equipment UE
  • a processor configured to decode the preamble sequence received by the receiver, and when the decoding is successful, determine, according to the decoded preamble sequence and the corresponding relationship set, an uplink time-frequency resource corresponding to the decoded preamble sequence And downlink time-frequency resources;
  • a transmitter configured to send, to the UE, decoding response information according to the downlink time-frequency resource determined by the processor, where the decoding response information is used to indicate that the base station successfully decodes the preamble sequence;
  • the method further includes: receiving, by the processor, the uplink time-frequency resource, a data packet sent by the UE.
  • the base station further includes: a memory, configured to store a correspondence set of the preamble sequence and an uplink time-frequency resource and a downlink time-frequency resource, and a preamble sequence set.
  • the transmitter is further configured to: send, to the UE, a first correspondence set, where the first correspondence set is used to indicate a correspondence between at least one preamble sequence and an uplink time-frequency resource, so that The UE determines an uplink time-frequency resource according to the first correspondence relationship set.
  • a third possible implementation manner of the seventh aspect is further provided, in the seventh aspect
  • the transmitter is further configured to: when the receiver successfully receives the data packet, send an acknowledgement message to the UE, where the acknowledgement information is used to indicate that the base station has The packet was successfully received.
  • the present invention further provides a system for data transmission, including a user equipment UE and a base station;
  • the UE is configured to select a preamble sequence, and obtain an uplink time-frequency resource corresponding to the preamble sequence. Downlink time-frequency resources; transmitting the preamble sequence to a base station;
  • the base station is configured to receive a preamble sequence sent by the user equipment UE, and decode the preamble sequence. If the decoding succeeds, determine, according to the decoded preamble sequence, the uplink time-frequency resource and the downlink time corresponding to the decoded preamble sequence.
  • the decoding response information is sent to the UE by using the downlink time-frequency resource, where the decoding response information is used to indicate that the base station successfully decodes the preamble sequence; and the UE is further configured to use the downlink when When receiving the decoding response information sent by the base station, the frequency resource sends a data packet to the base station by using an uplink time-frequency resource corresponding to the preamble sequence; and the base station is further configured to receive, by using the uplink time-frequency resource, the UE, data pack.
  • the UE can acquire the uplink time-frequency resource and the downlink time-frequency resource corresponding to the preamble sequence, and if the downlink response time information is received by the downlink time-frequency resource, Then, the data packet is sent to the base station by using the uplink time-frequency resource.
  • the step of acquiring the time-frequency resource corresponding to the preamble sequence is performed by the base station.
  • the base station needs to send a series of information of the time-frequency resource corresponding to the preamble sequence to the UE, so that the UE acquires the time-frequency resource. The number of signaling is increased.
  • the UE needs to determine uplink time-frequency resources and downlink time-frequency resources according to a series of information sent by the base station.
  • the base station needs to synchronize with the UE and resolve the conflict, and multiple signaling is generated in these two steps.
  • the UE does not need to obtain the uplink time-frequency resource and the downlink time-frequency resource corresponding to the preamble sequence according to the series of information sent by the base station, and realize the technical effect of locally acquiring the uplink time-frequency resource and the downlink time-frequency resource corresponding to the preamble sequence.
  • the data transmission may be directly performed according to the locally determined uplink time-frequency resource or the downlink time-frequency resource, thereby avoiding the signaling overhead in the random response process in the prior art, and further, the UE according to the base station
  • the transmitted decoding response information may determine that synchronization with the base station does not occur, which may further reduce signaling overhead in the random access process and improve transmission efficiency.
  • FIG. 1 is a flowchart of a first data transmission method according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a second data transmission method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a third data transmission method according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a fourth data transmission method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a fifth data transmission method according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a sixth data transmission method according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another UE according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a system for data transmission in an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of still another UE according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of still another UE according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of still another base station according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of still another base station according to an embodiment of the present invention.
  • 16 is a schematic diagram of another system for data transmission in an embodiment of the present invention.
  • the M2M information transmission process of LTE is based on connection, including two processes of random access and data upload.
  • the UE selects a preamble sequence, and sends the preamble sequence to the base station.
  • the base station After receiving the preamble sequence, the base station sends random access response information to the UE, where the random access response information carries the preamble Sequence, temporary cell radio network temporary identification (Cel l Radio Network Temporary Ident if ier, abbreviated as C-RNTI) and a resource indication for the UE to transmit uplink information in the next step.
  • C-RNTI temporary cell radio network temporary identification
  • the UE sends a connection request in the uplink channel corresponding to the resource indication according to the indication of the RAR, and the process requests the UE to connect with the base station, such as MSG3 (so-called MSG3, which is actually three messages, because in the process of random access, these messages
  • MSG3 Radio Resource Control Protocol
  • RRC Radio Resource Control Protocol
  • MSG3 the base station sends a prompt message to the UE. If a collision occurs, the base station sends a conflict resolution message to the UE after the conflict is resolved. Receiving the conflict resolution message by the UE may determine that the random access is completed, and then the data may be sent through the uplink channel.
  • the embodiment of the present invention provides a data transmission method. As shown in FIG. 1, the method includes the following steps: Step 101: A UE selects a preamble sequence, and obtains an uplink time-frequency resource and a downlink time-frequency resource corresponding to the preamble sequence.
  • the embodiments of the present invention and the following are the UEs in the example, which are collective names of electronic devices corresponding to the base station, including: a user's handheld device (such as a mobile phone), and an electronic device for measuring data with a signal transmitting device (such as household electric meters, water level detectors, smoke alarms, etc.
  • a user's handheld device such as a mobile phone
  • an electronic device for measuring data with a signal transmitting device Such as household electric meters, water level detectors, smoke alarms, etc.
  • LTE sets 64 preamble sequences for each cell, and each preamble sequence is orthogonal to each other.
  • less than 64 preamble sequences can be set according to the load condition of M2M data transmission of each cell, and each preamble sequence is still orthogonal, but the number of orthogonal preamble sequences that need to be maintained is reduced. Therefore, the length of the preamble sequence is shortened, thereby reducing the amount of data of the preamble sequence, which can reduce signaling overhead.
  • the preamble ⁇ 1 J may use an Orthogonal Frequency Division Multiplexing (OFDM) symbol, or a preamble sequence of the currently used Format 4.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the specific selection method of the preamble sequence may be a random selection or a sequential selection, and the specific selected manner is not limited herein.
  • the UE locally stores a first correspondence set of the preamble sequence and the uplink time-frequency resource, and a second correspondence set of the preamble sequence and the downlink time-frequency resource.
  • the first corresponding relationship set includes a correspondence between at least one set of preamble sequences and uplink time-frequency resources, where the second corresponding relationship set includes Corresponding relationship between at least one set of preamble sequences and downlink time-frequency resources.
  • the uplink time-frequency resource and the downlink time-frequency resource corresponding to the preamble sequence can be obtained by searching the first correspondence relationship set and the second correspondence relationship set.
  • the first correspondence relationship set and the second correspondence relationship set may be respectively stored in different data tables, or may be stored in the same storage table.
  • the preamble sequence is used as a keyword to find a unique uplink time-frequency resource and a unique downlink time-frequency resource corresponding to the preamble sequence.
  • Step 102 Send the preamble sequence to the base station, so that the base station decodes the preamble sequence and determines the uplink time-frequency resource and the downlink time-frequency resource corresponding to the decoded preamble sequence according to the decoded preamble sequence.
  • the preamble sequence selected in the step 101 is sent to the base station, and the base station is configured to determine the uplink time-frequency resource and the downlink time-frequency resource corresponding to the decoded preamble sequence according to the preamble sequence.
  • the uplink time-frequency resource is used by the UE to upload a data packet to the base station, where the downlink time-frequency resource is used by the base station to send the decoding response information to the UE. If multiple UEs simultaneously select the same preamble sequence and send the preamble sequence to the base station at the same time, each preamble sequence signal will interfere with each other, causing the signal strength of the preamble sequence to decrease, and the base station cannot resolve the preamble sequence.
  • the base station can determine the uplink time-frequency resource and the downlink time-frequency resource corresponding to the decoded preamble sequence, and send the decoding response information to the UE through the downlink time-frequency resource.
  • Step 103 If the decoding response information sent by the base station is received by the downlink time-frequency resource, the data packet is sent to the base station by using the uplink time-frequency resource, and the decoding response information is used to indicate that the base station successfully decodes the preamble sequence.
  • the decoding response information may be an identification information, or may be a combination of the identification information and the preamble sequence. For example: If the identification information is "1", the UE determines that the base station successfully decodes the preamble sequence. If the decoding response information is a combination of the identification information and the preamble sequence, the UE determines whether the received preamble sequence is the same as the preamble sequence sent by the UE, and if the decoding information is "1", Then, the UE determines that the base station successfully decodes the preamble sequence. In addition, the decoding response information may further include time synchronization information, and the UE adjusts its own time setting according to the received time synchronization information to synchronize with the base station in time series.
  • the decoding response information sent by the base station is received by the downlink time-frequency resource corresponding to the preamble sequence, it indicates that the base station knows the uplink time-frequency resource used by the UE for uploading data and the downlink time-frequency resource that is waiting to be received, and is in the uplink.
  • the data packet waiting for the UE to be sent on the frequency resource If the decoding response information sent by the base station is received by the downlink time-frequency resource corresponding to the preamble sequence, it indicates that the base station knows the uplink time-frequency resource used by the UE for uploading data and the downlink time-frequency resource that is waiting to be received, and is in the uplink. The data packet waiting for the UE to be sent on the frequency resource.
  • the UE can acquire the uplink time-frequency resource and the downlink time-frequency resource corresponding to the preamble sequence, and when receiving the decoding response information sent by the base station by using the downlink time-frequency resource, pass the uplink time-frequency The resource sends the packet to the base station.
  • the step of acquiring the time-frequency resource corresponding to the preamble sequence is performed by the base station.
  • the base station needs to send a series of information of the time-frequency resource corresponding to the preamble sequence to the UE, so that the UE acquires the time-frequency resource. The number of signaling is increased.
  • the UE needs to determine uplink time-frequency resources and downlink time-frequency resources according to a series of information sent by the base station.
  • the base station needs to synchronize with the UE and resolve the conflict, and multiple signaling is generated in these two steps.
  • the UE does not need to obtain the uplink time-frequency resource and the downlink time-frequency resource corresponding to the preamble sequence according to the series of information sent by the base station, and realize the technical effect of locally acquiring the uplink time-frequency resource and the downlink time-frequency resource corresponding to the preamble sequence.
  • the receiving base station transmits the data transmission, thereby avoiding the signaling overhead in the random response process in the prior art.
  • the UE can determine that the synchronization with the base station does not conflict according to the decoding response information sent by the base station, which can further reduce randomness.
  • the signaling overhead in the access process improves the transmission efficiency.
  • the embodiment of the present invention further provides a method for data transmission. This embodiment is further described in step 101 in the embodiment shown in FIG. 1.
  • the uplink time-frequency resource and the downlink time-frequency resource corresponding to the acquiring the preamble sequence are included. :
  • the acquiring the downlink time-frequency resource corresponding to the preamble sequence includes: acquiring a downlink time-frequency resource corresponding to the preamble sequence from a pre-stored second correspondence relationship set, where the second correspondence relationship set is used to represent Correspondence between at least one preamble sequence and downlink time-frequency resources Department.
  • the UE may obtain the first correspondence set by using two methods of pre-storage and base station transmission.
  • the first correspondence set may be loaded in signaling. Since the base station is responsible for other data transmission services such as voice calls, in addition to being responsible for the M2M communication, the uplink time-frequency resources used for the UE to upload in the base station may be fixed or temporarily allocated by the base station. For the temporary allocation of the base station, after the first correspondence set is sent to the UE by signaling, the base station can dynamically adjust the uplink time-frequency resources of the base station to improve the usage efficiency of the base station resources. In addition, by copying the mobile device to the UE, that is, pre-storing the first correspondence relationship set and the second correspondence relationship set, network transmission is not required, and the base station burden can be alleviated.
  • the method for data transmission provided by the embodiment of the present invention can obtain the first correspondence relationship set and the second correspondence relationship set without performing network transmission in a pre-stored manner, thereby avoiding occupying a base station channel in the process of obtaining, and reducing Base station burden.
  • receiving the first corresponding relationship set sent by the base station enables the base station to dynamically adjust the internal uplink time-frequency resources and improve the use efficiency of the base station resources.
  • the embodiment of the present invention further provides a method for data transmission.
  • the embodiment is similar to the embodiment shown in FIG. 1.
  • the method further includes: Step 201: If the downlink response time information is not received by the downlink time-frequency resource in the first preset duration, the UE reselects the preamble sequence and acquires the uplink time-frequency corresponding to the preamble sequence after the second preset duration.
  • the resource and the downlink time-frequency resource are sent to the base station, so that the base station decodes the preamble sequence and determines an uplink time-frequency resource corresponding to the decoded preamble sequence according to the decoded preamble sequence.
  • Downstream time-frequency resources that is, step 101 to step 102 are performed in sequence.
  • the base station can complete the decoding of the preamble sequence and send the decoding response information to the UE within a first preset duration after the UE issues the preamble sequence, such as 4 ms. If the downlink response time information determined in step 101 is not received by the UE in the first preset duration, the UE generates another fallback window, and after the second preset duration, for example, 50 ms, re-executes. Step 101, and step 1 01 to step 102 are sequentially performed. The fourth preset time is the same as the length of the back window.
  • Another method for data transmission provided by the present invention can determine whether to re-execute the transmission preamble sequence and subsequent steps according to the reception condition of the decoding response information, to prevent the UE from blindly passing without knowing whether the base station successfully decodes the preamble sequence.
  • the uplink time-frequency resource corresponding to the preamble sequence transmits data packets, thereby reasonably utilizing channel resources, and improving the accuracy of data packet transmission.
  • the embodiment of the present invention further provides a method for data transmission.
  • the embodiment is similar to the embodiment shown in FIG. 1 , and the method further includes: Step 301: If the acknowledgment information sent by the base station is not received within the third preset duration, the UE reselects the preamble sequence after the fourth preset duration, and acquires the uplink time-frequency resource and the downlink time-frequency resource corresponding to the preamble sequence.
  • Step 101 to step 102 are performed in sequence.
  • the confirmation information is used to indicate that the base station has successfully received the data packet sent by the UE. If the acknowledgement information sent by the base station is received, the UE determines that the base station successfully receives the data packet.
  • the base station sends an acknowledgement message to the UE, such as 12 ms (milliseconds) after the UE issues the preamble sequence, that is, within the third preset duration. If the UE does not receive the confirmation information, a back window is generated, and after the fourth preset duration, such as I s , step 101 is performed again, and steps 101 to 102 are sequentially performed.
  • the fourth preset time is the same as the length of the back window.
  • the method for data transmission according to the embodiment of the present invention can determine whether to re-execute the sending preamble sequence and the subsequent steps according to the receiving situation of the acknowledgment information, so as to prevent the UE from blindly transmitting the data packet without knowing whether the data packet is successfully sent. Achieve reasonable use of uplink time-frequency resources and improve the accuracy of data packet transmission.
  • the embodiment of the present invention further provides a data transmission method, which is similar to the embodiment shown in FIG. 1 , except that the decoding response information received in step 102 further carries the data sent by the user.
  • the downlink time-frequency resource corresponding to the preamble sequence may be obtained in step 101.
  • the uplink time-frequency resource may be obtained according to the decoding response information received in step 102, and the uplink time-frequency resource is used to send data to the base station. package.
  • step 119 only the second correspondence set is pre-stored. At this time, the uplink time-frequency resource used by the user to transmit data is no longer corresponding to the preamble sequence, but is dynamically acquired in the decoding response information received in step 102.
  • the embodiment of the present invention further provides a data transmission method. As shown in FIG. 4, the method includes the following steps: Step 401: A base station receives a preamble sequence sent by a UE.
  • Step 402 Decode the preamble sequence. If the decoding succeeds, determine the uplink time-frequency resource and the downlink time-frequency resource corresponding to the decoded preamble sequence according to the decoded preamble sequence.
  • the base station can determine the uplink time-frequency resource and the downlink time-frequency resource corresponding thereto according to the received preamble sequence.
  • the base station can determine whether the information sent by the UE is a preamble sequence by identifying a flag sent by the UE to the information, and obtain a preamble sequence by parsing the received information to complete decoding. If multiple UEs select the same preamble sequence and send it to the base station at the same time, the decoding fails because the preamble sequences collide with each other and the base station cannot identify the information sent by the UE.
  • the base station waits for the UE to resend the data so that the preamble sequence is decoded again.
  • Step 403 Send decoding response information to the UE by using a downlink time-frequency resource.
  • the decoding response information is used to indicate that the base station successfully decodes the preamble sequence.
  • the decoding response information is sent to the UE, so that the UE knows whether the base station successfully decodes the preamble sequence.
  • the decoding response information may be an identification information or a combination of identification information and a preamble sequence. For example: If the identification information is "1", it indicates that the base station successfully decodes the preamble sequence. If the decoding response information is a combination of the identification information and the preamble sequence, the UE determines whether the received preamble sequence is the same as the preamble sequence sent by the UE, if the identification information is "1", and if the identification information is "1" , indicating that the base station successfully decodes the preamble sequence. In addition, the decoding response information may further include time synchronization information, so that the UE adjusts its own time setting according to the received time synchronization information, and synchronizes with the base station in time series.
  • Step 404 Receive, by using an uplink time-frequency resource, a data packet sent by the UE. After receiving the decoding response message, the UE sends a data packet to the base station, and the base station receives the data packet on the uplink time-frequency resource.
  • the base station is capable of decoding a preamble sequence sent by the UE, and determining, according to the decoded preamble sequence, an uplink time-frequency resource used by the UE to upload the data packet, and the UE is configured to receive the decoding response. And a downlink time-frequency resource of the message, and receiving, by using the uplink time-frequency resource, a data packet sent by the UE.
  • the base station needs to send the information of the time-frequency resource to the UE in the random access response, and the base station needs to establish a synchronous connection with the UE, and sends a conflict resolution message to the UE, so that the UE determines that the data packet can be sent, and generates a large amount of signaling.
  • the UE can determine the uplink time-frequency resource and the downlink time-frequency resource, and the base station does not need to report the uplink time-frequency resource and the downlink time-frequency resource to the UE, thereby reducing system overhead. If the UE does not receive the decoding response information, it may determine that the base station fails to decode.
  • the UE can determine whether the preamble sequence decoded by the base station is the preamble sequence selected by the base station according to the received decoding response information, thereby improving the decoding accuracy and improving the efficiency of data transmission.
  • the embodiment of the present invention further provides a method for data transmission.
  • the embodiment is similar to the embodiment shown in FIG. 4, and the method further includes: Step 501: Sending a first correspondence set to the UE, where the first correspondence set is used to indicate a correspondence between the at least one preamble sequence and the uplink time-frequency resource, so that the UE determines the uplink time-frequency resource according to the first correspondence set.
  • the transmission service that the base station is responsible for includes the telephone service and the multimedia service. Since the M2M service changes according to the distribution of devices in each cell, the base station needs to determine the number of time-frequency resources allocated to the M2M according to the time-frequency resource overhead required by each communication service. After the determining, the set of the relationship between the preamble sequence and the uplink time-frequency resource used by the M2M service, that is, the first correspondence set, is sent to the UE, so that the UE determines the uplink time-frequency resource corresponding to the preamble sequence.
  • a data transmission method provided by the embodiment of the present invention can reasonably allocate time-frequency resources for the M2M according to the uplink time-frequency resource usage of the base station, and improve resource utilization of the base station.
  • the embodiment of the present invention further provides a method for data transmission. As shown in FIG. 6, the embodiment is similar to the embodiment shown in FIG. 4, and the method further includes: Step 601: If the data packet is successfully received, an acknowledgement message is sent to the UE.
  • the confirmation information is used to indicate that the base station has successfully received the data packet.
  • the base station After receiving the data packet sent by the UE by using the uplink time-frequency resource corresponding to the decoded preamble sequence, the base station sends an acknowledgement message to the UE, so that the UE knows that the data packet has been successfully sent.
  • the method for transmitting data can send an acknowledgment message to the UE after determining that the data packet is successfully received, so that the UE can determine whether to re-execute the sending preamble sequence and subsequent steps according to the receiving situation of the acknowledgment information, to avoid
  • the UE blindly transmits data packets without knowing whether the data packet is successfully transmitted, thereby achieving reasonable utilization of channel resources and improving the accuracy of data packet transmission.
  • the embodiment of the present invention further provides a data transmission method, which is similar to the embodiment shown in FIG. 4, except that in step 403, the decoding response information further carries the data sent by the user.
  • the decoding response information further carries the data sent by the user.
  • Uplink time-frequency resource information At this time, the UE may learn the uplink time-frequency resource according to the decoding response information in step 403, and send the data packet to the base station by using the uplink time-frequency resource.
  • the above embodiments may be implemented in a combination of two or two, or may be implemented in a plurality of combinations.
  • An embodiment of the present invention further provides a user equipment UE, as shown in FIG. 7, including:
  • the selecting unit 71 is configured to select a preamble sequence.
  • the obtaining unit 72 is configured to acquire the uplink time-frequency resource and the downlink time-frequency resource corresponding to the preamble sequence according to the corresponding relationship set and the preamble sequence selected by the selecting unit 71.
  • the sending unit 73 is configured to send the preamble sequence acquired by the selecting unit 71 to the base station, so that the base station decodes the preamble sequence and determines the decoded preamble according to the decoded preamble sequence.
  • the receiving unit 74 is configured to receive, by using the downlink time-frequency resource, decoding response information sent by the base station.
  • the sending unit 73 is further configured to: when the receiving unit 74 receives the decoding response sent by the base station When the information is received, the data packet is sent to the base station by using the uplink time-frequency resource, where the decoding response information is used to indicate that the base station successfully decodes the preamble sequence.
  • LTE sets 64 preamble sequences for each cell, and each preamble sequence is mutually orthogonal.
  • less than 64 preamble sequences can be set according to the load condition of M2M data transmission of each cell, and each preamble sequence is still orthogonal, but the number of orthogonal preamble sequences that need to be maintained is reduced. Therefore, the length of the preamble sequence is shortened, thereby reducing the amount of data of the preamble sequence, which can reduce signaling overhead.
  • the preamble sequence may use an OFDM symbol or a preamble sequence of the currently used format 4.
  • the selection method used by the selection unit 71 when selecting the preamble sequence may be a random selection or a sequential selection, and the specific selected manner is not limited herein.
  • the obtaining unit 72 can obtain the uplink time-frequency resource and the downlink time-frequency resource corresponding to the preamble sequence by searching the first correspondence relationship set and the second correspondence relationship set.
  • the first corresponding relationship set and the second corresponding relationship set may be respectively stored in different data tables, or may be stored in the same storage table.
  • the acquiring unit preamble sequence is used as a keyword to find a unique uplink time-frequency resource and a unique downlink time-frequency resource corresponding to the preamble sequence.
  • the selecting unit 71 selects a preamble sequence in the preamble sequence set, and the obtaining unit 72 searches for the uplink time frequency corresponding to the selected preamble sequence selected by the selecting unit 71 from the first correspondence relationship set and the second correspondence relationship set respectively. Resources and downlink time-frequency resources.
  • the sending unit 73 sends the preamble sequence selected by the selecting unit 71 to the base station, and the base station can determine the uplink time-frequency resource and the downlink time-frequency resource corresponding to the decoded preamble sequence according to the preamble sequence. If the selection unit 71 of multiple UEs simultaneously selects the same preamble sequence, and the transmitting unit 7 3 of each UE simultaneously transmits the preamble sequence to the base station, each preamble sequence signal will interfere with each other, causing the signal strength of the preamble sequence to decrease, and the base station cannot The preamble sequence is parsed. After successfully decoding the preamble sequence, the base station can determine the uplink time-frequency resource and the downlink time-frequency resource corresponding to the decoded preamble sequence, and send the decoding response information to the UE through the downlink time-frequency resource.
  • the decoding response information received by the receiving unit 74 may be an identification information, or may be a combination of the identification information and the preamble sequence. For example: If the identification information is "1", the receiving unit 74 can Determining that the base station successfully decodes the preamble sequence. If the decoding response information is a combination of the identification information and the preamble sequence, the receiving unit 74 determines whether the received preamble sequence is the same as the preamble sequence sent by the UE, in addition to determining whether the identification information is "1", if the same and the identification information is "1", the receiving unit 74 determines that the base station successfully decodes the preamble sequence. In addition, the decoding response information may further include time synchronization information, and the receiving unit 74 adjusts its own time setting according to the received time synchronization information to synchronize with the base station in time series.
  • the receiving unit 74 receives the decoding response information sent by the base station, it indicates that the base station knows the uplink time-frequency resource to be used by the transmitting unit 73 at this time, and waits for the data packet sent by the transmitting unit 73 on the uplink time-frequency resource.
  • the transmitting unit 73 transmits the data packet to the base station, so that the base station transmits the data packet to the core network device.
  • the acquiring unit 72 of the present invention can obtain the uplink time-frequency resource and the downlink time-frequency resource corresponding to the preamble sequence, and when the receiving unit 74 receives the decoding response information sent by the base station by using the downlink time-frequency resource, The unit 73 sends the data packet to the base station by using the uplink time-frequency resource acquired by the acquiring unit 72.
  • the function of obtaining the time-frequency resource corresponding to the preamble sequence is performed by the base station in the prior art. In the random access response, the base station needs to send a series of information of the time-frequency resource corresponding to the preamble sequence to the UE, so that the UE acquires the time-frequency resource. Therefore, the number of signaling is increased.
  • the UE needs to determine uplink time-frequency resources and downlink time-frequency resources according to a series of information sent by the base station.
  • the base station needs to synchronize with the UE and resolve the conflict, and multiple signals are generated in these two functions.
  • the acquiring unit 72 can obtain the uplink time-frequency resource and the downlink time-frequency resource corresponding to the preamble sequence according to the series of information sent by the base station, and realize the technical effect of locally acquiring the uplink time-frequency resource and the downlink time-frequency resource, and receiving After receiving the decoding response information sent by the base station, the unit 74 can directly perform data transmission according to the uplink time-frequency resource or the downlink time-frequency resource determined locally by the acquiring unit 72, thereby avoiding the system overhead in the random response process in the prior art. The receiving unit 74 can determine that the synchronization with the base station does not occur according to the decoding response information sent by the base station, which can further reduce the signaling overhead in the random access process and improve the transmission efficiency.
  • An embodiment of the present invention further provides another UE.
  • the embodiment is similar to the embodiment shown in FIG. 7.
  • the difference is that the UE further includes:
  • the storage unit 81 is configured to store a correspondence set between the preamble sequence and an uplink time-frequency resource and a downlink time-frequency resource, and a preamble sequence set.
  • the storage unit 81 is further configured to pre-store the first correspondence set, where the first correspondence set is used to indicate a correspondence between the at least one preamble sequence and the uplink time-frequency resource.
  • the obtaining unit 72 is further configured to: acquire the uplink time-frequency resource corresponding to the preamble sequence from the first corresponding relationship set pre-stored by the storage unit 81.
  • the receiving unit 74 is further configured to receive the first correspondence set sent by the base station.
  • the obtaining unit 72 is further configured to: acquire the uplink time-frequency resource corresponding to the preamble sequence from the first correspondence set received by the receiving unit 74.
  • the storage unit 81 is further configured to pre-store a second correspondence set, where the second correspondence set is used to indicate a correspondence between at least one preamble sequence and downlink time-frequency resources.
  • the acquiring unit is further configured to: acquire, from the second corresponding relationship set pre-stored by the storage unit, a downlink time-frequency resource corresponding to the preamble sequence.
  • the storage unit 81 stores a first correspondence set of the preamble sequence and the uplink time-frequency resource, and a second correspondence set of the preamble sequence and the downlink time-frequency resource.
  • the first correspondence set includes a correspondence between at least one set of preamble sequences and uplink time-frequency resources
  • the second corresponding relationship set includes a correspondence between at least one set of preamble sequences and downlink time-frequency resources.
  • the obtaining unit 72 can obtain the first correspondence set by the storage unit 81 pre-storing and receiving unit 74 receiving the base station to send the two methods.
  • the first correspondence relationship set may be loaded in the signaling. Since the base station is responsible for other data transmission services such as voice calls in addition to the M2M communication, the uplink time-frequency resources used by the transmitting unit 73 in the base station may be fixed or temporarily allocated by the base station. For the temporary allocation of the base station, the first corresponding relationship set is sent to the receiving unit 74 by signaling, so that the base station can dynamically adjust the internal uplink time-frequency resources and improve the use efficiency of the base station resources.
  • network transmission is not required, and the base station burden can be alleviated.
  • the UE provided by the embodiment of the present invention can be pre-stored by the storage unit 81.
  • the first transmission relationship set and the second corresponding relationship set are obtained by the network transmission, so as to avoid occupying the base station channel in the process of obtaining, and reducing the burden on the base station.
  • the receiving unit 74 receives the first correspondence set sent by the base station, enables the base station to dynamically adjust the internal uplink time-frequency resources, and improves the usage efficiency of the base station resources.
  • the embodiment of the present invention further provides another UE.
  • the embodiment is further described as the embodiment shown in FIG. 7.
  • the selecting unit 71 is further configured to: when the receiving unit 74 is not received within the first preset duration When the decoding response information is sent by the base station, the preamble sequence is reselected after the second preset duration.
  • the base station can complete the decoding of the preamble sequence and transmit the decoding response information to the receiving unit 74 within a first predetermined duration after the transmitting unit 73 issues the preamble sequence, such as 1 ⁇ 28. If the receiving unit 74 does not receive the decoding response information within the first preset duration, the processing unit 75 generates another back-off window, and selects the preamble sequence by the selecting unit 71 again for a second preset duration, such as 50 ms. . The second preset time is the same as the length of the back window.
  • the receiving unit 74 can determine whether to select the preamble sequence by the selecting unit 71 according to whether the decoding response information is received, and prevent the transmitting unit 73 from blindly knowing whether the base station successfully decodes the preamble sequence.
  • the uplink time-frequency resource corresponding to the preamble sequence is used to transmit data packets, thereby reasonably utilizing channel resources, and improving the accuracy of data packet transmission.
  • the embodiment of the present invention further provides a UE, which is further described as the embodiment shown in FIG. 7.
  • the receiving unit 74 is further configured to receive the acknowledgement information sent by the base station, where the acknowledgement information is used to indicate the The base station has successfully received the data packet sent by the transmitting unit.
  • the selecting unit 71 is further configured to: when the receiving unit 74 does not receive the acknowledgement information sent by the base station in the third preset duration, reselect the preamble sequence after the fourth preset duration.
  • the base station After the sending unit 73 sends the data packet to the base station, the base station needs to forward the data packet to the core network device to continue the transmission. If there is an obstacle in the communication between the base station and the core network device, the acknowledgment information cannot be generated, that is, the data packet does not exist. Successfully sent. If the communication is normal, the base station transmits an acknowledgement message to the receiving unit 74, for example, within 12 ms, that is, within a third preset time period after the transmitting unit 73 issues the preamble sequence. If the receiving unit 74 does not receive the confirmation information, a back window is generated, and The four preset durations, such as I s , are again selected by the selection unit 71 to select the preamble sequence. The fourth preset time is the same as the length of the back window.
  • the receiving unit 74 can determine whether to select the preamble sequence by the selecting unit 71 according to whether the acknowledgment information is received, and prevent the sending unit 73 from blindly transmitting without knowing whether the data packet is successfully sent.
  • the data packet and then rationally utilize the uplink time-frequency resources to improve the accuracy of data packet transmission.
  • the embodiment of the present invention further provides a UE, which is similar to the embodiment shown in FIG. 7 , except that the decoding response information received by the receiving unit 74 further carries the uplink used by the user to send data.
  • Time-frequency resource information At this time, the obtaining unit 72 may only acquire the downlink time-frequency resource corresponding to the preamble sequence; the acquiring unit 72 may acquire the uplink time-frequency resource according to the decoding response information received by the receiving unit 74, and the sending unit passes the acquiring unit.
  • the uplink time-frequency resource acquired by 72 transmits a data packet to the base station.
  • the storage unit 81 may only pre-store the second correspondence set. At this time, the uplink time-frequency resource information used by the user may be acquired in the decoding response information received by the receiving unit 74.
  • An embodiment of the present invention further provides a base station, as shown in FIG. 9, including:
  • the receiving unit 91 is configured to receive a preamble sequence sent by the UE.
  • the decoding unit 92 is configured to decode the preamble sequence received by the receiving unit 91.
  • the determining unit 93 is configured to determine, according to the decoded preamble sequence and the corresponding relationship set obtained by the decoding unit 92, the uplink time-frequency resource and the downlink time-frequency resource corresponding to the decoded preamble sequence, when the decoding unit 92 is successfully decoded. .
  • a sending unit 94 configured to: according to the downlink time-frequency resource determined by the determining unit 93,
  • the UE sends decoding response information, where the decoding response information is used to indicate that the decoding unit successfully decodes the preamble sequence.
  • the receiving unit 91 is further configured to receive, by the uplink time-frequency resource determined by the determining unit 93, a data packet sent by the UE.
  • the embodiment of the present invention further provides another base station.
  • the embodiment is similar to the embodiment shown in FIG. 9.
  • the base station further includes: a storage unit 1001, configured to store the A set of correspondence between the preamble sequence and the uplink time-frequency resource and the downlink time-frequency resource, and a set of preamble sequences.
  • the storage unit 1 001 stores the first corresponding relationship set and the second corresponding relationship set, so the determining unit 93 can determine the uplink time-frequency resource and the downlink time-frequency resource corresponding thereto according to the received preamble sequence.
  • the decoding unit 92 can determine whether the information sent by the UE is a preamble sequence by identifying a flag sent by the UE to the information, and obtain a preamble sequence by parsing the received information to complete decoding. If multiple UEs select the same preamble sequence and send to the base station at the same time, the decoding unit 92 fails to be decoded because the preamble sequences collide with each other and the interfering base station cannot identify the information sent by the UE. When the decoding fails, the receiving unit 91 waits for the UE to resend the data, so that the decoding unit 92 decodes the preamble sequence again.
  • the sending unit 94 sends the decoding response information to the UE, so that the UE knows whether the base station successfully decodes the preamble sequence.
  • the decoding response information may be an identification information or a combination of identification information and a preamble sequence. For example: If the identification information is "1", it indicates that the base station successfully decodes the preamble sequence. If the decoding response information is a combination of the identification information and the preamble sequence, the UE determines whether the received preamble sequence is the same as the preamble sequence sent by the UE, if the identification information is "1", and if the identification information is "1" , indicating that the base station successfully decodes the preamble sequence. In addition, the decoding response information may further include time synchronization information, so that the UE adjusts its own time setting according to the received time synchronization information, and synchronizes with the base station in time series.
  • the UE After the sending unit 94 sends the decoding response message, the UE sends a data packet to the base station, and the receiving unit 91 receives the data packet sent by the UE by using the uplink time-frequency resource.
  • a base station is provided by the embodiment of the present invention.
  • the decoding unit 92 can decode the preamble sequence sent by the UE, and the determining unit 93 determines, according to the decoded preamble sequence, the uplink time-frequency resource used by the UE to upload the data packet, and the UE is used for receiving and decoding.
  • the receiving unit 91 receives the data packet sent by the UE by using the uplink time-frequency resource in response to the downlink time-frequency resource of the message.
  • the base station needs to send time-frequency resource information to the UE in the random access response, and the base station needs to establish a synchronous connection with the UE, and send a conflict resolution message to the UE, so that the UE determines that the data packet can be sent, and generates a large amount of signaling. Overhead.
  • this invention since the UE can determine the uplink time-frequency resource and the downlink time-frequency resource, the sending unit 94 does not need to notify the UE of the uplink time-frequency resource and the downlink time-frequency resource, thereby reducing the system overhead. If the UE does not receive the decoding response information, it may determine that the base station fails to decode.
  • the UE can determine whether the preamble sequence decoded by the base station is the preamble sequence selected by the base station according to the received decoding response information, thereby improving the decoding accuracy and improving the efficiency of data transmission.
  • the determining unit 93 can allocate the uplink time-frequency resource to the M2M according to the uplink time-frequency resource usage of the base station, and the sending unit 94 sends the corresponding relationship between the uplink time-frequency resource and the preamble sequence to the UE to improve the resource utilization of the base station. If the UE does not receive the decoding response information sent by the transmitting unit 94, it may be determined that the decoding unit 92 fails to decode. This prevents the UE from blindly transmitting data packets and improves transmission efficiency. Meanwhile, when the decoding information is the identification information, since the combination of the data amount and the identification information and the preamble sequence is small, the signaling overhead can be saved.
  • the UE can determine whether the preamble sequence decoded by the base station is the preamble sequence selected by the base station according to the received decoding response information, thereby improving the decoding determination of the decoding, and ensuring that the UE and the base station are in the same Data transmission is performed on uplink time-frequency resources and downlink time-frequency resources corresponding to a preamble sequence, thereby improving data transmission efficiency.
  • the embodiment of the present invention further provides a base station, which is further described in the embodiment shown in FIG. 9.
  • the sending unit is further configured to send, to the UE, a first correspondence relationship set, where the first correspondence The relationship set is used to indicate a correspondence between the at least one preamble sequence and the uplink time-frequency resource, so that the UE determines the uplink time-frequency resource according to the first correspondence relationship set.
  • the determining unit 93 needs to determine the amount of time-frequency resources allocated to the M2M according to the uplink time-frequency resource overhead required by each communication service. After the determining unit 93 determines, the sending unit 94 sends the relationship set of the preamble sequence and the uplink time-frequency resource used by the M2M service, that is, the first corresponding relationship set, to the UE, so that the UE determines the uplink time-frequency resource corresponding to the preamble sequence. .
  • the determining unit 93 can allocate uplink time-frequency resources to the M2M according to the uplink time-frequency resource usage of the base station, and improve the resource utilization of the base station.
  • the embodiment of the present invention further provides another base station. The embodiment is further described as the embodiment shown in FIG. 9.
  • the sending unit is further configured to: when the receiving unit successfully receives the data packet, The UE sends an acknowledgement message, and the acknowledgement information is used to indicate that the receiving unit has successfully received the data packet.
  • the sending unit 94 sends an acknowledgement message to the UE to let the UE know that the data packet has been successfully transmitted.
  • Another base station provided by the embodiment of the present invention can send the acknowledgment information to the UE by the sending unit 94 after the determining unit 93 determines that the data packet is successfully received, so that the UE can determine whether to re-execute the sending preamble sequence according to the receiving condition of the acknowledgment information. And the subsequent steps, to avoid the UE blindly transmitting the data packet without knowing whether the data packet is successfully sent, thereby reasonably utilizing the channel resource and improving the accuracy of the data packet transmission.
  • the embodiment of the present invention further provides a base station, which is similar to the embodiment shown in FIG. 9, except that the decoding response information sent by the sending unit 94 further carries the data sent by the user. Uplink time-frequency resource information.
  • the sending unit 94 sends the decoding response information to the UE, so that the UE learns the uplink time-frequency resource according to the decoding response information, and sends the data packet to the base station by using the uplink time-frequency resource.
  • the embodiment of the present invention further provides a system for data transmission, as shown in FIG. 11, including a UE 1101 as shown in FIG. 8 and a base station 1 102 as shown in FIG. 10;
  • the UE 1101 is configured to select a preamble sequence, and acquire an uplink time-frequency resource and a downlink time-frequency resource corresponding to the preamble sequence; and send the preamble sequence to the base station 1102.
  • the base station 1102 is configured to receive a preamble sequence sent by the user equipment UE1101, and decode the preamble sequence. If the decoding succeeds, determine the uplink time-frequency resource and the downlink corresponding to the decoded preamble sequence according to the decoded preamble sequence. a time-frequency resource; the decoding response information is sent to the UE 1101 by using the downlink time-frequency resource, where the decoding response information is used to indicate that the base station 1102 successfully decodes the preamble sequence.
  • the UE 1101 is further configured to: when the decoding response information sent by the base station 1 102 is received by the downlink time-frequency resource, to the base station 1102 by using an uplink time-frequency resource corresponding to the preamble sequence. Send a packet.
  • the base station 1102 is further configured to receive, by using the uplink time-frequency resource, the data packet sent by the UE11.
  • the UE 1101 can locally acquire the uplink time-frequency resource and the downlink time-frequency resource corresponding to the preamble sequence, and when receiving the decoding response information sent by the base station 1102, the data is sent by using the uplink time-frequency resource.
  • the packet is sent directly to the base station 11 02.
  • the step of acquiring the time-frequency resource corresponding to the preamble sequence is completed by the base station 010.
  • the base station 1102 needs to send a series of information of the time-frequency resource corresponding to the preamble sequence to the UE 1101, so that the UE1 101 acquires To this time-frequency resource, thereby increasing the amount of signaling.
  • the base station 1102 needs to synchronize with the UE 1101 and resolve the conflict, and multiple signaling is generated in these two steps.
  • the UE 1101 can obtain the time-frequency resources locally, thereby avoiding the signaling overhead in the random response process in the prior art.
  • the UE 1101 can determine that the synchronization with the base station 1102 is synchronized according to the decoding response information sent by the base station 1102. The signaling overhead in the random access process can be further reduced, and the transmission efficiency is improved.
  • the base station 1 102 can decode the preamble sequence sent by the UE 1101, and determine the uplink time-frequency resource used by the UE 11 01 for uploading the data packet and the downlink time-frequency resource used by the UE 11 01 to receive the decoding response message according to the decoded preamble sequence.
  • the time-frequency resource receives the data packet sent by the UE 1101.
  • the base station 102 needs to send the information of the time-frequency resource to the UE 011 in the random access response, and the base station 1102 needs to establish a synchronous connection with the UE 1101, and sends a conflict resolution message to the UE 011 to enable the UE1 101 to determine that the data can be sent. Packets, which generate a lot of signaling overhead.
  • the UE 1101 can determine the uplink time-frequency resource and the downlink time-frequency resource according to itself, thereby reducing system overhead and improving transmission efficiency.
  • An embodiment of the present invention further provides a user equipment UE, as shown in FIG. 12, including:
  • the processor 1201 is configured to select a preamble sequence according to the preamble sequence set, and obtain an uplink time-frequency resource and a downlink time-frequency resource corresponding to the preamble sequence according to the corresponding relationship set and the selected preamble sequence.
  • the transmitter 1202 is configured to send the preamble sequence acquired by the processor 1201 to a base station, so that the base station decodes the preamble sequence and determines the solution according to the decoded preamble sequence.
  • the uplink time-frequency resource and the downlink time-frequency resource corresponding to the preamble sequence after the code are configured to send the preamble sequence acquired by the processor 1201 to a base station, so that the base station decodes the preamble sequence and determines the solution according to the decoded preamble sequence.
  • the receiver 1203 is configured to receive, by using the downlink time-frequency resource, decoding response information that is sent by the base station, where the decoding response information is used to indicate that the base station successfully decodes the preamble sequence.
  • the transmitter 1202 is further configured to: when the receiver 1203 receives the decoding response information sent by the base station, send the data packet to the base station by using an uplink time-frequency resource corresponding to the preamble sequence.
  • the embodiment of the present invention further provides a UE, which is similar to the embodiment shown in FIG. 12, and the difference is that the UE further includes:
  • the memory 1 301 is configured to store a correspondence set of the preamble sequence and an uplink time-frequency resource and a downlink time-frequency resource, and a preamble sequence set.
  • the memory 1 301 is further configured to pre-store the first correspondence set, where the first correspondence set is used to indicate a correspondence between the at least one preamble sequence and the uplink time-frequency resource.
  • the processor 1201 is further configured to: obtain the uplink time-frequency resource corresponding to the preamble sequence by pre-storing the first correspondence set from the memory 1 301.
  • the receiver 1203 is further configured to receive the first correspondence set sent by the base station.
  • the processor 1201 is further configured to: acquire the uplink time-frequency resource corresponding to the preamble sequence from the first correspondence set received by the receiver 1203.
  • the memory 1 301 is further configured to pre-store the second correspondence set, where the second correspondence set is used to indicate a correspondence between the at least one preamble sequence and the downlink time-frequency resource.
  • the processor 1201 is further configured to: obtain the downlink time-frequency resource corresponding to the preamble sequence from the second corresponding relationship set pre-stored by the memory 1 301.
  • the embodiment of the present invention further provides a UE.
  • the embodiment is further described as the embodiment shown in FIG. 12.
  • the processor 1201 is further configured to: when the receiver 1203 passes the preamble within a first preset duration When the downlink time-frequency resource corresponding to the sequence does not receive the decoding response information sent by the base station, the preamble sequence is reselected after the second preset duration.
  • the embodiment of the present invention further provides a UE, which is further described as an embodiment shown in FIG. 12.
  • the receiver 1203 is further configured to receive acknowledgement information sent by the base station, where the acknowledgement information is used to indicate the The base station has successfully received the data packet sent by the UE;
  • the processor 1201 is further configured to reselect the preamble sequence after the fourth preset duration when the receiver 1203 does not receive the acknowledgement information sent by the base station in the third preset duration.
  • the processor 1201 can acquire the uplink time-frequency resource and the downlink time-frequency resource corresponding to the preamble sequence, and when the receiver 1203 receives the decoding response information sent by the base station by using the downlink time-frequency resource, The device 1202 sends the data packet to the base station by using the uplink time-frequency resource acquired by the processor 1201.
  • the function of obtaining the time-frequency resource corresponding to the preamble sequence is performed by the base station in the prior art. In the random access response, the base station needs to send a series of information of the time-frequency resource corresponding to the preamble sequence to the UE, so that the UE acquires the time-frequency resource. Therefore, the number of signaling is increased.
  • the UE needs to determine uplink time-frequency resources and downlink time-frequency resources according to a series of information sent by the base station.
  • the base station needs to synchronize with the UE and resolve the conflict, and multiple signals are generated in these two functions.
  • the processor 1201 can obtain the uplink time-frequency resource and the downlink time-frequency resource corresponding to the preamble sequence according to the series of information sent by the base station, and realize the technical effect of locally acquiring the uplink time-frequency resource and the downlink time-frequency resource, and receiving After receiving the decoding response information sent by the base station, the device 1203 can directly perform data transmission according to the uplink time-frequency resource or the downlink time-frequency resource determined locally by the acquiring unit 72, thereby avoiding the system overhead in the random response process in the prior art.
  • the receiver 1203 can determine that the synchronization with the base station is not generated according to the decoding response information sent by the base station, which can further reduce the signaling overhead in the random access process and improve the transmission efficiency.
  • An embodiment of the present invention further provides a base station, as shown in FIG. 14, including:
  • the receiver 1401 is configured to receive a preamble sequence sent by the user equipment UE.
  • the processor 1402 is configured to decode the preamble sequence received by the receiver 1401, and when the decoding is successful, determine the decoding according to the decoded preamble sequence and the corresponding relationship set stored by the memory 1501.
  • the uplink sequence resource and the downlink time-frequency resource corresponding to the subsequent preamble sequence are configured to decode the preamble sequence received by the receiver 1401, and when the decoding is successful, determine the decoding according to the decoded preamble sequence and the corresponding relationship set stored by the memory 1501.
  • the uplink sequence resource and the downlink time-frequency resource corresponding to the subsequent preamble sequence are configured to decode the preamble sequence received by the receiver 1401, and when the decoding is successful, determine the decoding according to the decoded preamble sequence and the corresponding relationship set stored by the memory 1501.
  • the transmitter 1403 is configured to send, to the UE, decoding response information according to the downlink time-frequency resource determined by the processor 1402, where the decoding response information is used to indicate that the base station successfully decodes the preamble sequence.
  • the receiver 1401 is further configured to receive, by using the uplink time-frequency resource determined by the processor 1402, a data packet sent by the UE.
  • the embodiment of the present invention further provides a base station. As shown in FIG. 15, the embodiment is similar to the base station shown in FIG. 14. The difference is that the base station further includes:
  • the memory 1501 is configured to store a correspondence set between the preamble sequence and an uplink time-frequency resource and a downlink time-frequency resource, and a preamble sequence set.
  • the memory 1501 stores the first correspondence set and the second correspondence set, so the processor 1402 can determine the uplink time-frequency resource and the downlink time-frequency resource corresponding thereto according to the received preamble sequence.
  • the processor 1402 can determine whether the information sent by the UE is a preamble sequence by identifying a flag sent by the UE to the information, and obtain a preamble sequence by parsing the received information to complete decoding. If multiple UEs simultaneously select the same preamble sequence and send to the base station at the same time, the decoder 1401 fails to be decoded because the preamble sequences collide with each other and the interfering base station cannot identify the information sent by the UE. When the decoding fails, the receiver 1401 waits for the UE to resend the data, so that the processor 1402 decodes the preamble sequence again.
  • the embodiment of the present invention further provides a base station, which is further described as the embodiment shown in FIG. 14.
  • the transmitter 1403 is further configured to send a first correspondence set to the UE, where the first The corresponding relationship set is used to indicate the correspondence between the at least one preamble sequence and the uplink time-frequency resource, so that the UE determines the uplink time-frequency resource according to the first correspondence relationship set.
  • the embodiment of the present invention further provides a base station.
  • the embodiment is further described as the embodiment shown in FIG. 14.
  • the transmitter 1403 is further configured to: when the receiver 1401 successfully receives the data packet, The UE sends an acknowledgement message, where the acknowledgement information is used to indicate that the base station has successfully received the data packet.
  • a base station is provided by the embodiment of the present invention.
  • the processor 1402 can decode the preamble sequence sent by the UE, and determine, according to the decoded preamble sequence, the uplink time-frequency resource used by the UE to upload the data packet, and the UE is configured to receive the decoding response message.
  • the downlink time-frequency resource, the receiver 1401 receives the data packet sent by the UE by using the uplink time-frequency resource.
  • the base station needs to send time-frequency resource information to the UE in the random access response, and the base station needs to establish a synchronous connection with the UE, and send a conflict resolution message to the UE, so that the UE determines that the data packet can be sent, and generates a large amount of signaling.
  • the transmitter 1403 since the UE itself can determine the uplink time-frequency resource and the downlink time-frequency resource, the transmitter 1403 does not have any The uplink time-frequency resource and the downlink time-frequency resource need to be advertised to the UE, thereby reducing system overhead. If the UE does not receive the decoding response information, it may determine that the base station fails to decode. Thereby, the UE is prevented from blindly transmitting data packets, thereby improving transmission efficiency. Meanwhile, when the decoding response information is the identification information, since the data amount is relatively small in combination with the preamble sequence, the signaling overhead can be saved.
  • the UE can determine whether the preamble sequence decoded by the base station is the preamble sequence selected by the base station according to the received decoding response information, thereby improving the decoding accuracy and improving the efficiency of data transmission.
  • the processor 1402 is configured to allocate time-frequency resources to the M2M according to the time-frequency resource usage of the base station, and the transmitter 1403 sends the time-frequency resource to the UE to improve resource utilization of the base station. If the UE does not receive the decoding response information sent by the transmitter 1403, it may determine that the processor 1402 fails to decode. Thereby, the UE is prevented from blindly transmitting data packets, thereby improving transmission efficiency.
  • the decoding information is the identification information
  • the combination of the data amount and the identification information and the preamble sequence is small, the signaling overhead can be saved.
  • the decoding response information is a combination of the identification information and the preamble sequence
  • the UE can determine whether the preamble sequence decoded by the base station is the preamble sequence selected by the base station according to the received decoding response information, thereby improving the decoding determination of the decoding, and ensuring that the UE and the base station are in the same Data transmission on a time-frequency resource improves the efficiency of data transmission.
  • the embodiment of the present invention further provides a system for data transmission. As shown in FIG. 16, a UE 1601 shown in FIG. 13 and a base station 1602 shown in FIG. 15 are included.
  • the UE 1601 is configured to select a preamble sequence, and acquire an uplink time-frequency resource and a downlink time-frequency resource corresponding to the preamble sequence; and send the preamble sequence to the base station 1602.
  • the base station 1602 is configured to receive a preamble sequence sent by the user equipment UE1601, and decode the preamble sequence. If the decoding succeeds, determine, according to the decoded preamble sequence, uplink time-frequency resources and downlinks corresponding to the decoded preamble sequence. a time-frequency resource; the decoding response information is sent to the UE 1601 by using the downlink time-frequency resource, where the decoding response information is used to indicate that the base station 1602 successfully decodes the preamble sequence.
  • the UE 1601 is further configured to: when receiving the decoding response information sent by the base station 1602 by using the downlink time-frequency resource, send a data packet to the base station 1602 by using an uplink time-frequency resource corresponding to the preamble sequence.
  • the base station 1602 is further configured to receive, by using the uplink time-frequency resource, a data packet sent by the UE 1601.
  • the UE 1601 can locally acquire the uplink time-frequency resource and the downlink time-frequency resource corresponding to the preamble sequence, and when receiving the decoding response information sent by the base station 1602, the data is obtained by using the uplink time-frequency resource.
  • the packet is sent directly to the base station 1602.
  • the step of acquiring the time-frequency resource corresponding to the preamble sequence in the prior art is performed by the base station 1602.
  • the base station 1602 needs to send a series of information of the time-frequency resource corresponding to the preamble sequence to the UE 1601, so that the UE 1601 obtains the time. Frequency resources, which increases the amount of signaling.
  • the base station 1602 needs to synchronize with the UE 1601 and resolve the conflict, and multiple signaling is generated in these two steps.
  • the UE 1601 can obtain the time-frequency resources locally, thereby avoiding the signaling overhead in the random response process in the prior art.
  • the UE 1601 can determine that the synchronization with the base station 1602 is synchronized according to the decoding response information sent by the base station 1602. The signaling overhead in the random access process can be further reduced, and the transmission efficiency is improved.
  • the base station 1602 can decode the preamble sequence sent by the UE 1601, and determine, according to the decoded preamble sequence, the uplink time-frequency resource used by the UE 1601 to upload the data packet, and the downlink time-frequency resource used by the UE 1601 to receive the decoding response message, and use the uplink time-frequency resource.
  • the data packet sent by the UE 1601 is received.
  • the base station 1602 needs to send the information of the time-frequency resource to the UE 1601 in the random access response, and the base station 1602 needs to establish a synchronous connection with the UE 1601, and sends a conflict resolution message to the UE 1601 to enable the UE 1601 to determine that the data packet can be sent, and generate a large number of packets.
  • Signaling overhead since the UE 1601 can determine the uplink time-frequency resource and the downlink time-frequency resource according to itself, the system overhead can be reduced and the transmission efficiency can be improved.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative
  • the division of the module or unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or may be integrated into another system, or some Features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software function unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种数据传输的方法、用户设备、基站及系统,涉及通信技术领域,能够解决设备到设备(M2M)数据传输过程中资源浪费的问题,所述方法包括:用户设备(UE)选择前导序列,并获取所述前导序列对应的上行时频资源和下行时频资源(101);将所述前导序列发送给基站,以使所述基站对所述前导序列进行解码并根据解码后的前导序列确定所述解码后的前导序列对应的上行时频资源和下行时频资源(102);如果通过所述下行时频资源接收到基站发送的解码响应信息,则通过所述上行时频资源向所述基站发送数据包,所述解码响应信息用于表示所述基站对所述前导序列解码成功(103)。本发明主要应用于M2M数据传输的过程中。

Description

数据传输的方法、 用户设备、 基站及系统 技术领域
本发明涉及通信技术领域, 尤其涉及一种数据传输的方法、 用户设备、 基站及系统。 背景技术
随着信息化程度的加深, 设备到设备 (Machine to Machine,简称 M2M ) 间实现了通过网络进行信息传输, 相对于人工采集数据具有实时性的优点。
现有技术中基于 LTE的 M2M信息传输过程是基于连接的, 由随机接入和 数据传输两个过程组成。 随机接入过程包括四个步骤: 1、 用户设备(User Equipment,简称 UE )向基站发送前导序列。 2、基站进行随机接入响应( Random Access Response , 简称 RAR)。 3、 基站与 UE建立同步连接。 4、 基站解决相 同前导序列对应多 UE的冲突, 并向 UE发送冲突解决消息。
在实现上述数据传输的过程中, 发明人发现现有技术中至少存在如下问 题: M2M的信息传输具有数据量小、 数据传输次数多的特点。 由于随机接入过 程中的信令开销不变, 当数据包的数据量相对减小时, 信令开销在信息传输 过程中所占比例提高, 造成资源浪费。 例如传输一个 M2M数据包时, 信令开 销为 lObit, M2M数据包大小为 lObit, 信令开销与 M2M数据包的比例为 1: 1; 传输一个普通数据包, 如短信数据包时, 信令开销仍然为 lObit, 但短信数据 包大小为 lOkb, 信令开销与短信数据包的比例为 1: 1024。 同样是 lObit的信 令开销, 与发送 lkb的短信数据包相比, 发送 lbit的 M2M数据包存在信令开 销大发送的数据包小, 造成资源浪费。
发明内容
本发明提供的一种数据传输的方法、 用户设备、 基站及系统, 能够解决 M2M数据传输过程中资源浪费的问题。
第一方面, 本发明提供了一种数据传输的方法, 所述方法包括: 用户设备 UE选择前导序列, 并获取所述前导序列对应的上行时频资源和 下行时频资源;
将所述前导序列发送给基站, 以使所述基站对所述前导序列进行解码并 根据解码后的前导序列确定所述解码后的前导序列对应的上行时频资源和下 行时频资源;
如果通过所述下行时频资源接收到基站发送的解码响应信息, 则通过所 述上行时频资源向所述基站发送数据包, 所述解码响应信息用于表示所述基 站对所述前导序列解码成功。
在所述第一方面的第一种可能的实现方式中, 所述获取所述前导序列对 应的上行时频资源包括:
从预存的第一对应关系集合中获取所述前导序列对应的上行时频资源, 所述第一对应关系集合用于表示至少一条前导序列与上行时频资源的对应关 系;
或者, 从基站发送的所述第一对应关系集合中获取所述前导序列对应的 上行时频资源;
所述获取所述前导序列对应的下行时频资源包括:
从预存的第二对应关系集合中获取所述前导序列对应的下行时频资源, 所述第二对应关系集合用于表示至少一条前导序列与下行时频资源的对应关 系。
在所述第一方面或所述第一方面的第一种可能的实现方式中, 还提供了 所述第一方面的第二种可能的实现方式, 在所述第一方面的第二种可能的实 现方式中, 在所述将所述前导序列发送给基站之后, 所述方法还包括:
如果在第一预设时长内通过所述下行时频资源未接收到所述基站发送的 所述解码响应信息, 则在第二预设时长之后所述 UE重新选择前导序列, 并获 取所述前导序列对应的上行时频资源和下行时频资源, 将所述前导序列发送 给基站, 以使所述基站对所述前导序列进行解码并根据解码后的前导序列确 定所述解码后的前导序列对应的上行时频资源和下行时频资源。 在所述第一方面或所述第一方面的第一种可能或第二种可能的实现方式 中, 还提供了所述第一方面的第三种可能的实现方式, 在所述第一方面的第 三种可能的实现方式中, 在通过所述前导序列对应的上行时频资源向所述基 站发送数据包之后, 所述方法还包括:
如果在第三预设时长内未接收到所述基站发送的确认信息, 则在第四预 设时长之后所述 UE重新选择前导序列, 并获取所述前导序列对应的上行时频 资源和下行时频资源, 将所述前导序列发送给基站, 以使所述基站对所述前 导序列进行解码并根据解码后的前导序列确定所述解码后的前导序列对应的 上行时频资源和下行时频资源, 其中, 所述确认信息用于表示所述基站已成 功接收所述 UE发送的数据包。
第二方面, 本发明还提供了一种数据传输的方法, 包括:
基站接收用户设备 UE发送的前导序列;
对所述前导序列进行解码, 如果解码成功, 则根据解码后的前导序列确 定所述解码后的前导序列对应的上行时频资源和下行时频资源;
通过所述下行时频资源向所述 UE发送解码响应信息, 所述解码响应信息 用于表示所述基站对所述前导序列解码成功;
通过所述上行时频资源接收 UE发送的数据包。
在所述第二方面的第一种可能的实现方式中, 在基站接收 UE发送的前导 序列之前, 所述方法还包括:
向所述 UE发送第一对应关系集合, 所述第一对应关系集合用于表示至少 一条前导序列与上行时频资源的对应关系, 以使所述 UE根据所述第一对应关 系集合确定上行时频资源。
在所述第二方面或所述第二方面的第一种可能的实现方式中, 还提供了 所述第二方面的第二种可能的实现方式, 在所述第二方面的第二种可能的实 现方式中, 在所述通过所述上行时频资源上接收 UE发送的数据包之后, 所述 方法还包括:
如果成功接收到所述数据包, 则向所述 UE发送确认信息, 所述确认信息 用于表示所述基站已成功接收所述数据包。
第三方面, 本发明还提供了一种用户设备 UE , 包括:
选择单元, 用于选择前导序列;
获取单元, 用于根据对应关系集合以及所述选择单元选择的所述前导序 列获取所述前导序列对应的上行时频资源和下行时频资源;
发送单元, 用于将所述获取单元获取到的所述前导序列发送给基站, 以 使所述基站对所述前导序列进行解码并根据解码后的前导序列确定所述解码 后的前导序列对应的上行时频资源和下行时频资源;
接收单元, 用于通过所述下行时频资源接收基站发送的解码响应信息; 所述发送单元还用于, 当所述接收单元接收到基站发送的解码响应信息 时, 通过所述上行时频资源向所述基站发送数据包, 所述解码响应信息用于 表示所述基站对所述前导序列解码成功。
在所述第三方面的第一种可能的实现方式中, 所述 UE还包括:
存储单元, 用于存储所述前导序列与上行时频资源以及下行时频资源的 对应关系集合以及前导序列集合;
所述存储单元还用于, 预存第一对应关系集合, 所述第一对应关系集合 用于表示至少一条前导序列与上行时频资源的对应关系;
所述获取单元还用于, 从所述存储单元预存的所述第一对应关系集合中 , 获取所述前导序列对应的上行时频资源;
所述接收单元还用于, 接收基站发送的所述第一对应关系集合; 所述获取单元还用于, 从接收单元接收到的所述第一对应关系集合中, 获取所述前导序列对应的上行时频资源;
所述存储单元还用于预存第二对应关系集合, 所述第二对应关系集合用 于表示至少一条前导序列与下行时频资源的对应关系;
所述获取单元还用于, 从所述存储单元预存的所述第二对应关系集合中 获取所述前导序列对应的下行时频资源。
在所述第三方面或所述第三方面的第一种可能的实现方式中, 还提供了 所述第三方面的第二种可能的实现方式, 在所述第三方面的第二种可能的实 现方式中, 所述选择单元还用于当第一预设时长内所述接收单元通过所述前 导序列对应的所述下行时频资源未接收到所述基站发送的所述解码响应信息 时, 在第二预设时长之后重新选择前导序列。
在所述第三方面或所述第三方面的第一种可能或第二种可能的实现方式 中, 还提供了所述第三方面的第三种可能的实现方式, 在所述第三方面的第 三种可能的实现方式中, 所述接收单元还用于接收基站发送的确认信息, 所 述确认信息用于表示所述基站已成功接收所述发送单元发送的数据包;
所述选择单元还用于, 当第三预设时长内所述接收单元未接收到所述基 站发送的确认信息时, 在第四预设时长之后重新选择前导序列。
第四方面, 本发明还提供了一种基站, 包括:
接收单元, 用于接收用户设备 UE发送的前导序列;
解码单元, 用于对所述接收单元接收到的所述前导序列进行解码; 确定单元, 用于当所述解码单元解码成功时, 根据解码单元得出的解码 后的前导序列以及所述存储单元存储的所述对应关系集合, 确定所述解码后 的前导序列对应的上行时频资源和下行时频资源;
发送单元, 用于根据所述确定单元确定的所述下行时频资源向所述 UE发 送解码响应信息, 所述解码响应信息用于表示所述解码单元对所述前导序列 解码成功;
所述接收单元还用于, 通过所述确定单元确定的所述上行时频资源接收 UE发送的数据包。
在所述第四方面的第一种可能的实现方式中, 存储单元, 用于存储所述 前导序列与上行时频资源以及下行时频资源的对应关系集合以及前导序列集 合。 在所述第四方面或所述第四方面的第一种可能的实现方式中, 还提供了 所述第四方面的第二种可能的实现方式, 在所述第四方面的第二种可能的实 现方式中, 所述发送单元还用于, 向所述 UE发送第一对应关系集合, 所述第 一对应关系集合用于表示至少一条前导序列与上行时频资源的对应关系, 以 使所述 UE根据所述第一对应关系集合确定上行时频资源。
在所述第四方面或所述第四方面的第一种可能或第二种可能的实现方式 中, 还提供了所述第四方面的第三种可能的实现方式, 在所述第四方面的第 三种可能的实现方式中, 所述发送单元还用于当所述接收单元成功接收到所 述数据包时, 向所述 UE发送确认信息, 所述确认信息用于表示所述接收单元 已成功接收所述数据包。
第五方面, 本发明还提供了一种数据传输的系统, 包括一用户设备 UE和 一基站;
所述 UE用于选择前导序列, 并获取所述前导序列对应的上行时频资源和 下行时频资源; 将所述前导序列发送给基站;
所述基站用于接收用户设备 UE发送的前导序列; 对所述前导序列进行解 码, 如果解码成功, 则根据解码后的前导序列确定所述解码后的前导序列对 应的上行时频资源和下行时频资源; 通过所述下行时频资源向所述 UE发送解 码响应信息, 所述解码响应信息用于表示所述基站对所述前导序列解码成功; 所述 UE还用于当通过所述下行时频资源接收到基站发送的所述解码响应 信息时, 通过所述前导序列对应的上行时频资源向所述基站发送数据包; 所述基站还用于通过所述上行时频资源接收所述 UE发送的数据包。
第六方面, 本发明还包括一种用户设备 UE , 包括:
处理器, 用于根据前导序列集合中选择前导序列, 并根据对应关系集合 以及选择的所述前导序列获取所述前导序列对应的上行时频资源和下行时频 资源;
发射器, 用于将所述处理器获取到的所述前导序列发送给基站, 以使所 述基站对所述前导序列进行解码并根据解码后的前导序列确定所述解码后的 前导序列对应的上行时频资源和下行时频资源; 接收器, 用于通过所述下行时频资源接收基站发送的解码响应信息, 所 述解码响应信息用于表示所述基站对所述前导序列解码成功;
所述发射器还用于, 当所述接收器接收到基站发送的解码响应信息时, 通过所述前导序列对应的上行时频资源向所述基站发送数据包。
在所述第六方面的第一种可能的实现方式中, 所述 UE还包括: 存储器, 用于存储所述前导序列与上行时频资源以及下行时频资源的对 应关系集合以及前导序列集合;
所述存储器还用于, 预存第一对应关系集合, 所述第一对应关系集合用 于表示至少一条前导序列与上行时频资源的对应关系;
所述处理器还用于, 从所述存储器预存所述第一对应关系集合中, 获取 所述前导序列对应的上行时频资源;
所述接收器还用于, 接收基站发送的所述第一对应关系集合;
所述处理器还用于, 从接收器接收到的所述第一对应关系集合中, 获取 所述前导序列对应的上行时频资源;
所述存储器还用于预存第二对应关系集合, 所述第二对应关系集合用于 表示至少一条前导序列与下行时频资源的对应关系;
所述处理器还用于, 从所述存储器预存的所述第二对应关系集合中获取 所述前导序列对应的下行时频资源。
在所述第六方面或所述第六方面的第一种可能的实现方式中, 还提供了 所述第六方面的第二种可能的实现方式, 在所述第六方面的第二种可能的实 现方式中, 所述处理器还用于当第一预设时长内所述接收器通过所述前导序 列对应的所述下行时频资源未接收到所述基站发送的所述解码响应信息时, 在第二预设时长之后重新选择前导序列。
在所述第六方面或所述第六方面的第一种可能或第二种可能的实现方式 中, 还提供了所述第六方面的第三种可能的实现方式, 在所述第六方面的第 三种可能的实现方式中, 所述接收器还用于接收基站发送的确认信息, 所述 确认信息用于表示所述基站已成功接收所述 UE发送的数据包; 所述处理器还用于, 当第三预设时长内所述接收器未接收到所述基站发 送的确认信息时, 在第四预设时长之后重新选择前导序列。
第七方面, 本发明还提供了一种基站, 包括:
接收器, 用于接收用户设备 UE发送的前导序列;
处理器, 用于对所述接收器接收到的所述前导序列进行解码, 当解码成 功时, 根据解码后的前导序列以及对应关系集合, 确定所述解码后的前导序 列对应的上行时频资源和下行时频资源;
发送器, 用于根据所述处理器确定的所述下行时频资源向所述 UE发送解 码响应信息, 所述解码响应信息用于表示所述基站对所述前导序列解码成功; 所述接收器还用于, 通过所述处理器确定的所述上行时频资源接收 UE发 送的数据包。
在所述第七方面的第一种可能的实现方式中, 所述基站还包括: 存储器, 用于存储所述前导序列与上行时频资源以及下行时频资源的对应关系集合以 及前导序列集合。
在所述第七方面或所述第七方面的第一种可能的实现方式中, 还提供了 所述第七方面的第二种可能的实现方式, 在所述第七方面的第二种可能的实 现方式中, 所述发射器还用于, 向所述 UE发送第一对应关系集合, 所述第一 对应关系集合用于表示至少一条前导序列与上行时频资源的对应关系, 以使 所述 UE根据所述第一对应关系集合确定上行时频资源。
在所述第七方面或所述第七方面的第一种可能或第二种可能的实现方式 中, 还提供了所述第七方面的第三种可能的实现方式, 在所述第七方面的第 三种可能的实现方式中, 所述发射器还用于当所述接收器成功接收到所述数 据包时, 向所述 UE发送确认信息, 所述确认信息用于表示所述基站已成功接 收所述数据包。
第八方面, 本发明还提供了一种数据传输的系统, 包括一用户设备 UE和 一基站;
所述 UE用于选择前导序列, 并获取所述前导序列对应的上行时频资源和 下行时频资源; 将所述前导序列发送给基站;
所述基站用于接收用户设备 UE发送的前导序列; 对所述前导序列进行解 码, 如果解码成功, 则根据解码后的前导序列确定所述解码后的前导序列对 应的上行时频资源和下行时频资源; 通过所述下行时频资源向所述 UE发送解 码响应信息, 所述解码响应信息用于表示所述基站对所述前导序列解码成功; 所述 UE还用于当通过所述下行时频资源接收到基站发送的所述解码响应 信息时, 通过所述前导序列对应的上行时频资源向所述基站发送数据包; 所述基站还用于通过所述上行时频资源接收 UE发送的数据包。
本发明提供的数据传输的方法、 UE、 基站及系统, UE能够获取所述前导 序列对应的上行时频资源和下行时频资源, 如果通过该下行时频资源接收到 基站发送的解码响应信息, 则通过该上行时频资源将数据包发送给基站。 现 有技术中获取前导序列对应的时频资源的步骤由基站完成, 在随机接入响应 中基站需要向 UE发送前导序列对应的时频资源的一系列信息, 以使 UE获取 到该时频资源, 增加了信令数量, 同时, UE需要根据基站发送的一系列信息 确定上行时频资源和下行时频资源。 此外, 现有技术中基站需要与 UE进行同 步以及冲突解决, 在这两个步骤中产生了多个信令。 本发明中 UE无需根据基 站发送的一系列信息即可获取前导序列对应的上行时频资源以及下行时频资 源, 实现在本地获取前导序列对应的上行时频资源和下行时频资源的技术效 果, 在接收到基站发送的解码响应信息之后可以根据本地确定的上行时频资 源或下行时频资源直接进行数据传输, 进而避免了现有技术中随机响应过程 中的信令开销, 此外, UE根据基站发送的解码响应信息可以确定与基站达到 同步并无冲突产生, 可进一步减少随机接入过程中的信令开销, 提高传输效 率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例中第一个数据传输方法的流程图;
图 2为本发明实施例中第二个数据传输方法的流程图;
图 3为本发明实施例中第三个数据传输方法的流程图;
图 4为本发明实施例中第四个数据传输方法的流程图;
图 5为本发明实施例中第五个数据传输方法的流程图;
图 6为本发明实施例中第六个数据传输方法的流程图;
图 7为本发明实施例中一个 UE的结构示意图;
图 8为本发明实施例中另一个 UE的结构示意图;
图 9为本发明实施例中一个基站的结构示意图;
图 10为本发明实施例中另一个基站的结构示意图;
图 11为本发明实施例中一个数据传输的系统的示意图;
图 12为本发明实施例中再一个 UE的结构示意图;
图 1 3为本发明实施例中还一个 UE的结构示意图;
图 14为本发明实施例中再一个基站的结构示意图;
图 15为本发明实施例中还一个基站的结构示意图;
图 16为本发明实施例中另一个数据传输的系统的示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例 , 都属于本发明保护的范围。
现有技术中 LTE的 M2M信息传输过程是基于连接的, 包括随机接入和数 据上传两个过程。 在随机接入过程中, UE选取一个前导序列, 并将该前导序 列发送给基站, 基站在接收到该前导序列之后向 UE发送随机接入响应信息, 该随机接入响应信息中携带了该前导序列、 临时的小区无线网络临时标识 ( Cel l Radio Network Temporary Ident if ier , 简称 C-RNTI )和 UE下一步 传输上行信息的资源指示。 UE根据 RAR的指示在资源指示对应的上行信道中 发送连接请求, 该过程请求用于 UE与基站进行连接, 如 MSG3 (所谓 MSG3, 其 实就是三条消息, 因为在随机接入的过程中, 这些消息的内容不固定, 有时 候可能携带的是无线资源控制协议(Radio Resource Contro l , 简称 RRC ) 连接请求,有时候可能会带一些控制消息甚至业务数据包, 因此简称为 MSG3 ) 与基站建立同步, 与当同步建立完毕之后, 基站向 UE发送提示信息, 若发生 冲突, 则基站在在冲突解决后向 UE发送冲突解决消息。 UE接收到冲突解决消 息可确定完成随机接入, 之后可通过上行信道发送数据。
本发明实施例提供了一种数据传输的方法, 如图 1所示, 包括: 步骤 101、 UE选择前导序列, 并获取前导序列对应的上行时频资源和下 行时频资源。
本发明实施例及下述各是实例中的 UE, 为与基站相对应的电子设备的统 称, 包括: 用户的手持设备(如手机)、 带有信号发射装置的用于测量数据的 电子设备(如家用电表, 水位检测仪、 烟雾报警器)等。 现有技术中 LTE 为 每个小区设置了 64个前导序列, 各前导序列之间是相互正交的。 本发明中可 以根据每个小区的 M2M数据传输的负载情况设置少于 64个的前导序列, 各前 导序列之间仍是正交的, 但由于需要保持的正交的前导序列个数有所降低, 因此前导序列的长度缩短, 进而使得前导序列的数据量下降, 可减少信令开 销。
前导序歹1 J可以采用正交频分复用 ( Or thogona l Frequency Divi s ion Mul t ip lexing , 简称 OFDM )符号, 或者采用目前使用的格式 4的前导序列。
前导序列的具体选择方法, 可以是随机选择, 也可以是顺序选择, 具体 的所选择方式在此不做限定。
UE在本地保存有前导序列与上行时频资源的第一对应关系集合, 以及前 导序列与下行时频资源的第二对应关系集合。 第一对应关系集合中包含有至 少一组的前导序列与上行时频资源的对应关系, 所述第二对应关系集合中包 含有至少一组的前导序列与下行时频资源的对应关系。 通过对第一对应关系 集合以及第二对应关系集合的查找, 能够获取到与前导序列对应的上行时频 资源和下行时频资源。 所述第一对应关系集合与第二对应关系集合可分别存 储于不同的数据表中, 也可存储于同一个存储表中。 以前导序列作为关键词, 能够查找到与该前导序列对应的唯一的上行时频资源和唯一的下行时频资 源。
步骤 102、将前导序列发送给基站, 以使基站对前导序列进行解码并根据 解码后的前导序列确定解码后的前导序列对应的上行时频资源和下行时频资 源。
将步骤 101 中选择出的前导序列发送给基站, 基站能够根据该前导序列 确定该解码后的前导序列对应的上行时频资源和下行时频资源。 该上行时频 资源用于 UE向基站上传数据包, 该下行时频资源用于基站向 UE发送解码响 应信息。 如果有多台 UE同时选择了同一个前导序列, 并同时向基站发送前导 序列时, 各前导序列信号将互相干扰, 造成前导序列信号强度降低, 基站无 法解析出前导序列。 基站只有对前导序列进行成功解码后, 才能够确定解码 后的前导序列对应的上行时频资源和下行时频资源, 并通过该下行时频资源 向 UE发送解码响应信息。
步骤 103、如果通过下行时频资源接收到基站发送的解码响应信息, 则通 过上行时频资源向基站发送数据包, 解码响应信息用于表示基站对前导序列 解码成功。
其中, 解码响应信息可以是一个标识信息, 也可以是标识信息和前导序 列的组合。 例如: 如果标识信息为 " 1 " , 则 UE确定基站对前导序列解码成功。 如果解码响应信息为标识信息和前导序列的组合, 则 UE除了判断标识信息是 否为 "1 " 以外, 还判断接收到的前导序列是否与 UE发送的前导序列相同, 若相同且标识信息为 "1 " , 则 UE确定基站对前导序列解码成功。 此外, 解码 响应信息还可以包含有时间同步信息, UE根据接收到的时间同步信息调整自 身的时间设置, 以使与基站在时序上达到同步。 如果通过前导序列对应的下行时频资源接收到基站发送的解码响应信 息, 则表示基站此时已知晓 UE用于上传数据的上行时频资源以及等待接收的 下行时频资源, 并在该上行时频资源上等待 UE发送的数据包。
本发明提供的数据传输的方法, UE能够获取所述前导序列对应的上行时 频资源和下行时频资源, 当通过该下行时频资源接收到基站发送的解码响应 信息时, 通过该上行时频资源将数据包发送给基站。 现有技术中获取前导序 列对应的时频资源的步骤由基站完成, 在随机接入响应中基站需要向 UE发送 前导序列对应的时频资源的一系列信息, 以使 UE获取到该时频资源, 增加了 信令数量, 同时, UE需要根据基站发送的一系列信息确定上行时频资源和下 行时频资源。 此外, 现有技术中基站需要与 UE进行同步以及冲突解决, 在这 两个步骤中产生了多个信令。 本发明中 UE无需根据基站发送的一系列信息即 可获取前导序列对应的上行时频资源以及下行时频资源, 实现在本地获取前 导序列对应的上行时频资源和下行时频资源的技术效果, 在接收到基站发送 进行数据传输, 进而避免了现有技术中随机响应过程中的信令开销, 此外, UE根据基站发送的解码响应信息可以确定与基站达到同步并无冲突产生, 可 进一步减少随机接入过程中的信令开销, 提高传输效率。
本发明实施例还提供了一种数据传输的方法, 本实施例是对图 1 所示实 施例中的步骤 101 的进一步说明, 所述获取前导序列对应的上行时频资源和 下行时频资源包括:
从预存的第一对应关系集合中获取所述前导序列对应的上行时频资源, 第一对应关系集合用于表示至少一条前导序列与上行时频资源的对应关系; 或者, 从基站发送的第一对应关系集合中获取前导序列对应的上行时频 资源;
步骤 101中, 所述获取所述前导序列对应的下行时频资源包括: 从预存的第二对应关系集合中获取所述前导序列对应的下行时频资源, 所述第二对应关系集合用于表示至少一条前导序列与下行时频资源的对应关 系。
UE可以通过预存和基站发送这两种方式获得第一对应关系集合。 基站发 送的方式中, 可在信令中加载所述第一对应关系集合。 由于基站除了负责 M2M 通信之外, 还负责有语音通话等其他数据传输服务, 因此基站内用于 UE上传 的上行时频资源可以是固定的也可以是基站临时分配的。 对于基站临时分配 这种情况, 通过信令将所述第一对应关系集合发送给 UE后, 能够使基站对其 内部的上行时频资源的动态调节, 提高基站资源的使用效率。 此外, 通过移 动设备拷贝到 UE中,即预存第一对应关系集合以及第二对应关系集合的方式, 不需要进行网络传输, 可减轻基站负担。
本发明实施例提供的一种数据传输的方法, 通过预存的方式能够不进行 网络传输即可获取所述第一对应关系集合和第二对应关系集合, 避免在获取 的过程中占用基站信道, 减轻基站负担。 此外, 接收基站发送的第一对应关 系集合, 能够使基站对其内部的上行时频资源的动态调节, 提高基站资源的 使用效率。
本发明实施例还提供了一种数据传输的方法, 如图 2 所示, 该实施例与 图 1所示的实施例类似, 不同之处在于步骤 101之后, 所述方法还包括: 步骤 201、如果在第一预设时长内通过下行时频资源未接收到基站发送的 解码响应信息, 则在第二预设时长之后所述 UE重新选择前导序列, 并获取所 述前导序列对应的上行时频资源和下行时频资源, 将所述前导序列发送给基 站, 以使所述基站对所述前导序列进行解码并根据解码后的前导序列确定所 述解码后的前导序列对应的上行时频资源和下行时频资源, 即重新顺序执行 步骤 101至步骤 1 02。
如果通信正常,则基站在 UE发出前导序列之后的第一预设时长内,如 4ms , 能够完成对前导序列的解码, 并向 UE发送解码响应信息。 UE若在第一预设时 长内通过步骤 101 中确定的下行时频资源未接收到所述解码响应信息, 则产 生另一个回退窗口, 并在第二预设时长之后, 如 50ms , 重新执行步骤 101 , 并顺序执行步骤 1 01至步骤 102。 第四预设时间与该回退窗口的长度相同。 本发明提供的另一种数据传输的方法, 能够根据解码响应信息的接收情 况, 确定是否重新执行发送前导序列及后续步骤, 避免 UE在不知道基站是否 对前导序列成功解码的情况下, 盲目通过该前导序列对应的上行时频资源传 输数据包, 进而合理利用信道资源, 提高数据包传输的准确性。
本发明实施例还提供了一种数据传输的方法, 如图 3 所示, 该实施例与 图 1所示的实施例类似, 不同之处在于步骤 103之后, 所述方法还包括: 步骤 301、如果在第三预设时长内未接收到基站发送的确认信息, 则在第 四预设时长之后所述 UE重新选择前导序列, 并获取所述前导序列对应的上行 时频资源和下行时频资源, 将所述前导序列发送给基站, 以使所述基站对所 述前导序列进行解码并根据解码后的前导序列确定所述解码后的前导序列对 应的上行时频资源和下行时频资源, 即重新顺序执行步骤 101至步骤 1 02。
其中,所述确认信息用于表示所述基站已成功接收所述 UE发送的数据包。 如果接收到基站发送的所述确认信息, 则 UE确定基站成功接收所述数据 包。
如果通信正常, 则基站在 UE发出前导序列之后如 12ms (毫秒)时, 即第 三预设时长内, 向 UE发送确认信息。 如果 UE未接收到该确认信息, 则生成 一个回退窗口, 并在第四预设时长, 如 I s之后, 重新执行步骤 101 , 并顺序 执行步骤 101至步骤 102。 第四预设时间与回退窗口的长度相同。
本发明实施例提供的一种数据传输的方法, 能够根据确认信息的接收情 况, 确定是否重新执行发送前导序列及后续步骤, 避免 UE在不知道数据包是 否成功发送的情况下盲目传输数据包,达到合理利用上行时频资源, 提高数据 包传输的准确性。
本发明实施例还提供了一种数据传输的方法, 该实施例与图 1 所示的实 施例类似, 不同之处在于步骤 102 中接收到的所述解码响应信息还携带所述 用户发送数据所使用的上行时频资源信息。 此时, 步骤 101 中可以只需获取 所述前导序列对应的下行时频资源; 步骤 103 中可以根据步骤 102接收到的 解码响应信息获取上行时频资源, 通过该上行时频资源向基站发送数据包。 在步骤 1 01 之前, 只预存所述第二对应关系集合。 此时, 所述用户发送数据 所使用的上行时频资源不再与所述前导序列相对应, 而是在步骤 1 02接收的 所述解码响应信息中被动态地获取。
本发明实施例还提供了一种数据传输的方法, 如图 4所示, 包括: 步骤 401、 基站接收 UE发送的前导序列。
当 UE需要传输数据时, UE将选择前导序列,并将该前导序列发送给基站。 步骤 402、 对前导序列进行解码, 如果解码成功, 则根据解码后的前导序 列确定所述解码后的前导序列对应的上行时频资源和下行时频资源。
由于基站保存有第一对应关系集合和第二对应关系集合, 因此基站可根 据接收到的前导序列确定与之对应的上行时频资源和下行时频资源。 基站通 过识别 UE发送到信息的标志位, 能够确定 UE发送的信息是否为前导序列, 通过对收到信息的解析, 得到前导序列, 以完成解码。 如果有多个 UE同时选 择了相同的前导序列并同时发送给基站, 此时由于各前导序列相互冲突和干 扰基站无法识别 UE发送的信息, 导致解码失败。 当解码失败时, 基站等待 UE 重新发送数据, 以使再次对该前导序列进行解码。
步骤 403、 通过下行时频资源向 UE发送解码响应信息。
其中, 所述解码响应信息用于表示所述基站对所述前导序列解码成功。 当解码成功时, 向 UE发送解码响应信息, 以使 UE获知基站对前导序列 是否解码成功。
解码响应信息可以是一个标识信息, 也可以是标识信息和前导序列的组 合。 例如: 如果标识信息为 " 1 " , 则表示基站对前导序列解码成功。 如果解 码响应信息为标识信息和前导序列的组合, UE除了判断标识信息是否为 " 1 " 以外, 还判断接收到的前导序列是否与 UE发送的前导序列相同, 若相同且标 识信息为 " 1 " , 则表示基站对前导序列解码成功。 此外, 解码响应信息还可 以包含有时间同步信息, 以使 UE根据接收到的时间同步信息调整自身的时间 设置, 与基站在时序上达到同步。
步骤 404、 通过上行时频资源接收 UE发送的数据包。 在接收到解码响应消息之后, UE向基站发送数据包, 基站在所述上行时 频资源上接收到该数据包。
本发明实施例提供的一种数据传输的方法, 基站能够对 UE发送的前导序 列进行解码, 并根据解码后的前导序列确定 UE用于上传数据包的上行时频资 源以及 UE用于接收解码响应消息的下行时频资源, 并通过所述上行时频资源 接收 UE发送的数据包。 现有技术中需要基站在随机接入响应中向 UE发送时 频资源的信息, 基站还需要与 UE建立同步连接, 并向 UE发送冲突解决消息 以使 UE确定可以发送数据包, 产生大量信令开销。 本发明实施例中由于 UE 自身能够确定所述上行时频资源和下行时频资源, 因此基站无需向所述 UE通 告上行时频资源和下行时频资源, 进而降低系统开销。 UE若未接收到所述解 码响应信息, 则可确定基站解码失败。 由此避免 UE盲目传输数据包, 提高传 输效率。 同时, 解码信息是标识信息时, 由于其数据量相对标识信息与前导 序列的组合较小, 因此可节省信令开销。 当解码响应信息为标识信息与前导 序列的组合时, UE能够根据收到的解码响应信息确定基站解码的前导序列是 否为自身选择的前导序列, 进而提高解码的准确性, 提高数据传输的效率。
本发明实施例还提供了一种数据传输的方法, 如图 5 所示, 该实施例与 图 4所示的实施例类似, 不同之处在于步骤 401之前, 所述方法还包括: 步骤 501、 向 UE发送第一对应关系集合, 第一对应关系集合用于表示至 少一条前导序列与上行时频资源的对应关系, 以使 UE根据第一对应关系集合 确定上行时频资源。
基站负责的传输业务除了 M2M业务还包括电话业务、 多媒体业务等通信。 由于 M2M业务会根据各小区中设备的分布情况而发生变化, 因此基站需要根 据各个通信业务所需要的时频资源开销, 确定分配给 M2M 的时频资源数量。 当确定之后, 将 M2M业务使用的前导序列和上行时频资源的关系集合, 即第 一对应关系集合, 发送给 UE , 以使 UE确定与前导序列对应的上行时频资源。
本发明实施例提供的一种数据传输的方法, 能够根据基站的上行时频资 源使用情况, 为 M2M合理分配时频资源, 提高基站的资源利用率。 本发明实施例还提供了一种数据传输的方法, 如图 6 所示, 该实施例与 图 4所示的实施例类似, 不同之处在于步骤 404之后, 所述方法还包括: 步骤 601、 如果成功接收到数据包, 则向 UE发送确认信息。
其中, 所述确认信息用于表示所述基站已成功接收所述数据包。
基站在确认通过解码后的前导序列对应的上行时频资源接收到 UE发送的 数据包之后, 向 UE发送确认信息, 以使 UE获知该数据包已成功发送。
本发明实施例提供的一种数据传输的方法, 能够在确定数据包成功接收 之后, 向 UE发送确认信息, 使得 UE能够根据确认信息的接收情况, 确定是 否重新执行发送前导序列及后续步骤, 避免 UE在不知道数据包是否成功发送 的情况下盲目传输数据包, 进而达到合理利用信道资源, 提高数据包传输的 准确性。
本发明实施例还提供了一种数据传输的方法, 该实施例与图 4 所示的实 施例类似, 不同之处在于步骤 403 中, 所述解码响应信息还携带有所述用户 发送数据所使用的上行时频资源信息。 此时, 所述 UE可根据步骤 403中的所 述解码响应信息获知上行时频资源, 并通过所述上行时频资源向基站发送数 据包。
上述各实施例在实施时, 可采用两两组合的方式进行实施, 也可采用多 个组合的方式进行实施。
本发明实施例还提供了一种用户设备 UE , 如图 7所示, 包括:
选择单元 71 , 用于选择前导序列。
获取单元 72 ,用于根据对应关系集合以及所述选择单元 71选择的所述前 导序列获取所述前导序列对应的上行时频资源和下行时频资源。
发送单元 7 3 ,用于将所述选择单元 71获取到的所述前导序列发送给基站, 以使所述基站对所述前导序列进行解码并根据解码后的前导序列确定所述解 码后的前导序列对应的上行时频资源和下行时频资源。
接收单元 74 ,用于通过所述下行时频资源接收基站发送的解码响应信息。 所述发送单元 73还用于, 当所述接收单元 74接收到基站发送的解码响 应信息时, 通过所述上行时频资源向所述基站发送数据包, 所述解码响应信 息用于表示所述基站对所述前导序列解码成功。
现有技术中 LTE为每个小区设置了 64个前导序列, 各前导序列之间是相 互正交的。 本发明中可以根据每个小区的 M2M数据传输的负载情况设置少于 64个的前导序列, 各前导序列之间仍是正交的, 但由于需要保持的正交的前 导序列个数有所降低, 因此前导序列的长度缩短, 进而使得前导序列的数据 量下降, 可减少信令开销。
前导序列可以采用 OFDM符号, 或者采用目前使用的格式 4的前导序列。 选择单元 71在选择前导序列时所采用的选择方法, 可以是随机选择, 也 可以是顺序选择, 具体的所选择方式在此不做限定。
获取单元 72通过对第一对应关系集合以及第二对应关系集合的查找, 能 够获取到与前导序列对应的上行时频资源和下行时频资源。 所述第一对应关 系集合与第二对应关系集合可分别存储于不同的数据表中, 也可存储于同一 个存储表中。 获取单元以前导序列作为关键词, 能够查找到与该前导序列对 应的唯一的上行时频资源和唯一的下行时频资源。
选择单元 71在前导序列集合中选择出前导序列, 获取单元 72从第一对 应关系集合以及第二对应关系集合中, 分别查找出与选择单元 71选择出的所 述选择前导序列对应的上行时频资源和下行时频资源。
所述发送单元 73将所述选择单元 71选择出的前导序列发送给基站, 基 站能够根据该前导序列确定该解码后的前导序列对应的上行时频资源和下行 时频资源。 如果有多台 UE的选择单元 71 同时选择了同一个前导序列, 并且 各 UE的发送单元 7 3同时向基站发送前导序列时, 各前导序列信号将互相干 扰, 造成前导序列信号强度降低, 基站无法解析出前导序列。 基站只有对前 导序列进行成功解码之后, 才能够确定解码后的前导序列对应的上行时频资 源和下行时频资源, 并通过该下行时频资源向 UE发送解码响应信息。
所述接收单元 74接收到的解码响应信息可以是一个标识信息, 也可以是 标识信息和前导序列的组合。 例如: 如果标识信息为 " 1 " , 则接收单元 74可 确定基站对前导序列解码成功。 如果解码响应信息为标识信息和前导序列的 组合, 则接收单元 74 除了判断标识信息是否为 "1 " 以外, 还判断接收到的 前导序列是否与 UE发送的前导序列相同, 若相同且标识信息为 "1" , 则接收 单元 74确定基站对前导序列解码成功。 此外, 解码响应信息还可以包含有时 间同步信息, 接收单元 74根据接收到的时间同步信息调整自身的时间设置, 以使与基站在时序上达到同步。
如果接收单元 74接收到基站发送的解码响应信息, 则表示基站此时已知 晓发送单元 73即将使用的上行时频资源, 并在该上行时频资源上等待发送单 元 73发送的数据包。 发送单元 73将数据包发送给基站, 以使基站将该数据 包发送到核心网设备。
本发明提供的一种 UE,获取单元 72能够获取所述前导序列对应的上行时 频资源和下行时频资源, 当接收单元 74通过该下行时频资源接收到基站发送 的解码响应信息时, 发送单元 73通过获取单元 72获取到的该上行时频资源 将数据包发送给基站。 现有技术中获取前导序列对应的时频资源的功能由基 站完成, 在随机接入响应中基站需要向 UE发送前导序列对应的时频资源的一 系列信息, 以使 UE获取到该时频资源, 由此增加了信令数量, 同时, UE需要 根据基站发送的一系列信息确定上行时频资源和下行时频资源。 此外, 现有 技术中基站需要与 UE进行同步以及冲突解决, 在这两个功能中产生了多个信 令。 本发明中获取单元 72无需根据基站发送的一系列信息即可获取前导序列 对应的上行时频资源以及下行时频资源, 实现在本地获取上行时频资源和下 行时频资源的技术效果, 在接收单元 74接收到基站发送的解码响应信息之后 可以根据获取单元 72在本地确定的上行时频资源或下行时频资源直接进行数 据传输, 进而避免了现有技术中随机响应过程中的系统开销, 此外, 接收单 元 74根据基站发送的解码响应信息可以确定与基站达到同步并无冲突产生, 可进一步减少随机接入过程中的信令开销, 提高传输效率。
本发明实施例还提供了另一种 UE, 如图 8所示, 该实施例与图 7所示实 施例类似, 不同之处在于, 所述 UE还包括: 存储单元 81 , 用于存储所述前导序列与上行时频资源以及下行时频资源 的对应关系集合以及前导序列集合。
所述存储单元 81还用于, 预存第一对应关系集合, 第一对应关系集合用 于表示至少一条前导序列与上行时频资源的对应关系。
所述获取单元 72还用于, 从所述存储单元 81预存的所述第一对应关系 集合中, 获取所述前导序列对应的上行时频资源。
所述接收单元 74还用于, 接收基站发送的所述第一对应关系集合。 所述获取单元 72还用于, 从接收单元 74接收到的所述第一对应关系集 合中, 获取所述前导序列对应的上行时频资源。
所述存储单元 81还用于预存第二对应关系集合, 所述第二对应关系集合 用于表示至少一条前导序列与下行时频资源的对应关系。
所述获取单元还用于, 从所述存储单元预存的所述第二对应关系集合中 获取所述前导序列对应的下行时频资源
存储单元 81中保存有前导序列与上行时频资源的第一对应关系集合, 以 及前导序列与下行时频资源的第二对应关系集合。 第一对应关系集合中包含 有至少一组的前导序列与上行时频资源的对应关系, 所述第二对应关系集合 中包含有至少一组的前导序列与下行时频资源的对应关系。
获取单元 72可以通过存储单元 81预存和接收单元 74接收基站发送这两 种方式获得第一对应关系集合。 通过接收单元 74接收基站发送的方式中, 可 在信令中加载所述第一对应关系集合。 由于基站除了负责 M2M通信之外, 还 负责有语音通话等其他数据传输服务, 因此基站内用于发送单元 73上传的上 行时频资源可以是固定的也可以是基站临时分配的。 对于基站临时分配这种 情况, 通过信令将所述第一对应关系集合发送给接收单元 74后, 能够使基站 对其内部的上行时频资源的动态调节, 提高基站资源的使用效率。 此外, 通 过移动设备拷贝到 UE中, 即预存第一对应关系集合以及第二对应关系集合的 方式, 不需要进行网络传输, 可减轻基站负担。
本发明实施例提供的一种 UE ,通过存储单元 81预存的方式能够不进行网 络传输即可获取所述第一对应关系集合和第二对应关系集合, 避免在获取的 过程中占用基站信道, 减轻基站负担。 此外, 接收单元 74接收基站发送的第 一对应关系集合, 能够使基站对其内部的上行时频资源的动态调节, 提高基 站资源的使用效率。
本发明实施例还提供了另一种 UE , 该实施例作为对图 7所示实施例的进 一步描述, 所述选择单元 71还用于当第一预设时长内所述接收单元 74未接 收到所述基站发送的所述解码响应信息时, 在第二预设时长之后重新选择前 导序列。
如果通信正常, 则基站在发送单元 73发出前导序列之后的第一预设时长 内, 如½8 , 能够完成对前导序列的解码, 并向接收单元 74发送解码响应信 息。 接收单元 74若在第一预设时长内未接收到所述解码响应信息, 则处理单 元 75 产生另一个回退窗口, 并在第二预设时长, 如 50ms , 重新由选择单元 71选择前导序列。 第二预设时间与回退窗口的长度相同。
本发明提供的另一种 UE,接收单元 74能够根据是否接收到解码响应信息, 确定是否重新由选择单元 71选择前导序列, 避免发送单元 73在不知道基站 是否对前导序列成功解码的情况下盲目通过该前导序列对应的上行时频资源 传输数据包, 进而合理利用信道资源, 提高数据包传输的准确性。
本发明实施例还提供了一种 UE, 该实施例作为对图 7所示实施例的进一 步描述, 所述接收单元 74还用于接收基站发送的确认信息, 所述确认信息用 于表示所述基站已成功接收所述发送单元发送的数据包。
所述选择单元 71还用于, 当第三预设时长内所述接收单元 74未接收到 所述基站发送的确认信息时, 在第四预设时长之后重新选择前导序列。
在发送单元 73将数据包发送给基站之后, 基站需要将该数据包转发到核 心网设备继续传输, 若基站内与核心网设备之间的通信出现障碍, 则无法产 生确认信息, 即数据包没有成功发送。 如果通信正常, 则基站在发送单元 73 发出前导序列之后如 12ms时, 即第三预设时长内, 向接收单元 74发送确认 信息。 如果接收单元 74未接收到该确认信息, 则生成一个回退窗口, 并在第 四预设时长, 如 I s之后, 重新由选择单元 71选择前导序列。 第四预设时间 与回退窗口的长度相同。
本发明实施例提供的另一种 UE ,接收单元 74能够根据是否接收到确认信 息, 确定是否重新由选择单元 71选择前导序列, 避免发送单元 73在不知道 数据包是否成功发送的情况下盲目传输数据包, 进而合理利用上行时频资源, 提高数据包传输的准确性。
本发明实施例还提供了一种 UE , 该实施例与图 7所示的实施例类似, 不 同之处在于接收单元 74接收到的所述解码响应信息还携带所述用户发送数据 所使用的上行时频资源信息。 此时, 获取单元 72可以只需获取所述前导序列 对应的下行时频资源; 所述获取单元 72 可以根据接收单元 74接收到的解码 响应信息获取上行时频资源, 发送单元通过所述获取单元 72获取的该上行时 频资源向基站发送数据包。 所述存储单元 81可以只预存所述第二对应关系集 合。 此时, 所述用户使用的所述上行时频资源信息可以在接收单元 74接收的 所述解码响应信息中获取。
本发明实施例还提供了一种基站, 如图 9所示, 包括:
接收单元 91 , 用于接收 UE发送的前导序列。
解码单元 92 , 用于对所述接收单元 91接收到的所述前导序列进行解码。 确定单元 93 , 用于当所述解码单元 92解码成功时, 根据解码单元 92得 出的解码后的前导序列以及对应关系集合, 确定解码后的前导序列对应的上 行时频资源和下行时频资源。
发送单元 94 ,用于根据所述确定单元 93确定的所述下行时频资源向所述
UE发送解码响应信息, 所述解码响应信息用于表示所述解码单元对所述前导 序列解码成功。
所述接收单元 91还用于, 通过所述确定单元 93确定的所述上行时频资 源接收 UE发送的数据包。
本发明实施例还提供了另一种基站, 如图 10所示, 该实施例与图 9所示 实施例类似, 不同之处在于所述基站还包括: 存储单元 1001 , 用于存储所述 前导序列与上行时频资源以及下行时频资源的对应关系集合以及前导序列集 合。
由于存储单元 1 001保存有第一对应关系集合和第二对应关系集合, 因此 确定单元 93可根据接收到的前导序列确定与之对应的上行时频资源和下行时 频资源。 解码单元 92通过识别 UE发送到信息的标志位, 能够确定 UE发送的 信息是否为前导序列, 通过对收到信息的解析, 得到前导序列, 以完成解码。 如果有多个 UE同时选择了相同的前导序列并同时发送给基站, 此时由于各前 导序列相互冲突和干扰基站无法识别 UE发送的信息, 导致解码单元 92解码 失败。 当解码失败时, 接收单元 91等待 UE重新发送数据, 以使解码单元 92 再次对该前导序列进行解码。
当解码单元 92解码成功时, 发送单元 94向 UE发送解码响应信息, 以使 UE获知基站对前导序列是否解码成功。
解码响应信息可以是一个标识信息, 也可以是标识信息和前导序列的组 合。 例如: 如果标识信息为 " 1 " , 则表示基站对前导序列解码成功。 如果解 码响应信息为标识信息和前导序列的组合, UE除了判断标识信息是否为 " 1 " 以外, 还判断接收到的前导序列是否与 UE发送的前导序列相同, 若相同且标 识信息为 " 1 " , 则表示基站对前导序列解码成功。 此外, 解码响应信息还可 以包含有时间同步信息, 以使 UE根据接收到的时间同步信息调整自身的时间 设置, 与基站在时序上达到同步。
在发送单元 94发送解码响应消息之后, UE向基站发送数据包,接收单元 91通过所述上行时频资源接收 UE发送的该数据包。
本发明实施例提供的一种基站, 解码单元 92能够对 UE发送的前导序列 进行解码, 确定单元 93根据解码后的前导序列确定 UE用于上传数据包的上 行时频资源以及 UE用于接收解码响应消息的下行时频资源, 接收单元 91通 过所述上行时频资源接收 UE发送的数据包。 现有技术中需要基站在随机接入 响应中向 UE发送时频资源的信息, 基站还需要与 UE建立同步连接, 并向 UE 发送冲突解决消息以使 UE确定可以发送数据包, 产生大量信令开销。 本发明 实施例中由于 UE自身能够确定所述上行时频资源和下行时频资源, 因此发送 单元 94无需向所述 UE通告上行时频资源和下行时频资源, 进而降低系统开 销。 UE若未接收到所述解码响应信息, 则可确定基站解码失败。 由此避免 UE 盲目传输数据包, 提高传输效率。 同时, 解码响应信息是标识信息时, 由于 其数据量相对标识信息与前导序列的组合较小, 因此可节省信令开销。 当解 码响应信息为标识信息与前导序列的组合时, UE能够根据收到的解码响应信 息确定基站解码的前导序列是否为自身选择的前导序列, 进而提高解码的准 确性, 提高数据传输的效率。 确定单元 93能够根据基站的上行时频资源使用 情况, 为 M2M分配上行时频资源, 发送单元 94将该上行时频资源与前导序列 的对应关系, 发送给 UE 以提高基站的资源利用率。 UE 若未接收到发送单元 94发送的所述解码响应信息, 则可确定解码单元 92解码失败。 由此避免 UE 盲目传输数据包, 提高传输效率。 同时, 解码信息是标识信息时, 由于其数 据量相对标识信息与前导序列的组合较小, 因此可节省信令开销。 当解码响 应信息为标识信息与前导序列的组合时, UE能够根据收到的解码响应信息确 定基站解码的前导序列是否为自身选择的前导序列, 进而提高解码的转确定, 保证 UE与基站在同一个前导序列对应的上行时频资源和下行时频资源上进行 数据传输, 提高数据传输的效率。
本发明实施例还提供了一种基站, 该实施例作为对图 9 所示实施例的进 一步描述, 所述发送单元还用于, 向所述 UE发送第一对应关系集合, 所述第 一对应关系集合用于表示至少一条前导序列与上行时频资源的对应关系, 以 使所述 UE根据所述第一对应关系集合确定上行时频资源。
确定单元 93需要根据各个通信业务所需要的上行时频资源开销, 确定分 配给 M2M的时频资源数量。 当确定单元 93确定之后, 发送单元 94将 M2M业 务使用的前导序列和上行时频资源的关系集合, 即第一对应关系集合, 发送 给 UE , 以使 UE确定与前导序列对应的上行时频资源。
本发明实施例提供的一种基站, 确定单元 93能够根据基站的上行时频资 源使用情况, 为 M2M合理分配上行时频资源, 提高基站的资源利用率。 本发明实施例还提供了另一种基站, 该实施例作为对图 9 所示实施例的 进一步描述, 所述发送单元还用于当所述接收单元成功接收到所述数据包时, 向所述 UE发送确认信息, 所述确认信息用于表示所述接收单元已成功接收所 述数据包。
确定单元 93在确认该数据包成功接收之后, 发送单元 94向 UE发送确认 信息, 以使 UE获知该数据包已成功发送。
本发明实施例提供的另一种基站, 能够在确定单元 93确定数据包成功接 收之后, 由发送单元 94向 UE发送确认信息, 使得 UE能够根据确认信息的接 收情况, 确定是否重新执行发送前导序列及后续步骤, 避免 UE在不知道数据 包是否成功发送的情况下盲目传输数据包, 进而合理利用信道资源, 提高数 据包传输的准确性。
本发明实施例还提供了一种基站, 该实施例与图 9 所示的实施例类似, 不同之处在于所述发送单元 94发送的所述解码响应信息还携带有所述用户发 送数据使用的上行时频资源信息。 此时, 发送单元 94向所述 UE发送所述解 码响应信息, 以使 UE根据所述解码响应信息获知上行时频资源, 并通过所述 上行时频资源向基站发送数据包。
本发明实施例还提供了一种数据传输的系统, 如图 11所示, 包括如图 8 所示的一 UE1101和如图 10所述的一基站 1 102 ;
所述 UE1101用于选择前导序列, 并获取所述前导序列对应的上行时频资 源和下行时频资源; 将所述前导序列发送给基站 1 102。
所述基站 1102用于接收用户设备 UE1101发送的前导序列; 对所述前导 序列进行解码, 如果解码成功, 则根据解码后的前导序列确定所述解码后的 前导序列对应的上行时频资源和下行时频资源; 通过所述下行时频资源向所 述 UE1101发送解码响应信息, 所述解码响应信息用于表示所述基站 1102对 所述前导序列解码成功。
所述 UE1101还用于当通过所述下行时频资源接收到基站 1 102发送的所 述解码响应信息时, 通过所述前导序列对应的上行时频资源向所述基站 1102 发送数据包。
所述基站 1102还用于通过所述上行时频资源接收所述 UE11 01发送的数 据包。
本发明提供的数据传输的系统, UE1101 能够在本地获取所述前导序列对 应的上行时频资源和下行时频资源, 当接收到基站 1102发送的解码响应信息 时, 通过该上行时频资源将数据包直接发送给基站 11 02。 现有技术中获取前 导序列对应的时频资源的步骤由基站 11 02完成,在随机接入响应中基站 1 102 需要向 UE1101发送前导序列对应的时频资源的一系列信息, 以使 UE1 101获 取到该时频资源, 由此增加了信令数量。 此外, 现有技术中基站 1102需要与 UE1101 进行同步以及冲突解决, 在这两个步骤中产生了多个信令。 本发明中 UE1101 可以在本地获取时频资源, 进而避免了现有技术中随机响应过程中的 信令开销, 此外, UE1101根据基站 1102发送的解码响应信息可以确定与基站 1102达到同步并无冲突产生, 可进一步减少随机接入过程中的信令开销, 提 高传输效率。 基站 1 102能够对 UE1101发送的前导序列进行解码, 并根据解 码后的前导序列确定 UE11 01用于上传数据包的上行时频资源以及 UE11 01用 于接收解码响应消息的下行时频资源, 通过上行时频资源接收 UE1101发送的 数据包。 现有技术中需要基站 11 02在随机接入响应中向 UE11 01发送时频资 源的信息, 基站 1102还需要与 UE1101建立同步连接, 并向 UE11 01发送冲突 解决消息以使 UE1 101确定可以发送数据包, 产生大量信令开销。 本发明中由 于 UE1101 自身能够根据确定上行时频资源和下行时频资源, 因此能够降低系 统开销, 提高传输效率。
本发明实施例还提供了一种用户设备 UE , 如图 12所示, 包括:
处理器 1201 , 用于根据前导序列集合中选择前导序列, 并根据对应关系 集合以及选择的所述前导序列获取所述前导序列对应的上行时频资源和下行 时频资源。
发射器 1202 ,用于将所述处理器 1201获取到的所述前导序列发送给基站, 以使所述基站对所述前导序列进行解码并根据解码后的前导序列确定所述解 码后的前导序列对应的上行时频资源和下行时频资源。
接收器 1203 ,用于通过所述下行时频资源接收基站发送的解码响应信息, 所述解码响应信息用于表示所述基站对所述前导序列解码成功。
所述发射器 1202还用于, 当所述接收器 1203接收到基站发送的解码响 应信息时, 通过所述前导序列对应的上行时频资源向所述基站发送数据包。
本发明实施例还提供了一种 UE , 如图 1 3所示, 该实施例与图 12所示实 施例类似, 不同之处在于, 所述 UE还包括:
存储器 1 301 , 用于存储所述前导序列与上行时频资源以及下行时频资源 的对应关系集合以及前导序列集合。
所述存储器 1 301还用于, 预存第一对应关系集合, 所述第一对应关系集 合用于表示至少一条前导序列与上行时频资源的对应关系。
所述处理器 1201还用于, 从所述存储器 1 301预存所述第一对应关系集 合中, 获取所述前导序列对应的上行时频资源。
所述接收器 1203还用于, 接收基站发送的所述第一对应关系集合。
所述处理器 1201还用于, 从接收器 1203接收到的所述第一对应关系集 合中, 获取所述前导序列对应的上行时频资源。
所述存储器 1 301还用于预存第二对应关系集合, 所述第二对应关系集合 用于表示至少一条前导序列与下行时频资源的对应关系。
所述处理器 1201还用于, 从所述存储器 1 301预存的所述第二对应关系 集合中获取所述前导序列对应的下行时频资源。
本发明实施例还提供了一种 UE ,该实施例作为对图 12所示实施例的进一 步描述, 所述处理器 1201还用于当第一预设时长内所述接收器 1203通过所 述前导序列对应的所述下行时频资源未接收到所述基站发送的所述解码响应 信息时, 在第二预设时长之后重新选择前导序列。
本发明实施例还提供了一种 UE ,该实施例作为对图 12所示实施例的进一 步描述, 所述接收器 1203还用于接收基站发送的确认信息, 所述确认信息用 于表示所述基站已成功接收所述 UE发送的数据包; 所述处理器 1201还用于, 当第三预设时长内所述接收器 1203未接收到 所述基站发送的确认信息时, 在第四预设时长之后重新选择前导序列。
本发明提供的一种 UE,处理器 1201能够获取所述前导序列对应的上行时 频资源和下行时频资源, 当接收器 1203通过该下行时频资源接收到基站发送 的解码响应信息时, 发射器 1202通过处理器 1201获取到的该上行时频资源 将数据包发送给基站。 现有技术中获取前导序列对应的时频资源的功能由基 站完成, 在随机接入响应中基站需要向 UE发送前导序列对应的时频资源的一 系列信息, 以使 UE获取到该时频资源, 由此增加了信令数量, 同时, UE需要 根据基站发送的一系列信息确定上行时频资源和下行时频资源。 此外, 现有 技术中基站需要与 UE进行同步以及冲突解决, 在这两个功能中产生了多个信 令。 本发明中处理器 1201无需根据基站发送的一系列信息即可获取前导序列 对应的上行时频资源以及下行时频资源, 实现在本地获取上行时频资源和下 行时频资源的技术效果, 在接收器 1203接收到基站发送的解码响应信息之后 可以根据获取单元 72在本地确定的上行时频资源或下行时频资源直接进行数 据传输, 进而避免了现有技术中随机响应过程中的系统开销, 此外, 接收器 1203根据基站发送的解码响应信息可以确定与基站达到同步并无冲突产生, 可进一步减少随机接入过程中的信令开销, 提高传输效率。
本发明实施例还提供了一种基站, 如图 14所示, 包括:
接收器 1401 , 用于接收用户设备 UE发送的前导序列。
处理器 1402 , 用于对所述接收器 1401接收到的所述前导序列进行解码, 当解码成功时, 根据解码后的前导序列以及所述存储器 1501存储的所述对应 关系集合, 确定所述解码后的前导序列对应的上行时频资源和下行时频资源。
发射器 1403 ,用于根据所述处理器 1402确定的所述下行时频资源向所述 UE发送解码响应信息, 所述解码响应信息用于表示所述基站对所述前导序列 解码成功。
所述接收器 1401还用于, 通过所述处理器 1402确定的所述上行时频资 源接收 UE发送的数据包。 本发明实施例还提供了一种基站, 如图 15所示, 该实施例与图 14所示 的基站类似, 不同之处在于, 所述基站还包括:
存储器 1501 , 用于存储所述前导序列与上行时频资源以及下行时频资源 的对应关系集合以及前导序列集合。
存储器 1501保存有第一对应关系集合和第二对应关系集合, 因此处理器 1402 可根据接收到的前导序列确定与之对应的上行时频资源和下行时频资 源。 处理器 1402通过识别 UE发送到信息的标志位, 能够确定 UE发送的信息 是否为前导序列, 通过对收到信息的解析, 得到前导序列, 以完成解码。 如 果有多个 UE同时选择了相同的前导序列并同时发送给基站, 此时由于各前导 序列相互冲突和干扰基站无法识别 UE发送的信息, 导致处理器 1402解码失 败。 当解码失败时, 接收器 1401等待 UE重新发送数据, 以使处理器 1402再 次对该前导序列进行解码。
本发明实施例还提供了一种基站, 该实施例作为对图 14所示实施例的进 一步描述, 所述发射器 1403还用于, 向所述 UE发送第一对应关系集合, 所 述第一对应关系集合用于表示至少一条前导序列与上行时频资源的对应关 系, 以使所述 UE根据所述第一对应关系集合确定上行时频资源。
本发明实施例还提供了一种基站, 该实施例作为对图 14所示实施例的进 一步描述, 所述发射器 1403还用于当所述接收器 1401成功接收到所述数据 包时, 向所述 UE发送确认信息, 所述确认信息用于表示所述基站已成功接收 所述数据包。
本发明实施例提供的一种基站, 处理器 1402能够对 UE发送的前导序列 进行解码, 并根据解码后的前导序列确定 UE用于上传数据包的上行时频资源 以及 UE用于接收解码响应消息的下行时频资源, 接收器 1401通过所述上行 时频资源接收 UE发送的数据包。现有技术中需要基站在随机接入响应中向 UE 发送时频资源的信息, 基站还需要与 UE建立同步连接, 并向 UE发送冲突解 决消息以使 UE确定可以发送数据包, 产生大量信令开销。 本发明实施例中由 于 UE 自身能够确定所述上行时频资源和下行时频资源, 因此发射器 1403无 需向所述 UE通告上行时频资源和下行时频资源, 进而降低系统开销。 UE若未 接收到所述解码响应信息, 则可确定基站解码失败。 由此避免 UE盲目传输数 据包, 提高传输效率。 同时, 解码响应信息是标识信息时, 由于其数据量相 对标识信息与前导序列的组合较小, 因此可节省信令开销。 当解码响应信息 为标识信息与前导序列的组合时, UE 能够根据收到的解码响应信息确定基站 解码的前导序列是否为自身选择的前导序列, 进而提高解码的准确性, 提高 数据传输的效率。 处理器 1402能够根据基站的时频资源使用情况, 为 M2M分 配时频资源, 发射器 1403将该时频资源发送给 UE以提高基站的资源利用率。 UE若未接收到发射器 1403发送的所述解码响应信息, 则可确定处理器 1402 解码失败。 由此避免 UE盲目传输数据包, 提高传输效率。 同时, 解码信息是 标识信息时, 由于其数据量相对标识信息与前导序列的组合较小, 因此可节 省信令开销。 当解码响应信息为标识信息与前导序列的组合时, UE能够根据 收到的解码响应信息确定基站解码的前导序列是否为自身选择的前导序列, 进而提高解码的转确定, 保证 UE与基站在同一个时频资源上进行数据传输, 提高数据传输的效率。
本发明实施例还提供了一种数据传输的系统, 如图 16所示, 包括如图 1 3 所示的一 UE1601和如图 15所示的一基站 1602。
所述 UE1601用于选择前导序列, 并获取所述前导序列对应的上行时频资 源和下行时频资源; 将所述前导序列发送给基站 1602。
所述基站 1602用于接收用户设备 UE1601发送的前导序列; 对所述前导 序列进行解码, 如果解码成功, 则根据解码后的前导序列确定所述解码后的 前导序列对应的上行时频资源和下行时频资源; 通过所述下行时频资源向所 述 UE1601发送解码响应信息, 所述解码响应信息用于表示所述基站 1602对 所述前导序列解码成功。
所述 UE1601还用于当通过所述下行时频资源接收到基站 1602发送的所 述解码响应信息时, 通过所述前导序列对应的上行时频资源向所述基站 1602 发送数据包。 所述基站 1602还用于通过所述上行时频资源接收所述 UE1601发送的数 据包。
本发明提供的数据传输的系统, UE1601 能够在本地获取所述前导序列对 应的上行时频资源和下行时频资源, 当接收到基站 1602发送的解码响应信息 时, 通过该上行时频资源将数据包直接发送给基站 1602。 现有技术中获取前 导序列对应的时频资源的步骤由基站 1602完成,在随机接入响应中基站 1602 需要向 UE1601发送前导序列对应的时频资源的一系列信息, 以使 UE1601获 取到该时频资源, 由此增加了信令数量。 此外, 现有技术中基站 1602需要与 UE1601 进行同步以及冲突解决, 在这两个步骤中产生了多个信令。 本发明中 UE1601 可以在本地获取时频资源, 进而避免了现有技术中随机响应过程中的 信令开销, 此外, UE1601根据基站 1602发送的解码响应信息可以确定与基站 1602达到同步并无冲突产生, 可进一步减少随机接入过程中的信令开销, 提 高传输效率。 基站 1602能够对 UE1601发送的前导序列进行解码, 并根据解 码后的前导序列确定 UE1601用于上传数据包的上行时频资源以及 UE1601用 于接收解码响应消息的下行时频资源, 通过上行时频资源接收 UE1601发送的 数据包。 现有技术中需要基站 1602在随机接入响应中向 UE1601发送时频资 源的信息, 基站 1602还需要与 UE1601建立同步连接, 并向 UE1601发送冲突 解决消息以使 UE1601确定可以发送数据包, 产生大量信令开销。 本发明中由 于 UE1601 自身能够根据确定上行时频资源和下行时频资源, 因此能够降低系 统开销, 提高传输效率。
所述领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 仅以上 述各功能模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功 能分配由不同的功能模块完成, 即将装置的内部结构划分成不同的功能模块, 以完成以上描述的全部或者部分功能。 上述描述的系统, 装置和单元的具体 工作过程, 可以参考前述方法实施例中的对应过程, 在此不再贅述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述模块或单元的划分, 仅仅为一种逻辑功能划分, 实际实 现时可以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到 另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相 互之间的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间 接耦合或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中 , 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单 元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软件功能单 元的形式实现。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。

Claims

权利 要求 书
1、 一种数据传输的方法, 其特征在于, 包括:
用户设备 UE选择前导序列, 并获取所述前导序列对应的上行时频资源和下 行时频资源;
将所述前导序列发送给基站, 以使所述基站对所述前导序列进行解码并根 据解码后的前导序列确定所述解码后的前导序列对应的上行时频资源和下行时 频资源;
如果通过所述下行时频资源接收到基站发送的解码响应信息, 则通过所述 上行时频资源向所述基站发送数据包, 所述解码响应信息用于表示所述基站对 所述前导序列解码成功。
2、 根据权利要求 1所述的数据传输的方法, 其特征在于, 所述获取所述前 导序列对应的上行时频资源包括:
从预存的第一对应关系集合中获取所述前导序列对应的上行时频资源, 所 述第一对应关系集合用于表示至少一条前导序列与上行时频资源的对应关系; 或者, 从基站发送的所述第一对应关系集合中获取所述前导序列对应的上 行时频资源;
所述获取所述前导序列对应的下行时频资源包括:
从预存的第二对应关系集合中获取所述前导序列对应的下行时频资源, 所 述第二对应关系集合用于表示至少一条前导序列与下行时频资源的对应关系。
3、 根据权利要求 1所述的数据传输的方法, 其特征在于, 在所述将所述前 导序列发送给基站之后, 所述数据传输的方法还包括:
如果在第一预设时长内通过所述下行时频资源未接收到所述基站发送的所 述解码响应信息, 则在第二预设时长之后所述 UE重新选择前导序列, 并获取所 述前导序列对应的上行时频资源和下行时频资源, 将所述前导序列发送给基站, 以使所述基站对所述前导序列进行解码并根据解码后的前导序列确定所述解码 后的前导序列对应的上行时频资源和下行时频资源。
4、 根据权利要求 1所述的数据传输的方法, 其特征在于, 在通过所述前导 序列对应的上行时频资源向所述基站发送数据包之后, 所述数据传输的方法还 包括:
如果在第三预设时长内未接收到所述基站发送的确认信息, 则在第四预设 时长之后所述 UE重新选择前导序列, 并获取所述前导序列对应的上行时频资源 和下行时频资源, 将所述前导序列发送给基站, 以使所述基站对所述前导序列 进行解码并根据解码后的前导序列确定所述解码后的前导序列对应的上行时频 资源和下行时频资源, 其中, 所述确认信息用于表示所述基站已成功接收所述 UE发送的数据包。
5、 一种数据传输的方法, 其特征在于, 包括:
基站接收用户设备 UE发送的前导序列;
对所述前导序列进行解码, 如果解码成功, 则根据解码后的前导序列确定 所述解码后的前导序列对应的上行时频资源和下行时频资源;
通过所述下行时频资源向所述 UE发送解码响应信息, 所述解码响应信息用 于表示所述基站对所述前导序列解码成功;
通过所述上行时频资源接收所述 UE发送的数据包。
6、 根据权利要求 5 所述的数据传输的方法, 其特征在于, 在基站接收 UE 发送的前导序列之前, 所述方法还包括:
向所述 UE发送第一对应关系集合, 所述第一对应关系集合用于表示至少一 条前导序列与上行时频资源的对应关系, 以使所述 UE根据所述第一对应关系集 合确定上行时频资源。
7、 根据权利要求 5所述的数据传输的方法, 其特征在于, 在所述通过所述 上行时频资源上接收所述 UE发送的数据包之后, 所述数据传输的方法还包括: 如果成功接收到所述数据包, 则向所述 UE发送确认信息, 所述确认信息用 于表示所述基站已成功接收所述数据包。
8、 一种用户设备 UE , 其特征在于, 包括:
选择单元, 用于选择前导序列;
获取单元, 用于根据对应关系集合以及所述选择单元选择的所述前导序列 获取所述前导序列对应的上行时频资源和下行时频资源;
发送单元, 用于将所述获取单元获取到的所述前导序列发送给基站, 以使 所述基站对所述前导序列进行解码并根据解码后的前导序列确定所述解码后的 前导序列对应的上行时频资源和下行时频资源;
接收单元, 用于通过所述下行时频资源接收基站发送的解码响应信息; 所述发送单元还用于, 当所述接收单元接收到基站发送的解码响应信息时, 通过所述上行时频资源向所述基站发送数据包, 所述解码响应信息用于表示所 述基站对所述前导序列解码成功。
9、 根据权利要求 8所述的 UE , 其特征在于, 所述 UE还包括:
存储单元, 用于存储所述前导序列与上行时频资源以及下行时频资源的对 应关系集合以及前导序列集合;
所述存储单元还用于, 预存第一对应关系集合, 所述第一对应关系集合用 于表示至少一条前导序列与上行时频资源的对应关系;
所述获取单元还用于, 从所述存储单元预存的所述第一对应关系集合中, 获取所述前导序列对应的上行时频资源;
所述接收单元还用于, 接收基站发送的所述第一对应关系集合;
所述获取单元还用于, 从接收单元接收到的所述第一对应关系集合中, 获 取所述前导序列对应的上行时频资源;
所述存储单元还用于预存第二对应关系集合, 所述第二对应关系集合用于 表示至少一条前导序列与下行时频资源的对应关系;
所述获取单元还用于, 从所述存储单元预存的所述第二对应关系集合中获 取所述前导序列对应的下行时频资源。
1 0、 根据权利要求 8所述的 UE , 其特征在于, 所述选择单元还用于当第一 预设时长内所述接收单元通过所述前导序列对应的所述下行时频资源未接收到 所述基站发送的所述解码响应信息时, 在第二预设时长之后重新选择前导序列。
1 1、 根据权利要求 8所述的 UE , 其特征在于, 所述接收单元还用于接收基 站发送的确认信息, 所述确认信息用于表示所述基站已成功接收所述发送单元 发送的数据包;
所述选择单元还用于, 当第三预设时长内所述接收单元未接收到所述基站 发送的确认信息时, 在第四预设时长之后重新选择前导序列。
12、 一种基站, 其特征在于, 包括:
接收单元, 用于接收用户设备 UE发送的前导序列;
解码单元, 用于对所述接收单元接收到的所述前导序列进行解码; 确定单元, 用于当所述解码单元解码成功时, 根据解码单元得出的解码后 的前导序列以及对应关系集合, 确定所述解码后的前导序列对应的上行时频资 源和下行时频资源;
发送单元, 用于根据所述确定单元确定的所述下行时频资源向所述 UE发送 解码响应信息, 所述解码响应信息用于表示所述解码单元对所述前导序列解码 成功;
所述接收单元还用于, 通过所述确定单元确定的所述上行时频资源接收 UE 发送的数据包。
1 3、 根据权利要求 12所述的基站, 其特征在于, 所述基站还包括: 存储单 元, 用于存储所述前导序列与上行时频资源以及下行时频资源的对应关系集合 以及前导序列集合。
14、 根据权利要求 12所述的基站, 其特征在于, 所述发送单元还用于, 向 所述 UE发送第一对应关系集合, 所述第一对应关系集合用于表示至少一条前导 序列与上行时频资源的对应关系, 以使所述 UE根据所述第一对应关系集合确定 上行时频资源。
15、 根据权利要求 12所述的基站, 其特征在于, 所述发送单元还用于当所 述接收单元成功接收到所述数据包时, 向所述 UE发送确认信息, 所述确认信息 用于表示所述接收单元已成功接收所述数据包。
16、 一种数据传输的系统, 其特征在于, 包括一用户设备 UE和一基站; 所述 UE用于选择前导序列, 并获取所述前导序列对应的上行时频资源和下 行时频资源; 将所述前导序列发送给基站; 所述基站用于接收用户设备 UE发送的前导序列;对所述前导序列进行解码, 如果解码成功, 则根据解码后的前导序列确定所述解码后的前导序列对应的上 行时频资源和下行时频资源; 通过所述下行时频资源向所述 UE发送解码响应信 息, 所述解码响应信息用于表示所述基站对所述前导序列解码成功;
所述 UE还用于当通过所述下行时频资源接收到基站发送的所述解码响应信 息时, 通过所述前导序列对应的上行时频资源向所述基站发送数据包;
所述基站还用于通过所述上行时频资源接收所述 UE发送的数据包。
17、 一种用户设备 UE , 其特征在于, 包括:
处理器, 用于根据前导序列集合中选择前导序列, 并根据所述对应关系集 合以及选择的所述前导序列获取所述前导序列对应的上行时频资源和下行时频 资源;
发射器, 用于将所述处理器获取到的所述前导序列发送给基站, 以使所述 基站对所述前导序列进行解码并根据解码后的前导序列确定所述解码后的前导 序列对应的上行时频资源和下行时频资源;
接收器, 用于通过所述下行时频资源接收基站发送的解码响应信息, 所述 解码响应信息用于表示所述基站对所述前导序列解码成功;
所述发射器还用于, 当所述接收器接收到基站发送的解码响应信息时, 通 过所述前导序列对应的上行时频资源向所述基站发送数据包。
18、 根据权利要求 17所述的 UE , 其特征在于, 所述 UE还包括:
存储器, 用于存储所述前导序列与上行时频资源以及下行时频资源的对应 关系集合以及前导序列集合;
所述存储器还用于, 预存第一对应关系集合, 所述第一对应关系集合用于 表示至少一条前导序列与上行时频资源的对应关系;
所述处理器还用于, 从所述存储器预存所述第一对应关系集合中, 获取所 述前导序列对应的上行时频资源;
所述接收器还用于, 接收基站发送的所述第一对应关系集合;
所述处理器还用于, 从接收器接收到的所述第一对应关系集合中, 获取所 述前导序列对应的上行时频资源;
所述存储器还用于预存第二对应关系集合, 所述第二对应关系集合用于表 示至少一条前导序列与下行时频资源的对应关系;
所述处理器还用于, 从所述存储器预存的所述第二对应关系集合中获取所 述前导序列对应的下行时频资源。
19、 根据权利要求 17所述的 UE , 其特征在于, 所述处理器还用于当第一预 设时长内所述接收器通过所述前导序列对应的所述下行时频资源未接收到所述 基站发送的所述解码响应信息时, 在第二预设时长之后重新选择前导序列。
20、 根据权利要求 17所述的 UE , 其特征在于, 所述接收器还用于接收基站 发送的确认信息, 所述确认信息用于表示所述基站已成功接收所述 UE发送的数 据包;
所述处理器还用于, 当第三预设时长内所述接收器未接收到所述基站发送 的确认信息时, 在第四预设时长之后重新选择前导序列。
21、 一种基站, 其特征在于, 包括:
接收器, 用于接收用户设备 UE发送的前导序列;
处理器, 用于对所述接收器接收到的所述前导序列进行解码, 当解码成功 时, 根据解码后的前导序列以及对应关系集合, 确定所述解码后的前导序列对 应的上行时频资源和下行时频资源;
发送器, 用于根据所述处理器确定的所述下行时频资源向所述 UE发送解码 响应信息, 所述解码响应信息用于表示所述基站对所述前导序列解码成功; 所述接收器还用于, 通过所述处理器确定的所述上行时频资源接收 UE发送 的数据包。
22、根据权利要求 21所述的基站, 其特征在于, 所述基站还包括: 存储器, 用于存储所述前导序列与上行时频资源以及下行时频资源的对应关系集合以及 前导序列集合。
23、 根据权利要求 21所述的基站, 其特征在于, 所述发射器还用于, 向所 述 UE发送第一对应关系集合, 所述第一对应关系集合用于表示至少一条前导序 列与上行时频资源的对应关系, 以使所述 UE根据所述第一对应关系集合确定上 行时频资源。
24、 根据权利要求 21所述的基站, 其特征在于, 所述发射器还用于当所述 接收器成功接收到所述数据包时, 向所述 UE发送确认信息, 所述确认信息用于 表示所述基站已成功接收所述数据包。
25、 一种数据传输的系统, 其特征在于, 由一用户设备 UE和一基站组成; 所述 UE用于选择前导序列, 并获取所述前导序列对应的上行时频资源和下 行时频资源; 将所述前导序列发送给基站;
所述基站用于接收用户设备 UE发送的前导序列;对所述前导序列进行解码, 如果解码成功, 则根据解码后的前导序列确定所述解码后的前导序列对应的上 行时频资源和下行时频资源; 通过所述下行时频资源向所述 UE发送解码响应信 息, 所述解码响应信息用于表示所述基站对所述前导序列解码成功;
所述 UE还用于当通过所述下行时频资源接收到基站发送的所述解码响应信 息时, 通过所述前导序列对应的上行时频资源向所述基站发送数据包;
所述基站还用于通过所述上行时频资源接收 UE发送的数据包。
PCT/CN2013/073083 2013-03-22 2013-03-22 数据传输的方法、用户设备、基站及系统 WO2014146300A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13879044.9A EP2953390B1 (en) 2013-03-22 2013-03-22 Data transmission method, user equipment, base station, and system
CN201380028067.XA CN105264931B (zh) 2013-03-22 2013-03-22 数据传输的方法、用户设备、基站及系统
PCT/CN2013/073083 WO2014146300A1 (zh) 2013-03-22 2013-03-22 数据传输的方法、用户设备、基站及系统
US14/860,257 US9781702B2 (en) 2013-03-22 2015-09-21 Data transmission method, user equipment, base station, and system to resolve a waste of resources during an M2M process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/073083 WO2014146300A1 (zh) 2013-03-22 2013-03-22 数据传输的方法、用户设备、基站及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/860,257 Continuation US9781702B2 (en) 2013-03-22 2015-09-21 Data transmission method, user equipment, base station, and system to resolve a waste of resources during an M2M process

Publications (1)

Publication Number Publication Date
WO2014146300A1 true WO2014146300A1 (zh) 2014-09-25

Family

ID=51579311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073083 WO2014146300A1 (zh) 2013-03-22 2013-03-22 数据传输的方法、用户设备、基站及系统

Country Status (4)

Country Link
US (1) US9781702B2 (zh)
EP (1) EP2953390B1 (zh)
CN (1) CN105264931B (zh)
WO (1) WO2014146300A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018018472A1 (en) * 2016-07-27 2018-02-01 Lenovo Innovations Limited (Hong Kong) Preamble based access for an uplink transmission
WO2018127223A1 (zh) * 2017-01-06 2018-07-12 电信科学技术研究院 一种数据传输方法、装置及系统
CN110169182A (zh) * 2017-01-09 2019-08-23 高通股份有限公司 经由随机接入信道msg2对随机接入信道msg3资源持续时间的指示

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017124433A1 (zh) * 2016-01-22 2017-07-27 富士通株式会社 随机接入与数据传输的装置、方法以及通信系统
WO2017142270A1 (ko) * 2016-02-19 2017-08-24 엘지전자(주) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치
CN107197529B (zh) * 2016-03-15 2021-01-12 华为技术有限公司 一种序列信号发送方法及终端
CN107404369B (zh) * 2016-05-21 2020-04-24 上海朗帛通信技术有限公司 一种无线通信中的ue和基站中的方法和装置
US10446428B2 (en) * 2017-03-14 2019-10-15 Applied Materials, Inc. Load port operation in electronic device manufacturing apparatus, systems, and methods
CN117460078A (zh) * 2017-03-24 2024-01-26 华为技术有限公司 随机接入响应的方法和设备以及随机接入的方法和设备
US20180324854A1 (en) * 2017-05-04 2018-11-08 Qualcomm Incorporated Uplink small data transmission for enhanced machine-type-communication (emtc) and internet of things (iot) communication
CN111294930B (zh) * 2018-12-07 2022-10-04 华为技术有限公司 一种通信方法及装置
CN114584960A (zh) * 2022-01-20 2022-06-03 中山大学·深圳 一种无冲突随机接入的警报信息传输方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102143532A (zh) * 2010-02-03 2011-08-03 中兴通讯股份有限公司 一种机器类型通信系统中下行数据的传输方法和系统
CN102202412A (zh) * 2010-06-03 2011-09-28 美商威睿电通公司 移动通信装置及其用于机器类型通信数据的传输方法
CN102387495A (zh) * 2010-08-30 2012-03-21 电信科学技术研究院 一种机器类通信设备的数据传输处理方法及设备
WO2012131654A1 (en) * 2011-04-01 2012-10-04 Renesas Mobile Corporation Small data transmission for detached mobile devices
CN102804882A (zh) * 2009-12-22 2012-11-28 交互数字专利控股公司 基于组的机器到机器通信

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7230941B2 (en) * 2001-04-26 2007-06-12 Qualcomm Incorporated Preamble channel decoding
KR20070021609A (ko) * 2005-08-19 2007-02-23 삼성전자주식회사 광대역 무선통신시스템에서 셀 탐색을 위한 송수신 장치 및방법
US8031692B2 (en) * 2006-06-22 2011-10-04 Samsung Electronics Co., Ltd Method for maintaining uplink timing synchronization in a mobile communication system and user equipment apparatus for the same
US8374139B2 (en) * 2009-03-27 2013-02-12 Mediatek Inc. Low latency synchronization scheme for wireless OFDMA systems
US8885528B2 (en) * 2010-06-18 2014-11-11 Institute For Information Industry Wireless apparatus, base station and uplink contention method thereof using mapping rule on uplink signal with preamble sequence and control message

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102804882A (zh) * 2009-12-22 2012-11-28 交互数字专利控股公司 基于组的机器到机器通信
CN102143532A (zh) * 2010-02-03 2011-08-03 中兴通讯股份有限公司 一种机器类型通信系统中下行数据的传输方法和系统
CN102202412A (zh) * 2010-06-03 2011-09-28 美商威睿电通公司 移动通信装置及其用于机器类型通信数据的传输方法
CN102387495A (zh) * 2010-08-30 2012-03-21 电信科学技术研究院 一种机器类通信设备的数据传输处理方法及设备
WO2012131654A1 (en) * 2011-04-01 2012-10-04 Renesas Mobile Corporation Small data transmission for detached mobile devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2953390A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018018472A1 (en) * 2016-07-27 2018-02-01 Lenovo Innovations Limited (Hong Kong) Preamble based access for an uplink transmission
CN109479192A (zh) * 2016-07-27 2019-03-15 联想创新有限公司(香港) 用于上行链路传输的基于前导的接入
US11812463B2 (en) 2016-07-27 2023-11-07 Lenovo Innovations Limited (Hong Kong) Preamble based access for an uplink transmission
WO2018127223A1 (zh) * 2017-01-06 2018-07-12 电信科学技术研究院 一种数据传输方法、装置及系统
CN108282874A (zh) * 2017-01-06 2018-07-13 电信科学技术研究院 一种数据传输方法、装置及系统
CN108282874B (zh) * 2017-01-06 2019-08-16 电信科学技术研究院 一种数据传输方法、装置及系统
US11057942B2 (en) 2017-01-06 2021-07-06 China Academy Of Telecommunications Technology Data transmission method for multiplexing data portion, device, and system
CN110169182A (zh) * 2017-01-09 2019-08-23 高通股份有限公司 经由随机接入信道msg2对随机接入信道msg3资源持续时间的指示
CN110169182B (zh) * 2017-01-09 2023-05-09 高通股份有限公司 经由随机接入信道msg2对随机接入信道msg3资源持续时间的指示

Also Published As

Publication number Publication date
US20160014723A1 (en) 2016-01-14
EP2953390B1 (en) 2018-11-07
EP2953390A1 (en) 2015-12-09
US9781702B2 (en) 2017-10-03
CN105264931A (zh) 2016-01-20
EP2953390A4 (en) 2016-03-02
CN105264931B (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
WO2014146300A1 (zh) 数据传输的方法、用户设备、基站及系统
WO2017049938A1 (zh) 一种在直通模式下信道冲突的处理方法以及终端
WO2014106498A1 (zh) 一种前导序列的传输方法、装置及系统
JP7139496B2 (ja) 通信方法、端末機器及びネットワーク機器
WO2015035650A1 (zh) 随机接入中预先确定资源的方法、用户设备和基站
US11985699B2 (en) Ultra-reliable low-latency communications support using grant free transmissions
CN106793148B (zh) 随机接入的方法及装置
US9750063B2 (en) Connection setup method, apparatus, and system
US11044761B2 (en) Communication method, terminal, and network device
WO2011057470A1 (zh) 一种用户设备双工制式信息的获取方法及设备
WO2015062090A1 (zh) 一种随机接入方法及相关装置
CN109495975A (zh) 随机接入方法、基站设备及用户设备
TWI771369B (zh) 系統訊息的獲取方法及裝置
US11284442B2 (en) Random access method, user equipment, base station, and random access system
WO2013020525A1 (zh) 上行短时延通信的数据传输方法和设备
EP3331294A1 (en) Method of allocating radio resource and device utilizing same
WO2016045037A1 (zh) 信号发送方法,信号接收方法及其相关设备
WO2014089831A1 (zh) 随机接入方法及设备
CN112583559B (zh) 反馈方法及装置
WO2014000165A1 (zh) 信息传输方法、网络节点、用户设备及系统
US9031556B2 (en) Handling synchronization in an uncoordinated deployment
WO2018058537A1 (zh) 传输信号的方法和装置
US11974322B2 (en) Method and device for sending information, and method and device for receiving information
WO2019158096A1 (zh) 随机接入过程中传输数据的方法和装置
WO2014071615A1 (zh) 传输信息的方法和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380028067.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879044

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013879044

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE