WO2014146280A1 - 数据传输方法、基站及用户设备 - Google Patents

数据传输方法、基站及用户设备 Download PDF

Info

Publication number
WO2014146280A1
WO2014146280A1 PCT/CN2013/073005 CN2013073005W WO2014146280A1 WO 2014146280 A1 WO2014146280 A1 WO 2014146280A1 CN 2013073005 W CN2013073005 W CN 2013073005W WO 2014146280 A1 WO2014146280 A1 WO 2014146280A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical resource
resource block
modulation level
tbs
coding
Prior art date
Application number
PCT/CN2013/073005
Other languages
English (en)
French (fr)
Inventor
王键
官磊
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to KR1020157024530A priority Critical patent/KR101717869B1/ko
Priority to PCT/CN2013/073005 priority patent/WO2014146280A1/zh
Priority to JP2016503508A priority patent/JP6047260B2/ja
Priority to EP13878758.5A priority patent/EP2858443B1/en
Priority to CN201380000632.1A priority patent/CN103547340B/zh
Publication of WO2014146280A1 publication Critical patent/WO2014146280A1/zh
Priority to US14/584,531 priority patent/US20150117396A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to a data transmission method, a base station, and a user equipment. Background technique
  • the base station In the 8th version of the Long Term Evolution System (English full name: Long Term Evolution Release.8 REL.8, LTE REL.8 for short) to the LTE REL.11 system, the base station to the user equipment (English name: User Equipment, referred to as UE)
  • the channel state determines the throughput of the base station to the UE.
  • the base station In a better channel state, the base station can transmit data to the UE using a higher code modulation (English name: Modulation and Coding Scheme, MCS for short), the throughput of the system.
  • MCS Modulation and Coding Scheme
  • the base station can transmit data to the UE with a relatively low MCS level, and the base station determines according to the channel state fed back by the UE.
  • the base station needs to determine the size of the transport block that needs to be occupied by the delivered service data, and determine that the transport block is large.
  • the base station usually in the transport block size table according to the determined MCS level and the frequency resource scheduled by the system (English full name:
  • the transport block size table (abbreviated as TBS table) determines the transport block size used to carry the service data sent by the base station to the UE.
  • the base station transmits data to the UE using the transport block determined by the existing TBS table.
  • the system overhead of the LTE REL.12 system is smaller than that of the LTE REL.8-LTE REL. il system, and thus the actual effective coding rate in the transmission process is reduced, thereby affecting the LTE REL.12 system. Throughput. Summary of the invention
  • an embodiment of the present invention provides a data transmission method, including: determining, by a base station, a coding modulation level;
  • the base station selects, in the transport block size table, a transport block size TBS corresponding to the number of the first physical resource block pair or a TBS corresponding to the number of the second physical resource block pair,
  • the number of the second physical resource block pair is a product of the number of the first physical resource block pair and a set conversion factor;
  • the base station sends the service data to the user equipment by using the selected TBS;
  • the base station sends a system scheduling control signal to the user equipment, where the system scheduling control signal includes the coded modulation level and the time-frequency resource.
  • the base station selects, in a transport block size table, a correspondence with the coded modulation level, and corresponds to the number of the first physical resource block pair
  • the transport block size TBS or the TBS corresponding to the number of the second physical resource block pair includes:
  • a TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair according to a system configuration parameter or a system overhead size, or selecting, corresponding to the coded modulation level, and the second The number of physical resource block pairs corresponds to the TBS.
  • the method further includes:
  • the base station sends a high layer signaling message to the user equipment, where the high layer signaling message carries a TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair, or The indication information of the TBS corresponding to the coding modulation level and corresponding to the number of the second physical resource block pair.
  • the method further includes:
  • the transport block size table includes: a data transport block size table in a LTE REL.8 version of the Long Term Evolution System.
  • the setting conversion factor includes a first setting conversion factor and a second encoding corresponding to a first coding modulation level in the transport block size table. a second set conversion factor corresponding to the modulation level, and the first set conversion factor is different from the second set conversion factor.
  • the first coding modulation level is a maximum coding modulation level in the transport block size table
  • the second coded modulation level is a non-maximum coded modulation level in the transport block size table.
  • the first setting conversion factor is 1.1;
  • the second set conversion factor is 1.3.
  • the number of the second physical resource block pair is greater than the maximum physical resource block pair of the transport block size table, and the coded modulation level corresponds to The TBS corresponding to the number of second physical resource block pairs is a TBS corresponding to the coded modulation level and corresponding to the number of the largest physical resource block pair.
  • an embodiment of the present invention provides a data transmission method, including:
  • the user equipment receives a system scheduling control signal sent by the base station, where the system scheduling control signal includes a coding modulation level and a time-frequency resource;
  • the user equipment selects, in a transport block size table, a transport block size TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair or a second physical resource a number of the source block pair corresponding to the TBS, where the number of the second physical resource block pair is a product of the number of the first physical resource block pair and a set conversion factor;
  • the user equipment receives the service data sent by the base station by using the selected TBS.
  • the user equipment in the transport block size table, selects a number corresponding to the coded modulation level, and the number of the first physical resource block pair
  • the corresponding transport block size TBS or the TBS corresponding to the number of the second physical resource block pair includes:
  • the user equipment selects a TBS corresponding to the coded modulation level and corresponds to the number of the first physical resource block pair according to a system configuration parameter or a system overhead size, or selects a code corresponding to the coded modulation level and The number of two physical resource block pairs corresponds to the TBS.
  • the method further includes:
  • the high layer signaling message carries a TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair, or Indication information of the TBS corresponding to the coded modulation level and corresponding to the number of second physical resource block pairs.
  • the method further includes:
  • the downlink control message carries a TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair, or The indication information of the TBS corresponding to the coding modulation level and corresponding to the number of the second physical resource block pair is described.
  • the transport block size table includes: a data transport block size table in a LTE REL.8 version of the Long Term Evolution System.
  • the setting conversion factor includes a first setting corresponding to a first coding modulation level in the transport block size table. And a second set conversion factor corresponding to the second coded modulation level, and the first set conversion factor is different from the second set conversion factor.
  • the first coding modulation level is a maximum coding modulation level in the transport block size table
  • the second coded modulation level is a non-maximum coded modulation level in the transport block size table.
  • the first setting conversion factor is 1.1;
  • the second set conversion factor is 1.3.
  • the number of the second physical resource block pair is greater than the number of the largest physical resource block pair of the transport block size table, and the code corresponding to the coded modulation level and
  • the TBS corresponding to the number of second physical resource block pairs is a TBS corresponding to the coded modulation level and corresponding to the number of the largest physical resource block pair.
  • an embodiment of the present invention provides a base station, including:
  • a processor configured to determine a coding modulation level, determine a time-frequency resource, and determine a number of the first physical resource block pair according to the time-frequency resource; and select, in the transport block size table, the coding modulation level, and a transport block size TBS corresponding to the number of the first physical resource block pair or a TBS corresponding to the number of the second physical resource block pair, where the number of the second physical resource block pair is the first physical resource block pair The product of the number and the set conversion factor;
  • a transmitter configured to send the service data to the user equipment by using the selected TBS; and send a system scheduling control signal to the user equipment, where the system scheduling control signal includes the code modulation level and the time-frequency resource.
  • the processor is further configured to: select, according to a system configuration parameter or a system overhead, a level corresponding to the coded modulation level and the first physics A TBS corresponding to the number of resource block pairs, or a TBS corresponding to the coded modulation level and corresponding to the number of second physical resource block pairs.
  • the transmitter is further configured to send a high layer signaling message to the user equipment, where
  • the high-layer signaling message carries a TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair, or selects a pair corresponding to the coded modulation level and is associated with the second physical resource block pair.
  • the number of indication information corresponding to the TBS is further configured to send a high layer signaling message to the user equipment, where
  • the high-layer signaling message carries a TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair, or selects a pair corresponding to the coded modulation level and is associated with the second physical resource block pair.
  • the transmitter is further configured to send a downlink control message to the user equipment, where
  • the downlink control message carries a TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair, or selects a corresponding to the coded modulation level and corresponds to the number of the second physical resource block pair. Instructions for the TBS.
  • the transport block size table includes: a data transport block size table in a LTE REL.8 version of the Long Term Evolution System.
  • the setting conversion factor includes a first setting conversion factor and a second encoding corresponding to a first coding modulation level in the transport block size table. a second set conversion factor corresponding to the modulation level, and the first set conversion factor is different from the second set conversion factor.
  • the first coding modulation level is a maximum coding modulation level in the transport block size table
  • the second coded modulation level is a non-maximum coded modulation level in the transport block size table.
  • the first setting conversion factor is 1.1;
  • the second set conversion factor is 1.3.
  • the processor is further used to When the number of the second physical resource block pair is greater than the maximum physical resource block pair of the transport block size table, determining a TBS corresponding to the coded modulation level and corresponding to the number of the second physical resource block pair is A TBS corresponding to a coded modulation level and corresponding to the number of the largest pair of physical resource blocks.
  • an embodiment of the present invention provides a user equipment, including:
  • a receiver configured to receive a system scheduling control signal sent by the base station, where the system scheduling control signal includes a coding modulation level and a time-frequency resource;
  • a processor configured to select, in a transport block size table, a transport block size TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair or a number corresponding to the second physical resource block pair
  • the TBS where the number of the second physical resource block pair is a product of the number of the first physical resource block pair and a set conversion factor; and the selected TBS receives the service data sent by the base station.
  • the processor is further configured to: select, according to a system configuration parameter or a system overhead, a level corresponding to the coded modulation level and the first physics A TBS corresponding to the number of resource block pairs, or a TBS corresponding to the coded modulation level and corresponding to the number of second physical resource block pairs.
  • the receiver is further configured to receive a high layer signaling message sent by the base station, where
  • the high-layer signaling message carries a TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair, or selects a pair corresponding to the coded modulation level and is associated with the second physical resource block pair.
  • the number of indication information corresponding to the TBS is further configured to receive a high layer signaling message sent by the base station, where
  • the high-layer signaling message carries a TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair, or selects a pair corresponding to the coded modulation level and is associated with the second physical resource block pair.
  • the receiver is further configured to receive a downlink control message that is sent by the base station,
  • the downlink control message carries a TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair, or selects a corresponding to the coded modulation level and corresponds to the number of the second physical resource block pair. Instructions for the TBS.
  • the transport block size table includes: a layer data transport block size table in the Long Term Evolution System Release 8 LTE REL.8.
  • the setting conversion factor includes a first setting conversion factor and a second encoding corresponding to a first coding modulation level in the transport block size table. a second set conversion factor corresponding to the modulation level, and the first set conversion factor is different from the second set conversion factor.
  • the first coding modulation level is a maximum coding modulation level in the transport block size table
  • the second coded modulation level is a non-maximum coded modulation level in the transport block size table.
  • the first setting conversion factor is 1.1;
  • the second set conversion factor is 1.3.
  • the processor is further configured to determine, when the number of the second physical resource block pair is greater than the maximum physical resource block pair of the transport block size table,
  • the TBS corresponding to the modulation level and corresponding to the number of the second physical resource block pair is a TBS corresponding to the coded modulation level and corresponding to the number of the largest physical resource block pair.
  • the data transmission method, the base station, and the user equipment in this embodiment determine the coding modulation level and the time-frequency resource by using the base station, and determine the number of the first physical resource block pair according to the time-frequency resource; and select the coding modulation level in the transport block size table.
  • the scheduling control signal includes a coding modulation level and a time-frequency resource in the system scheduling control signal, so that the base station selects the TBS, so that the base station can transmit the service data to the UE according to the selected TBS, can achieve the expected coding rate, and improve the system throughput.
  • Embodiment 1 is a flowchart of a method according to Embodiment 1 of a data transmission method according to the present invention
  • FIG. 2 is a flowchart of a method according to Embodiment 2 of a data transmission method according to the present invention
  • Embodiment 1 of a base station according to the present invention is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • FIG. 4 is a schematic structural diagram of Embodiment 1 of a user equipment according to the present invention.
  • the technical solutions in the present invention will be clearly and completely described in conjunction with the drawings in the present invention, and the embodiments described are the present invention. Some embodiments, but not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • the data transmission method in this embodiment includes:
  • the base station determines a coding modulation level.
  • the base station needs to determine the code modulation level (English name: Modulation and Coding Scheme Level, MCS Level) when transmitting the service data to the user equipment (English name: User Equipment, UE for short), so that the base station treats according to the determined MCS Level.
  • the transmitted service data is encoded.
  • the base station may determine the MCS Level by using the channel status reported by the UE. When the communication channel status of the base station and the UE is good, the base station may determine that the higher-level MCS Level is used as the coded modulation level to encode the service data to be transmitted; When the communication channel state with the UE is poor, the base station may determine that the lower level MCS Level is encoded as the coded modulation level to be transmitted.
  • the base station determines a time-frequency resource, and determines a number of the first physical resource block pair according to the time-frequency resource.
  • the system may allocate time-frequency resources for the data transmission according to the current time-frequency resource availability status, and the base station determines, according to the determined time-frequency resource, the physical resource block pair that the base station transmits the service data to the UE (English name: Physical Resource Block Pair, referred to as: PRB Pair).
  • PRB Pair The number, for example: The number of PRB Pairs determined by the base station is 11, then the base station will carry the service data on the 11 PRB Pairs.
  • the base station selects, in a transport block size table, a transport block size TBS corresponding to the number of the first physical resource block pair or a TBS corresponding to the number of the second physical resource block pair, where the second The number of physical resource block pairs is the product of the number of first physical resource block pairs and the set scaling factor.
  • the base station may first determine, according to the determined MCS Level, a modulation order index value and a TBS index value corresponding to the MCS Level in a transport block size index table (English name: Modulation and TBS index table for PDSCH); A transport block size corresponding to the MCS level and corresponding to the number of the first physical resource block pair determined in the foregoing 102 is selected in the transport block size table (English full name: Transport block size, TBS for short), and the coding rate corresponding to the TBS Can match the MCS Level determined by the base station.
  • a transport block size index table English name: Modulation and TBS index table for PDSCH
  • the base station may first in the transport block size index table according to the determined MCS Level
  • the modulation order index value corresponding to the MCS level and the TBS index value are determined; secondly, the MCS level corresponding to the MCS level and the second physical resource are selected in the transport block size table.
  • the number of block pairs corresponds to the TBS.
  • the coding rate corresponding to the TBS can match the MCS Level determined by the base station.
  • the number of the first physical resource block pair is the number of physical resource block pairs determined by the base station according to the system scheduling
  • the number of the second physical resource block pair is the product of the number of the first physical resource block pair and the set conversion factor.
  • the base station sends the service data to the user equipment by using the selected TBS.
  • the base station modulates the service data to the TBS determined in the foregoing 103 to send the modulated service data to the UE.
  • the base station sends a system scheduling control signal to the user equipment, where the system scheduling control signal includes a coding modulation level and a time-frequency resource.
  • the base station sends a system scheduling control signal that includes the MCS level and the time-frequency resource determined by the base station to the UE, so that the UE can correctly receive the service data sent by the base station according to the MCS level and the time-frequency resource, the time-frequency resource.
  • the time-frequency resource included in the system scheduling control signal is the number of the first physical resource block pair .
  • the coding modulation level and the time-frequency resource are determined by the base station, and the number of the first physical resource block pair is determined according to the time-frequency resource; and the coding-modulation level is selected in the transport block size table, and the The transport block size corresponding to the number of physical resource block pairs
  • the device sends the service data to the user equipment, and the system scheduling control signal is sent to the user equipment, where the system scheduling control signal includes the coding modulation level and the time-frequency resource, so that the base station selects the TBS, so that the base station can transmit the service data to the UE according to the selected TBS.
  • the expected encoding rate increases the throughput of the system.
  • the base station selects, in the transport block size table, a transport block size TBS corresponding to the number of the first physical resource block pair or a second physical resource block pair corresponding to the coded modulation level.
  • the TBS corresponding to the number may include: the base station selecting, according to the system configuration parameter or the system overhead, a TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair, or selecting the code modulation level corresponding to the first
  • the number of two physical resource block pairs corresponds to TB S .
  • the base station may select a TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair according to the system configuration parameter, or select a TBS corresponding to the coded modulation level and corresponding to the number of the second physical resource block pair.
  • the base station selects a TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair;
  • the base station selects a TBS corresponding to the coded modulation level and corresponding to the number of the second physical resource block pair.
  • the station may select a TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair according to the system overhead size, or select a TBS corresponding to the coded modulation level and corresponding to the number of the second physical resource block pair.
  • the base station selects a TBS corresponding to the coded modulation level and corresponds to the number of the first physical resource block pair; when the system overhead is 12 resource units, the base station selects and codes the modulation level. Corresponding to and corresponding to the number of second physical resource block pairs.
  • the data transmission method in this embodiment may further include: the base station sends a high layer signaling message to the user equipment, where the high layer signaling message carries the selection corresponding to the coding modulation level and is related to the first physical resource.
  • the TBS corresponding to the number of block pairs, or the indication information of the TBS corresponding to the coded modulation level and corresponding to the number of the second physical resource block pair is selected.
  • the high-layer signaling message sent by the base station to the UE may carry the TBS that indicates that the UE selects the number corresponding to the coded modulation level and corresponds to the number of the first physical resource block pair, or selects the second corresponding to the coded modulation level and the second
  • the number of physical resource block pairs corresponds to the indication information of the TBS, to inform the UE through the high layer signaling how to determine the TBS when receiving the service data.
  • the data transmission method in this embodiment may further include: the base station sending a downlink control message to the user equipment, where the downlink control message carries the selection corresponding to the coding modulation level and the first The number of physical resource block pairs corresponds to the TBS, or the indication information of the TBS corresponding to the coded modulation level and corresponding to the number of the second physical resource block pair is selected, so that the switching speed of the base station between different selections can be improved.
  • the transport block size table may include: a layer data transmission block size table in the Long Term Evolution System Version 8 LTE REL.8.
  • the data transmission block size table in the LTE REL. 8 may be as shown in Table 1.
  • N PRB in the first transport block size table indicates the number of physical resource block pairs
  • I TBS indicates the TBS index value
  • elements in the table indicate the transport block size TBS.
  • the setting conversion factor may include a first setting conversion factor corresponding to the first coding conversion factor in the transport block size table and a second setting conversion factor corresponding to the second coding modulation level, and the first setting conversion The factor is different from the second set conversion factor.
  • the scaling factor may include, for example, a scaling factor corresponding to the first type of coding modulation level in the transport block size table, and another scaling factor corresponding to the second type of coding modulation level, that is, if the base station determines the MCS Level as The first type of coding modulation level, then the second physical resource block pair number is the number of the first physical resource block pair multiplied by the conversion factor corresponding to the first type of coding modulation level; if the base station determines the MCS Level as the second type of coding modulation level Then, the second physical resource block pair number is the number of the first physical resource block pair multiplied by the scaling factor corresponding to the second type of coding modulation level.
  • multiple scaling factors may be associated with multiple MCS levels, and the method for determining the MCS Level category may also be different according to system overhead.
  • the first coded modulation level may be a maximum coded modulation level in the transport block size table; and the second coded modulation level may be a non-maximum coded modulation level in the transport block size table.
  • the first coded modulation level may be a maximum coded modulation level in a transport block size table; the second coded modulation level may be a non-maximum coded modulation level in a transport block size table, in other embodiments, the first A coded modulation level may also be the maximum coded modulation level in the transport block size table and any other one or more coding levels.
  • the first set conversion factor may be 1.1; and the second set conversion factor may be 1.3.
  • the base station determines that the MCS level is 8, the first physical resource block pair number is 11, and the system overhead is 12 resource units. Then, the base station selects a code modulation level corresponding to the second physical resource in the transport block size table. The number of the pair of blocks corresponds to the TBS, the number of the second pair of physical resource blocks is the product of the number 11 of the first physical resource block pair and the set conversion factor, and since the MCS Level 8 is the non-maximum coded modulation level, the setting is converted.
  • the factor is 1.3, and the number of the second physical resource block pair is 11 times 1.3 equals 14.3.
  • the base station may round the second physical resource block pair number 14.3, and the rounding process may round up or down. Rounding up, in the transport block size table, determine a TBS corresponding to the MCS Level of 8 and corresponding to the number of physical resource block pairs, and modulate the service data to the determined TBS for transmission to the UE, and inform the UE of the MCS Level.
  • the number of physical resource block pairs determined by the base station is 11, so that the UE receives the service data according to the MCS Level and the number of physical resource block pairs.
  • the TBS corresponding to the coded modulation level and corresponding to the number of the second physical resource block pair corresponds to the coded modulation level. And a TBS corresponding to the number of largest physical resource block pairs.
  • the number corresponding to the TBS is a TBS corresponding to the coded modulation level and corresponding to the number of largest physical resource block pairs.
  • the data transmission method of the embodiment includes:
  • the user equipment receives a system scheduling control signal sent by the base station, where the system scheduling control signal includes a coding modulation level and a time-frequency resource.
  • the user equipment selects, in the transport block size table, a transport block size TBS corresponding to the number of the first physical resource block pair or a TBS corresponding to the number of the second physical resource block pair, where The number of two physical resource block pairs is the product of the number of first physical resource block pairs and the set scaling factor.
  • the user equipment (English name: User Equipment, UE for short) may first determine the modulation order index value corresponding to the MCS Level according to the determined MCS Level in the Modulation and TBS index table for PDSCH. And TBS Index value; Secondly, the transport block size corresponding to the MCS Level and corresponding to the number of the first physical resource block pair determined in 202 above is selected in the transport block size table (English full name: Transport block size, abbreviated as TBS).
  • TBS Transport block size
  • the UE may first determine a modulation order index value and a TBS index value corresponding to the MCS Level in a transport block size index table (English name: Modulation and TBS index table for PDSCH) according to the determined MCS Level; A TBS corresponding to the MCS Level and corresponding to the number of second physical resource block pairs is selected in the block size table.
  • a transport block size index table English name: Modulation and TBS index table for PDSCH
  • the number of the first physical resource block pair is the number of physical resource block pairs determined by the UE according to the time-frequency resource included in the received system scheduling control signal, and the number of the second physical resource block pair is the number of the first physical resource block pair.
  • the product of the set conversion factor is the product of the set conversion factor.
  • the user equipment receives the service data sent by the base station by using the selected TBS.
  • the system scheduling control signal sent by the base station is received by the user equipment, where the system scheduling control signal includes a coding modulation level and a time-frequency resource; and the transmission block size table is selected to correspond to the coding modulation level, and the a transport block size TBS corresponding to the number of physical resource block pairs or a TBS corresponding to the number of second physical resource block pairs, where the number of the second physical resource block pair is the number of the first physical resource block pair and the setting conversion The product of the factors.
  • the user equipment uses the selected TBS to receive the service data sent by the base station, so that the user equipment selects the TBS, so that the user equipment can receive the expected data rate according to the selected TBS receiving the service data transmitted by the base station, and improve the system throughput. .
  • the user equipment selects, in the transport block size table, a transport block size TBS corresponding to the number of the first physical resource block pair or a TBS corresponding to the number of the second physical resource block pair, including: The user equipment selects a TBS corresponding to the coded modulation level and corresponds to the number of the first physical resource block pair according to the system configuration parameter or the system overhead size, or selects a code corresponding to the coded modulation level and corresponds to the number of the second physical resource block pair. TBS.
  • the UE may select a TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair according to the system configuration parameter, or select a TBS corresponding to the coded modulation level and corresponding to the number of the second physical resource block pair.
  • the system configuration parameter indicates that the control signaling includes a physical downlink control channel, indicating that the system instructs the UE to select a number corresponding to the coded modulation level and the number of the first physical resource block pair
  • the system configuration parameter indicates that the physical downlink control channel is not included in the control signaling
  • the system indicates that the UE instructs the UE to select a TBS corresponding to the coded modulation level and corresponding to the number of the second physical resource block pair.
  • the UE may select a TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair according to the system overhead size, or select a TBS corresponding to the coded modulation level and corresponding to the number of the second physical resource block pair.
  • the system overhead size is 48 resource units, indicating that the system instructs the UE to select a TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair; when the system overhead is 12 resource units, indicating that the system indicates The UE selects a TB S corresponding to the coded modulation level and corresponding to the number of second physical resource block pairs.
  • the user equipment receives the high layer signaling message sent by the base station, and the high layer signaling message carries the TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair, or selects and corresponds to the coded modulation level and The number of the second physical resource block pair corresponds to the indication information of the TBS.
  • the high-layer signaling message sent by the base station to which the UE receives may carry the TBS that indicates that the UE selects the number corresponding to the coded modulation level and corresponds to the number of the first physical resource block pair, or selects and corresponds to the coded modulation level and The number of the second physical resource block pair corresponds to the indication information of the TBS.
  • the user equipment receives the downlink control message sent by the base station, where the downlink control message carries a TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair, or
  • the indication information of the TBS corresponding to the modulation level and corresponding to the number of the second physical resource block pair may improve the switching speed of the UE between different selections.
  • the transport block size table includes: a layer data transport block size table in the LTE REL.8 of the LTE REL.8, and a data transport block size table in the LTE REL.8 is as shown in Table 1 above. Please refer to Table 1, which will not be repeated here.
  • the setting conversion factor includes a first setting conversion factor corresponding to the first coding modulation level in the transport block size table and a second setting conversion factor corresponding to the second coding modulation level, and the first setting conversion factor Different from the second setting conversion factor.
  • the scaling factor may include, for example: a first type of encoding in the transport block size table
  • the modulation level corresponds to a conversion factor
  • the second type of coding modulation level corresponds to another conversion factor, that is, if the MCS Level included in the system scheduling control signal received by the UE is the first type of coding modulation level, then the second physical resource
  • the number of block pairs is a number of the first physical resource block pair multiplied by a scaling factor corresponding to the first type of coding modulation level; if the MCS Level included in the system scheduling control signal received by the UE is the second type of coding modulation level, then the second physics
  • the number of resource block pairs is the number of first physical resource block pairs multiplied by a scaling factor corresponding to the second type of coding modulation level.
  • multiple scaling factors may be associated with multiple MCS levels, and the method for determining the MCS Level category may also be different according to system overhead.
  • the first coded modulation level is a maximum coded modulation level in the transport block size table; and the second coded modulation level is a non-maximum coded modulation level in the transport block size table.
  • the first coded modulation level may be a maximum coded modulation level in a transport block size table; the second coded modulation level may be a non-maximum coded modulation level in a transport block size table, in other embodiments, the first A coded modulation level may also be the maximum coded modulation level in the transport block size table and any other one or more coding levels.
  • the first set conversion factor is 1.1; the second set conversion factor is 1.3.
  • the UE determines that the MCS Level is 8 according to the system scheduling control signal sent by the base station, the number of the first physical resource block pair is 11 PRB Pairs, and the system overhead is 12 resource units. Then, the UE selects and encodes in the transport block size table. a modulation level corresponding to the TBS corresponding to the number of the second physical resource block pair, the number of the second physical resource block pair being the product of the number 11 of the first physical resource block pair and the set conversion factor, and because the MCS Level 8 is The non-maximum coded modulation level, the set conversion factor is 1.3, and the number of the second physical resource block pair is 11 times 1.3 equals 14.3. At this time, the UE may round the second physical resource block pair number 14.3.
  • the rounding process may be rounded up or down and rounded up and the same as the rounding mode of the base station. That is, if the base station is rounded up, the UE is also rounded up. If the base station is rounded down, the UE is also rounded down.
  • the TBS corresponding to the MCS Level 8 and corresponding to the number of physical resource block pairs is 14, and the UE receives the received service data sent by the base station according to the TBS.
  • the TBS corresponding to the coded modulation level and corresponding to the number of the second physical resource block pair corresponds to the coded modulation level. And corresponding to the number of the largest physical resource block pair TBS.
  • the number corresponding to the TBS is a TBS corresponding to the coded modulation level and corresponding to the number of largest physical resource block pairs.
  • the base station 300 of this embodiment includes: a processor 31 and a transmitter 32, where the processor 31 can be used to determine a coding modulation level; a frequency resource, and determining a number of the first physical resource block pair according to the time-frequency resource; selecting, in the transport block size table, a transport block size TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair a number of two physical resource block pairs corresponding to the TBS, where the number of the second physical resource block pair is a product of the number of the first physical resource block pair and the set conversion factor; the transmitter 32 may be configured to use the selected TBS Transmitting service data to the user equipment; transmitting a system scheduling control signal to the user equipment, where the system scheduling control signal includes a coding modulation level and a time-frequency resource.
  • the base station in this embodiment determines the coded modulation level by the processor 31; determines the time-frequency resource, and determines the number of the first physical resource block pair according to the time-frequency resource; and selects the code modulation level in the transport block size table, and a transport block size TBS corresponding to the number of the first physical resource block pair or a TBS corresponding to the number of the second physical resource block pair, where the number of the second physical resource block pair is the number and setting of the first physical resource block pair
  • the processor 31 is further configured to select, according to the system configuration parameter or the system overhead size, a TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair, Or selecting, corresponding to the coded modulation level and corresponding to the number of the second physical resource block pair
  • the sender 32 may be further configured to send a high-level signaling message to the user equipment, where the high-layer signaling message carries a TBS that corresponds to the coded modulation level and corresponds to the number of the first physical resource block pair, or selects and encodes.
  • the transmitter 32 may be further configured to send a downlink control message to the user equipment, where the downlink control message carries a TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair, or selects a coded modulation level.
  • the transport block size table may include: a layer data transmission block size table in the Long Term Evolution System Version 8 LTE REL.8.
  • the setting conversion factor may include a first setting conversion factor corresponding to the first coding conversion factor in the transport block size table and a second setting conversion factor corresponding to the second coding modulation level, and the first setting conversion The factor is different from the second set conversion factor.
  • the first coded modulation level is a maximum coded modulation level in the transport block size table; the second coded modulation level is a non-maximum coded modulation level in the transport block size table.
  • the first set conversion factor is 1.1; the second set conversion factor is 1.3.
  • the processor 31 is further configured to determine, when the number of the second physical resource block pair is greater than the maximum physical resource block pair of the transport block size table, the number corresponding to the coded modulation level and the number of the second physical resource block pair
  • the corresponding TBS is a TBS corresponding to the coded modulation level and corresponding to the number of largest physical resource block pairs.
  • the user equipment 400 of this embodiment includes: a receiver 41 and a processor 42, where the receiver 41 can be used to receive a system sent by a base station.
  • the system scheduling control signal includes a coding modulation level and a time-frequency resource;
  • the processor 42 may be configured to select, in the transport block size table, a transmission corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair a block size TBS or a TBS corresponding to the number of the second physical resource block pair, wherein the number of the second physical resource block pair is a product of the number of the first physical resource block pair and the set conversion factor; and the selected TBS is used.
  • the user equipment of this embodiment receives, by the receiver, a system scheduling control signal sent by the base station, where the system scheduling control signal includes a coding modulation level and a time-frequency resource; the processor selects a coding modulation level corresponding to the coding block size table, and a transport block size TBS corresponding to the number of the first physical resource block pair or a TBS corresponding to the number of the second physical resource block pair, where the number of the second physical resource block pair is the number and setting of the first physical resource block pair
  • the product of the conversion factor is used to receive the service data sent by the base station by using the selected TBS, so that the user equipment selects the TBS, so that the user equipment can receive the expected data rate according to the selected TBS receiving the service data transmitted by the base station, and improve the system. Throughput.
  • the processor 42 may be further configured to select, according to the system configuration parameter or the system overhead size, a TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair, or select the code modulation level corresponding to the first The number of two physical resource block pairs corresponds to the TBS.
  • the receiver 41 is further configured to receive a high-level signaling message sent by the base station, where the high-layer signaling message carries a TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair, or is selected and encoded.
  • the receiver 41 may be further configured to receive a downlink control message sent by the base station, where the downlink control message carries a TBS corresponding to the coded modulation level and corresponding to the number of the first physical resource block pair, or selects a coding modulation level.
  • the transport block size table may include: a data transport block size table in the LTE REL.8 version of the Long Term Evolution System, and a data transport block size table in the LTE REL.8 may be as shown in Table 1. For details, see Table 1, and details are not described here.
  • the setting conversion factor may include a first setting conversion factor corresponding to the first coding conversion factor in the transport block size table and a second setting conversion factor corresponding to the second coding modulation level, and the first setting conversion The factor is different from the second set conversion factor.
  • the first coded modulation level is a maximum coded modulation level in the transport block size table; the second coded modulation level is a non-maximum coded modulation level in the transport block size table.
  • the first set conversion factor is 1.1; the second set conversion factor is 1.3.
  • the processor 42 is further configured to use the number of pairs of the second physical resource block to be greater than When the number of the largest physical resource block pair of the block size table is changed, determining the TBS corresponding to the coded modulation level and corresponding to the number of the second physical resource block pair is corresponding to the coded modulation level and corresponding to the number of the largest physical resource block pair TBS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种数据传输方法、基站及用户设备,基站选择与编码调制等级对应,且与第一物理资源块对的数目或第二物理资源块对的数目对应的TBS,其中,第二物理资源块对的数目为第一物理资源块对的数目与设定换算因子的乘积;实现了基站对TBS的选择,从而使得基站根据选择的TBS向UE传输业务数据能够达到预期的编码速率。

Description

数据传输方法、 基站及用户设备
技术领域 本发明实施例涉及通信技术, 尤其涉及一种数据传输方法、 基站及用 户设备。 背景技术
在长期演进系统第 8版本(英文全称: Long Term Evolution Release.8 REL.8 , 简称 LTE REL.8 )到 LTE REL.11系统中, 基站到用户设备(英文 全称: User Equipment, 简称 UE )的信道状态决定了基站到 UE的吞吐量, 在较好的信道状态下, 基站可以釆用较高的编码调制 (英文全称: Modulation and Coding Scheme, 简称 MCS )等级向 UE传输数据, 系统的 吞吐量相对也就较大, 在较差的信道状态下, 为控制数据传输过程中的误 码率, 基站可以釆用相对较低的 MCS等级向 UE传输数据, 基站根据 UE 反馈的信道状态, 确定在该信道上向 UE传输数据所釆用的编码速率以及 MCS等级, 为达到以该编码速率向 UE传输数据的目的, 基站需要确定下 发的业务数据需要占用的传输块大小, 确定该传输块大小时, 基站通常根 据确定的 MCS等级以及系统调度的频率资源在传输块大小表格(英文全 称: Transport block size table, 简称 TBS表) 中确定用于承载基站向 UE 下发的业务数据的传输块大小。
现有技术中, 对于 LTEREL.12, 基站釆用现有的 TBS表确定的传输 块向 UE 传输数据。 然而, LTE REL.12 系统的系统开销较之 LTE REL.8-LTE REL. i l 系统的系统开销较变小了, 因此会导致传输过程中实 际的有效编码率降低, 从而影响 LTE REL.12系统的吞吐量。 发明内容
本发明实施例的目的在于提供一种数据传输方法、 基站及用户设备, 以解决基站通过根据现有 TBS表确定的传输块向 UE传输数据,导致的有 效编码率降低, 影响系统吞吐量的问题。 第一方面, 本发明实施例提供一种数据传输方法, 包括: 基站确定编码调制等级;
所述基站确定时频资源, 并根据所述时频资源确定第一物理资源块对 的数目;
所述基站在传输块大小表格中选择与所述编码调制等级对应, 且与所 述第一物理资源块对的数目对应的传输块大小 TBS 或与第二物理资源块 对的数目对应的 TBS , 其中, 所述第二物理资源块对的数目为所述第一物 理资源块对的数目与设定换算因子的乘积;
所述基站釆用所选择的 TBS向用户设备发送业务数据;
所述基站向所述用户设备发送系统调度控制信号, 所述系统调度控制 信号中包括所述编码调制等级和所述时频资源。
结合第一方面, 在第一方面的第一种可能的实现方式中, 所述基站在 传输块大小表格中选择与所述编码调制等级对应, 且与所述第一物理资源 块对的数目对应的传输块大小 TBS 或与第二物理资源块对的数目对应的 TBS , 包括:
所述基站根据系统配置参数或者系统开销大小, 选择与所述编码调制 等级对应且与所述第一物理资源块对的数目对应的 TBS , 或者, 选择与所 述编码调制等级对应且与第二物理资源块对的数目对应的 TBS。
结合第一方面或第一方面的第一种可能的实现方式, 在第一方面的第 二种可能的实现方式中, 所述方法还包括:
所述基站向所述用户设备发送高层信令消息, 所述高层信令消息中携 带选择与所述编码调制等级对应且与所述第一物理资源块对的数目对应 的 TBS , 或者, 选择与所述编码调制等级对应且与第二物理资源块对的数 目对应的 TBS的指示信息。
结合第一方面或第一方面的第一种可能的实现方式, 在第一方面的第 三种可能的实现方式中, 所述方法还包括:
所述基站向所述用户设备发送下行控制消息, 所述下行控制消息中携 带选择与所述编码调制等级对应且与所述第一物理资源块对的数目对应 的 TBS , 或者, 选择与所述编码调制等级对应且与第二物理资源块对的数 目对应的 TBS的指示信息。 结合第一方面、 第一方面的第一种可能的实现方式、 第一方面的第二 种可能的实现方式、 第一方面的第三种可能的实现方式, 在第一方面的第 四种可能的实现方式中, 所述传输块大小表格包括: 长期演进系统第 8版 本 LTE REL.8中的一层数据传输块大小表格。
结合第一方面、 第一方面的第一种可能的实现方式、 第一方面的第二 种可能的实现方式、 第一方面的第三种可能的实现方式、 第一方面的第四 种可能的实现方式, 在第一方面的第五种可能的实现方式中, 所述设定换 算因子包括与所述传输块大小表格中的第一编码调制等级对应的第一设 定换算因子与第二编码调制等级对应的第二设定换算因子, 且第一设定换 算因子与第二设定换算因子不同。
结合第一方面的第五种可能的实现方式, 在第一方面的第六种可能的 实现方式中, 所述第一编码调制等级为所述传输块大小表格中的最大编码 调制等级; 所述第二编码调制等级为所述传输块大小表格中的非最大编码 调制等级。
结合第一方面的第五种可能的实现方式或第一方面的第六种可能的 实现方式, 在第一方面的第七种可能的实现方式中, 所述第一设定换算因 子为 1.1 ; 所述第二设定换算因子为 1.3。
结合第一方面、 第一方面的第一种可能的实现方式、 第一方面的第二 种可能的实现方式、 第一方面的第三种可能的实现方式、 第一方面的第四 种可能的实现方式、 第一方面的第五种可能的实现方式、 第一方面的第六 种可能的实现方式、 第一方面的第七种可能的实现方式中的任意一种可能 的实现方式, 在第一方面的第八种可能的实现方式中, 所述第二物理资源 块对的数目大于所述传输块大小表格的最大物理资源块对的数目, 则所述 与所述编码调制等级对应且与第二物理资源块对的数目对应的 TBS 为与 所述编码调制等级对应且与所述最大物理资源块对的数目对应的 TBS。
第二方面, 本发明实施例提供一种数据传输方法, 包括:
用户设备接收基站发送的系统调度控制信号, 所述系统调度控制信号 中包括编码调制等级和时频资源;
所述用户设备在传输块大小表格中选择与所述编码调制等级对应, 且 与所述第一物理资源块对的数目对应的传输块大小 TBS 或与第二物理资 源块对的数目对应的 TBS , 其中, 所述第二物理资源块对的数目为所述第 一物理资源块对的数目与设定换算因子的乘积;
所述用户设备釆用所选择的 TBS接收基站发送的业务数据。
结合第二方面, 在第二方面的第一种可能的实现方式中, 所述用户设 备在传输块大小表格中选择与所述编码调制等级对应, 且与所述第一物理 资源块对的数目对应的传输块大小 TBS 或与第二物理资源块对的数目对 应的 TBS , 包括:
所述用户设备根据系统配置参数或者系统开销大小, 选择与所述编码 调制等级对应且与所述第一物理资源块对的数目对应的 TBS , 或者, 选择 与所述编码调制等级对应且与第二物理资源块对的数目对应的 TBS。
结合第二方面或第二方面的第一种可能的实现方式, 在第二方面的第 二种可能的实现方式中, 所述方法还包括:
所述用户设备接收所述基站发送的高层信令消息, 所述高层信令消息 中携带选择与所述编码调制等级对应且与所述第一物理资源块对的数目 对应的 TBS , 或者, 选择与所述编码调制等级对应且与第二物理资源块对 的数目对应的 TBS的指示信息。
结合第二方面或第二方面的第一种可能的实现方式, 在第二方面的第 三种可能的实现方式中, 所述方法还包括:
所述用户设备接收所述基站发送的下行控制消息, 所述下行控制消息 中携带选择与所述编码调制等级对应且与所述第一物理资源块对的数目 对应的 TBS , 或者, 选择与所述编码调制等级对应且与第二物理资源块对 的数目对应的 TBS的指示信息。
结合第二方面、 第二方面的第一种可能的实现方式、 第二方面的第二 种可能的实现方式、 第二方面的第三种可能的实现方式, 在第二方面的第 四种可能的实现方式中, 所述传输块大小表格包括: 长期演进系统第 8版 本 LTE REL.8中的一层数据传输块大小表格。
结合第二方面、 第二方面的第一种可能的实现方式、 第二方面的第二 种可能的实现方式、 第二方面的第三种可能的实现方式、 第二方面的第四 种可能的实现方式, 在第二方面的第五种可能的实现方式中, 所述设定换 算因子包括与所述传输块大小表格中的第一编码调制等级对应的第一设 定换算因子与第二编码调制等级对应的第二设定换算因子, 且第一设定换 算因子与第二设定换算因子不同。
结合第二方面的第五种可能的实现方式, 在第二方面的第六种可能的 实现方式中, 所述第一编码调制等级为所述传输块大小表格中的最大编码 调制等级; 所述第二编码调制等级为所述传输块大小表格中的非最大编码 调制等级。
结合第二方面的第五种可能的实现方式或第二方面的第六种可能的 实现方式, 在第二方面的第七种可能的实现方式中, 所述第一设定换算因 子为 1.1 ; 所述第二设定换算因子为 1.3。
结合第二方面、 第二方面的第一种可能的实现方式、 第二方面的第二 种可能的实现方式、 第二方面的第三种可能的实现方式、 第二方面的第四 种可能的实现方式、 第二方面的第五种可能的实现方式、 第二方面的第六 种可能的实现方式、 第二方面的第七种可能的实现方式中的任意一种可能 的实现方式, 在第二方面的第八种可能的实现方式中, 所述第二物理资源 块对的数目大于所述传输块大小表格的最大物理资源块对的数目, 则所述 与所述编码调制等级对应且与第二物理资源块对的数目对应的 TBS 为与 所述编码调制等级对应且与所述最大物理资源块对的数目对应的 TBS。
第三方面, 本发明实施例提供一种基站, 包括:
处理器, 用于确定编码调制等级; 确定时频资源, 并根据所述时频资 源确定第一物理资源块对的数目; 在传输块大小表格中选择与所述编码调 制等级对应, 且与所述第一物理资源块对的数目对应的传输块大小 TBS 或与第二物理资源块对的数目对应的 TBS , 其中, 所述第二物理资源块对 的数目为所述第一物理资源块对的数目与设定换算因子的乘积;
发送器,用于釆用所选择的 TBS向用户设备发送业务数据; 向所述用 户设备发送系统调度控制信号, 所述系统调度控制信号中包括所述编码调 制等级和所述时频资源。
结合第三方面, 在第三方面的第一种可能的实现方式中, 所述处理器 还用于根据系统配置参数或者系统开销大小, 选择与所述编码调制等级对 应且与所述第一物理资源块对的数目对应的 TBS , 或者, 选择与所述编码 调制等级对应且与第二物理资源块对的数目对应的 TBS。 结合第三方面或第三方面的第一种可能的实现方式, 在第三方面的第 二种可能的实现方式中, 所述发送器还用于向所述用户设备发送高层信令 消息, 所述高层信令消息中携带选择与所述编码调制等级对应且与所述第 一物理资源块对的数目对应的 TBS , 或者, 选择与所述编码调制等级对应 且与第二物理资源块对的数目对应的 TBS的指示信息。
结合第三方面或第三方面的第一种可能的实现方式, 在第三方面的第 三种可能的实现方式中, 所述发送器还用于向所述用户设备发送下行控制 消息, 所述下行控制消息中携带选择与所述编码调制等级对应且与所述第 一物理资源块对的数目对应的 TBS , 或者, 选择与所述编码调制等级对应 且与第二物理资源块对的数目对应的 TBS的指示信息。
结合第三方面、 第三方面的第一种可能的实现方式、 第三方面的第二 种可能的实现方式、 第三方面的第三种可能的实现方式, 在第三方面的第 四种可能的实现方式中, 所述传输块大小表格包括: 长期演进系统第 8版 本 LTE REL.8中的一层数据传输块大小表格。
结合第三方面、 第三方面的第一种可能的实现方式、 第三方面的第二 种可能的实现方式、 第三方面的第三种可能的实现方式、 第三方面的第四 种可能的实现方式, 在第三方面的第五种可能的实现方式中, 所述设定换 算因子包括与所述传输块大小表格中的第一编码调制等级对应的第一设 定换算因子与第二编码调制等级对应的第二设定换算因子, 且第一设定换 算因子与第二设定换算因子不同。
结合第三方面的第五种可能的实现方式, 在第三方面的第六种可能的 实现方式中, 所述第一编码调制等级为所述传输块大小表格中的最大编码 调制等级; 所述第二编码调制等级为所述传输块大小表格中的非最大编码 调制等级。
结合第三方面的第五种可能的实现方式或第三方面的第六种可能的 实现方式, 在第三方面的第七种可能的实现方式中, 所述第一设定换算因 子为 1.1 ; 所述第二设定换算因子为 1.3。
结合第三方面、 第三方面的第一种可能的实现方式、 第三方面的第二 种可能的实现方式、 第三方面的第三种可能的实现方式、 第三方面的第四 种可能的实现方式、 第三方面的第五种可能的实现方式、 第三方面的第六 种可能的实现方式、 第三方面的第七种可能的实现方式, 中的任意一种可 能的实现方式, 在第三方面的第八种可能的实现方式中, 所述处理器还用 于在第二物理资源块对的数目大于所述传输块大小表格的最大物理资源 块对的数目时, 确定与所述编码调制等级对应且与第二物理资源块对的数 目对应的 TBS 为与所述编码调制等级对应且与所述最大物理资源块对的 数目对应的 TBS。
第四方面, 本发明实施例提供一种用户设备, 包括:
接收器, 用于接收基站发送的系统调度控制信号, 所述系统调度控制 信号中包括编码调制等级和时频资源;
处理器, 用于在传输块大小表格中选择与所述编码调制等级对应, 且 与所述第一物理资源块对的数目对应的传输块大小 TBS 或与第二物理资 源块对的数目对应的 TBS , 其中, 所述第二物理资源块对的数目为所述第 一物理资源块对的数目与设定换算因子的乘积;釆用所选择的 TBS接收基 站发送的业务数据。
结合第四方面, 在第四方面的第一种可能的实现方式中, 所述处理器 还用于根据系统配置参数或者系统开销大小, 选择与所述编码调制等级对 应且与所述第一物理资源块对的数目对应的 TBS , 或者, 选择与所述编码 调制等级对应且与第二物理资源块对的数目对应的 TBS。
结合第四方面或第四方面的第一种可能的实现方式, 在第四方面的第 二种可能的实现方式中, 所述接收器还用于接收所述基站发送的高层信令 消息, 所述高层信令消息中携带选择与所述编码调制等级对应且与所述第 一物理资源块对的数目对应的 TBS , 或者, 选择与所述编码调制等级对应 且与第二物理资源块对的数目对应的 TBS的指示信息。
结合第四方面或第四方面的第一种可能的实现方式, 在第四方面的第 三种可能的实现方式中, 所述接收器还用于接收所述基站发送的下行控制 消息, 所述下行控制消息中携带选择与所述编码调制等级对应且与所述第 一物理资源块对的数目对应的 TBS , 或者, 选择与所述编码调制等级对应 且与第二物理资源块对的数目对应的 TBS的指示信息。
结合第四方面、 第四方面的第一种可能的实现方式、 第四方面的第二 种可能的实现方式、 第四方面的第三种可能的实现方式, 在第四方面的第 四种可能的实现方式中, 所述传输块大小表格包括: 长期演进系统第 8版 本 LTE REL.8中的一层数据传输块大小表格。
结合第四方面、 第四方面的第一种可能的实现方式、 第四方面的第二 种可能的实现方式、 第四方面的第三种可能的实现方式、 第四方面的第四 种可能的实现方式, 在第四方面的第五种可能的实现方式中, 所述设定换 算因子包括与所述传输块大小表格中的第一编码调制等级对应的第一设 定换算因子与第二编码调制等级对应的第二设定换算因子, 且第一设定换 算因子与第二设定换算因子不同。
结合第四方面的第五种可能的实现方式, 在第四方面的第六种可能的 实现方式中, 所述第一编码调制等级为所述传输块大小表格中的最大编码 调制等级; 所述第二编码调制等级为所述传输块大小表格中的非最大编码 调制等级。
结合第四方面的第五种可能的实现方式或第四方面的第六种可能的 实现方式, 在第四方面的第七种可能的实现方式中, 所述第一设定换算因 子为 1.1 ; 所述第二设定换算因子为 1.3。
结合第四方面、 第四方面的第一种可能的实现方式、 第四方面的第二 种可能的实现方式、 第四方面的第三种可能的实现方式、 第四方面的第四 种可能的实现方式、 第四方面的第五种可能的实现方式、 第四方面的第六 种可能的实现方式、 第四方面的第七种可能的实现方式中的任意一种可能 的实现方式, 在第四方面的第八种可能的实现方式中, 所述处理器还用于 在第二物理资源块对的数目大于所述传输块大小表格的最大物理资源块 对的数目时, 确定与所述编码调制等级对应且与第二物理资源块对的数目 对应的 TBS 为与所述编码调制等级对应且与所述最大物理资源块对的数 目对应的 TBS。
本实施例的数据传输方法、 基站及用户设备, 通过基站确定编码调制 等级、 时频资源, 并根据时频资源确定第一物理资源块对的数目; 在传输 块大小表格中选择与编码调制等级对应, 且与第一物理资源块对的数目对 应的传输块大小 TBS或与第二物理资源块对的数目对应的 TBS , 其中, 第二物理资源块对的数目为第一物理资源块对的数目与设定换算因子的 乘积; 釆用所选择的 TBS向用户设备发送业务数据; 向用户设备发送系统 调度控制信号, 系统调度控制信号中包括编码调制等级和时频资源, 实现 了基站对 TBS的选择, 从而使得基站根据选择的 TBS向 UE传输业务数 据能够达到预期的编码速率, 提高系统的吞吐量。 附图说明
实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见 地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为本发明数据传输方法实施例一的方法流程图;
图 2为本发明数据传输方法实施例二的方法流程图;
图 3为本发明基站实施例一的结构示意图;
图 4为本发明用户设备实施例一的结构示意图。 具体实施方式 为使本发明的目的、 技术方案和优点更加清楚, 下面将结合本发明中 的附图, 对本发明中的技术方案进行清楚、 完整地描述, 显然, 所描述的 实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实 施例, 本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其 他实施例, 都属于本发明保护的范围。
图 1为本发明数据传输方法实施例一的方法流程图, 如图 1所示, 本 实施例的数据传输方法包括:
101、 基站确定编码调制等级。
基站向用户设备(英文全称: User Equipment, 简称: UE )发送业务 数据时需要确定编码调制等级(英文全称: Modulation and Coding Scheme Level, 简称: MCS Level ) , 以使基站根据该确定的 MCS Level对待传输 的业务数据进行编码。 具体地, 基站可以通过 UE 上报的信道状态确定 MCS Level, 当基站与 UE的通信信道状态较好时, 基站可以确定较高等 级的 MCS Level作为编码调制等级对待传输的业务数据进行编码; 当基站 与 UE的通信信道状态较差时, 基站则可以确定较低等级的 MCS Level作 为编码调制等级对待传输的业务数据进行编码。
102、 基站确定时频资源, 并根据时频资源确定第一物理资源块对的 数目。
系统可以根据当前的时频资源可用状况为数据传输调度时频资源, 基 站根据确定的时频资源确定基站向 UE传输业务数据的物理资源块对 (英 文全称: Physical Resource Block Pair, 简称: PRB Pair )数目, 例如: 基 站确定的 PRB Pair数目为 11 ,那么基站将在该 11个 PRB Pair上承载业务 数据。
103、 基站在传输块大小表格中选择与编码调制等级对应, 且与第一 物理资源块对的数目对应的传输块大小 TBS 或与第二物理资源块对的数 目对应的 TBS , 其中, 第二物理资源块对的数目为第一物理资源块对的数 目与设定换算因子的乘积。
具体地,基站可以首先根据确定的 MCS Level在传输块大小索引表格 (英文全称: Modulation and TBS index table for PDSCH )中确定与该 MCS Level对应的调制阶数索引值以及 TBS索引值; 其次, 在传输块大小表格 中选择与该 MCS Level对应且与上述 102中确定的第一物理资源块对的数 目对应的传输块大小 (英文全称: Transport block size , 简称: TBS ) , 该 TBS对应的编码速率能够跟基站确定的 MCS Level相匹配。
或者, 基站可以首先根据确定的 MCS Level 在传输块大小索引表格
(英文全称: Modulation and TBS index table for PDSCH )中确定与该 MCS Level对应的调制阶数索引值以及 TBS索引值; 其次, 在传输块大小表格 中选择与该 MCS Level对应且与第二物理资源块对的数目对应的 TBS该 TBS对应的编码速率能够跟基站确定的 MCS Level相匹配。
该第一物理资源块对的数目为基站根据系统调度确定的物理资源块 对数目, 该第二物理资源块对的数目为第一物理资源块对的数目与设定换 算因子的乘积。
104、 基站釆用所选择的 TBS向用户设备发送业务数据。
具体地,基站将业务数据调制到上述 103中确定的 TBS上向 UE发送 该经过调制的业务数据。 105、 基站向用户设备发送系统调度控制信号, 系统调度控制信号中 包括编码调制等级和时频资源。
具体地, 基站向 UE发送包括基站确定的 MCS Level以及时频资源的 系统调度控制信号, 以使 UE能够根据该 MCS Level以及时频资源正确的 接收基站向其发送的业务数据, 该时频资源为第一物理资源块对的数目或 第二物理资源块对的数目, 当上述 103中基站选择与第二物理资源块对的 数目对应的 TBS时,该系统调度控制信号中包括的时频资源为第二物理资 源块对的数目; 当上述 103中基站选择与第一物理资源块对的数目对应的 TBS时, 该系统调度控制信号中包括的时频资源为第一物理资源块对的数 目。
本实施例的数据传输方法, 通过基站确定编码调制等级、 时频资源, 并根据时频资源确定第一物理资源块对的数目; 在传输块大小表格中选择 与编码调制等级对应, 且与第一物理资源块对的数目对应的传输块大小
TBS或与第二物理资源块对的数目对应的 TBS, 其中, 第二物理资源块对 的数目为第一物理资源块对的数目与设定换算因子的乘积; 釆用所选择的 TBS向用户设备发送业务数据; 向用户设备发送系统调度控制信号, 系统 调度控制信号中包括编码调制等级和时频资源, 实现了基站对 TBS 的选 择,从而使得基站根据选择的 TBS向 UE传输业务数据能够达到预期的编 码速率, 提高系统的吞吐量。
进一步地, 在上述实施例的基础上, 基站在传输块大小表格中选择与 编码调制等级对应,且与第一物理资源块对的数目对应的传输块大小 TBS 或与第二物理资源块对的数目对应的 TBS , 具体可以包括: 基站根据系统 配置参数或者系统开销大小, 选择与编码调制等级对应且与第一物理资源 块对的数目对应的 TBS , 或者, 选择与编码调制等级对应且与第二物理资 源块对的数目对应的 TB S。
具体地, 基站可以根据系统配置参数选择与编码调制等级对应且与第 一物理资源块对的数目对应的 TBS , 或者, 选择与编码调制等级对应且与 第二物理资源块对的数目对应的 TBS。
例如: 当系统配置参数表明控制信令中包含物理下行控制信道时, 基 站选择与编码调制等级对应且与第一物理资源块对的数目对应的 TBS; 当 系统配置参数表明控制信令中不包含物理下行控制信道时, 基站选择与编 码调制等级对应且与第二物理资源块对的数目对应的 TBS。
或者, 站可以根据系统开销大小选择与编码调制等级对应且与第一物 理资源块对的数目对应的 TBS , 或者, 选择与编码调制等级对应且与第二 物理资源块对的数目对应的 TBS。
例如: 当系统开销大小为 48个资源单元时, 基站选择与编码调制等 级对应且与第一物理资源块对的数目对应的 TBS; 当系统开销为 12个资 源单元时, 基站选择与编码调制等级对应且与第二物理资源块对的数目对 应的 TBS。
进一步地, 在上述实施例的基础上, 本实施例的数据传输方法还可以 包括: 基站向用户设备发送高层信令消息, 高层信令消息中携带选择与编 码调制等级对应且与第一物理资源块对的数目对应的 TBS , 或者, 选择与 编码调制等级对应且与第二物理资源块对的数目对应的 TBS的指示信息。
具体地, 则基站向 UE发送的高层信令消息中可以携带指示 UE选择 与编码调制等级对应且与第一物理资源块对的数目对应的 TBS, 或者, 选 择与编码调制等级对应且与第二物理资源块对的数目对应的 TBS 的指示 信息, 以通过该高层信令告知 UE在接收业务数据时如何确定 TBS。
进一步地, 在上述实施例的基础上, 本实施例的数据传输方法还可以 包括: 基站向用户设备发送下行控制消息, 下行控制消息中携带选择与所 述编码调制等级对应且与所述第一物理资源块对的数目对应的 TBS , 或 者, 选择与所述编码调制等级对应且与第二物理资源块对的数目对应的 TBS的指示信息, 可以提高基站在不同选择之间的切换速度。
进一步地, 传输块大小表格可以包括: 长期演进系统第 8 版本 LTE REL.8中的一层数据传输块大小表格。
具体地,该 LTE REL.8中的一层数据传输块大小表格可以如表 1所示。
表 1 LTE REL.8中的一层数据传输块大小表格
Figure imgf000013_0001
Figure imgf000014_0001
£1
S00C.0/CT0ZN3/X3d Ρ9Ζζ\ 88917Ϊ τ\\η 9£ ΐ 096Π 9L5Zl 9\ΖΖ\ 8ΡΡΠ wo π 08901 ιζ zun 096Π 9ίζΖΙ 9\ΖΖ\ WO ΐΐ 08901 96Ζ0Ϊ οζ
096Π 9ίζΖΙ 9\ΖΖ\ 8ΡΡΠ 1790Π 08901 96Ζ0Ϊ 1717Ϊ6 61 zmi 8ΡΡΠ WO ΐΐ 08901 96 1717Ϊ6 09L8 8½8 81
08901 96 96Ζ0Ϊ Π66 1717Ϊ6 09L8 8½8 Z66L 0817L LI
1717Ϊ6 09L8 10S8 Z66L 9£ίί PZZL 91
1717Ϊ6 09L8 10S8 8½8 Z66L 9£ίί PZZL 8969 Z\L9 95Ρ9 ST
10S8 8½8 Z66L 9£ίί 0817L PZZL 8969 00^9 Ζ665 η
9£LL 08PL PZZL 8969 Z\L9 95Ρ9 00^9 9£ Ζζ£ζ £1
Z\L9 Z\L9 95Ρ9 00^9 Ζ665 9£ίζ 89617 9LLP ζι
Z665 Ζ665 9£ίζ ΡΡζζ Ζζ£ζ 89617 9LL17 ¾εΐ 11
Ζζ£ζ 09\ζ 89617 9LLP Ζ6£Ρ 80017 088£ Ζζίί 01
9LLP Ζ6£Ρ 9£ΙΡ 80017 Z5L£ ΡΖ9£ 96Ρ£ 89εε 6
80017 088£ Ζζίί ΡΖ9£ 96Ρ£ 89εε ΟΡΖί ΖΠ£ Ρ86Ζ 8
PZ9£ 96Ρ£ 89εε 89εε ΟΡΖί ΖΠ£ 186乙 Z6LZ 9£ζΖ L
ΖΠ£ Ρ86Ζ Ρ86Ζ Z6LZ 8ZLZ 009乙 80½ 08^ 9\ΖΖ 9
9£ζΖ ZLPZ ΡΡ£Ζ 08^ 9\ΖΖ 880Ζ ΧΊϋΖ 198 ΐ S
Ζξ\Ζ 880Ζ Ζ66\ ΐ 008 ΐ 9£Ll 8091 ΡΡξ\ 08W
9£Ll ZL91 8091 ΡΡξ\ 08W 9ΐΐ7ΐ ΐ8ετ 0Ζ£1 9ζΖΙ ΧΊΖ\ e
0Z£l 88ΖΪ 9511 Ζ6Π 09Π 9601 1790Ϊ 000 ΐ 896 9£6 ζ
WOT Ζ£01 000 ΐ 896 9£6 Ρ06 808 9LL PPL \
808 9LL 9LL PPL ZIL 089 819 9ΐ9 009 89S 0 oe 61 SZ LZ 91 SZ η £Ζ ττ ιζ saij
88917Ϊ ζ\\η 9£ ΐ 9LiZ\ zmi 1790 ΐΐ 96Ζ0Ϊ 09L8 8½8 9Ζ
9L5Zl 08901 96 09L8 8½8 0817L 8969 SZ
9\ΖΖ\ WO ΐΐ 96Ζ0Ϊ 1717Ϊ6 10S8 Z66L Z\L9
8ΡΡΠ won 96Ζ0Ϊ Ζ\66 1717Ϊ6 10S8 Z66L 0817L 8969 00^9 ez
08901 96 1717Ϊ6 10S8 Z66L 0817L 8969 9S19 Ζ66ζ ττ
1717Ϊ6 10S8 Z66L 0817L 8969 ΡΡζζ ιζ
1717Ϊ6 09L8 8½8 Z66L 0817L 8969 09\ζ οζ
10S8 8½8 9£ίί PZZL 8969 95Ρ9 ΡΡζζ 09TS 9LLP 61
Z66L 08PL PZZL Z\L9 00^9 Ζ665 09\ζ 9LL17 Ζ6£Ρ 81
PZZL Z\L9 95Ρ9 00^9 9£ Ζζ£ζ 09TS 9LLP ¾εΐ 80017 ίΛ
95Ρ9 00^9 Ζ665 ΡΡζζ 09TS 89617 18S1 088£ ΡΖ9£ 91
00^9 9£ ΡΡζζ 09\ζ 89617 80017 ΡΖ9£ 89εε ST
9£ίζ ΡΡζζ 09\ζ 89617 80017 Ζζίί 96Ρ£ ΖΠ£
09\ζ 89617 Ζ6£Ρ 9£ΙΡ 088£ ½9£ 89εε ΖΠ£ ei
S00C .0/CT0ZN3/X3d 008 ΐ 008 ΐ 9£Ll 9£Ll ZL91 8091 8091 ΡΡξ\ ΡΡξ\ 08W ι ΐ8ετ OZ£l 88ΖΪ 9511 9511 ΧΊΖ\ Ζ6Π 09Π 0
OS SP LP 9Ρ £Ρ ΖΡ It saij
96Ζ6Ζ 96Ζ6Ζ 9££8Z 9L£LZ 95P5Z 95P5Z 96^1 889£Ζ ϋΖ6ΖΖ 91
9ζΡζΖ 96^1 96^1 889£Z ϋΖ6ΖΖ Ζζ\ΖΖ Ρ8£ΙΖ 9ΐ 9ΐ 81786Ϊ
96^1 889£Ζ ϋΖ6ΖΖ Ζζ\ΖΖ Ρ8£ΙΖ 9ΐ 81786Ϊ 81786Ϊ 08061 η ϋΖ6ΖΖ Ζζ\ΖΖ Ζζ\ΖΖ P8£IZ 9Ϊ90Ζ 81786Ϊ 81786Ϊ 08061 9εε8ΐ 89SLT £Ζ
Ρ8£ΙΖ Ρ8£ΙΖ 9ΐ 81786Ϊ 08061 08061 9εε8ΐ 89SLT 乙 6691 乙 6691 ζζ
81786Ϊ 81786Ϊ 08061 9££8T 9εε8ΐ 89SLT 乙 6691 9ΐΐ79ΐ 018 ST 018 ST ιζ
9εε8ΐ 9εε8ΐ 89SLT 乙 6691 乙 6691 9ΐΐ79ΐ 018 ST Ρ9Ζζ\ 88917Ϊ 88917Ϊ οζ 乙 6691 乙 6691 9ΐΐ79ΐ 018 ST Ρ9Ζξ\ Ρ9Ζξ\ 88917Ϊ τ\\η 9£ ΐ 9£ ΐ 61
0Ρ8ξ\ Ρ9Ζξ\ P9Z5l 88917Ϊ ζ\\η ζ\\η 9£ ΐ 096Π 9L5Zl 9\ΖΖ\ 81
88917Ϊ ζ\\η 9£ ΐ 9£ ΐ 096Π 9\ΖΖ\ zmi 8ΡΡΠ WO ΐΐ LI
096Π 9\ΖΖ\ 9\ΖΖ\ WO ΐΐ 08901 96Ζ0Ϊ Ζ\66 91
9\ΖΖ\ zmi zmi 8ΡΡΠ won 08901 96Ζ0Ϊ 96Ζ0Ϊ ST
8ΡΡΠ 1790Π WO ΐΐ 08901 96 Ζ\66 1717Ϊ6 09L8 η
96 66 Π66 1717Ϊ6 1717Ϊ6 09L8 10S8 8½8 Z66L £1
1717Ϊ6 09L8 09L8 10S8 8½8 Z66L 9£ίί 08PL PZZL 8969 ζι
Z66L 9£LL 9£ίί 08PL PZZL 8969 8969 Z\L9 95Ρ9 00^9 11
8969 Z\L9 Z\L9 95Ρ9 00^9 00^9 Ζ665 9£ίζ 9£ίζ ΡΡζζ 01
00^9 00^9 Ζ665 9£ίζ 9£ίζ ΡΡζζ Ζζ£ζ 09\ζ 09\ζ 89617 6
ΡΡζζ ΡΡζζ Ζζ£ζ 09\ζ 89617 89617 9LLP Ζ6£Ρ 8
89617 9LLP Ζ6£Ρ 9£ΙΡ 80017 088£ Ζζίί L
9£ΙΡ 9£IP 80017 088£ Ζζίί ΡΖ9£ 96Ρ£ 96Ρ£ 89εε ΟΡΖί 9
96Ρ£ 96P£ 89εε ΟΡΖί ΖΠ£ ΖΠ£ Ρ86Ζ Z6LZ 8ZLZ S
Z6LZ 8ZLZ 009乙 ZLPZ 80ΡΖ ΡΡ£Ζ 08^ 9\ΖΖ
ΡΡ£Ζ 08^ 9\ΖΖ Ζξ\Ζ 880Ζ ΧΊϋΖ Ζ66\ 198 ΐ 008 ΐ £
008 ΐ 9iL\ ZL9\ ZL9\ 809 ΐ ΡΡξ\ ΡΡξ\ 08W 9ΐΐ7ΐ ΐ8ετ Ζ
9ΐΐ7ΐ 9Ϊ17Ϊ ΐ 8£ΐ ^ετ 88ΖΪ 9ζΖΙ ΧΊΖ\ Ζ6Π 09Π 8ΖΠ ι
9601 OI Ζ£01 Ζ£01 000 ΐ 896 9£6 Ρ06 ZL8 018 0
6£ 8e Li 9£ se Ρ£ ee Ζ£ ie saij
Ζζ\ΖΖ P8£IZ 9ΐ 81786Ϊ 08061 9εε8ΐ 89SLT 乙 6691 9ΐΐ79ΐ Ρ9Ζξ\ 91
08061 9εε8ΐ 89SLT 乙 6691 9ΐΐ79ΐ 018 Ρ9Ζξ\ 88917Ϊ ζ\\η 9£ ΐ
9εε8ΐ 乙 6691 9ΐΐ79ΐ 0Ρ8ξ\ Ρ9Ζξ\ 88917Ϊ ζ\\η 096Π η 乙 6691 9Ϊ179Ϊ 018 ST Ρ9Ζξ\ 88917Ϊ ζ\\η 9£ ΐ 096Π 9\ΖΖ\ £Ζ
9ΐΐ79ΐ 0Ρ8ζ\ P9Z5l 88917Ϊ zu 096Π 9LiZ\ zmi 8ΡΡΠ ζζ
S00C.0/CT0ZN3/X3d LI
Figure imgf000017_0001
91
S00C .0/CT0ZN3/X3d
Figure imgf000018_0001
LI
S00C .0/CT0ZN3/X3d 06 68 88 LS 98 S8 PS ZS 18 saij
9ζΖ6ζ 9££ίζ 9££ίζ 9££ίζ 9ζ0ζζ 9ζ0ζζ 9ζ0ζζ ΖζίΖζ ΖζίΖζ 91
9Ε6817 9Ε6817 9Ε6817 888917 888917 888917 Ζζ£ζΡ Ζζ£ζΡ
9E6817 9Ε6817 888917 888917 888917 Ζζ£ζΡ Ζζ£ζΡ Ζζ£ζΡ 9ΐ8 9ΐ8 η
Ζζ£ζΡ Ζζ£ζΡ Ζζ£ζΡ 9ΐ8 9ΐ8 9ΐ8 89£ΖΡ 89£ΖΡ 9ίζΟΡ 9ίζΟΡ £Ζ
9ΐ8 89£ΖΡ 89£ΖΡ 89£ΖΡ 9ίζΟΡ 9ίζΟΡ 9L50P Ζ£Ζ6£ Ζ£Ζ6£ 888 ζζ
9L50P Ζ£Ζ6£ Ζ£Ζ6£ Ζ£Ζ6£ 888 888 9699£ 9699£ 9699£ 09ΐ^ε ιζ
9699ε 9699£ 9699£ 09ΐ^ε 09ΐ^ε 漏 1 £ 漏 1 £ 漏 1 £ οζ
8θοΐ ε 8θοΐ ε 漏 1 £ ΡΟίΙί ΡΟίΙί 9L50£ 9L50£ 61
ΡΟίΙί ΡΟίΙί 9L50£ 9L50£ 9L50£ 96Ζ6Ζ 96Ζ6Ζ 96Ζ6Ζ 9££8Ζ 9££8Ζ 81
96Ζ6Ζ 9££8Ζ 9££8Ζ 9ί£ίΖ 9ί£ίΖ 9ί£ίΖ 95P5Z LI
95P5Z 95P5Z 95P5Z 96^1 96^1 96^1 889£Ζ 889£Ζ ϋΖ6ΖΖ 91
96^1 96^1 889£Ζ 889£Ζ 889£Ζ ϋΖ6ΖΖ ϋΖ6ΖΖ Ζζ\ΖΖ Ζζ\ΖΖ Ζζ\ΖΖ ST ϋΖ6ΖΖ ϋΖ6ΖΖ Ζζ\ΖΖ Ζζ\ΖΖ Ζζ\ΖΖ Ρ8£ΙΖ Ρ8£ΙΖ 9ΐ 9ΐ 9ΐ η
9Ϊ90Ζ 9Ϊ90Ζ 81786Ϊ 81786Ϊ 81786Ϊ 08061 08061 08061 9εε8ΐ 9εε8ΐ £1
9εε8ΐ 9εε8ΐ 89SLT 89SLT 89SLT 乙 6691 乙 6691 9ΐΐ79ΐ 9ΐΐ79ΐ 9ΐΐ79ΐ ζι
9ΐΐ79ΐ 018ST 018 018 Ρ9Ζξ\ Ρ9Ζξ\ 88917Ϊ 88917Ϊ 88917Ϊ ζ\\η 11 ζ\\η ζ\\η 9£ ΐ 9£ ΐ 9ε^ετ 096Π 096Π 096Π 9LiZ\ 01
9\ΖΖ\ 9\ΖΖ\ zmi zmi 8ΡΡΠ 8ΡΡΠ 1790 ΐΐ 6
1790Π 1790Π WO ΐΐ 08901 08901 08901 96Ζ0Ϊ 96Ζ0Ϊ Ζ\66 Ζ\66 8
Ζ\66 1717Ϊ6 1717Ϊ6 1717Ϊ6 09L8 09L8 09L8 L
8½8 8½8 8½8 Z66L Z66L 9£ίί 9£ίί 9£ίί 0817L 0817L 9
8969 8969 8969 Z\L9 Z\L9 Z\L9 95Ρ9 95Ρ9 00^9 00^9 S
9£ 9£ ΡΡζζ ΡΡζζ ΡΡζζ Ζζ£ζ 0915 09TS 09TS
9LL17 Ζ6£Ρ Ζ6£Ρ Ζ6£Ρ 9£ΙΡ £
ΡΖ9£ 96Ρ£ 96Ρ£ 96Ρ£ 89εε 89εε 89εε 0ΡΖ£ 0ΡΖ£ 0ΡΖ£ Ζ
Z6LZ Z6LZ 8ZLZ 8ZLZ 009乙 009乙 ι
9\ΖΖ Ζζ\Ζ Ζζ\Ζ 880Ζ 880Ζ 880Ζ Ζ66\ Ζ66\ 0
08 6L SL LL 9L SZ, PL £L ZL IL saij
ΖζίΖζ 1 S 9Ε6817 9Ε6817 9Ε6817 888917 888917 Ζζ£ζΡ Ζζ£ζΡ 91
9ΐ8 9ΐ8 9ΐ8 89£ΖΡ 89£ΖΡ 9L50P 9L50P 9L50P Ζ£Ζ6£ Ζ£Ζ6£
89£ΖΡ 89£ΖΡ 89£ΖΡ 9L50P 9L50P Ζ£Ζ6£ Ζ£Ζ6£ 888 888 9699£ η
9L50P Ζ£Ζ6£ Ζ£Ζ6£ 888 888 888 9699£ 9699£ 09ΐ^ε £Ζ
888 9699£ 9699£ 9699£ 09ΐ^ε 漏 1 £ 漏 1 £ 漏 1 £ ζζ
09ΐ^ε 09ΐ^ε 漏 1 £ 漏 1 £ ΡΟίΙί ΡΟίΙί ΡΟίΙί 9L50£ ιζ
ΡΟίΙί ΡΟίΙί ΡΟίΙί 9L50£ 9L50£ 96Ζ6Ζ 96Ζ6Ζ 96Ζ6Ζ 9££8Ζ οζ
81
S00C.0/CT0ZN3/X3d zun zun 9ε^ετ 9£ ΐ 096Π 096Π 096Π 9L5Zl 8
9\ZZ\ 9\ΖΖ\ zmi zmi 8ΡΡΠ 8ΡΡΠ WO ΐΐ L
96 96 96Ζ0Ϊ 96Ζ0Ϊ Ζ\66 Ζ\66 Ζ\66 9
09L8 09L8 09L8 10S8 10S8 8½8 8½8 8½8 Z66L Z66L S
PZZL 8969 8969 8969 8969 Z\L9 Z\L9 Z\L9 95Ρ9 95Ρ9
9£ίζ 9£ 9£ίζ 9£ίζ ΡΡζζ ΡΡζζ ΡΡζζ Ζζ£ζ Ζζ£ζ £
Ζ6£Ρ Ζ6£Ρ Ζ6£Ρ 9£ΙΡ 9£ΙΡ 9£ΙΡ Ζ
PZ9£ ΡΖ9£ ΡΖ9£ 96Ρ£ 96Ρ£ 96Ρ£ 96Ρ£ 89εε 89εε 89εε ι
Z6LZ 8ZLZ 8ZLZ 8ZLZ 009乙 009乙 9£ζΖ 9£ζΖ 0
001 66 86 L6 96 6 Ρ6 £6 Ζ6 16 saij
9ίί£9 9ίί£9 9ίί£9 1799 ΐ 9 1799 ΐ 9 1799 ΐ 9 95165 95165 91
9££ίζ 9ζ0ζζ 9ζ0ζζ 9ζ0ζζ 9ζ0ζζ ΖζίΖζ ΖζίΖζ ΖζίΖζ 1 S
9ζ0ζζ ΖζίΖζ ΖζίΖζ ΖζίΖζ ΖζίΖζ 1 S 1 S 1 S 9Ε6817 η
1 S 1 S 9Ε6817 9Ε6817 9Ε6817 888917 888917 888917 £Ζ
9E6817 9Ε6817 888917 888917 888917 Ζζ£ζΡ Ζζ£ζΡ Ζζ£ζΡ 9ΐ8 9ΐ8 ζζ
Ζζ£ζΡ Ζζ£ζΡ 9ΐ8 9ΐ8 9ΐ8 89£ΖΡ 89£ΖΡ 89£ΖΡ 9ίζΟΡ 9ίζΟΡ ιζ
89£ZP 89£ΖΡ 9ίζΟΡ 9ίζΟΡ 9ίζΟΡ Ζ£Ζ6£ Ζ£Ζ6£ Ζ£Ζ6£ 888 888 οζ
Z£Z6£ 888 888 888 9699£ 9699£ 9699£ 09ΐ^ε 09ΐ^ε 61
09\ζ£ 09ΐ^ε 09ΐ^ε 漏 1 £ 800l £ 漏 1 £ ΡΟίΙί 81
ΡΟίΙί ΡΟίΙί ΡΟίΙί 9ίζ0£ 9L50£ 9L50£ 9L50£ 96Ζ6Ζ 96Ζ6Ζ LI
96Z6Z 96Ζ6Ζ 9££8Ζ 9££8Ζ 9££8Ζ 9ί£ίΖ 9ί£ίΖ 9ί£ίΖ 91
9L£LZ 9ί£ίΖ 9ί£ίΖ 95P5Z 95P5Z 95P5Z 96^1 ST
95P5Z 95P5Z 95P5Z 95P5Z 96^1 96^1 96^1 889£Ζ 889£Ζ ϋΖ6ΖΖ η ϋΖ6ΖΖ ϋΖ6ΖΖ ϋΖ6ΖΖ Ζζ\ΖΖ Ζζ\ΖΖ Ζζ\ΖΖ Ρ8£ΙΖ Ρ8£ΙΖ Ρ8£ΙΖ 9ΐ £1
9Ϊ90Ζ 9Ϊ90Ζ 81786Ϊ 81786Ϊ 81786Ϊ 08061 08061 08061 08061 9εε8ΐ ζι
9££8T 9εε8ΐ 89SLT 89SLT 89SLT 乙 6691 乙 6691 乙 6691 9ΐΐ79ΐ 9ΐΐ79ΐ 11
018ST 018ST Ρ9Ζξ\ Ρ9Ζξ\ Ρ9Ζξ\ 88917Ϊ 88917Ϊ 88917Ϊ 88917Ϊ ζ\\η 01 zun ζ\\η ζ\\η 9£ ΐ 9ε^ετ 096Π 096Π 096Π 6
9\ΖΖ\ zmi zmi 8ΡΡΠ 8ΡΡΠ 8ΡΡΠ 8
1901 ΐ 1790Π 08901 08901 08901 96Ζ0Ϊ 96Ζ0Ϊ 96Ζ0Ϊ Ζ\66 Ζ\66 L
1717Ϊ6 1717Ϊ6 1717Ϊ6 1717Ϊ6 09L8 09L8 09L8 10S8 10S8 9
Z66L 9£ίί 9£ίί 9£ίί 0817L 0817L 0817L PZZL PZZL PZZL S
95P9 95Ρ9 00^9 00^9 00^9 Ζ665 Ζ665 Ζ665 Ζ665 9£ίζ
Ζζ£ζ 0915 0915 0915 89617 89617 89617 9LLP 9LLP 9LLP £
80017 80017 80017 088£ 088£ 088£ Ζζίί Ζζίί ΡΖ9£ ΡΖ9£ Ζ
0PZ£ 0ΡΖ£ 0ΡΖ£ 0ΡΖ£ ΖΠ£ ΖΠ£ ΖΠ£ Ρ86Ζ Ρ86Ζ Ρ86Ζ ι
9£5Z ZLPZ ZLPZ 80ΡΖ ΡΡ£Ζ ΡΡ£Ζ 08^ 08^ 08^ 0
61
S00C .0/CT0ZN3/X3d
Figure imgf000021_0001
18 40576 40576 40576 40576 42368 42368 42368 42368 43816 43816
19 43816 43816 43816 45352 45352 45352 46888 46888 46888 46888
20 46888 46888 48936 48936 48936 48936 48936 51024 51024 51024
21 51024 51024 51024 52752 52752 52752 52752 55056 55056 55056
22 55056 55056 55056 57336 57336 57336 57336 59256 59256 59256
23 57336 59256 59256 59256 59256 61664 61664 61664 61664 63776
24 61664 61664 63776 63776 63776 63776 66592 66592 66592 66592
25 63776 63776 66592 66592 66592 66592 68808 68808 68808 71112
26 75376 75376 75376 75376 75376 75376 75376 75376 75376 75376 该第一传输块大小表格中的 NPRB表示物理资源块对的数目, ITBS表示 TBS索引值, 表格中的元素表示传输块大小 TBS。
进一步地, 设定换算因子可以包括与传输块大小表格中的第一编码调 制等级对应的第一设定换算因子与第二编码调制等级对应的第二设定换 算因子, 且第一设定换算因子与第二设定换算因子不同。
具体地, 换算因子例如可以包括: 与传输块大小表格中的第一类编码 调制等级对应一种换算因子, 与第二类编码调制等级对应另外一种换算因 子, 即若基站确定的 MCS Level为第一类编码调制等级, 那么第二物理资 源块对数目为第一物理资源块对数目乘以与第一类编码调制等级对应的 换算因子; 若基站确定的 MCS Level为第二类编码调制等级, 那么第二物 理资源块对数目为第一物理资源块对数目乘以与第二类编码调制等级对 应的换算因子。
在其它实施例中, 还可以为多个换算因子, 分别与多类 MCS Level 对应, 确定 MCS Level类别的方法还可以根据系统的开销而不同。
在上述实施例的基础上, 更进一步地, 第一编码调制等级可以为传输 块大小表格中的最大编码调制等级; 第二编码调制等级可以为传输块大小 表格中的非最大编码调制等级。
具体地, 该第一编码调制等级可以为传输块大小表格中的最大编码调 制等级; 该第二编码调制等级可以为传输块大小表格中的非最大编码调制 等级, 在其它实施例中, 该第一编码调制等级还可以为传输块大小表格中 的最大编码调制等级以及其它任何一个或多个编码等级。
在上述实施例的基础上, 又进一步地, 第一设定换算因子可以为 1.1 ; 第二设定换算因子可以为 1.3。 例如: 基站确定的 MCS Level为 8, 第一物理资源块对数目为 11 , 系 统开销为 12个资源单元, 那么, 基站在传输块大小表格中选择与编码调 制等级对应, 且与第二物理资源块对的数目对应的 TBS, 该第二物理资源 块对的数目为第一物理资源块对数目 11 与设定换算因子的乘积, 又由于 MCS Level 8为非最大编码调制等级, 该设定换算因子为 1.3 , 则第二物理 资源块对的数目为 11乘以 1.3等于 14.3 , 此时,基站可以将该第二物理资 源块对数目 14.3取整, 该取整过程可以向上取整或向下取整, 在传输块大 小表格中确定与 MCS Level为 8对应, 且与物理资源块对的数目为 14对 应的 TBS ,将业务数据调制到该确定的 TBS上向 UE传输,并告知 UE MCS Level为 8 ,基站确定的物理资源块对数目为 11 ,以使 UE根据该 MCS Level 及物理资源块对的数目接收业务数据。
进一步地, 第二物理资源块对的数目大于传输块大小表格的最大物理 资源块对的数目, 则与编码调制等级对应且与第二物理资源块对的数目对 应的 TBS 为与编码调制等级对应且与最大物理资源块对的数目对应的 TBS。
具体地, 例如: 当第一物理资源块对的数目与设定换算因子的乘积大 于传输块大小表格中包括的最大物理资源块对数目时, 与编码调制等级对 应且与第二物理资源块对的数目对应的 TBS 为与编码调制等级对应且与 最大物理资源块对的数目对应的 TBS。
图 2为本发明数据传输方法实施例二的方法流程图, 如图 2所示, 本 是实施例的数据传输方法包括:
201、 用户设备接收基站发送的系统调度控制信号, 系统调度控制信 号中包括编码调制等级和时频资源。
202、 用户设备在传输块大小表格中选择与编码调制等级对应, 且与 第一物理资源块对的数目对应的传输块大小 TBS 或与第二物理资源块对 的数目对应的 TBS, 其中, 第二物理资源块对的数目为第一物理资源块对 的数目与设定换算因子的乘积。
用户设备 (英文全称: User Equipment, 简称 UE)可以首先根据确定的 MCS Level在传输块大小索引表格(英文全称: Modulation and TBS index table for PDSCH )中确定与该 MCS Level对应的调制阶数索引值以及 TBS 索引值; 其次, 在传输块大小表格中选择与该 MCS Level对应且与上述 202 中确定的第一物理资源块对的数目对应的传输块大小 (英文全称: Transport block size , 简称: TBS ) 。
或者, UE可以首先根据确定的 MCS Level在传输块大小索引表格(英 文全称: Modulation and TBS index table for PDSCH )中确定与该 MCS Level 对应的调制阶数索引值以及 TBS索引值; 其次,在传输块大小表格中选择 与该 MCS Level对应且与第二物理资源块对的数目对应的 TBS。
该第一物理资源块对的数目为 UE根据接收的系统调度控制信号中包 括的时频资源确定的物理资源块对数目, 该第二物理资源块对的数目为第 一物理资源块对的数目与设定换算因子的乘积。
203、 用户设备釆用所选择的 TBS接收基站发送的业务数据。
本实施例的数据传输方法, 通过用户设备接收基站发送的系统调度控 制信号, 系统调度控制信号中包括编码调制等级和时频资源; 在传输块大 小表格中选择与编码调制等级对应, 且与第一物理资源块对的数目对应的 传输块大小 TBS或与第二物理资源块对的数目对应的 TBS, 其中, 第二 物理资源块对的数目为第一物理资源块对的数目与设定换算因子的乘积。 用户设备釆用所选择的 TBS接收基站发送的业务数据,实现了用户设备对 TBS 的选择, 从而使得用户设备根据选择的 TBS接收基站传输的业务数 据能够达到预期的编码速率, 提高系统的吞吐量。
进一步地, 用户设备在传输块大小表格中选择与编码调制等级对应, 且与第一物理资源块对的数目对应的传输块大小 TBS 或与第二物理资源 块对的数目对应的 TBS , 包括: 用户设备根据系统配置参数或者系统开销 大小, 选择与编码调制等级对应且与第一物理资源块对的数目对应的 TBS, 或者, 选择与编码调制等级对应且与第二物理资源块对的数目对应 的 TBS。
具体地, UE 可以根据系统配置参数选择与编码调制等级对应且与第 一物理资源块对的数目对应的 TBS , 或者, 选择与编码调制等级对应且与 第二物理资源块对的数目对应的 TBS。
例如: 当系统配置参数表明控制信令中包含物理下行控制信道时, 表 明系统指示 UE选择与编码调制等级对应且与第一物理资源块对的数目对 应的 TBS; 当系统配置参数表明控制信令中不包含物理下行控制信道时, 表明系统指示 UE选择与编码调制等级对应且与第二物理资源块对的数目 对应的 TBS。
或者, UE 可以根据系统开销大小选择与编码调制等级对应且与第一 物理资源块对的数目对应的 TBS , 或者, 选择与编码调制等级对应且与第 二物理资源块对的数目对应的 TBS。
例如: 当系统开销大小为 48个资源单元时,表明系统指示 UE选择与 编码调制等级对应且与第一物理资源块对的数目对应的 TBS; 当系统开销 为 12个资源单元时,表明系统指示 UE选择与编码调制等级对应且与第二 物理资源块对的数目对应的 TB S。
进一步地, 用户设备接收基站发送的高层信令消息, 高层信令消息中 携带选择与编码调制等级对应且与第一物理资源块对的数目对应的 TBS , 或者,选择与编码调制等级对应且与第二物理资源块对的数目对应的 TBS 的指示信息。
具体地, UE接收的基站向其发送的高层信令消息中可以携带指示 UE 选择与编码调制等级对应且与第一物理资源块对的数目对应的 TBS , 或 者, 选择与编码调制等级对应且与第二物理资源块对的数目对应的 TBS 的指示信息。
进一步地, 用户设备接收基站发送的下行控制消息, 所述下行控制消 息中携带选择与所述编码调制等级对应且与所述第一物理资源块对的数 目对应的 TBS , 或者, 选择与所述编码调制等级对应且与第二物理资源块 对的数目对应的 TBS的指示信息,可以提高 UE在不同选择之间的切换速 度。
进一步地, 传输块大小表格包括: 长期演进系统第 8版本 LTE REL.8 中的一层数据传输块大小表格,该 LTE REL.8中的一层数据传输块大小表 格如上述表 1所示, 请参照表 1 , 此处不再赘述。
进一步地, 设定换算因子包括与传输块大小表格中的第一编码调制等 级对应的第一设定换算因子与第二编码调制等级对应的第二设定换算因 子, 且第一设定换算因子与第二设定换算因子不同。
具体地, 换算因子例如可以包括: 与传输块大小表格中的第一类编码 调制等级对应一种换算因子, 与第二类编码调制等级对应另外一种换算因 子, 即若 UE接收的系统调度控制信号中包括的 MCS Level为第一类编码 调制等级, 那么, 第二物理资源块对数目为第一物理资源块对数目乘以与 第一类编码调制等级对应的换算因子; 若 U E接收的系统调度控制信号中 包括的 MCS Level为第二类编码调制等级,那么第二物理资源块对数目为 第一物理资源块对数目乘以与第二类编码调制等级对应的换算因子。
在其它实施例中, 还可以为多个换算因子, 分别与多类 MCS Level 对应, 确定 MCS Level类别的方法还可以根据系统的开销而不同。
在上述实施例的基础上, 更进一步地, 第一编码调制等级为传输块大 小表格中的最大编码调制等级; 第二编码调制等级为传输块大小表格中的 非最大编码调制等级。
具体地, 该第一编码调制等级可以为传输块大小表格中的最大编码调 制等级; 该第二编码调制等级可以为传输块大小表格中的非最大编码调制 等级, 在其它实施例中, 该第一编码调制等级还可以为传输块大小表格中 的最大编码调制等级以及其它任何一个或多个编码等级。
进一步地, 第一设定换算因子为 1.1 ; 第二设定换算因子为 1.3。
例如: UE根据基站发送的系统调度控制信号确定 MCS Level为 8, 第一物理资源块对数目为 11个 PRB Pair, 系统开销为 12个资源单元, 那 么, UE 在传输块大小表格中选择与编码调制等级对应, 且与第二物理资 源块对的数目对应的 TBS , 该第二物理资源块对的数目为第一物理资源块 对数目 11与设定换算因子的乘积, 又由于 MCS Level 8为非最大编码调 制等级,该设定换算因子为 1.3 ,则第二物理资源块对的数目为 11乘以 1.3 等于 14.3 , 此时, UE可以将该第二物理资源块对数目 14.3取整, 该取整 过程可以向上取整或向下取整且与基站的取整方式相同, 即若基站向上取 整则 UE也向上取整, 若基站向下取整则 UE也向下取整, 在传输块大小 表格中确定与 MCS Level为 8对应, 且与物理资源块对的数目为 14对应 的 TBS , UE根据该 TBS接收基站发送的收业务数据。
进一步地, 第二物理资源块对的数目大于传输块大小表格的最大物理 资源块对的数目, 则与编码调制等级对应且与第二物理资源块对的数目对 应的 TBS 为与编码调制等级对应且与最大物理资源块对的数目对应的 TBS。
具体地, 例如: 当第一物理资源块对的数目与设定换算因子的乘积大 于传输块大小表格中包括的最大物理资源块对数目时, 与编码调制等级对 应且与第二物理资源块对的数目对应的 TBS 为与编码调制等级对应且与 最大物理资源块对的数目对应的 TBS。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机 可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程 序代码的介质。
图 3为本发明基站实施例一的结构示意图, 如图 3所示, 本实施例的 基站 300包括: 处理器 31和发送器 32 , 其中, 处理器 31可以用于确定编 码调制等级; 确定时频资源, 并根据时频资源确定第一物理资源块对的数 目; 在传输块大小表格中选择与编码调制等级对应, 且与第一物理资源块 对的数目对应的传输块大小 TBS 或与第二物理资源块对的数目对应的 TBS , 其中, 第二物理资源块对的数目为第一物理资源块对的数目与设定 换算因子的乘积; 发送器 32可以用于釆用所选择的 TBS向用户设备发送 业务数据; 向用户设备发送系统调度控制信号, 系统调度控制信号中包括 编码调制等级和时频资源。
本实施例的基站, 通过处理器 31确定编码调制等级; 确定时频资源, 并根据时频资源确定第一物理资源块对的数目; 在传输块大小表格中选择 与编码调制等级对应, 且与第一物理资源块对的数目对应的传输块大小 TBS或与第二物理资源块对的数目对应的 TBS , 其中, 第二物理资源块对 的数目为第一物理资源块对的数目与设定换算因子的乘积; 发送器釆用所 选择的 TBS 向用户设备发送业务数据; 向用户设备发送系统调度控制信 号, 系统调度控制信号中包括编码调制等级和时频资源, 实现了基站对 TBS的选择,从而使得基站根据选择的 TBS向 UE传输业务数据能够达到 预期的编码速率, 提高系统的吞吐量。
进一步地, 处理器 31 还可以用于根据系统配置参数或者系统开销大 小, 选择与编码调制等级对应且与第一物理资源块对的数目对应的 TBS , 或者, 选择与编码调制等级对应且与第二物理资源块对的数目对应的
TBS。
进一步地, 发送器 32还可以用于向用户设备发送高层信令消息, 高 层信令消息中携带选择与编码调制等级对应且与第一物理资源块对的数 目对应的 TBS , 或者, 选择与编码调制等级对应且与第二物理资源块对的 数目对应的 TBS的指示信息。
进一步地, 发送器 32还可以用于向用户设备发送下行控制消息, 下 行控制消息中携带选择与编码调制等级对应且与第一物理资源块对的数 目对应的 TBS , 或者, 选择与编码调制等级对应且与第二物理资源块对的 数目对应的 TBS的指示信息。
进一步地, 传输块大小表格可以包括: 长期演进系统第 8 版本 LTE REL.8中的一层数据传输块大小表格。
进一步地, 设定换算因子可以包括与传输块大小表格中的第一编码调 制等级对应的第一设定换算因子与第二编码调制等级对应的第二设定换 算因子, 且第一设定换算因子与第二设定换算因子不同。
进一步地, 第一编码调制等级为传输块大小表格中的最大编码调制等 级; 第二编码调制等级为传输块大小表格中的非最大编码调制等级。
进一步地, 第一设定换算因子为 1.1 ; 第二设定换算因子为 1.3。
进一步地, 处理器 31 还可以用于在第二物理资源块对的数目大于传 输块大小表格的最大物理资源块对的数目时, 确定与编码调制等级对应且 与第二物理资源块对的数目对应的 TBS 为与编码调制等级对应且与最大 物理资源块对的数目对应的 TBS。
图 4为本发明用户设备实施例一的结构示意图, 如图 4所示, 本实施 例的用户设备 400包括: 接收器 41和处理器 42 , 其中, 接收器 41可以用 于接收基站发送的系统调度控制信号, 系统调度控制信号中包括编码调制 等级和时频资源; 处理器 42可以用于在传输块大小表格中选择与编码调 制等级对应,且与第一物理资源块对的数目对应的传输块大小 TBS或与第 二物理资源块对的数目对应的 TBS , 其中, 第二物理资源块对的数目为第 一物理资源块对的数目与设定换算因子的乘积;釆用所选择的 TBS接收基 站发送的业务数据。 本实施例的用户设备, 通过接收器接收基站发送的系统调度控制信 号, 系统调度控制信号中包括编码调制等级和时频资源; 处理器在传输块 大小表格中选择与编码调制等级对应, 且与第一物理资源块对的数目对应 的传输块大小 TBS或与第二物理资源块对的数目对应的 TBS , 其中, 第 二物理资源块对的数目为第一物理资源块对的数目与设定换算因子的乘 积;釆用所选择的 TBS接收基站发送的业务数据, 实现了用户设备对 TBS 的选择,从而使得用户设备根据选择的 TBS接收基站传输的业务数据能够 达到预期的编码速率, 提高系统的吞吐量。
进一步地, 处理器 42还可以用于根据系统配置参数或者系统开销大 小, 选择与编码调制等级对应且与第一物理资源块对的数目对应的 TBS , 或者, 选择与编码调制等级对应且与第二物理资源块对的数目对应的 TBS。
进一步地, 接收器 41 还可以用于接收基站发送的高层信令消息, 高 层信令消息中携带选择与编码调制等级对应且与第一物理资源块对的数 目对应的 TBS , 或者, 选择与编码调制等级对应且与第二物理资源块对的 数目对应的 TBS的指示信息。
进一步地, 接收器 41 还可以用于接收基站发送的下行控制消息, 下 行控制消息中携带选择与编码调制等级对应且与第一物理资源块对的数 目对应的 TBS , 或者, 选择与编码调制等级对应且与第二物理资源块对的 数目对应的 TBS的指示信息。
进一步地, 传输块大小表格可以包括: 长期演进系统第 8 版本 LTE REL.8中的一层数据传输块大小表格,该 LTE REL.8中的一层数据传输块 大小表格可以如表 1所示, 具体参见表 1 , 此处不再赘述。
进一步地, 设定换算因子可以包括与传输块大小表格中的第一编码调 制等级对应的第一设定换算因子与第二编码调制等级对应的第二设定换 算因子, 且第一设定换算因子与第二设定换算因子不同。
进一步地, 第一编码调制等级为传输块大小表格中的最大编码调制等 级; 第二编码调制等级为传输块大小表格中的非最大编码调制等级。
进一步地, 第一设定换算因子为 1.1 ; 第二设定换算因子为 1.3。
进一步地, 处理器 42还可以用于在第二物理资源块对的数目大于传 输块大小表格的最大物理资源块对的数目时, 确定与编码调制等级对应且 与第二物理资源块对的数目对应的 TBS 为与编码调制等级对应且与最大 物理资源块对的数目对应的 TBS。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进 行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范 围。

Claims

权 利 要 求 书
1、 一种数据传输方法, 其特征在于, 包括:
基站确定编码调制等级;
所述基站确定时频资源, 并根据所述时频资源确定第一物理资源块对 的数目;
所述基站在传输块大小表格中选择与所述编码调制等级对应, 且与所 述第一物理资源块对的数目对应的传输块大小 TBS 或与第二物理资源块 对的数目对应的 TBS , 其中, 所述第二物理资源块对的数目为所述第一物 理资源块对的数目与设定换算因子的乘积;
所述基站釆用所选择的 TBS向用户设备发送业务数据;
所述基站向所述用户设备发送系统调度控制信号, 所述系统调度控制 信号中包括所述编码调制等级和所述时频资源。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述基站在传输块大 小表格中选择与所述编码调制等级对应, 且与所述第一物理资源块对的数 目对应的传输块大小 TBS或与第二物理资源块对的数目对应的 TBS , 包 括:
所述基站根据系统配置参数或者系统开销大小, 选择与所述编码调制 等级对应且与所述第一物理资源块对的数目对应的 TBS , 或者, 选择与所 述编码调制等级对应且与第二物理资源块对的数目对应的 TBS。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述方法还包括: 所述基站向所述用户设备发送高层信令消息, 所述高层信令消息中携 带选择与所述编码调制等级对应且与所述第一物理资源块对的数目对应 的 TBS , 或者, 选择与所述编码调制等级对应且与第二物理资源块对的数 目对应的 TBS的指示信息。
4、 根据权利要求 1或 2所述的方法, 其特征在于, 所述方法还包括: 所述基站向所述用户设备发送下行控制消息, 所述下行控制消息中携 带选择与所述编码调制等级对应且与所述第一物理资源块对的数目对应 的 TBS , 或者, 选择与所述编码调制等级对应且与第二物理资源块对的数 目对应的 TBS的指示信息。
5、 根据权利要求 1-4任一项所述的方法, 其特征在于, 所述传输块大 小表格包括:长期演进系统第 8版本 LTE REL.8中的一层数据传输块大小 表格。
6、 根据权利要求 1-5任一项所述的方法, 其特征在于, 所述设定换算 因子包括与所述传输块大小表格中的第一编码调制等级对应的第一设定 换算因子与第二编码调制等级对应的第二设定换算因子, 且第一设定换算 因子与第二设定换算因子不同。
7、 根据权利要求 6所述的方法, 其特征在于, 所述第一编码调制等 级为所述传输块大小表格中的最大编码调制等级; 所述第二编码调制等级 为所述传输块大小表格中的非最大编码调制等级。
8、 根据权利要求 6或 7所述的方法, 其特征在于, 所述第一设定换 算因子为 1.1 ; 所述第二设定换算因子为 1.3。
9、 根据权利要求 1-8任一项所述的方法, 其特征在于, 所述第二物理 资源块对的数目大于所述传输块大小表格的最大物理资源块对的数目, 则 所述与所述编码调制等级对应且与第二物理资源块对的数目对应的 TBS 为与所述编码调制等级对应且与所述最大物理资源块对的数目对应的 TBS。
10、 一种数据传输方法, 其特征在于, 包括:
用户设备接收基站发送的系统调度控制信号, 所述系统调度控制信号 中包括编码调制等级和时频资源;
所述用户设备在传输块大小表格中选择与所述编码调制等级对应, 且 与所述第一物理资源块对的数目对应的传输块大小 TBS 或与第二物理资 源块对的数目对应的 TBS , 其中, 所述第二物理资源块对的数目为所述第 一物理资源块对的数目与设定换算因子的乘积;
所述用户设备釆用所选择的 TBS接收基站发送的业务数据。
11、 根据权利要求 10所述的方法, 其特征在于, 所述用户设备在传 输块大小表格中选择与所述编码调制等级对应, 且与所述第一物理资源块 对的数目对应的传输块大小 TBS 或与第二物理资源块对的数目对应的 TBS , 包括:
所述用户设备根据系统配置参数或者系统开销大小, 选择与所述编码 调制等级对应且与所述第一物理资源块对的数目对应的 TBS , 或者, 选择 与所述编码调制等级对应且与第二物理资源块对的数目对应的 TBS。
12、 根据权利要求 10或 11所述的方法, 其特征在于, 所述方法还包 括:
所述用户设备接收所述基站发送的高层信令消息, 所述高层信令消息 中携带选择与所述编码调制等级对应且与所述第一物理资源块对的数目 对应的 TBS , 或者, 选择与所述编码调制等级对应且与第二物理资源块对 的数目对应的 TBS的指示信息。
13、 根据权利要求 10或 11所述的方法, 其特征在于, 所述方法还包 括:
所述用户设备接收所述基站发送的下行控制消息, 所述下行控制消息 中携带选择与所述编码调制等级对应且与所述第一物理资源块对的数目 对应的 TBS , 或者, 选择与所述编码调制等级对应且与第二物理资源块对 的数目对应的 TBS的指示信息。
14、 根据权利要求 10-13任一项所述的方法, 其特征在于, 所述传输 块大小表格包括:长期演进系统第 8版本 LTE REL.8中的一层数据传输块 大小表格。
15、 根据权利要求 10-14任一项所述的方法, 其特征在于, 所述设定 换算因子包括与所述传输块大小表格中的第一编码调制等级对应的第一 设定换算因子与第二编码调制等级对应的第二设定换算因子, 且第一设定 换算因子与第二设定换算因子不同。
16、 根据权利要求 15 所述的方法, 其特征在于, 所述第一编码调制 等级为所述传输块大小表格中的最大编码调制等级; 所述第二编码调制等 级为所述传输块大小表格中的非最大编码调制等级。
17、 根据权利要求 15或 16任一项所述的方法, 其特征在于, 所述第 一设定换算因子为 1.1 ; 所述第二设定换算因子为 1.3。
18、 根据权利要求 10-17任一项所述的方法, 其特征在于, 所述第二 物理资源块对的数目大于所述传输块大小表格的最大物理资源块对的数 目, 则所述与所述编码调制等级对应且与第二物理资源块对的数目对应的 TBS 为与所述编码调制等级对应且与所述最大物理资源块对的数目对应 的 TBS。
19、 一种基站, 其特征在于, 包括:
处理器, 用于确定编码调制等级; 确定时频资源, 并根据所述时频资 源确定第一物理资源块对的数目; 在传输块大小表格中选择与所述编码调 制等级对应, 且与所述第一物理资源块对的数目对应的传输块大小 TBS 或与第二物理资源块对的数目对应的 TBS , 其中, 所述第二物理资源块对 的数目为所述第一物理资源块对的数目与设定换算因子的乘积;
发送器,用于釆用所选择的 TBS向用户设备发送业务数据; 向所述用 户设备发送系统调度控制信号, 所述系统调度控制信号中包括所述编码调 制等级和所述时频资源。
20、 根据权利要求 19所述的基站, 其特征在于, 所述处理器还用于 根据系统配置参数或者系统开销大小, 选择与所述编码调制等级对应且与 所述第一物理资源块对的数目对应的 TBS , 或者, 选择与所述编码调制等 级对应且与第二物理资源块对的数目对应的 TBS。
21、 根据权利要求 19或 20所述的基站, 其特征在于, 所述发送器还 用于向所述用户设备发送高层信令消息, 所述高层信令消息中携带选择与 所述编码调制等级对应且与所述第一物理资源块对的数目对应的 TBS , 或 者, 选择与所述编码调制等级对应且与第二物理资源块对的数目对应的 TBS的指示信息。
22、 根据权利要求 19或 20所述的基站, 其特征在于, 所述发送器还 用于向所述用户设备发送下行控制消息, 所述下行控制消息中携带选择与 所述编码调制等级对应且与所述第一物理资源块对的数目对应的 TBS , 或 者, 选择与所述编码调制等级对应且与第二物理资源块对的数目对应的 TBS的指示信息。
23、 根据权利要求 19-22任一项所述的基站, 其特征在于, 所述传输 块大小表格包括:长期演进系统第 8版本 LTE REL.8中的一层数据传输块 大小表格。
24、 根据权利要求 19-23任一项所述的基站, 其特征在于, 所述设定 换算因子包括与所述传输块大小表格中的第一编码调制等级对应的第一 设定换算因子与第二编码调制等级对应的第二设定换算因子, 且第一设定 换算因子与第二设定换算因子不同。
25、 根据权利要求 24所述的基站, 其特征在于, 所述第一编码调制 等级为所述传输块大小表格中的最大编码调制等级; 所述第二编码调制等 级为所述传输块大小表格中的非最大编码调制等级。
26、 根据权利要求 24或 25所述的基站, 其特征在于, 所述第一设定 换算因子为 1.1 ; 所述第二设定换算因子为 1.3。
27、 根据权利要求 19-26任一项所述的基站, 其特征在于, 所述处理 器还用于在第二物理资源块对的数目大于所述传输块大小表格的最大物 理资源块对的数目时, 确定与所述编码调制等级对应且与第二物理资源块 对的数目对应的 TBS 为与所述编码调制等级对应且与所述最大物理资源 块对的数目对应的 TBS。
28、 一种用户设备, 其特征在于, 包括:
接收器, 用于接收基站发送的系统调度控制信号, 所述系统调度控制 信号中包括编码调制等级和时频资源;
处理器, 用于在传输块大小表格中选择与所述编码调制等级对应, 且 与所述第一物理资源块对的数目对应的传输块大小 TBS 或与第二物理资 源块对的数目对应的 TBS , 其中, 所述第二物理资源块对的数目为所述第 一物理资源块对的数目与设定换算因子的乘积;釆用所选择的 TBS接收基 站发送的业务数据。
29、 根据权利要求 28 所述的用户设备, 其特征在于, 所述处理器还 用于根据系统配置参数或者系统开销大小, 选择与所述编码调制等级对应 且与所述第一物理资源块对的数目对应的 TBS , 或者, 选择与所述编码调 制等级对应且与第二物理资源块对的数目对应的 TBS。
30、 根据权利要求 28或 29所述的用户设备, 其特征在于, 所述接收 器还用于接收所述基站发送的高层信令消息, 所述高层信令消息中携带选 择与所述编码调制等级对应且与所述第一物理资源块对的数目对应的 TBS , 或者, 选择与所述编码调制等级对应且与第二物理资源块对的数目 对应的 TBS的指示信息。
31、 根据权利要求 28或 29所述的用户设备, 其特征在于, 所述接收 器还用于接收所述基站发送的下行控制消息, 所述下行控制消息中携带选 择与所述编码调制等级对应且与所述第一物理资源块对的数目对应的 TBS , 或者, 选择与所述编码调制等级对应且与第二物理资源块对的数目 对应的 TBS的指示信息。
32、 根据权利要求 28-31任一项所述的用户设备, 其特征在于, 所述 传输块大小表格包括:长期演进系统第 8版本 LTE REL.8中的一层数据传 输块大小表格。
33、 根据权利要求 28-32任一项所述的用户设备, 其特征在于, 所述 设定换算因子包括与所述传输块大小表格中的第一编码调制等级对应的 第一设定换算因子与第二编码调制等级对应的第二设定换算因子, 且第一 设定换算因子与第二设定换算因子不同。
34、 根据权利要求 33 所述的用户设备, 其特征在于, 所述第一编码 调制等级为所述传输块大小表格中的最大编码调制等级; 所述第二编码调 制等级为所述传输块大小表格中的非最大编码调制等级。
35、 根据权利要求 33或 34任一项所述的用户设备, 其特征在于, 所 述第一设定换算因子为 1.1 ; 所述第二设定换算因子为 1.3。
36、 根据权利要求 28-35任一项所述的用户设备, 其特征在于, 所述 处理器还用于在第二物理资源块对的数目大于所述传输块大小表格的最 大物理资源块对的数目时, 确定与所述编码调制等级对应且与第二物理资 源块对的数目对应的 TBS 为与所述编码调制等级对应且与所述最大物理 资源块对的数目对应的 TBS。
PCT/CN2013/073005 2013-03-21 2013-03-21 数据传输方法、基站及用户设备 WO2014146280A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020157024530A KR101717869B1 (ko) 2013-03-21 2013-03-21 데이터 전송 방법, 기지국, 및 사용자 장비
PCT/CN2013/073005 WO2014146280A1 (zh) 2013-03-21 2013-03-21 数据传输方法、基站及用户设备
JP2016503508A JP6047260B2 (ja) 2013-03-21 2013-03-21 データ送信方法、基地局及びユーザ装置
EP13878758.5A EP2858443B1 (en) 2013-03-21 2013-03-21 Data transmission method, base station, and user equipment
CN201380000632.1A CN103547340B (zh) 2013-03-21 2013-03-21 数据传输方法、基站及用户设备
US14/584,531 US20150117396A1 (en) 2013-03-21 2014-12-29 Data transmission method, base station, and user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/073005 WO2014146280A1 (zh) 2013-03-21 2013-03-21 数据传输方法、基站及用户设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/584,531 Continuation US20150117396A1 (en) 2013-03-21 2014-12-29 Data transmission method, base station, and user equipment

Publications (1)

Publication Number Publication Date
WO2014146280A1 true WO2014146280A1 (zh) 2014-09-25

Family

ID=49970071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073005 WO2014146280A1 (zh) 2013-03-21 2013-03-21 数据传输方法、基站及用户设备

Country Status (6)

Country Link
US (1) US20150117396A1 (zh)
EP (1) EP2858443B1 (zh)
JP (1) JP6047260B2 (zh)
KR (1) KR101717869B1 (zh)
CN (1) CN103547340B (zh)
WO (1) WO2014146280A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017166078A1 (zh) * 2016-03-29 2017-10-05 华为技术有限公司 比特块大小确定方法及设备
KR20170125087A (ko) * 2015-03-03 2017-11-13 후아웨이 테크놀러지 컴퍼니 리미티드 상향링크 데이터 전송 방법 및 장치
EP3264646A4 (en) * 2015-02-26 2018-11-14 Sharp Kabushiki Kaisha Terminal device, base-station device, and communication method

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3209057B1 (en) * 2014-11-13 2019-01-09 Huawei Technologies Co., Ltd. Data transmission method, device and system
US10608804B2 (en) 2015-01-19 2020-03-31 Huawei Technologies Co., Ltd. Data transmission method, device, and system
CN106330389B (zh) * 2015-06-30 2019-11-15 展讯通信(上海)有限公司 数据传输方法、装置及微型基站
KR20190116561A (ko) * 2015-08-13 2019-10-14 엘지전자 주식회사 무선 통신 시스템에서 si 업데이트, eab 업데이트 및 pws 메시지를 통지하기 위한 방법 및 장치
CN107078839B (zh) * 2015-09-25 2019-12-17 华为技术有限公司 一种数据传输的方法及装置
US10455511B2 (en) 2015-09-30 2019-10-22 Intel IP Corporation Wireless circuitry with scalable accuracy
WO2017063193A1 (zh) * 2015-10-16 2017-04-20 华为技术有限公司 一种确定传输块大小的方法用户设备和基站
EP3442256A4 (en) * 2016-04-08 2019-11-06 NTT DoCoMo, Inc. USER DEVICE AND WIRELESS COMMUNICATION PROCESS
EP3442257A4 (en) * 2016-04-08 2019-11-13 NTT DoCoMo, Inc. USER TERMINAL AND METHOD FOR WIRELESS COMMUNICATION
CN107690195B (zh) * 2016-08-03 2020-05-05 普天信息技术有限公司 一种多网络资源联合分配方法
CN108076442B (zh) * 2016-11-15 2021-05-25 普天信息技术有限公司 一种pusch传输块长度确定方法及用户设备
CA3049484A1 (en) * 2017-01-05 2018-07-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method and communication device
US10980086B2 (en) * 2017-03-24 2021-04-13 Apple Inc. Support of 64 QAM for efeMTC PDSCH transmission
WO2018230992A1 (ko) * 2017-06-15 2018-12-20 삼성전자 주식회사 통신 또는 방송 시스템에서 채널 부호화 및 복호화를 수행하는 방법 및 장치
KR102414531B1 (ko) * 2017-06-15 2022-06-30 삼성전자 주식회사 통신 또는 방송 시스템에서 채널 부호화/복호화 방법 및 장치
CN109150403B (zh) * 2017-06-16 2020-01-03 华为技术有限公司 确定传输块大小的方法及装置
US10742349B2 (en) 2017-07-21 2020-08-11 Samsung Electronics Co., Ltd Apparatus and method for encoding and decoding channel in communication or broadcasting system
CN109803432B (zh) * 2017-11-17 2021-09-14 华为技术有限公司 确定传输块大小的方法及装置
US11470591B2 (en) * 2018-05-10 2022-10-11 Qualcomm Incorporated Direct transport block size specification
CN110708758B (zh) * 2018-07-10 2022-02-25 华为技术有限公司 一种数据发送方法及装置
CN110546971B (zh) * 2019-07-17 2023-10-10 北京小米移动软件有限公司 信息指示、确定方法及装置、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101640579A (zh) * 2008-07-30 2010-02-03 大唐移动通信设备有限公司 自适应调制和编码方法、系统及装置
CN101651515A (zh) * 2008-08-15 2010-02-17 大唐移动通信设备有限公司 自适应调制和编码方法、系统及装置
US20100074130A1 (en) * 2008-09-19 2010-03-25 Pierre Bertrand Preamble Group Selection in Random Access of Wireless Networks
CN102196570A (zh) * 2010-03-12 2011-09-21 电信科学技术研究院 数据传输方法、系统和设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101456004B1 (ko) * 2008-02-05 2014-11-03 엘지전자 주식회사 전송 및 재전송에 적합한 데이터 패킷의 크기를 결정하는 방법
EP2315369B1 (en) * 2008-07-30 2016-09-28 China Academy of Telecommunications Technology Methods and devices for adaptive modulation and coding
US8284732B2 (en) 2009-02-03 2012-10-09 Motorola Mobility Llc Method and apparatus for transport block signaling in a wireless communication system
US8537750B2 (en) * 2009-06-02 2013-09-17 Futurewei Technologies, Inc. System and method for transport block size design for multiple-input, multiple-output (MIMO) in a wireless communications system
JP5031009B2 (ja) * 2009-09-15 2012-09-19 株式会社エヌ・ティ・ティ・ドコモ 無線基地局及び移動通信方法
WO2011137408A2 (en) 2010-04-30 2011-11-03 Interdigital Patent Holdings, Inc. Determination of carriers and multiplexing for uplink control information transmission
CN103210695A (zh) * 2010-04-30 2013-07-17 交互数字专利控股公司 用于复用用于高速下行链路信道的多个无线发射/接收单元的数据的方法
JP5652193B2 (ja) * 2010-12-21 2015-01-14 日本電気株式会社 割り当て無線リソース決定方法、割り当て無線リソース決定装置、無線通信システム、およびコンピュータプログラム
WO2013176827A1 (en) * 2012-05-19 2013-11-28 Motorola Mobility Llc Method and apparatus for transport block signaling in a wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101640579A (zh) * 2008-07-30 2010-02-03 大唐移动通信设备有限公司 自适应调制和编码方法、系统及装置
CN101651515A (zh) * 2008-08-15 2010-02-17 大唐移动通信设备有限公司 自适应调制和编码方法、系统及装置
US20100074130A1 (en) * 2008-09-19 2010-03-25 Pierre Bertrand Preamble Group Selection in Random Access of Wireless Networks
CN102196570A (zh) * 2010-03-12 2011-09-21 电信科学技术研究院 数据传输方法、系统和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2858443A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3264646A4 (en) * 2015-02-26 2018-11-14 Sharp Kabushiki Kaisha Terminal device, base-station device, and communication method
US10547409B2 (en) 2015-02-26 2020-01-28 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, and communication method
KR20170125087A (ko) * 2015-03-03 2017-11-13 후아웨이 테크놀러지 컴퍼니 리미티드 상향링크 데이터 전송 방법 및 장치
KR102014918B1 (ko) 2015-03-03 2019-08-27 후아웨이 테크놀러지 컴퍼니 리미티드 상향링크 데이터 전송 방법 및 장치
US10616910B2 (en) 2015-03-03 2020-04-07 Huawei Technologies Co., Ltd. Uplink data transmission method and apparatus
US11265899B2 (en) 2015-03-03 2022-03-01 Huawei Technologies Co., Ltd. Uplink data transmission method and apparatus
WO2017166078A1 (zh) * 2016-03-29 2017-10-05 华为技术有限公司 比特块大小确定方法及设备
CN108781454A (zh) * 2016-03-29 2018-11-09 华为技术有限公司 比特块大小确定方法及设备
CN108781454B (zh) * 2016-03-29 2020-04-03 华为技术有限公司 比特块大小确定方法及设备

Also Published As

Publication number Publication date
CN103547340A (zh) 2014-01-29
CN103547340B (zh) 2017-07-28
EP2858443A4 (en) 2015-12-02
KR20150119046A (ko) 2015-10-23
US20150117396A1 (en) 2015-04-30
EP2858443A1 (en) 2015-04-08
KR101717869B1 (ko) 2017-03-17
EP2858443B1 (en) 2017-05-10
JP2016519473A (ja) 2016-06-30
JP6047260B2 (ja) 2016-12-21

Similar Documents

Publication Publication Date Title
WO2014146280A1 (zh) 数据传输方法、基站及用户设备
WO2014146277A1 (zh) 数据传输方法、基站及用户设备
WO2014146276A1 (zh) 数据传输方法、基站及用户设备
US10659927B2 (en) Signal transmission method and apparatus
TWI493989B (zh) 發送資訊的方法
WO2014110931A1 (zh) 调制处理方法及装置
WO2014015829A1 (zh) 一种传输mcs指示信息的方法及装置
WO2013166719A1 (zh) 数据传输方法和设备
WO2013013394A1 (zh) 下行链路控制信息发送和接收方法、基站和移动终端
WO2014180162A1 (zh) 一种确定传输块大小的方法、基站和终端
WO2014015811A1 (zh) 信道状态信息的发送方法及装置
WO2014056131A1 (zh) 一种数据传输控制方法和装置
CN107733560B (zh) 数据分割方法、装置及终端
CN110149701B (zh) 一种上行信息传输方法及设备
WO2018201984A1 (zh) 数据的传输方法和设备
WO2013170639A1 (zh) 上行控制信息发送方法及用户设备
WO2010124418A1 (zh) 一种用于控制数据重传的方法和装置
WO2019064378A1 (ja) 無線通信方法、無線通信システム、無線端末、及び基地局
WO2012106993A1 (zh) 一种数据共享和发送方法、装置及系统
WO2012142886A1 (zh) 一种多天线数据的发送方法及系统
EP3178185A1 (en) Multiple description media broadcast aided by a secondary base station
WO2014082220A1 (zh) 空口速率调整方法、网络侧设备和用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878758

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013878758

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013878758

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157024530

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016503508

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE