WO2019064378A1 - 無線通信方法、無線通信システム、無線端末、及び基地局 - Google Patents

無線通信方法、無線通信システム、無線端末、及び基地局 Download PDF

Info

Publication number
WO2019064378A1
WO2019064378A1 PCT/JP2017/034972 JP2017034972W WO2019064378A1 WO 2019064378 A1 WO2019064378 A1 WO 2019064378A1 JP 2017034972 W JP2017034972 W JP 2017034972W WO 2019064378 A1 WO2019064378 A1 WO 2019064378A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
wireless
information
ack
nack
Prior art date
Application number
PCT/JP2017/034972
Other languages
English (en)
French (fr)
Inventor
義博 河▲崎▼
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2017/034972 priority Critical patent/WO2019064378A1/ja
Priority to JP2019545449A priority patent/JPWO2019064378A1/ja
Publication of WO2019064378A1 publication Critical patent/WO2019064378A1/ja
Priority to US16/786,018 priority patent/US20200186294A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/003Adaptive formatting arrangements particular to signalling, e.g. variable amount of bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control

Definitions

  • the present invention relates to a wireless communication method, a wireless communication system, a wireless terminal, and a base station.
  • traffic of mobile terminals eg, smartphones and future phones
  • traffic used by mobile terminals tends to expand in the future.
  • next-generation (for example, 5G (5th generation mobile communication)) communication standard in addition to the standard technology of 4G (4th generation mobile communication), further higher data rate, larger capacity, lower delay
  • CBG Code-Block
  • ACK Acknowledgement
  • NACK Negative-ACK
  • CBG scheme CBG-based wireless data transmission scheme
  • the radio resource used at the time of retransmission can be saved, and the utilization efficiency of the radio resource can be improved.
  • an ACK or NACK for each of a plurality of CBGs constituting a TB is returned, and only the CBG corresponding to the NACK is retransmitted. Then, when ACKs are returned to all the retransmitted CBGs, the transmission is completed.
  • one ACK or NACK is returned in one response to one TB.
  • the CBG scheme may reduce the amount of power available for transmission of one ACK or NACK. As the amount of available power decreases, it is susceptible to noise and the like, and erroneous determination of ACK / NACK is likely to occur.
  • an object of the present disclosure is to provide a wireless communication method, a wireless communication system, a wireless terminal, and a base station that can reduce the risk of causing an ACK / NACK misjudgment.
  • a wireless communication method for use in a wireless communication system having a first wireless device and a second wireless device.
  • a first wireless device comprises a first signal composed of a plurality of parts, and a second signal containing first information about the first signal as a second wireless device.
  • Out of a plurality of aspects received in different ways of expressing the reception result using the aspect determined based on the first information included in the second signal to indicate the reception result for the first signal
  • the second information is sent to the second wireless device.
  • FIG. 7 is a first flow chart showing the operation of the wireless terminal according to the second embodiment. It is a 2nd flowchart which showed operation
  • FIG. 1 is a diagram showing an example of a wireless communication system according to the first embodiment.
  • the wireless communication system 10 illustrated in FIG. 1 is an example of the wireless communication system according to the first embodiment.
  • the wireless communication system 10 includes a first wireless device 11 and a second wireless device 12 capable of wireless communication with the first wireless device 11.
  • the first wireless device 11 is, for example, a mobile terminal such as a smartphone or a future phone, a wireless terminal such as an MTC (Machine Type Communication) terminal for small module communication without human operation, or a base station and a wireless terminal Relay station that relays communication between them.
  • the wireless communication system 10 may include two or more wireless devices having the same function as the first wireless device 11.
  • the first wireless device 11 includes an antenna 11a, a reception control unit 11b, and a transmission control unit 11c.
  • the second wireless device 12 includes an antenna 12a, a transmission control unit 12b, and a reception control unit 12c.
  • the number of antennas mounted on the first wireless device 11 and the second wireless device 12 may be two or more.
  • the transmission control units 11 c and 12 b and the reception control units 11 b and 12 c may be, for example, a central processing unit (CPU), a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), etc. It is a processor.
  • the transmission control units 11 c and 12 b and the reception control units 11 b and 12 c use storage devices (not shown) such as random access memory (RAM), hard disk drive (HDD), flash memory, etc. as buffer memory etc. sell.
  • the transmission control unit 12 b of the second wireless device 12 transmits a first signal 21 composed of a plurality of parts to the first wireless device 11.
  • the first signal 21 is composed of four parts # 1, # 2, # 3 and # 4.
  • TB is an example of the first signal 21.
  • CBG is an example of a portion that constitutes the first signal 21.
  • the transmission control unit 12 b of the second wireless device 12 transmits, to the first wireless device 11, the second signal 22 including the first information 23 of the first signal 21.
  • the first information 23 is information on the process applied to the first signal 21 by the second wireless device 12.
  • the first information 23 is a numerical value determined by a combination of a modulation scheme applied to the first signal 21 and a coding rate.
  • the MCS (Modulation and Coding Scheme) index is an example of a value determined by a combination of a modulation scheme and a coding rate.
  • the MCS index indicates an MCS used for transmission and reception in PDSCH (Physical Downlink Shared CHannel), and is notified, for example, by PDCCH (Physical Downlink Control CHannel).
  • the reception control unit 11 b of the first wireless device 11 receives the first signal 21 and the second signal 22 from the second wireless device 12.
  • the transmission control unit 11c of the first wireless device 11 selects an aspect determined based on the first information 23 included in the second signal 22 among a plurality of aspects having different ways of expressing the reception result.
  • the second information 24 indicating the reception result of the first signal 21 is transmitted to the second wireless device 12 using the second signal 24.
  • a mode (mode X) indicating the reception success or failure of the entire first signal 21 as a reception result, or a reception success or failure about each portion included in the first signal 21
  • the aspect (aspect Y) indicating the reception success or failure of the entire first signal 21 as a reception result, or a reception success or failure about each portion included in the first signal 21
  • the above-mentioned determined aspect is the aspect Y
  • the aspect X is the aspect.
  • the quality of the transmission path environment can be determined, for example, by the content of processing applied to the transmission of the first signal 21. For example, if processing is such that the transmission rate (the number of information bits per symbol) is relatively large, aspect Y is determined to be suitable, and if the processing is relatively small, the aspect X is determined to be suitable.
  • a response signal including the reception success / failure (ACK / NACK) of one received signal may be returned to the first signal 21. Therefore, when the amount of power available for transmitting the response signal is limited, the maximum amount of power can be allocated to one ACK / NACK transmission, and the risk of false detection of ACK / NACK on the receiving side is reduced.
  • a response signal including ACK / NACK for each portion of the first signal 21 is returned. Therefore, the maximum amount of power is allocated to the same number of ACKs / NACKs as the number of portions transmitted, and the amount of power available for one ACK / NACK transmission is reduced. On the other hand, control can be performed to retransmit only the portion in which an error has occurred, and radio resources used at the time of retransmission can be saved, which contributes to improvement in radio resource utilization efficiency.
  • the transmission control unit 12 b of the second wireless device 12 sends the first signal 21 including the four parts # 1, # 2, # 3, and # 4 to the first wireless device 11. Send (S11).
  • the transmission control unit 12 b transmits the second signal 22 including the first information 23 indicating the content of the process applied to the transmission of the first signal 21.
  • the reception control unit 11 b of the first wireless device 11 receives the first signal 21 and the second signal 22. Then, the reception control unit 11 b determines whether or not the reception of each portion included in the first signal 21 is successful (S 12). For example, the reception control unit 11b performs error detection of each part using CRC (Cyclic Redundancy Check) given to each part, and the part without error is regarded as a reception success, and the part where the error is detected Judge as reception failure.
  • CRC Cyclic Redundancy Check
  • the transmission control unit 12 b of the first wireless device 11 expresses the second information 24 indicating the reception result of the first signal 21 based on the first information 23 included in the second signal 22 (aspect ) Is identified (S13).
  • the content of the first information 23 is the content # 1
  • the reception of the entire first signal 21 is successful (total reception success) or at least a part of the first signal 21.
  • An aspect (aspect X) representing that reception has failed (at least partial reception failure) as a reception result is specified.
  • the content # 1 is, for example, that the MCS index is less than or equal to a predetermined value.
  • the content of the first information 23 is the content # 2
  • an aspect (aspect Y) representing reception success or failure (reception success or failure of each portion) for each portion of the first signal 21 is specified.
  • Content # 2 is, for example, that the MCS index exceeds a predetermined value.
  • the transmission control unit 11 c of the first wireless device 11 generates the second information 24 indicating the reception result expressed in the identified mode based on the determination result of S 12 and transmits the second information 24 to the second wireless device 12 ( S14).
  • the transmission control unit 11c transmits the second information 24 (one NACK) indicating at least a partial reception failure to the second radio Send to device 12 Further, when the aspect X is specified, and there is no error in the parts # 1, # 2, # 3, # 4, the transmission control unit 11c performs the second information 24 (one ACK) indicating the success in the entire reception.
  • the wireless device 12 of FIG. 1 the wireless device 12 of FIG. 1
  • the transmission control unit 11c transmits the second information 24 (parts # 1 and # 3) indicating failure to receive the parts # 1 and # 3. 2.
  • Two NACKs corresponding to 3 and 2 ACKs corresponding to CBG # 2 and # 4 are transmitted to the second wireless device 12.
  • the transmission control unit 11c sends the second information 24 (four ACKs) to the second wireless device 12. Send.
  • the amount of power allocated per ACK / NACK in one response by changing the way of expressing the reception result based on the information (the first information 23) for the first signal 21. Can be controlled in accordance with the wireless environment, and the risk of erroneous determination of ACK / NACK can be reduced. As a result, it contributes to the reduction of unnecessary processing due to the erroneous determination of ACK / NACK and the reduction of resource waste.
  • FIG. 2 is a diagram showing an example of a wireless communication system according to the second embodiment.
  • the wireless communication system 100 is an example of a wireless communication system according to the second embodiment.
  • the wireless communication system 100 includes a base station 101 and wireless terminals 102 and 103 communicating with the base station 101.
  • the number of wireless terminals included in the wireless communication system 100 may be other than two.
  • the hardware and functions of the wireless terminals 102 and 103 are substantially the same, and in the following, the description of the wireless terminal 103 may be omitted.
  • gNB gNodeB
  • UE User Equipment
  • the wireless communication system 100 applies the CBG scheme to TB transmission.
  • the CBG method as shown in FIG. 2, one TB is divided into a plurality of CBs (Code-Blocks), and a CBG including at least one CB is set.
  • TB is a block of data exchanged between independent layers (between a MAC layer and a PHY layer), and CBG is a block of data exchanged within one layer (PHY layer).
  • two CBs are included in one CBG.
  • an ACK / NACK signal indicating a reception result (ACK / NACK) in CBG units is transmitted. Therefore, in the CBG method, retransmission control can be performed in CBG units.
  • a signal indicating ACK or NACK for one block or data range is referred to as an ACK / NACK signal, and a set of ACK / NACK signals returned in one response is referred to as a response signal.
  • the TB is provided with a CRC (not shown) used for error detection of the entire TB.
  • a CRC used for error detection of each CBG is also added to the information bits of the CBG. Then, error detection is performed using the CRC assigned to each CBG, and an ACK / NACK signal indicating the reception result in CBG units is transmitted based on the result of the error detection.
  • the CBG method In the case of the TB method, retransmission of the entire TB is performed when an error is detected for part of the TB.
  • the CBG method when an error is detected in a part of CBG, the CBG in which the error is detected is retransmitted. That is, retransmission of correctly received CBGs is avoided. Therefore, compared to the TB method, the CBG method can suppress less radio resources used at the time of retransmission, and contributes to the improvement of radio resource utilization efficiency.
  • FIG. 2 illustrates an example in which one TB is divided into 16 CBs and two CBs are included in each CBG
  • the number of CBGs constituting one TB is this example. It is not limited to. In the following, for convenience of explanation, the description may be made by exemplifying a case where the number of CBGs included in one TB is set to four.
  • the base station 101 has, for example, hardware as shown in FIG.
  • FIG. 3 is a block diagram showing an example of hardware that can realize the function of the base station according to the second embodiment.
  • the base station 101 includes a processor 101a, a main storage device 101b, a network interface (NIF) 101c, an auxiliary storage device 101d, a wireless set 101e, and an antenna 101f.
  • NIF network interface
  • the processor 101a is, for example, a CPU, a DSP, an ASIC, or an FPGA.
  • the processor 101a controls the operation of the base station 101 using a program or data stored in the main storage device 101b and / or the auxiliary storage device 101d.
  • the main storage device 101 b is, for example, a memory such as a RAM.
  • the NIF 101 c is a communication circuit serving as an interface with a core network (not shown) connected to the upper layer.
  • the auxiliary storage device 101 d is, for example, a storage device such as a RAM, a read only memory (ROM), an HDD, a solid state drive (SSD), or a flash memory.
  • the wireless device 101 e is a transmission / reception device that performs modulation / demodulation, frequency conversion, AD (analog to digital) / DA (digital to analog) conversion, and the like.
  • the antenna 101 f is an antenna used to transmit and receive an RF (Radio Frequency) signal.
  • the number of antennas mounted on the base station 101 may be other than two, and the antenna 101 f may be, for example, an array antenna formed of a large number of antenna elements.
  • a transceiver for example, RRH: Remote Radio Head
  • RRH Remote Radio Head
  • the function of the second wireless device 12 according to the first embodiment described above can also be realized by the hardware shown in FIG.
  • the wireless terminal 102 has, for example, hardware as shown in FIG.
  • FIG. 4 is a block diagram showing an example of hardware that can realize the function of the wireless terminal according to the second embodiment.
  • the wireless terminal 102 includes a processor 102 a, a main storage device 102 b, a display device 102 c, an auxiliary storage device 102 d, a wireless set 102 e, and an antenna 102 f.
  • the processor 102a is, for example, a CPU, a DSP, an ASIC, or an FPGA.
  • the processor 102a controls the operation of the wireless terminal 102 using a program or data stored in the main storage 102b and / or the auxiliary storage 102d.
  • the main storage device 102 b is, for example, a memory such as a RAM.
  • the display device 102 c is, for example, a liquid crystal display (LCD) or an electro-luminescent display (ELD).
  • the auxiliary storage device 102d is, for example, a storage device such as a RAM, a ROM, an HDD, an SSD, and a flash memory.
  • the wireless device 102e is a transmission / reception device that performs modulation / demodulation, frequency conversion, AD / DA conversion, and the like.
  • the antenna 102 f is an antenna used to transmit and receive an RF signal. Note that the number of antennas mounted on the wireless terminal 102 may be two or more.
  • the function of the first wireless device 11 according to the first embodiment described above can also be realized by the hardware shown in FIG. [function] Next, the functions of the base station 101 and the wireless terminal 102 will be described. The description of the wireless terminal 103 will be omitted, as the functions of the wireless terminals 102 and 103 are the same.
  • the base station 101 has a function as shown in FIG.
  • FIG. 5 is a block diagram showing an example of functions of the base station according to the second embodiment.
  • the base station 101 includes a data signal generation unit 111, a control signal generation unit 112, a multiplexing unit 113, and a wireless transmission unit 114.
  • the base station 101 includes a radio reception unit 115, a demodulation unit 116, a CQI (Channel Quality Indicator) signal reception unit 117, an ACK / NACK signal reception unit 118, a reception pilot signal measurement unit 119, a radio channel quality evaluation unit 120, and
  • the mode determining unit 121 and the MCS determining unit 122 are included.
  • the transmission antenna Tx and the reception antenna Rx are described as separate antennas for convenience of explanation, the functions of the transmission antenna Tx and the reception antenna Rx may be realized by the same antenna. Further, a plurality of antennas may be used as the transmitting antenna Tx, and a plurality of antennas may be used as the receiving antenna Rx.
  • the function of can be realized by the processor 101a described above.
  • the functions of the multiplexing unit 113, the wireless transmission unit 114, the wireless reception unit 115, and the demodulation unit 116 can be realized by the above-described wireless device 101e or the like.
  • the data signal generation unit 111 generates a data signal (TB) from the generated data. For example, the data signal generation unit 111 divides data to generate CBs, combines a predetermined number (for example, 2) of CBs to form a CBG, and calculates a CRC for each CBG. In addition, the data signal generation unit 111 calculates a CRC of the entire data, and generates a signal including data, a CRC in a CRC unit, and a CRC of the entire data as a data signal.
  • the data is encoded (for example, turbo encoded) according to a predetermined encoding scheme.
  • the data signal generation unit 111 identifies a CBG to be retransmitted (CBG to be retransmitted) (CBG to be retransmitted) based on the result of ACK / NACK determination by the ACK / NACK signal reception unit 118 described later, and identifies the specified retransmission target CBG. Generate a containing data signal. Note that a method of specifying the retransmission target CBG will be described in the following description.
  • the control signal generation unit 112 has a bitmap type flag (BM) indicating which CBG is included in the data signal, and a retransmission determination flag (NR indicating whether the transmission of the data signal is new data transmission or retransmission) To generate an L1 control signal (hereinafter simply referred to as a control signal).
  • the BM can be expressed, for example, by a bit string representing a CBG included in the data signal as a bit value “1” and a CBG not included in the data signal as a bit value “0”.
  • the data signal and the control signal are multiplexed (for example, time-multiplexed) by the multiplexing unit 113 and transmitted by the wireless transmission unit 114 via the antenna Tx.
  • the MCS applied to the transmission of the data signal is determined by the MCS determination unit 122 described later.
  • the MCS index indicating the MCS to be applied to transmission is notified to the radio terminal 102 in advance by the PDCCH as part of, for example, downlink control information (DCI).
  • DCI downlink control information
  • a method of determining the MCS for example, a method of using the evaluation result of the wireless channel quality based on the reception result of the pilot signal transmitted on the PUSCH or a method of performing the determination based on CQI fed back from the wireless terminal 102 is there.
  • the reception result of the pilot signal can be used to determine the MCS to be applied at the time of UL (Uplink) data transmission.
  • the pilot signal received by the wireless reception unit 115 is output to the reception pilot signal measurement unit 119, and the reception pilot signal measurement unit 119 measures the reception power, SINR (Signal to Interference Noise Ratio), and the like.
  • the CQI signal received by the wireless reception unit 115 is output to the CQI signal reception unit 117, and the CQI signal reception unit 117 outputs, for example, quality information (a modulation scheme, a coding rate, Transmission rate etc. are specified.
  • the CQI signal is determined based on the reception result of the DL transmitted pilot signal, and is transmitted, for example, by PUCCH (Physical Uplink Control CHannel) at a predetermined timing (for example, an interval of several tens of ms).
  • the CQI signal may be transmitted on PUSCH (Physical Uplink Shared CHannel).
  • the radio channel quality evaluation unit 120 evaluates the radio channel quality based on the quality information and the measurement result by the received pilot signal measurement unit 119.
  • the evaluation result by the radio channel quality evaluation unit 120 is output to the MCS determination unit 122.
  • the MCS determination unit 122 determines the MCS index based on the evaluation result by the radio channel quality evaluation unit 120.
  • Operation mode determination unit 121 determines the response form corresponding to the MCS index determined by MCS determination unit 122 based on the information for the form determination (see FIG. 6) stored in storage unit 121a. Then, the operation mode determination unit 121 sets an operation mode according to the response form. In addition, a response form is how to express the response signal which shows the reception result of a data signal.
  • the functions of the storage unit 121a can be realized by the above-described main storage device 101b and auxiliary storage device 101d. The information for determining the form and the method of determining the response form will be described later.
  • FIG. 6 is a diagram showing an example of information for mode determination according to the second embodiment.
  • the content of the information shown in FIG. 6 is an example, and can be changed as appropriate according to the mode of implementation.
  • the information for determining the form includes information on the MCS index, the modulation scheme, the coding rate, and the response form.
  • information on the modulation scheme and the coding rate is shown for convenience of explanation, when the modulation scheme and the coding rate are uniquely identified from the MCS index, these can be omitted.
  • the information for determining the form associates the MCS index with the type of the response form.
  • the content of the response signal notifying the reception result changes even with the same reception result depending on the selection of the response form.
  • Forms # 1 and # 2 are shown in FIG. 6 as an example of the response form.
  • Form # 1 is a form that returns a response signal indicating whether all transmitted CBGs have been successfully received.
  • form # 1 When form # 1 is applied, one ACK / NACK signal indicating ACK is returned as a response signal when reception for all transmitted CBGs is successful, and reception for at least one CBG fails.
  • One ACK / NACK signal indicating NACK is returned as a response signal.
  • the base station 101 can recognize the reception success or failure for the entire set of transmitted CBGs based on the response signal. Further, since one ACK / NACK signal is transmitted as a response signal, it is possible to transmit the response signal using the maximum amount of power (for example, the same amount of power as the TB method) available in one response. As a result, when the mode # 1 is applied, resistance to noise or the like is higher than in the case where the response signal including the same number of ACK / NACK signals as the CBG number is transmitted, and the ACK / NACK determination of the response signal is erroneous. Risk of occurrence of
  • the mode # 2 is a mode in which a response signal indicating reception success or failure for each CBG is returned.
  • a response signal including an ACK / NACK signal in CBG units is returned.
  • control for retransmitting only the CBG corresponding to NACK control of the CBG method
  • the form # 1 is associated with the range X where the MCS index is less than or equal to 1 and the range Y where the MCS index is 2 or more (the range Y where the MCS index is larger than the range X)
  • Form # 2 is associated.
  • a multi-value modulation scheme (a modulation scheme in which the number of bits that can be transmitted in one symbol is large) tends to be applied.
  • the modulation scheme applied when the MCS index is 0 is QPSK (Quadrature Phase Shift Keying)
  • the modulation scheme applied when the MCS index is 31 is 64 QAM (Quadrature Amplitude Modulation).
  • the coding rate in a set of MCS indices of the same modulation scheme, the coding rate increases as the MCS index increases.
  • the coding rate is a ratio of the number of code bits to the number of input bits representing the information to be transmitted. For example, when the coding rate is 1/3, 3 code bits are assigned to 1 input bit. That is, as the coding rate decreases, the degree of redundancy increases and the error correction capability increases, while the transmission efficiency decreases.
  • a relatively large MCS index is selected when the channel characteristics are good, and a relatively small MCS index is selected when a signal with poor transmission channel characteristics is not good or reliability is to be transmitted. Be done.
  • the selection of the MCS index may be performed by the base station 101 based on the radio channel quality measured using, for example, a pilot signal transmitted in UL, or the base station 101 based on the CQI or the like fed back to the base station 101. Will do. However, the MCS index may be selected on the terminal side such as the wireless terminal 102 (modification).
  • the radio channel quality is often not good. Therefore, in the situation where the MCS index in the range X is selected, there is a high risk that an error occurs in the ACK / NACK determination when the response signal is returned in the mode # 2.
  • the form # 1 is associated with the MCS index in the range X, and the form # 1 is applied when the MCS index in the range X is selected. Then, the error of the ACK / NACK determination is suppressed.
  • the mode # 2 is associated with the MCS index in the range Y, and when the MCS index in the range Y is selected, the mode # 2 is applied to improve the radio resource utilization efficiency.
  • the forms # 1 and # 2 are divided at which range.
  • the forms # 1 and # 2 are divided at the boundaries of the MCS indexes 1 and 2, but it is possible to appropriately change which position the boundary is set in accordance with the mode of implementation.
  • the boundary may be controlled by signaling with the upper layer.
  • FIG. 6 Although two response forms are illustrated in the example of FIG. 6, for example, another form such as Form # 3 which returns a response signal indicating success or failure of reception for a CBG group including two or more CBGs may be added. Good. Further, the present invention may be modified to apply three forms including other forms, or may be modified to replace any of forms # 1 and # 2 with another form. Such a modification naturally belongs to the technical scope of the second embodiment.
  • the above-described response form determined by the operation mode determination unit 121 is notified to the data signal generation unit 111, the control signal generation unit 112, and the ACK / NACK signal reception unit 118.
  • the data signal generation unit 111 and the control signal generation unit 112 specify the retransmission target CBG according to the reception result of the response signal by the ACK / NACK signal reception unit 118 in consideration of the above-mentioned response form.
  • the ACK / NACK signal receiving unit 118 performs reception control of the response signal transmitted from the wireless terminal 102 according to the above-described response form.
  • a response signal including one ACK / NACK signal indicating reception success or failure of the entire set of transmitted CBGs is transmitted via the wireless reception unit 115 and the demodulation unit 116 to the ACK / NACK signal reception unit 118. Output.
  • response signals including ACK / NACK signals for the number of transmitted CBGs are output to the ACK / NACK signal reception unit 118 via the wireless reception unit 115 and the demodulation unit 116.
  • the ACK / NACK signal receiving unit 118 performs ACK / NACK determination on each ACK / NACK signal of the response signal.
  • the data signal generation unit 111 generates a data signal including the retransmission target CBG based on the result of the ACK / NACK determination by the ACK / NACK signal reception unit 118.
  • the data signal generation unit 111 when the ACK / NACK signal reception unit 118 determines that the data is NACK, the data signal generation unit 111 generates a data signal including all CBGs (CBGs to be retransmitted) transmitted previously.
  • the data signal generation unit 111 generates a data signal including a CBG (CBG to be retransmitted) corresponding to NACK.
  • the control signal generation unit 112 generates a BM indicating the retransmission target CBG and an NR indicating retransmission according to the response form, and generates a control signal including the generated BM and NR.
  • the data signal and the control signal are multiplexed by the multiplexing unit 113 and transmitted by the wireless transmission unit 114.
  • the base station 101 selects the response form in accordance with the determined MCS index, and performs reception control of the response signal, identification of the retransmission target CBG, and the like.
  • the wireless terminal 102 has a function as shown in FIG.
  • FIG. 7 is a block diagram showing an example of functions of the wireless terminal according to the second embodiment.
  • the radio terminal 102 includes a pilot signal generation unit 131, a radio transmission unit 132, a radio reception unit 133, a received pilot signal measurement unit 134, a radio channel quality evaluation unit 135, and a CQI signal generation unit 136.
  • the wireless terminal 102 further includes a demodulator 137, a control signal decoder 138, a data signal decoder 139, an error determiner 140, an operation mode determiner 141, and an ACK / NACK signal generator 142.
  • the transmission antenna Tx and the reception antenna Rx are described as separate antennas for convenience of explanation, the functions of the transmission antenna Tx and the reception antenna Rx may be realized by the same antenna. Further, a plurality of antennas may be used as the transmitting antenna Tx, and a plurality of antennas may be used as the receiving antenna Rx.
  • Pilot signal generation unit 131 received pilot signal measurement unit 134, radio channel quality evaluation unit 135, CQI signal generation unit 136, control signal decoding unit 138, data signal decoding unit 139, error determination unit 140, operation mode determination unit 141, ACK
  • the function of the / NACK signal generation unit 142 can be realized by the processor 102a described above.
  • the functions of the wireless transmission unit 132, the wireless reception unit 133, and the demodulation unit 137 can be realized by the above-described wireless device 102e or the like.
  • the pilot signal generation unit 131 generates a pilot signal to be transmitted for measurement of radio channel quality.
  • the pilot signal generated by the pilot signal generation unit 131 is transmitted by the wireless transmission unit 132 via the transmission antenna Tx.
  • the wireless reception unit 133 receives the pilot signal transmitted from the base station 101 and outputs the pilot signal to the received pilot signal measurement unit 134.
  • the received pilot signal measurement unit 134 measures the received power and SINR of the received pilot signal.
  • the radio channel quality evaluation unit 135 evaluates the radio channel quality based on the measurement result by the received pilot signal measurement unit 134, and determines the CQI based on the evaluation result.
  • CQI signal generation section 136 generates a CQI signal indicating the CQI determined by radio channel quality evaluation section 135.
  • the CQI signal generated by the CQI signal generator 136 is transmitted to the base station 101 by the wireless transmitter 132.
  • reception of a pilot signal mentioned above, transmission of a CQI signal, etc. are performed, for example at a predetermined timing (for example, an interval of several tens of ms).
  • the data signal received by the wireless reception unit 133 via the reception antenna Rx is demodulated by the demodulation unit 137 and input to the data signal decoding unit 139.
  • the control signal received by the wireless reception unit 133 together with the data signal is demodulated by the demodulation unit 137 and input to the control signal decoding unit 138.
  • the error determination unit 140 performs error detection of each CBG included in the data signal after being decoded by the data signal decoding unit 139, and determines the presence or absence of an error for each CBG.
  • the operation mode determination unit 141 determines the response mode from the MCS index indicating the MCS applied to the transmission of the data signal, based on the information for mode determination (see FIG. 6) in the storage unit 141a. Then, the operation mode determination unit 141 sets an operation mode according to the response form.
  • the ACK / NACK signal generation unit 142 generates a response signal according to the determination result (modes # 1 and # 2) by the operation mode determination unit 141 based on the determination result by the error determination unit 140.
  • the ACK / NACK signal generation unit 142 when it is determined that there is no error in all of the transmitted CBGs, the ACK / NACK signal generation unit 142 generates a response signal indicating an ACK. On the other hand, when it is determined that there is an error in at least one CBG of the transmitted CBG, the ACK / NACK signal generation unit 142 generates a response signal indicating NACK. That is, in the case of the configuration # 1, the ACK / NACK signal generation unit 142 generates one ACK / NACK signal indicating ACK or NACK as a response signal.
  • the ACK / NACK signal generation unit 142 In the case of mode # 2, the ACK / NACK signal generation unit 142 generates an ACK / NACK signal indicating the determination result for each CBG transmitted, and generates a response signal including ACK / NACK signals for the number of generated CBGs. Do.
  • the response signal generated by the ACK / NACK signal generation unit 142 is transmitted by the wireless transmission unit 132 to the base station 101.
  • the wireless terminal 102 determines the response form in accordance with the determined MCS index, and controls how to express the response signal in accordance with the response form.
  • mode # 1 the amount of power allocated to one ACK / NACK signal is larger than that in the case of mode # 2 in which ACK / NACK signals for the number of CBGs are transmitted. Errors are less likely to occur.
  • mode # 2 the number of retransmission target CBGs can be reduced, which contributes to improvement in radio resource utilization efficiency.
  • FIG. 8 is a diagram for explaining the difference between the TB-based wireless data transmission scheme (TB scheme) and the CBG-based wireless data transmission scheme (CBG scheme).
  • a base station and a wireless terminal adopting the TB method will be described as a base station 91 and a wireless terminal 92, and a base station and a wireless terminal adopting the CBG method will be base The station 93 and the wireless terminal 94 are described.
  • a new TB is transmitted from the base station 91, and the radio terminal 92 performs error detection on the entire TB at the time of reception.
  • an error is detected at the wireless terminal 92, and the wireless terminal 92 returns NACK to the base station 91.
  • the base station 91 retransmits TB in response to the reception of NACK. If the retransmitted TB is correctly received and no error is detected in the wireless terminal 92, the wireless terminal 92 returns an ACK to the base station 91.
  • the base station 91 completes the transmission of TB in response to the reception of the ACK.
  • a new TB is transmitted from the base station 93, and the radio terminal 94 performs error detection in CBG units when receiving.
  • error detection is performed for four CBGs # 1, # 2, # 3, and # 4 included in TB, and an error is detected for CBGs # 1 and # 2.
  • the wireless terminal 94 returns NACK for CBGs # 1 and # 2, and returns ACK for CBGs # 3 and # 4.
  • N represents NACK
  • A represents ACK
  • the four blocks in which N or A are described are CBG # 1, # 2, # 3, #, in order from the left.
  • 4 represents an ACK / NACK signal corresponding to 4; The same notation may be used below for convenience of explanation.
  • the base station 93 receives a response signal including four ACK / NACK signals corresponding to CBGs # 1, # 2, # 3 and # 4, and specifies CBGs # 1 and # 2 corresponding to NACKs. Then, the base station 93 retransmits the identified CBGs # 1 and # 2 to the wireless terminal 94. If the retransmitted CBGs # 1 and # 2 are correctly received and no error is detected at the wireless terminal 94, the wireless terminal 94 returns two ACKs for the CBGs # 1 and # 2 to the base station 93. The base station 93 completes transmission of TB in response to the reception of two ACKs.
  • the CBG method requires less data to be retransmitted, which contributes to the improvement of radio resource utilization efficiency.
  • the amount of power available for ACK / NACK response is limited to a predetermined maximum amount of power or less, the amount of power that can be allocated to one ACK / NACK signal is smaller in the CBG method than in the TB method. There is a case.
  • the TB method one ACK / NACK signal is transmitted for one TB, so the maximum power amount can be used for transmission of one ACK / NACK signal.
  • the CBG method the amount of power that can be allocated to one ACK / NACK signal decreases according to the number of CBGs newly transmitted or retransmitted (the number of CBGs). Conversely, if the amount of power allocated to one ACK / NACK signal is the same as in the TB method, the total amount of power in the CBG method is 10 ⁇ Log (the number of CBGs) [dB] larger than in the TB method.
  • FIG. 9 is a diagram for describing a decrease in radio resource utilization efficiency due to an erroneous determination of ACK / NACK.
  • a TB including four CBGs # 1, # 2, # 3 and # 4 is transmitted from the base station 93, and the radio terminal 94 transmits each of the CBGs # 1, # 2, # 3 and # 4. Error detection is being performed. In this example, an error is detected in CBGs # 1 and # 2, and CBGs # 3 and # 4 have already been received. In this case, the wireless terminal 94 returns NACKs for CBGs # 1 and # 2 and ACKs for CBGs # 3 and # 4 to the base station 93.
  • the base station 93 can correctly determine ACK / NACK for all the CBGs # 1, # 2, # 3 and # 4, appropriate retransmission control is performed as shown in FIG. 8 (B).
  • the NACK for CBG # 2 is erroneously determined to be an ACK by the base station 93
  • the ACK for CBG # 3 is erroneously determined to be a NACK.
  • the base station 93 has not recognized an erroneous determination. Therefore, the base station 93 retransmits CBGs # 1 and # 3 corresponding to the NACK of the determination result.
  • the wireless terminal 94 receives the retransmitted CBGs # 1 and # 3 and performs error detection on the received CBGs # 1 and # 3. In the example of FIG. 9, no error is detected for CBGs # 1 and # 3, and the wireless terminal 94 returns ACKs for CBGs # 1 and # 3. At this time, in the wireless terminal 94, the CBGs # 1, # 3, and # 4 have already been received, but the CBG # 2 is not yet received. However, the base station 93 receives the ACK for the CBGs # 1 and # 3 from the wireless terminal 94 and determines that the transmission is completed.
  • FIG. 10 is a diagram for describing a mechanism of retransmission control according to the second embodiment. Hereinafter, the description will proceed along steps S101 to S105.
  • the wireless terminal 102 transmits the UL pilot signal 201 to the base station 101.
  • the UL pilot signal 201 is transmitted using a physical data channel such as PUSCH at a predetermined timing.
  • the wireless terminal 102 may perform UL transmission of DL wireless channel quality information 201a indicating DL wireless channel quality.
  • the CQI is an example of the DL radio channel quality information 201a.
  • the base station 101 determines the radio channel quality and determines the response form and MCS. For example, the base station 101 determines the MCS index based on the determination result of the radio channel quality, and specifies the range in which the determined MCS index is included based on the information for type determination (see FIG. 6). Then, the base station 101 determines the response form corresponding to the specified range.
  • the base station 101 determines the radio channel quality and determines the response form and the MCS by further considering the DL radio channel quality information 201a.
  • the base station 101 modulates and codes the data signal 202 with the modulation scheme and coding rate corresponding to the determined MCS index, and transmits the data signal 202 to the wireless terminal 102. Further, the base station 101 transmits an L1 control signal 203 including a BM 203a indicating which CBG is included in the data signal 202, and an NR 203b indicating whether new data transmission or retransmission is performed.
  • a data signal 202 including four CBGs # 1, # 2, # 3, and # 4 is transmitted.
  • the BM 203a included in the L1 control signal 203 has four bit values “1” (a bit value indicating that it is included in the data signal 202) corresponding to the CBGs # 1, # 2, # 3, and # 4.
  • the NR 203 b has a flag “n” indicating that it is a new data transmission.
  • the wireless terminal 102 recognizes CBGs # 1, # 2, # 3, # 4 contained in the data signal 202 from the BM 203a of the L1 control signal 203, and CBGs # 1, # 2, # 3, # 4. Error detection of Further, the wireless terminal 102 identifies the range including the MCS index indicating the MCS applied to the transmission of the data signal 202 from the information for determining the form (see FIG. 6), and responds to the identified form. Determine
  • the wireless terminal 102 generates the response signal 204 having the response form determined in S104 based on the result of the error detection performed in S104, and transmits the generated response signal 204 to the base station 101.
  • response signal 204 including one ACK / NACK signal indicating NACK is It is transmitted to the base station 101.
  • Signal 204 is transmitted to base station 101.
  • the amount of power allocated to one ACK / NACK signal is larger than in the case of mode # 2 in which ACK / NACK signals for the number of CBGs are transmitted. An error in the ACK / NACK determination at the time of.
  • the mode # 2 the number of retransmission target CBGs can be reduced, which contributes to improvement in radio resource utilization efficiency.
  • FIG. 11 is a first flow chart showing the operation of the wireless terminal according to the second embodiment.
  • FIG. 12 is a second flowchart showing the operation of the wireless terminal according to the second embodiment.
  • the wireless reception unit 133 receives the data signal via the reception antenna Rx. In the case of new data transmission, the wireless reception unit 133 receives a data signal including the entire TB. On the other hand, in the case of retransmission, the radio reception unit 133 receives a data signal including a CBG corresponding to NACK among CBGs included in the TB.
  • the wireless reception unit 133 receives the control signal together with the data signal.
  • the control signal indicates, for example, a bitmap type flag (BM) indicating which CBG is included in the data signal among CBGs included in TB, and indicates whether it is a new data transmission or a retransmission.
  • BM bitmap type flag
  • NR retransmission judgment flag
  • the data signal and control signal received by the wireless reception unit 133 are demodulated by the demodulation unit 137, the data signal is output to the data signal decoding unit 139, and the control signal is output to the control signal decoding unit 138.
  • the operation mode determination unit 141 determines whether the MCS index indicating the MCS applied to the transmission of the data signal is within the range X (see FIG. 6).
  • the MCS index is notified in advance by PDCCH as part of DCI, for example.
  • the data signal decoding unit 139 recognizes whether it is new data transmission or retransmission based on the decoding result (BM, NR) of the control signal by the control signal decoding unit 138, and is included in the data signal. Identify the CBG to be
  • the data signal decoding unit 139 decodes each CBG of the data signal, and outputs each restored CBG to the error determination unit 140.
  • the error determination unit 140 performs error detection of each CBG using the CRC assigned to each CBG, and determines the presence or absence of an error for each CBG.
  • the ACK / NACK signal generation unit 142 generates an ACK / NACK signal for each CBG based on the determination result by the error determination unit 140, and transmits a response signal including an ACK / NACK signal for each CBG to the base station. Send to 101
  • the ACK / NACK signal generation unit 142 when an error is detected in the CBGs # 1 and # 2, the ACK / NACK signal generation unit 142 generates an ACK / NACK signal indicating an ACK for each of the CBGs # 1 and # 2. If no error is detected in CBGs # 3 and # 4, ACK / NACK signal generation unit 142 generates an ACK / NACK signal indicating NACK for each of CBGs # 3 and # 4. Then, the ACK / NACK signal generation unit 142 transmits a response signal including the generated four ACK / NACK signals.
  • the data signal decoding unit 139 recognizes whether it is new data transmission or retransmission based on the decoding result (BM, NR) of the control signal by the control signal decoding unit 138, and is included in the data signal. Identify the CBG to be
  • the data signal decoding unit 139 decodes each CBG of the data signal, and outputs each restored CBG to the error determination unit 140.
  • the error determination unit 140 performs error detection of each CBG using the CRC assigned to each CBG, and determines the presence or absence of an error for each CBG.
  • the operation mode determination unit 141 determines whether the reception of all the CBGs included in the data signal is successful or not based on the result of the error detection by the error determination unit 140 (whether or not all the CBGs have no errors To determine If all CBGs have been successfully received, the process proceeds to S117. On the other hand, when reception fails for at least one CBG, the process proceeds to S118.
  • the operation mode determination unit 141 sets the parameter K to success (ACK). When the process of S117 is completed, the process proceeds to S119.
  • the operation mode determination unit 141 sets the parameter K to failure (NACK). When the process of S118 is completed, the process proceeds to S119.
  • the ACK / NACK signal generation unit 142 generates a response signal having the content of the parameter K set by the operation mode determination unit 141.
  • the response signal generated in S119 is composed of one ACK / NACK signal indicating whether the reception of all transmitted CBGs has succeeded (ACK) or whether the reception of at least one CBG has failed (NACK). Ru.
  • this response signal mode # 1
  • the maximum allowable amount of power can be allocated to one ACK / NACK signal, so that the risk of causing an error in ACK / NACK determination due to power shortage can be suppressed. it can.
  • the wireless transmission unit 132 transmits the response signal generated by the ACK / NACK signal generation unit 142 to the base station 101.
  • the process of S120 proceeds to S111.
  • FIG. 13 is a flowchart showing the operation of the base station according to the second embodiment.
  • the data signal generation unit 111 In response to the generation of new data to be transmitted to the wireless terminal 102, the data signal generation unit 111 generates a data signal (TB). (S132) The control signal generation unit 112 generates BM corresponding to the data signal generated by the data signal generation unit 111, and NR indicating that it is transmission of new data. Then, the control signal generation unit 112 generates a control signal including the generated BM and NR. The multiplexing unit 113 and the wireless transmission unit 114 multiplex and transmit the control signal generated by the control signal generation unit 112 and the data signal generated by the data signal generation unit 111.
  • the operation mode determination unit 121 determines whether the MCS index indicating the MCS applied to the transmission of the data signal is within the range X (see FIG. 6).
  • the MCS index is determined in advance by the MCS determination unit 122, and is notified to the radio terminal 102 by PDCCH, for example, as a part of DCI.
  • the wireless reception unit 115 receives the response signal via the reception antenna Rx.
  • the response signal received by the wireless reception unit 115 in S134 includes an ACK / NACK signal indicating success or failure of reception of each CBG included in the data signal transmitted in S132. That is, response signals including ACK / NACK signals for the number of CBGs are received.
  • the response signal received by the wireless reception unit 115 is demodulated by the demodulation unit 116 and output to the ACK / NACK signal reception unit 118.
  • the ACK / NACK signal receiving unit 118 performs ACK / NACK determination for each CBG based on the content of the ACK / NACK signal included in the received response signal. Then, the ACK / NACK signal receiving unit 118 determines whether or not there is NACK in the response signal (whether or not there is a CBG corresponding to NACK). If there is a NACK, the process proceeds to S136. On the other hand, if there is no NACK, the process proceeds to S131. When there is no NACK, the base station 101 completes the transmission of the data generated in S131.
  • the data signal generation unit 111 sets a CBG corresponding to NACK as a retransmission target CBG, and generates a data signal including the retransmission target CBG.
  • the control signal generation unit 112 generates a control signal including a BM indicating that the retransmission target CBG is included in the data signal, and an NR indicating that the retransmission is performed.
  • the multiplexing unit 113 and the wireless transmission unit 114 multiplex and transmit the control signal generated by the control signal generation unit 112 and the data signal generated by the data signal generation unit 111.
  • the wireless reception unit 115 receives the response signal via the reception antenna Rx.
  • the response signal received by the wireless reception unit 115 in S137 includes an ACK / NACK signal indicating whether or not the reception of all CBGs included in the data signal transmitted in S132 is successful. That is, a response signal including one ACK / NACK signal is received.
  • the response signal received by the wireless reception unit 115 is demodulated by the demodulation unit 116 and output to the ACK / NACK signal reception unit 118.
  • the ACK / NACK signal receiving unit 118 performs ACK / NACK determination from the contents of the ACK / NACK signal included in the received response signal, and determines whether or not it is NACK. If it is NACK, the process proceeds to S139. On the other hand, if it is ACK, the process proceeds to S131. In the case of ACK, the base station 101 completes the transmission of the data generated in S131.
  • the data signal generation unit 111 sets all CBGs transmitted last time as retransmission target CBGs, and generates a data signal including retransmission target CBGs.
  • the control signal generation unit 112 generates a control signal including a BM indicating that the retransmission target CBG is included in the data signal, and an NR indicating that the retransmission is performed.
  • the multiplexing unit 113 and the wireless transmission unit 114 multiplex and transmit the control signal generated by the control signal generation unit 112 and the data signal generated by the data signal generation unit 111.
  • FIG. 14 is a diagram for describing a modification of the second embodiment.
  • a response indication flag indicating the response form determined by the base station 101 is transmitted to the wireless terminal 102, and the response indication flag indicates
  • a scheme is introduced in which the wireless terminal 102 transmits a response signal. The mechanism will be further described below.
  • the radio terminal 102 transmits the UL pilot signal 201 to the base station 101.
  • the UL pilot signal 201 is transmitted using a physical data channel such as PUSCH at a predetermined timing.
  • the wireless terminal 102 may perform UL transmission of DL wireless channel quality information 201a indicating DL wireless channel quality.
  • the CQI is an example of the DL radio channel quality information 201a.
  • the base station 101 determines radio channel quality and determines response mode and MCS based on the measurement result of the UL pilot signal 201 received from the radio terminal 102. For example, the base station 101 determines the MCS index based on the determination result of the radio channel quality, and specifies the range in which the determined MCS index is included based on the information for type determination (see FIG. 6). Then, the base station 101 determines the response form corresponding to the specified range.
  • the base station 101 determines the radio channel quality and determines the response form and the MCS by further considering the DL radio channel quality information 201a.
  • the base station 101 modulates and codes the data signal 202 with the modulation scheme and coding rate corresponding to the determined MCS index, and transmits the data signal 202 to the wireless terminal 102. Also, the base station 101 includes an L1 control signal 205 including a BM 205a indicating which CBG is included in the data signal 202, an NR 205b indicating whether new data transmission or retransmission is performed, and a response indication flag 205c indicating a response form. Send.
  • a data signal 202 including four CBGs # 1, # 2, # 3, # 4 is transmitted.
  • the BM 205a included in the L1 control signal 205 has four bit values “1” (a bit value indicating that it is included in the data signal 202) corresponding to the CBGs # 1, # 2, # 3, and # 4. .
  • the NR 205 b has a flag “n” indicating that it is a new data transmission.
  • the response instruction flag 205 c has a flag “X” (a response form corresponding to the range X) indicating the form # 1.
  • the wireless terminal 102 recognizes CBGs # 1, # 2, # 3, # 4 contained in the data signal 202 from the BM 205a of the L1 control signal 205, and CBGs # 1, # 2, # 3, # 4. Error detection of Also, the wireless terminal 102 determines the response form based on the response instruction flag 205c.
  • the wireless terminal 102 generates a response signal 204 having the response form determined in S204 based on the result of the error detection performed in S204, and transmits the generated response signal 204 to the base station 101.
  • response signal 204 including one ACK / NACK signal indicating NACK is It is transmitted to the base station 101.
  • Signal 204 is transmitted to base station 101.
  • the amount of power allocated to one ACK / NACK signal is larger than in the case of mode # 2 in which ACK / NACK signals for the number of CBGs are transmitted. An error in the ACK / NACK determination at 101 is less likely to occur.
  • the mode # 2 the number of retransmission target CBGs can be reduced, which contributes to improvement in radio resource utilization efficiency.
  • the response instruction flag 205c the determination of the response form by the wireless terminal 102 can be omitted, and the burden on the wireless terminal 102 can be reduced.
  • a relay station or another wireless device, and a base station It is also possible to apply to communication between the wireless terminal and the wireless terminal.
  • the above-described functions of the wireless terminal are introduced to the relay station.
  • the above-described base station function is introduced to the relay station. That is, even if the components of the wireless communication system 100 are changed, the mechanism of the second embodiment can be applied. Such a modification naturally belongs to the technical scope of the second embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

ACK/NACKの誤判定が生じるリスクを低減すること。 第1の無線装置(11)及び第2の無線装置(12)を有する無線通信システム(10)で用いる無線通信方法であって、第1の無線装置(11)が、複数の部分で構成される第1の信号(21)と、第1の信号(21)についての第1の情報(23)が含まれる第2の信号(22)とを第2の無線装置(12)から受信し、受信結果の表し方が異なる複数の態様の中から、第2の信号(22)に含まれる第1の情報(23)に基づいて決定される態様を用いて、第1の信号(21)についての受信結果を示す第2の情報(24)を第2の無線装置(12)に送信する、無線通信方法が提供される。

Description

無線通信方法、無線通信システム、無線端末、及び基地局
 本発明は、無線通信方法、無線通信システム、無線端末、及び基地局に関する。
 現在のネットワークは、モバイル端末(例えば、スマートフォンやフューチャーフォン)のトラフィックがネットワークリソースの大半を占めている。また、モバイル端末が使うトラフィックは、今後も拡大していく傾向にある。
 一方で、IoT(Internet of Things)サービス(例えば、交通システム、スマートメータ、装置等の監視システム)の展開にあわせて、多様な要求条件を持つサービスに対応することが求められている。そのため、次世代(例えば、5G(第5世代移動体通信))の通信規格では、4G(第4世代移動体通信)の標準技術に加えて、さらなる高データレート化、大容量化、低遅延化を実現する技術が求められている。
 5Gの通信規格についての検討の中で、TB(Transport Block)単位で受信結果(ACK(Acknowledgement)/NACK(Negative-ACK))を返す従来の方式に加え、TBを分割したCBG(Code-Block Group)単位で受信結果を返すCBG-based無線データ送信方式(以下、CBG方式)を新たに導入するための議論が進んでいる。
 従来の方式では受信失敗になるとTB全体の再送が行われるが、CBG方式では受信失敗したCBGだけが再送される。そのため、再送時に使用される無線リソースを節約でき、無線リソースの利用効率が向上しうる。
 上記のように、CBG方式では、TBを構成する複数のCBGのそれぞれに対するACK又はNACKが返され、NACKに対応するCBGだけが再送される。そして、再送された全てのCBGに対してACKが返されると送信完了となる。
3GPP TR 38.802 V14.0.0 (2017-03)
 上述した従来の方式では、1つのTBに対する1回の応答で1つのACK又はNACKが返される。一方、CBG方式では、1つのTBに対する1回の応答で、最大、TBを構成するCBGの数と同数のACK又はNACKが返される。そのため、1回の応答で利用できる電力量に制約がある場合、CBG方式では、1つのACK又はNACKの送信に利用できる電力量が小さくなることがある。利用できる電力量が小さくなるとノイズなどの影響を受けやすくなりACK/NACKの誤判定が生じやすくなる。
 なお、説明の都合上、CBG方式を例に挙げたが、再送制御の単位がTBより小さいブロックに設定されるケースで上記と同様の課題が生じうる。
 1つの側面によれば、本開示の目的は、ACK/NACKの誤判定が生じるリスクを低減することが可能な無線通信方法、無線通信システム、無線端末、及び基地局を提供することにある。
 1つの側面によれば、第1の無線装置及び第2の無線装置を有する無線通信システムで用いる無線通信方法が提供される。この無線通信方法では、第1の無線装置が、複数の部分で構成される第1の信号と、第1の信号についての第1の情報が含まれる第2の信号とを第2の無線装置から受信し、受信結果の表し方が異なる複数の態様の中から、第2の信号に含まれる第1の情報に基づいて決定される態様を用いて、第1の信号についての受信結果を示す第2の情報を第2の無線装置に送信する。
 ACK/NACKの誤判定が生じるリスクを低減することができる。
 本発明の上記及び他の目的、特徴及び利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
第1実施形態に係る無線通信システムの一例を示した図である。 第2実施形態に係る無線通信システムの一例を示した図である。 第2実施形態に係る基地局の機能を実現可能なハードウェアの一例を示したブロック図である。 第2実施形態に係る無線端末の機能を実現可能なハードウェアの一例を示したブロック図である。 第2実施形態に係る基地局が有する機能の一例を示したブロック図である。 第2実施形態に係る形態判定用の情報の一例を示した図である。 第2実施形態に係る無線端末が有する機能の一例を示したブロック図である。 TB-based無線データ送信方式(TB方式)とCBG-based無線データ送信方式(CBG方式)との違いについて説明するための図である。 ACK/NACKの誤判定に伴う無線リソース利用効率の低下について説明するための図である。 第2実施形態に係る再送制御の仕組みについて説明するための図である。 第2実施形態に係る無線端末の動作を示した第1のフロー図である。 第2実施形態に係る無線端末の動作を示した第2のフロー図である。 第2実施形態に係る基地局の動作を示したフロー図である。 第2実施形態の一変形例について説明するための図である。
 以下に添付図面を参照しながら、本発明の実施形態について説明する。なお、本明細書及び図面において実質的に同一の機能を有する要素については、同一の符号を付することにより重複説明を省略する場合がある。
 <1.第1実施形態>
 図1を参照しながら、第1実施形態について説明する。
 図1は、第1実施形態に係る無線通信システムの一例を示した図である。なお、図1に示した無線通信システム10は、第1実施形態に係る無線通信システムの一例である。
 図1に示すように、無線通信システム10は、第1の無線装置11、及び第1の無線装置11と無線通信可能な第2の無線装置12を有する。
 第1の無線装置11は、例えば、スマートフォンやフューチャーフォンなどのモバイル端末や、人間の操作を介さない小型モジュール通信向けのMTC(Machine Type Communication)端末などの無線端末、或いは、基地局と無線端末との間の通信を中継する中継局である。なお、無線通信システム10には、第1の無線装置11と同等の機能を有する無線装置が2台以上含まれていてもよい。
 第1の無線装置11は、アンテナ11a、受信制御部11b、及び送信制御部11cを有する。第2の無線装置12は、アンテナ12a、送信制御部12b、及び受信制御部12cを有する。なお、第1の無線装置11、第2の無線装置12に搭載されるアンテナ数は2以上でもよい。
 なお、送信制御部11c、12b及び受信制御部11b、12cは、例えば、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)などのプロセッサである。また、送信制御部11c、12b及び受信制御部11b、12cは、例えば、RAM(Random Access Memory)、HDD(Hard Disk Drive)、フラッシュメモリなどの記憶装置(非図示)をバッファメモリなどとして利用しうる。
 第2の無線装置12の送信制御部12bは、複数の部分で構成される第1の信号21を第1の無線装置11へ送信する。図1の例では、第1の信号21が4つの部分#1、#2、#3、#4で構成されている。なお、TBは第1の信号21の一例である。また、CBGは、第1の信号21を構成する部分の一例である。
 また、第2の無線装置12の送信制御部12bは、第1の信号21についての第1の情報23が含まれる第2の信号22を第1の無線装置11へ送信する。第1の情報23は、第2の無線装置12により第1の信号21に適用される処理についての情報である。
 例えば、第1の情報23は、第1の信号21に適用される変調方式と符号化率との組み合わせで決まる数値である。なお、MCS(Modulation and Coding Scheme)インデックスは、変調方式と符号化率との組み合わせで決まる数値の一例である。MCSインデックスは、PDSCH(Physical Downlink Shared CHannel)での送受信に用いるMCSを示し、例えば、PDCCH(Physical Downlink Control CHannel)で通知される。
 第1の無線装置11の受信制御部11bは、第1の信号21及び第2の信号22を第2の無線装置12から受信する。また、第1の無線装置11の送信制御部11cは、受信結果の表し方が異なる複数の態様の中から、第2の信号22に含まれる第1の情報23に基づいて決定される態様を用いて、第1の信号21についての受信結果を示す第2の情報24を第2の無線装置12に送信する。
 なお、複数の態様としては、例えば、第1の信号21の全体についての受信成否を受信結果として表す態様(態様X)や、第1の信号21に含まれる各部分についての受信成否を受信結果として表す態様(態様Y)などがある。
 例えば、伝送路環境が比較的良い場合には、上記の決定される態様が態様Yとなり、伝送路環境が比較的良くない場合には態様Xとなる。なお、伝送路環境の良否は、例えば、第1の信号21の送信に適用される処理の内容により判断できる。例えば、伝送レート(1シンボルあたりの情報ビット数)が比較的大きくなる処理であれば態様Yが好適と判断され、伝送レートが比較的小さくなる処理であれば態様Xが好適と判断される。
 態様Xでは第1の信号21に対して受信信号1つの受信成否(ACK/NACK)を含む応答信号を返せばよい。そのため、応答信号の送信に利用できる電力量に制約がある場合、最大電力量を1つのACK/NACK送信に配分でき、受信側でACK/NACKの誤検出が生じるリスクは低くなる。
 一方、態様Yでは第1の信号21の各部分に対するACK/NACKを含む応答信号を返す。そのため、送信された部分の数と同数のACK/NACKに最大電力量が配分され、1つのACK/NACK送信に利用できる電力量が小さくなる。一方で、誤りが生じた部分だけを再送する制御を行うことができ、再送時に利用する無線リソースを節約できるため、無線リソース利用効率の向上に寄与する。
 第1の情報23に基づいて第2の情報24の送信に適用する態様を決めることで、誤判定リスクの低減と、無線リソース利用効率の向上とをバランス良く実現できる。
 ここで、具体例に沿って上述した処理の流れについて、さらに説明する。
 図1の例において、第2の無線装置12の送信制御部12bは、4つの部分#1、#2、#3、#4で構成される第1の信号21を第1の無線装置11に送信する(S11)。また、送信制御部12bは、第1の信号21の送信時に適用された処理についての内容を示す第1の情報23を第2の信号22に含めて送信する。
 第1の無線装置11の受信制御部11bは、第1の信号21及び第2の信号22を受信する。そして、受信制御部11bは、第1の信号21に含まれる各部分についての受信成否を判定する(S12)。例えば、受信制御部11bは、各部分に付与されるCRC(Cyclic Redundancy Check)を利用して各部分の誤り検出を行い、誤りがない部分については受信成功とし、誤りが検出された部分については受信失敗と判定する。
 第1の無線装置11の送信制御部12bは、第2の信号22に含まれる第1の情報23に基づいて、第1の信号21の受信結果を示す第2の情報24の表し方(態様)を特定する(S13)。
 図1の例では、第1の情報23の内容が内容#1である場合、第1の信号21の全体について受信が成功したこと(全体受信成功)又は第1の信号21の少なくとも一部の受信が失敗したこと(少なくとも一部受信失敗)を受信結果として表す態様(態様X)が特定される。内容#1は、例えば、MCSインデックスが所定値以下となることである。
 一方、第1の情報23の内容が内容#2である場合、第1の信号21の各部分についての受信成否(各部分の受信成否)を受信結果として表す態様(態様Y)が特定される。内容#2は、例えば、MCSインデックスが所定値超過となることである。
 第1の無線装置11の送信制御部11cは、S12の判定結果に基づいて、特定した態様で表現した受信結果を示す第2の情報24を生成し、第2の無線装置12に送信する(S14)。
 例えば、態様Xが特定され、部分#1、#3に誤りが検出された場合、送信制御部11cは、少なくとも一部受信失敗を示す第2の情報24(1つのNACK)を第2の無線装置12に送信する。また、態様Xが特定され、部分#1、#2、#3、#4に誤りがない場合、送信制御部11cは、全体受信成功を示す第2の情報24(1つのACK)を第2の無線装置12に送信する。
 また、態様Yが特定され、部分#1、#3に誤りが検出された場合、送信制御部11cは、部分#1、#3の受信失敗を示す第2の情報24(部分#1、#3に対応する2つのNACK、CBG#2、#4に対応する2つのACK)を第2の無線装置12に送信する。また、態様Yが特定され、部分#1、#2、#3、#4に誤りがない場合、送信制御部11cは、第2の情報24(4つのACK)を第2の無線装置12に送信する。
 上記のように、第1の信号21についての情報(第1の情報23)に基づいて受信結果の表し方を変えることで、1回の応答で1つのACK/NACK当たりに配分される電力量を無線環境に応じて制御でき、ACK/NACKの誤判定が生じるリスクを低減できる。その結果、ACK/NACKの誤判定に起因する無駄な処理の削減やリソース浪費の削減に寄与する。
 以上、第1実施形態について説明した。
 <2.第2実施形態>
 次に、第2実施形態について説明する。
 [システム]
 図2を参照しながら、無線通信システム100について説明する。図2は、第2実施形態に係る無線通信システムの一例を示した図である。なお、無線通信システム100は第2実施形態に係る無線通信システムの一例である。
 図2に示すように、無線通信システム100は、基地局101、及び基地局101と通信する無線端末102、103を有する。
 なお、無線通信システム100に含まれる無線端末の数は2以外でもよい。また、説明の都合上、無線端末102、103のハードウェア及び機能は実質的に同じであるとして以下では無線端末103の説明を省略する場合がある。gNB(gNodeB)は基地局101の一例である。UE(User Equipment)は無線端末102、103の一例である。
 無線通信システム100は、TBの送信にCBG方式を適用する。
 CBG方式では、図2に示すように、1つのTBが複数のCB(Code-Block)に分割され、少なくとも1つのCBを含むCBGが設定される。なお、TBは独立したレイヤ間(MACレイヤとPHYレイヤとの間)でやりとりされるデータの塊であり、CBGは1つのレイヤ(PHYレイヤ)内でやりとりされるデータの塊である。
 図2の例では、1つのCBGに2つのCBが含まれている。CBG方式では、CBG単位での受信結果(ACK/NACK)を示すACK/NACK信号が送信される。そのため、CBG方式では、CBG単位で再送制御を行うことができる。以下では、説明の都合上、1つのブロック又はデータ範囲に対するACK又はNACKを示す信号をACK/NACK信号と表記し、1回の応答で返されるACK/NACK信号の集合を応答信号と表記する。
 TBには、TB全体の誤り検出に利用するCRC(非図示)が付与される。CBG方式では、また、個々のCBGの誤り検出に利用するCRCがCBGの情報ビットに付与される。そして、各CBGに付与されるCRCを利用して誤り検出が行われ、その誤り検出の結果に基づいてCBG単位での受信結果を示すACK/NACK信号が送信される。
 TB方式の場合、TBの一部について誤りが検出されるとTB全体の再送が行われる。一方、CBG方式では、一部のCBGに誤りが検出されると、誤りが検出されたCBGの再送が行われる。つまり、正しく受信されたCBGの再送が回避される。そのため、TB方式に比べるとCBG方式の方が再送時に使用される無線リソースを少なく抑えることができ、無線リソース利用効率の向上に寄与する。
 なお、図2には、一例として、1つのTBを16個のCBに分割し、それぞれのCBGに2つのCBを含める例を示しているが、1つのTBを構成するCBGの数はこの例に限定されない。また、以下では、説明の都合上、1つのTBに含まれるCBGの数を4つに設定したケースを例示して説明を行う場合がある。
 基地局101は、例えば、図3に示すようなハードウェアを有する。
 図3は、第2実施形態に係る基地局の機能を実現可能なハードウェアの一例を示したブロック図である。図3に示すように、基地局101は、プロセッサ101a、主記憶装置101b、NIF(Network Interface)101c、補助記憶装置101d、無線機101e、及びアンテナ101fを有する。
 プロセッサ101aは、例えば、CPU、DSP、ASIC、FPGAなどである。プロセッサ101aは、主記憶装置101b及び/又は補助記憶装置101dに格納されるプログラムやデータを用いて基地局101の動作を制御する。主記憶装置101bは、例えば、RAMなどのメモリである。NIF101cは、上位レイヤに接続されるコアネットワーク(非図示)との間のインターフェースとなる通信回路である。
 補助記憶装置101dは、例えば、RAM、ROM(Read Only Memory)、HDD、SSD(Solid State Drive)、フラッシュメモリなどの記憶装置である。無線機101eは、変調・復調、周波数変換、AD(Analog to Digital)・DA(Digital to Analog)変換などを行う送受信デバイスである。
 アンテナ101fは、RF(Radio Frequency)信号の送受信に用いるアンテナである。なお、基地局101に搭載されるアンテナの本数は2以外でもよく、アンテナ101fは、例えば、多数のアンテナ素子で形成されるアレイアンテナでもよい。また、変形例として、無線機101e及びアンテナ101fの機能を有する送受信部(例えば、RRH:Remote Radio Head)を基地局101と回線接続する形で設置してもよい。
 なお、上述した第1実施形態に係る第2の無線装置12の機能も図3に示したハードウェアにより実現できる。
 無線端末102は、例えば、図4に示すようなハードウェアを有する。
 図4は、第2実施形態に係る無線端末の機能を実現可能なハードウェアの一例を示したブロック図である。図4に示すように、無線端末102は、プロセッサ102a、主記憶装置102b、表示装置102c、補助記憶装置102d、無線機102e、及びアンテナ102fを有する。
 プロセッサ102aは、例えば、CPU、DSP、ASIC、FPGAなどである。プロセッサ102aは、主記憶装置102b及び/又は補助記憶装置102dに格納されるプログラムやデータを用いて無線端末102の動作を制御する。主記憶装置102bは、例えば、RAMなどのメモリである。表示装置102cは、例えば、LCD(Liquid Crystal Display)やELD(Electro-Luminescent Display)などである。
 補助記憶装置102dは、例えば、RAM、ROM、HDD、SSD、フラッシュメモリなどの記憶装置である。無線機102eは、変調・復調、周波数変換、AD・DA変換などを行う送受信デバイスである。アンテナ102fは、RF信号の送受信に用いるアンテナである。なお、無線端末102に搭載されるアンテナの本数は2以上でもよい。
 なお、上述した第1実施形態に係る第1の無線装置11の機能も図4に示したハードウェアにより実現できる。
 [機能]
 次に、基地局101及び無線端末102の機能について説明する。なお、無線端末102、103の機能は同じであるとして無線端末103については説明を省略する。
 基地局101は、図5に示すような機能を有する。図5は、第2実施形態に係る基地局が有する機能の一例を示したブロック図である。
 図5に示すように、基地局101は、データ信号生成部111、制御信号生成部112、多重部113、及び無線送信部114を有する。また、基地局101は、無線受信部115、復調部116、CQI(Channel Quality Indicator)信号受信部117、ACK/NACK信号受信部118、受信パイロット信号測定部119、無線回線品質評価部120、動作モード決定部121、及びMCS決定部122を有する。
 なお、説明の都合上、送信アンテナTx、受信アンテナRxを別々のアンテナとして記載しているが、送信アンテナTx及び受信アンテナRxの機能を同じアンテナにより実現してもよい。また、送信アンテナTxとして複数本のアンテナが用いられてもよいし、受信アンテナRxとして複数本のアンテナが用いられてもよい。
 データ信号生成部111、制御信号生成部112、CQI信号受信部117、ACK/NACK信号受信部118、受信パイロット信号測定部119、無線回線品質評価部120、動作モード決定部121、MCS決定部122の機能は、上述したプロセッサ101aにより実現できる。多重部113、無線送信部114、無線受信部115、復調部116の機能は、上述した無線機101eなどにより実現できる。
 データ信号生成部111は、発生したデータからデータ信号(TB)を生成する。
 例えば、データ信号生成部111は、データを分割してCBを生成し、所定数(例えば、2)のCBをまとめてCBGを形成し、各CBGに対するCRCを計算する。また、データ信号生成部111は、データ全体のCRCを計算し、データ、CRC単位のCRC、データ全体のCRCを含む信号をデータ信号として生成する。なお、データは、所定の符号化方式で符号化(例えば、ターボ符号化)される。
 再送を行う場合、データ信号生成部111は、後述するACK/NACK信号受信部118によるACK/NACK判定の結果に基づいて再送対象のCBG(再送対象CBG)を特定し、特定した再送対象CBGを含むデータ信号を生成する。なお、再送対象CBGの特定方法については後段の説明の中で述べる。
 制御信号生成部112は、データ信号にどのCBGが含まれるかを示すBitmap型フラグ(BM)、及びデータ信号の送信が新規のデータ送信であるか再送であるかを示す再送判定用フラグ(NR)を含むL1制御信号(以下、単に制御信号)を生成する。BMは、例えば、データ信号に含まれるCBGをビット値「1」、データ信号に含まれないCBGをビット値「0」で表したビット列で表現できる。
 データ信号及び制御信号は多重部113により多重(例えば、時間多重)され、無線送信部114によりアンテナTxを介して送信される。なお、データ信号の送信に適用されるMCSは、後述するMCS決定部122により決定される。送信に適用されるMCSを示すMCSインデックスは、例えば、DCI(Downlink Control Information)の一部としてPDCCHにより無線端末102へ事前に通知される。
 MCSを決定する方法としては、例えば、PUSCHで送信されるパイロット信号の受信結果に基づく無線回線品質の評価結果を利用する方法や、無線端末102からフィードバックされるCQIに基づいて決定を行う方法がある。
 TDD(Time Division Duplex)の場合、パイロット信号の受信結果をUL(Uplink)データ送信時に適用するMCSの決定に利用できる。この場合、無線受信部115により受信されたパイロット信号が受信パイロット信号測定部119へと出力され、受信パイロット信号測定部119により受信電力やSINR(Signal to Interference Noise Ratio)などの測定が行われる。
 CQIを利用する場合、無線受信部115により受信されたCQI信号はCQI信号受信部117へと出力され、CQI信号受信部117により、例えば、CQI信号が示す品質情報(変調方式、符号化率、伝送レートなど)が特定される。
 CQI信号は、DL送信されたパイロット信号の受信結果に基づいて決定され、例えば、PUCCH(Physical Uplink Control CHannel)により所定のタイミング(例えば、数十msの間隔)で送信される。なお、CQI信号は、PUSCH(Physical Uplink Shared CHannel)で送信されてもよい。
 無線回線品質評価部120は、上記の品質情報及び受信パイロット信号測定部119による測定結果に基づいて無線回線品質を評価する。無線回線品質評価部120による評価結果はMCS決定部122へと出力される。MCS決定部122は、無線回線品質評価部120による評価結果に基づいてMCSインデックスを決定する。
 動作モード決定部121は、記憶部121aに保持している形態判定用の情報(図6を参照)に基づいて、MCS決定部122により決定されたMCSインデックスに対応する応答形態を決定する。そして、動作モード決定部121は、応答形態に応じた動作モードを設定する。なお、応答形態とは、データ信号の受信結果を示す応答信号の表し方である。記憶部121aの機能は、上述した主記憶装置101bや補助記憶装置101dにより実現できる。形態判定用の情報及び応答形態の決定方法については後述する。
 ここで、図6を参照しながら、形態判定用の情報について説明する。図6は、第2実施形態に係る形態判定用の情報の一例を示した図である。なお、図6に示した情報の内容は一例であり、実施の態様に応じて適宜変更可能である。
 図6の例において、形態判定用の情報には、MCSインデックス、変調方式、符号化率、及び応答形態についての情報が含まれている。なお、この例では説明の都合上、変調方式及び符号化率についての情報を示しているが、MCSインデックスから変調方式及び符号化率が一意に特定される場合には、これらを省略できる。
 形態判定用の情報は、MCSインデックスと、応答形態の種類とを対応付ける。無線通信システム100では、応答形態の選択に応じて、同じ受信結果でも、受信結果を通知する応答信号の内容が変わる。図6には、応答形態の例として形態#1、#2が示されている。
 形態#1は、送信された全CBGが受信成功か否かを示す応答信号を返す形態である。形態#1を適用した場合、送信された全てのCBGについての受信が成功したときにACKを示す1つのACK/NACK信号が応答信号として返され、少なくとも1つのCBGについての受信が失敗したときにNACKを示す1つのACK/NACK信号が応答信号として返される。
 形態#1を適用した場合、応答信号に基づいて、基地局101が、送信されたCBGの集合全体についての受信成否を認識できるようになる。また、応答信号として1つのACK/NACK信号を送信することになるため、1回の応答で利用できる最大電力量(例えば、TB方式と同じ電力量)を利用して応答信号を送信できる。その結果、形態#1を適用した場合には、CBG数と同数のACK/NACK信号を含む応答信号を送信するケースに比べ、ノイズなどに対する耐性が高くなり、応答信号のACK/NACK判定に誤りが生じるリスクが低減される。
 他方、形態#2は、CBG毎の受信成否を示す応答信号を返す形態である。形態#2を適用した場合、CBG単位のACK/NACK信号を含む応答信号が返される。この場合、NACKに対応するCBGだけを再送する制御(CBG方式の制御)を行うことができ、無線リソース利用効率の向上に寄与する。
 但し、形態#1を適用する場合に比べ、形態#2を適用する場合には各CBGについてのACK/NACK判定に誤りが生じるリスクが高い。そのため、第2実施形態では、図6に示すように、MCSインデックスに応じて応答形態を制御する仕組みを導入する。
 図6に例示した形態判定用の情報においては、MCSインデックスが1以下の範囲Xに形態#1が対応付けられ、MCSインデックスが2以上の範囲Y(範囲XよりMCSインデックスが大きい範囲Y)に形態#2が対応付けられている。
 変調方式については、MCSインデックスが大きくなるほど多値の変調方式(1シンボルで伝送できるビット数が多い変調方式)が適用される傾向にある。例えば、MCSインデックスが0の場合に適用される変調方式がQPSK(Quadrature Phase Shift Keying)であるのに対し、MCSインデックスが31の場合に適用される変調方式は64QAM(Quadrature Amplitude Modulation)である。
 他方、符号化率については、同じ変調方式のMCSインデックスの集合において、MCSインデックスが大きくなるほど符号化率が大きくなる。符号化率は、送信したい情報を表す入力ビット数に対する符号ビット数の割合である。例えば、符号化率が1/3の場合、1ビットの入力ビットに対して3ビットの符号ビットが付与される。つまり、符号化率が小さいほど冗長度が増加して誤り訂正能力が高まる一方、伝送効率が低下する。
 通常の設定において、伝送路特性が良好な場合には比較的大きなMCSインデックスが選択され、伝送路特性が良好でない場合や確実性を重視する信号を送信する場合には比較的小さなMCSインデックスが選択される。
 MCSインデックスの選択は、例えば、ULで送信されるパイロット信号などを用いて測定される無線回線品質に基づいて基地局101が行うか、基地局101にフィードバックされるCQIなどに基づいて基地局101が行う。但し、無線端末102などの端末側でMCSインデックスを選択してもよい(変形例)。
 上記のように、比較的小さいMCSインデックス(例えば、範囲X内のMCSインデックス)が選択されている場合には無線回線品質が良好でないことが多い。そのため、範囲X内のMCSインデックスが選択される状況では、形態#2の方式で応答信号を返した場合にACK/NACK判定に誤りが生じるリスクが高い。
 上記の理由から、第2実施形態では、図6に示すように、範囲X内のMCSインデックスに形態#1を対応付け、範囲X内のMCSインデックスが選択された場合には形態#1を適用してACK/NACK判定の誤りを抑制する。一方、範囲Y内のMCSインデックスには形態#2を対応付け、範囲Y内のMCSインデックスが選択された場合には形態#2を適用して無線リソース利用効率の向上を図る。
 なお、どの範囲を境に形態#1、#2を分けるかは事前に設定されうる。図6の例ではMCSインデックス1、2の境界で形態#1、#2を分けているが、境界をどの位置に設定するかは実施の態様などに応じて適宜変更することが可能である。また、上位レイヤとの間のシグナリングにより境界を制御してもよい。
 また、図6の例では、2つの応答形態を例示したが、例えば、2以上のCBGを含むCBG群についての受信成否を示す応答信号を返す形態#3など、他の形態を追加してもよい。また、他の形態を含む3つの形態を適用するように変形してもよいし、形態#1、#2のいずれかを他の形態に置き換えるように変形してもよい。このような変形についても当然に第2実施形態の技術的範囲に属する。
 再び図5を参照する。動作モード決定部121により決定された上記の応答形態は、データ信号生成部111、制御信号生成部112、ACK/NACK信号受信部118に通知される。データ信号生成部111及び制御信号生成部112は、上記の応答形態を考慮して、ACK/NACK信号受信部118による応答信号の受信結果に応じて再送対象CBGを特定する。他方、ACK/NACK信号受信部118は、上記の応答形態に応じて無線端末102から送信される応答信号の受信制御を行う。
 例えば、形態#1の場合、送信されたCBGの集合全体についての受信成否を示す1つのACK/NACK信号を含む応答信号が無線受信部115及び復調部116を介してACK/NACK信号受信部118へと出力される。一方、形態#2の場合、送信されたCBG数分のACK/NACK信号を含む応答信号が無線受信部115及び復調部116を介してACK/NACK信号受信部118へと出力される。ACK/NACK信号受信部118は、応答信号の各ACK/NACK信号についてACK/NACK判定を行う。
 データ信号生成部111は、ACK/NACK信号受信部118によるACK/NACK判定の結果に基づいて再送対象CBGを含むデータ信号を生成する。形態#1の場合、ACK/NACK信号受信部118でNACKと判定されたとき、データ信号生成部111は、前回送信した全てのCBG(再送対象CBG)を含むデータ信号を生成する。形態#2の場合、データ信号生成部111は、NACKに対応するCBG(再送対象CBG)を含むデータ信号を生成する。
 制御信号生成部112は、応答形態に応じて再送対象CBGを示すBM、及び再送を示すNRを作成し、作成したBM及びNRを含む制御信号を生成する。データ信号及び制御信号は多重部113により多重されて無線送信部114により送信される。
 上記のように、基地局101は、決定したMCSインデックスに応じて応答形態を選択し、応答信号の受信制御及び再送対象CBGの特定などを行う。
 無線端末102は、図7に示すような機能を有する。図7は、第2実施形態に係る無線端末が有する機能の一例を示したブロック図である。
 図7に示すように、無線端末102は、パイロット信号生成部131、無線送信部132、無線受信部133、受信パイロット信号測定部134、無線回線品質評価部135、及びCQI信号生成部136を有する。また、無線端末102は、復調部137、制御信号復号部138、データ信号復号部139、誤り判断部140、動作モード判断部141、及びACK/NACK信号生成部142を有する。
 なお、説明の都合上、送信アンテナTx、受信アンテナRxを別々のアンテナとして記載しているが、送信アンテナTx及び受信アンテナRxの機能を同じアンテナにより実現してもよい。また、送信アンテナTxとして複数本のアンテナが用いられてもよいし、受信アンテナRxとして複数本のアンテナが用いられてもよい。
 パイロット信号生成部131、受信パイロット信号測定部134、無線回線品質評価部135、CQI信号生成部136、制御信号復号部138、データ信号復号部139、誤り判断部140、動作モード判断部141、ACK/NACK信号生成部142の機能は、上述したプロセッサ102aにより実現できる。無線送信部132、無線受信部133、復調部137の機能は、上述した無線機102eなどにより実現できる。
 パイロット信号生成部131は、無線回線品質の測定用に送信するパイロット信号を生成する。パイロット信号生成部131により生成されたパイロット信号は、無線送信部132により送信アンテナTxを介して送信される。他方、無線受信部133は、基地局101から送信されるパイロット信号を受信し、受信パイロット信号測定部134へと出力する。受信パイロット信号測定部134は、受信されたパイロット信号の受信電力やSINRなどの測定を行う。
 無線回線品質評価部135は、受信パイロット信号測定部134による測定結果に基づいて無線回線品質を評価し、評価の結果に基づいてCQIを決定する。CQI信号生成部136は、無線回線品質評価部135により決定されたCQIを示すCQI信号を生成する。CQI信号生成部136により生成されたCQI信号は、無線送信部132により基地局101に送信される。なお、上述したパイロット信号の受信やCQI信号の送信などは、例えば、所定のタイミング(例えば、数十msの間隔)で行われる。
 受信アンテナRxを介して無線受信部133により受信されたデータ信号は、復調部137により復調されてデータ信号復号部139に入力される。データ信号と共に無線受信部133により受信された制御信号は、復調部137により復調されて制御信号復号部138に入力される。誤り判断部140は、データ信号復号部139による復号後のデータ信号に含まれる各CBGの誤り検出を行い、各CBGについて誤りの有無を判断する。
 動作モード判断部141は、記憶部141aにある形態判定用の情報(図6を参照)に基づいて、データ信号の送信に適用されたMCSを示すMCSインデックスから応答形態を判断する。そして、動作モード判断部141は、応答形態に応じた動作モードを設定する。ACK/NACK信号生成部142は、誤り判断部140による判断結果に基づいて、動作モード判断部141による判断結果(形態#1、#2)に応じた応答信号を生成する。
 形態#1の場合、送信された全てのCBGについて誤りがないと判断されたとき、ACK/NACK信号生成部142は、ACKを示す応答信号を生成する。一方、送信されたCBGの少なくとも1つのCBGについて誤りがあると判断されたとき、ACK/NACK信号生成部142は、NACKを示す応答信号を生成する。つまり、形態#1の場合、ACK/NACK信号生成部142は、ACK又はNACKを示す1つのACK/NACK信号を応答信号として生成する。
 形態#2の場合、ACK/NACK信号生成部142は、送信された各CBGについての判断結果を示すACK/NACK信号を生成し、生成したCBG数分のACK/NACK信号を含む応答信号を生成する。ACK/NACK信号生成部142により生成された応答信号は、無線送信部132により基地局101に送信される。
 上記のように、無線端末102は、決定されたMCSインデックスに応じて応答形態を判断し、その応答形態に応じて応答信号の表し方を制御する。形態#1の場合、1つのACK/NACK信号に配分される電力量が、CBG数分のACK/NACK信号を送信する形態#2の場合に比べて大きくなり、基地局101におけるACK/NACK判定の誤りが生じにくくなる。一方、形態#2では、再送対象CBGの数を低減しうるため、無線リソース利用効率の向上に寄与する。
 ここで、応答形態を切り替える仕組みを導入するメリットについて理解を助けるために、以下では、TB方式とCBG方式との違いや、第2実施形態に係る再送制御の仕組みについて、具体例に沿ってさらに説明する。
 図8を参照しながら、TB-based無線データ送信方式(TB方式)とCBG-based無線データ送信方式(CBG方式)との違いについて説明する。図8は、TB-based無線データ送信方式(TB方式)とCBG-based無線データ送信方式(CBG方式)との違いについて説明するための図である。
 なお、図8及び図9の説明において、説明の都合上、TB方式を採用する基地局及び無線端末を基地局91及び無線端末92と表記し、CBG方式を採用する基地局及び無線端末を基地局93及び無線端末94と表記する。
 TB方式では、図8(A)に示すように、基地局91から新規のTBが送信され、無線端末92で受信時にTB全体についての誤り検出が行われる。この例では無線端末92で誤りが検出され、無線端末92が基地局91にNACKを返している。基地局91は、NACKの受信に応じてTBを再送する。再送されたTBが正しく受信され、無線端末92で誤りが検出されなかった場合、無線端末92は基地局91にACKを返す。基地局91は、ACKの受信に応じてTBの送信を完了する。
 一方、CBG方式では、図8(B)に示すように、基地局93から新規のTBが送信され、無線端末94で受信時にCBG単位で誤り検出が行われる。この例ではTBに含まれる4つのCBG#1、#2、#3、#4について誤り検出が行われ、CBG#1、#2に誤りが検出されている。この場合、無線端末94は、CBG#1、#2についてNACKを返し、CBG#3、#4についてACKを返す。
 なお、図8(B)の中で、「N]はNACK、「A」はACKを表し、N又はAが記載された4つのブロックは左から順にCBG#1、#2、#3、#4に対応するACK/NACK信号を表す。説明の都合上、以下でも同様の表記を用いる場合がある。
 基地局93は、CBG#1、#2、#3、#4に対応する4つのACK/NACK信号を含む応答信号を受信し、NACKに対応するCBG#1、#2を特定する。そして、基地局93は、特定したCBG#1、#2を無線端末94に再送する。再送されたCBG#1、#2が正しく受信され、無線端末94で誤りが検出されなかった場合、無線端末94は基地局93にCBG#1、#2についての2つのACKを返す。基地局93は、2つのACKの受信に応じてTBの送信を完了する。
 上記のように、TB方式ではTB全体が再送されていたのに対し、CBG方式では誤りが検出されたCBGだけが再送されている。そのため、TB方式に比べてCBG方式の方が再送されるデータが少なくて済み、無線リソース利用効率の向上に寄与する。
 一方で、ACK/NACKの応答に利用できる電力量が所定の最大電力量以下に制限されている場合、1つのACK/NACK信号に配分できる電力量は、TB方式よりCBG方式の方が少なくなる場合がある。
 TB方式では1つのTBに対して1つのACK/NACK信号が送信されるため、1つのACK/NACK信号の送信に対して最大電力量を使用できる。一方、CBG方式では、新規に送信又は再送されるCBGの数(CBG数)に応じて、1つのACK/NACK信号に配分できる電力量は少なくなる。逆に、1つのACK/NACK信号に配分される電力量をTB方式と同じにすると、CBG方式では、TB方式に比べて総電力量が10・Log(CBG数)[dB]も大きくなる。
 通常、信号の送信電力量が小さくなると信号の受信時に誤りが生じやすくなる。ACK/NACK信号の誤判定は後述する無線リソース利用効率の低下にも繋がる。
 ここで、図9を参照しながら、CBG方式を適用する場合を例に、ACK/NACKの誤判定に伴う無線リソース利用効率の低下について説明する。図9は、ACK/NACKの誤判定に伴う無線リソース利用効率の低下について説明するための図である。
 図9の例では、基地局93から4つのCBG#1、#2、#3、#4を含むTBが送信され、無線端末94でCBG#1、#2、#3、#4のそれぞれについて誤り検出が行われている。この例では、CBG#1、#2に誤りが検出され、CBG#3、#4が受信済の状態になっている。この場合、無線端末94は、CBG#1、#2についてのNACK、CBG#3、#4についてのACKを基地局93に返す。
 基地局93がCBG#1、#2、#3、#4の全てについてACK/NACKを正しく判定できれば図8(B)のように適切な再送制御が行われる。しかし、図9の例では、基地局93でCBG#2についてのNACKが誤ってACKと判定され、CBG#3についてのACKが誤ってNACKと判定されている。このとき、基地局93は誤判定を認識していない。そのため、基地局93は、判定結果のNACKに対応するCBG#1、#3を再送する。
 無線端末94は、再送されたCBG#1、#3を受信し、受信したCBG#1、#3に対する誤り検出を行う。図9の例では、CBG#1、#3について誤りが検出されておらず、無線端末94はCBG#1、#3についてのACKを返す。このとき、無線端末94ではCBG#1、#3、#4が受信済の状態になっているが、CBG#2は未受信の状態である。しかし、基地局93は、無線端末94からCBG#1、#3についてのACKを受けて送信が完了したと判断する。
 この場合、実際にはCBG#2の送信が完了していないため、TBの一部が欠けた状態でTBの送信が終了してしまう。その結果、例えば、上位レイヤで誤りが検出され、同じTBの送信が始めからやり直しとなる。TB送信のやり直しは無線リソースの浪費に繋がり、CBG方式を採用したメリットが損なわれる。そのため、第2実施形態では、ACK/NACKの誤判定が生じるリスクを低減し、無線リソース利用効率の低下を抑制する仕組みを導入する。
 次に、図10を参照しながら、第2実施形態に係る再送制御の仕組みについて説明する。図10は、第2実施形態に係る再送制御の仕組みについて説明するための図である。
 以下、S101からS105のステップに沿って説明を進める。
 (S101)無線端末102は、ULパイロット信号201を基地局101に送信する。なお、ULパイロット信号201は、所定のタイミングでPUSCHなどの物理データチャネルを利用して送信される。また、無線端末102は、DLの無線回線品質を示すDL無線回線品質情報201aをUL送信してもよい。CQIは、DL無線回線品質情報201aの一例である。
 (S102)基地局101は、無線端末102から受信したULパイロット信号201の測定結果に基づいて無線回線品質の判断や、応答形態及びMCSの決定を行う。
 例えば、基地局101は、無線回線品質の判断結果に基づいてMCSインデックスを決定し、決定したMCSインデックスが含まれる範囲を形態判定用の情報(図6を参照)に基づいて特定する。そして、基地局101は、特定した範囲に対応する応答形態を決定する。なお、DL無線回線品質情報201aがUL送信された場合、基地局101は、DL無線回線品質情報201aをさらに考慮して無線回線品質の判断や、応答形態及びMCSの決定を行う。
 (S103)基地局101は、決定したMCSインデックスに対応する変調方式及び符号化率でデータ信号202を変調及び符号化して無線端末102に送信する。また、基地局101は、データ信号202にどのCBGが含まれるかを示すBM203a、及び、新規のデータ送信か、再送かを示すNR203bを含むL1制御信号203を送信する。
 図10の例では、4つのCBG#1、#2、#3、#4を含むデータ信号202が送信されている。この場合、L1制御信号203に含まれるBM203aは、CBG#1、#2、#3、#4に対応する4つのビット値「1」(データ信号202に含まれることを示すビット値)を有する。NR203bは、新規のデータ送信であることを示すフラグ「n」を有する。
 (S104)無線端末102は、L1制御信号203のBM203aからデータ信号202に含まれるCBG#1、#2、#3、#4を認識し、CBG#1、#2、#3、#4についての誤り検出を行う。また、無線端末102は、形態判定用の情報(図6を参照)から、データ信号202の送信に適用されたMCSを示すMCSインデックスが含まれる範囲を特定し、特定した範囲に対応する応答形態を判定する。
 (S105)無線端末102は、S104で行った誤り検出の結果に基づいて、S104で判定した応答形態を有する応答信号204を生成し、生成した応答信号204を基地局101に送信する。
 例えば、形態#1の場合、CBG#1、#2について誤りが検出され、CBG#3、#4について誤りが検出されなかったとき、NACKを示す1つのACK/NACK信号を含む応答信号204が基地局101に送信される。一方、形態#2の場合には、CBG#1、#2についてのNACKを示す2つのACK/NACK信号と、CBG#3、#4についてのACKを示す2つのACK/NACK信号とを含む応答信号204が基地局101に送信される。
 上記のように、形態#1の場合、1つのACK/NACK信号に配分される電力量が、CBG数分のACK/NACK信号を送信する形態#2の場合に比べて大きくなり、基地局101におけるACK/NACK判定の誤りが生じにくくなる。一方、形態#2では、再送対象CBGの数を低減しうるため、無線リソース利用効率の向上に寄与する。
 [動作]
 次に、基地局101及び無線端末102の動作について説明する。
 まず、図11及び図12を参照しながら、無線端末102の動作について説明する。図11は、第2実施形態に係る無線端末の動作を示した第1のフロー図である。図12は、第2実施形態に係る無線端末の動作を示した第2のフロー図である。
 (S111)無線受信部133は、受信アンテナRxを介してデータ信号を受信する。なお、新規のデータ送信である場合、無線受信部133によりTB全体を含むデータ信号が受信される。一方、再送である場合、TBに含まれるCBGのうちNACKに対応するCBGを含むデータ信号が無線受信部133により受信される。
 また、無線受信部133は、データ信号と共に制御信号を受信する。この制御信号には、例えば、TBに含まれるCBGのうち、どのCBGがデータ信号に含まれるかを示すBitmap型フラグ(BM)、及び、新規のデータ送信であるか、再送であるかを示す再送判定用フラグ(NR)が含まれる。
 無線受信部133により受信されたデータ信号及び制御信号は復調部137により復調され、データ信号はデータ信号復号部139へと出力され、制御信号は制御信号復号部138へと出力される。
 (S112)動作モード判断部141は、データ信号の送信に適用されるMCSを示すMCSインデックスが範囲X(図6を参照)内であるか否かを判定する。なお、MCSインデックスは、例えば、DCIの一部としてPDCCHにより事前に通知される。
 MCSインデックスが範囲X内である場合(形態#1が適用される場合)、処理はS113へと進む。一方、MCSインデックスが範囲X外(範囲Y内)である場合(形態#2が適用される場合)、処理はS115へと進む。
 (S113)データ信号復号部139は、制御信号復号部138による制御信号についての復号結果(BM、NR)に基づいて新規のデータ送信であるか再送であるかを認識すると共に、データ信号に含まれるCBGを特定する。
 また、データ信号復号部139は、データ信号の各CBGについての復号を行い、復元された各CBGを誤り判断部140へと出力する。誤り判断部140は、CBG毎に付与されるCRCを利用して各CBGの誤り検出を行い、各CBGについて誤りの有無を判断する。
 (S114)ACK/NACK信号生成部142は、誤り判断部140による判断の結果に基づいて各CBGについてのACK/NACK信号を生成し、各CBGについてのACK/NACK信号を含む応答信号を基地局101に送信する。
 例えば、CBG#1、#2に誤りが検出された場合、ACK/NACK信号生成部142は、CBG#1、#2のそれぞれについてACKを示すACK/NACK信号を生成する。また、CBG#3、#4に誤りが検出されなかった場合、ACK/NACK信号生成部142は、CBG#3、#4のそれぞれについてNACKを示すACK/NACK信号を生成する。そして、ACK/NACK信号生成部142は、生成した4つのACK/NACK信号を含む応答信号を送信する。
 S114の処理が完了すると、処理はS111へと進む。
 (S115)データ信号復号部139は、制御信号復号部138による制御信号についての復号結果(BM、NR)に基づいて新規のデータ送信であるか再送であるかを認識すると共に、データ信号に含まれるCBGを特定する。
 また、データ信号復号部139は、データ信号の各CBGについての復号を行い、復元された各CBGを誤り判断部140へと出力する。誤り判断部140は、CBG毎に付与されるCRCを利用して各CBGの誤り検出を行い、各CBGについて誤りの有無を判断する。
 (S116)動作モード判断部141は、誤り判断部140による誤り検出の結果に基づいて、データ信号に含まれる全CBGの受信が成功したか否か(全CBGについて誤りがないと判断されたか否か)を判定する。全CBGの受信が成功した場合、処理はS117へと進む。一方、少なくとも1つのCBGについて受信が失敗した場合、処理はS118へと進む。
 (S117)動作モード判断部141は、パラメータKを成功(ACK)に設定する。S117の処理が完了すると、処理はS119へと進む。
 (S118)動作モード判断部141は、パラメータKを失敗(NACK)に設定する。S118の処理が完了すると、処理はS119へと進む。
 (S119)ACK/NACK信号生成部142は、動作モード判断部141により設定されたパラメータKの内容を有する応答信号を生成する。
 S119で生成される応答信号は、送信された全CBGの受信が成功したか(ACK)、或いは、少なくとも1つのCBGの受信が失敗したか(NACK)を示す1つのACK/NACK信号で構成される。この応答信号の形態(形態#1)であれば、1つのACK/NACK信号に対して許容可能な最大電力量を配分できるため、電力不足によりACK/NACK判定に誤りが生じるリスクを抑えることができる。
 (S120)無線送信部132は、ACK/NACK信号生成部142により生成された応答信号を基地局101に送信する。S120の処理が完了すると、処理はS111へと進む。
 なお、図11及び図12に示した一連の処理は、無線端末102の電源断やユーザによる終了操作などに応じて終了する。
 次に、図13を参照しながら、基地局101の動作について説明する。図13は、第2実施形態に係る基地局の動作を示したフロー図である。
 (S131)無線端末102に送信する新規データの発生に応じて、データ信号生成部111は、データ信号(TB)を生成する。
 (S132)制御信号生成部112は、データ信号生成部111により生成されたデータ信号に対応するBM、及び新規データの送信であることを示すNRを作成する。そして、制御信号生成部112は、作成したBM及びNRを含む制御信号を生成する。多重部113及び無線送信部114は、制御信号生成部112により生成された制御信号と、データ信号生成部111により生成されたデータ信号とを多重して送信する。
 (S133)動作モード決定部121は、データ信号の送信に適用されるMCSを示すMCSインデックスが範囲X(図6を参照)内であるか否かを判定する。なお、MCSインデックスは、MCS決定部122により事前に決定され、例えば、DCIの一部として、PDCCHにより無線端末102に通知される。
 MCSインデックスが範囲X内である場合(形態#1が適用される場合)、処理はS134へと進む。一方、MCSインデックスが範囲X外(範囲Y内)である場合(形態#2が適用される場合)、処理はS137へと進む。
 (S134)無線受信部115は、受信アンテナRxを介して応答信号を受信する。
 S134で無線受信部115により受信される応答信号には、S132で送信されたデータ信号に含まれる各CBGについての受信成否を示すACK/NACK信号が含まれる。つまり、CBG数分のACK/NACK信号を含む応答信号が受信される。無線受信部115により受信された応答信号は、復調部116により復調されてACK/NACK信号受信部118へと出力される。
 (S135)ACK/NACK信号受信部118は、受信された応答信号に含まれるACK/NACK信号の内容から各CBGについてのACK/NACK判定を行う。そして、ACK/NACK信号受信部118は、応答信号の中にNACKがあるか否か(NACKに対応するCBGがあるか否か)を判定する。NACKがある場合、処理はS136へと進む。一方、NACKが全くない場合、処理はS131へと進む。なお、NACKが全くない場合、基地局101は、S131で発生したデータの送信を完了する。
 (S136)データ信号生成部111は、NACKに対応するCBGを再送対象CBGに設定し、再送対象CBGを含むデータ信号を生成する。制御信号生成部112は、再送対象CBGがデータ信号に含まれることを示すBM、及び再送であることを示すNRを含む制御信号を生成する。多重部113及び無線送信部114は、制御信号生成部112により生成された制御信号と、データ信号生成部111により生成されたデータ信号とを多重して送信する。S136の処理が完了すると、処理はS133へと進む。
 (S137)無線受信部115は、受信アンテナRxを介して応答信号を受信する。
 S137で無線受信部115により受信される応答信号には、S132で送信されたデータ信号に含まれる全CBGの受信が成功したか否かを示すACK/NACK信号が含まれる。つまり、1つのACK/NACK信号を含む応答信号が受信される。無線受信部115により受信された応答信号は、復調部116により復調されてACK/NACK信号受信部118へと出力される。
 (S138)ACK/NACK信号受信部118は、受信された応答信号に含まれるACK/NACK信号の内容からACK/NACK判定を行い、NACKか否かを判定する。NACKである場合、処理はS139へと進む。一方、ACKである場合、処理はS131へと進む。なお、ACKである場合、基地局101は、S131で発生したデータの送信を完了する。
 (S139)データ信号生成部111は、前回送信した全CBGを再送対象CBGに設定し、再送対象CBGを含むデータ信号を生成する。制御信号生成部112は、再送対象CBGがデータ信号に含まれることを示すBM、及び再送であることを示すNRを含む制御信号を生成する。多重部113及び無線送信部114は、制御信号生成部112により生成された制御信号と、データ信号生成部111により生成されたデータ信号とを多重して送信する。S139の処理が完了すると、処理はS133へと進む。
 なお、図13に示した一連の処理は、基地局101の電源断やユーザによる終了操作などに応じて終了する。
 [変形例]
 ここで、図14を参照しながら、第2実施形態の一変形例について説明する。図14は、第2実施形態の一変形例について説明するための図である。
 本変形例では、無線端末102でMCSから応答形態を判定するのに代えて、基地局101で決定した応答形態を示す応答指示フラグを無線端末102に送信し、応答指示フラグが示す応答形態で無線端末102が応答信号を送信する仕組みを導入する。以下、この仕組みについて、さらに説明する。
 (S201)無線端末102は、ULパイロット信号201を基地局101に送信する。なお、ULパイロット信号201は、所定のタイミングでPUSCHなどの物理データチャネルを利用して送信される。また、無線端末102は、DLの無線回線品質を示すDL無線回線品質情報201aをUL送信してもよい。CQIは、DL無線回線品質情報201aの一例である。
 (S202)基地局101は、無線端末102から受信したULパイロット信号201の測定結果に基づいて無線回線品質の判断や、応答形態及びMCSの決定を行う。
 例えば、基地局101は、無線回線品質の判断結果に基づいてMCSインデックスを決定し、決定したMCSインデックスが含まれる範囲を形態判定用の情報(図6を参照)に基づいて特定する。そして、基地局101は、特定した範囲に対応する応答形態を決定する。なお、DL無線回線品質情報201aがUL送信された場合、基地局101は、DL無線回線品質情報201aをさらに考慮して無線回線品質の判断や、応答形態及びMCSの決定を行う。
 (S203)基地局101は、決定したMCSインデックスに対応する変調方式及び符号化率でデータ信号202を変調及び符号化して無線端末102に送信する。また、基地局101は、データ信号202にどのCBGが含まれるかを示すBM205a、新規のデータ送信か、再送かを示すNR205b、及び、応答形態を示す応答指示フラグ205cを含むL1制御信号205を送信する。
 図14の例では、4つのCBG#1、#2、#3、#4を含むデータ信号202が送信されている。この場合、L1制御信号205に含まれるBM205aは、CBG#1、#2、#3、#4に対応する4つのビット値「1」(データ信号202に含まれることを示すビット値)を有する。NR205bは、新規のデータ送信であることを示すフラグ「n」を有する。応答指示フラグ205cは、形態#1を示すフラグ「X」(範囲Xに対応する応答形態)を有する。
 (S204)無線端末102は、L1制御信号205のBM205aからデータ信号202に含まれるCBG#1、#2、#3、#4を認識し、CBG#1、#2、#3、#4についての誤り検出を行う。また、無線端末102は、応答指示フラグ205cに基づいて応答形態を判定する。
 (S205)無線端末102は、S204で行った誤り検出の結果に基づいて、S204で判定した応答形態を有する応答信号204を生成し、生成した応答信号204を基地局101に送信する。
 例えば、形態#1の場合、CBG#1、#2について誤りが検出され、CBG#3、#4について誤りが検出されなかったとき、NACKを示す1つのACK/NACK信号を含む応答信号204が基地局101に送信される。一方、形態#2の場合には、CBG#1、#2についてのNACKを示す2つのACK/NACK信号と、CBG#3、#4についてのACKを示す2つのACK/NACK信号とを含む応答信号204が基地局101に送信される。
 本変形例においても、形態#1の場合、1つのACK/NACK信号に配分される電力量が、CBG数分のACK/NACK信号を送信する形態#2の場合に比べて大きくなり、基地局101におけるACK/NACK判定の誤りが生じにくくなる。一方、形態#2では、再送対象CBGの数を低減しうるため、無線リソース利用効率の向上に寄与する。また、応答指示フラグ205cの採用により、無線端末102による応答形態の判定を省略することができ、無線端末102の負担を低減できる。
 さて、上記の説明においては、説明の都合上、基地局と無線端末との間の通信に第2実施形態の仕組みを適用する方法について述べたが、中継局や他の無線機器と、基地局や無線端末との間の通信に適用することも可能である。例えば、基地局と中継局との間の通信に適用する場合、上述した無線端末の機能が中継局に導入される。また、中継局と無線端末との間の通信に適用する場合、上述した基地局の機能が中継局に導入される。つまり、無線通信システム100の構成要素が変更されても第2実施形態の仕組みを適用できる。このような変形についても当然に第2実施形態の技術的範囲に属する。
 以上、第2実施形態について説明した。
 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成及び応用例に限定されるものではなく、対応するすべての変形例及び均等物は、添付の請求項及びその均等物による本発明の範囲とみなされる。
 10 無線通信システム
 11 第1の無線装置
 11a、12a アンテナ
 11b、12c 受信制御部
 11c、12b 送信制御部
 12 第2の無線装置
 21 第1の信号
 22 第2の信号
 23 第1の情報
 24 第2の情報

Claims (7)

  1.  第1の無線装置及び第2の無線装置を有する無線通信システムで用いる無線通信方法であって、
     前記第1の無線装置が、複数の部分で構成される第1の信号と、前記第1の信号についての第1の情報が含まれる第2の信号とを前記第2の無線装置から受信し、受信結果の表し方が異なる複数の態様の中から、前記第2の信号に含まれる前記第1の情報に基づいて決定される態様を用いて、前記第1の信号についての受信結果を示す第2の情報を前記第2の無線装置に送信する
     ことを特徴とする、無線通信方法。
  2.  前記第1の情報は、前記第2の無線装置により前記第1の信号に適用される処理についての情報である
     ことを特徴とする、請求項1に記載の無線通信方法。
  3.  前記第1の情報は、前記第1の信号に適用されている変調方式と符号化率との組み合わせで決まる数値である
     ことを特徴とする、請求項1に記載の無線通信方法。
  4.  前記数値が事前に指定された値よりも大きい場合、前記第2の情報の送信に用いる態様は、前記第1の信号を構成する前記複数の部分のそれぞれに対する受信結果を表す第1の態様に決定され、
     前記数値が前記事前に指定された値よりも小さい場合、前記第2の情報の送信に用いる様態は、前記第1の信号全体についての受信結果を表す第2の態様に決定される
     ことを特徴とする、請求項3に記載の無線通信方法。
  5.  第1の無線装置及び第2の無線装置を有する無線通信システムであって、
     前記第1の無線装置が、複数の部分で構成される第1の信号と、前記第1の信号についての第1の情報が含まれる第2の信号とを前記第2の無線装置から受信し、受信結果の表し方が異なる複数の態様の中から、前記第2の信号に含まれる前記第1の情報に基づいて決定される態様を用いて、前記第1の信号についての受信結果を示す第2の情報を前記第2の無線装置に送信する
     ことを特徴とする、無線通信システム。
  6.  基地局と通信する無線端末であって、
     複数の部分で構成される第1の信号と、前記第1の信号についての第1の情報が含まれる第2の信号とを前記基地局から受信する受信部と、
     受信結果の表し方が異なる複数の態様の中から、前記第2の信号に含まれる前記第1の情報に基づいて決定される態様を用いて、前記第1の信号についての受信結果を示す第2の情報を前記基地局に送信する送信部と
     を有することを特徴とする、無線端末。
  7.  無線端末と通信する基地局であって、
     複数の部分で構成される第1の信号と、前記第1の信号についての第1の情報が含まれる第2の信号とを前記無線端末に送信する送信部と、
     受信結果の表し方が異なる複数の態様の中から、前記第2の信号に含まれる前記第1の情報に基づいて決定される態様を用いて送信される、前記第1の信号についての受信結果を示す第2の情報を前記無線端末から受信する受信部と
     を有することを特徴とする、基地局。
PCT/JP2017/034972 2017-09-27 2017-09-27 無線通信方法、無線通信システム、無線端末、及び基地局 WO2019064378A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/034972 WO2019064378A1 (ja) 2017-09-27 2017-09-27 無線通信方法、無線通信システム、無線端末、及び基地局
JP2019545449A JPWO2019064378A1 (ja) 2017-09-27 2017-09-27 無線通信方法、無線通信システム、無線端末、及び基地局
US16/786,018 US20200186294A1 (en) 2017-09-27 2020-02-10 Wireless communication method, wireless communication system, wireless terminal, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/034972 WO2019064378A1 (ja) 2017-09-27 2017-09-27 無線通信方法、無線通信システム、無線端末、及び基地局

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/786,018 Continuation US20200186294A1 (en) 2017-09-27 2020-02-10 Wireless communication method, wireless communication system, wireless terminal, and base station

Publications (1)

Publication Number Publication Date
WO2019064378A1 true WO2019064378A1 (ja) 2019-04-04

Family

ID=65902728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034972 WO2019064378A1 (ja) 2017-09-27 2017-09-27 無線通信方法、無線通信システム、無線端末、及び基地局

Country Status (3)

Country Link
US (1) US20200186294A1 (ja)
JP (1) JPWO2019064378A1 (ja)
WO (1) WO2019064378A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11165482B1 (en) * 2020-08-20 2021-11-02 Nxp Usa, Inc. Efficient engine and algorithm for control and data multiplexing/demultiplexing in 5G NR devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124588A (ja) * 2010-12-06 2012-06-28 Ntt Docomo Inc 移動通信システムにおける基地局及びリソース割当方法
US20160233999A1 (en) * 2015-02-05 2016-08-11 Qualcomm Incorporated Efficient ack/nack transmission

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093449A (ja) * 2008-10-06 2010-04-22 Sharp Corp 送信装置、受信装置、通信方法および通信システム
JP5212539B2 (ja) * 2009-03-25 2013-06-19 富士通株式会社 無線通信システム、移動局装置、基地局装置、及び無線通信システムにおける無線通信方法
JP5533882B2 (ja) * 2009-11-24 2014-06-25 富士通株式会社 受信機、受信方法及び受信制御プログラム
US10033505B2 (en) * 2014-07-31 2018-07-24 Qualcomm Incorporated Transmission of uplink control channels over an unlicensed radio frequency spectrum band

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124588A (ja) * 2010-12-06 2012-06-28 Ntt Docomo Inc 移動通信システムにおける基地局及びリソース割当方法
US20160233999A1 (en) * 2015-02-05 2016-08-11 Qualcomm Incorporated Efficient ack/nack transmission

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Considerations on CBG based retransmission for NR", 3GPP TSG RAN NR#3 R1-1715887, 12 September 2017 (2017-09-12), XP051329291 *

Also Published As

Publication number Publication date
US20200186294A1 (en) 2020-06-11
JPWO2019064378A1 (ja) 2020-09-03

Similar Documents

Publication Publication Date Title
US11784777B2 (en) Link adaptation for coverage enhancements and support of different service types
EP3270534B1 (en) Method and apparatus for allowing different services to coexist in wireless cellular communication system
CN110235398B (zh) 接收和执行部分重传的方法以及相关无线设备和网络节点
US9743360B2 (en) System and method for signaling control information in a mobile communication network
CN111726215B (zh) 上行链路控制信息在载波聚合中的传输方法和装置
US8437705B2 (en) Resource allocation and encoding for channel quality indicator (CQI) and CQI collided with uplink acknowledgment/negative acknowledgment
KR101384078B1 (ko) 무선통신 시스템에서 애크/내크 채널 자원을 할당하고시그널링하는 방법 및 장치
US20190342865A1 (en) Method and device for setting plurality of dmrs structures in wireless cellular communication system
RU2573230C2 (ru) Устройство и способ передачи состояния приема данных с использованием обратной связи
EP3304939B1 (en) Optimized mcs selection for machine type communication
KR101681148B1 (ko) 무선통신 시스템 및 그의 harq 운용 방법
US9806870B2 (en) Methods and devices for providing feedback information
CN107852281B (zh) 基带处理器、基站、用户设备、及其方法
EP2553982B1 (en) System and method for signaling control information in a mobile communication network
US11139923B2 (en) Code block groups for retransmissions in a wireless communication system
CN111490858A (zh) 一种卫星通信的自适应传输方法、装置及系统
KR20150136132A (ko) Fdd 셀과 tdd 셀의 집성
US11611940B2 (en) Method and apparatus for uplink power control in wireless cellular communication system
EP3449588B1 (en) Wireless device specific maximum code rate limit adjustment
CN110351025A (zh) 信息反馈方法、装置和系统
EP3355477B1 (en) Information sending method and apparatus with a crc code adapted to the length of control information
WO2019064378A1 (ja) 無線通信方法、無線通信システム、無線端末、及び基地局
CN112889235B (zh) Harq-ack码本的发送方法、接收方法及装置
US11108527B2 (en) CQI codepoint reinterpretation
KR20180064853A (ko) 무선 셀룰라 통신 시스템에서 하향링크 제어신호 복호 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927037

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545449

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927037

Country of ref document: EP

Kind code of ref document: A1