WO2014146211A2 - Amélioration de la transmittance de rayons ultraviolets dans des milieux gazeux - Google Patents

Amélioration de la transmittance de rayons ultraviolets dans des milieux gazeux Download PDF

Info

Publication number
WO2014146211A2
WO2014146211A2 PCT/CL2014/000009 CL2014000009W WO2014146211A2 WO 2014146211 A2 WO2014146211 A2 WO 2014146211A2 CL 2014000009 W CL2014000009 W CL 2014000009W WO 2014146211 A2 WO2014146211 A2 WO 2014146211A2
Authority
WO
WIPO (PCT)
Prior art keywords
lamp
gas
air
light
transmittance
Prior art date
Application number
PCT/CL2014/000009
Other languages
English (en)
Spanish (es)
Other versions
WO2014146211A3 (fr
Inventor
Rodrigo Prado Lavin
Original Assignee
Rodrigo Prado Lavin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rodrigo Prado Lavin filed Critical Rodrigo Prado Lavin
Publication of WO2014146211A2 publication Critical patent/WO2014146211A2/fr
Publication of WO2014146211A3 publication Critical patent/WO2014146211A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/34Double-wall vessels or containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/40Devices for influencing the colour or wavelength of the light by light filters; by coloured coatings in or on the envelope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3223Single elongated lamp located on the central axis of a turbular reactor

Definitions

  • UV light is part of the light emitted by the sun, its wavelength is shorter than that of the visible spectrum and is between 100 and 400 nm.
  • UV - A Ultraviolet light is classified, according to its wavelength, into UV - A, UV - B and UV - C.
  • UV - A radiation has the longest wavelength, between 320 and 400 nm. It is the least harmful to living beings, however due to its high intensity and depending on the exposure time, it can cause skin damage. 99% of the ultraviolet rays that reach the Earth's surface from the sun are of the UV - A type.
  • UV-B radiation has an average wavelength between 290 to 320 nm. It is partially removed by ozone, and because it is very energetic, it produces the most biological damage. On the other hand, it is very sensitive to changes in ozone concentration and weather conditions.
  • UV - C radiation has the shortest wavelength, from 200 to 290 nm. It is completely blocked at about 35 km altitude by stratospheric ozone. It is the most harmful type of UV light, although it does not exist naturally. Artificially, it is produced by lamps inside which there are mercury particles. A voltaic arc travels through the inert gas vaporizing the mercury, emitting UV-C radiation. It is used both for the treatment of water and air, being that the UV radiation of 253.7 nm is the one with the highest germicidal capacity.
  • UV light lamp acts as a source of emission on the surface or medium to be disinfected.
  • UV radiation with germicidal properties with a wavelength of 254 nm acts on the DNA of microorganisms, modifying it and preventing them from reproducing.
  • the efficiency of the disinfection process depends on the following factors: • Temperature: The germicidal UV-C light emission efficiency of the lamp increases with temperature, obtaining the best results at 40 ° C, as shown in Figure 1: Efficiency of UV light emission - Cen function of temperature
  • Turbidity Some organic and inorganic substances such as sediments, dust, organic remains, tannins, chemicals such as iron (Fe), etc. decrease the transmittance of UV light in water. This forces the water to be filtered so that it is free of interference and in such a way to obtain UV light everywhere without interactions with these elements.
  • Suspended solids Suspended particles create shadows that protect microorganisms, reducing disinfection efficiency.
  • EP 0275122 describes a box, called a semiconductor, that allows the transmission of said rays to a card with electronic circuits - commonly called chip.
  • the patents mentioned below use physical support to improve transmittance:
  • EP 1353199 mentions the use of optical fiber to transmit the ultraviolet ray and thereby prevent its deterioration.
  • WO 9807064 also mentions the use of optical fiber in which electrodes that produce UV radiation are inserted.
  • WO 2004059694 mentions the use of a coaxial ray guide
  • UV to optimize a water sterilization process.
  • WO 2008060465 refers to a film to which a gel is added to improve the transmission of UV rays.
  • WO 9836324 mentions the use of a silicone polymer membrane to improve the transmittance of UV rays.
  • WO 2008062923 proposes to increase the installed power of UV generation to obtain better results. Scope
  • the disinfection by means of ultraviolet rays is a process of physical disinfection where a UV light lamp acts as an emitting source on the surface or medium to be disinfected and the germicidal UV radiation (254 nm) coming from the lamp acts on the DNA of the microorganisms, modifying it and preventing them from reproducing.
  • the objective of the method described in this Patent Application is to prevent the deterioration of ultraviolet rays when they pass through gaseous media, in particular the air. In this way it is possible to increase the efficiency of the equipment used for disinfection and reduce energy consumption.
  • the method described in this Application has not been used so far. Unlike what is described in other patents, in this case the solution of the problem has focused on the characteristics of the medium that pass through the UV rays and its influence on the transmittance.
  • the transmittance measuring equipment was filled with each of the gases indicated below.
  • the surprising effect that was observed is that there are important variations according to the gaseous composition that is around the UV emitting lamp. This fact has not been taken into account until now in UV transmission processes.
  • Transmittance tests were carried out with 4 helium, nitrogen, argon and carbon dioxide (He, N 2 , Ar, C0 2 ) gases in a Gas laboratory based on the hypothesis that ultraviolet light at 254nm is transmitted more efficiently in a pure gaseous medium. As a surprising result, it was obtained that, in pure gases, UV light is transmitted more efficiently than in air.
  • Figure 1 shows: Efficiency of UV-C light emission as a function of temperature.
  • Figure 2 shows: UV - C intensity versus distance to the lamp axis.
  • Figure 3 shows a disinfection device
  • Figure 4 shows a transmittance measuring device in perspective
  • FIG. 5 details the operation of the measuring equipment
  • Figure 6 shows the filling of the quartz tube tube
  • Figure 7 shows the measurement of the intensity of UV light on the outer wall of the quartz tube.
  • Figure 8 shows the graph of 15 Watts Lamp
  • Figure 9 shows the graph Intensity of UV Light in different Gaseous media.
  • Figure 10 shows the UV intensity graph on a quartz wall with different gases inside.
  • Water disinfection equipment by means of UV rays consists of 4 components as shown in figure 3: the housing (1), the UV emitting lamp (2) surrounded by a quartz jacket (3) and a electrical board (4). Water circulates inside the shell around the quartz tube. The electrical board allows you to control the intensity of the lightning emission. To apply this technology in water disinfection, the UV generator lamp is protected from water with a quartz jacket to prevent electrical failures.
  • UV light is not transmitted in an efficient way when the medium it passes through is air. This is the problem to solve, which all UV disinfection equipment has since the interior space of the quartz that protects the lamps is full of air, which causes it to lose intensity even before leaving the protective quartz tube.
  • the UV radiation with a wavelength of 254 nm was measured in pure gaseous media: helium - nitrogen - argon and carbon dioxide (He, N 2 , Ar, C0 2 ) in a specifically designed equipment for this purpose.
  • the equipment used for such tests is viewed in perspective in Figure 4 and its operation is expressed schematically in Figure 5.
  • the UV light emitting lamp (11) is inside the quartz tube (10), connected to the dashboard electric (5).
  • a gas can be blown through a hole that is in its lower part (8) and this can exit through another hole (9) located in the upper part.
  • the UV rays emitted (12) by the lamp pass through the gaseous medium and its intensity is measured by a sensor (7) connected to a radiometer (6).
  • the distance between the quartz and the sensor is 26.2 cm. The procedure used in these transmittance tests is described below:
  • the same equipment was used but with a variant: the sensor (7) was placed directly on the quartz tube (11).
  • Figure 6 shows the filling of the quartz tube (11) by inserting a hose (10) through which the gas is blown into the tube that displaces the air contained therein.
  • the surprising effect is that the transmissibility of ultraviolet waves depends on the gas they pass through.
  • the gases with which the best results were obtained were helium (He) and carbon dioxide (Q3 ⁇ 4) where there was an increase in transmittance of more than 30% in both cases.
  • Radiometer measurements outside transmittance measuring equipment are displayed in Figure 9: Graph) Intensity of UV Light in different Gaseous media

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physical Water Treatments (AREA)

Abstract

L'invention concerne un procédé pour améliorer la transmission des rayons ultraviolets émis par une lampe insérée dans un tube de quartz, utilisée dans un équipement de désinfection d'eau au moyen de la lumière UV. Ce procédé a pour objet de prévenir la détérioration des rayons ultraviolets lorsqu'ils traversent un milieu gazeux, en particulier l'air. Il en résulte une plus grande efficacité de l'équipement utilisé pour désinfecter, outre une réduction de la consommation d'énergie. Le procédé consiste en premier à enlever l'air contenu dans l'espace du tube de quartz qui entoure la lampe émettrice de rayons ultraviolets, puis à introduire un autre gaz.
PCT/CL2014/000009 2013-03-19 2014-03-14 Amélioration de la transmittance de rayons ultraviolets dans des milieux gazeux WO2014146211A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2013000743A CL2013000743A1 (es) 2013-03-19 2013-03-19 Metodo para mejorar la transmision en un 5% o mas, de rayos ultravioletas en torno a una lampara de desinfeccion de cuarzo, que comprende la utilizacion de cualquier gas, diferente al aire ambiente, en el espacio interior del cuarzo que cubre la lampara uv.
CL743-2013 2013-03-19

Publications (2)

Publication Number Publication Date
WO2014146211A2 true WO2014146211A2 (fr) 2014-09-25
WO2014146211A3 WO2014146211A3 (fr) 2014-12-31

Family

ID=50548990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2014/000009 WO2014146211A2 (fr) 2013-03-19 2014-03-14 Amélioration de la transmittance de rayons ultraviolets dans des milieux gazeux

Country Status (2)

Country Link
CL (1) CL2013000743A1 (fr)
WO (1) WO2014146211A2 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0275122A2 (fr) 1987-01-16 1988-07-20 Sumitomo Electric Industries Limited Boîtier transparent aux rayons ultraviolets pour des circuits intégrés à semi-conducteurs
WO1998007064A1 (fr) 1996-08-12 1998-02-19 Toyota Jidosha Kabushiki Kaisha Element grille de diffraction, selection des longueurs d'ondes lumimeuses au moyen de cet element, et systeme de transmission de signaux optiques
WO1998036324A1 (fr) 1997-02-13 1998-08-20 Mitsui Chemicals, Inc. Membrane pelliculaire pour rayons ultraviolets et pellicule
EP1353199A1 (fr) 2001-01-16 2003-10-15 Japan Science and Technology Corporation Fibre optique destinee a la transmission de rayons ultraviolets, sonde a fibre optique et procede de fabrication de la fibre optique et de la sonde a fibre optique
WO2004059694A1 (fr) 2002-12-25 2004-07-15 Zakrytoe Akzionernoe Obschestvo Nauchno-Proisvodstvenny Tsentr 'soliton-Ntt' Source de rayons ultraviolets a decharges gazeuses
WO2008060465A1 (fr) 2006-11-10 2008-05-22 Advanced Micro Devices, Inc. Pellicule euv avec transmission de lumière dans l'ultraviolet extrême (euv) améliorée
WO2008062923A1 (fr) 2006-11-24 2008-05-29 Green Environmental Technology Co., Ltd. Matériel de traitement de l'eau équipé d'une lampe aux ultraviolets pulsés

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999036932A1 (fr) * 1997-12-29 1999-07-22 Povl Kass Lampe, tube de lampe et procede de reglage de la lampe
DE102005017505A1 (de) * 2005-04-15 2006-10-19 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Reflektor-Hochdruckentladungslampe
WO2007067654A2 (fr) * 2005-12-07 2007-06-14 Lightstream Technologies Procede et appareil permettant de refroidir des lampes flash haute puissance
CN102354653B (zh) * 2011-07-11 2014-03-12 芦建锋 提高套管式紫外灯185nm紫外线透过率的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0275122A2 (fr) 1987-01-16 1988-07-20 Sumitomo Electric Industries Limited Boîtier transparent aux rayons ultraviolets pour des circuits intégrés à semi-conducteurs
WO1998007064A1 (fr) 1996-08-12 1998-02-19 Toyota Jidosha Kabushiki Kaisha Element grille de diffraction, selection des longueurs d'ondes lumimeuses au moyen de cet element, et systeme de transmission de signaux optiques
WO1998036324A1 (fr) 1997-02-13 1998-08-20 Mitsui Chemicals, Inc. Membrane pelliculaire pour rayons ultraviolets et pellicule
EP1353199A1 (fr) 2001-01-16 2003-10-15 Japan Science and Technology Corporation Fibre optique destinee a la transmission de rayons ultraviolets, sonde a fibre optique et procede de fabrication de la fibre optique et de la sonde a fibre optique
WO2004059694A1 (fr) 2002-12-25 2004-07-15 Zakrytoe Akzionernoe Obschestvo Nauchno-Proisvodstvenny Tsentr 'soliton-Ntt' Source de rayons ultraviolets a decharges gazeuses
WO2008060465A1 (fr) 2006-11-10 2008-05-22 Advanced Micro Devices, Inc. Pellicule euv avec transmission de lumière dans l'ultraviolet extrême (euv) améliorée
WO2008062923A1 (fr) 2006-11-24 2008-05-29 Green Environmental Technology Co., Ltd. Matériel de traitement de l'eau équipé d'une lampe aux ultraviolets pulsés

Also Published As

Publication number Publication date
CL2013000743A1 (es) 2013-10-04
WO2014146211A3 (fr) 2014-12-31

Similar Documents

Publication Publication Date Title
US10910210B2 (en) Ultraviolet sterilizer
US6514405B1 (en) Portable water purifier with ultraviolet light source
CA2762560C (fr) Installation de decontamination de l'air
US7013742B2 (en) Accelerated artificial weathering test systems
JP5387537B2 (ja) デンタルインプラント用光照射装置
ES2613819T3 (es) Sistema esterilizador
JP6664402B2 (ja) レーザ維持プラズマ光源の放射性輻射を阻害するシステム及び方法
WO2015059336A1 (fr) Dispositif de purification d'air par émission de radicaux hydroxyle
KR20150028153A (ko) Uv led를 이용한 휴대용 살균 장치
JP5015651B2 (ja) 薬剤容器及びガス供給装置
JP2014102190A (ja) 紫外線ランプの劣化検出装置及び方法
WO2014146211A2 (fr) Amélioration de la transmittance de rayons ultraviolets dans des milieux gazeux
CN212880333U (zh) 深紫外杀菌消毒准分子灯
JP2010145461A (ja) 燃焼の二酸化炭素放出と植物光合成による二酸化炭素吸収の実験装置
JP5292598B2 (ja) 低圧水銀ランプ及び、殺菌または消毒方法
WO2017082380A1 (fr) Procédé de désodorisation et dispositif de désodorisation
JP2012176161A (ja) インプラント用紫外線照射装置
JP4864221B2 (ja) 紫外線浄化装置
RU135917U1 (ru) Бактерицидный облучатель
ES2719141T3 (es) Dispositivo y método de producción de radiación
KR200165603Y1 (ko) 자외선 램프를 이용한 오존발생장치
KR200418654Y1 (ko) 플라즈마 방전소자
JP2016064340A (ja) 水処理装置
US20120119119A1 (en) Uv-converter, uv lamp arrangement with the uv-converter, and a lighting unit comprising the uv lamp arrangement
RU225358U1 (ru) Открытый бактерицидный обеззараживатель для санитарно-бытовых помещений железнодорожного транспорта

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 14719197

Country of ref document: EP

Kind code of ref document: A2