WO2014142072A1 - ワイヤレス電力供給システム、およびワイヤレス電力供給装置 - Google Patents

ワイヤレス電力供給システム、およびワイヤレス電力供給装置 Download PDF

Info

Publication number
WO2014142072A1
WO2014142072A1 PCT/JP2014/056176 JP2014056176W WO2014142072A1 WO 2014142072 A1 WO2014142072 A1 WO 2014142072A1 JP 2014056176 W JP2014056176 W JP 2014056176W WO 2014142072 A1 WO2014142072 A1 WO 2014142072A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
frequency
power supply
mixed wave
receiving device
Prior art date
Application number
PCT/JP2014/056176
Other languages
English (en)
French (fr)
Inventor
泰秋 民野
孝二 時田
竜一 光本
小沼 博
西岡 綾子
光博 今泉
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2014530013A priority Critical patent/JP5651810B1/ja
Priority to CN201480011205.8A priority patent/CN105009411A/zh
Publication of WO2014142072A1 publication Critical patent/WO2014142072A1/ja
Priority to US14/834,570 priority patent/US20150364932A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves

Definitions

  • the present invention relates to a wireless power supply system that wirelessly supplies power to a power receiving apparatus, and a wireless power supply apparatus.
  • an electromagnetic induction method, a magnetic field resonance method, and the like are known as non-contact power feeding methods.
  • Wireless power supply using a higher frequency band has an advantage that high power can be transmitted even if the dielectric constant of the medium between the tuning coil and the electrode is small.
  • the loss in the rectifying unit increases as the high-frequency output increases, so the power efficiency is not improved. Further, the smoothing capacitor may be damaged due to an increase in the high frequency output.
  • An object of the present application is to provide a wireless power supply system and a power supply apparatus that can improve power efficiency with a simple configuration.
  • a power supply system that supplies power from a power feeding device to a power receiving device in a contactless manner, The power supply device simultaneously supplies a plurality of AC powers having different frequencies, and The power receiving device includes a rectifier circuit that converts the supplied AC powers into DC power.
  • the first frequency is 0.5 MHz to 10 GHz
  • the second frequency is 10 Hz to 300 kHz lower than the first frequency.
  • a mixed wave is generated by mixing the AC power of the first frequency and the second frequency in the power feeding device, and the mixed wave is supplied to the power receiving device as electric power.
  • high-frequency AC power can be efficiently transmitted during non-contact power supply via a dielectric, and AC power can be efficiently rectified on the power receiving side. it can.
  • the power supply efficiency as a whole is improved by mixing the alternating-current power of different frequencies and supplying it as a mixed wave.
  • It is the modification 2 of the wireless power supply system of embodiment and is a schematic block diagram when the structure of embodiment is applied to an electromagnetic induction and a magnetic field resonance system.
  • the mixed wave generator 21 is used as an AC power source in order to increase the power efficiency of high-frequency power feeding with a simple configuration.
  • FIG. 1 is a schematic block diagram of a wireless power supply system 10 according to an embodiment of the present invention.
  • the wireless power supply system 10 includes a power feeding device 20 and a power receiving device 30.
  • the wireless power supply system 10 employs an electric field coupling method as an example.
  • the power feeding device 20 has power feeding electrodes 29a and 29b, and the power receiving device 30 has power receiving electrodes 31a and 31b.
  • the power feeding electrodes 29a and 29b and the power receiving electrodes 31a and 31b are flat electrodes, for example, and can be formed with any thickness using any material such as metal, metal oxide, and carbon.
  • the power feeding electrodes 29a and 29b function as non-contact power transmission means.
  • the power feeding electrode 29a and the power receiving electrode 31a face each other
  • the power feeding electrode 29b and the power receiving electrode 31b face each other, and power is supplied to the power receiving device 30 by electrolytic coupling between the electrodes.
  • the power feeding device 20 is a fixed device
  • the power receiving device 30 is a moving body.
  • the power receiving electrodes 31a and 31b of the power receiving device 30 By causing the power receiving electrodes 31a and 31b of the power receiving device 30 to face the power feeding electrodes 29a and 29b of the power feeding device 30 via an arbitrary medium (air, resin sheet, resin panel, or the like), the power feeding device 20 moves to the power receiving device 30.
  • Power can be supplied in a contactless (wireless) manner.
  • the power feeding device 20 includes a mixed wave generator 21 as an AC source, a first coil L21, and a second coil L22 in addition to the power feeding electrodes 29a and 29b.
  • the power receiving device 30 includes a rectifying device D31 and a load R31.
  • a rectifier D31 a bridge rectifier circuit using a diode, a synchronous rectifier circuit using a MOSFET, or the like can be used.
  • FIG. 2 is a schematic configuration diagram of the wireless power supply system 10A according to the embodiment of the present invention. Description of the parts common to FIG. 1 is omitted.
  • the mixed wave generation unit 21 ⁇ / b> A includes a first frequency power generation unit 22, a second frequency power generation unit 25, and a mixer 23.
  • the first frequency power generation unit 22 generates AC power having a first frequency of 0.5 MHz to 10 GHz, preferably 1 MHz to 30 MHz, more preferably 2 MHz to 15 MHz.
  • the first frequency is less than 0.5 MHz, the efficiency of the rectifier, for example, the rectifier diode, is not originally bad, so there is little need for a mixed wave.
  • the first frequency is higher than 10 GHz, the effect of improving the power efficiency is small even if a mixed wave is used.
  • the second frequency power generator 25 generates AC power of the second frequency that is 10 Hz to 300 kHz, preferably 20 Hz to 150 kHz, more preferably 40 Hz to 100 kHz lower than the first frequency. If the difference between the first frequency and the second frequency is less than 10 Hz, the power efficiency is remarkably inferior in the process of non-contact power feeding through the dielectric. When the frequency difference is 300 kHz or more, the effect of the mixed wave hardly appears. In the embodiment, the mixed wave is used to increase power efficiency when power is supplied in a contactless manner.
  • the first frequency power and the second frequency power are as much as possible. When both are different, the effect of increasing the power efficiency can be obtained up to twice the power of the smaller one.
  • the mixer 23 performs a mixing process on the first frequency power C generated by the first frequency power generation unit 22 and the second frequency power S generated by the second frequency power generation unit 25 to generate a mixed wave D. Output.
  • a wave having a frequency swell (amplitude modulation) of the difference between the two is generated and output from the mixer 23 as a mixed wave D. .
  • This mixed wave D becomes the output of the mixed wave generator 21.
  • the power of the mixed wave D is supplied as an alternating current from the first coil L21 to the power supply electrodes 29a and 29b via the second coil L22.
  • the power receiving device 30 includes a coil L31, a rectifier (for example, a rectifier diode) D31, and a load R31 in addition to the electrodes 31a and 31b.
  • a rectifier for example, a rectifier diode
  • a load R31 in addition to the electrodes 31a and 31b.
  • the coil L31 functions as an antireflection filter that prevents the power supplied to the power receiving device 30 from being reflected to the power feeding device 20 side.
  • This antireflection filter is not limited to the coil L31, and may be realized by a capacitor.
  • AC power that has passed through the coil L31 is rectified by a rectifier (for example, a rectifier diode) D31.
  • a rectifier for example, a rectifier diode
  • rectification using a rectifier diode tends to reduce efficiency, particularly at high frequencies. Even in such a case, the power efficiency can be improved by using the mixed wave in the embodiment.
  • the current converted into direct current by the rectifier D31 is supplied to the load R31.
  • FIG. 3 is a graph showing the power efficiency improvement effect by the wireless power supply system 10A of the embodiment. Plotting the efficiency when supplying the AC power of the mixed wave of the first frequency and the second frequency lower than that by 20 kHz or 100 kHz and the efficiency when supplying only the AC power of the first frequency as a comparative example Yes. The change in efficiency when the frequency is increased is shown with the efficiency when the first frequency is 1 MHz being 100%. The efficiency was obtained by measuring the received power at each first frequency and dividing the received power at each first frequency by the received power when the first frequency was 1 MHz.
  • the efficiency maintenance effect in the case of the mixed wave is superior, and the efficiency maintenance effect is further clarified when the frequency becomes 2 MHz or higher, and becomes particularly remarkable when the frequency is 4 MHz or higher. This effect persists even at higher frequencies.
  • the mixed wave generator 21 of the embodiment on the power supply side of the wireless power supply system, it is possible to prevent the power supply efficiency from being lowered over a wide frequency band.
  • FIG. 4 is a schematic diagram illustrating a configuration of a wireless power supply system 10B as a first modification of the embodiment.
  • the wireless power supply system 10 ⁇ / b> B includes a power feeding device 20 and a power receiving device 50.
  • the wireless power supply system 10 ⁇ / b> B employs an electric field coupling method similarly to the wireless power supply system 10 ⁇ / b> A of FIG. 2, but a parallel resonant circuit 55 is inserted in the power receiving device 50.
  • the parallel resonance circuit 55 includes a coil L52 and a capacitor C51 connected in parallel.
  • the power feeding device 20 uses a mixed wave generator 21 as an AC power source.
  • the mixed wave generator 21 is the same as the mixed wave generator 21A of FIG.
  • the mixed wave is fed as an alternating current on the feeding electrodes 29a and 29b via the first coil L21 and the second coil L22.
  • AC power is supplied to the power receiving device 50 using electric field coupling between the power feeding electrode 29a and the power receiving electrode 51a and between the power feeding electrode 29b and the power receiving electrode 51b.
  • An alternating current flows through the resonance circuit 55 by electromagnetic induction between the coil L51 and the coil L52 of the parallel resonance circuit 55. In this configuration, even if the junction capacitance between the electrodes changes, the influence on the frequency of the resonance circuit 55 is small. Further, by inserting the resonance circuit 55, the resonance peak with respect to the power supplied to the power receiving device 50 becomes sharp. Therefore, the AC power fed from the power feeding device 20 can be efficiently sent to the rectifier (rectifier diode or the like) D51.
  • FIG. 5 shows a configuration example of a wireless power supply system 10C as a second modification of the embodiment.
  • the wireless power supply system 10 ⁇ / b> C employs an electromagnetic induction method or a magnetic field resonance method, and includes a power feeding device 60 and a power receiving device 70.
  • the power feeding device 60 includes a mixed wave generator 21, a first coil L61, a second coil L62, and a third coil L63.
  • the third coil L63 functions as a non-contact power transmission means.
  • the AC power of the mixed wave generated by the mixed wave generating unit 21 propagates to the third coil L63 via the first coil L61 and the second coil L62, and an AC current flows through the third coil L63.
  • the magnetic flux generated in the third coil L63 passes through the coil L71 of the power receiving device 70 to generate an electromotive force (electromagnetic induction).
  • the magnetic field resonance method is used.
  • the energy of the mixed wave (magnetic field vibration) generated by the mixed wave generating unit 21 propagates to the coil L71 of the power receiving device 70 by magnetic field resonance.
  • the magnetic field resonance method is employed, there is an advantage that there is little deterioration in power efficiency with respect to the positional deviation between the power feeding device 60 and the power receiving device 70.
  • the power receiving device 70 has an LC resonance circuit 75, and the alternating current flowing through the LC resonance circuit 75 via the coil L72 is rectified by a rectifier (such as a rectifier diode) D71 and consumed by a load R71. Even in this configuration, the mixed wave is efficiently rectified by the rectifier.
  • a rectifier such as a rectifier diode
  • FIG. 6 shows a configuration example of a wireless power supply system 10D as a third modification of the embodiment.
  • the wireless power supply system 10 ⁇ / b> D employs an electric field coupling method, and includes a power feeding device 80 and a power receiving device 90.
  • the power feeding device 80 has an LC resonance circuit 87, and the power receiving device 90 does not have a resonance circuit.
  • the power feeding device 80 includes a mixed wave generator 21, a coil L81, an LC resonance circuit 87, and power feeding electrodes 89a and 89b.
  • the LC resonance circuit 87 includes a coil L82 and a capacitor C81 connected in parallel.
  • the AC power of the mixed wave generated by the mixed wave generator 21 is transmitted to the LC resonance circuit 87 via the coil L81 and is supplied as an AC current to the power supply electrodes 89a and 89b.
  • AC electric power of mixed waves is supplied to the power receiving device 90 by electric field coupling between the power feeding electrodes 89a and 89b and the power receiving electrodes 91a and 91b.
  • the AC power of the mixed wave is rectified by a rectifier (such as a rectifier diode) D91 via a coil L91 and consumed by a load R91.
  • the coil L91 functions as an antireflection filter, but is not limited to the coil L91 and may be realized by a capacitor.
  • the LC resonance circuit 87 By arranging the LC resonance circuit 87 only in the power feeding device 80, the tuning becomes simple and the number of parts of the entire system can be reduced. Further, the entire power receiving side can be reduced in size.
  • FIG. 7 shows a configuration example of a wireless power supply system 10E as a fourth modification of the embodiment.
  • the wireless power supply system 10 ⁇ / b> E employs an electric field coupling method, and includes a power feeding device 120 and a power receiving device 130.
  • both the power feeding device 120 and the power receiving device 130 have parallel resonant circuits.
  • the power feeding device 120 includes a mixed wave generator 21, a coil L21, an LC resonance circuit 127, and power feeding electrodes 29a and 29b.
  • the power receiving apparatus 130 includes received power 131a and 131b, an LC resonance circuit 137, a coil L132, a rectifier (such as a rectifier diode) D131, and a load R131.
  • the mixed wave generator 21 is the same as that in the embodiment of FIG.
  • the LC resonance circuit 127 on the power supply side and the LC resonance circuit 137 on the power reception side are coupled by an electric field between the electrodes 29a and 29b and the electrodes 131a and 131b. Since the junction capacitance between the electrodes is independent of the resonance circuits 127 and 137, if the junction capacitance is smaller than the capacitances C121 and C131 of the resonance circuits 127 and 137, even if the junction capacitance changes, the resonance circuits 127 and 137 The effect on frequency is small.
  • the AC power of the mixed wave supplied to the power receiving device 130 flows from the resonance circuit 137 into the rectifier D131 via the coil L132, is converted into rectified, and is supplied to the load R131.
  • the mixed wave it is possible to suppress a decrease in rectification efficiency and improve power supply efficiency.
  • the power supply system of the present invention can be applied to any of the electric field coupling method, the electromagnetic induction method, the magnetic field resonance method, and the radio wave method. Further, it is possible to apply a case where a resonance circuit is used or not, and it does not matter whether it is a series resonance or a parallel resonance. Power supply efficiency can be improved when wireless power supply adopts an arbitrary method and configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 給電装置から受電装置へ非接触で電力を供給するシステムにおいて、給電装置は、少なくとも2つの異なる周波数の交流電力を同時に供給し、かつ、受電装置は、供給された前記交流電力を直流電流に整流する整流回路を有する。

Description

ワイヤレス電力供給システム、およびワイヤレス電力供給装置
 本発明は、受電装置にワイヤレスで電力を供給するワイヤレス電力供給システム、およびワイヤレス電力供給装置に関する。
 近年、配線ケーブルを用いずに電気自動車、携帯機器、薄型テレビなどに電力を供給するワイヤレス電力供給システムの研究が活発に行われている。特に、給電を行う送電側の電極と、給電を受ける受電側の電極とを接触させずに対象機器の電池を充電する電界結合方式が注目されている(たとえば、特許文献1および特許文献2参照)。
 非接触での給電方式として、電界結合方式の他に電磁誘導方式、磁界共鳴方式などが知られている。より高い周波数帯を使用するワイヤレス電力供給では、同調コイルや電極間の媒質の誘電率が小さくても大電力の伝送が可能であるというメリットがある。
 ワイヤレス電力供給では、受電側で交流電力を直流電力に変換する必要がある。しかし、現時点では高周波に対応する満足な整流機構が無いため、高い周波数になるほどエネルギーの一部が失われ、直流に変換する際の電力効率が低下するという問題がある。例えばダイオードを用いた場合、そのダイオードのアノードとカソード間の空乏層に形成される寄生静電容量(10pF~100pF)によって高周波の一部が整流されずに通過する。ダイオードを通過した交流電流(電力)は平滑用のコンデンサ等で消費され、給電される電力効率が低下する。大電力を供給するために給電側の高周波出力を高めることも考えられるが、高周波出力の増大につれて整流部での損失も増大するので、電力効率は改善されない。また、高周波出力の増大により、平滑コンデンサが破損するおそれもある。
特開2010-148287号公報 特開2012-034447号公報
 そこで、高周波でのワイヤレス電力供給において電力効率を向上することのできる構成と手法が望まれる。
 本願は、簡単な構成で電力効率を向上することのできるワイヤレス電力供給システム、および給電装置を提供することを課題とする。
 上記課題を解決するために、少なくとも2つの異なる周波数の第一周波数と第二周波数を有する交流電力を同時に供給することにより、受電側で直流電力に変換した際の電力効率を向上させる。具体的には、給電装置から受電装置へ非接触で電力を供給する電力供給システムであって、
 前記給電装置は、異なる周波数の複数の交流電力を同時に供給し、かつ、
 前記受電装置は、供給された前記複数の交流電力を直流電力に変換する整流回路を有する。なお、前記第一周波数は、0.5MHz~10GHzであり、前記第二周波数は、前記第一周波数より10Hz~300kHz低い。
 良好な構成例では、前記第一周波数と前記第二周波数の交流電力を前記給電装置内において混合することにより混合波が生成され、この混合波を電力として前記受電装置に供給する。
 少なくとも2つの異なる周波数の交流電力を同時に供給することにより、誘電体を介した非接触での給電の際に高周波の交流電力を効率よく伝送し、受電側で交流電力を効率よく整流することができる。異なる周波数の交流電力を混合処理して混合波として供給することにより、全体としての電力供給効率が向上する。
本願の実施形態によるワイヤレス電力供給システムの構成例を示すブロック図である。 本願の実施形態によるワイヤレス電力供給システムの一例を示す図である。 第一周波数のみの交流電力と、第一周波数と第二周波数との混合波の交流電力での給電効率を比較したグラフである。 実施形態のワイヤレス電力供給システムの変形例1であり、受電装置に共振回路を挿入したときの概略構成図である。 実施形態のワイヤレス電力供給システムの変形例2であり、実施形態の構成を電磁誘導、および磁界共鳴方式に適用したときの概略構成図である。 実施形態のワイヤレス電力供給システムの変形例3であり、電界結合方式の給電システムにおいて給電側に並列共振回路を挿入したときの概略構成図である。 実施形態のワイヤレス電力供給システムの変形例4であり、電界結合方式の給電システムにおいて、給電側と受電側に並列共振回路を挿入したときの概略構成図である。
 以下で、図面を参照して発明の実施形態を説明する。実施形態では簡単な構成で高周波給電の電力効率を高めるために、交流電力源として混合波発生部21を用いる。
 図1は本発明の実施形態のワイヤレス電力供給システム10の概略ブロック構成図である。ワイヤレス電力供給システム10は、給電装置20と受電装置30を含む。ワイヤレス電力供給システム10は、一例として電界結合方式を採用する。給電装置20は給電電極29a、29bを有し、受電装置30は受電電極31a、31bを有する。給電電極29a、29bおよび受電電極31a、31bは、たとえば平板電極であり、金属、金属酸化物、カーボンなど任意の材料を用いて任意の厚さで形成することができる。給電電極29a、29bは非接触送電手段として機能する。給電時には、給電電極29aと受電電極31aが対向し、給電電極29bと受電電極31bが対向して、電極間の電解結合により受電装置30に電力を供給する。
 たとえば、給電装置20は固定された装置であり、受電装置30は移動体である。受電装置30の受電電極31a、31bを、任意の媒質(空気、樹脂シート、樹脂パネル等)を介して給電装置30の給電電極29a、29bと対向させることによって、給電装置20から受電装置30に非接触(ワイヤレス)で電力を供給することができる。
 給電装置20は、給電電極29a、29bの他に、交流源としての混合波発生部21と、第1コイルL21、第2コイルL22を有する。
 受電装置30は整流装置D31と負荷R31と、を有する。整流装置D31にはダイオードによるブリッジ整流回路、MOSFETを使用した同期整流回路等を用いることができる。
 図2は本発明の実施形態のワイヤレス電力供給システム10Aの概略構成図である。図1と共通している部分の説明は省く。混合波発生部21Aは、第一周波数電力生成部22、第二周波数電力生成部25、および混合器23を有する。
 第一周波数電力生成部22は、0.5MHz~10GHz、好ましくは1MHz~30MHz、さらに好ましくは2MHz~15MHzの第一周波数の交流電力を生成する。第一周波数が0.5MHz未満の場合は整流装置、例えば整流ダイオードの効率がもともと悪くないので混合波とする必要性が少ない。第一周波数が10GHzより大きくなると、混合波を用いても電力効率の改善効果が少ない。
 第二周波数電力生成部25は、第一周波数に比べ、10Hz~300kHz、好ましくは20Hz~150kH、さらに好ましくは40Hz~100kHz低い周波数の第二周波数の交流電力を生成する。第一周波数と第二周波数との差が10Hz未満では、誘電体を介した非接触での給電の過程で電力効率が著しく劣る。前記周波数の差が300kHz以上の場合は、混合波での効果は現れにくい。実施形態では、混合波を非接触で電力供給する際に電力効率を増大させるために利用する。
 第一周波数電力と第二周波数電力とはできるだけ同じ電力であることが好ましい。両者が異なる場合は、いずれか小さい方の電力の2倍の電力まで前記電力効率の増大の効果が得られる。
 混合器23は、第一周波数電力生成部22で生成された第一周波数電力Cと、第二周波数電力生成部25で生成された第二周波数電力Sとを混合処理を施して混合波Dを出力する。混合器23に第一周波数電力Cと第二周波数電力Sが入力されると、両者の差の周波数のうねり(振幅変調)を有する波が生成され、混合器23から混合波Dとして出力される。この混合波Dが混合波発生部21の出力となる。
 混合波Dの電力は第1コイルL21から第2コイルL22を介して給電電極29a、29b上に交流電流として給電される。
 受電装置30は、電極31a、31bの他に、コイルL31と、整流装置(たとえば整流ダイオード)D31と、負荷R31と、を有する。電極31a、31bを給電装置20の電極29a、29bと対向させることで、相対する電極29a、31a間(及び29b、31b間)で電界が結合し、交流電流が受電装置30に誘導される。
 コイルL31は、受電装置30に供給された電力が給電装置20側に反射されるのを防止する反射防止フィルタとして機能する。この反射防止フィルタはコイルL31に限定されずコンデンサによって実現されてもよい。
 コイルL31を通過した交流電力は、整流装置(例えば、整流ダイオード)D31で整流される。一般に、整流ダイオードによる整流では、特に高周波で効率が低下しやすい。このような場合であっても、実施形態では混合波を用いることにより電力効率を改善することができる。
 整流装置D31により直流に変換された電流は負荷R31に供給される。
 図3は、実施形態のワイヤレス電力供給システム10Aによる電力効率改善効果を示すグラフである。第一周波数とそれより20kHzまたは100kHz低い第二周波数との混合波の交流電力を供給したときの効率と、比較例として、第一周波数の交流電力のみで給電した場合の効率とをプロットしている。それぞれ第一周波数が1MHzのときの効率を100%として、周波数を上げていったときの効率の変化を示している。なお、前記効率は、各第一周波数で受電電力を測定し、各第一周波数での受電電力を第一周波数が1MHzのときの受電電力で除して求めた。第一周波数を1MHzから上げていくと、混合波の場合の効率維持効果が優位であり、2MHz以上となるあたりから効率維持効果がさらに明確になり、4MHz以上となると特に顕著になる。この効果はさらに高い周波数においても持続している。
 このように、ワイヤレス電力供給システムの給電側に実施形態の混合波発生部21を用いることによって、広い範囲の周波数帯域に対して給電効率の低下を防止することができる。
 なお、上記実施形態の第一周波数と第二周波数のそれぞれの交流電力の電力は等しくなるように調整をした。本発明の他の実施形態でも特に断りのない限り同様である。
 図4は、実施形態の変形例1として、ワイヤレス電力供給システム10Bの構成を示す概略図である。ワイヤレス電力供給システム10Bは、給電装置20と受電装置50を含む。ワイヤレス電力供給システム10Bは、図2のワイヤレス電力供給システム10Aと同様に、電界結合方式を採用しているが、受電装置50に並列共振回路55が挿入されている。並列共振回路55は、並列に接続されたコイルL52とコンデンサC51で構成される。
 給電装置20では、交流電力源として混合波発生部21を用いる。混合波発生部21は図2の混合波発生部21Aと同様である。混合波は、第1コイルL21および第2コイルL22を介して給電電極29a、29b上に交流電流として給電される。給電電極29aと受電電極51aの間、および給電電極29bと受電電極51bの間の電界結合を利用して、交流電力が受電装置50に供給される。コイルL51と並列共振回路55のコイルL52との間の電磁誘導によって、交流電流が共振回路55に流れる。この構成では、電極間の接合容量が変化しても共振回路55の周波数に与える影響は少ない。また、共振回路55を挿入したことにより、受電装置50に給電された電力に対する共振ピークが鋭くなる。したがって給電装置20から給電された交流電力を効率よく整流装置(整流ダイオード等)D51に送ることができる。
 図5は、実施形態の変形例2として、ワイヤレス電力供給システム10Cの構成例を示す。ワイヤレス電力供給システム10Cは電磁誘導方式または磁界共鳴方式を採用し、給電装置60と受電装置70を含む。
 給電装置60は、混合波発生部21と、第1コイルL61、第2コイルL62、および第3コイルL63を有する。第3コイルL63は非接触の送電手段として機能する。混合波発生部21で生成された混合波の交流電力は、第1コイルL61と第2コイルL62を介して第3コイルL63に伝搬し、第3コイルL63に交流電流が流れる。第3コイルL63に発生した磁束は、受電装置70のコイルL71を通り、起電力が発生する(電磁誘導)。
 給電装置60の第3コイルL63と受電装置70のコイルL71が同じ共振周波数を有する場合は磁界共鳴方式となる。この場合、混合波発生部21で生成された混合波のエネルギー(磁場の振動)が磁界共鳴によって受電装置70のコイルL71に伝搬する。磁界共鳴方式を採用する場合は、給電装置60と受電装置70の位置ずれに対して電力効率の劣下が少ないという利点がある。
 受電装置70はLC共振回路75を有し、コイルL72を介してLC共振回路75に流れる交流電流は、整流装置(整流ダイオード等)D71によって整流され、負荷R71で消費される。この構成でも、混合波は整流装置で効率よく整流される。
 図6は、実施形態の変形例3として、ワイヤレス電力供給システム10Dの構成例を示す。ワイヤレス電力供給システム10Dは、電界結合方式を採用し、給電装置80と受電装置90を含む。ワイヤレス電力供給システム10Dでは、給電装置80がLC共振回路87を有し、受電装置90は共振回路を有しない。
 給電装置80は、混合波発生部21と、コイルL81と、LC共振回路87と、給電電極89a、89bを有する。LC共振回路87は、並列接続されたコイルL82とコンデンサC81を含む。混合波発生部21で生成された混合波の交流電力は、コイルL81を介してLC共振回路87に伝わり、給電電極89a、89b上に交流電流として給電される。
 給電電極89a、89bと、受電電極91a、91bの間の電界結合により、混合波の交流電力が受電装置90に供給される。混合波の交流電力はコイルL91を介して整流装置(整流ダイオード等)D91で整流され、負荷R91で消費される。コイルL91は反射防止フィルタとして機能するが、コイルL91に限定されずコンデンサによって実現されてもよい。
 混合波で給電することにより、受電側の整流装置D91での損失を抑制することができる。LC共振回路87を給電装置80にのみ配置することで、同調が簡便になりシステム全体の部品が少なくてすむ。また、受電側全体の小型化が可能となる。
 図7は、実施形態の変形例4として、ワイヤレス電力供給システム10Eの構成例を示す。ワイヤレス電力供給システム10Eは、電界結合方式を採用し、給電装置120と受電装置130を含む。ワイヤレス電力供給システム10Eは、給電装置120と受電装置130の双方が並列共振回路を有する。
 給電装置120は、混合波発生部21とコイルL21と、LC共振回路127と給電電極29a、29bを有する。受電装置130は、受電電力131a、131b、LC共振回路137、コイルL132、整流装置(整流ダイオード等)D131、負荷R131、を有する。
 混合波発生部21は、図2の実施形態と同様である。給電側のLC共振回路127と受電側のLC共振回路137は、電極29a、29bと電極131a、131bの間の電界によって結合される。電極間の接合容量は共振回路127、137から独立しているので、接合容量が共振回路127、137の容量C121,C131に比べて小さい場合は接合容量が変化しても共振回路127、137の周波数に与える影響が小さい。
 受電装置130に供給される混合波の交流電力は、共振回路137からコイルL132を介して整流装置D131に流れ込み、整流に変換され、負荷R131に供給される。混合波を用いることにより、整流効率の低下を抑制し、給電効率を向上することができる。
 以上説明したように、本発明の電力供給システムは、電界結合方式、電磁誘導方式、磁界共鳴方式、電波方式のいずれにも適用可能である。また、共振回路を用いる場合も用いない場合も適用可能であり、直列共振、並列共振を問わない。任意の方式、構成を採用するワイヤレス電力供給の際に電力供給効率を向上することができる。
 本出願は、2013年3月13日に出願された日本国特許出願第2013-050617号に基づきその優先権を主張するものであり、同日本国特許出願の全内容を参照することにより本願に援用する。
10、10A~10E ワイヤレス電力供給システム
20、60、80、120 給電装置
21、21A 混合波発生部
22 第一周波数電力生成部
23 混合器
25 第二周波数電力生成部
29a、29b、89a、89b 給電電極
30、50、70、90、130 受電装置
31a、31b、51a、51b、91a、91b、131a、131b 受電電極
55、75、87、127、137 共振回路
C 第一周波数電力
D 混合波の交流電力
S 第二周波数電力
D31、D51、D71、D91、D131 整流装置
L63 給電側コイル
L71 受電側コイル

Claims (8)

  1.  給電装置から受電装置へ非接触で電力を供給するシステムであって、
     前記給電装置は、少なくとも2つの異なる周波数の第一周波数と第二周波数を有する交流電力を同時に供給し、かつ
     前記受電装置は、供給された前記複数の交流電力を直流電力に変換する整流回路を有し、
     前記第一周波数が、0.5MHz~10GHzであり、
     前記第二周波数が、前記第一周波数より10Hz~300kHz低い
    ことを特徴とするワイヤレス電力供給システム。
  2.  前記第一周波数と第二周波数の交流電力を前記給電装置内において混合することにより混合波が生成され、
     前記混合波を電力として前記受電装置に供給する請求項1に記載のワイヤレス電力供給システム。
  3.  前記第一周波数と前記第二周波数の電力が等しい請求項1または2に記載のワイヤレス電力供給システム。
  4.  前記給電装置は給電電極を有し、
     前記受電装置は受電電極を有し、
     前記給電電極と前記受電電極の間に誘電体を有し、
     電界結合方式で電力を供給する請求項1~3のいずれか1項に記載のワイヤレス電力供給システム。
  5.  前記給電装置は給電コイルを有し、
     前記受電装置は受電コイルを有し、
     電磁誘導または、磁界共鳴方式で電力を供給する請求項1~3のいずれか1項に記載のワイヤレス電力供給システム。
  6.  前記給電装置と前記受電装置の少なくとも一方が共振回路を有する請求項1~5のいずれか1項に記載のワイヤレス電力供給システム。
  7.  少なくとも2つの周波数の混合波の交流電力を生成する混合波発生部と、
     前記混合波の交流電力を非接触で送電する非接触送電手段と
    を有し、
     前記混合波発生部は、
     第一周波数の交流電力を生成する第一周波数電力生成部と、
     前記第一周波数と異なる第二周波数の交流電力を生成する第二周波数電力生成部と、
     前記第一周波数の交流電力と、前記第二周波数の交流電力とを混合して混合波を生成する混合器と、
     前記混合波を電界結合、電磁誘導、または磁界共鳴によって電力として受電装置に供給する供給手段と
    を含み、
     前記第一周波数が、0.5MHz~10GHzであり、
     前記第二周波数が、前記第一周波数より10Hz~300kHz低い
    ことを特徴とするワイヤレス電力供給装置。
  8.  請求項7に記載の受電装置より供給された前記混合波を整流して直流電力を得ることを特徴とするワイヤレス電力供給方法。
PCT/JP2014/056176 2013-03-13 2014-03-10 ワイヤレス電力供給システム、およびワイヤレス電力供給装置 WO2014142072A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014530013A JP5651810B1 (ja) 2013-03-13 2014-03-10 ワイヤレス電力供給システム、およびワイヤレス電力供給装置
CN201480011205.8A CN105009411A (zh) 2013-03-13 2014-03-10 无线供电系统以及无线供电装置
US14/834,570 US20150364932A1 (en) 2013-03-13 2015-08-25 Wireless power transfer system and wireless power transmitter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-050617 2013-03-13
JP2013050617 2013-03-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/834,570 Continuation US20150364932A1 (en) 2013-03-13 2015-08-25 Wireless power transfer system and wireless power transmitter

Publications (1)

Publication Number Publication Date
WO2014142072A1 true WO2014142072A1 (ja) 2014-09-18

Family

ID=51536728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056176 WO2014142072A1 (ja) 2013-03-13 2014-03-10 ワイヤレス電力供給システム、およびワイヤレス電力供給装置

Country Status (4)

Country Link
US (1) US20150364932A1 (ja)
JP (1) JP5651810B1 (ja)
CN (1) CN105009411A (ja)
WO (1) WO2014142072A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180006176A (ko) * 2016-07-08 2018-01-17 재단법인 다차원 스마트 아이티 융합시스템 연구단 원거리 및 근거리 무선 충전을 위한 다중 주파수 기반의 무선 충전 시스템
US10461566B2 (en) * 2017-10-06 2019-10-29 Toyota Motor Engineering & Manufacturing North America, Inc. System, apparatus, and method for capacitive wireless charging
CN107623387A (zh) * 2017-11-06 2018-01-23 王珏 一种无线供电系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012045050A2 (en) * 2010-09-30 2012-04-05 Intel Corporation Wireless power transfer apparatus and method thereof
JP2012105478A (ja) * 2010-11-11 2012-05-31 Sony Corp 伝送装置、電子機器、及び、伝送方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3897582B2 (ja) * 2000-12-12 2007-03-28 キヤノン株式会社 真空処理方法、真空処理装置、半導体装置の製造方法および半導体装置
EP1482282B1 (en) * 2002-03-04 2008-01-16 Citizen Holdings Co., Ltd. Electric timepiece
US6970518B2 (en) * 2003-03-11 2005-11-29 Motorola, Inc. Method and apparatus for electronic item identification in a communication system using known source parameters
US7454238B2 (en) * 2006-10-30 2008-11-18 Quantance, Inc. Power combining power supply system
US20100070100A1 (en) * 2008-09-15 2010-03-18 Finlinson Jan F Control architecture and system for wireless sensing
CN102362408B (zh) * 2009-03-30 2015-01-21 富士通株式会社 无线供电系统、无线送电装置及无线受电装置
US8410637B2 (en) * 2009-11-30 2013-04-02 Broadcom Corporation Wireless power system with selectable control channel protocols
US9035601B2 (en) * 2011-05-05 2015-05-19 Samsung Electro-Mechanics Wireless power transfer system and methods
WO2013024419A2 (en) * 2011-08-16 2013-02-21 Koninklijke Philips Electronics N.V. Transfer layer for wireless capacitive power
US9683441B2 (en) * 2011-11-03 2017-06-20 Fastcap Systems Corporation Power supply for wired pipe with rechargeable energy storage
US9246357B2 (en) * 2011-12-07 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Contactless power feeding system
KR101985820B1 (ko) * 2012-09-07 2019-06-04 삼성전자주식회사 무선 전력을 송수신하는 장치 및 방법
TWI446680B (zh) * 2012-10-30 2014-07-21 Au Optronics Corp 顯示裝置及無線電力傳輸系統
JP6258816B2 (ja) * 2013-10-29 2018-01-10 パナソニック株式会社 無線送電装置及び無線電力伝送システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012045050A2 (en) * 2010-09-30 2012-04-05 Intel Corporation Wireless power transfer apparatus and method thereof
JP2012105478A (ja) * 2010-11-11 2012-05-31 Sony Corp 伝送装置、電子機器、及び、伝送方法

Also Published As

Publication number Publication date
US20150364932A1 (en) 2015-12-17
JPWO2014142072A1 (ja) 2017-02-16
JP5651810B1 (ja) 2015-01-14
CN105009411A (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
US20240305139A1 (en) Hybrid wireless power transmitting system and method therefor
KR101933462B1 (ko) 무선 전력의 크기를 조정하는 무선 전력 수신기
US9391535B2 (en) Received power conversion device for resonant wireless charging system
JP5550785B2 (ja) 非接触型の誘導電力伝送システムの回路
JP6618006B2 (ja) 無線電力伝送システムおよび送電装置
US10367379B2 (en) Wireless power transmission apparatus for performing non-contact transmission by electromagnetic induction
CN105493375A (zh) 用于感应式能量传输的设备和用于运行用于感应式能量传输的设备的方法
EP2827471B1 (en) Power-receiving device and power-receiving method
US20170155283A1 (en) Resonant coupling power transmission system, resonance type power transmission device, and resonance type power reception device
WO2014125698A1 (ja) 受電装置及び非接触給電装置
JP2013229988A (ja) アンテナ
JP2011142763A (ja) 無線電力伝送装置
US9899874B2 (en) Electric power supplying device, of a wireless electric power transmission apparatus and method for supplying electric power
JP5651810B1 (ja) ワイヤレス電力供給システム、およびワイヤレス電力供給装置
KR20130028447A (ko) 무선 전력 중계 장치 및 전송 시스템
JP6040397B2 (ja) 電力伝送システム
JP2013207479A (ja) アンテナ
JP2013158196A (ja) 伝送システム及び受電装置
JP6085811B2 (ja) 電力伝送システム
CN105932789B (zh) 变压器及电源板
JP2014197935A (ja) 電力伝送システム
CN104124863A (zh) 基于无线电能传输系统的功率因素校正的方法及系统
JP6085817B2 (ja) 電力伝送システム
JP2013157944A (ja) アンテナ
JP2012178960A (ja) アンテナ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014530013

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14762523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14762523

Country of ref document: EP

Kind code of ref document: A1