WO2014142050A1 - Method for molding glass substrate - Google Patents

Method for molding glass substrate Download PDF

Info

Publication number
WO2014142050A1
WO2014142050A1 PCT/JP2014/056112 JP2014056112W WO2014142050A1 WO 2014142050 A1 WO2014142050 A1 WO 2014142050A1 JP 2014056112 W JP2014056112 W JP 2014056112W WO 2014142050 A1 WO2014142050 A1 WO 2014142050A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
electrode
glass
molding
mold
Prior art date
Application number
PCT/JP2014/056112
Other languages
French (fr)
Japanese (ja)
Inventor
志郎 舩津
諭 金杉
啓一郎 裏地
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2014142050A1 publication Critical patent/WO2014142050A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • C03C21/003Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions under application of an electrical potential difference
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for forming a glass substrate, and more particularly to a method for obtaining a glass substrate having a molding surface with high shape stability at low cost by press molding.
  • a press molding method in which a heat-softened glass material is pressed and molded using a mold (hereinafter also referred to as a mold).
  • a mold hereinafter also referred to as a mold.
  • glass substrates for magnetic recording media and the like have been manufactured by press molding using a mold.
  • the press molding method a step of heating and softening a glass material, a step of pressing and molding using a molding die, and a step of separating the molding die from the glass molded body after cooling (hereinafter referred to as mold release) are sequentially performed.
  • the press surface of the mold for example, a highly accurate and smooth mold surface is transferred to a glass material, a smooth and high-quality molding surface can be obtained, and productivity can be reduced at low cost. Is a high method.
  • Patent Document 1 proposes a boron nitride film as a release film that is high in hardness and excellent in durability against heat cycles, and that does not chemically react with glass containing lead in particular.
  • Patent Document 2 in forming a glass substrate for a magnetic recording medium, a mold release agent layer such as a metal salt of a higher fatty acid is formed on at least the mold surface (press surface) of the mold, There has been proposed a method for improving the releasability between a mold and a glass substrate which is a molded body.
  • this method not only makes it difficult to control the film thickness of the release agent layer in order to prevent the residue of the release agent from accumulating on the press surface of the mold and being transferred to the glass substrate.
  • a release agent must be applied to form a release agent layer having a required thickness, resulting in a problem of poor work efficiency.
  • the present invention has been made to solve the above-described conventional problems, and is a method for press-molding a glass substrate using a mold and obtaining a high-quality glass molded body with high molding surface smoothness at low cost.
  • the purpose is to provide.
  • a glass substrate made of glass having a pair of main surfaces and containing an alkali oxide in the composition is disposed between the first electrode and the second electrode, A DC voltage is applied to generate a corona discharge so that the first electrode is a positive electrode and the second electrode is a ground or a negative electrode.
  • the method further comprises a molding step in which a molding die is arranged so that the press surface comes into contact with the glass substrate and press molding is performed in a state where the glass substrate is held at a predetermined temperature.
  • the glass substrate molding method of the present invention after the molding step, the glass substrate and the mold are cooled, and the release surface separates the press surface of the mold from the first main surface of the glass substrate. It is preferable to have a process.
  • the molding step is preferably performed in an atmosphere mainly composed of nitrogen.
  • the glass substrate is separated from the first electrode by a first main surface and the second electrode is formed by a second main surface. It is preferable that a corona discharge is generated by applying a DC voltage so that the first electrode is a positive electrode and the second electrode is a ground or a negative electrode.
  • the first electrode is a wire-like electrode, and the wire-like electrode may be arranged with its length direction parallel to the first main surface of the glass substrate. preferable.
  • the surface treatment step it is preferable that an atmosphere mainly composed of air or nitrogen is maintained between the first electrode and the second electrode.
  • the temperature of the glass substrate is preferably from room temperature to the glass transition point Tg. Further, it is preferable that the second electrode and the glass substrate are integrated and moved in parallel with the arrangement surface of the first electrode parallel to the first main surface.
  • the glass substrate is preferably made of a glass material containing a total of alkali oxides and alkaline earth oxides exceeding 15% by mass.
  • a high-quality glass molded body having a high surface smoothness can be obtained by press molding, and the pressing surface of the molding die is covered with the glass substrate in the mold release step after molding. Since the force required for releasing from the first main surface which is the press surface (hereinafter also referred to as releasing force) is extremely small, a release film of carbon or noble metal is formed on the pressing surface of the forming die. Molding can be performed at low cost without performing a release treatment such as applying a release agent.
  • the mold release force of the mold is extremely small, the pressed surface of the glass substrate is not deformed due to fixation with the mold during the mold release, and the shape stability is high.
  • the mechanical force of the mold is suppressed by reducing the mold release force, the service life of the mold can be extended, the cost can be reduced, and the time required for mold replacement can be saved. improves.
  • Example 1 It is a graph which shows the time-dependent change of the temperature of a shaping
  • Example 1 it is a graph which shows the time-dependent change of the measured value of the temperature and press force of a shaping
  • Example 1 it is a figure which shows the cross-sectional shape of the to-be-pressed surface (molding surface) of the glass substrate after mold release.
  • a comparative example it is a graph which shows the time-dependent change of the measured value of the temperature and press force of a shaping
  • alkali oxide means alkali metal oxide
  • alkali ion means alkali metal ion
  • alkaline earth oxide means alkaline earth metal oxide
  • alkaline earth ion means alkaline earth metal ion.
  • the glass substrate molding method of the embodiment includes a surface treatment step and a molding step.
  • the surface treatment step has a pair of main surfaces (first main surface and second main surface) between the first electrode and the second electrode, and is made of glass containing an alkali oxide.
  • at least one kind of alkali ions is moved toward the second main surface side that is the ground or negative electrode side.
  • a molding die is arranged so that the press surface is in contact with the first main surface of the glass substrate treated in the surface treatment step, and the glass substrate is held at a predetermined temperature. It is a step of press molding.
  • the glass substrate forming method of the embodiment further includes a mold releasing step of cooling after the forming step and separating the press surface of the forming die from the first main surface of the glass substrate.
  • a direct current voltage is applied to the glass substrate to generate corona discharge, and the first main surface side surface layer portion that is the positive electrode side of the glass substrate.
  • a glass base material means the glass material which comprises the glass base
  • the region other than the low alkali concentration region after the surface treatment can be said to have a glass composition substantially similar to that of the glass base material.
  • the press surface is brought into contact with the first main surface in the molding process with respect to the glass substrate on which the surface treatment is performed in this way and the surface layer portion on the first main surface side is formed with the alkali low concentration region.
  • the glass mold is pressed with a smooth press surface of the mold.
  • the substrate is press-molded, and the first main surface, which is the pressed surface, is a highly smooth surface.
  • the press surface of the mold is separated from the first main surface of the glass substrate (released). At this time, the release force required for release is almost as small as 0, The glass substrate that has not been surface-treated is remarkably reduced as compared with the case of press molding.
  • the reason why the releasing force becomes extremely small in this way is considered to be as follows.
  • the press surface of the mold and the pressed surface of the glass substrate are fused at the time of pressing, and the mold release force is increased in the mold release process. appear. This is because the temperature at which the pressing surface of the mold and the pressed surface of the glass substrate start fusing during molding (hereinafter referred to as fusing start temperature) is lower than the molding temperature.
  • the surface portion of the first main surface which is an object to be pressed surface of the glass substrate as mentioned above, by surface treatment, the content of alkali ions is relatively SiO 2 lower Since the content ratio is high, the fusion start temperature is higher than the fusion start temperature of the glass substrate that has not been surface-treated.
  • the molding temperature described above depends on the glass base material, if the glass base material is the same, it is constant regardless of the presence or absence of surface treatment. Further, the molding temperature applicable to the molding of the glass base material has a predetermined range. In a glass substrate that is not surface-treated, the fusing start temperature is generally lower than the lower limit of the molding temperature range. However, in the surface-treated glass substrate, the fusion start temperature is higher than the lower limit of the molding temperature range, and the molding temperature can be appropriately set to a temperature lower than the fusion start temperature. Therefore, in the surface-treated glass substrate, the molding temperature can be set to the fusion start temperature, and press molding can be performed at a temperature lower than the fusion start temperature. No fusing occurs, and therefore the mold release force required for mold release is extremely small and almost zero. The measurement of the release force will be described in more detail later.
  • the mold release force of the molding die after press molding is extremely small (almost close to 0), so the shape stability of the molding surface that is the pressed surface of the glass substrate is good.
  • the cross-sectional shape is not deformed in the pulling direction.
  • the mechanical degradation of the mold is suppressed by such a reduction in the releasing force, the service life can be extended and the cost can be reduced.
  • a glass substrate made of glass having a pair of main surfaces and containing an alkali oxide is disposed between the first electrode and the second electrode.
  • the glass substrate is arranged so that one main surface (first main surface) is separated from the first electrode and the other main surface (second main surface) is in contact with the second electrode.
  • a DC voltage is applied so that the first electrode is a positive electrode and the second electrode is a ground or a negative electrode to generate a corona discharge between the electrodes.
  • the generated corona discharge causes the first electrode close to the positive electrode of the glass substrate.
  • At least one kind of alkali ions is moved toward the second main surface side which is the ground or negative electrode side.
  • the content ratio of alkali ions (hereinafter sometimes referred to as content concentration) decreases in the surface layer portion on the first main surface side, and the content concentration of alkali ions is reduced to other regions ( For example, an alkali low concentration region lower than the glass base material is formed.
  • the surface treatment of the glass substrate is performed by corona discharge as described above.
  • the electrode does not contact the surface to be treated of the glass substrate as described later. Therefore, according to corona discharge, the surface treatment of the glass substrate can be performed without damaging the surface to be treated.
  • the glass constituting the substrate contains alkaline earth ions together with alkali ions
  • alkali ions move toward the ground or negative electrode side
  • the alkali low concentration region formed in the surface layer on the positive electrode side of the glass substrate not only the alkali ion content concentration but also the alkaline earth ion content concentration is lower than other regions.
  • ions that move due to corona discharge are typically alkali ions. Therefore, it shall be described as a low concentration region of alkali ions.
  • the glass substrate contains a plurality of types of alkali oxides in its composition
  • the plurality of types of alkali ions all move toward the ground or the negative electrode side, so that the concentration of any alkali ions is lower than other regions.
  • a region is formed in the surface layer portion of the glass substrate.
  • the alkali ions sodium ions are most likely to move, and the effect of improving the releasability by the movement is great, so the main alkali ions that are moved by corona discharge in the surface treatment process are sodium ions, and sodium ions The purpose is to form a low concentration region of ions.
  • the glass substrate surface-treated in the surface treatment step is composed of a glass material having an alkali oxide in composition, that is, a glass base material.
  • the composition of the glass base material is not particularly limited as long as it has at least one alkali oxide. From the viewpoint of easy surface treatment, the total amount of alkali oxide and alkaline earth oxide is 15% by mass. What contains it in the ratio exceeding is preferable.
  • SiO 2 is 50 to 80%
  • Al 2 O 3 is 0.5 to 25%
  • B 2 O 3 is 0 to 10%
  • the glass which contains less than 10% in total etc. can be mentioned. Hereinafter, it describes about each component which comprises this glass. In addition, all represent mass%.
  • SiO 2 is a component constituting the skeleton of glass.
  • the content ratio of SiO 2 is preferably 60% or more. More preferably, it is 62% or more, and particularly preferably 63% or more.
  • the content ratio of SiO 2 is more preferably 76% or less, and further preferably 74% or less.
  • Al 2 O 3 is a component that improves the movement speed of alkali ions.
  • the content ratio of Al 2 O 3 is more preferably 1% or more, further preferably 2.5% or more, particularly preferably 4% or more, and most preferably 6% or more. If the content ratio of Al 2 O 3 exceeds 25%, the viscosity of the glass becomes high, and there is a possibility that homogeneous melting becomes difficult.
  • the content ratio of Al 2 O 3 is preferably 20% or less. More preferably, it is 16% or less, and particularly preferably 14% or less.
  • B 2 O 3 is not an essential component, but may be contained for improving meltability at high temperatures or glass strength.
  • the content ratio is more preferably 0.5% or more, and further preferably 1% or more. Further, the content of B 2 O 3 is 10% or less. Since B 2 O 3 tends to evaporate due to coexistence with an alkali component, it may be difficult to obtain homogeneous glass.
  • the content ratio of B 2 O 3 is more preferably 6% or less, and still more preferably 1.5% or less. In particular to improve the homogeneity of the glass, B 2 O 3 is preferably not contained.
  • Na 2 O is a component that improves the meltability of glass and has main ions (sodium ions) that move by corona discharge.
  • the content ratio of Na 2 O is more preferably 11% or more, and particularly preferably 12% or more.
  • the content ratio of Na 2 O is 16% or less. If it exceeds 16%, the glass transition point Tg is lowered, the strain point is lowered accordingly, and the heat resistance may be inferior, or the weather resistance may be lowered.
  • the content ratio of Na 2 O is more preferably 15% or less, further preferably 14% or less, and particularly preferably 13% or less.
  • K 2 O is not an essential component, but may be contained because it is a component that improves the meltability of glass and that is easily moved by corona discharge.
  • the content is preferably 1% or more, more preferably 3% or more. Further, the content of K 2 O is 8% or less. If the content ratio of K 2 O exceeds 8%, the weather resistance may be lowered. More preferably, it is 5% or less.
  • Li 2 O is not an essential component like K 2 O, but may be contained because it is a component that improves the meltability of glass and is a component that easily moves by corona discharge.
  • the content ratio is preferably 1% or more, and more preferably 3% or more. Further, the content of Li 2 O is 16% or less. If the content ratio of Li 2 O exceeds 16%, the strain point may be too low.
  • the content ratio of Li 2 O is more preferably 14% or less, and particularly preferably 12% or less.
  • the alkaline earth oxide is a component that improves the meltability of the glass and is an effective component for adjusting Tg.
  • MgO is not an essential component, but is a component that increases the Young's modulus of the glass to improve the strength and improve the solubility. It is preferable to contain 1% or more of MgO.
  • the content ratio of MgO is more preferably 3% or more, and particularly preferably 5% or more.
  • the content ratio of MgO is 12% or less. If the MgO content exceeds 12%, the stability of the glass may be impaired.
  • the content ratio of MgO is more preferably 10% or less, particularly preferably 8% or less.
  • CaO is not an essential component, but when CaO is contained, its content is typically 0.05% or more. Moreover, the content rate of CaO is 10% or less. If the CaO content exceeds 10%, the amount of alkali ions transferred by corona discharge may be reduced.
  • the content ratio of CaO is more preferably 6% or less, further preferably 2% or less, and particularly preferably 0.5% or less.
  • the total content (total amount) of alkali oxide and alkaline earth oxide is preferably more than 15% in order to improve the meltability of the glass and to stabilize corona discharge by adjusting Tg.
  • the total content of alkali oxides and alkaline earth oxides is more preferably 17% or more, particularly preferably 20% or more, and the upper limit is preferably 35%.
  • the glass constituting the glass substrate to be surface-treated in the surface treatment step may contain other components.
  • the total content of these components is preferably 10% or less, more preferably 5% or less. It is particularly preferable to consist essentially of the above components.
  • the glass containing each of these components may appropriately contain SO 3 , chloride, fluoride, and the like as a fining agent upon melting.
  • the glass transition temperature Tg of such a glass material is preferably in the range of about 400 to 700 ° C.
  • the glass transition temperature Tg in the glass material of the glass substrate used in the molding method of the present invention is not limited to this.
  • the shape of the glass substrate made of such a glass material is not particularly limited as long as it has a pair of main surfaces.
  • the flat plate shape in which the pair of main surfaces are flat surfaces or the curved plate shape in which the pair of main surfaces are curved surfaces may be used.
  • Examples of such a glass substrate include glass substrates used as glass optical elements such as optical lenses, lens arrays, and reflectors. In this specification, these flat or curved glass substrates are also referred to as glass substrates, and an example in which the glass substrate is a glass substrate will be described below.
  • a first electrode and a second electrode connected to a direct current power source are arranged facing each other with a predetermined interval, and the glass substrate is arranged between these electrodes. That is, the first main surface (for example, the upper surface) of the glass substrate is separated from the first electrode by a predetermined distance, and the second main surface (for example, the lower surface) is in contact with the second electrode. Place a glass substrate. Then, a DC voltage is applied so that the first electrode is a positive electrode and the second electrode is a ground or a negative electrode to generate a corona discharge between the electrodes.
  • the distance between the upper surface of the glass substrate and the first electrode as the positive electrode varies depending on the shape of the first electrode, the applied voltage, and the like, the larger the distance, the smaller the discharge current and the weaker the corona discharge. It is larger and 30 mm or less is preferable. Furthermore, as the distance is shorter, the discharge current becomes parabolically and corona discharge becomes stronger, so that it is more preferably greater than 0 mm and not greater than 10 mm.
  • the first electrode as the positive electrode preferably has a smaller electrode area than the second electrode as the ground or the negative electrode.
  • the “electrode area” means the projected area on the main surface of the glass substrate that is the object to be processed for the first electrode that is the positive electrode, and the glass substrate for the second electrode that is the ground or the negative electrode. The area in contact with the second main surface.
  • the “electrode area” is the “electrode area” for each wire-like electrode or each needle-like electrode. The sum of
  • the first electrode which is a positive electrode
  • a wire-like electrode or a needle-like electrode having a sharp tip at the tip can be used.
  • One of these wire-like electrodes and needle-like electrodes may be used alone, or a plurality of them may be arranged at a predetermined interval (pitch) from each other, and these aggregates may be used as the first electrode. .
  • the glass substrate surface can be uniformly treated.
  • FIGS. 1A, 1B, 2A, and 2B Examples of apparatuses used in the surface treatment process are shown in FIGS. 1A, 1B, 2A, and 2B.
  • 1A and 2A are front views schematically showing the configuration of the surface treatment apparatus 1
  • FIGS. 1B and 2B are top views of the surface treatment apparatus 1 for explaining the arrangement of the first electrodes with respect to the glass substrate.
  • FIG. 1A In the surface treatment apparatus 1 shown in FIG. 1A, a wire electrode 2a is provided as the first electrode 2 which is a positive electrode.
  • a needle electrode 2 b is provided as the first electrode 2.
  • symbol 3 shows the 2nd electrode which is earth
  • symbol 4 shows the glass substrate which is a to-be-processed object.
  • Reference numeral 5 indicates a DC power source
  • reference numeral 6 indicates an ammeter for monitoring a current flowing through the circuit.
  • the wire-like electrode 2a as the first electrode 2 is preferably thin from the viewpoint of the ease of occurrence of corona discharge.
  • the diameter of the electrode 2a is preferably 0.03 to 0.8 mm, more preferably 0.1 to 0.7 mm.
  • each wire-like electrode 2a has an interval larger than 0 mm and equal to the distance between the glass substrate 4 and the wire-like electrode 2a, as shown in FIG. 1B.
  • the processing unevenness is alleviated by the parallel movement of the glass substrate 4.
  • the interval between the wire-like electrodes 2a can be made larger.
  • the second electrode 3 integrated with the glass substrate 4 is preferably moved relative to the wire electrode 2 a that is the first electrode 2.
  • the second electrode 3, which is the ground or the negative electrode, is moved in parallel to the arrangement surface of the wire electrode 2 a parallel to the upper surface of the glass substrate 4, that is, moved in a direction perpendicular to the discharge direction of the corona discharge. preferable.
  • the second electrode 3 which is an earth or a negative electrode, is moved in a direction perpendicular to the length direction of the wire electrode 2 a with the glass substrate 4 placed thereon.
  • This motion is more preferably a linear motion or a reciprocating linear motion, but may be a rotational motion or a rocking motion.
  • a cylindrical or rectangular casing as in the case of a widely used charger called corotron / scorotron using corona discharge.
  • a grid electrode may be provided.
  • the needle-like electrode 2b which is the first electrode 2 preferably has a root portion with a diameter of 0.1 to 2 mm, and the sharp tip of the needle-like electrode 2b is formed on the upper surface of the glass substrate 4. It is preferable to arrange so that the length direction is perpendicular to the upper surface.
  • each needle-like electrode 2 b is parallel to each other and has a length direction perpendicular to the upper surface of the glass substrate 4, and a tip portion of the glass substrate 4. It is preferable to arrange them at equal distances from the top surface. Further, as shown in FIG.
  • the disposition positions of the needle-like electrodes 2b are larger than 0 mm, and have a staggered or grid-like shape with an interval d that is about the same as the distance between the glass substrate 4 and the needle-like electrodes 2b.
  • a uniform arrangement such as the above is preferable for uniformly treating the surface of the glass substrate 4.
  • the angle (tip angle) of the tip of the needle-like electrode 2b becomes smaller and smaller, the electric field intensity directly below becomes larger. Therefore, by adjusting the tip angle of the needle-like electrode 2b, the first positive electrode as the positive electrode is obtained.
  • the electric field strength near the electrode 2 can be adjusted.
  • the tip angle of the needle electrode 2b is preferably 1 to 15 degrees, and more preferably 1 to 9 degrees.
  • a corrosion-resistant conductive film such as gold, platinum, or other noble metal is provided on the surface, the uniformity of electric field strength is improved and the durability as an electrode is improved. .
  • the second electrode 3 that is a ground or a negative electrode has a second main surface (lower surface) of a glass substrate 4 that is an object to be processed, such as a flat plate shape or a curved plate shape. Those having a shape adapted to the above are preferred. Moreover, the thing which contacts the glass substrate 4 uniformly in a surface, such as a mesh-shaped thing which has a perforated part, may be used.
  • the conductivity to the glass substrate 4 is improved, so that the applied voltage can be increased.
  • the conductive property can be further improved by providing a conductive film such as ITO on the surface in contact with the glass substrate 4.
  • the glass substrate temperature in the surface treatment step is preferably from room temperature to the glass transition point Tg.
  • Tg glass transition point
  • the temperature range is Tg or less, and the glass exhibits a solid state having a sufficiently high viscosity, so that the alkali ions in the glass substrate do not move excessively and the movement direction of the alkali ions is the electric field direction. Since it is limited to the direction toward the side, the efficiency of the surface treatment by corona discharge is high.
  • the temperature of the glass substrate is preferably 25 to 400 ° C, more preferably 100 to 300 ° C. However, when Tg is 400 ° C. or lower, the temperature of the glass substrate is more preferably lower.
  • the DC voltage applied between the first electrode and the second electrode is a voltage that generates a corona discharge between the first electrode as a positive electrode and the second electrode as a ground or a negative electrode, More specifically, it is a voltage that generates corona discharge from the first electrode that is the positive electrode.
  • This applied voltage varies depending on the shape of the first electrode and the temperature of the glass substrate as the object to be processed, but is preferably in the range of 3 to 12 kV. When the applied voltage is less than 3 kV, corona discharge hardly occurs. When the applied voltage exceeds 12 kV, arc discharge tends to occur and it is difficult to continue corona discharge.
  • the applied voltage is more preferably 5 to 10 kV.
  • the current flowing through the glass substrate, which is the object to be processed, by applying such a DC voltage includes both a current due to the movement of electrons and a current due to the movement of cations including alkali ions.
  • the current flowing through the glass substrate is preferably in the range of 0.01 to 1000 mA, more preferably 0.1 to 100 mA.
  • the quantity of electricity per unit area is preferably in the range of 10 ⁇ 500mC / cm 2, more preferably 50 ⁇ 400mC / cm 2, more preferably 100 ⁇ 300mC / cm 2.
  • the treatment time that is, the time for which the corona discharge is continued depends on the applied voltage, the distance between the first electrode and the second electrode, the shape and arrangement of the first electrode, and the like. Time is preferable, and 2 to 10 hours are more preferable.
  • an atmosphere mainly composed of air or nitrogen can be maintained between the first electrode and the second electrode on which the glass substrate that is the object to be processed is disposed.
  • the “atmosphere mainly composed of air or nitrogen” refers to a gas state in which the content ratio of air or nitrogen exceeds 50% by volume of the entire atmospheric gas.
  • the second electrode which is the ground or the negative electrode, is disposed so as to be in contact with the second main surface (for example, the lower surface) of the glass substrate, and the conductivity between the second electrode and the glass substrate is improved. Therefore, it is not necessary to use a plasma forming gas atmosphere such as helium or argon. That is, the surface of the glass substrate can be treated by generating corona discharge around the first electrode in an atmosphere mainly composed of air or nitrogen.
  • the molding die is arranged so that the press surface (mold surface) comes into contact with the first main surface of the glass substrate that has been surface-treated in the surface treatment step and has a low alkali concentration region formed on the surface layer portion. Then, press-molding is performed by pressing the glass substrate while maintaining the glass substrate at a predetermined temperature.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of the molding apparatus 10.
  • the molding apparatus 10 includes a molding die 13 having a fixed lower die 11 and an upper die 12 arranged to face the lower die 11.
  • the upper mold 12 is configured to be movable up and down, and a mold main body 14 is provided on the lower surface facing the lower mold 11 of the upper mold 12.
  • the glass substrate 15 surface-treated in the surface treatment step is placed on the lower mold 11 with the second main surface down, and the first main surface (alkali low concentration region) which is the upper surface thereof.
  • the press surface 14a of the die body 14 is held so as to abut on the main surface 15a on the side where is formed.
  • the glass substrate 15 and the mold 13 are heated to a predetermined temperature at which press molding can be performed, and in order to maintain the temperature, they are in contact with or in the vicinity thereof.
  • a heating mechanism such as an electric heater is disposed.
  • the press surface 14a of the mold body 14 is pressed against the first main surface 15a, which is the pressed surface of the glass substrate 15, by a method such as lowering the upper mold 12 and applying a load (pressing force) downward.
  • Pressure mechanism (not shown).
  • Such a molding apparatus 10 is disposed in a chamber (not shown) controlled in a nitrogen atmosphere or the like. Note that in the case where molding is performed in the atmosphere, a configuration without a chamber can be employed.
  • the heating mechanism is not limited to an electric heater, and any mechanism that can heat and hold the glass substrate 15 or the like at a predetermined temperature such as electromagnetic induction heating may be used.
  • the pressurizing mechanism may be any mechanism as long as it can press the press surface 14a of the mold body 14 against the pressed surface of the glass substrate 15.
  • the upper mold 12 and the lower mold 11 of the mold 13 can be made of a known mold material such as stainless steel or tungsten carbide (WC).
  • the constituent material is not particularly limited as long as it has hardness and durability that can be used as a mold.
  • the press surface 14 a that is a surface that contacts and presses the glass substrate 15 is the first main surface 15 a of the glass substrate 15 to be molded.
  • the die body 14 having the press surface 14a is made of a material having excellent heat resistance and releasability from glass, and having mechanical strength and durability.
  • the material constituting the mold body 14 include carbon such as glassy carbon, stainless steel, silicon carbide (SiC), and tungsten carbide (WC).
  • the upper mold 12 is lowered in a state where the glass substrate 15 and the mold 13 (particularly the mold body 14) are heated to a predetermined temperature at which press molding is possible, and the press surface 14a of the mold body 14 is moved to the glass substrate 15. It presses against the 1st main surface 15a which is a to-be-pressed surface, and presses with predetermined press force.
  • the heating temperature (molding temperature) T at the time of molding is a temperature at which the glass material (glass base material) constituting the glass substrate 15 softens to the extent that it can be press-molded, and is 50 to 50 from the glass transition point Tg of the glass material.
  • a temperature higher by 150 ° C. is preferable.
  • the molding temperature T is more preferably 50 to 100 ° C. higher than Tg, particularly 70 to 80 ° C. higher than Tg in that a high-quality glass molded body with high surface smoothness can be obtained. preferable.
  • the atmosphere in which the glass substrate 15 is press-molded for example, the atmosphere in the chamber (not shown) in which the molding apparatus 10 is disposed is preferably an atmosphere mainly composed of nitrogen.
  • the “atmosphere mainly composed of nitrogen” refers to a gas state in which the nitrogen content exceeds 50% by volume of the total atmosphere gas, and an atmosphere in which the nitrogen content is approximately 100% by volume is more preferable.
  • the pressing force on the first main surface 15a which is the pressed surface of the glass substrate 15, is preferably in the range of 0.01 MPa to 10 MPa, more preferably 0.1 MPa to 5 MPa, as the pressing force per unit area.
  • This applied pressure is sometimes referred to as press pressure.
  • press pressure By setting the pressing force (pressing pressure) within this range, the smooth shape of the press surface 14a of the mold body 14 is the pressed surface of the glass substrate 15 without damaging the glass substrate 15 and the mold body 14. It can be transferred and formed satisfactorily on the first main surface 15a.
  • the pressing time in the molding step depends on the pressing force, the heating temperature T during molding, etc., but is preferably 1 to 900 seconds, more preferably 1 to 300 seconds.
  • an alkali low concentration region is formed by surface treatment on the surface portion of the first main surface which is a pressed surface of the glass substrate.
  • the mold release is performed.
  • the fusion start temperature at which the force is generated is higher than that before the surface treatment, that is, compared to the region other than the low alkali concentration region of the glass substrate.
  • the molding temperature of the glass substrate which is a predetermined temperature equal to or higher than the Tg of the glass base material, has a predetermined temperature range, and the glass substrate that has not been surface-treated has a fusion start temperature that is generally the lower limit of the molding temperature range.
  • the temperature is below the value.
  • the fusion start temperature is higher than the lower limit value of the molding temperature range of the glass substrate.
  • the first main surface of the glass substrate is not deformed due to fixation with the mold body, and the shape formed in the molding process is stably held.
  • the release force is extremely small in this way, damage to the mold body and mechanical deterioration are prevented.
  • the above-mentioned mold release force per unit area of the mold main body is measured by the following method, for example. That is, a molding process in which press molding is performed using the molding apparatus 10 shown in FIG. 3, and the upper die 12 is raised after cooling after molding, and the press surface 14 a of the die body 14 is made to be the first main body of the glass substrate 15. A mold release process for separating from the surface 15a is continuously performed. At this time, when the temperature of the upper mold 12 and the lower mold 11 and the pressing force (pressing pressure) per unit area by the upper mold 12 are continuously measured, for example, in the case of a glass substrate that does not undergo a surface treatment process, A graph as shown in FIG. 4 is obtained.
  • the unit of the release force per unit area Pa, which is the same as the press pressure, or N / cm 2 can be used.
  • the baseline after release is not 0, but this does not indicate a pressurized state.
  • Example 1 A surface of a barium borosilicate glass substrate (manufactured by OHARA, trade name: L-BAL42, square with a main surface of 10 mm ⁇ 10 mm and a thickness of 2 mm, Tg: 506 ° C., softening point: 607 ° C.) shown in FIG. 1A It arrange
  • a barium borosilicate glass substrate manufactured by OHARA, trade name: L-BAL42, square with a main surface of 10 mm ⁇ 10 mm and a thickness of 2 mm, Tg: 506 ° C., softening point: 607 ° C.
  • the second electrode 3 is a grounded flat electrode (electrode material tungsten, electrode size 10 mm ⁇ 10 mm), and the glass of the same size is placed on the second electrode 3.
  • the substrate 4 was placed and placed horizontally.
  • the first electrode 2 was constituted by one wire-like electrode 2a (electrode material tungsten) having a diameter of 0.5 mm, and was arranged so that the length direction thereof was parallel to one side of the glass substrate 4.
  • the distance between the wire electrode 2a and the upper surface of the glass substrate 4 is 5 mm
  • the second electrode 3 on which the glass substrate 4 is placed is 5 mm in a direction perpendicular to the length direction of the wire electrode 2a on the horizontal plane. It was reciprocated with a stroke of 100 mm at a speed of / sec. Further, an air atmosphere was formed between the wire electrode 2a as the first electrode 2 and the second electrode 3.
  • a voltage of 6 kV is applied between the wire electrode 2a and the second electrode 3 by the DC power source 5 while the glass substrate 4 is heated to 200 ° C. and maintained at that temperature, and in this state for 2.4 hours. Processing continued.
  • the current value was measured with an ammeter 6 installed in a circuit connecting the second electrode 3 and the DC power source 5, it was constant at 0.4 mA.
  • the mold force was measured by the method described above.
  • the cross-sectional shape of the first main surface 15a which is the pressed surface of the glass substrate 15 after the mold release, was measured with a non-contact three-dimensional measuring device (manufactured by Mitaka Kogyo Co., Ltd., device name: NH-3). The cross-sectional shape was measured for a range of 7 mm at the center of a glass substrate having a side of 10 mm.
  • the mold body 14 was made of glassy carbon, and the press surface 14a was mirror-finished by polishing. Further, the heating temperature (molding temperature) T at the time of press molding is set to 580 ° C. which is 74 ° C. higher than the glass transition point Tg of the glass material (glass base material) constituting the glass substrate 15 (Tg + 74 ° C.). The pressure was 2 MPa, and the press time was 60 seconds. Furthermore, the inside of the chamber was a nitrogen atmosphere (oxygen concentration 15 ppm).
  • FIG. 5 shows the changes over time in the temperature of the upper mold 12 (the mold main body 14) and the lower mold 11, and the measurement value of the press pressure by the upper mold 12. Moreover, the cross-sectional shape of the to-be-pressed surface of the glass substrate 15 after mold release is shown in FIG. From the graph of FIG. 5, it can be seen that in the glass substrate 15 of Example 1, the release force per unit area required to separate the press surface 14 a of the mold body 14 from the glass substrate 15 is almost zero. Also, from FIG. 6, the pressed surface of the glass substrate 15 after mold release is a flat surface with a height difference of about 3 ⁇ m, and the flat and smooth shape formed by press molding is retained after mold release. It can be seen that no deformation has occurred during the mold release.
  • Comparative Example 1 A barium borosilicate glass substrate (trade name; L-BAL42, a glass substrate having a main surface of 10 mm ⁇ 10 mm square and a thickness of 2 mm) having the same composition as in Example 1 was used. This glass substrate is subjected to press molding as it is in the same manner as in Example 1 without performing surface treatment, and then released per unit area when the press surface 14a of the mold body 14 is separated from the glass substrate 15. The force was measured as in Example 1. Further, the cross-sectional shape of the pressed surface of the glass substrate 15 after the mold release was measured by a non-contact three-dimensional measuring apparatus in the same manner as in Example 1.
  • L-BAL42 a glass substrate having a main surface of 10 mm ⁇ 10 mm square and a thickness of 2 mm
  • FIG. 7 shows changes over time in the temperature of the upper mold 12 (the mold main body 14) and the lower mold 11 and the measured value of the press pressure by the upper mold 12.
  • FIG. 7 shows the cross-sectional shape of the to-be-pressed surface of the glass substrate 15 after mold release in FIG. From the graph of FIG. 7, in the glass substrate 15 of the comparative example 1, the mold release force required to separate the press surface 14a of the mold main body 14 from the glass substrate 15 is about 75 N per unit area (1 cm 2 ). It can be seen that force is generated. Further, from FIG.
  • the pressed surface (molding surface) of the glass substrate 15 after mold release rises in a trapezoidal shape with a central portion having a height of about 20 ⁇ m and a width of about 6 ⁇ m. It can be seen that deformation occurs on the molding surface of the glass substrate 15 after the release due to the fixing.
  • Example 2 and Comparative Example 2
  • a glass substrate that is not subjected to surface treatment manufactured by OHARA, trade name: L-BAL42, main surface is 10 mm ⁇ 10 mm square and 2 mm thick
  • the release force per unit area was measured by the above method (Comparative Example 2).
  • the molding temperature was changed in the range of 580 to 600 ° C. in a nitrogen atmosphere, and the press molding was performed under the conditions of a press pressure of 2 MPa and a press time of 60 seconds. After performing, the mold release force per unit area was measured by the above method (Example 2).
  • FIG. 9 is a graph showing the relationship between the molding temperature and the mold release force for each glass substrate with and without surface treatment. From this graph, in Comparative Example 2, when a glass substrate without surface treatment was used, when press molding was performed at a molding temperature T of 580 ° C. (Tg + 74 ° C.), 0.8 MPa (80 N / cm 2 ) or more. In contrast to the large mold release force per unit area, in Example 2, when a surface-treated glass substrate is used, the mold release force is almost generated at a molding temperature of 580 ° C. It was confirmed that they did not.
  • a high-quality glass molded body having a high surface smoothness can be obtained by press molding, and the pressing surface of the molding die is covered with the glass substrate in the mold release step after molding.
  • the mold release force that separates from the first main surface, which is the press surface, is extremely small. Therefore, a mold release treatment such as forming a release film of carbon or noble metal on the press surface of the mold, or applying a release agent. It can be molded at low cost without applying. Therefore, it is suitable as an inexpensive and highly reliable molding method for obtaining a glass optical element or the like.
  • DESCRIPTION OF SYMBOLS 1 Surface treatment apparatus, 2 ... 1st electrode (positive electrode), 2a ... Wire-like electrode, 2b ... Needle-like electrode, 3 ... 2nd electrode (earth or negative electrode), 4 ... Glass substrate, 5 ... DC power supply, DESCRIPTION OF SYMBOLS 10 ... Molding apparatus, 11 ... Lower mold, 12 ... Upper mold, 13 ... Mold, 14 ... Mold main body, 14a ... Press surface, 15 ... Glass substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

Provided is a method for press-molding a glass substrate using a molding die, and inexpensively obtaining a glass molded article having high molded surface smoothness and high quality. The present invention is provided with: a surface processing step for placing a glass substrate having a pair of principal faces and comprising a glass containing an alkali oxide in the composition thereof between a first electrode and a second electrode, generating a corona discharge by applying a direct-current voltage so that the first electrode is a positive electrode and the second electrode is a ground or a negative electrode, and causing at least one species of alkali ion to move toward the second principal face side, which is the ground side or the negative electrode side, in a surface part on the first principal face side, which is the positive electrode side of the glass substrate; and a molding step for placing a molding die so that a press face abuts on the first principal face of the glass substrate, the surface of which has been processed in the surface processing step, and press-molding the glass substrate while maintaining the glass substrate at a predetermined temperature. The present invention furthermore has a mold release step for cooling the glass substrate and the molding die after the molding step, and separating the press face of the molding die from the first principal face of the glass substrate.

Description

ガラス基体の成形方法Glass substrate molding method
 本発明は、ガラス基体の成形方法に係り、より詳しくは、プレス成形により形状安定性の高い成形面を有するガラス基体を低コストで得る方法に関する。 The present invention relates to a method for forming a glass substrate, and more particularly to a method for obtaining a glass substrate having a molding surface with high shape stability at low cost by press molding.
 近年、レンズやプリズムのようなガラス光学素子の製造方法として、加熱軟化したガラス素材を、型(以下、成形型ともいう。)を用いて加圧し成形するプレス成形法が用いられている。また従来から、磁気記録媒体用等のガラス基板を、成形型を用いたプレス成形により製造することが行なわれている。プレス成形法は、ガラス材を加熱して軟化させる工程、成形型を用いて加圧して成形する工程、冷却の後成形型をガラス成形体から引き離す(以下、離型するという。)工程を順に経ることにより、成形型のプレス面である、例えば高精度に平滑な型面を、ガラス材に転写するものであり、平滑性が高く高品質の成形面が得られるうえに低コストで生産性が高い方法である。 In recent years, as a method of manufacturing a glass optical element such as a lens or a prism, a press molding method is used in which a heat-softened glass material is pressed and molded using a mold (hereinafter also referred to as a mold). Conventionally, glass substrates for magnetic recording media and the like have been manufactured by press molding using a mold. In the press molding method, a step of heating and softening a glass material, a step of pressing and molding using a molding die, and a step of separating the molding die from the glass molded body after cooling (hereinafter referred to as mold release) are sequentially performed. By passing, for example, the press surface of the mold, for example, a highly accurate and smooth mold surface is transferred to a glass material, a smooth and high-quality molding surface can be obtained, and productivity can be reduced at low cost. Is a high method.
 このようなプレス成形法において、高温で軟化したガラスへの成形型の融着を防ぎ、高精度に加工されたプレス面を保護すると同時に、平滑性が高いガラス成形体の成形面を得るために、成形型のプレス面に離型膜を施すことが行われている。離型膜には、ガラスとの離型性とともに、成形型との密着性、表面の平滑性、高硬度等が要求され、従来からCrめっき膜、Niめっき膜、カーボン膜、Ir、Re等の貴金属膜等が用いられていた。また、特許文献1には、高硬度でヒートサイクルに対する耐久性に優れ、特に鉛を含有するガラスと化学的に反応しない離型膜として、窒化ホウ素膜が提案されている。 In such a press molding method, in order to prevent the fusion of the mold to the glass softened at high temperature, to protect the press surface processed with high precision, and at the same time to obtain a molding surface of a glass molded body with high smoothness A mold release film is applied to the press surface of the mold. The mold release film is required to have mold releasability, adhesion to the mold, surface smoothness, high hardness and the like. Conventionally, Cr plating film, Ni plating film, carbon film, Ir, Re, etc. Noble metal films were used. Further, Patent Document 1 proposes a boron nitride film as a release film that is high in hardness and excellent in durability against heat cycles, and that does not chemically react with glass containing lead in particular.
 しかしながら、これらの離型膜では、材料自体のコストが高くつく、膜形成の作業コストが高い、などの問題があった。 However, these release films have problems such as high cost of materials themselves and high cost of film formation.
 また、特許文献2には、磁気記録媒体用ガラス基板の成形において、成形用金型の少なくとも型面(プレス面)に、高級脂肪酸の金属塩のような離型剤層を形成して、金型と成形体であるガラス基板との間の離型性を上げる方法が提示されている。 Further, in Patent Document 2, in forming a glass substrate for a magnetic recording medium, a mold release agent layer such as a metal salt of a higher fatty acid is formed on at least the mold surface (press surface) of the mold, There has been proposed a method for improving the releasability between a mold and a glass substrate which is a molded body.
 しかしながら、この方法では、金型のプレス面に離型剤の残留物が蓄積してガラス基板に転写されるのを防止するため、離型剤層の膜厚の制御が難しいばかりでなく、成形の度ごとに離型剤を塗布して所要の厚さの離型剤層を形成しなければならないため、作業効率が悪いという問題があった。 However, this method not only makes it difficult to control the film thickness of the release agent layer in order to prevent the residue of the release agent from accumulating on the press surface of the mold and being transferred to the glass substrate. Each time, a release agent must be applied to form a release agent layer having a required thickness, resulting in a problem of poor work efficiency.
特開平5-147954号公報Japanese Patent Laid-Open No. 5-147954 特開2004-131315号公報JP 2004-131315 A
 本発明は、前記した従来からの問題を解決するためになされたもので、成形型を用いてガラス基体をプレス成形し、成形面の平滑性が高く高品質のガラス成形体を安価に得る方法の提供を目的とする。 The present invention has been made to solve the above-described conventional problems, and is a method for press-molding a glass substrate using a mold and obtaining a high-quality glass molded body with high molding surface smoothness at low cost. The purpose is to provide.
 本発明のガラス基体の成形方法は、第1の電極と第2の電極との間に、一対の主面を有し、組成においてアルカリ酸化物を含有するガラスからなるガラス基体を配置し、前記第1の電極を正極とし前記第2の電極をアースまたは負極とするように直流電圧を印加してコロナ放電を発生させ、前記ガラス基体の正極側である第1の主面側の表層部において、アルカリイオンの少なくとも1種を、アースまたは負極側である第2の主面側に向って移動させる表面処理工程と、前記表面処理工程で表面処理されたガラス基体の前記第1の主面に、プレス面が当接するように成形型を配置し、前記ガラス基体を所定の温度に保持した状態でプレス成形する成形工程を備えることを特徴とする。 In the glass substrate molding method of the present invention, a glass substrate made of glass having a pair of main surfaces and containing an alkali oxide in the composition is disposed between the first electrode and the second electrode, A DC voltage is applied to generate a corona discharge so that the first electrode is a positive electrode and the second electrode is a ground or a negative electrode. In the surface portion on the first main surface side that is the positive electrode side of the glass substrate A surface treatment step of moving at least one kind of alkali ions toward the second main surface side that is the ground or negative electrode side; and the first main surface of the glass substrate surface-treated in the surface treatment step. The method further comprises a molding step in which a molding die is arranged so that the press surface comes into contact with the glass substrate and press molding is performed in a state where the glass substrate is held at a predetermined temperature.
 本発明のガラス基体の成形方法において、前記成形工程の後、前記ガラス基体および前記成形型を冷却して、前記成形型の前記プレス面を前記ガラス基体の前記第1の主面から離す離型工程を有することが好ましい。また、前記成形工程は窒素を主体とする雰囲気で行うことが好ましい。 In the glass substrate molding method of the present invention, after the molding step, the glass substrate and the mold are cooled, and the release surface separates the press surface of the mold from the first main surface of the glass substrate. It is preferable to have a process. The molding step is preferably performed in an atmosphere mainly composed of nitrogen.
 本発明のガラス基体の成形方法では、前記表面処理工程において、前記ガラス基体を、第1の主面が前記第1の電極に対して離間し、かつ第2の主面が前記第2の電極に接触するように配置し、前記第1の電極を正極とし前記第2の電極をアースまたは負極とするように直流電圧を印加してコロナ放電を発生させることが好ましい。そして、前記表面処理工程において、前記第1の電極はワイヤ状の電極であり、このワイヤ状電極を、その長さ方向を前記ガラス基体の前記第1の主面に平行にして配置することが好ましい。 In the glass substrate molding method of the present invention, in the surface treatment step, the glass substrate is separated from the first electrode by a first main surface and the second electrode is formed by a second main surface. It is preferable that a corona discharge is generated by applying a DC voltage so that the first electrode is a positive electrode and the second electrode is a ground or a negative electrode. In the surface treatment step, the first electrode is a wire-like electrode, and the wire-like electrode may be arranged with its length direction parallel to the first main surface of the glass substrate. preferable.
 さらに、前記表面処理工程において、前記第1の電極と前記第2の電極との間は、空気または窒素を主体とする雰囲気に保持されることが好ましい。また、前記ガラス基体の温度は常温~ガラス転移点Tgが好ましい。また、前記第2の電極と前記ガラス基体とを一体とし、前記第1の電極の前記第1の主面に平行する配置面に対して平行に運動させることが好ましい。さらに、前記ガラス基体は、アルカリ酸化物とアルカリ土類酸化物を合計で15質量%を超える割合で含有するガラス材料からなることが好ましい。 Further, in the surface treatment step, it is preferable that an atmosphere mainly composed of air or nitrogen is maintained between the first electrode and the second electrode. The temperature of the glass substrate is preferably from room temperature to the glass transition point Tg. Further, it is preferable that the second electrode and the glass substrate are integrated and moved in parallel with the arrangement surface of the first electrode parallel to the first main surface. Furthermore, the glass substrate is preferably made of a glass material containing a total of alkali oxides and alkaline earth oxides exceeding 15% by mass.
 本発明の成形方法によれば、プレス成形により表面の平滑性が高く高品質のガラス成形体を得ることができるうえに、成形後の離型工程で、成形型のプレス面をガラス基体の被プレス面である第1の主面から引き離す離型に要する力(以下、離型力ともいう。)が極めて小さくなるので、成形型のプレス面に、カーボンや貴金属の離型膜を形成する、離型剤を塗布する、などの離型処理を施すことなく、低コストで成形を行うことができる。 According to the molding method of the present invention, a high-quality glass molded body having a high surface smoothness can be obtained by press molding, and the pressing surface of the molding die is covered with the glass substrate in the mold release step after molding. Since the force required for releasing from the first main surface which is the press surface (hereinafter also referred to as releasing force) is extremely small, a release film of carbon or noble metal is formed on the pressing surface of the forming die. Molding can be performed at low cost without performing a release treatment such as applying a release agent.
 また、前記したように、成形型の離型力が極めて小さいので、離型の際に成形型との固着によりガラス基体の被プレス面が変形することがなく、形状安定性が高い。さらに、離型力の低減により、成形型の機械的劣化も抑制されるので、成形型の使用寿命が長くなり、コストを低減できるうえに、型交換にかかる時間を節約できるため、生産性が向上する。 Further, as described above, since the mold release force of the mold is extremely small, the pressed surface of the glass substrate is not deformed due to fixation with the mold during the mold release, and the shape stability is high. In addition, since the mechanical force of the mold is suppressed by reducing the mold release force, the service life of the mold can be extended, the cost can be reduced, and the time required for mold replacement can be saved. improves.
本発明の実施形態の表面処理工程で使用される表面処理装置の一例の概略構成を示す正面図である。It is a front view which shows schematic structure of an example of the surface treatment apparatus used at the surface treatment process of embodiment of this invention. 本発明の実施形態の表面処理工程で使用される表面処理装置の一例におけるガラス基板に対する第1の電極の配置を示す上面図である。It is a top view which shows arrangement | positioning of the 1st electrode with respect to the glass substrate in an example of the surface treatment apparatus used at the surface treatment process of embodiment of this invention. 本発明の実施形態の表面処理工程で使用される表面処理装置の別の例の概略構成を示す正面図である。It is a front view which shows schematic structure of another example of the surface treatment apparatus used at the surface treatment process of embodiment of this invention. 本発明の実施形態の表面処理工程で使用される表面処理装置の別の例におけるガラス基板に対する第1の電極の配置を示す上面図である。It is a top view which shows arrangement | positioning of the 1st electrode with respect to the glass substrate in another example of the surface treatment apparatus used at the surface treatment process of embodiment of this invention. 本発明の実施形態の成形工程で用いられる成形装置の一例を示す断面図である。It is sectional drawing which shows an example of the shaping | molding apparatus used at the shaping | molding process of embodiment of this invention. 表面処理工程を経ないガラス基体の場合の、成形型の温度およびプレス力の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the temperature of a shaping | molding die, and the press force in the case of the glass substrate which does not pass through a surface treatment process. 実施例1において、成形型(上型および下型)の温度とプレス力の測定値の経時変化を示すグラフである。In Example 1, it is a graph which shows the time-dependent change of the measured value of the temperature and press force of a shaping | molding die (upper mold | type and lower mold | type). 実施例1において、離型後のガラス基板の被プレス面(成形面)の断面形状を示す図である。In Example 1, it is a figure which shows the cross-sectional shape of the to-be-pressed surface (molding surface) of the glass substrate after mold release. 比較例において、成形型(上型および下型)の温度とプレス力の測定値の経時変化を示すグラフである。In a comparative example, it is a graph which shows the time-dependent change of the measured value of the temperature and press force of a shaping | molding die (upper mold | type and lower mold | type). 比較例において、離型後のガラス基板の被プレス面(成形面)の断面形状を示す図である。In a comparative example, it is a figure which shows the cross-sectional shape of the to-be-pressed surface (molding surface) of the glass substrate after mold release. 表面処理ありと表面処理なしのそれぞれのガラス基板について、成形温度と発生する離型力との関係を示すグラフである。It is a graph which shows the relationship between shaping | molding temperature and the mold release force about each glass substrate with surface treatment and without surface treatment.
 本願明細書において、アルカリ酸化物はアルカリ金属酸化物を、アルカリイオンはアルカリ金属イオンを、アルカリ土類酸化物はアルカリ土類金属酸化物を、アルカリ土類イオンはアルカリ土類金属イオンを意味する。以下、本発明の実施の形態について説明する。 In the present specification, alkali oxide means alkali metal oxide, alkali ion means alkali metal ion, alkaline earth oxide means alkaline earth metal oxide, and alkaline earth ion means alkaline earth metal ion. . Embodiments of the present invention will be described below.
 実施形態のガラス基体の成形方法は、表面処理工程と成形工程を備える。表面処理工程は、第1の電極と第2の電極との間に、一対の主面(第1の主面と第2の主面)を有し、アルカリ酸化物を含有するガラスからなる基体を配置し、前記第1の電極を正極とし前記第2の電極をアースまたは負極とするように直流電圧を印加してコロナ放電を発生させ、前記ガラス基体の正極側である第1の主面側の表層部において、アルカリイオンの少なくとも1種を、アースまたは負極側である第2の主面側に向って移動させる工程である。また、成形工程は、前記表面処理工程で処理されたガラス基体の前記第1の主面に、プレス面が当接するように成形型を配置し、前記ガラス基体を所定の温度に保持した状態でプレス成形する工程である。実施形態のガラス基体の成形方法は、前記成形工程の後冷却して、成形型のプレス面を前記ガラス基体の前記第1の主面から離す離型工程をさらに有する。 The glass substrate molding method of the embodiment includes a surface treatment step and a molding step. The surface treatment step has a pair of main surfaces (first main surface and second main surface) between the first electrode and the second electrode, and is made of glass containing an alkali oxide. A first main surface that is a positive electrode side of the glass substrate by generating a corona discharge by applying a DC voltage so that the first electrode is a positive electrode and the second electrode is a ground or a negative electrode. In the surface layer portion on the side, at least one kind of alkali ions is moved toward the second main surface side that is the ground or negative electrode side. In the molding step, a molding die is arranged so that the press surface is in contact with the first main surface of the glass substrate treated in the surface treatment step, and the glass substrate is held at a predetermined temperature. It is a step of press molding. The glass substrate forming method of the embodiment further includes a mold releasing step of cooling after the forming step and separating the press surface of the forming die from the first main surface of the glass substrate.
 本発明の実施形態の成形方法によれば、表面処理工程で、ガラス基体に対して直流電圧を印加してコロナ放電を発生させ、ガラス基体の正極側である第1の主面側の表層部において、アルカリイオンをアースまたは負極側である第2の主面側に向って移動させることで、アルカリイオンの含有割合が他の領域(例えば、ガラス母材)より低いアルカリ低濃度領域を、ガラス基体の前記正極側の表層部に形成できる。なお、このアルカリ低濃度領域では、前記したアルカリイオンの含有割合の低減に伴い、SiOの含有割合は他の領域より高くなっている。ここで、ガラス母材とは、表面処理される前の状態のガラス基体を構成するガラス材料をいう。ガラス基体において、表面処理された後のアルカリ低濃度領域以外の領域は、ガラス母材と略同様のガラス組成といえる。 According to the molding method of the embodiment of the present invention, in the surface treatment step, a direct current voltage is applied to the glass substrate to generate corona discharge, and the first main surface side surface layer portion that is the positive electrode side of the glass substrate. , By moving the alkali ions toward the second main surface which is the ground or negative electrode side, the alkali low concentration region in which the alkali ion content ratio is lower than other regions (for example, glass base material) It can form in the surface layer part of the said positive electrode side of a base | substrate. In this alkaline low concentration region, with the reduction of the content of the alkaline ions, the content of SiO 2 is higher than other regions. Here, a glass base material means the glass material which comprises the glass base | substrate of the state before surface treatment. In the glass substrate, the region other than the low alkali concentration region after the surface treatment can be said to have a glass composition substantially similar to that of the glass base material.
 そして、このように表面処理がなされ、第1の主面側の表層部にアルカリ低濃度領域が形成されたガラス基体に対して、成形工程で、当該第1の主面にプレス面が当接するように成形型を配置し、ガラス母材のガラス転移点Tg以上の所定の温度(以下、成形温度ともいう。)に保持した状態で、成形型の平滑なプレス面により加圧することにより、ガラス基体はプレス成形され、その被プレス面である第1の主面は平滑性の高い面となる。 Then, the press surface is brought into contact with the first main surface in the molding process with respect to the glass substrate on which the surface treatment is performed in this way and the surface layer portion on the first main surface side is formed with the alkali low concentration region. By placing the mold in this manner and holding the glass mold at a predetermined temperature equal to or higher than the glass transition point Tg of the glass base material (hereinafter also referred to as the molding temperature), the glass mold is pressed with a smooth press surface of the mold. The substrate is press-molded, and the first main surface, which is the pressed surface, is a highly smooth surface.
 その後の離型工程で、成形型のプレス面はガラス基体の前記第1の主面から引き離される(離型される)が、このとき離型に要する離型力はほとんど0に近いほど小さく、表面処理を行わなかったガラス基体をプレス成形した場合に比べて著しく減少する。 In the subsequent mold release step, the press surface of the mold is separated from the first main surface of the glass substrate (released). At this time, the release force required for release is almost as small as 0, The glass substrate that has not been surface-treated is remarkably reduced as compared with the case of press molding.
 このように離型力が極めて小さくなるのは、以下に示す理由によると考えられる。
 通常、表面処理がされていないガラス基体を上記成形温度でプレス成形する際には、プレス時に成形型のプレス面とガラス基体の被プレス面とが融着し、離型工程において離型力が発生する。これは、成形の際に成形型のプレス面とガラス基体の被プレス面とが融着を開始する温度(以下、融着開始温度という。)が成形温度より低いことに起因する。
The reason why the releasing force becomes extremely small in this way is considered to be as follows.
Usually, when a glass substrate that has not been surface-treated is press-molded at the above molding temperature, the press surface of the mold and the pressed surface of the glass substrate are fused at the time of pressing, and the mold release force is increased in the mold release process. appear. This is because the temperature at which the pressing surface of the mold and the pressed surface of the glass substrate start fusing during molding (hereinafter referred to as fusing start temperature) is lower than the molding temperature.
 しかし、本実施形態によれば、ガラス基体の被プレス面である第1の主面側の表層部では、前記したように、表面処理により、アルカリイオンの含有割合が低く相対的にSiOの含有割合が高くなっているので、その融着開始温度が、表面処理がされていないガラス基体の融着開始温度に比べて高くなる。 However, according to this embodiment, the surface portion of the first main surface which is an object to be pressed surface of the glass substrate, as mentioned above, by surface treatment, the content of alkali ions is relatively SiO 2 lower Since the content ratio is high, the fusion start temperature is higher than the fusion start temperature of the glass substrate that has not been surface-treated.
 一方、前記した成形温度はガラス母材に依存するため、ガラス母材が同一であれば表面処理の有無にかかわらず一定である。また、ガラス母材の成形に適用可能な上記成形温度は所定の範囲を有する。表面処理されていないガラス基体では融着開始温度が概ね該成形温度範囲の下限値以下の温度である。しかし、表面処理されたガラス基体では、融着開始温度が該成形温度範囲の下限値を超える高い温度となり、成形温度を融着開始温度より低い温度に適宜設定できる。そのため、表面処理されたガラス基体では成形温度<融着開始温度とすることができ、前記融着開始温度より低い温度でのプレス成形が可能となるので、成形型のプレス面とガラス基体との融着が生じることがなく、したがって離型に要する離型力は極めて小さくほとんど0になる。離型力の測定については、後でさらに詳しく説明する。 On the other hand, since the molding temperature described above depends on the glass base material, if the glass base material is the same, it is constant regardless of the presence or absence of surface treatment. Further, the molding temperature applicable to the molding of the glass base material has a predetermined range. In a glass substrate that is not surface-treated, the fusing start temperature is generally lower than the lower limit of the molding temperature range. However, in the surface-treated glass substrate, the fusion start temperature is higher than the lower limit of the molding temperature range, and the molding temperature can be appropriately set to a temperature lower than the fusion start temperature. Therefore, in the surface-treated glass substrate, the molding temperature can be set to the fusion start temperature, and press molding can be performed at a temperature lower than the fusion start temperature. No fusing occurs, and therefore the mold release force required for mold release is extremely small and almost zero. The measurement of the release force will be described in more detail later.
 このように、実施形態の成形方法によれば、プレス成形後の成形型の離型力が極めて小さい(ほとんど0に近い)ので、ガラス基体の被プレス面である成形面の形状安定性が良好であり、引き離し方向への断面形状の変形が生じない。さらに、このような離型力の低減により、成形型の機械的劣化も抑制されるので、使用寿命が長くなりコストを低減できる。
 以下、本発明の実施形態の各工程について説明する。
Thus, according to the molding method of the embodiment, the mold release force of the molding die after press molding is extremely small (almost close to 0), so the shape stability of the molding surface that is the pressed surface of the glass substrate is good. Thus, the cross-sectional shape is not deformed in the pulling direction. Furthermore, since the mechanical degradation of the mold is suppressed by such a reduction in the releasing force, the service life can be extended and the cost can be reduced.
Hereinafter, each process of embodiment of this invention is demonstrated.
[表面処理工程]
 表面処理工程では、まず、第1の電極と第2の電極との間に、一対の主面を有し、アルカリ酸化物を含有するガラスからなるガラス基体を配置する。ガラス基体の配置は、一方の主面(第1の主面)が第1の電極に対して離間し、かつ他方の主面(第2の主面)が第2の電極に接触するようにする。そして、第1の電極を正極とし第2の電極をアースまたは負極とするように直流電圧を印加して、電極間にコロナ放電を発生させ、発生したコロナ放電により、ガラス基体の正極に近い第1の主面側の表層部において、アルカリイオンの少なくとも1種を、アースまたは負極側である第2の主面側に向って移動させる。このようなアルカリイオンの移動により、第1の主面側の表層部において、アルカリイオンの含有割合(以下、含有濃度ということがある。)が減少し、アルカリイオンの含有濃度が他の領域(例えば、ガラス母材)より低いアルカリ低濃度領域が形成される。
[Surface treatment process]
In the surface treatment step, first, a glass substrate made of glass having a pair of main surfaces and containing an alkali oxide is disposed between the first electrode and the second electrode. The glass substrate is arranged so that one main surface (first main surface) is separated from the first electrode and the other main surface (second main surface) is in contact with the second electrode. To do. Then, a DC voltage is applied so that the first electrode is a positive electrode and the second electrode is a ground or a negative electrode to generate a corona discharge between the electrodes. The generated corona discharge causes the first electrode close to the positive electrode of the glass substrate. In the surface layer portion on the first main surface side, at least one kind of alkali ions is moved toward the second main surface side which is the ground or negative electrode side. By such movement of alkali ions, the content ratio of alkali ions (hereinafter sometimes referred to as content concentration) decreases in the surface layer portion on the first main surface side, and the content concentration of alkali ions is reduced to other regions ( For example, an alkali low concentration region lower than the glass base material is formed.
 本実施形態においては、上記のとおりコロナ放電によりガラス基体の表面処理を行う。コロナ放電による表面処理においては、後述のようにガラス基体の被処理面に電極が接触することはない。よって、コロナ放電によれば、被処理面に損傷等を与えることなくガラス基体の表面処理が可能である。 In the present embodiment, the surface treatment of the glass substrate is performed by corona discharge as described above. In the surface treatment by corona discharge, the electrode does not contact the surface to be treated of the glass substrate as described later. Therefore, according to corona discharge, the surface treatment of the glass substrate can be performed without damaging the surface to be treated.
 なお、基体を構成するガラスがアルカリイオンとともにアルカリ土類イオンを含有する場合、ガラス基体の正極側表層部において、アルカリイオンだけでなくアルカリ土類イオンもアースまたは負極側に向って移動するため、ガラス基体の正極側表層部に形成されるアルカリ低濃度領域においては、アルカリイオンの含有濃度だけでなく、アルカリ土類イオンの含有濃度も他の領域より低くなる。しかし、単位時間当たりの移動距離は、アルカリ土類イオンに比べてアルカリイオンが大きくなるので、コロナ放電により移動するイオンは代表的にはアルカリイオンである。したがって、アルカリイオンの低濃度領域として記載するものとする。 When the glass constituting the substrate contains alkaline earth ions together with alkali ions, in the positive electrode side surface layer portion of the glass substrate, not only alkali ions but also alkaline earth ions move toward the ground or negative electrode side, In the alkali low concentration region formed in the surface layer on the positive electrode side of the glass substrate, not only the alkali ion content concentration but also the alkaline earth ion content concentration is lower than other regions. However, since the movement distance per unit time is larger for alkali ions than for alkaline earth ions, ions that move due to corona discharge are typically alkali ions. Therefore, it shall be described as a low concentration region of alkali ions.
 また、ガラス基体がその組成において複数種のアルカリ酸化物を含む場合、複数種のアルカリイオンはいずれもアースまたは負極側に向って移動する結果、いずれのアルカリイオンの含有濃度も他の領域より低い領域がガラス基体の表層部に形成される。しかし、アルカリイオンの中ではナトリウムイオンが最も移動しやすく、かつ移動による離型性向上の効果が大きいので、表面処理工程においてコロナ放電によって移動させるアルカリイオンの主たるものは、ナトリウムイオンであり、ナトリウムイオンの低濃度領域の形成を目的とする。 In addition, when the glass substrate contains a plurality of types of alkali oxides in its composition, the plurality of types of alkali ions all move toward the ground or the negative electrode side, so that the concentration of any alkali ions is lower than other regions. A region is formed in the surface layer portion of the glass substrate. However, among the alkali ions, sodium ions are most likely to move, and the effect of improving the releasability by the movement is great, so the main alkali ions that are moved by corona discharge in the surface treatment process are sodium ions, and sodium ions The purpose is to form a low concentration region of ions.
<ガラス基体>
 表面処理工程で表面処理されるガラス基体は、組成においてアルカリ酸化物を有するガラス材料、すなわちガラス母材から構成される。ガラス母材の組成は、少なくとも1種のアルカリ酸化物を有するものであれば特に限定されないが、表面処理の容易性の観点から、アルカリ酸化物およびアルカリ土類酸化物を合計で15質量%を超える割合で含有するものが好ましい。
<Glass substrate>
The glass substrate surface-treated in the surface treatment step is composed of a glass material having an alkali oxide in composition, that is, a glass base material. The composition of the glass base material is not particularly limited as long as it has at least one alkali oxide. From the viewpoint of easy surface treatment, the total amount of alkali oxide and alkaline earth oxide is 15% by mass. What contains it in the ratio exceeding is preferable.
 そのようなガラス材料としては、酸化物基準の質量%表示で、SiOを50~80%、Alを0.5~25%、Bを0~10%、NaOを10~16%、KOを0~8%、LiOを0~16%、CaOを0~10%、MgOを0~12%、その他SrO、BaO、ZrO、ZnO、SnOなどを合計で10%未満含有するガラスを挙げることができる。以下、このガラスを構成する各成分について記載する。なお、%はいずれも質量%を表す。 As such a glass material, SiO 2 is 50 to 80%, Al 2 O 3 is 0.5 to 25%, B 2 O 3 is 0 to 10%, Na 2 O in terms of mass% based on oxide. 10 to 16%, K 2 O 0 to 8%, Li 2 O 0 to 16%, CaO 0 to 10%, MgO 0 to 12%, other SrO, BaO, ZrO 2 , ZnO, SnO 2 The glass which contains less than 10% in total etc. can be mentioned. Hereinafter, it describes about each component which comprises this glass. In addition, all represent mass%.
 SiOはガラスの骨格を構成する成分である。SiOの含有割合が50%未満では、ガラスとしての安定性が低下する、または耐候性が低下するおそれがある。SiOの含有割合は60%以上が好ましい。より好ましくは62%以上、特に好ましくは63%以上である。
 SiOの含有割合が80%超では、ガラスの粘性が増大し、溶融性が著しく低下するおそれがある。SiOの含有割合は、より好ましくは76%以下、さらに好ましくは74%以下である。
SiO 2 is a component constituting the skeleton of glass. When the content ratio of SiO 2 is less than 50%, the stability as glass may be lowered, or the weather resistance may be lowered. The content ratio of SiO 2 is preferably 60% or more. More preferably, it is 62% or more, and particularly preferably 63% or more.
When the content ratio of SiO 2 exceeds 80%, the viscosity of the glass increases, and the meltability may be remarkably lowered. The content ratio of SiO 2 is more preferably 76% or less, and further preferably 74% or less.
 Alはアルカリイオンの移動速度を向上させる成分である。Alの含有割合が0.5%未満では、アルカリイオンの移動速度が低下するおそれがある。Alの含有割合は、より好ましくは1%以上、さらに好ましくは2.5%以上、特に好ましくは4%以上、最も好ましくは6%以上である。
 Alの含有割合が25%超では、ガラスの粘性が高くなり、均質な溶融が困難になるおそれがある。Alの含有割合は、20%以下が好ましい。より好ましくは16%以下、特に好ましくは14%以下である。
Al 2 O 3 is a component that improves the movement speed of alkali ions. When the content ratio of Al 2 O 3 is less than 0.5%, the migration rate of alkali ions may decrease. The content ratio of Al 2 O 3 is more preferably 1% or more, further preferably 2.5% or more, particularly preferably 4% or more, and most preferably 6% or more.
If the content ratio of Al 2 O 3 exceeds 25%, the viscosity of the glass becomes high, and there is a possibility that homogeneous melting becomes difficult. The content ratio of Al 2 O 3 is preferably 20% or less. More preferably, it is 16% or less, and particularly preferably 14% or less.
 Bは必須成分ではないが、高温での溶融性またはガラス強度の向上のために含有してもよい成分である。Bを含有する場合、その含有割合は0.5%以上がより好ましく、さらに好ましくは1%以上である。
 また、Bの含有割合は10%以下である。Bは、アルカリ成分との共存により蒸発しやすくなるため、均質なガラスを得にくくなるおそれがある。Bの含有割合は、より好ましくは6%以下、さらに好ましくは1.5%以下である。ガラスの均質性を特に改善するためには、Bは含有しないことが好ましい。
B 2 O 3 is not an essential component, but may be contained for improving meltability at high temperatures or glass strength. When B 2 O 3 is contained, the content ratio is more preferably 0.5% or more, and further preferably 1% or more.
Further, the content of B 2 O 3 is 10% or less. Since B 2 O 3 tends to evaporate due to coexistence with an alkali component, it may be difficult to obtain homogeneous glass. The content ratio of B 2 O 3 is more preferably 6% or less, and still more preferably 1.5% or less. In particular to improve the homogeneity of the glass, B 2 O 3 is preferably not contained.
 NaOはガラスの溶融性を向上させる成分であり、コロナ放電によって移動する主たるイオン(ナトリウムイオン)を有する。NaOの含有割合が10%未満では、コロナ放電によるアルカリイオンの移動効果が得られにくい。NaOの含有割合は、より好ましくは11%以上、特に好ましくは12%以上である。
 NaOの含有割合は16%以下である。16%超では、ガラス転移点Tgが低下し、それにしたがって歪点が低くなり、耐熱性が劣る、または耐候性が低下するおそれがある。NaOの含有割合は、より好ましくは15%以下、さらに好ましくは14%以下、特に好ましくは13%以下である。
Na 2 O is a component that improves the meltability of glass and has main ions (sodium ions) that move by corona discharge. When the content ratio of Na 2 O is less than 10%, it is difficult to obtain an alkali ion transfer effect by corona discharge. The content ratio of Na 2 O is more preferably 11% or more, and particularly preferably 12% or more.
The content ratio of Na 2 O is 16% or less. If it exceeds 16%, the glass transition point Tg is lowered, the strain point is lowered accordingly, and the heat resistance may be inferior, or the weather resistance may be lowered. The content ratio of Na 2 O is more preferably 15% or less, further preferably 14% or less, and particularly preferably 13% or less.
 KOは必須成分ではないが、ガラスの溶融性を向上させる成分であるとともに、コロナ放電によって移動しやすい成分であるため、含有してもよい。KOを含有する場合、その含有割合は1%以上が好ましく、さらに好ましくは3%以上である。
 また、KOの含有割合は8%以下である。KOの含有割合が8%超では、耐候性が低下するおそれがある。より好ましくは5%以下である。
K 2 O is not an essential component, but may be contained because it is a component that improves the meltability of glass and that is easily moved by corona discharge. When K 2 O is contained, the content is preferably 1% or more, more preferably 3% or more.
Further, the content of K 2 O is 8% or less. If the content ratio of K 2 O exceeds 8%, the weather resistance may be lowered. More preferably, it is 5% or less.
 LiOもKOと同様に必須成分ではないが、ガラスの溶融性を向上させる成分であるとともに、コロナ放電によって移動しやすい成分であるため、含有してもよい。LiOを含有する場合、その含有割合は1%以上が好ましく、さらに好ましくは3%以上である。
 また、LiOの含有量は16%以下である。LiOの含有割合が16%超では、歪点が低くなりすぎるおそれがある。LiOの含有割合は、より好ましくは14%以下、特に好ましくは12%以下である。
Li 2 O is not an essential component like K 2 O, but may be contained because it is a component that improves the meltability of glass and is a component that easily moves by corona discharge. When Li 2 O is contained, the content ratio is preferably 1% or more, and more preferably 3% or more.
Further, the content of Li 2 O is 16% or less. If the content ratio of Li 2 O exceeds 16%, the strain point may be too low. The content ratio of Li 2 O is more preferably 14% or less, and particularly preferably 12% or less.
 アルカリ土類酸化物は、ガラスの溶融性を向上させる成分であるとともに、Tgの調節に有効な成分である。
 アルカリ土類酸化物のうちで、MgOは必須成分ではないが、ガラスのヤング率を上げて強度を向上させ、溶解性を向上させる成分である。MgOを1%以上含有することが好ましい。MgOの含有割合は、より好ましくは3%以上、特に好ましくは5%以上である。
 また、MgOの含有割合は12%以下である。MgOの含有割合が12%超では、ガラスの安定性が損なわれるおそれがある。MgOの含有割合は、より好ましくは10%以下、特に好ましくは8%以下である。
The alkaline earth oxide is a component that improves the meltability of the glass and is an effective component for adjusting Tg.
Of the alkaline earth oxides, MgO is not an essential component, but is a component that increases the Young's modulus of the glass to improve the strength and improve the solubility. It is preferable to contain 1% or more of MgO. The content ratio of MgO is more preferably 3% or more, and particularly preferably 5% or more.
The content ratio of MgO is 12% or less. If the MgO content exceeds 12%, the stability of the glass may be impaired. The content ratio of MgO is more preferably 10% or less, particularly preferably 8% or less.
 CaOは必須成分ではないが、CaOを含有する場合、その含有割合は典型的には0.05%以上である。また、CaOの含有割合は10%以下である。CaOの含有割合が10%超では、コロナ放電によるアルカリイオンの移動量が低下するおそれがある。CaOの含有割合は、より好ましくは6%以下、さらに好ましくは2%以下、特に好ましくは0.5%以下である。 CaO is not an essential component, but when CaO is contained, its content is typically 0.05% or more. Moreover, the content rate of CaO is 10% or less. If the CaO content exceeds 10%, the amount of alkali ions transferred by corona discharge may be reduced. The content ratio of CaO is more preferably 6% or less, further preferably 2% or less, and particularly preferably 0.5% or less.
 アルカリ酸化物とアルカリ土類酸化物の含有割合の合計(総量)は、ガラスの溶融性を向上させ、かつTgの調節による安定したコロナ放電のために、15%を超える量が好ましい。アルカリ酸化物とアルカリ土類酸化物の含有割合の合計は、より好ましくは17%以上、特に好ましくは20%以上であり、上限は好ましくは35%である。 The total content (total amount) of alkali oxide and alkaline earth oxide is preferably more than 15% in order to improve the meltability of the glass and to stabilize corona discharge by adjusting Tg. The total content of alkali oxides and alkaline earth oxides is more preferably 17% or more, particularly preferably 20% or more, and the upper limit is preferably 35%.
 表面処理工程で表面処理されるガラス基体を構成するガラスは、その他の成分を含有してもよい。そのような成分を含有する場合、それらの成分の含有割合の合計は10%以下が好ましく、より好ましくは5%以下である。実質的に以上の成分からなることが特に好ましい。さらに、これらの各成分を含有するガラスは、溶融の際の清澄剤として、SO、塩化物、フッ化物などを適宜含有してもよい。 The glass constituting the glass substrate to be surface-treated in the surface treatment step may contain other components. When such components are contained, the total content of these components is preferably 10% or less, more preferably 5% or less. It is particularly preferable to consist essentially of the above components. Furthermore, the glass containing each of these components may appropriately contain SO 3 , chloride, fluoride, and the like as a fining agent upon melting.
 なお、このようなガラス材料におけるガラス転移温度Tgは、概ね400~700℃の範囲にあることが好ましい。ただし、本発明の成形方法に用いるガラス基体のガラス材料におけるガラス転移温度Tgはこれに限定されるものではない。 It should be noted that the glass transition temperature Tg of such a glass material is preferably in the range of about 400 to 700 ° C. However, the glass transition temperature Tg in the glass material of the glass substrate used in the molding method of the present invention is not limited to this.
 このようなガラス材料から構成されるガラス基体の形状は、一対の主面を有する形状であれば特に限定されない。一対の主面が平坦な平面である平板状のものでも、一対の主面が曲面である曲板状のものでもよい。このようなガラス基体として、例えば、光学レンズ、レンズアレイ、反射板等のガラス光学素子として用いられるガラス基体が挙げられる。なお本明細書において、これら平板状または曲板状のガラス基体を、ガラス基板ともいい、ガラス基体がガラス基板である例について以下に説明する。 The shape of the glass substrate made of such a glass material is not particularly limited as long as it has a pair of main surfaces. The flat plate shape in which the pair of main surfaces are flat surfaces or the curved plate shape in which the pair of main surfaces are curved surfaces may be used. Examples of such a glass substrate include glass substrates used as glass optical elements such as optical lenses, lens arrays, and reflectors. In this specification, these flat or curved glass substrates are also referred to as glass substrates, and an example in which the glass substrate is a glass substrate will be described below.
<第1の電極および第2の電極>
 表面処理工程においては、例えば直流電源に接続される第1の電極と第2の電極を、所定の間隔をおいて対向して配置し、これらの電極間に前記ガラス基板を配置する。すなわち、ガラス基板の第1の主面(例えば上面)は第1の電極に対して所定の距離だけ離間し、かつ第2の主面(例えば下面)は第2の電極に接触するように、ガラス基板を配置する。そして、第1の電極を正極とし第2の電極をアースまたは負極とするような直流電圧を印加して、電極間にコロナ放電を発生させる。
<First electrode and second electrode>
In the surface treatment step, for example, a first electrode and a second electrode connected to a direct current power source are arranged facing each other with a predetermined interval, and the glass substrate is arranged between these electrodes. That is, the first main surface (for example, the upper surface) of the glass substrate is separated from the first electrode by a predetermined distance, and the second main surface (for example, the lower surface) is in contact with the second electrode. Place a glass substrate. Then, a DC voltage is applied so that the first electrode is a positive electrode and the second electrode is a ground or a negative electrode to generate a corona discharge between the electrodes.
 ガラス基板の上面と正極である第1の電極との距離は、第1の電極の形状や印加電圧等によっても異なるが、前記距離が大きいほど、放電電流が小さくコロナ放電が弱くなるため、0mmより大きくし、かつ30mm以下が好ましい。さらには、距離が近いほど、放電電流は放物的に大きくなってコロナ放電が強くなるため、0mmより大きく、かつ10mm以下がより好ましい。 Although the distance between the upper surface of the glass substrate and the first electrode as the positive electrode varies depending on the shape of the first electrode, the applied voltage, and the like, the larger the distance, the smaller the discharge current and the weaker the corona discharge. It is larger and 30 mm or less is preferable. Furthermore, as the distance is shorter, the discharge current becomes parabolically and corona discharge becomes stronger, so that it is more preferably greater than 0 mm and not greater than 10 mm.
 ここで、正極である第1の電極は、アースまたは負極である第2の電極より電極面積が小さいことが好ましい。なお、「電極面積」とは、正極である第1の電極については、被処理物であるガラス基板の主面への投影面積をいい、アースまたは負極である第2の電極については、ガラス基板の第2の主面に接触する面積をいう。第1の電極が、後述するように、複数本のワイヤ状または針状の電極の集合体である場合、「電極面積」は、各ワイヤ状電極または各針状電極についての前記「電極面積」の合計をいう。 Here, the first electrode as the positive electrode preferably has a smaller electrode area than the second electrode as the ground or the negative electrode. The “electrode area” means the projected area on the main surface of the glass substrate that is the object to be processed for the first electrode that is the positive electrode, and the glass substrate for the second electrode that is the ground or the negative electrode. The area in contact with the second main surface. When the first electrode is an assembly of a plurality of wire-like or needle-like electrodes as will be described later, the “electrode area” is the “electrode area” for each wire-like electrode or each needle-like electrode. The sum of
 正極である第1の電極としては、ワイヤ状の電極、または、先端に尖鋭部を有する針状の電極を使用できる。これらワイヤ状電極および針状電極は、1本を単独で使用してもよいし、複数本を互いに所定の間隔(ピッチ)をおいて配置し、これらの集合体を第1の電極としてもよい。このように、複数本のワイヤ状電極または針状電極を互いに所定の間隔をおいて配置したものを、第1の電極とすることで、ガラス基板表面の均一な処理が可能となる。 As the first electrode which is a positive electrode, a wire-like electrode or a needle-like electrode having a sharp tip at the tip can be used. One of these wire-like electrodes and needle-like electrodes may be used alone, or a plurality of them may be arranged at a predetermined interval (pitch) from each other, and these aggregates may be used as the first electrode. . As described above, by using a plurality of wire-like electrodes or needle-like electrodes arranged at predetermined intervals as the first electrode, the glass substrate surface can be uniformly treated.
 表面処理工程で用いられる装置の例を、図1A、図1Bおよび図2A、図2Bに示す。図1Aおよび図2Aは、表面処理装置1の構成を概略的に示す正面図であり、図1Bおよび図2Bは、ガラス基板に対する第1の電極の配置を説明するための表面処理装置1の上面図である。図1Aに示す表面処理装置1においては、正極である第1の電極2としてワイヤ状電極2aが設けられている。また、図2Aに示す表面処理装置1においては、第1の電極2として針状電極2bが設けられている。なお、図1A、図1Bおよび図2A、図2Bにおいて、符号3はアースまたは負極である第2の電極を示し、符号4は被処理物であるガラス基板を示す。また、符号5は直流電源を示し、符号6は回路を流れる電流をモニタするための電流計を示す。 Examples of apparatuses used in the surface treatment process are shown in FIGS. 1A, 1B, 2A, and 2B. 1A and 2A are front views schematically showing the configuration of the surface treatment apparatus 1, and FIGS. 1B and 2B are top views of the surface treatment apparatus 1 for explaining the arrangement of the first electrodes with respect to the glass substrate. FIG. In the surface treatment apparatus 1 shown in FIG. 1A, a wire electrode 2a is provided as the first electrode 2 which is a positive electrode. In the surface treatment apparatus 1 shown in FIG. 2A, a needle electrode 2 b is provided as the first electrode 2. In FIG. 1A, FIG. 1B, FIG. 2A, and FIG. 2B, the code | symbol 3 shows the 2nd electrode which is earth | ground or a negative electrode, and the code | symbol 4 shows the glass substrate which is a to-be-processed object. Reference numeral 5 indicates a DC power source, and reference numeral 6 indicates an ammeter for monitoring a current flowing through the circuit.
 図1Aに示す表面処理装置1において、第1の電極2であるワイヤ状電極2aは、コロナ放電の発生しやすさの観点から、細い方がよいが、強度と取り扱い易さの点で、ワイヤ状電極2aの直径は0.03~0.8mmが好ましく、0.1~0.7mmがより好ましい。また、ワイヤ状電極2aは、その長さ方法がガラス基板4の上面に対して平行となるように配置することが好ましい。第1の電極2として複数本のワイヤ状電極2aを用いる場合、各ワイヤ状電極2aは、図1Bに示すように、0mmより大きくガラス基板4とワイヤ状電極2aとの距離と同程度の間隔dをおいて、互いに平行に、かつガラス基板4の上面に平行な平面上に配置することが、ガラス基板4の上面を均一に処理する上で好ましい。後述するように、ガラス基板4をワイヤ状電極2aのガラス基板4の上面に平行する配置面に対して平行に運動させる場合は、ガラス基板4が平行運動することで処理ムラが緩和されるので、各ワイヤ状電極2aの間隔はより大きくできる。 In the surface treatment apparatus 1 shown in FIG. 1A, the wire-like electrode 2a as the first electrode 2 is preferably thin from the viewpoint of the ease of occurrence of corona discharge. However, in terms of strength and ease of handling, the wire-like electrode 2a The diameter of the electrode 2a is preferably 0.03 to 0.8 mm, more preferably 0.1 to 0.7 mm. Moreover, it is preferable to arrange the wire electrode 2 a so that the length method is parallel to the upper surface of the glass substrate 4. When a plurality of wire-like electrodes 2a are used as the first electrode 2, each wire-like electrode 2a has an interval larger than 0 mm and equal to the distance between the glass substrate 4 and the wire-like electrode 2a, as shown in FIG. 1B. In order to uniformly treat the upper surface of the glass substrate 4, it is preferable to dispose them on a plane parallel to each other and parallel to the upper surface of the glass substrate 4. As will be described later, when the glass substrate 4 is moved in parallel with the arrangement surface parallel to the upper surface of the glass substrate 4 of the wire electrode 2a, the processing unevenness is alleviated by the parallel movement of the glass substrate 4. The interval between the wire-like electrodes 2a can be made larger.
 さらに、第1の電極2として1本のワイヤ状電極2aを単独で配置する場合には、ガラス基板4の表面を均一に処理し、正極側表層部に形成されるアルカリ低濃度領域におけるアルカリイオンの含有濃度の分布を均一化するために、ガラス基板4と一体とした第2の電極3を、第1の電極2であるワイヤ状電極2aに対して相対的に運動させることが好ましい。アースまたは負極である第2の電極3は、ガラス基板4の上面に平行するワイヤ状電極2aの配置面に対して平行に運動させる、すなわちコロナ放電の放電方向に直交する方向に運動させることが好ましい。かつ、アースまたは負極である第2の電極3を、ガラス基板4を載せた状態で、ワイヤ状電極2aの長さ方向に対して直交する方向に運動させることがより好ましい。この運動は、直線運動や往復直線運動がより好ましいが、回転運動や揺動であってもよい。 Further, when one wire-like electrode 2a is disposed alone as the first electrode 2, the surface of the glass substrate 4 is uniformly treated, and alkali ions in an alkali low concentration region formed on the positive electrode side surface layer portion. In order to make uniform the distribution of the concentration of the second electrode 3, the second electrode 3 integrated with the glass substrate 4 is preferably moved relative to the wire electrode 2 a that is the first electrode 2. The second electrode 3, which is the ground or the negative electrode, is moved in parallel to the arrangement surface of the wire electrode 2 a parallel to the upper surface of the glass substrate 4, that is, moved in a direction perpendicular to the discharge direction of the corona discharge. preferable. In addition, it is more preferable that the second electrode 3, which is an earth or a negative electrode, is moved in a direction perpendicular to the length direction of the wire electrode 2 a with the glass substrate 4 placed thereon. This motion is more preferably a linear motion or a reciprocating linear motion, but may be a rotational motion or a rocking motion.
 さらに、広く利用されているコロトロン・スコロトロンと呼ばれるコロナ放電を利用した帯電器と同様に、円筒型ないし角形のケーシングを設けることが好ましい。グリッド電極を設けてもよい。前記ケーシング、およびグリッド電極の作用で、コロナ放電のイオンの流れを制御でき、ガラス基板への処理均一性を上げ、処理効率を向上できる。 Furthermore, it is preferable to provide a cylindrical or rectangular casing as in the case of a widely used charger called corotron / scorotron using corona discharge. A grid electrode may be provided. By the action of the casing and the grid electrode, the flow of ions of corona discharge can be controlled, the processing uniformity to the glass substrate can be increased, and the processing efficiency can be improved.
 図2Aに示す表面処理装置1において、第1の電極2である針状電極2bは、根元部の直径が0.1~2mmが好ましく、針状電極2bの先端尖鋭部をガラス基板4の上面に向け、上面に対してその長さ方向が垂直となるように配置することが好ましい。第1の電極2として複数本の針状電極2bを用いる場合、各針状電極2bは、互いに平行でガラス基板4の上面に対して長さ方向を垂直とし、かつ先端部がガラス基板4の上面から等しい距離となるように配置することが好ましい。また、各針状電極2bの配設位置は、図2Bに示すように、0mmよりも大きく、ガラス基板4と針状電極2bとの距離と同程度の間隔dで、千鳥状または碁盤目状等の均等配置が、ガラス基板4表面を均一に処理するうえで好ましい。ガラス基板4を針状電極2bの先端部が位置するガラス基板4の上面に平行する面に対して平行に運動させる場合は、ガラス基板4が運動することで処理ムラが緩和されるので、各針状電極2bの間隔はより大きくできる。 In the surface treatment apparatus 1 shown in FIG. 2A, the needle-like electrode 2b, which is the first electrode 2, preferably has a root portion with a diameter of 0.1 to 2 mm, and the sharp tip of the needle-like electrode 2b is formed on the upper surface of the glass substrate 4. It is preferable to arrange so that the length direction is perpendicular to the upper surface. When a plurality of needle-like electrodes 2 b are used as the first electrode 2, each needle-like electrode 2 b is parallel to each other and has a length direction perpendicular to the upper surface of the glass substrate 4, and a tip portion of the glass substrate 4. It is preferable to arrange them at equal distances from the top surface. Further, as shown in FIG. 2B, the disposition positions of the needle-like electrodes 2b are larger than 0 mm, and have a staggered or grid-like shape with an interval d that is about the same as the distance between the glass substrate 4 and the needle-like electrodes 2b. A uniform arrangement such as the above is preferable for uniformly treating the surface of the glass substrate 4. When the glass substrate 4 is moved in parallel with the surface parallel to the upper surface of the glass substrate 4 where the tip of the needle-like electrode 2b is located, the processing unevenness is alleviated by the movement of the glass substrate 4, so that each The interval between the needle-like electrodes 2b can be made larger.
 針状電極2bの先端尖鋭部の角度(先端角)は、小さく鋭角であるほど、直下の電界強度が大きくなるので、針状電極2bの先端角を調整することで、正極である第1の電極2近傍の電界強度を調整できる。針状電極2bの先端角は、1~15度が好ましく、1~9度がより好ましい。
 ワイヤ状電極2aおよび針状電極2bにおいては、表面に、金、白金、その他貴金属等の耐食性の導電性膜を設けると、電界強度の均一性が良好となり、かつ電極としての耐久性が向上する。
As the angle (tip angle) of the tip of the needle-like electrode 2b becomes smaller and smaller, the electric field intensity directly below becomes larger. Therefore, by adjusting the tip angle of the needle-like electrode 2b, the first positive electrode as the positive electrode is obtained. The electric field strength near the electrode 2 can be adjusted. The tip angle of the needle electrode 2b is preferably 1 to 15 degrees, and more preferably 1 to 9 degrees.
In the wire-like electrode 2a and the needle-like electrode 2b, when a corrosion-resistant conductive film such as gold, platinum, or other noble metal is provided on the surface, the uniformity of electric field strength is improved and the durability as an electrode is improved. .
 図1Aおよび図2Aに示す表面処理装置1において、アースまたは負極である第2の電極3は、平板状や曲板状など、被処理物であるガラス基板4の第2の主面(下面)に合わせた形状を有するものが好ましい。また、孔あき部を有するメッシュ状のものなど、ガラス基板4と面内で均一に接触するものでもよい。
 このような第2の電極3を、ガラス基板4の下面に接触するように配置することで、ガラス基板4への通電性が向上するため、印加電圧を高くできる。第2の電極3においては、ガラス基板4との接触する面にITO等の導電膜を設けることで、さらに通電性を向上できる。次に、表面処理の条件(ガラス基板の温度、処理雰囲気など)について説明する。
In the surface treatment apparatus 1 shown in FIGS. 1A and 2A, the second electrode 3 that is a ground or a negative electrode has a second main surface (lower surface) of a glass substrate 4 that is an object to be processed, such as a flat plate shape or a curved plate shape. Those having a shape adapted to the above are preferred. Moreover, the thing which contacts the glass substrate 4 uniformly in a surface, such as a mesh-shaped thing which has a perforated part, may be used.
By disposing the second electrode 3 so as to be in contact with the lower surface of the glass substrate 4, the conductivity to the glass substrate 4 is improved, so that the applied voltage can be increased. In the second electrode 3, the conductive property can be further improved by providing a conductive film such as ITO on the surface in contact with the glass substrate 4. Next, surface treatment conditions (such as glass substrate temperature and treatment atmosphere) will be described.
<表面処理条件>
 表面処理工程におけるガラス基板の温度は、常温からガラス転移点Tgが好ましい。Tg以下の温度とすることで、ガラス基板の変形や処理部材の劣化を引き起こすことなく、十分な厚さのアルカリ低濃度領域をガラス基板の表層部に形成できる。また、前記温度範囲はTg以下であり、ガラスは粘性が十分に大きい固体状態を呈するため、ガラス基板中のアルカリイオンが動き過ぎることがなく、アルカリイオンの移動方向が電界方向であるアースまたは負極側に向う方向に限定されるので、コロナ放電による表面処理の効率が高い。ガラス基板の温度は、25~400℃が好ましく、100~300℃がより好ましい。ただし、Tgが400℃以下の場合、ガラス基板の温度は、さらに低い温度がより好ましい。
<Surface treatment conditions>
The glass substrate temperature in the surface treatment step is preferably from room temperature to the glass transition point Tg. By setting the temperature to Tg or lower, a sufficiently low alkali concentration region can be formed on the surface layer portion of the glass substrate without causing deformation of the glass substrate or deterioration of the processing member. In addition, the temperature range is Tg or less, and the glass exhibits a solid state having a sufficiently high viscosity, so that the alkali ions in the glass substrate do not move excessively and the movement direction of the alkali ions is the electric field direction. Since it is limited to the direction toward the side, the efficiency of the surface treatment by corona discharge is high. The temperature of the glass substrate is preferably 25 to 400 ° C, more preferably 100 to 300 ° C. However, when Tg is 400 ° C. or lower, the temperature of the glass substrate is more preferably lower.
 第1の電極と第2の電極との間に印加する直流電圧は、第1の電極を正極とし第2の電極をアースまたは負極として、これらの電極間にコロナ放電を発生させる電圧であり、より具体的には正極である第1の電極からコロナ放電を発生させる電圧である。この印加電圧は、第1の電極の形状や被処理物であるガラス基板の温度によっても変わるが、3~12kVの範囲とするのが好ましい。印加電圧が3kV未満ではコロナ放電が発生しにくい。印加電圧が12kVを超えると、アーク放電が生じやすくなり、コロナ放電を継続するのが難しい。印加電圧は、5~10kVがより好ましい。 The DC voltage applied between the first electrode and the second electrode is a voltage that generates a corona discharge between the first electrode as a positive electrode and the second electrode as a ground or a negative electrode, More specifically, it is a voltage that generates corona discharge from the first electrode that is the positive electrode. This applied voltage varies depending on the shape of the first electrode and the temperature of the glass substrate as the object to be processed, but is preferably in the range of 3 to 12 kV. When the applied voltage is less than 3 kV, corona discharge hardly occurs. When the applied voltage exceeds 12 kV, arc discharge tends to occur and it is difficult to continue corona discharge. The applied voltage is more preferably 5 to 10 kV.
 表面処理工程において、このような直流電圧の印加により被処理物であるガラス基体を流れる電流は、電子の移動による電流と、アルカリイオンを含む陽イオンの移動による電流の両者を含むものである。ガラス基板を流れる電流は、0.01~1000mAの範囲が好ましく、0.1~100mAがより好ましい。また、単位面積当たりの電気量は、10~500mC/cmの範囲が好ましく、50~400mC/cmがより好ましく、100~300mC/cmがさらに好ましい。 In the surface treatment step, the current flowing through the glass substrate, which is the object to be processed, by applying such a DC voltage includes both a current due to the movement of electrons and a current due to the movement of cations including alkali ions. The current flowing through the glass substrate is preferably in the range of 0.01 to 1000 mA, more preferably 0.1 to 100 mA. The quantity of electricity per unit area is preferably in the range of 10 ~ 500mC / cm 2, more preferably 50 ~ 400mC / cm 2, more preferably 100 ~ 300mC / cm 2.
 表面処理工程において、処理時間すなわちコロナ放電を継続する時間は、印加電圧、第1の電極と第2の電極との間の距離、第1の電極の形状や配置等によるが、概ね1~100時間が好ましく、2~10時間がより好ましい。 In the surface treatment step, the treatment time, that is, the time for which the corona discharge is continued depends on the applied voltage, the distance between the first electrode and the second electrode, the shape and arrangement of the first electrode, and the like. Time is preferable, and 2 to 10 hours are more preferable.
 表面処理工程において、被処理物であるガラス基板が配置された第1の電極と第2の電極との間は、空気または窒素を主体とする雰囲気に保持できる。ここで、「空気または窒素を主体とする雰囲気」とは、空気または窒素の含有割合が雰囲気ガス全体の50体積%を超える気体状態をいう。
 前記したように、アースまたは負極である第2の電極はガラス基板の第2の主面(例えば下面)に接触するように配置され、第2の電極とガラス基板との間の通電性が向上されているので、ヘリウムやアルゴンのようなプラズマ形成ガスの雰囲気にする必要がない。すなわち、空気または窒素を主体とする雰囲気で、第1の電極の周りにコロナ放電を発生させて、ガラス基板の表面を処理できる。
In the surface treatment step, an atmosphere mainly composed of air or nitrogen can be maintained between the first electrode and the second electrode on which the glass substrate that is the object to be processed is disposed. Here, the “atmosphere mainly composed of air or nitrogen” refers to a gas state in which the content ratio of air or nitrogen exceeds 50% by volume of the entire atmospheric gas.
As described above, the second electrode, which is the ground or the negative electrode, is disposed so as to be in contact with the second main surface (for example, the lower surface) of the glass substrate, and the conductivity between the second electrode and the glass substrate is improved. Therefore, it is not necessary to use a plasma forming gas atmosphere such as helium or argon. That is, the surface of the glass substrate can be treated by generating corona discharge around the first electrode in an atmosphere mainly composed of air or nitrogen.
[成形工程]
 成形工程においては、前記表面処理工程で表面処理され、表層部にアルカリ低濃度領域が形成されたガラス基体の第1の主面に、プレス面(型面)が当接するように成形型を配置し、ガラス基体を所定の温度に保持した状態で加圧してプレス成形する。
[Molding process]
In the molding step, the molding die is arranged so that the press surface (mold surface) comes into contact with the first main surface of the glass substrate that has been surface-treated in the surface treatment step and has a low alkali concentration region formed on the surface layer portion. Then, press-molding is performed by pressing the glass substrate while maintaining the glass substrate at a predetermined temperature.
<成形装置>
 実施形態の成形工程に用いられる成形装置の一例を、図3に示す。図3は、成形装置10の構成を概略的に示す断面図である。
 この成形装置10は、固定された下型11と、この下型11に対向して配置された上型12を有する成形型13を備えている。上型12は上下動可能に構成されており、上型12の下型11に対向する下面には、型本体14が設けられている。そして、前記表面処理工程で表面処理されたガラス基板15は、その第2の主面を下にして下型11の上に載置され、その上面である第1の主面(アルカリ低濃度領域が形成された側の主面)15aに、型本体14のプレス面14aが当接するように保持される。
<Molding device>
An example of the shaping | molding apparatus used for the shaping | molding process of embodiment is shown in FIG. FIG. 3 is a cross-sectional view schematically showing the configuration of the molding apparatus 10.
The molding apparatus 10 includes a molding die 13 having a fixed lower die 11 and an upper die 12 arranged to face the lower die 11. The upper mold 12 is configured to be movable up and down, and a mold main body 14 is provided on the lower surface facing the lower mold 11 of the upper mold 12. And the glass substrate 15 surface-treated in the surface treatment step is placed on the lower mold 11 with the second main surface down, and the first main surface (alkali low concentration region) which is the upper surface thereof. The press surface 14a of the die body 14 is held so as to abut on the main surface 15a on the side where is formed.
 また、この成形装置10においては、ガラス基板15および成形型13(特に型本体14)をプレス成形可能な所定の温度に加熱し、該温度に保持するために、これらに接してまたはこれらの近傍に、電熱ヒータ等の加熱機構(図示を省略。)が配置されている。さらに、上型12を下降させて下方向に荷重(加圧力)をかける等の方法で、型本体14のプレス面14aをガラス基板15の被プレス面である第1の主面15aに押し付けるための加圧機構(図示を省略。)を備えている。そして、このような成形装置10は、窒素雰囲気等に制御されたチャンバ内(図示を省略。)に配置されている。なお、大気中で成形を行う場合は、チャンバを有しない構成とできる。また、前記加熱機構は、電熱ヒータに限定されるものではなく、電磁誘導加熱など、ガラス基板15等を所定の温度に加熱、保持できる機構であればよい。さらに、前記加圧機構も、型本体14のプレス面14aをガラス基板15の被プレス面に押圧できる機構であれば、どのような機構でもよい。 Further, in this molding apparatus 10, the glass substrate 15 and the mold 13 (particularly the mold body 14) are heated to a predetermined temperature at which press molding can be performed, and in order to maintain the temperature, they are in contact with or in the vicinity thereof. In addition, a heating mechanism (not shown) such as an electric heater is disposed. Further, the press surface 14a of the mold body 14 is pressed against the first main surface 15a, which is the pressed surface of the glass substrate 15, by a method such as lowering the upper mold 12 and applying a load (pressing force) downward. Pressure mechanism (not shown). Such a molding apparatus 10 is disposed in a chamber (not shown) controlled in a nitrogen atmosphere or the like. Note that in the case where molding is performed in the atmosphere, a configuration without a chamber can be employed. The heating mechanism is not limited to an electric heater, and any mechanism that can heat and hold the glass substrate 15 or the like at a predetermined temperature such as electromagnetic induction heating may be used. Further, the pressurizing mechanism may be any mechanism as long as it can press the press surface 14a of the mold body 14 against the pressed surface of the glass substrate 15.
 成形型13の上型12および下型11は、ステンレス、タングステンカーバイド(WC)のような、公知の型材料により構成できる。型として用いることができる硬度や耐久性を有するものならば、構成材料は特に限定されない。 The upper mold 12 and the lower mold 11 of the mold 13 can be made of a known mold material such as stainless steel or tungsten carbide (WC). The constituent material is not particularly limited as long as it has hardness and durability that can be used as a mold.
 下型11と対向する上型12の下面に設けられた型本体14において、ガラス基板15に接触して押圧する面であるプレス面14aは、成形すべきガラス基板15の第1の主面15aに合わせた形状とし、例えば研磨等により鏡面とされる。そして、鏡面とされたこのプレス面14aでプレスされることで、ガラス基板15の第1の主面15aには前記プレス面14aの表面状態が転写され、平滑な表面が形成される。したがって、プレス面14aを有する型本体14は、耐熱性とガラスに対する離型性に優れ、かつ機械的強度と耐久性を有する材料により構成することが好ましい。このような型本体14を構成する材料としては、グラッシーカーボンのようなカーボンや、ステンレス、炭化ケイ素(SiC)、タングステンカーバイド(WC)が挙げられる。 In the mold main body 14 provided on the lower surface of the upper mold 12 facing the lower mold 11, the press surface 14 a that is a surface that contacts and presses the glass substrate 15 is the first main surface 15 a of the glass substrate 15 to be molded. For example, it is made into a mirror surface by polishing or the like. And by pressing with this press surface 14a made into the mirror surface, the surface state of the said press surface 14a is transcribe | transferred to the 1st main surface 15a of the glass substrate 15, and the smooth surface is formed. Therefore, it is preferable that the die body 14 having the press surface 14a is made of a material having excellent heat resistance and releasability from glass, and having mechanical strength and durability. Examples of the material constituting the mold body 14 include carbon such as glassy carbon, stainless steel, silicon carbide (SiC), and tungsten carbide (WC).
 成形工程においては、ガラス基板15および成形型13(特に型本体14)をプレス成形可能な所定の温度に加熱した状態で上型12を下降させ、型本体14のプレス面14aをガラス基板15の被プレス面である第1の主面15aに押し当て、所定のプレス力で押圧する。 In the molding process, the upper mold 12 is lowered in a state where the glass substrate 15 and the mold 13 (particularly the mold body 14) are heated to a predetermined temperature at which press molding is possible, and the press surface 14a of the mold body 14 is moved to the glass substrate 15. It presses against the 1st main surface 15a which is a to-be-pressed surface, and presses with predetermined press force.
 成形の際の加熱温度(成形温度)Tは、ガラス基板15を構成するガラス材料(ガラス母材)がプレス成形可能な程度に軟化する温度であり、該ガラス材料のガラス転移点Tgより50~150℃高い温度とすることが好ましい。表面の平滑性が高く高品質のガラス成形体を得ることができる点で、成形温度Tは、Tgより50~100℃高い温度とすることがより好ましく、Tgより70~80℃高い温度が特に好ましい。 The heating temperature (molding temperature) T at the time of molding is a temperature at which the glass material (glass base material) constituting the glass substrate 15 softens to the extent that it can be press-molded, and is 50 to 50 from the glass transition point Tg of the glass material. A temperature higher by 150 ° C. is preferable. The molding temperature T is more preferably 50 to 100 ° C. higher than Tg, particularly 70 to 80 ° C. higher than Tg in that a high-quality glass molded body with high surface smoothness can be obtained. preferable.
 ガラス基板15のプレス成形が行われる雰囲気、例えば前記成形装置10が配置されるチャンバ内(図示を省略。)の雰囲気は、窒素を主体とする雰囲気とすることが好ましい。ここで、「窒素を主体とする雰囲気」とは、窒素の含有割合が雰囲気ガス全体の50体積%を超える気体状態をいい、窒素の含有割合がほぼ100体積%の雰囲気がより好ましい。 The atmosphere in which the glass substrate 15 is press-molded, for example, the atmosphere in the chamber (not shown) in which the molding apparatus 10 is disposed is preferably an atmosphere mainly composed of nitrogen. Here, the “atmosphere mainly composed of nitrogen” refers to a gas state in which the nitrogen content exceeds 50% by volume of the total atmosphere gas, and an atmosphere in which the nitrogen content is approximately 100% by volume is more preferable.
 ガラス基板15の被プレス面である第1の主面15aに対するプレス力は、単位面積当たりの加圧力として、0.01MPa~10MPaの範囲が好ましく、0.1MPa~5MPaがより好ましい。なお、この加圧力をプレス圧力というときもある。加圧力(プレス圧力)をこの範囲とすることで、ガラス基板15および型本体14に損傷を与えることなく、型本体14のプレス面14aの平滑な形状を、ガラス基板15の被プレス面である第1の主面15aに良好に転写し形成できる。 The pressing force on the first main surface 15a, which is the pressed surface of the glass substrate 15, is preferably in the range of 0.01 MPa to 10 MPa, more preferably 0.1 MPa to 5 MPa, as the pressing force per unit area. This applied pressure is sometimes referred to as press pressure. By setting the pressing force (pressing pressure) within this range, the smooth shape of the press surface 14a of the mold body 14 is the pressed surface of the glass substrate 15 without damaging the glass substrate 15 and the mold body 14. It can be transferred and formed satisfactorily on the first main surface 15a.
 なお、成形工程におけるプレス時間すなわち加圧時間は、プレス力や成形の際の加熱温度T等によるが、概ね1~900秒間が好ましく、1~300秒間がより好ましい。 The pressing time in the molding step, that is, the pressurizing time, depends on the pressing force, the heating temperature T during molding, etc., but is preferably 1 to 900 seconds, more preferably 1 to 300 seconds.
[離型工程]
 離型工程では、前記成形工程の後、ガラス基体および成形型を冷却してから、例えば上型を上昇させて、型本体のプレス面をガラス基体の被プレス面(成形面)である第1の主面から引き離す(離型する)。
[Release process]
In the mold release step, after the molding step, the glass base and the mold are cooled, and then, for example, the upper die is raised so that the press surface of the die body is the pressed surface (molding surface) of the glass base. Pull away from the main surface.
 このとき、ガラス基体の被プレス面である第1の主面の表層部には、表面処理によりアルカリ低濃度領域が形成されており、このようなアルカリ低濃度領域では、前記したように離型力が発生する融着開始温度が表面処理前に比べて、すなわちガラス基体のアルカリ低濃度領域以外の領域に比べて高くなっている。 At this time, an alkali low concentration region is formed by surface treatment on the surface portion of the first main surface which is a pressed surface of the glass substrate. In such an alkali low concentration region, as described above, the mold release is performed. The fusion start temperature at which the force is generated is higher than that before the surface treatment, that is, compared to the region other than the low alkali concentration region of the glass substrate.
 ここで、ガラス母材のTg以上の所定の温度であるガラス基体の成形温度は、所定の温度範囲を有し、表面処理されていないガラス基体では融着開始温度が概ね該成形温度範囲の下限値以下の温度である。しかし、表面処理されたガラス基体では、この融着開始温度が、ガラス基体の該成形温度範囲の下限値より高くなっている。これにより、本実施形態の方法においては、ガラス基体の成形温度を融着開始温度より低い温度に適宜設定でき、アルカリ低濃度領域が形成された第1の主面から型本体のプレス面を離す離型力を、ほぼ0に近くすることができる。したがって、離型の際に、ガラス基体の第1の主面には型本体との固着による変形が生じることがなく、成形工程で形成された形状が安定して保持される。また、このように離型力が極めて小さくなっているので、型本体の損傷や機械的劣化が防止される。 Here, the molding temperature of the glass substrate, which is a predetermined temperature equal to or higher than the Tg of the glass base material, has a predetermined temperature range, and the glass substrate that has not been surface-treated has a fusion start temperature that is generally the lower limit of the molding temperature range. The temperature is below the value. However, in the glass substrate subjected to the surface treatment, the fusion start temperature is higher than the lower limit value of the molding temperature range of the glass substrate. Thereby, in the method of this embodiment, the molding temperature of the glass substrate can be appropriately set to a temperature lower than the fusion start temperature, and the press surface of the mold body is separated from the first main surface on which the low alkali concentration region is formed. The mold release force can be close to zero. Therefore, at the time of mold release, the first main surface of the glass substrate is not deformed due to fixation with the mold body, and the shape formed in the molding process is stably held. In addition, since the release force is extremely small in this way, damage to the mold body and mechanical deterioration are prevented.
 ここで、前記した型本体の単位面積当たりの離型力は、例えば、以下に示す方法で測定したものである。
 すなわち、図3に示す成形装置10を用いてプレス成形を行う成形工程と、成形後冷却してから上型12を上昇させて、型本体14のプレス面14aをガラス基体15の第1の主面15aから離す離型工程を連続的に行う。この際、上型12および下型11の温度と、上型12による単位面積当たりのプレス力(プレス圧力)を連続的に測定すると、例えば表面処理工程を経ないガラス基体の場合には、図4に示すようなグラフが得られる。
Here, the above-mentioned mold release force per unit area of the mold main body is measured by the following method, for example.
That is, a molding process in which press molding is performed using the molding apparatus 10 shown in FIG. 3, and the upper die 12 is raised after cooling after molding, and the press surface 14 a of the die body 14 is made to be the first main body of the glass substrate 15. A mold release process for separating from the surface 15a is continuously performed. At this time, when the temperature of the upper mold 12 and the lower mold 11 and the pressing force (pressing pressure) per unit area by the upper mold 12 are continuously measured, for example, in the case of a glass substrate that does not undergo a surface treatment process, A graph as shown in FIG. 4 is obtained.
 図4に示す上型のプレス圧力を表すグラフにおいては、上型12および下型11がガラスの前記成形温度Tを示す成形工程で、前記した所定の加圧力(プレス圧力)Pが加えられた以降に、プレス圧力がマイナスとなりさらに徐々に下降した後、急激に上昇して元のゼロ付近に戻る変化部(a)が生じる。この変化部(a)は、離型工程において、型本体14のプレス面14aがガラス基体15の第1の主面15aに固着されて引っ張られた後、離型したことを示すものである。変化部(a)における最下点のプレス圧力と元のゼロ付近に戻った時点でのプレス圧力の差の絶対値を単位面積当たりの離型力とできる。単位面積当たりの離型力の単位としては、プレス圧力と同じPa、またはN/cmを使用できる。なお、図4の上型のプレス圧力を表すグラフにおいて、離型後のベースラインは0ではないが、これは加圧状態を示すものではない。 In the graph showing the pressing pressure of the upper mold shown in FIG. 4, the above-mentioned predetermined pressing force (pressing pressure) P was applied in the molding process in which the upper mold 12 and the lower mold 11 show the molding temperature T of glass. Thereafter, a change portion (a) is generated in which the press pressure becomes negative and further gradually decreases, and then rapidly increases and returns to the vicinity of the original zero. This change part (a) indicates that the press surface 14a of the mold main body 14 is fixed to the first main surface 15a of the glass substrate 15 and pulled and then released in the mold release step. The absolute value of the difference between the pressing pressure at the lowest point in the changing portion (a) and the pressing pressure at the time when the pressure returns to the vicinity of the original zero can be used as the mold release force per unit area. As the unit of the release force per unit area, Pa, which is the same as the press pressure, or N / cm 2 can be used. In the graph showing the press pressure of the upper die in FIG. 4, the baseline after release is not 0, but this does not indicate a pressurized state.
 以下、本発明の実施例について具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Examples of the present invention will be specifically described below, but the present invention is not limited to these examples.
実施例1
 バリウムホウケイ酸ガラスの基板(オハラ社製、商品名;L-BAL42、主面が10mm×10mmの正方形で厚さ2mm、Tg;506℃、軟化点;607℃、)を、図1Aに示す表面処理装置1の第1の電極(正極)2と第2の電極(アース)3との間に配置し、コロナ放電による表面処理を行った。
Example 1
A surface of a barium borosilicate glass substrate (manufactured by OHARA, trade name: L-BAL42, square with a main surface of 10 mm × 10 mm and a thickness of 2 mm, Tg: 506 ° C., softening point: 607 ° C.) shown in FIG. 1A It arrange | positioned between the 1st electrode (positive electrode) 2 and the 2nd electrode (earth | ground) 3 of the processing apparatus 1, and performed the surface treatment by corona discharge.
 なお、この表面処理装置1において、第2の電極3は接地された平板状電極(電極材料タングステン、電極サイズ10mm×10mm)であり、この第2の電極3の上に同じ大きさの前記ガラス基板4を載せ、水平に配置した。第1の電極2は、直径0.5mmのワイヤ状電極2a(電極材料タングステン)1本により構成し、これを、その長さ方向がガラス基板4の1辺に平行になるように配置した。また、ワイヤ状電極2aとガラス基板4の上面との距離は5mmとし、ガラス基板4を載せた第2の電極3を、水平面上でワイヤ状電極2aの長さ方向と直交する方向に、5mm/秒の速度で100mmのストロークで往復動させた。さらに、第1の電極2であるワイヤ状電極2aと第2の電極3との間は、大気雰囲気とした。 In this surface treatment apparatus 1, the second electrode 3 is a grounded flat electrode (electrode material tungsten, electrode size 10 mm × 10 mm), and the glass of the same size is placed on the second electrode 3. The substrate 4 was placed and placed horizontally. The first electrode 2 was constituted by one wire-like electrode 2a (electrode material tungsten) having a diameter of 0.5 mm, and was arranged so that the length direction thereof was parallel to one side of the glass substrate 4. The distance between the wire electrode 2a and the upper surface of the glass substrate 4 is 5 mm, and the second electrode 3 on which the glass substrate 4 is placed is 5 mm in a direction perpendicular to the length direction of the wire electrode 2a on the horizontal plane. It was reciprocated with a stroke of 100 mm at a speed of / sec. Further, an air atmosphere was formed between the wire electrode 2a as the first electrode 2 and the second electrode 3.
 こうして、ガラス基板4を200℃に加熱し該温度に保持しつつ、直流電源5によりワイヤ状電極2aと第2の電極3との間に6kVの電圧を印加し、この状態で2.4時間処理を継続した。なお、表面処理中、第2の電極3と直流電源5とを接続する回路に設置された電流計6で電流値を測定したところ、0.4mAで一定であった。 In this way, a voltage of 6 kV is applied between the wire electrode 2a and the second electrode 3 by the DC power source 5 while the glass substrate 4 is heated to 200 ° C. and maintained at that temperature, and in this state for 2.4 hours. Processing continued. During the surface treatment, when the current value was measured with an ammeter 6 installed in a circuit connecting the second electrode 3 and the DC power source 5, it was constant at 0.4 mA.
 次いで、こうして表面処理されたガラス基板に対して、図3に示す成形装置10を用いてプレス成形を行った後、ガラス基板15から型本体14のプレス面14aを引き離す際の単位面積当たりの離型力を、前述の方法で測定した。また、離型後のガラス基板15の被プレス面である第1の主面15aの断面形状を、非接触三次元測定装置(三鷹光器社製、装置名;NH-3)により測定した。なお、断面形状の測定は、1辺10mmのガラス基板の中央部7mmの範囲について行った。 Next, after press-molding the surface-treated glass substrate using the molding apparatus 10 shown in FIG. 3, the separation per unit area when the press surface 14 a of the mold body 14 is separated from the glass substrate 15. The mold force was measured by the method described above. Further, the cross-sectional shape of the first main surface 15a, which is the pressed surface of the glass substrate 15 after the mold release, was measured with a non-contact three-dimensional measuring device (manufactured by Mitaka Kogyo Co., Ltd., device name: NH-3). The cross-sectional shape was measured for a range of 7 mm at the center of a glass substrate having a side of 10 mm.
 ここで、型本体14はグラッシーカーボン製であり、プレス面14aは研磨による鏡面仕上げとした。また、プレス成形の際の加熱温度(成形温度)Tは、ガラス基板15を構成するガラス材料(ガラス母材)のガラス転移点Tgより74℃高い(Tg+74℃)580℃とし、加圧力(プレス圧力)は2MPa、プレス時間は60秒間とした。さらに、チャンバ内は窒素雰囲気(酸素濃度15ppm)とした。 Here, the mold body 14 was made of glassy carbon, and the press surface 14a was mirror-finished by polishing. Further, the heating temperature (molding temperature) T at the time of press molding is set to 580 ° C. which is 74 ° C. higher than the glass transition point Tg of the glass material (glass base material) constituting the glass substrate 15 (Tg + 74 ° C.). The pressure was 2 MPa, and the press time was 60 seconds. Furthermore, the inside of the chamber was a nitrogen atmosphere (oxygen concentration 15 ppm).
 上型12(型本体14)と下型11の温度、および上型12によるプレス圧力の測定値の経時変化を図5に示す。また、離型後のガラス基板15の被プレス面の断面形状を、図6に示す。図5のグラフから、実施例1のガラス基板15では、ガラス基板15から型本体14のプレス面14aを離すのに要する単位面積当たりの離型力がほぼ0であることがわかる。また、図6から、離型後のガラス基板15の被プレス面は、高低差が3μm程度の平坦面であり、プレス成形により形成された平坦で平滑な形状が離型後も保持されており、離型の際に変形が生じていないことがわかる。 FIG. 5 shows the changes over time in the temperature of the upper mold 12 (the mold main body 14) and the lower mold 11, and the measurement value of the press pressure by the upper mold 12. Moreover, the cross-sectional shape of the to-be-pressed surface of the glass substrate 15 after mold release is shown in FIG. From the graph of FIG. 5, it can be seen that in the glass substrate 15 of Example 1, the release force per unit area required to separate the press surface 14 a of the mold body 14 from the glass substrate 15 is almost zero. Also, from FIG. 6, the pressed surface of the glass substrate 15 after mold release is a flat surface with a height difference of about 3 μm, and the flat and smooth shape formed by press molding is retained after mold release. It can be seen that no deformation has occurred during the mold release.
比較例1
 実施例1と同じ組成のバリウムホウケイ酸ガラスの基板(オハラ社製、商品名;L-BAL42、主面が10mm×10mmの正方形で厚さ2mmのガラス基板)を使用した。このガラス基板に対して、表面処理を行うことなく、そのまま実施例1と同様にしてプレス成形を行った後、ガラス基板15から型本体14のプレス面14aを引き離す際の単位面積当たりの離型力を、実施例1と同様にして測定した。また、離型後のガラス基板15の被プレス面の断面形状を、実施例1と同様に非接触三次元測定装置により測定した。
Comparative Example 1
A barium borosilicate glass substrate (trade name; L-BAL42, a glass substrate having a main surface of 10 mm × 10 mm square and a thickness of 2 mm) having the same composition as in Example 1 was used. This glass substrate is subjected to press molding as it is in the same manner as in Example 1 without performing surface treatment, and then released per unit area when the press surface 14a of the mold body 14 is separated from the glass substrate 15. The force was measured as in Example 1. Further, the cross-sectional shape of the pressed surface of the glass substrate 15 after the mold release was measured by a non-contact three-dimensional measuring apparatus in the same manner as in Example 1.
 上型12(型本体14)と下型11の温度、および上型12によるプレス圧力の測定値の経時変化を図7に示す。また、離型後のガラス基板15の被プレス面の断面形状を、図8に示す。図7のグラフから、比較例1のガラス基板15では、ガラス基板15から型本体14のプレス面14aを離すのに要する離型力が、単位面積(1cm)当たり約75Nとなり、おおきな離型力が発生していることがわかる。また、図8から、離型後のガラス基板15の被プレス面(成形面)は、中央部が高さ約20μm、幅約6μmの台形状に盛り上がっており、型本体14のプレス面14aとの固着により、離型後のガラス基板15の成形面には変形が生じていることがわかる。 FIG. 7 shows changes over time in the temperature of the upper mold 12 (the mold main body 14) and the lower mold 11 and the measured value of the press pressure by the upper mold 12. In FIG. Moreover, the cross-sectional shape of the to-be-pressed surface of the glass substrate 15 after mold release is shown in FIG. From the graph of FIG. 7, in the glass substrate 15 of the comparative example 1, the mold release force required to separate the press surface 14a of the mold main body 14 from the glass substrate 15 is about 75 N per unit area (1 cm 2 ). It can be seen that force is generated. Further, from FIG. 8, the pressed surface (molding surface) of the glass substrate 15 after mold release rises in a trapezoidal shape with a central portion having a height of about 20 μm and a width of about 6 μm. It can be seen that deformation occurs on the molding surface of the glass substrate 15 after the release due to the fixing.
実施例2、比較例2
 コロナ放電による表面処理により、前記した離型力が発生する融着開始温度が高温側にシフトすることを確かめるために、以下に示す実験を行った。すなわち、表面処理を行わないガラス基板(オハラ社製、商品名;L-BAL42、主面が10mm×10mmの正方形で厚さ2mm)について、図3に示す成形装置を使用し、窒素雰囲気で成形温度を550~580℃の範囲で変え、かつプレス圧力2MPa、プレス時間60秒間の条件でプレス成形を行った後、前記方法で単位面積当たりの離型力を測定した(比較例2)。また、同じガラス基板で実施例1と同様に表面処理を行ったものについて、窒素雰囲気で成形温度を580~600℃の範囲で変え、かつプレス圧力2MPa、プレス時間60秒間の条件でプレス成形を行った後、前記方法で単位面積当たりの離型力を測定した(実施例2)。
Example 2 and Comparative Example 2
In order to confirm that the fusion start temperature at which the above-mentioned release force is generated shifts to the high temperature side by the surface treatment by corona discharge, the following experiment was performed. That is, a glass substrate that is not subjected to surface treatment (manufactured by OHARA, trade name: L-BAL42, main surface is 10 mm × 10 mm square and 2 mm thick) is molded in a nitrogen atmosphere using the molding apparatus shown in FIG. After changing the temperature in the range of 550 to 580 ° C. and performing press molding under the conditions of a press pressure of 2 MPa and a press time of 60 seconds, the release force per unit area was measured by the above method (Comparative Example 2). Also, for the same glass substrate that was surface-treated in the same manner as in Example 1, the molding temperature was changed in the range of 580 to 600 ° C. in a nitrogen atmosphere, and the press molding was performed under the conditions of a press pressure of 2 MPa and a press time of 60 seconds. After performing, the mold release force per unit area was measured by the above method (Example 2).
 これらの測定結果を図9に示す。図9は、表面処理ありと表面処理なしのそれぞれのガラス基板について、成形温度と発生する離型力との関係を示すグラフである。このグラフから、比較例2において、表面処理を行わないガラス基板の使用では、成形温度Tを(Tg+74℃)である580℃としてプレス成形を行った場合、0.8MPa(80N/cm)以上の大きな単位面積当たりの離型力が発生しているのに対して、実施例2において、表面処理を行ったガラス基板を使用した場合には、580℃の成形温度では離型力がほとんど発生していないことが確かめられた。 The measurement results are shown in FIG. FIG. 9 is a graph showing the relationship between the molding temperature and the mold release force for each glass substrate with and without surface treatment. From this graph, in Comparative Example 2, when a glass substrate without surface treatment was used, when press molding was performed at a molding temperature T of 580 ° C. (Tg + 74 ° C.), 0.8 MPa (80 N / cm 2 ) or more. In contrast to the large mold release force per unit area, in Example 2, when a surface-treated glass substrate is used, the mold release force is almost generated at a molding temperature of 580 ° C. It was confirmed that they did not.
 本発明の成形方法によれば、プレス成形により表面の平滑性が高く高品質のガラス成形体を得ることができるうえに、成形後の離型工程で、成形型のプレス面をガラス基体の被プレス面である第1の主面から引き離す離型力が極めて小さくなるので、成形型のプレス面に、カーボンや貴金属の離型膜を形成する、離型剤を塗布する、などの離型処理を施すことなく、低コストで成形できる。したがって、ガラス光学素子等を得るための安価で信頼性の高い成形方法として好適である。 According to the molding method of the present invention, a high-quality glass molded body having a high surface smoothness can be obtained by press molding, and the pressing surface of the molding die is covered with the glass substrate in the mold release step after molding. The mold release force that separates from the first main surface, which is the press surface, is extremely small. Therefore, a mold release treatment such as forming a release film of carbon or noble metal on the press surface of the mold, or applying a release agent. It can be molded at low cost without applying. Therefore, it is suitable as an inexpensive and highly reliable molding method for obtaining a glass optical element or the like.
 1…表面処理装置、2…第1の電極(正極)、2a…ワイヤ状電極、2b…針状電極、3…第2の電極(アースまたは負極)、4…ガラス基板、5…直流電源、10…成形装置、11…下型、12…上型、13…成形型、14…型本体、14a…プレス面、15…ガラス基板。 DESCRIPTION OF SYMBOLS 1 ... Surface treatment apparatus, 2 ... 1st electrode (positive electrode), 2a ... Wire-like electrode, 2b ... Needle-like electrode, 3 ... 2nd electrode (earth or negative electrode), 4 ... Glass substrate, 5 ... DC power supply, DESCRIPTION OF SYMBOLS 10 ... Molding apparatus, 11 ... Lower mold, 12 ... Upper mold, 13 ... Mold, 14 ... Mold main body, 14a ... Press surface, 15 ... Glass substrate.

Claims (9)

  1.  第1の電極と第2の電極との間に、一対の主面を有し、組成においてアルカリ酸化物を含有するガラスからなるガラス基体を配置し、前記第1の電極を正極とし前記第2の電極をアースまたは負極とするように直流電圧を印加してコロナ放電を発生させ、前記ガラス基体の正極側である第1の主面側の表層部において、アルカリイオンの少なくとも1種を、アースまたは負極側である第2の主面側に向って移動させる表面処理工程と、
     前記表面処理工程で表面処理されたガラス基体の前記第1の主面に、プレス面が当接するように成形型を配置し、前記ガラス基体を所定の温度に保持した状態でプレス成形する成形工程、
    を備えることを特徴とするガラス基体の成形方法。
    A glass substrate made of glass having a pair of main surfaces and containing an alkali oxide in the composition is disposed between the first electrode and the second electrode, and the second electrode is used as the positive electrode. A corona discharge is generated by applying a DC voltage so that the electrode is grounded or a negative electrode, and at least one kind of alkali ions is grounded in the surface layer portion on the first main surface side which is the positive electrode side of the glass substrate. Or a surface treatment step of moving toward the second main surface which is the negative electrode side;
    A molding step in which a molding die is disposed so that a press surface is in contact with the first main surface of the glass substrate surface-treated in the surface treatment step, and the glass substrate is press-molded while being held at a predetermined temperature. ,
    A method of forming a glass substrate, comprising:
  2.  前記成形工程の後、前記ガラス基体および前記成形型を冷却して、前記成形型の前記プレス面を前記ガラス基体の前記第1の主面から離す離型工程を有する、請求項1に記載のガラス基体の成形方法。 The said glass substrate and the said mold are cooled after the said shaping | molding process, It has a mold release process which separates the said press surface of the said mold from the said 1st main surface of the said glass base. A method for forming a glass substrate.
  3.  前記成形工程は窒素を主体とする雰囲気で行う、請求項1または2に記載のガラス基体の成形方法。 The glass substrate forming method according to claim 1 or 2, wherein the forming step is performed in an atmosphere mainly composed of nitrogen.
  4.  前記表面処理工程において、前記ガラス基体を、第1の主面が前記第1の電極に対して離間し、かつ第2の主面が前記第2の電極に接触するように配置し、前記第1の電極を正極とし前記第2の電極をアースまたは負極とするように直流電圧を印加してコロナ放電を発生させる、請求項1~3のいずれか1項に記載のガラス基体の成形方法。 In the surface treatment step, the glass substrate is disposed such that a first main surface is separated from the first electrode and a second main surface is in contact with the second electrode, The glass substrate forming method according to any one of claims 1 to 3, wherein a corona discharge is generated by applying a DC voltage so that one electrode is a positive electrode and the second electrode is a ground or a negative electrode.
  5.  前記表面処理工程において、前記第1の電極はワイヤ状の電極であり、このワイヤ状電極を、その長さ方向を前記ガラス基体の前記第1の主面に平行にして配置する、請求項4に記載のガラス基体の成形方法。 In the surface treatment step, the first electrode is a wire-like electrode, and the wire-like electrode is disposed with its length direction parallel to the first main surface of the glass substrate. A method for forming a glass substrate according to 1.
  6.  前記表面処理工程において、前記第1の電極と前記第2の電極との間は、空気または窒素を主体とする雰囲気に保持される、請求項4または5に記載のガラス基体の成形方法。 The glass substrate forming method according to claim 4 or 5, wherein, in the surface treatment step, an atmosphere mainly composed of air or nitrogen is maintained between the first electrode and the second electrode.
  7.  前記表面処理工程において、前記ガラス基体の温度は常温~ガラス転移点Tgである、請求項4~6のいずれか1項に記載のガラスの成形方法。 The glass forming method according to any one of claims 4 to 6, wherein, in the surface treatment step, the temperature of the glass substrate is from room temperature to a glass transition point Tg.
  8.  前記表面処理工程において、前記第2の電極と前記ガラス基体とを一体とし、前記第1の電極の前記第1の主面に平行する配置面に対して平行に運動させる、請求項5~7のいずれか1項に記載のガラス基体の成形方法。 In the surface treatment step, the second electrode and the glass substrate are integrated, and are moved in parallel with an arrangement surface of the first electrode parallel to the first main surface. The method for molding a glass substrate according to any one of the above.
  9.  前記ガラス基体は、アルカリ酸化物とアルカリ土類酸化物を合計で15質量%を超える割合で含有するガラス材料からなる、請求項1~8のいずれか1項に記載のガラスの成形方法。 The glass forming method according to any one of claims 1 to 8, wherein the glass substrate is made of a glass material containing a total amount of alkali oxide and alkaline earth oxide exceeding 15% by mass.
PCT/JP2014/056112 2013-03-14 2014-03-10 Method for molding glass substrate WO2014142050A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013052233 2013-03-14
JP2013-052233 2013-03-14

Publications (1)

Publication Number Publication Date
WO2014142050A1 true WO2014142050A1 (en) 2014-09-18

Family

ID=51536707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056112 WO2014142050A1 (en) 2013-03-14 2014-03-10 Method for molding glass substrate

Country Status (2)

Country Link
TW (1) TW201442964A (en)
WO (1) WO2014142050A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111484235A (en) * 2019-01-25 2020-08-04 香港理工大学深圳研究院 Monitoring device and method for demolding of glass mold

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139493A (en) * 1996-11-07 1998-05-26 Canon Inc Glass material for molding glass element and its formation
WO2008123293A1 (en) * 2007-03-29 2008-10-16 National Institute Of Advanced Industrial Science And Technology Method for molding glass member, molding apparatus, and molded product of glass material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139493A (en) * 1996-11-07 1998-05-26 Canon Inc Glass material for molding glass element and its formation
WO2008123293A1 (en) * 2007-03-29 2008-10-16 National Institute Of Advanced Industrial Science And Technology Method for molding glass member, molding apparatus, and molded product of glass material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAOKI IKUTAME ET AL.: "Fabrication of nano- structure on a glass by electrostatic imprint process", THE 60TH JSAP SPRING MEETING KOEN YOKOSHU, 11 March 2013 (2013-03-11), pages 07 - 057 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111484235A (en) * 2019-01-25 2020-08-04 香港理工大学深圳研究院 Monitoring device and method for demolding of glass mold
CN111484235B (en) * 2019-01-25 2022-08-12 香港理工大学深圳研究院 Monitoring device and method for demolding of glass mold

Also Published As

Publication number Publication date
TW201442964A (en) 2014-11-16

Similar Documents

Publication Publication Date Title
JP5207357B2 (en) Glass member molding method and molding apparatus
KR102454959B1 (en) Thermally tempered glass and methods and apparatuses for thermal tempering of glass
CN102187446B (en) Electrostatic chuck, and method for manufacturing the chuck
TWI593652B (en) Thermo-electric method for texturing of glass surfaces
TW201318982A (en) Apparatus and method for tight bending thin glass sheets
KR100798432B1 (en) Glass spacer and method of using the spacer
US8815129B2 (en) Device and method for forming lens
TW201500317A (en) Highly refractive thin glasses
US10138153B2 (en) Glass substrate molding method
WO2013191164A1 (en) Method for surface-processing glass substrate, and glass substrate
KR950002576B1 (en) Discharge element and apparatus to which the same is applied
WO2014142050A1 (en) Method for molding glass substrate
CN111601781A (en) Glass sheet with improved edge quality and method for producing same
WO2014132983A1 (en) Method for molding glass substrate, and glass molded article
TWI741148B (en) Glass substrate for display and method for manufacturing glass substrate for display
JP6244884B2 (en) Method for producing tempered glass sheet
JP2014201456A (en) Method of manufacturing glass structure, and glass structure
JP6379678B2 (en) Manufacturing method of glass substrate
JP2008294174A (en) Glassy electrostatic chuck, and manufacturing method thereof
WO2015093284A1 (en) Method for producing tempered glass substrate
WO2020123226A1 (en) Glass sheets with improved edge strength and methods of producing the same
JP5693340B2 (en) Manufacturing method of optical element molding die and optical element molding die
JP5603125B2 (en) Mold, manufacturing method thereof, and optical element and optical device manufacturing method
JP2009292707A (en) Method of manufacturing mold for molding optical device, mold for molding optical device and manufacturing method of optical device
JP2016011232A (en) Manufacturing method of glass substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14762262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14762262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP