WO2014142031A1 - Substrate processing device, method for controlling substrate processing device, cleaning method, method for manufacturing semiconductor device, and recording medium - Google Patents

Substrate processing device, method for controlling substrate processing device, cleaning method, method for manufacturing semiconductor device, and recording medium Download PDF

Info

Publication number
WO2014142031A1
WO2014142031A1 PCT/JP2014/055998 JP2014055998W WO2014142031A1 WO 2014142031 A1 WO2014142031 A1 WO 2014142031A1 JP 2014055998 W JP2014055998 W JP 2014055998W WO 2014142031 A1 WO2014142031 A1 WO 2014142031A1
Authority
WO
WIPO (PCT)
Prior art keywords
film thickness
substrate
region
reactive gas
processing
Prior art date
Application number
PCT/JP2014/055998
Other languages
French (fr)
Japanese (ja)
Inventor
浩 小谷
上田 立志
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to JP2015505443A priority Critical patent/JP6290177B2/en
Publication of WO2014142031A1 publication Critical patent/WO2014142031A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases

Definitions

  • the present invention relates to a substrate processing apparatus for processing a substrate, a control method for the substrate processing apparatus, a cleaning method, a method for manufacturing a semiconductor device, and a recording medium.
  • One step of a manufacturing process of a semiconductor device such as a flash memory or a DRAM (Dynamic Random Access Memory) is performed by the substrate processing apparatus.
  • a raw material gas is supplied into a processing chamber to perform a process for forming a film on a substrate.
  • a method for removing deposits on the inner wall of the processing chamber for example, there is a wet cleaning method in which a member constituting the processing chamber is removed from the substrate processing apparatus and deposits adhered to the member in a cleaning tank such as an HF aqueous solution are removed. is there.
  • a cleaning tank such as an HF aqueous solution
  • a dry cleaning method is performed in which deposits attached to an inner wall or the like in the processing chamber are removed by etching by supplying a cleaning gas into the processing chamber.
  • the dry cleaning method is expected to improve the operating rate of the apparatus because it is not necessary to remove the components constituting the processing chamber from the substrate processing apparatus.
  • over-etching may occur in the processing chamber, causing damage to members constituting the processing chamber. That is, in a portion where the thickness of the deposit is small, the inner wall or the like of the processing chamber is eroded and damaged. For example, a metal member in the processing chamber is corroded to cause metal contamination.
  • the present invention provides a substrate processing apparatus, a substrate processing apparatus control method, a cleaning method, and a semiconductor device that can remove deposits attached to the constituent members and the like in the processing chamber so as not to cause damage to the constituent members that configure the processing chamber.
  • a manufacturing method and a recording medium can be provided.
  • a substrate processing apparatus comprising at least one processing chamber provided with a plurality of regions for processing a substrate, A substrate mounting portion provided in the processing chamber for mounting the substrate; A reactive gas supply unit that supplies, to the plurality of regions, a reactive gas that removes at least deposits deposited on the substrate mounting unit by processing the substrate; An inert gas supply unit for supplying an inert gas to the plurality of regions; When the reactive gas is supplied to the plurality of regions and the deposit is removed, the supply flow rate of the reactive gas and the supply flow rate of the inert gas supplied to the plurality of regions are respectively set to the substrate mounting unit.
  • a substrate processing apparatus comprising: a control unit that controls at least the reactive gas supply unit and the inert gas supply unit so as to adjust according to a film thickness value of the deposit deposited on the substrate.
  • a cleaning method executed by a substrate processing apparatus including at least one processing chamber provided with a plurality of regions for processing a substrate, wherein at least a reactive gas is supplied into the processing chamber, the supply to the plurality of regions Adjusting the supply flow rate of the reactive gas and the supply flow rate of the inert gas according to the film thickness value of the deposit deposited on the substrate mounting portion provided in the processing chamber, respectively.
  • a method for cleaning a substrate processing apparatus having a removing step of removing deposits deposited on the substrate.
  • the supply flow rate of the reactive gas and the supply flow rate of the inert gas supplied to the plurality of regions are respectively in accordance with the film thickness value of the deposit deposited on the substrate platform.
  • a recording medium in which a program executed by a substrate processing apparatus including at least one processing chamber provided with a plurality of regions for processing a substrate is recorded in a computer-readable manner, When supplying at least a reactive gas into the processing chamber, the supply flow rate of the reactive gas and the supply flow rate of the inert gas supplied to the plurality of regions are respectively deposited on the substrate mounting portion provided in the processing chamber.
  • a computer-readable recording medium recording a program having a procedure of adjusting the film thickness of the deposit to remove the deposit deposited on the substrate platform.
  • a method for controlling a substrate processing apparatus including at least one processing chamber for processing a substrate, the substrate mounting portion being provided in the processing chamber and mounting the substrate.
  • a reactive gas supply unit that supplies the plurality of regions with a reactive gas that removes at least deposits deposited on the substrate mounting unit by processing the substrate; and an inert gas that supplies inert gas to the plurality of regions.
  • An active gas supply unit; and a control unit that controls at least the reactive gas supply unit and the inert gas supply unit, and supplies the reactive gas to the plurality of regions to remove the deposits.
  • a substrate processing apparatus that adjusts a supply flow rate of the reactive gas and a supply flow rate of the inert gas supplied to the plurality of regions according to a film thickness value of the deposit deposited on the substrate mounting unit, respectively. Provided by the control method It is.
  • each component in the processing chamber is provided so as not to cause damage to the components configuring the processing chamber.
  • the deposit adhering to can be removed.
  • a multi-wafer type substrate processing apparatus that performs a process of forming a thin film on a substrate
  • a processing chamber for processing a substrate for example, a processing chamber for processing a substrate, a substrate mounting unit that is configured to freely rotate a plurality of substrates, and a substrate
  • a partition unit that partitions the processing chamber so that the first processing region, the first purge region, the second processing region, and the second purge region are alternately arranged along the rotation direction of the mounting unit;
  • a substrate processing apparatus provided has been proposed.
  • Such a substrate processing apparatus supplies the first source gas to the first processing region and also supplies the second source gas to the second processing region, and the first purge region and the second purge region. It is comprised so that an inert gas may be supplied to.
  • the substrate on the substrate platform passes through the first processing region, the first purge region, the second processing region, and the second purge region in this order.
  • the thin film is formed on the substrate by alternately supplying the source gas and the inert gas to the substrate.
  • a thin film When a thin film is formed on a substrate by such a multi-wafer type substrate processing apparatus, it is a constituent member constituting the processing chamber (a member constituting the surface of the susceptor, the side surface of the partition portion, etc.) and the substrate surface Deposits including a thin film may adhere to other parts, for example, the inner wall of the processing chamber, the side surfaces of the partition part, the surface of the susceptor as the substrate mounting part, and the like.
  • Such deposits are cumulatively deposited each time a process for forming a thin film on the substrate is performed. Then, the deposit is peeled off and dropped when the thickness exceeds a predetermined thickness, which becomes a factor in generating foreign matter in the processing chamber. Therefore, every time the film thickness of the deposit reaches a predetermined value, it is necessary to perform cleaning to remove the deposit deposited on each component (susceptor, partition, etc.) in the processing chamber.
  • the susceptor including the heating unit is likely to become high temperature, deposits are more likely to adhere to the inner wall of the processing chamber. That is, the thickness of the deposit on the susceptor tends to be larger than the thickness of the deposit on the inner wall of the processing chamber. Further, the side surfaces of the partition portions constituting the first processing region and the second processing region to which the source gas is supplied are deposited as compared with the first purge region and the second purge region to which the inert gas is supplied. Objects are easy to adhere. That is, the film thickness of the deposit adhering to the partition portion facing the first processing region and the second processing region is the same as that of the deposit adhering to the partition portion facing the first purge region and the second purge region. It tends to be larger than the film thickness. Thus, the film thickness of the deposit deposited on each component in the processing chamber is hardly uniform in the processing chamber.
  • the processing chamber is uniformly etched by, for example, the dry cleaning method based on the thickness of the deposit on the susceptor, over-etching occurs in the processing chamber. That is, the partition wall and the inner wall of the processing chamber are eroded by the cleaning gas on the side surfaces of the partition portions constituting the first purge region and the second purge region where the deposit thickness is small and the inner walls of the processing chambers.
  • the metal member in the processing chamber may be corroded to cause metal contamination.
  • the cleaning gas supply flow rate or the like is adjusted based only on the film thickness value of the deposit attached to a predetermined location in the processing chamber such as a susceptor, the components (partitions and the like) constituting the processing chamber May cause damage.
  • FIG. 1 is a schematic configuration diagram of a substrate processing apparatus 10 according to the present embodiment.
  • the substrate processing apparatus 10 according to the present embodiment is configured as a multi-leaf type apparatus that processes a plurality of wafers 200 as a substrate at a time.
  • a FOUP Front Opening Unified Pod, hereinafter referred to as a pod
  • the transfer apparatus of the substrate processing apparatus 10 according to the present embodiment is divided into a vacuum side and an atmosphere side.
  • vacuum means an industrial vacuum.
  • front, rear, left and right are based on FIG. That is, with respect to the paper surface shown in FIG. 1, the front is below the paper surface, the back is above the paper surface, and the left and right are the left and right of the paper surface.
  • the substrate processing apparatus 10 includes a transfer chamber TM (Transfer Module) as a first transfer chamber capable of reducing the pressure to a pressure lower than atmospheric pressure (for example, 100 Pa) such as a vacuum state.
  • the housing of the transfer chamber TM has a pentagonal shape in plan view and is formed in a box shape with both upper and lower ends closed.
  • load lock chambers LM Load Lock Module 1 and LM2 as spare chambers via a gate valve. Each is provided so as to be able to communicate with the transfer chamber TM.
  • a process chamber PM Process Module 1 as a first processing chamber via a gate valve.
  • the process chamber PM2 as the second processing chamber is provided so as to be able to communicate with the transfer chamber TM.
  • the process chambers PM1 and PM2 are provided with a gas supply unit 250 and an exhaust unit, which will be described later.
  • the process chambers PM1 and PM2 are provided with susceptors ST1 and ST2 as substrate placement portions on which the wafer 200 is placed.
  • a plurality of processing regions and the like are formed in one reaction vessel 203, and a susceptor ST1 serving as a substrate mounting portion is rotated to rotate a wafer 200 as a substrate. Passes through a plurality of processing regions in order, so that a source gas or the like is sequentially supplied to the wafer 200 to form a thin film on the wafer 200, or the surface of the wafer 200 is oxidized, nitrided, carbonized, or the like.
  • Various substrate processes such as a process and a process of etching the surface of the wafer 200 are performed.
  • a transfer robot VR as a first transfer mechanism is provided in the transfer chamber TM.
  • the transfer robot VR is configured to be able to transfer the wafer 200 between the load lock chamber LM1 as a first auxiliary chamber and the load lock chamber LM2 as a second auxiliary chamber and the process chambers PM1 and PM2.
  • the transfer robot VR is configured to be movable up and down while maintaining the airtightness of the transfer chamber TM.
  • the transfer robot VR has, for example, two arms as substrate holding units and is configured to be able to transfer two wafers 200.
  • the arm of the transfer robot VR can be expanded and contracted in the horizontal direction, and is configured to rotate and move within the horizontal plane.
  • a wafer presence / absence sensor as a substrate detection unit for detecting the presence / absence of the wafer 200 is provided. Is provided.
  • the load lock chambers LM1 and LM2 function as spare chambers for temporarily storing the wafers 200 loaded into the transfer chamber TM or unloaded from the transfer chamber TM.
  • buffer stages as substrate support portions for temporarily supporting the wafer 200 are provided.
  • Each of the buffer stages may be configured as a multistage slot that holds a plurality of (for example, two) wafers 200.
  • the load lock chambers LM1 and LM2 are configured in a load lock chamber structure capable of reducing the pressure to a pressure (negative pressure) less than atmospheric pressure such as a vacuum state. That is, the load lock chambers LM1 and LM2 are configured so that the inside thereof can be evacuated.
  • a transfer chamber EFEM as a second transfer chamber is provided on the front side of the load lock chambers LM1 and LM2 via a gate valve. Therefore, after the gate valve on the transfer chamber EFEM side is closed and the load lock chambers LM1 and LM2 are evacuated, the gate valve on the transfer chamber TM side is opened, thereby maintaining the vacuum state of the transfer chamber TM and the load lock.
  • the wafer 200 is configured to be transferred between the chambers LM1, LM2 and the transfer chamber TM.
  • a transfer chamber EFEM Equipment Front End Module as a second transfer chamber is provided on the atmosphere side of the substrate processing apparatus 10 and is used at a substantially atmospheric pressure. That is, the transfer chamber EFEM is provided on the front side of the load lock chambers LM1 and LM2 via the gate valve. The transfer chamber EFEM is provided so as to communicate with the load lock chambers LM1, LM2.
  • one transfer robot AR is provided as a second transfer mechanism for transferring the wafer 200.
  • the transfer robot AR is configured to mutually transfer the wafer 200 between the load lock chambers LM1 and LM2 and load ports LP1 to LP3 described later.
  • the transfer robot AR is configured to be movable up and down and configured to reciprocate in the left-right direction.
  • the transfer robot AR has, for example, two arms and is configured to transfer two wafers.
  • a wafer presence sensor as a substrate detection unit for detecting the presence or absence of the wafer 200 is provided in the vicinity of the gate valve of the transfer chamber EFEM.
  • a notch alignment device that performs the crystal orientation and alignment of the wafer 200 using the notch of the wafer 200 is provided as a device for correcting the position of the wafer 200.
  • an orientation flat aligning device may be provided.
  • the transfer chamber EFEM is provided with a clean air unit that supplies clean air into the transfer chamber EFEM.
  • a substrate transfer port for transferring the wafer 200 into and out of the transfer chamber EFEM is provided.
  • Load ports (I / O stages) LP1, LP2, LP3 as carrier mounting tables (carrier mounting units) are provided outside the transfer chamber EFEM across the substrate transfer port.
  • Each of the load ports LP1 to LP3 is configured to place carrier cassettes CA1 to CA3 as substrate storage containers for storing a plurality of (for example, 25) wafers 200 on the load ports LP1 to LP3, respectively. Yes.
  • Each of the carrier cassettes CA1 to CA3 is assigned a carrier ID such as a barcode for identifying the carrier cassettes CA1 to CA3.
  • Each of the load ports LP1 to LP3 is configured to read and store the carrier IDs assigned to the carrier cassettes CA1 to CA3 when the carrier cassettes CA1 to CA3 are placed.
  • the transfer chamber TM, the load lock chambers LM1 and LM2, and the transfer chamber EFEM constitute a transfer device of the substrate processing apparatus 10 according to the present embodiment.
  • a control unit 280 described later is electrically connected to each component of the transfer device of the substrate processing apparatus 10. And it is comprised so that operation
  • the operation of each component of each transport mechanism of the substrate processing apparatus 10 is controlled by the control unit 280 described later.
  • the following operations are performed based on, for example, a transport recipe.
  • the transfer recipe is used to transfer the wafer 200 in the substrate processing apparatus 10 and is used in combination with a substrate processing recipe for processing a substrate to realize a substrate processing process.
  • carrier cassettes CA1 and CA2 containing 25 wafers 200 and an empty carrier cassette CA3 are mounted on the load port LP1, respectively, and the carrier IDs attached to the carrier cassettes CA1 to CA3 are read. Then, the substrate transfer port and the wafer entrance / exit of the carrier cassette CA1 or the carrier cassette CA2 are opened.
  • the transfer robot AR installed in the transfer chamber EFEM picks up one wafer 200 from the carrier cassette CA1 or the carrier cassette CA2, for example, the load lock chamber LM1. Then, the wafer 200 is loaded. During the transfer operation of the wafer 200 by the transfer robot AR, the gate valve between the load lock chamber LM1 and the transfer chamber TM is closed, and the decompressed atmosphere in the transfer chamber TM is maintained. When the transfer of the wafer 200 into the load lock chamber LM1 by the transfer robot AR is completed, the inside of the load lock chamber LM1 is exhausted to a negative pressure by the exhaust device.
  • the transfer robot AR repeats the above-described operation.
  • the transfer robot AR does not carry the wafer 200 into the load lock chamber LM1, but stops and waits at a position immediately before the load lock chamber LM1.
  • the transfer robot AR may be configured to load the wafer 200 into the load lock chamber LM2.
  • the gate valve between the load lock chamber LM1 and the transfer chamber TM is opened. Subsequently, the transfer robot VR provided in the transfer chamber TM picks up the wafer 200 from the load lock chamber LM1 and loads it into the transfer chamber TM.
  • a preset pressure value for example, 100 Pa
  • the transfer robot VR picks up the wafer 200 from the load lock chamber LM1
  • the gate valve between the load lock chamber LM1 and the transfer chamber TM is closed.
  • the inside of the load lock chamber LM1 is returned to the atmospheric pressure, and preparations for carrying the next wafer 200 into the load lock chamber LM1 are made.
  • a gate valve between the process chamber PM1 and the transfer chamber TM at a predetermined pressure for example, 100 Pa
  • a predetermined pressure for example, 100 Pa
  • This operation is repeated until an arbitrary number (for example, five) of wafers 200 is loaded into the process chamber PM1.
  • a predetermined process is performed.
  • the gate valve between the process chamber PM1 and the transfer chamber TM is opened, and the processed wafer 200 is unloaded from the process chamber PM1 to the transfer chamber TM by the transfer robot VR. After unloading the wafer 200, the gate valve between the process chamber PM1 and the transfer chamber TM is closed.
  • the gate valve between the transfer chamber TM and the load lock chamber LM2 is opened, and the wafer 200 transferred from the process chamber PM1 is transferred into the load lock chamber LM2 by the transfer robot VR.
  • the load lock chamber LM2 is decompressed to a preset pressure value by the exhaust device.
  • an inert gas is introduced from an inert gas supply unit connected to the load lock chamber LM2, and the pressure in the load lock chamber LM2 is increased. Is returned to atmospheric pressure.
  • the gate valve between the load lock chamber LM2 and the transfer chamber EFEM is opened. Subsequently, after the processed wafer 200 is unloaded from the load lock chamber LM2 into the transfer chamber EFEM by the transfer robot AR, the gate valve between the load lock chamber LM2 and the transfer chamber EFEM is closed. Thereafter, the transfer robot 124 stores the processed wafer 200 in, for example, an empty carrier cassette CA3 through the substrate transfer port 134 of the transfer chamber 121.
  • the processed wafer 200 may be returned to the original carrier cassette CA1 or carrier cassette CA2 from which the wafer 200 was unloaded without being stored in the carrier cassette CA3.
  • the substrate transfer port 134 is closed. Thereafter, the carrier cassette CA3 is transported from the load port LP3 to the next process by the transport device. By repeating the above operation, 25 wafers 200 are sequentially processed.
  • FIG. 2 is a schematic perspective view of a reaction vessel provided in the processing chamber according to the present embodiment.
  • FIG. 3 is a schematic vertical sectional view of the processing chamber according to the present embodiment.
  • FIG. 4 is a schematic explanatory diagram of a gas supply unit according to the present embodiment.
  • the process chamber PM2 is configured in the same manner as the process chamber PM1, and thus the description thereof is omitted.
  • the process chamber PM1 as the first processing chamber includes a reaction vessel 203 which is a cylindrical airtight vessel.
  • a processing space for the wafer 200 is formed in the reaction vessel 203.
  • a partition plate 205 extending radially from the center is provided above the processing space in the reaction vessel 203, that is, on the ceiling side.
  • the partition plate 205 is configured to partition the processing space in the reaction vessel 203 into a plurality of processing regions.
  • the reaction vessel 203 is configured to be partitioned into a first processing region 201a, a first purge region 204a, a second processing region 201b, and a second purge region 204b. Yes.
  • a first source gas is supplied into the first processing region 201a, a second source gas is supplied into the second processing region 201b, and the first purge region 204a and the second purge region 204b are supplied. Inside, it is comprised so that an inert gas may be supplied. Therefore, by rotating the susceptor ST1, the first source gas, the inert gas, the second source gas, and the inert gas are alternately supplied onto the wafer 200 in this order.
  • the configurations of the susceptor ST1 and the gas supply unit 250 will be described later.
  • a gap having a predetermined width is provided between the end of the partition plate 205 and the side wall of the reaction vessel 203, and the gas can pass through the gap.
  • the angle between the partition plates 205 is 90 degrees, but the present invention is not limited to this. That is, in consideration of the supply time of various gases to the wafer 200, the angle may be changed as appropriate, for example, by increasing the angle between the two partition plates 205 forming the second processing region 201b. .
  • a susceptor ST1 as a substrate mounting portion is provided below the partition plate 205, that is, at the bottom center in the reaction vessel 203.
  • the susceptor ST1 has a center of a rotation shaft at the center of the reaction vessel 203 and is configured to be rotatable.
  • the susceptor ST1 is formed of a non-metallic material such as aluminum nitride (AlN), ceramics, or quartz so that the metal contamination of the wafer 200 can be reduced.
  • the susceptor ST1 is electrically insulated from the reaction vessel 203.
  • the susceptor ST1 is configured to support a plurality of (for example, five in this embodiment) wafers 200 in the reaction vessel 203 side by side on the same surface and on the same circumference.
  • the term “on the same plane” is not limited to a completely identical plane.
  • a circular recess 216 may be provided at the mounting position of the wafer 200 on the surface of the susceptor ST1.
  • the recess 216 may be configured so that its diameter is slightly larger than the diameter of the wafer 200.
  • the susceptor ST1 is provided with a lifting mechanism 268 that lifts and lowers the susceptor ST1.
  • the susceptor ST1 has a plurality of through holes.
  • a plurality of wafer push-up pins that push up the wafer 200 and support the back surface of the wafer 200 when the wafer 200 is loaded into and unloaded from the reaction vessel 203 are provided on the bottom surface of the reaction vessel 203.
  • the elevating mechanism 268 is provided with a rotating mechanism 267 that rotates the susceptor ST1.
  • the rotation shaft of the rotation mechanism 267 is connected to the susceptor ST1, and the susceptor ST1 can be rotated by operating the rotation mechanism 267.
  • a control unit 280 described later is connected to the rotation mechanism 267 via a coupling unit 266.
  • the coupling portion 266 is configured as a slip ring mechanism that electrically connects the rotating side and the fixed side with a metal brush or the like. Thereby, it is comprised so that rotation of susceptor ST1 may not be prevented.
  • the control unit 280 is configured to control the power supplied to the rotation mechanism 267 so that the susceptor ST1 is rotated at a predetermined speed for a predetermined time.
  • the wafer 200 placed on the susceptor ST1 causes the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge. It moves between the areas 204b.
  • a heater 218 as a heating section is integrally embedded in the susceptor ST1, and the wafer 200 can be heated.
  • the surface of the wafer 200 is heated to a predetermined temperature (eg, room temperature to about 1000 ° C.).
  • a predetermined temperature eg, room temperature to about 1000 ° C.
  • a plurality (for example, five) of heaters 218 may be provided on the same surface so as to individually heat the respective wafers 200 placed on the susceptor ST1.
  • the susceptor ST1 is provided with a temperature sensor 274.
  • a temperature regulator 223, a power regulator 224, and a heater power source 225 are electrically connected to the heater 218 and the temperature sensor 274 via a power supply line 222. Based on the temperature information detected by the temperature sensor 274, the power supplied to the heater 218 is controlled.
  • an opening 251a is formed above the reaction vessel 203 in the first processing region 201a.
  • the opening 251a is provided with a first source gas supply unit 251 that supplies the first source gas into the first processing region 201a. That is, the downstream end of the first source gas supply pipe 232a is airtightly connected to the opening 251a.
  • a first source gas supply source 233a on the upstream side of the first source gas supply pipe 232a, in order from the upstream direction, a mass flow controller that is a flow rate controller (flow rate control unit). (MFC) 234a and a valve 235a which is an on-off valve are provided.
  • MFC flow rate controller
  • a silicon-containing gas is supplied as the first source gas into the first processing region 201a via the mass flow controller 234a, the valve 235a, and the opening 251a.
  • the silicon-containing gas for example, trisilylamine ((SiH 3 ) 3 N, abbreviation: TSA) gas or the like can be used.
  • TSA trisilylamine
  • the first source gas may be any of solid, liquid, and gas at normal temperature and pressure, but will be described as a gas here.
  • a vaporizer may be provided between the first source gas supply source 233a and the mass flow controller 234a.
  • a downstream end of the first inert gas supply pipe 232b is connected to the downstream side of the valve 235a of the first source gas supply pipe 232a.
  • a first inert gas supply source 233b On the upstream side of the first inert gas supply pipe 232b, in order from the upstream direction, a first inert gas supply source 233b, a mass flow controller (MFC) 234b that is a flow rate controller (flow rate control unit), and an on-off valve A valve 235b is provided.
  • MFC mass flow controller
  • N 2 gas is supplied as an inert gas through the mass flow controller 234b, the valve 235b, the first source gas supply pipe 232a, and the opening 251a. It is supplied into the area 201a.
  • an opening 251b is formed on the upper side of the reaction vessel 203 in the second processing region 201b.
  • the opening 251b is provided with a second source gas supply unit 253 that supplies a second source gas into the second processing region 201b. That is, the downstream end of the second source gas supply pipe 232c is airtightly connected to the opening 251b.
  • a mass flow controller that is a second source gas supply source 233c and a flow rate controller (flow rate control unit) in order from the upstream direction. (MFC) 234c and a valve 235c which is an on-off valve are provided.
  • oxygen (O 2 ) gas which is an oxygen-containing gas
  • O 2 gas which is an oxygen-containing gas
  • the oxygen gas that is the second source gas is brought into a plasma state by, for example, a remote plasma unit and supplied to the wafer 200.
  • the oxygen gas that is the second source gas may be activated by adjusting the temperature of the heater 218 and the pressure in the reaction vessel 203 within a predetermined range.
  • ozone (O 3 ) gas or water vapor (H 2 O) may be used as the oxygen-containing gas.
  • a downstream end of the second inert gas supply pipe 232d is connected to the downstream side of the valve 235c of the second source gas supply pipe 232c.
  • a second inert gas supply source 233d On the upstream side of the second inert gas supply pipe 232d, in order from the upstream direction, a second inert gas supply source 233d, a mass flow controller (MFC) 234d as a flow rate controller (flow rate control unit), and an on-off valve A valve 235d is provided.
  • MFC mass flow controller
  • N 2 gas is supplied as an inert gas via the mass flow controller 234d, the valve 235d, the second source gas supply pipe 232c, and the opening 251b. It is supplied into the area 201b.
  • the second source gas supply unit 253 is mainly configured by the second source gas supply pipe 232b, the mass flow controller 234b, and the valve 235b. Note that the second source gas supply source 233b may be included in the second source gas supply unit 253.
  • a second inert gas supply unit 254 is mainly configured by the second inert gas supply pipe 232d, the mass flow controller 234d, and the valve 235d. Note that the second inert gas supply source 233d and the second source gas supply pipe 232c may be included in the second inert gas supply unit 254.
  • an opening is opened on the upper side of the reaction vessel 203 in the first purge region 204a.
  • the opening is provided with a third inert gas supply unit 255 that supplies an inert gas into the first purge region 204a. That is, the downstream end of the third inert gas supply pipe 232e is airtightly connected to the opening formed in the reaction vessel 203 on the upper side of the first purge region 204a.
  • a third inert gas supply source 233e on the upstream side of the third inert gas supply pipe 232e, there are a third inert gas supply source 233e and a flow rate controller (flow rate control unit) in order from the upstream direction.
  • a mass flow controller (MFC) 234e and a valve 235e which is an on-off valve are provided.
  • the third inert gas supply unit 255 is mainly configured by the third inert gas supply pipe 232e, the mass flow controller 234e, and the valve 235e.
  • the third inert gas supply source 233e may be included in the third inert gas supply unit 255.
  • an opening is opened above the reaction vessel 203 in the second purge region 204b.
  • a fourth inert gas supply unit 256 that supplies an inert gas into the second purge region 204b is provided in the opening. That is, the downstream end of the fourth inert gas supply pipe 232f is airtightly connected to the opening formed in the reaction vessel 203 on the upper side of the second purge region 204b.
  • FIG. 4D on the upstream side of the fourth inert gas supply pipe 232f, there are a fourth inert gas supply source 233f and a flow rate controller (flow rate control unit) sequentially from the upstream direction.
  • a mass flow controller (MFC) 234f and a valve 235f which is an on-off valve are provided.
  • the fourth inert gas supply unit 256 is mainly configured by the fourth inert gas supply pipe 232f, the mass flow controller 234f, and the valve 235f. Note that the fourth inert gas supply source 233f may be included in the fourth inert gas supply unit 256.
  • each region of the first processing region 201a, the second processing region 201b, the first purge region 204a, and the second purge region 204b (hereinafter also referred to as “each region in the reaction vessel 203”). .) Is provided with a reactive gas supply unit 257 for supplying a reactive gas as a cleaning gas. That is, the downstream end of the reactive gas supply pipe 232g is airtightly connected to the opening 209. As shown in FIG.
  • a mass flow controller (MFC) 234g which is a flow rate controller (flow rate control unit).
  • a valve 235g which is an on-off valve is provided.
  • fluorine-containing gas or chlorine-containing gas is supplied as reactive gas to each region in the reaction vessel 203 via the mass flow controller 234g, the valve 235g, and the opening 209.
  • fluorine-containing gas for example, nitrogen trifluoride (NF 3 ) gas, fluorine (F 2 ) gas, chlorine trifluoride (ClF 3 ) gas, or the like can be used.
  • chlorine-containing gas for example, hydrogen chloride (HCl) gas, chlorine (Cl 2 ) gas, dichlorosilane (SiH 2 Cl 2 ), dichloroethylene (DCE), or the like can be used.
  • the reactive gas supply unit 257 is mainly configured by the reactive gas supply pipe 232g, the mass flow controller 234g, and the valve 235g. Note that the reactive gas supply source 233g may be included in the reactive gas supply unit 257.
  • the first source gas supply unit 251 is mainly configured by the first source gas supply pipe 232a, the mass flow controller 234a, and the valve 235a.
  • the first source gas supply source 233a may be included in the first source gas supply unit 251.
  • a first inert gas supply unit 252 is mainly configured by the first inert gas supply pipe 232b, the mass flow controller 234b, and the valve 235b.
  • the first inert gas supply source 233b and the first source gas supply pipe 232a may be included in the first inert gas supply unit 252.
  • the source gas supply unit is mainly configured by the first source gas supply unit 251 and the second source gas supply unit 253. Further, the inert gas supply is mainly performed by the first inert gas supply unit 252, the second inert gas supply unit 254, the third inert gas supply unit 255, and the fourth inert gas supply unit 256. The part is composed. Further, the gas supply unit 250 is mainly configured by the source gas supply unit, the inert gas supply unit, and the reactive gas supply unit 257.
  • the reaction vessel 203 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing regions 201a and 201b and the purge regions 204a and 204b.
  • the exhaust pipe 231 includes a flow rate adjusting valve 245 for adjusting the flow rate when the atmosphere in the reaction vessel 203 (in the processing regions 201a and 201b and the purge regions 204a and 204b) is discharged, and a pressure regulator (pressure adjusting unit).
  • a vacuum pump 246 as an evacuation device is connected via an APC (Auto Pressure Controller) valve 243 as a evacuator so that the pressure in the reaction vessel 203 becomes a predetermined pressure (degree of vacuum). It is configured.
  • APC Auto Pressure Controller
  • the APC valve 243 is an open / close valve that can open and close the valve to stop evacuation and evacuation in the reaction vessel 203, and further adjust the valve opening to adjust the pressure.
  • An exhaust section is mainly configured by the exhaust pipe 231, the APC valve 243, and the flow rate adjustment valve 245.
  • the vacuum pump 246 may be included in the exhaust part.
  • Control Unit A control unit (controller) 280 as control means is electrically connected to the substrate processing apparatus 10.
  • the control unit 280 is configured to control the heater 218, the mass flow controllers 234a to 234g, the valves 235a to 235g, the APC valve 243, the vacuum pump 246, and the like.
  • the configuration and operation of the control unit 280 will be described later.
  • FIG. 5 is a flowchart showing a substrate processing process according to this embodiment. Such a substrate processing step is repeatedly executed based on a process recipe for performing a predetermined process on the wafer 200.
  • a process recipe may include a plurality of steps.
  • the operation of each part constituting the process chamber PM1 of the substrate processing apparatus 10 is controlled by the control unit 280.
  • trisilylamine which is a silicon-containing gas
  • oxygen gas which is an oxygen-containing gas
  • SiO 2 film which is an insulating film
  • the wafer push-up pin is raised to the transfer position of the wafer 200, and the wafer push-up pin is passed through the through hole of the susceptor ST1. As a result, the wafer push-up pins are projected from the surface of the susceptor ST1 by a predetermined height. Subsequently, the gate valve between the process chamber PM1 and the transfer chamber TM is opened, and a predetermined number (for example, five) of wafers 200 is loaded into the reaction vessel 203 using the transfer robot VR.
  • a predetermined number for example, five
  • the wafers 200 are placed on the same surface of the susceptor ST1 so that the wafers 200 do not overlap with each other about the rotation axis of the susceptor ST1. Thereby, the wafer 200 is supported in a horizontal posture on the wafer push-up pins protruding from the surface of the susceptor ST1.
  • the transfer robot VR When the wafer 200 is loaded into the reaction vessel 203, the transfer robot VR is moved out of the reaction vessel 203, and the gate valve between the process chamber PM1 and the transfer chamber TM is closed to seal the reaction vessel 203 inside. Thereafter, the wafer push-up pins are lowered to place the wafer 200 on the susceptors 217 on the bottom surfaces of the first processing area 201a, the first purge area 204a, the second processing area 201b, and the second purge area 204b. To do.
  • N 2 gas as a purge gas may be supplied from the inert gas supply unit into the reaction vessel 203 while the reaction vessel 203 is exhausted by the exhaust unit. . That is, the vacuum pump 246 is operated to open the APC valve 243 to evacuate the inside of the reaction vessel 203. For example, the valve 235a of the first inert gas supply unit 252 is opened to supply N 2 gas into the reaction vessel 203. Good. Thereby, it is possible to suppress the intrusion of particles into the processing regions 201 a and 201 b and the adhesion of particles onto the wafer 200.
  • the inert gas is not limited to the case where the inert gas is supplied from the first inert gas supply unit 252, and the inert gas is supplied from at least one of the first to fourth inert gas supply units 252, 254, 255, and 256. Can be supplied.
  • the inside of the reaction vessel 203 is evacuated by a vacuum pump 246 so that the inside of the reaction vessel 203 has a desired pressure (for example, 0.1 Pa to 300 Pa, preferably 20 Pa to 40 Pa).
  • a desired pressure for example, 0.1 Pa to 300 Pa, preferably 20 Pa to 40 Pa.
  • the pressure in the reaction vessel 203 is measured by a pressure sensor, and the opening degree of the APC valve 243 is feedback-controlled based on the measured pressure information.
  • the rotation mechanism 267 is operated to start the rotation of the susceptor ST1.
  • the rotation speed of the susceptor ST1 is controlled by the control unit 280.
  • the rotation speed of the susceptor ST1 is, for example, 1 rotation / second.
  • the susceptor ST1 is always rotated until the film forming step (S30) described later is completed.
  • the wafer 200 starts moving in the order of the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region 204b, and each region is moved to the wafer. 200 will pass.
  • TSA gas as the first source gas is supplied into the first processing region 201a, and oxygen gas as the second source gas is supplied into the second processing region 201b.
  • oxygen gas as the second source gas is supplied into the second processing region 201b.
  • a step of forming a SiO film on the wafer 200 is performed.
  • the TSA gas supply, the oxygen gas supply, and the inert gas supply are performed in parallel.
  • valves 235a, 235c, 235e, and 235f are opened, and the first source gas, the second source gas, and the non-source gas are discharged.
  • Supply of the active gas to the processing regions 201a and 201b and the purge regions 204a and 204b is started. That is, the valve 235a is opened to start supplying TSA gas into the first processing region 201a, the valve 235c is opened to start supplying oxygen gas into the second processing region 201b, and the valve 235e is opened to open the first gas.
  • the N 2 gas starts the supply of the N 2 gas is an inert gas into the first purge region 204a, starts supplying N 2 gas is an inert gas to the second purge region 204b by opening the valve 235f.
  • at least the APC valve 243 is appropriately adjusted so that the pressure in the reaction vessel 203 is, for example, a pressure in the range of 10 Pa to 1000 Pa.
  • the temperature of the heater 218 is set to such a temperature that the temperature of the wafer 200 becomes a temperature in the range of 200 ° C. to 400 ° C., for example.
  • the valve 235a is opened, and the exhaust gas is exhausted from the exhaust pipe 231 while supplying the TSA gas from the first source gas supply pipe 232a to the first processing region 201a through the opening 251a.
  • the mass flow controller 234a is adjusted so that the flow rate of the TSA gas becomes a predetermined flow rate.
  • the TSA gas supply flow rate controlled by the mass flow controller 234a is, for example, a flow rate in the range of 100 sccm to 5000 sccm.
  • the valve 235b When supplying the TSA gas into the first processing region 201a, the valve 235b is opened, and N 2 gas as a carrier gas or a dilution gas is supplied from the first inert gas supply pipe 232b into the first processing region 201a. It is good to supply to. Thereby, supply of TSA gas into the 1st processing field 201a can be promoted.
  • valve 235a is opened, and the valve 235c is further opened, and the exhaust gas is exhausted from the exhaust pipe 231 while oxygen gas is supplied from the second source gas supply pipe 232c into the second processing region 201b through the opening 252b.
  • the mass flow controller 234c is adjusted so that the flow rate of the oxygen gas becomes a predetermined flow rate.
  • the supply flow rate of the oxygen gas controlled by the mass flow controller 234c is, for example, a flow rate in the range of 1000 sccm to 10,000 sccm.
  • the oxygen gas is brought into a plasma state by, for example, a remote plasma unit before being supplied to the second processing region 201b.
  • the valve 235d When supplying oxygen gas into the second processing region 201b, the valve 235d is opened, and N 2 gas as a carrier gas or a dilution gas is supplied from the second inert gas supply pipe 232d into the second processing region 201b. It is good to supply to. Thereby, supply of oxygen gas into the 2nd processing field 201b can be promoted.
  • valves 235a and 235c are opened, and the valves 235e and 235f are further opened, and N 2 gas, which is an inert gas as a purge gas, is supplied to the third inert gas supply pipe 232e and the fourth inert gas supply pipe.
  • the gas is exhausted from the exhaust pipe 231 while being supplied from 232f to the first purge region 204a and the second purge region 204b.
  • the mass flow controllers 234e and 234f are respectively adjusted so that the flow rate of the N 2 gas becomes a predetermined flow rate.
  • a gap is provided between the end of the partition plate 205 and the side wall of the reaction vessel 203.
  • the first Intrusion of the first source gas and the second source gas into the purge region 204a and the second purge region 204b can be suppressed.
  • the wafer 200 by rotating the susceptor ST1, the wafer 200 repeatedly moves in the order of the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region 204b. Therefore, TSA gas supply, N 2 gas supply (purge), plasma oxygen gas supply, and N 2 gas supply (purge) are performed on wafer 200 as one cycle, and this cycle is performed a predetermined number of times. Will be.
  • TSA gas is supplied to the surface of the wafer 200 that has passed through the first processing region 201 a, and a silicon-containing layer is formed on the wafer 200.
  • the wafer 200 on which the silicon-containing layer is formed passes through the first purge region 204a.
  • N 2 gas which is an inert gas is supplied to the wafer 200.
  • oxygen gas is supplied to the wafer 200 that has passed through the second processing region 201b, and a silicon oxide layer (SiO layer) is formed on the wafer 200. That is, the oxygen gas reacts with a part of the silicon-containing layer formed on the wafer 200 in the first processing region 201a. As a result, the silicon-containing layer is oxidized and modified into a SiO layer containing silicon and oxygen.
  • SiO layer silicon oxide layer
  • the wafer 200 on which the SiO layer is formed in the second processing region 201b passes through the second purge region 204b.
  • N 2 gas which is an inert gas is supplied to the wafer 200.
  • one rotation of the susceptor ST1 is defined as one cycle, that is, one cycle is the passage of the wafer 200 through the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region 204b.
  • one cycle is the passage of the wafer 200 through the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region 204b.
  • the valve 234a and the valve 235c are closed, and the supply of the TSA gas and the oxygen gas to the first processing region 201a and the second processing region 201b is stopped. Then, the film forming step (S30) is completed.
  • the conditions such as the temperature of the wafer 200, the pressure in the reaction vessel 203, the flow rate of each gas, the processing time, etc. in the substrate loading / mounting step (S10) to the film forming step (S30) are subject to modification. It is arbitrarily adjusted depending on the material and film thickness of the film.
  • the opening of the APC valve 243 is adjusted to set the pressure in the reaction vessel 203 to a predetermined pressure (pressure adjustment). Then, the wafer push-up pins are raised, and the wafer 200 is supported on the wafer push-up pins protruded from the surface of the susceptor ST1. At this time, the wafer 200 is supported at a height that is not affected by the heater 218. Thereafter, the gate valve between the process chamber PM1 and the transfer chamber TM is opened, and the wafer 200 is unloaded from the process chamber PM1 (outside the reaction vessel 203) using the transfer robot VR.
  • the above described film formation step (S30) causes the susceptor ST1 and the susceptor ST1 by the cumulative film thickness value update function 285 of the control unit 280 described later.
  • a film thickness value deposited on each partition portion facing each region in the reaction vessel 203 is calculated for each region in the susceptor ST1 and the reaction vessel 203.
  • the calculated film thickness value is added to the accumulated film thickness value of the deposits of the partition portions facing the respective regions in the susceptor ST1 and the reaction vessel 203, and the accumulated film thickness value is updated.
  • the calculation method of the film thickness value to add is mentioned later.
  • the above-described film formation step (S30) is performed in each region in the reaction vessel 203.
  • a cleaning process (S60) is performed to etch away particles deposited on (deposit on) the facing partition and the susceptor ST1 and by-products generated in the reaction vessel 203.
  • the deposits are sequentially removed from the region where the film thickness value of the deposit is the smallest (minimum film thickness region) (the film thickness value of the deposit is 0 (zero)). ).
  • the cleaning process is preferably executed when a predetermined threshold value is exceeded based on the accumulated film thickness value of the susceptor ST1. This is because the susceptor ST1 has the highest cumulative film thickness because the susceptor ST1 includes a heater among the partitions and susceptors ST1 facing each region in the reaction vessel 203.
  • the threshold value may be set based on the film thickness value of the deposit adhering to the partition facing the region where the film thickness value is the smallest (minimum film thickness region). Yes.
  • the inside of the reaction vessel 203 is evacuated by a vacuum pump 246 so that the inside of the reaction vessel 203 has a desired pressure (for example, 0.1 Pa to 300 Pa, preferably 20 Pa to 40 Pa).
  • a desired pressure for example, 0.1 Pa to 300 Pa, preferably 20 Pa to 40 Pa.
  • the pressure in the reaction vessel 203 is measured by a pressure sensor, and the opening degree of the APC valve 243 is feedback-controlled based on the measured pressure information.
  • the rotation mechanism 267 is operated to start the rotation of the susceptor ST1.
  • the rotation speed of the susceptor ST1 is controlled by the controller 221.
  • the rotation speed of the susceptor ST1 is, for example, 1 rotation / second.
  • the susceptor ST1 is preferably rotated until the cleaning gas supply step (S62) is completed. Further, a dummy substrate may be placed on the susceptor ST1.
  • the reaction vessel 203 When the inside of the reaction vessel 203 is heated and reaches a desired temperature, at least one of the first cleaning gas supply unit 253 and the second cleaning gas supply unit 254 enters the reaction vessel 203 with three gases as cleaning gas. Supply of nitrogen fluoride (NF 3 ) gas is started. At this time, the APC valve 243 is appropriately adjusted so that the pressure in the reaction vessel 203 is, for example, a pressure in the range of 10 Pa to 1000 Pa.
  • NF 3 nitrogen fluoride
  • a reactive gas as a cleaning gas from the reactive gas supply unit 257 to each region in the reaction vessel 203 is started. That is, the valve 235g is opened, and the first processing region 201a, the second processing region 201b, the first purge region 204a, or the second purge region is controlled from the reactive gas supply pipe 232g by the mass flow controller 234g.
  • Reactive gas is supplied to at least one of 204b.
  • nitrogen trifluoride (NF 3 ) is used as the reactive gas, and the reactive gas supplied from the reactive gas supply unit 257 is supplied into the reaction vessel 203 in a plasma state in advance by, for example, a remote plasma mechanism.
  • the supply flow rate of the reactive gas controlled by the mass flow controller 234g is preferably a flow rate in the range of 100 sccm to 5000 sccm, for example.
  • each region is determined based on the film thickness value of the deposit in the partition facing each region in the reaction vessel 203.
  • the supply flow rates of the reactive gas and the inert gas to be supplied are adjusted. That is, an inert gas is supplied to a region where the film thickness value is 0 (for example, a region where the removal of deposits has been completed) so that the reactive gas is not supplied.
  • the valve 235e is opened so that the reactive gas is not supplied to the first purge region 204a, and the flow rate is controlled by the mass flow controller 234f.
  • An inert gas eg, N 2 gas
  • N 2 gas is supplied to the first purge region 204a while being controlled.
  • the gas supplied to the region where the film thickness value of the deposit is 0 (zero) by the reactive gas (cleaning gas) is switched from the reactive gas to the inert gas.
  • the valve 235 g When the calculated reaction gas supply time has elapsed, at least the valve 235 g is closed, and the supply of the reactive gas to each region in the reaction vessel 203 is stopped. Then, the opening of the APC valve 243 is adjusted to set the pressure in the reaction vessel 203 to a predetermined pressure. Note that the gas supplied to each region may be switched from a reactive gas to an inert gas as described above. In this way, the reactive gas is prevented from being supplied to the region where the film thickness value of the deposit is 0 (zero) by the reactive gas (cleaning gas).
  • the supply flow rate of the inert gas supplied to the region where the film thickness value of the deposit is 0 (zero) is made larger than the supply flow rate of the inert gas and the supply flow rate of the reactive gas supplied to the other regions. You may comprise.
  • the deposits are sequentially removed from the minimum film thickness region among the regions in the reaction vessel 203 (the film thickness value of the deposit is set to 0). This is repeated until the film thickness values of the partitions facing all the regions in the susceptor ST1 and the reaction vessel 203 become zero. When the film thickness values of the partition portions facing all regions in the susceptor ST1 and the reaction vessel 203 become 0, the substrate processing process according to the present embodiment is finished.
  • FIG. 6 is a schematic configuration diagram of the control unit 280 of the substrate processing apparatus suitably used in the present embodiment.
  • the process chamber PM2 is configured in the same manner as the process chamber PM1, and thus the description thereof is omitted.
  • the control unit 280 includes an operation unit controller 236, a switching hub (SW Hub) 239h connected to the operation unit controller 236, and a transport controller 239t as a transport control unit connected to the switching hub 239h. And a process chamber controller 239p as a processing control unit connected to the switching hub 239h.
  • the transfer controller 239t and the process chamber controller 239p are electrically connected to the operation unit controller 236 via the switching hub 239h via the communication network 20 such as a LAN (so that data can be exchanged).
  • a robot controller 11 that controls the transfer robot VR included in the transfer chamber TM and the transfer robot AR included in the transfer chamber EFEM is connected to the operation unit controller 236 via the communication network 20 via the switching hub 239h. Yes.
  • the operation unit controller 236 is connected to a customer's host computer 237u via a switching hub 239h.
  • the control unit 280 as a control unit is provided inside the substrate processing apparatus 10 and is configured to control each unit of the substrate processing apparatus 10 by including a transfer controller 239t and a process chamber controller 239p. Note that the transfer controller 239t and the process chamber controller 239p may be provided outside the substrate processing apparatus 10.
  • the operation unit controller 236 includes, for example, a central processing unit (CPU).
  • the operation unit controller 236 is an interface with an operator, and is configured to accept an operation by the operator via an operation terminal 236s including an input / output unit, a display unit, and the like. That is, for example, a mouse, a keyboard, and the like are connected to the operation terminal 236s as an input / output unit.
  • a display unit such as a display is connected to the operation terminal 236s.
  • the operation terminal 236s is configured to display, for example, an operation input reception screen such as a touch panel, accumulated film thickness data in which accumulated film thickness values of deposits in each region in the susceptor ST1 and the reaction vessel 203 are described, and the like. Has been.
  • the operation unit controller 236 includes a storage unit 236m such as a storage device including a flash memory, an HDD (Hard Disk Drive), a CD-ROM, and the like.
  • a control program for controlling the operation of the substrate processing apparatus 100 a process recipe in which, for example, processing procedures and conditions for forming a thin film on the wafer 200, and deposits in the processing chamber PM1 are stored.
  • a deposition rate is set in the process recipe.
  • the deposition rate is a rate of deposits deposited on the susceptor ST1 per unit time, for example, by performing a film forming process in which a raw material gas is supplied into the process chamber PM1 to form a thin film on the wafer 200. .
  • the film thickness value of the deposit deposited on the susceptor ST1 is calculated by multiplying the deposition rate by the supply time of the source gas. For example, when a film forming process in which the set value of the deposition rate is 10 nm / min and the supply time of the source gas is 1 minute is performed, the film thickness value of the deposit deposited on the susceptor ST1 is 10 nm.
  • the unit of the deposition rate unit time is not limited to minutes, and may be, for example, seconds.
  • the etching rate is set in the cleaning recipe.
  • the etching rate refers to, for example, a susceptor ST1 per unit time by supplying a reactive gas (cleaning gas) into the process chamber PM1 and performing a process (removal process) for removing deposits in the process chamber PM1.
  • the film thickness value of the deposit removed from the susceptor ST1 is calculated by multiplying the etching rate by the supply time of the reactive gas. For example, when a removal process in which the set value of the etching rate is 10 nm / min and the supply time of the reactive gas is 1 minute is executed, the film thickness value of the deposit etched from above the susceptor ST1 becomes 10 nm.
  • the unit of the etching rate time is not limited to minutes, and may be, for example, seconds.
  • a deposition ratio table file and an etching ratio table file are stored so as to be readable.
  • the deposition ratio table file is associated with the process recipe.
  • the deposition ratio table file to be used is specified by specifying the deposition ratio table number. It is configured.
  • the etching ratio table file is associated with the cleaning recipe.
  • an etching ratio table file to be used is specified. It is configured.
  • the deposition ratio table is a table in which the deposition ratio of each region in the susceptor ST1 and the reaction vessel 203 is described.
  • the deposition ratio is a process recipe of a film thickness value of deposits deposited on the surface of the partition 205 that faces each region in the susceptor ST1 and the reaction vessel 203 when the process recipe associated with the deposition ratio table is executed. It is the ratio to the deposition rate set within.
  • the etching ratio table is a table in which the etching ratios of the respective regions in the susceptor ST1 and the reaction vessel 203 are described.
  • the etching ratio is set in the cleaning recipe of the film thickness value of the deposit removed from each of the regions in the susceptor ST1 and the reaction vessel 203 when the cleaning recipe associated with the etching ratio table is executed. It is a ratio to the etching rate.
  • the operation unit controller 236 is not limited to being configured as a dedicated computer, but may be configured as a general-purpose computer.
  • an external storage device storing the above-described program (for example, a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD or DVD, a magneto-optical disk such as an MO, a semiconductor memory such as a USB memory or a memory card) )
  • the process chamber controller 239p and the transfer controller 239t can be configured.
  • the means for supplying the program to the computer is not limited to supplying the program via the external storage device described above.
  • the program may be supplied using communication means such as the Internet or a dedicated line without using the external storage device described above.
  • the storage device or the external storage device as the storage unit 236m is configured as a computer-readable recording medium.
  • these are collectively referred to simply as a recording medium.
  • recording medium when the term “recording medium” is used in this specification, it may include only a single storage device, only a single external storage device, or both.
  • the transfer controller 239t is mainly configured to control transfer of the wafer 200.
  • the transport controller 239t is composed of, for example, a central processing unit (CPU).
  • the transport controller 239t is connected to a digital signal line 30 such as DeviceNet, and the on / off of the valve digital I / O 13 for controlling the supply of the source gas and the reactive gas and the on / off of the exhaust valve, and various switches (SW).
  • SW digital I / Os 14 are connected to each other via the sequencer 12. That is, the transport controller 239t is connected to, for example, the transport robot VR, the transport robot AR, the susceptor ST1, the rotation mechanism 267, the lifting mechanism 268, and the like.
  • the transfer controller 239t transmits control data (control instruction) when transferring the wafer 200 based on the contents of the transfer recipe created or edited by the operator via the operation unit controller 236, the transfer robot VR, the transfer robot It is configured to output to the AR, the susceptor ST1, the rotation mechanism 267, the lifting mechanism 268, etc., and to control the transfer operation of the wafer 200.
  • the transport controller 239t has a storage unit 16 in which barcodes 1, 2, 3,... Indicating carrier IDs for identifying the carrier cassettes CA1 to CA3 mounted on the load ports LP1 to LP3 are stored. For example, it is connected through a serial line 40.
  • the process chamber controller 239p is configured to control processing of the wafer 200 in the process chamber PM1.
  • the process chamber controller 239p is composed of, for example, a central processing unit (CPU).
  • the process chamber controller 239p includes a storage device such as a flash memory, an HDD (Hard Disk Drive), a CD-ROM, or the like.
  • the control program and, for example, the susceptor ST1 in the processing chamber PM1 and the film thickness value of deposits deposited in each region (hereinafter also referred to as accumulated film thickness data) are stored in a readable manner. Has been.
  • the process chamber controller 239p is connected to a digital signal line 30 such as DeviceNet to supply a source gas and a reactive gas and to control on / off of a valve for exhaust, on / off of various switches (SW) and the like.
  • SW digital I / Os 14 for controlling the turn-off are connected to each other via the sequencer 12.
  • the process chamber controller 239p for example, the control data (control instruction) when processing the wafer 200 based on the content of the process recipe created or edited by the operator via the operation unit controller 236, the pressure controller 15, Outputs to valves 235a to 235g, 243, various switches, mass flow controllers 234a to 234g, heater 218, etc. are configured to control the processing of wafer 200 in process chamber PM1.
  • the pressure controller 15 is connected to the process chamber controller 239p via the serial line 40, for example.
  • the pressure controller 15 is connected to a pressure sensor for controlling the pressure in the process chamber PM1, an APC valve 243, a vacuum pump 246, and the like.
  • the pressure controller 15 is configured to control the APC valve 243 and the vacuum pump 246 so that the pressure in the process chamber PM1 becomes a predetermined pressure at a predetermined timing based on the pressure value detected by the pressure sensor. Has been. *
  • FIG. 7 is a block diagram illustrating a functional configuration of the control unit 280 according to the present embodiment.
  • the process chamber PM2 is configured in the same manner as the process chamber PM1, and thus the description thereof is omitted.
  • the operation unit controller 236 reads and executes a program stored in the storage device as the storage unit 236m, thereby executing a recipe start function 281, a recipe editing function 282, and a cumulative film thickness display function. 283 and the like are realized.
  • the process chamber controller 239p is configured to realize a recipe execution function 284, an accumulated film thickness value update function 285, and the like by reading and executing a program stored in the storage unit 236m.
  • the process recipe in the operation unit controller 236 is downloaded in advance and stored in a storage device included in the process chamber controller 239p.
  • the recipe start function 281 receives input of recipe specifying information from the input / output unit, for example, when the operator inputs a recipe name in the input field.
  • the recipe start function 281 transmits an instruction to start executing the recipe to the recipe execution function 284 of the process chamber controller 239p described later.
  • the recipe editing function 282 displays, for example, input fields for inputting recipe specifying information for specifying a process recipe and a cleaning recipe, table specifying information for specifying a deposition ratio table and an etching ratio table, and the like on the display unit. .
  • the recipe editing function 282 accepts input of recipe specifying information and table specifying information from the input / output unit, for example, when an operator inputs a recipe name and a table name in an input field.
  • the recipe editing function 282 receives input of recipe specifying information or table specifying information from the input / output unit, the recipe editing function 282 is specified by the process recipe or cleaning recipe specified by the recipe specifying information from the storage unit 236m, or table specifying information.
  • the deposition ratio table and the etching ratio table are read out.
  • the recipe editing function 282 displays a process recipe editing screen, a cleaning recipe editing screen, a deposition rate table editing screen, and an etching rate table editing screen read from the storage unit 236m on the display unit. Note that the recipe editing function 282 may display a plurality of editing screens on a display unit included in the operation terminal 236s when receiving input of a plurality of recipe specifying information and table specifying information from the input / output unit.
  • FIG. 8 is a diagram illustrating an example of an operation screen displayed by the control unit 280 according to the present embodiment.
  • FIG. 8A illustrates an example of a process recipe editing screen
  • FIG. 8B illustrates a deposition ratio table editing screen.
  • An example is shown.
  • FIG. 9 is a diagram illustrating an example of an operation screen displayed by the control unit 280 according to the present embodiment.
  • FIG. 9A illustrates an example of a cleaning recipe editing screen.
  • FIG. 9B illustrates an etching ratio table editing screen.
  • the process chamber PM2 is configured in the same manner as the process chamber PM1, and thus the description thereof is omitted.
  • An input field for inputting is displayed.
  • FIG. 8B on the edit screen of the deposition ratio table, an input field for inputting the deposition ratio table number, the deposition ratio of each region in the susceptor ST1 and the reaction vessel 203, and the like. Is displayed.
  • the cleaning recipe editing screen includes a cleaning recipe file name, an etching rate setting value, an etching ratio table number (etching ratio table name) related to the cleaning recipe, and the like.
  • An input field for inputting is displayed.
  • the etching ratio table edit screen has an input field for inputting the etching ratio table number, the etching ratio of each region in the susceptor ST1 and the reaction vessel 203, and the like.
  • a check box for designating the minimum film thickness area is displayed.
  • the process recipe editing screen shown in FIG. 8A and the cleaning recipe editing screen shown in FIG. 9A include, for example, a film forming process and a processing temperature of the cleaning process, a source gas, a reactive gas, Input fields for entering settings such as the supply flow rate of inert gas, valve opening and closing, pressure in the process chamber PM1, mechanism operation, radio frequency (RF) output, and monitoring method for deviation alarm from monitor value Etc. may be displayed.
  • RF radio frequency
  • the recipe editing function 282 receives update information of the set value from the input / output unit, for example, when an operator inputs set values such as a deposition rate, an etching rate, a deposition rate, and an etching rate in a predetermined input field.
  • the recipe editing function 282 receives update information of setting values from the input / output unit
  • the recipe editing function 282 updates the setting values of the process recipe, cleaning recipe, deposition rate table, and etching rate table, and updates the updated process recipe, cleaning recipe, and deposition rate.
  • the table and the etching ratio table are stored in the storage unit 236m so as to be readable.
  • the first processing region 201a and the second processing region 201b are separated from the first purge region 204a and the second purge region 204b by the partition portions facing these regions.
  • the first processing region 201a to which a TSA gas called a precursor, for example, is supplied as the first source gas is a second processing region 201b to which, for example, oxygen (O 2 ) gas is supplied as the second source gas.
  • O 2 oxygen
  • nitrogen (N 2 ) gas is supplied to each of the first purge region 204a and the second purge region 204b as an inert gas.
  • the amount of deposits deposited in the purge region 204a may be different from the amount of deposits deposited in the second purge region 204b.
  • the recipe editing function 282 is configured to edit and update the set values of the deposition rate and the etching rate for each region in the susceptor ST1 and the reaction vessel 203.
  • an operator sets the setting value of the deposition ratio of the susceptor ST1 to 100%, sets the setting value of the deposition ratio of the first processing region 201a to 80%
  • the predetermined input is 60% for the deposition ratio setting value of the second processing region 201b, 30% for the first purge region 204a, and 40% for the second purge region 204b.
  • the set value of the deposition ratio can be edited for each region in the susceptor ST1 and the reaction vessel 203. For example, as shown in FIG.
  • the operator sets the etching ratio setting value of the susceptor ST1 to 100%, sets the etching ratio setting value of the first processing region 201a to 50%,
  • the etching ratio setting value of the processing area 201b is 50%
  • the etching ratio setting value of the first purge area 204a is 50%
  • the etching ratio setting value of the second purge area 204b is 50%.
  • the deposition ratio or etching ratio can be appropriately set in consideration of the rotation speed and rotation direction of the susceptor ST1, the type of source gas and reactive gas, the film formation temperature, the etching temperature, the pressure, and the like. Further, the deposition ratio or the etching ratio may be appropriately set according to, for example, experimental results or experience values.
  • the cumulative film thickness display function 283 receives, for example, cumulative film thickness data updated by a cumulative film thickness value update function 285 included in the process chamber controller 239p described later from the process chamber controller 239p.
  • the cumulative film thickness display function 283 displays the received cumulative film thickness data on the display unit provided in the operation terminal 236s.
  • the recipe execution function 284 receives an instruction to start executing a recipe from the above-described recipe start function 281, the recipe execution function 284 sends a process recipe or cleaning recipe transmission request specified by the recipe specification information received by the input / output unit. Output to the operation unit controller 236.
  • the recipe execution function 284 receives and acquires the process recipe or cleaning recipe specified by the recipe specifying information from the operation unit controller 236, and stores it in, for example, a storage device included in the process chamber controller 239p.
  • the recipe execution function 284 operates a transmission request for a related deposition ratio table file or etching ratio table file when a deposition ratio table file or an etching ratio table file is associated with the acquired process recipe or cleaning recipe.
  • the recipe execution function 284 automatically receives and acquires the deposition ratio table file or the etching ratio table file from the operation unit controller 236, and stores it in, for example, a storage device provided in the process chamber controller 239p. After acquiring the etching ratio table file, the recipe execution function 284 transmits the etching ratio table file acquisition information to the cumulative film thickness value update function 285 described later.
  • the recipe execution function 284 reads the contents of the process recipe acquired from the operation unit controller 236, controls the valve digital I / O 13 and the SW digital I / O 14 so as to follow the contents of the process recipe, and executes the process recipe.
  • the recipe execution function 284 transmits information on the completion of the process recipe execution to the cumulative film thickness value update function 285 described later.
  • Recipe execution function 284 when receiving the acquisition information of the etching ratio table file, reads the accumulated film thickness data stored in the storage device provided in process chamber controller 239p.
  • the recipe execution function 284 displays the read accumulated film thickness data on the display unit provided in the operation terminal 236s.
  • the cumulative film thickness value update function 285 displays an input field or the like for inputting an etching ratio table number (name of the etching ratio table) on the display unit provided in the operation terminal 236s.
  • the recipe execution function 284 accepts the input of the etching ratio table specifying information from the input / output unit, for example, when the operator inputs the etching ratio table number in the input field.
  • the recipe execution function 284 reads the etching ratio table specified by the etching ratio table specifying information from the etching ratio table file stored in the storage unit 236m.
  • the recipe execution function 284 displays the read etching ratio table on the display unit provided in the operation terminal 236s as shown in FIG. 9B, for example.
  • the recipe execution function 284 allows the operator to check the accumulated film thickness data displayed on the display unit provided with the operation terminal 236s and check the minimum film thickness area check box to input the minimum film thickness from the input / output unit.
  • the input of the minimum film thickness area specifying information for specifying the thickness area is received.
  • the recipe execution function 284 receives input of the minimum film thickness region specifying information, the film thickness value (cumulative film thickness value) and the etching ratio of the minimum film thickness region described in the cumulative film thickness data, and the storage unit 236m
  • the etching rate described in the stored cleaning recipe is read and acquired.
  • the recipe execution function 284 divides the acquired film thickness value of the minimum film thickness region by the product of the etching rate and the etching ratio of the minimum film thickness region (the cumulative film thickness value of the minimum film thickness region / (etching). (Rate ⁇ Etching ratio of minimum film thickness region))) to calculate the reactive gas supply time.
  • the first purge region 204a is designated as the minimum film thickness region.
  • the etching ratio of the first purge region 204a described in the etching ratio table is 50%.
  • the film thickness value (cumulative film thickness value) of the first purge region 204a described in the cumulative film thickness data is 100 nm, and the etching rate is 10 nm / min.
  • the recipe execution function 284 reads the content of the cleaning recipe acquired from the operation unit controller 236, and adjusts the valve digital I so as to follow the content of the cleaning recipe and the calculated reactive gas supply time. / O13 and SW digital I / O14 are controlled to execute a cleaning recipe.
  • the recipe execution function 284 transmits the calculated reactive gas supply time to the cumulative film thickness value update function 285 described later.
  • the recipe execution function 284 terminates execution of one processing step when one processing step ends. Is transmitted to the cumulative film thickness update function 285 described later.
  • the recipe execution function 284 receives information on the completion of the update of the accumulated film thickness data from the later-described accumulated film thickness value update function 285, if there is another process step in the process recipe or the cleaning recipe, the process step Is read, the read processing step is executed, and information on the end of execution of the processing step is transmitted to the cumulative film thickness value update function 285 described later.
  • the recipe execution function 284 repeats this operation until execution of all processing steps in the process recipe or the cleaning recipe is completed.
  • the cumulative film thickness value update function 285 includes a cumulative film thickness value addition function and a cumulative film thickness value subtraction function as follows.
  • the cumulative film thickness value update function 285 reads the deposition ratio table number described in the process recipe.
  • the cumulative film thickness value update function 285 reads a deposition ratio table that matches the read deposition ratio table number from the deposition ratio table file stored in the storage device included in the process chamber controller 239p.
  • the cumulative film thickness value update function 285 multiplies the reference added film thickness value calculated as described above by the deposition ratio described in the deposition ratio table, respectively, so that each of the regions in the susceptor ST1 and the reaction vessel 203 can be used.
  • the added film thickness value is calculated.
  • the cumulative film thickness update function 285 reads the cumulative film thickness data stored in the storage device provided in the process chamber controller 239p.
  • the accumulated film thickness value update function 285 adds the calculated added film thickness value to each accumulated film thickness value described in the read accumulated film thickness data, and updates the accumulated film thickness data. That is, the cumulative film thickness value update function 285 adds the calculated additional film thickness values to the cumulative film thickness values of the respective regions in the susceptor ST1 and the reaction vessel 203 described in the read cumulative film thickness data.
  • the accumulated film thickness data is updated. Then, the cumulative film thickness value update function 285 transmits the updated cumulative film thickness data to the cumulative film thickness display function 283 described above.
  • the cumulative film thickness value update function 285 reads the etching ratio table number described in the cleaning recipe.
  • the cumulative film thickness update function 285 reads an etching ratio table that matches the read etching ratio table number from the etching ratio table file stored in the storage device provided in the process chamber controller 239p.
  • the cumulative film thickness update function 285 reads the cumulative film thickness data stored in the storage device provided in the process chamber controller 239p.
  • the cumulative film thickness value update function 285 multiplies the reference subtracted film thickness value calculated as described above by the etching ratio described in the etching ratio table, so that each of the regions in the susceptor ST1 and the reaction vessel 203 has the respective values. Subtract film thickness value is calculated.
  • the cumulative film thickness update function 285 reads the cumulative film thickness data stored in the storage device provided in the process chamber controller 239p.
  • the cumulative film thickness value update function 285 updates the cumulative film thickness data by subtracting the subtracted film thickness values calculated from the respective cumulative film thickness values described in the read cumulative film thickness data. That is, the cumulative film thickness value update function 285 subtracts the calculated subtracted film thickness value from the cumulative film thickness value of each region in the susceptor ST1 and the reaction vessel 203 described in the read cumulative film thickness data. The accumulated film thickness data is updated. Then, the cumulative film thickness value update function 285 transmits the updated cumulative film thickness data to the cumulative film thickness display function 283 described above.
  • the accumulated film thickness value update function 285 when a plurality of processing steps are included in the process recipe or the cleaning recipe, uses the updated accumulated film thickness data as the accumulated film thickness data.
  • the information is transmitted to the display function 283, and information on the end of updating the accumulated film thickness data is transmitted to the recipe execution function 284.
  • FIG. 10 and FIG. 10 are flowcharts of the cumulative film thickness data update process executed by the control unit 280 according to the present embodiment.
  • the recipe start function 281 causes the recipe execution function 284 to Send instructions to start recipe execution.
  • the recipe execution function 284 receives an instruction to start executing the recipe, the recipe execution function 284 receives and acquires the process recipe specified by the recipe specifying information from the storage unit 236m included in the operation unit controller 236.
  • the recipe execution function 284 reads the acquired process recipe and determines whether there is a deposition ratio table file associated with the process recipe. When there is a deposition ratio table file associated with the process recipe, the deposition ratio table file is automatically received and acquired from the storage unit 236m provided in the operation unit controller 236.
  • the recipe execution function 284 controls the mass flow controllers 234a to 234g, the valves 235a to 235g, the heater 218, the APC valve 243 and the like so as to follow the contents of one processing step included in the process recipe. Execute. When the execution of the processing step is completed, the recipe execution function 284 transmits information on the end of execution of the processing step to the cumulative film thickness value update function 285 provided in the process chamber controller 239p.
  • the cumulative film thickness value update function 285 When the cumulative film thickness value update function 285 receives information on the end of execution of the processing step, the cumulative film thickness value update function 285 displays the deposition described in the process recipe (executed processing step). The rate is read, and it is determined whether or not the read deposition rate is greater than 0 (zero).
  • the cumulative film thickness update function 285 reads the raw material gas supply time described in the process recipe (executed processing step) when it is determined that the deposition rate is greater than zero.
  • the accumulated film thickness value update function 285 calculates the film thickness value (reference added film thickness value) (A) of the deposit deposited on the susceptor ST1 by multiplying the read deposition rate by the source gas supply time.
  • the cumulative film thickness value update function 285 determines that the deposition rate is 0, the cumulative film thickness data update completion information is transmitted to the recipe execution function 284, and the recipe execution function 284 transmits all information in the process recipe. It is determined whether there is a processing step.
  • the cumulative film thickness value update function 285 determines whether or not the deposition ratio table number described in the executed processing step (process recipe) is zero.
  • the deposition ratio table number being 0 means that the deposition ratio table is not associated with the process recipe.
  • the accumulated reference film thickness value (A) is used for the accumulated film thickness of each region in the susceptor ST1 and the reaction vessel 203.
  • the added film thickness value (B) is added to each value.
  • the accumulated film thickness value update function 285 determines that the deposition ratio table number is not 0, the deposition ratio table that matches the deposition ratio table number described in the executed processing step (process recipe) is displayed. Read from file.
  • the cumulative film thickness value update function 285 refers to the read deposition ratio table and acquires the deposition ratio of each region in the susceptor ST1 and the reaction vessel 203. Then, the cumulative film thickness value update function 285 multiplies the above-mentioned reference additional film thickness value (A) by the respective deposition ratios, and adds the respective additional film thickness values (B of each region in the susceptor ST1 and the reaction vessel 203). ) Is calculated.
  • the cumulative film thickness value update function 285 reads cumulative film thickness data describing the cumulative film thickness values of the respective regions in the susceptor ST1 and the reaction vessel 203 from the storage device of the process chamber controller 239p.
  • the accumulated film thickness value update function 285 adds the calculated added film thickness value (B) to the accumulated film thickness value of each region in the susceptor ST1 and the reaction vessel 203 described in the read accumulated film thickness data.
  • the accumulated film thickness data is updated.
  • the cumulative film thickness update function 285 transmits the updated cumulative film thickness table to the cumulative film thickness display function 283 provided in the operation unit controller 236.
  • the cumulative film thickness display function 283 displays the received cumulative film thickness table on the display unit provided in the operation terminal 236s. Further, the cumulative film thickness value update function 285 transmits information on the completion of the cumulative film thickness data update to the recipe execution function 284.
  • the recipe execution function 284 determines whether or not all the processing steps included in the process recipe have been executed when the cumulative film thickness data update end information is transmitted from the cumulative film thickness update function 285. When it is determined that the recipe execution function 284 has not executed all the processing steps included in the process recipe, the recipe execution function 284 performs the above-described process recipe execution process and cumulative film thickness value addition process in the process recipe. Repeat until all included processing steps have been executed.
  • the recipe start function 281 displays the recipe.
  • An instruction to start executing the recipe is transmitted to the execution function 284.
  • the recipe execution function 284 receives an instruction to start executing the recipe, the recipe execution function 284 receives and acquires the cleaning recipe specified by the recipe specifying information from the storage unit 236m included in the operation unit controller 236.
  • the recipe execution function 284 reads the acquired cleaning recipe and determines whether there is an etching ratio table file associated with the cleaning recipe. If there is an etching ratio table file associated with the cleaning recipe, the etching ratio table file is automatically received and acquired from the storage unit 236m included in the operation unit controller 236.
  • the recipe execution function 284 reads the etching rate described in the cleaning recipe (processing step to be executed), and determines whether or not the read etching rate is 0 (zero).
  • the recipe execution function 284 determines that the etching rate is 0, the recipe execution function 284 ends the execution of the cleaning recipe.
  • the recipe execution function 284 determines that the etching rate is not 0, the recipe terminal reads out the accumulated film thickness data stored in the storage device included in the process chamber controller 239p, and the operation terminal 236s includes the read accumulated film thickness data. Display on the display.
  • the recipe execution function 284 uses the etching rate table specifying information from the etching rate table file stored in the storage unit 236m.
  • the specified etching ratio table is read and displayed on the display unit provided in the operation terminal 236s.
  • the recipe execution function 284 displays the cumulative film thickness value described in the cumulative film thickness data of the region specified by the minimum film thickness region specifying information and The etching ratio described in the etching ratio table is read out.
  • the recipe execution function 284 calculates the reactive gas supply time by dividing the accumulated film thickness value in the minimum film thickness region by the product of the etching rate and the etching ratio.
  • the recipe execution function 284 determines whether or not the calculated reactive gas supply time is zero. When it is determined that the reactive gas supply time calculated by the recipe execution function 284 is not 0, the recipe execution function 284 follows the content of one processing step included in the acquired cleaning recipe and the calculated reactive gas supply time. As described above, the processing steps are executed by controlling the mass flow controllers 234a to 234g, the valves 235a to 235g, the heater 218, the APC valve 243, and the like. When the execution of the processing step is completed, the recipe execution function 284 transmits information on the completion of the execution of the processing step and information on the reactive gas supply time to the cumulative film thickness value update function 285 provided in the process chamber controller 239p.
  • the accumulated film thickness value update function 285 determines whether or not the etching ratio table number described in the executed process step (cleaning recipe) is zero.
  • the cumulative film thickness update function 285 uses the calculated reference subtracted film thickness value (C) in the susceptor ST1 and the reaction vessel 203.
  • a subtracted film thickness value (D) to be subtracted from each accumulated film thickness value in each region.
  • the cumulative film thickness update function 285 determines that the etching ratio table number is not 0, the cumulative film thickness update function 285 matches the etching ratio table number described in the executed processing step (cleaning recipe).
  • the etching ratio table is read from the etching ratio table file.
  • the cumulative film thickness update function 285 refers to the read etching ratio table and acquires the etching ratios of the respective regions in the susceptor ST1 and the reaction vessel 203. Then, the cumulative film thickness value update function 285 multiplies the above-mentioned reference subtracted film thickness value (C) by the respective etching ratios to obtain the respective subtracted film thickness values (D ) Is calculated.
  • the cumulative film thickness value update function 285 reads cumulative film thickness data describing the cumulative film thickness values of the respective regions in the susceptor ST1 and the reaction vessel 203 from the storage device of the process chamber controller 239p.
  • the accumulated film thickness value update function 285 calculates subtracted film thickness values (D) calculated from the accumulated film thickness values of the respective regions in the susceptor ST1 and the reaction vessel 203 described in the read accumulated film thickness data.
  • the accumulated film thickness data is updated by subtraction.
  • the cumulative film thickness update function 285 transmits the updated cumulative film thickness table to the cumulative film thickness display function 283 provided in the operation unit controller 236.
  • the cumulative film thickness display function 283 displays the received cumulative film thickness table on the display unit provided in the operation terminal 236s. Further, the cumulative film thickness value update function 285 transmits information on the completion of the cumulative film thickness data update to the recipe execution function 284.
  • the recipe execution function 284 determines whether all the processing steps included in the cleaning recipe have been executed. When it is determined that the recipe execution function 284 has not executed all the processing steps included in the cleaning recipe, the recipe execution function 284 performs a reactive gas supply time calculation process, a cleaning recipe execution process, and a cumulative film thickness value subtraction process. Is repeated until the execution of all the processing steps included in the cleaning recipe is completed.
  • FIG. 12A is a diagram for explaining an example of how the cumulative film thickness update function 285 calculates the added film thickness value and updates the cumulative film thickness table
  • FIG. It is the figure which graphed the susceptor described in the cumulative film thickness table updated by the value update function 285, and the cumulative film thickness value of each area
  • a process recipe for forming a thin film (forming a film) on the wafer 200 is executed by the recipe execution function 284.
  • This process recipe describes a deposition rate of 10 nm / min and a source gas supply time of 1 minute.
  • the process recipe is associated with a deposition ratio table having a deposition ratio table number “1”.
  • the deposition ratio of the first processing area 201a is 80%
  • the deposition ratio of the second processing area 201b is 60%
  • the deposition ratio of the first purge area 204a is 30%
  • the second purge area It is described that the deposition ratio of the region 204b is 40% and the deposition ratio of the susceptor ST1 is 100%.
  • the additional film thickness value calculated by the cumulative film thickness value update function 285 is 8 nm for the partition plate 205 facing the first processing region 201a, 6 nm for the partition plate 205 facing the second processing region 201b,
  • the partition plate 205 facing the first purge region 204a is 3 nm
  • the partition plate 205 facing the second purge region 204b is 4 nm
  • the susceptor ST1 is 10 nm.
  • the cumulative film thickness of the partition plate 205 facing the first purge region 204a is 3 ⁇ m
  • the cumulative film thickness of the partition plate 205 facing the second purge region 204b is 4 ⁇ m
  • the cumulative film thickness of the susceptor ST1 is 10 ⁇ m.
  • FIGS. 13 to 16 are diagrams showing how the cumulative film thickness update function 285 calculates the subtracted film thickness and updates the cumulative film thickness table.
  • etching step 1 (FIG. 13)
  • the second processing step is etching step 2 (FIG. 14)
  • the third processing step is etching step 3 (FIG. 15)
  • the fourth processing step is performed.
  • etching step 4 (FIG. 16). That is, in the present embodiment, the deposits are sequentially removed from the regions in the susceptor ST1 and the reaction vessel 203 where the deposit thickness is small (the portion where the deposit thickness is small). A case where the deposits in the respective regions in the susceptor ST1 and the reaction vessel 203 are removed from the accumulated film thickness value shown in FIG.
  • the recipe of the etching step 1 is executed by the recipe execution function 284.
  • the etching rate is described as 200 nm / min.
  • an etching ratio table having an etching ratio table number “1” is associated with this recipe.
  • the etching ratios of the first processing region 201a, the second processing region 201b, the first purge region 204a, and the second purge region 204b are 50%, and the etching rate of the susceptor ST1 is 100%. It is described.
  • the first purge region 204a is designated as the minimum film thickness region.
  • the recipe execution function 284 executes a cleaning recipe based on the calculated reactive gas supply time. That is, in the etching step 1, the valves 235a to 235f shown in FIG. 4 are closed, the valve 235g is opened, and a reactive gas is supplied to each region for 30 minutes. At this time, the susceptor ST1 is rotated. Accordingly, the susceptor ST1, the partition plate 205 facing the first processing region 201a, the partition plate 205 facing the second processing region 201b, the partition plate 205 facing the first purge region 204a, and the second purge region. Each of the partition plates 205 facing 204b is etched. Note that the etching rates of the partition plates 205 facing the first processing region 201a, the second processing region 201b, the first purge region 204a, and the second purge region 204b are the same.
  • the subtracted film thicknesses of the first processing region 201a, the second processing region 201b, the first purge region 204a, and the second purge region 204b calculated by the cumulative film thickness value update function 285.
  • Each value is 3 ⁇ m
  • the subtracted film thickness value of the susceptor ST1 is 6 ⁇ m.
  • the cumulative film thickness value update function 285 subtracts each subtracted film thickness value calculated from the cumulative film thickness data shown in FIG. 12B, and updates the cumulative film thickness data as shown in FIG.
  • the accumulated film thickness value (remaining film thickness value) of each region is 5 ⁇ m for the first processing region 201a, 3 ⁇ m for the second processing region 201b, 0 ⁇ m for the first purge region 204a, and the second purge region.
  • 204b is 1 ⁇ m
  • the susceptor ST1 is 4 ⁇ m.
  • the susceptor ST1 includes the heater 218 as a heating unit.
  • the temperature of the susceptor ST1 is the temperature in each of the first processing region 201a, the second processing region 201b, the first purge region 204a, and the second purge region 204b (reaction vessel 203 constituting each region).
  • the temperature of the inner wall and ceiling of the wall, the temperature of the side surface of the partition plate 205, and the like is often high. Therefore, in this embodiment (FIG. 13), the etching ratio of the susceptor ST1 is set to double that of each region.
  • the recipe of etching step 2 is executed by the recipe execution function 284 as shown in FIG.
  • the etching rate is described as 200 nm / min.
  • an etching ratio table with an etching ratio table number “2” is associated with this recipe.
  • the etching ratio of the first processing area 201a, the second processing area 201b, and the second purge area 204b is 50%, and the etching ratio of the first purge area 204a is 0%.
  • the etching rate of the susceptor ST1 is described as 75%.
  • the second purge region 204b is designated as the minimum film thickness region.
  • the recipe execution function 284 executes a cleaning recipe based on the calculated reactive gas supply time. That is, in the etching step 2, the valves 235a to 235d and 235f shown in FIG. 4 are closed, the valve 235g is opened, and the reactive gas is supplied for 10 minutes. At this time, the valve 235g is opened and the valve 235e is opened so that the reactive gas is not supplied to the first purge region 204a, and the inert gas is supplied to the first purge region 204a. Further, the susceptor ST1 is rotated.
  • Each object is etched.
  • the subtracted film thickness values of the first processing region 201a, the second processing region 201b, and the second purge region 204b calculated by the cumulative film thickness value update function 285 are 1 ⁇ m and first, respectively.
  • the subtracted film thickness value of the purge region 204a is 0 ⁇ m, and the subtracted film thickness value of the susceptor ST1 is 1.5 ⁇ m.
  • the accumulated film thickness value update function 285 subtracts each subtracted film thickness value calculated from the accumulated film thickness data shown in FIG. 13, and updates the accumulated film thickness data as shown in FIG.
  • the accumulated film thickness value (remaining film thickness value) of each region is 4 ⁇ m for the first processing region 201a, 2 ⁇ m for the second processing region 201b, 0 ⁇ m for the first purge region 204a, and the second purge region.
  • 204b is 0 ⁇ m
  • the susceptor ST1 is 2.5 ⁇ m.
  • the recipe in the etching step 3 is executed by the recipe execution function 284 as shown in FIG.
  • the etching rate is described as 200 nm / min.
  • an etching ratio table having an etching ratio table number “3” is associated with this recipe.
  • the etching ratio of the first processing area 201a and the second processing area 201b is 50%
  • the etching ratio of the first purge area 204a and the second purge area 204b is 0%, respectively.
  • the etching rate of the susceptor ST1 is described as 50%.
  • the second processing area 201b is designated as the minimum film thickness area.
  • the recipe execution function 284 executes a cleaning recipe based on the calculated reactive gas supply time. That is, in the etching step 3, the valves 235a to 235d shown in FIG. 4 are closed, the valve 235g is opened, and the reactive gas is supplied for 20 minutes. At this time, the valve 235g is opened and the valve 235e and the valve 235f are opened so that the reactive gas is not supplied to the first purge region 204a and the second purge region 204b, and the first purge region 204a and the second purge region 204b are opened. An inert gas is supplied to the second purge region. Further, the susceptor ST1 is rotated. Thus, the deposits deposited on the susceptor ST1, the partition plate 205 facing the first processing region 201a, and the partition plate 205 facing the second processing region 201b are etched.
  • the subtracted film thickness values of the first processing region 201a, the second processing region 201b, and the susceptor ST1 calculated by the cumulative film thickness value update function 285 are 2 ⁇ m and the first purge region 204a, respectively.
  • the subtracted film thickness values of the second purge region 204b are each 0 ⁇ m.
  • the cumulative film thickness value update function 285 subtracts each subtracted film thickness value calculated from the cumulative film thickness data shown in FIG. 14 and updates the cumulative film thickness data as shown in FIG.
  • the accumulated film thickness value (remaining film thickness value) of each region is 2 ⁇ m for the first processing region 201a, 0 ⁇ m for the second processing region 201b, 0 ⁇ m for the first purge region 204a, and the second purge region.
  • 204b is 0 ⁇ m
  • the susceptor ST1 is 0.5 ⁇ m.
  • the recipe in the etching step 4 is executed by the recipe execution function 284 as shown in FIG.
  • the etching rate is described as 200 nm / min.
  • an etching ratio table having an etching ratio table number “4” is associated with this recipe.
  • the etching ratio of the first processing region 201a is 50%
  • the etching ratios of the second processing region 201b, the first purge region 204a, and the second purge region 204b are each 0%.
  • the etching rate of the susceptor ST1 is described as 25%.
  • the first processing area 201a is designated as the minimum film thickness area.
  • the recipe execution function 284 executes a cleaning recipe based on the calculated reactive gas supply time. That is, in the etching step 4, the valves 235a to 235c shown in FIG. 4 are closed, the valve 235g is opened, and the reactive gas is supplied for 20 minutes. At this time, the valve 235g is opened and the valve 235d, the valve 235e, and the valve 235f are set so that the reactive gas is not supplied to the second processing region 201b, the first purge region 204a, and the second purge region 204b. The inert gas is supplied to the second processing region 201b, the first purge region 204a, and the second purge region 204b. Further, the susceptor ST1 is rotated. Thereby, the deposits deposited on the partition plate 205 facing the susceptor ST1 and the first processing region 201a are respectively etched.
  • the subtracted film thickness value of the first processing region 201a calculated by the cumulative film thickness value update function 285 is 2 ⁇ m
  • the subtracted film thickness value of the purge region 204b is 0 ⁇ m
  • the subtracted film thickness value of the susceptor ST1 is 1 ⁇ m.
  • the cumulative film thickness value update function 285 subtracts each subtracted film thickness value calculated from the cumulative film thickness data shown in FIG. 15, and updates the cumulative film thickness data as shown in FIG.
  • the accumulated film thickness value (remaining film thickness value) of each region is 0 ⁇ m for the first processing region 201a, 0 ⁇ m for the second processing region 201b, 0 ⁇ m for the first purge region 204a, and the second purge region.
  • 204b is 0 ⁇ m
  • susceptor ST1 is 0 ⁇ m.
  • the susceptor ST1 is overetched by 0.5 ⁇ m.
  • the etching ratio between the domain and the susceptor can be tuned from 50: 100 to 50:95 by changing the processing conditions such as the processing temperature of the cleaning recipe, the supply flow rate of the reactive gas, and the pressure. It is. As a result, the amount of overetching generated in the susceptor ST1 can be corrected to an extremely small value.
  • a reactive gas supply unit for supplying the reactive gas is provided.
  • a third inert gas supply unit 255 that supplies an inert gas into the first purge region 204a and a fourth inert gas supply unit 256 that supplies an inert gas into the second purge region 204b are provided.
  • each in the reaction container 203 When supplying reactive gas to each area
  • the deposits are sequentially removed from the regions in the susceptor ST1 and the reaction vessel 203 in the order of the thickness of the deposits. That is, the deposit is removed so that the thickness value of the deposit becomes 0 (zero) in order from the minimum thickness region. Thereby, it can suppress more that overetching generate
  • the control unit 280 determines the thickness value of the minimum film thickness region of each region in the susceptor ST1 or the reaction vessel 203 as the etching rate and the etching ratio of the minimum film thickness region.
  • the reactive gas supply time is calculated by dividing by the product. Thereby, it can suppress more that overetching generate
  • the reactive gas when the reactive gas is supplied from the reactive gas supply unit 257 to each region in the reaction vessel 203, the reactive gas is not supplied to the region where the deposit is not deposited.
  • the supply flow rate of the inert gas is adjusted. That is, the inert gas is supplied from the inert gas supply unit to the region where the deposit removal is completed (the region where the accumulated film thickness value of the deposit is 0 (zero)), and the reactive gas is not supplied. I have to. Thereby, it can suppress that overetching generate
  • the cumulative film thickness value of at least one deposit on the partition plate 205 facing each region in the susceptor ST1 and the reaction vessel 203 is equal to the cumulative film thickness of the deposit in other locations. It is different from the value.
  • cleaning is performed by the dry cleaning method without causing overetching in each component in the reaction vessel 203. Can do. Therefore, the operating efficiency of the apparatus can be improved as compared with the case of cleaning by the conventional wet cleaning method.
  • the control unit 280 multiplies the deposition rate at which deposits are deposited by the supply time of the source gas supplied from the source gas supply unit, so that the deposits deposited on the susceptor ST1 The film thickness value is calculated.
  • the control unit 280 multiplies the film thickness value of the deposit deposited on the susceptor ST1 by a predetermined deposition ratio, so that the film thickness value of the deposit deposited on the partition plate 205 facing each region in the reaction vessel 203 is obtained. Are calculated respectively.
  • the control unit 280 calculates the thickness value of the deposit removed from the susceptor ST1 by multiplying the etching rate for removing the deposit by the supply time of the reactive gas.
  • control unit 280 multiplies the film thickness value of the deposit removed from the susceptor ST1 by a predetermined etching ratio, thereby removing the deposit film removed from the partition plate 205 facing each region in the reaction vessel 203.
  • Each thickness value is calculated. Thereby, the cumulative film thickness of the partition plate 205 facing each region in the susceptor ST1 and the reaction vessel 203 can be managed more reliably. Therefore, it is possible to further suppress the occurrence of overetching in each component in the reaction vessel 203.
  • the deposition ratio table describing the deposition ratio of each region in the susceptor ST1 and the reaction vessel 203, and the etching ratio table describing the etching ratio of each region in the susceptor ST1 and the reaction vessel 203, respectively. Is stored in the storage unit 236m included in the control unit 280 so as to be readable. Then, by specifying, for example, a deposition ratio table number or an etching ratio table number in the process recipe or the cleaning recipe, the deposition ratio table or the etching ratio table is associated with the process recipe or the cleaning recipe.
  • the deposition ratio table and the etching ratio table can be shared by a plurality of process recipes and cleaning recipes. That is, one deposition ratio table or etching ratio table can be associated from different process recipes and cleaning recipes.
  • the recipe execution function 284 calculates the reactive gas supply time based on the film thickness value of the region specified by the minimum film thickness region specifying information, but is not limited to this. That is, for example, the recipe execution function 284 calculates the reactive gas supply time based on the film thickness values of the partition plate 205 facing each region in the susceptor ST1 and the reaction vessel 203, and the calculated reactive gas supply time.
  • the reactive gas supply unit 257 may be controlled based on the shortest supply time.
  • the control unit 280 calculates the reactive gas supply time based on the minimum film thickness region among the regions in the reaction vessel 203, and sets the film thickness value to 0 in order from the minimum film thickness region.
  • the present invention is not limited to this. That is, for example, the control unit 280 calculates the reactive gas supply time based on the maximum film thickness region, and reacts according to the film thickness values of the deposits deposited in each region in the susceptor ST1 and the reaction vessel 203, respectively.
  • the concentration of the reactive gas may be adjusted in each region in the container 203, and the deposits in each region in the susceptor ST1 and the reaction container 203 may be removed. Specifically, when the reactive gas is supplied, the flow rate of the inert gas supplied into the reaction vessel 203 is adjusted according to the film thickness values of the deposits in each region in the susceptor ST1 and the reaction vessel 203. The deposits may be removed from each region in the susceptor ST1 and the reaction vessel 203.
  • the control unit 280 calculates the reactive gas supply time based on the maximum film thickness region and updates the accumulated film thickness data will be described with reference mainly to FIGS. 17 and 18. explain.
  • the recipe execution function 284 when the recipe execution function 284 receives an instruction to start execution of a cleaning recipe, the recipe execution function 284 reads the cleaning recipe specified by the recipe specifying information from the storage unit 236m included in the operation unit controller 236. Is received, the etching rate described in the cleaning recipe (processing step to be executed) is read, and it is determined whether or not the read etching rate is 0 (zero).
  • the recipe execution function 284 determines that the etching rate is 0, the recipe execution function 284 ends the cleaning recipe.
  • the recipe execution function 284 determines that the etching rate is not 0, the recipe execution function 284 reads the accumulated film thickness data stored in the storage device included in the process chamber controller 239p, and the read accumulated film thickness data is read out. The information is displayed on a display unit included in the operation terminal 236s.
  • the recipe execution function Reference numeral 284 reads out the cumulative film thickness value described in the cumulative film thickness data of the area specified by the maximum film thickness area specifying information.
  • the recipe execution function 284 calculates the reactive gas supply time by dividing the accumulated film thickness value in the maximum film thickness region by the etching rate.
  • the recipe execution function 284 obtains cumulative film thickness values in regions other than the maximum film thickness region, and divides the obtained cumulative film thickness value by the product of the calculated reactive gas supply time and the etching rate.
  • the etching ratio of the region other than the maximum film thickness region is calculated. That is, the recipe execution function 284 calculates the etching ratio of the area other than the maximum film thickness area when the etching ratio of the maximum film thickness area is 100%, and creates an etching ratio table.
  • the recipe execution function 284 controls the inert gas supply unit so as to follow the contents of the created etching ratio table when the reactive gas is supplied to each region in the reaction vessel 203. That is, the recipe execution function 284 controls the mass flow controllers 234c to 234f so as to follow the contents of the created etching ratio table, respectively, so that the first processing area 201a, the second processing area 201b, and the first purge are performed. The flow rate of the inert gas supplied to the region 204a and the first purge region 204b is adjusted.
  • the recipe execution function 284 indicates that in the first purge region 204a and the second purge region 204b having a low etching ratio, the concentration of the reactive gas in the first purge region 204a or the second purge region 204b is low.
  • the inert gas supply unit is controlled so as to increase the supply flow rate of the inert gas so as to decrease.
  • the recipe execution function 284 controls the mass flow controllers 234a to 234g, the valves 235a to 235g, the heater 218, the APC valve 243, and the like so as to follow the contents of the acquired cleaning recipe and the calculated reactive gas supply time. Perform processing steps.
  • the recipe execution function 284 transmits information on the reactive gas supply time and information on the etching ratio table to the cumulative film thickness value update function 285, respectively.
  • the cumulative film thickness update function 285 receives the reactive gas supply time information and the etching ratio table information from the recipe execution function 284, the cumulative film thickness update function 285 refers to the acquired etching ratio table, Subtracted film thickness values of the respective regions in the susceptor ST1 and the reaction vessel 203 are calculated. That is, the cumulative film thickness value update function 285 calculates the subtracted film thickness values of the respective regions in the susceptor ST1 and the reaction vessel 203 by multiplying the reactive gas supply time, the etching rate, and the etching ratio, respectively.
  • the cumulative film thickness value update function 285 reads cumulative film thickness data describing the cumulative film thickness values of the respective regions in the susceptor ST1 and the reaction vessel 203 from the storage device of the process chamber controller 239p.
  • the accumulated film thickness value update function 285 subtracts the calculated subtracted film thickness value (D) from the accumulated film thickness value of each region in the susceptor ST1 and the reaction vessel 203 described in the read accumulated film thickness data.
  • the accumulated film thickness data is updated.
  • the cumulative film thickness value of each region in the susceptor ST1 and the reaction container 203 described in the cumulative film thickness data updated by the cumulative film thickness value update function 285 is , 0 (zero).
  • the recipe of etching step 1 is executed by the recipe execution function 284.
  • the recipe execution function 284 is a region other than the maximum film thickness region shown in FIG. 12 (that is, the first processing region 201a, the second processing region 201b, the first purge region 204a).
  • the etching ratio of the second purge region 204b) is calculated, and an etching ratio table is created.
  • the etching ratio of each region calculated by the recipe execution function 284 is 80% for the first processing region 201a, 60% for the second processing region 201b, 30% for the first purge region 204a, and the second purge region. 204b is 40%.
  • the recipe execution function 284 opens the valve 235g based on the calculated reactive gas supply time, starts supplying cleaning gas to each region in the reaction vessel 203, and starts executing the cleaning recipe. At this time, the recipe execution function 284 controls the inert gas supply unit so as to follow the contents of the created etching ratio table. That is, the recipe execution function 284 controls the mass flow controllers 234c to 234f, respectively, so that the etching rate of the first processing region 201a is 80%, the etching rate of the second processing region 201b is 60%, and the first purge is performed. The flow rate of the inert gas supplied to each region in the reaction vessel 203 is adjusted so that the etching rate of the region 204a is 30% and the etching rate of the first purge region 204b is 40%.
  • the subtracted film thickness value of the first processing region 201a calculated by the cumulative film thickness value update function 285 is 8 ⁇ m
  • the subtracted film thickness value of the second processing region 201b is 6 ⁇ m
  • the subtracted film thickness value of the first purge region 204a is 3 ⁇ m
  • the subtracted film thickness value of the second purge region 204b is 4 ⁇ m
  • the subtracted film thickness value of the susceptor ST1 is 10 ⁇ m.
  • the cumulative film thickness value update function 285 subtracts each subtracted film thickness value calculated from the cumulative film thickness data shown in FIG. 12, and updates the cumulative film thickness data as shown in FIG.
  • the accumulated film thickness value (remaining film thickness value) in each region is 0 ⁇ m in each region in the susceptor ST1 and the reaction vessel 203.
  • the reactive gas supply time is calculated based on the film thickness value of the maximum film thickness region of each region in the susceptor ST1 or the reaction vessel 203, and the partition plate facing each region in the susceptor ST1 and the reaction vessel 203.
  • the flow rate of the inert gas supplied into each region in the susceptor ST1 and the reaction vessel 203 is adjusted, and the concentration of the reactive gas is adjusted, so that the susceptor ST1 and the reaction vessel 203 are adjusted.
  • the reactive gas supply time calculated by the recipe execution function 284 is 30 minutes.
  • the recipe execution function 284 transmits information on the abnormal end of the recipe and the execution time of the recipe to the cumulative film thickness value update function 285.
  • the cumulative film thickness update function 285 receives information on the abnormal end of the recipe and the execution time of the recipe from the recipe execution function 284, the cumulative film thickness value update function 285 calculates the reference subtracted film thickness value by multiplying the execution time of the recipe by the etching rate.
  • the cumulative film thickness value update function 285 multiplies the reference subtracted film thickness value by the etching ratio of each region in the susceptor ST1 and the reaction vessel 203, and subtracts the film thickness in each region in the susceptor ST1 and the reaction vessel 203. Each value is calculated.
  • the reference subtracted film thickness value is 2 ⁇ m
  • the subtracted film thickness value of the susceptor ST1 is 2 ⁇ m
  • the subtracted film thickness value of each region in the reaction vessel 203 is 1 ⁇ m.
  • the cumulative film thickness value update function 284 updates the cumulative film thickness data by subtracting each calculated subtracted film thickness value from the cumulative film thickness data shown in FIG.
  • the updated accumulated film thickness values are 8 ⁇ m for the susceptor ST1, 8 ⁇ m for the first processing region 201a, 5 ⁇ m for the second processing region 201b, and the first purge.
  • the region 204a is 2 ⁇ m
  • the second purge region 204b is 3 ⁇ m.
  • the cumulative film thickness data update function 285 transmits information on the completion of the cumulative film thickness data update to the recipe execution function 284.
  • the recipe execution function 284 calculates the reactive gas supply time based on the updated accumulated film thickness in the minimum film thickness region when receiving the information about the completion of the accumulated film thickness data update from the accumulated film thickness update function 285, You can do the following recipe.
  • the cumulative film thickness value update function 285 does not add the film thickness values of the respective regions in the susceptor ST1 and the reaction vessel 203 until the abnormal end. A subtracted film thickness value can be calculated. Therefore, the cumulative film thickness value described in the cumulative film thickness data can be managed appropriately. As a result, the occurrence of unexpected overetching can be suppressed.
  • one or more deposition ratio tables are stored in the deposition ratio table file, and one or more etching ratio tables are stored in the etching ratio table file.
  • the recipe execution function 284 is operated by the operation unit controller 236.
  • the storage unit 236m included in the operation unit controller 236 stores the information in units of the deposition rate table and the etching rate table, and the recipe execution function 284 receives information specifying the deposition rate table and information specifying the etching rate table.
  • the deposition ratio table or the etching ratio table may be acquired from the storage unit 236m.
  • the recipe execution function 284 is configured to acquire all the deposition ratio tables or etching ratio tables from the operation unit controller 236 when there are a plurality of deposition ratio tables or etching ratio tables related to the process recipe or the cleaning recipe. Has been.
  • the deposition rate is the rate of deposits deposited on the susceptor ST1, but is not limited thereto. That is, for example, the rate of deposits deposited in the first processing region 201a or the like may be used.
  • the etching rate is not limited to the rate of deposits etched from the susceptor ST1, and may be, for example, the rate of deposits removed from the first processing region 201a or the like.
  • the present invention can be applied to the case where a film forming process for forming various films such as an oxide film, a nitride film, and a metal film is performed, as well as a diffusion process, an annealing process, an oxidation process, a nitriding process, a lithography process,
  • the present invention can also be applied when performing the substrate processing.
  • the present invention includes an etching apparatus, an annealing apparatus, an oxidation apparatus, a nitriding apparatus, an exposure apparatus, a coating apparatus, a molding apparatus, a developing apparatus, a dicing apparatus, a wire bonding apparatus, a drying apparatus, and a heating apparatus.
  • the present invention can also be applied to other substrate processing apparatuses such as apparatuses and inspection apparatuses.
  • these devices may be mixed.
  • not only the vertical substrate processing apparatus 100 but also a horizontal substrate processing apparatus and various single-wafer type substrate processing apparatuses may be used, and these apparatuses may be mixed.
  • the present invention is not limited to a semiconductor manufacturing apparatus that processes a semiconductor wafer such as the substrate processing apparatus 10 according to the present embodiment, but also to a substrate processing apparatus such as an LCD (Liquid Crystal Display) manufacturing apparatus that processes a glass substrate. Is also applicable.
  • a semiconductor manufacturing apparatus that processes a semiconductor wafer
  • a substrate processing apparatus such as an LCD (Liquid Crystal Display) manufacturing apparatus that processes a glass substrate. Is also applicable.
  • a substrate processing apparatus comprising at least one processing chamber for processing a substrate, A substrate mounting portion provided in the processing chamber for mounting a substrate; A partition for partitioning the processing chamber into a plurality of regions; A reactive gas supply unit that supplies the region with a reactive gas that removes deposits deposited on the substrate placement unit and the partition unit by processing the substrate; An inert gas supply unit for supplying an inert gas to the region; When at least the reactive gas is supplied to the region and the deposit is removed, the supply flow rate of the reactive gas and the supply flow rate of the inert gas supplied to the region are respectively set to the substrate mounting portion and the partition.
  • a substrate processing apparatus comprising: a control unit that controls at least the reactive gas supply unit and the inert gas supply unit so as to adjust according to a film thickness value of the deposit deposited on the unit.
  • Appendix 2 The substrate processing apparatus of Appendix 1, preferably, The controller is The process of calculating the supply time of the reactive gas based on the region where the film thickness value of the deposit is the smallest among the substrate mounting portion or the plurality of regions, and the deposition when supplying the reactive gas. The process of adjusting the supply flow rate of the inert gas is repeated a predetermined number of times so that the reactive gas is not supplied to the region where the object is not deposited, and the region is deposited on the substrate platform and the plurality of regions. The deposited deposit is removed.
  • the substrate processing apparatus of Appendix 1, preferably, The controller is A process of calculating a supply time of the reactive gas based on the film thickness value of each of the deposits of the substrate placement unit and the partition unit facing the plurality of regions, and the calculated supply time of the reactive gas
  • an inert gas is supplied so that the reactive gas is not supplied to the substrate platform and the region where the removal of the deposit is completed, and the deposition is performed.
  • a process of adjusting a supply flow rate of the reactive gas and the inert gas so as to supply the reactive gas to the substrate platform and the region where removal of an object has not been completed a predetermined number of times. By repeating, the deposits deposited on the substrate placement unit and the partition unit facing the plurality of regions are removed.
  • Appendix 4 The substrate processing apparatus of Appendix 1, preferably, The controller is Supplied to the region so that the concentration of the reactive gas in the region is adjusted according to the film thickness value of the deposit deposited on each of the substrate placement unit and the partition unit facing the plurality of regions The inert gas supply flow rate is adjusted.
  • the substrate processing apparatus of Supplementary Note 4 preferably, The controller is Reactive gas supply time is calculated based on the substrate mounting portion or the region having the largest film thickness value of the deposit in the plurality of regions, and the etching ratio of the substrate mounting portion and the plurality of regions Are calculated respectively.
  • Appendix 6 The substrate processing apparatus according to any one of Appendixes 1 to 5, preferably, The film thickness value of the deposit in at least one of the substrate placement unit and the partition unit facing each region is different from the film thickness value of the deposit in other places.
  • Appendix 7 The substrate processing apparatus according to any one of Appendixes 1 to 6, preferably, A source gas supply unit for supplying source gas to the substrate;
  • the controller is By multiplying the deposition rate at which the deposit is deposited on the substrate platform by the supply time of the source gas supplied from the source gas supply unit, the film thickness value of the deposit deposited on the substrate platform is obtained. calculate.
  • the substrate processing apparatus of Supplementary Note 7 preferably, The controller is The film thickness value of the deposit deposited on the partition facing the region is calculated by multiplying the film thickness value of the deposit deposited on the substrate mounting portion by a predetermined deposition ratio.
  • the substrate processing apparatus according to any one of Supplementary notes 1 to 8, preferably, The controller is The film thickness value of the deposit removed from the substrate mounting portion is calculated by multiplying the etching rate for removing the deposit by the supply time of the reactive gas.
  • the substrate processing apparatus according to any one of Appendixes 1 to 10, preferably, The reactive gas supply unit is a cleaning gas that removes deposits deposited on the partitioning portions from the center of the partitioning portion.
  • the substrate processing apparatus according to any one of Supplementary notes 1 to 12, preferably,
  • the cleaning gas is a fluorine-containing gas, a chlorine-containing gas, or a mixed gas in which a fluorine-containing gas or a chlorine-containing gas and an inert gas are mixed.
  • the substrate processing apparatus according to any one of Appendixes 1 to 13, preferably, The control unit includes at least a process recipe, a cleaning recipe, a deposition ratio table, a storage unit storing an etching ratio table, and at least the deposits of the substrate placement unit and the partition unit facing the plurality of regions. And a display unit for displaying the accumulated film thickness value.
  • a cleaning method executed in a substrate processing apparatus including at least one processing chamber for processing a substrate, wherein at least a reactive gas is supplied into the processing chamber partitioned into a plurality of regions by a partitioning portion.
  • the supply flow rate of the reactive gas and the supply flow rate of the inert gas to be supplied are adjusted according to the film thickness value of the deposit deposited on the substrate mounting portion and the partition portion provided in the processing chamber, respectively.
  • a cleaning method including a removing step of removing deposits deposited on the substrate mounting portion and deposits deposited on the partition portion.
  • a substrate processing step for processing the substrate in the processing chamber At least a reactive gas is supplied into the processing chamber partitioned into a plurality of regions by the partitioning unit, and a substrate placement unit provided in the processing chamber in the substrate processing step and a deposit deposited on the partitioning unit
  • the supply flow rate of the reactive gas supplied to the region and the supply flow rate of the inert gas are adjusted according to the film thickness values of the deposits deposited on the substrate mounting portion and the partition portion, respectively.
  • the method of manufacturing a semiconductor device according to Supplementary Note 16 preferably, The removing step is performed when the accumulated film thickness value of the deposit deposited on the substrate placement unit or the partition unit facing each region exceeds a predetermined value.
  • a recording medium in which a program executed by a substrate processing apparatus including at least one processing chamber for processing a substrate is recorded in a computer-readable manner, When at least a reactive gas is supplied into the processing chamber partitioned into a plurality of regions by the partitioning portion and the deposits deposited on the substrate mounting portion and the partitioning portion provided in the processing chamber are removed, The reactive gas supply flow rate and the inert gas supply flow rate supplied to the region are adjusted in accordance with the film thickness of the deposit deposited on the substrate mounting portion and the partition portion, respectively, and provided in the processing chamber.
  • a program for causing a computer to execute a deposit deposited on a substrate platform on which the substrate is placed and a procedure for removing the deposit deposited on each of the regions.
  • a recording medium in which a program executed by a substrate processing apparatus including at least one processing chamber for processing a substrate is recorded so as to be readable by a computer. At least a reactive gas is supplied into the processing chamber partitioned into a plurality of regions, and the substrate placement unit provided in the processing chamber and the deposits accumulated in the partitioning portion are removed and supplied to the region. The substrate provided in the processing chamber by adjusting the supply flow rate of the reactive gas and the supply flow rate of the inert gas according to the film thickness of the deposit deposited on the substrate mounting portion and the partition portion, respectively.
  • a computer-readable recording medium recording a program having deposits deposited on a substrate platform on which the program is placed and a procedure for removing deposits deposited in each of the regions. It is.
  • a procedure for processing a substrate by supplying a source gas into the region from a source gas supply unit into a processing chamber provided with a substrate mounting unit for mounting a substrate and partitioned into a plurality of regions by a partition unit; Deposition deposited on the substrate platform by multiplying a deposition rate of deposits deposited on the substrate platform by processing the substrate by a supply time of a source gas supplied from the source gas supply unit A procedure for calculating a reference added film thickness value which is a film thickness value of an object; A cumulative film thickness management program comprising: a step of multiplying the reference additional film thickness value by a predetermined deposition ratio to calculate an additional film thickness value that is a film thickness value of a deposit deposited for each region.
  • Dividing by the product of the etching ratio of, and calculating the reactive gas supply time Based on the reactive gas supply time, a reactive gas is supplied from the reactive gas supply unit into each region, and the deposits on the substrate mounting unit and the partition unit facing each region are removed. And the steps to A procedure for calculating a reference subtracted film thickness value that is a film thickness value of the deposit removed from the substrate mounting portion by multiplying the etching rate by the reactive gas supply time; A procedure for calculating a subtracted film thickness value, which is a film thickness value of a deposit removed from the partition portion facing each region, by multiplying the reference subtracted film thickness value by a predetermined etching ratio, A cumulative film thickness management program is provided.
  • the thickness values of deposits deposited on each of the partition unit facing each region in the processing chamber divided into a plurality of regions by the partition unit and the substrate mounting unit on which the substrate provided in the processing chamber is mounted A procedure for respectively calculating the reactive gas supply time by dividing by the product of the etching rate of the deposit removed from the substrate mounting portion and a predetermined etching ratio, A procedure of supplying a reactive gas into each of the regions based on the shortest time among the reactive gas supply times to remove the deposits on the substrate platform and the partition; A procedure for calculating a reference subtracted film thickness value that is a film thickness value of the deposit removed from the substrate mounting portion by multiplying the etching rate by the reactive gas supply time; A cumulative film thickness management comprising: calculating a subtracted film thickness value, which is a film thickness value of each deposit removed from the partition portion, by multiplying the reference subtracted film thickness value by a predetermined etching ratio.
  • a program is provided.
  • the procedure to calculate When the reactive gas is supplied from the reactive gas supply unit into each region, the amount of the inert gas supplied to each region is adjusted based on the etching ratio, and the reaction in each region is performed. Adjusting the concentration of the reactive gas, respectively, and removing the deposits on the substrate mounting part and the partition part; By removing the reactive gas supply time, the etching rate, and the etching ratio of the partition portion facing the substrate mounting portion and the regions, respectively, the substrate is removed from the substrate mounting portion and the partition portion, respectively. And a cumulative film thickness management program having a procedure for calculating a subtracted film thickness value, which is a film thickness value of the deposited material.
  • a method for controlling a substrate processing apparatus including at least one processing chamber for processing a substrate, the substrate being provided in the processing chamber and mounting the substrate A reaction unit that supplies a reactive gas to the region to remove the deposits deposited on the substrate placement unit and the partition unit by processing the substrate; A reactive gas supply unit; an inert gas supply unit that supplies an inert gas to the region; and a control unit that controls at least the reactive gas supply unit and the inert gas supply unit.
  • the reactive gas supply flow rate and the inert gas supply flow rate supplied to the region are deposited on the substrate mounting portion and the partition portion, respectively. Control method of a substrate processing apparatus for adjusting in response to the film thickness value of the deposit was is provided.
  • a transport mechanism for transporting the substrate to the substrate platform is preferably provided.
  • a pseudo substrate (dummy substrate) that is not a product substrate among the substrates is transferred to the substrate platform by the transport mechanism.
  • the method for controlling a substrate processing apparatus according to appendix 24, which is configured to remove the deposit after being placed, is provided.
  • a substrate processing apparatus including at least one processing chamber provided with a plurality of regions for processing a substrate, the substrate processing apparatus being provided in the processing chamber, A substrate placement section to be placed; a reactive gas supply section for supplying a reactive gas for removing at least deposits deposited on the substrate placement section by processing of the substrate; and the plurality of areas.
  • An inert gas supply unit that supplies an inert gas to the plurality of regions, and a supply flow rate of the reactive gas that is supplied to the plurality of regions when the reactive gas is supplied to the plurality of regions and the deposit is removed.
  • Control for controlling at least the reactive gas supply unit and the inert gas supply unit so that the supply flow rate of the inert gas is adjusted according to the film thickness value of the deposit deposited on the substrate mounting unit. And the Obtaining a substrate processing apparatus is provided.
  • a cleaning method executed in a substrate processing apparatus including at least one processing chamber provided with a plurality of regions for processing a substrate. At least when the reactive gas is supplied, the reactive gas supply flow rate and the inert gas supply flow rate supplied to the plurality of regions are respectively set on the substrate placement portion provided in the processing chamber.
  • a cleaning method for a substrate processing apparatus which includes a removing step of removing deposits deposited on the substrate mounting portion by adjusting according to a film thickness value.
  • a substrate processing step of processing a substrate in a processing chamber provided with a plurality of regions At least reactive gas is supplied into the processing chamber, and the reactive material is supplied to the plurality of regions when removing deposits deposited on a substrate mounting portion provided in the processing chamber in the substrate processing step.
  • a method for manufacturing a semiconductor device is provided.
  • a computer-readable recording medium recording a program executed in a substrate processing apparatus including at least one processing chamber provided with a plurality of regions for processing a substrate.
  • the reactive gas supply flow rate and the inert gas supply flow rate supplied to the plurality of regions are respectively mounted on the substrate provided in the processing chamber.
  • a computer-readable recording medium having recorded thereon a program having a procedure of adjusting the film thickness of the deposit deposited on the placement unit to remove the deposit deposited on the substrate placement unit .
  • the control unit includes the deposit film among the constituent members constituting the processing chamber facing the plurality of regions including the substrate mounting unit.
  • the control unit is configured to form the deposit film of each of the constituent members constituting the processing chamber facing the plurality of regions including the substrate mounting unit.
  • the step of calculating the supply time of the reactive gas based on the thickness value, and the constituent member after the removal of the deposit is completed when the reactive gas is supplied based on the calculated supply time of the reactive gas
  • An inert gas is supplied to the region facing the substrate so that the reactive gas is not supplied, and the reactive gas is supplied to a region facing the component member where removal of the deposit is not completed
  • the control unit may adjust the concentration of the reactive gas in the region according to the film thickness value of the deposit deposited on each of the components facing the region.
  • the supply flow rate of the inert gas to be supplied is adjusted.
  • control unit is configured to control the reactive gas based on a region facing a constituent member having a largest film thickness value of the deposit among the plurality of regions. A supply time is calculated, and an etching ratio of each of the plurality of regions is calculated.
  • a source gas supply unit that supplies source gas to the substrate
  • the control unit includes: Item 27.
  • control unit includes: The film thickness value of the deposit removed from the substrate mounting portion is calculated by multiplying the removal ratio for removing the deposit by the supply time of the reactive gas.
  • a method for controlling a substrate processing apparatus including at least one processing chamber for processing a substrate, the substrate being provided in the processing chamber and mounting the substrate A mounting unit; a reactive gas supply unit that supplies a reactive gas that removes at least deposits deposited on the substrate mounting unit by processing the substrate; and an inert gas that is supplied to the plurality of regions.
  • An inert gas supply unit that supplies at least the reactive gas supply unit and a control unit that controls the inert gas supply unit, and supplies the reactive gas to the plurality of regions.
  • the supply flow rate of the reactive gas and the supply flow rate of the inert gas supplied to the plurality of regions are adjusted in accordance with the film thickness value of the deposit deposited on the substrate platform, respectively.
  • Control of substrate processing equipment A method is provided.
  • the present invention can be applied to a substrate processing apparatus that includes a processing chamber for processing a substrate and removes deposits deposited on members constituting the processing chamber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

A substrate processing device provided with at least one processing chamber for processing a substrate, the substrate processing device provided with: a substrate loading unit for loading the substrate, the substrate loading unit being provided in the processing chamber; a reactive gas supply unit for supplying, to a plurality of regions, a reactive gas for removing a deposit deposited on at least the substrate loading unit by processing of the substrate; an inert gas supply unit for supplying an inert gas to the plurality of regions; and a control unit for controlling at least the reactive gas supply unit and the inert gas supply unit so as to adjust each of the supplied flow rate of the reactive gas and the supplied flow rate of the inert gas supplied to the plurality of regions in accordance with a film thickness value of the deposit deposited on the substrate loading unit during supply of the reactive gas to the plurality of regions and removal of the deposit.

Description

基板処理装置、基板処理装置の制御方法、クリーニング方法及び半導体装置の製造方法並びに記録媒体Substrate processing apparatus, substrate processing apparatus control method, cleaning method, semiconductor device manufacturing method, and recording medium
 本発明は、基板の処理を行う基板処理装置、基板処理装置の制御方法、クリーニング方法及び半導体装置の製造方法並びに記録媒体に関する。 The present invention relates to a substrate processing apparatus for processing a substrate, a control method for the substrate processing apparatus, a cleaning method, a method for manufacturing a semiconductor device, and a recording medium.
 フラッシュメモリやDRAM(Dynamic Random Access Memory)等の半導体装置の製造工程の一工程が基板処理装置により行われる。この基板処理装置では、処理室内に原料ガスが供給されて、基板に膜を形成する処理が行われる。しかしながら、基板に膜を形成する処理を行う際に、例えば処理室の内壁等にも堆積物が付着し、付着した堆積物が処理室の内壁から剥離して処理室内に異物が発生してしまう場合がある。従って、周期的に処理室内の内壁等に付着した堆積物を除去する必要がある。 One step of a manufacturing process of a semiconductor device such as a flash memory or a DRAM (Dynamic Random Access Memory) is performed by the substrate processing apparatus. In this substrate processing apparatus, a raw material gas is supplied into a processing chamber to perform a process for forming a film on a substrate. However, when a process for forming a film on the substrate is performed, for example, deposits adhere to the inner wall of the processing chamber, and the deposited deposits are peeled off from the inner wall of the processing chamber and foreign matter is generated in the processing chamber. There is a case. Therefore, it is necessary to periodically remove deposits adhering to the inner wall or the like in the processing chamber.
 処理室内の内壁等に付着物を除去する方法として、例えば、処理室を構成する部材を基板処理装置から取り外し、HF水溶液等の洗浄槽においてこの部材に付着した堆積物を除去するウェットクリーニング法がある。しかしながら、ウェットクリーニング法では、処理室を構成する構成部材等を基板処理装置から取り外すため、装置の稼働率が低下してしまう。 As a method for removing deposits on the inner wall of the processing chamber, for example, there is a wet cleaning method in which a member constituting the processing chamber is removed from the substrate processing apparatus and deposits adhered to the member in a cleaning tank such as an HF aqueous solution are removed. is there. However, in the wet cleaning method, since the constituent members and the like constituting the processing chamber are removed from the substrate processing apparatus, the operation rate of the apparatus is lowered.
 そこで、処理室内にクリーニングガスを供給することで、処理室内の内壁等に付着した堆積物をエッチングして除去するドライクリーニング法が行われる場合がある。ドライクリーニング法は、処理室を構成する構成部材等を基板処理装置から取り外す必要がないため、装置の稼働率の向上が見込まれる。しかしながら、処理室内にクリーニングガスを供給し、処理室内を一様にエッチングすると、処理室内でオーバーエッチングが発生し、処理室内を構成する部材に損傷が生じる場合があった。すなわち、堆積物の膜厚が小さい部分では、処理室の内壁等が浸食されて破損し、例えば処理室内の金属部材が腐食されて金属汚染が生じることがあった。 Therefore, there is a case where a dry cleaning method is performed in which deposits attached to an inner wall or the like in the processing chamber are removed by etching by supplying a cleaning gas into the processing chamber. The dry cleaning method is expected to improve the operating rate of the apparatus because it is not necessary to remove the components constituting the processing chamber from the substrate processing apparatus. However, when a cleaning gas is supplied into the processing chamber and the processing chamber is uniformly etched, over-etching may occur in the processing chamber, causing damage to members constituting the processing chamber. That is, in a portion where the thickness of the deposit is small, the inner wall or the like of the processing chamber is eroded and damaged. For example, a metal member in the processing chamber is corroded to cause metal contamination.
 本発明は、処理室内を構成する構成部材に損傷を生じさせないように、処理室内の構成部材等に付着した堆積物を除去できる基板処理装置、基板処理装置の制御方法、クリーニング方法及び半導体装置の製造方法並びに記録媒体を提供することができる。 The present invention provides a substrate processing apparatus, a substrate processing apparatus control method, a cleaning method, and a semiconductor device that can remove deposits attached to the constituent members and the like in the processing chamber so as not to cause damage to the constituent members that configure the processing chamber. A manufacturing method and a recording medium can be provided.
 本発明の一態様によれば、
 基板を処理する複数の領域が設けられた少なくとも1つの処理室を備える基板処理装置であって、
 前記処理室内に設けられ、前記基板を載置する基板載置部と、
 前記基板の処理によって少なくとも前記基板載置部に堆積した堆積物を除去する反応性ガスを前記複数の領域に供給する反応性ガス供給部と、
 前記複数の領域に不活性ガスを供給する不活性ガス供給部と、
 前記反応性ガスを前記複数の領域に供給し、前記堆積物を除去する際、前記複数の領域に供給する前記反応性ガスの供給流量及び前記不活性ガスの供給流量をそれぞれ前記基板載置部に堆積した前記堆積物の膜厚値に応じて調整するように、少なくとも前記反応性ガス供給部及び前記不活性ガス供給部を制御する制御部と、を備える基板処理装置が提供される。
According to one aspect of the invention,
A substrate processing apparatus comprising at least one processing chamber provided with a plurality of regions for processing a substrate,
A substrate mounting portion provided in the processing chamber for mounting the substrate;
A reactive gas supply unit that supplies, to the plurality of regions, a reactive gas that removes at least deposits deposited on the substrate mounting unit by processing the substrate;
An inert gas supply unit for supplying an inert gas to the plurality of regions;
When the reactive gas is supplied to the plurality of regions and the deposit is removed, the supply flow rate of the reactive gas and the supply flow rate of the inert gas supplied to the plurality of regions are respectively set to the substrate mounting unit. There is provided a substrate processing apparatus comprising: a control unit that controls at least the reactive gas supply unit and the inert gas supply unit so as to adjust according to a film thickness value of the deposit deposited on the substrate.
 本発明の他の態様によれば、
 基板を処理する複数の領域が設けられた少なくとも1つの処理室を備える基板処理装置で実行されるクリーニング方法あって、前記処理室内に、少なくとも反応性ガスを供給する際、前記複数の領域に供給する前記反応性ガスの供給流量及び不活性ガスの供給流量をそれぞれ前記処理室に設けられた基板載置部に堆積した前記堆積物の膜厚値に応じて調整して、前記基板載置部に堆積した堆積物を除去する除去工程を有する基板処理装置のクリーニング方法が提供される。
According to another aspect of the invention,
A cleaning method executed by a substrate processing apparatus including at least one processing chamber provided with a plurality of regions for processing a substrate, wherein at least a reactive gas is supplied into the processing chamber, the supply to the plurality of regions Adjusting the supply flow rate of the reactive gas and the supply flow rate of the inert gas according to the film thickness value of the deposit deposited on the substrate mounting portion provided in the processing chamber, respectively. There is provided a method for cleaning a substrate processing apparatus having a removing step of removing deposits deposited on the substrate.
 本発明の更に他の態様によれば、
 複数の領域が設けられた処理室内で基板を処理する基板処理工程と、前記処理室内に、少なくとも反応性ガスを供給し、前記基板処理工程において前記処理室に設けられた基板載置部に堆積された堆積物を除去する際、前記複数の領域に供給する前記反応性ガスの供給流量及び不活性ガスの供給流量をそれぞれ前記基板載置部に堆積した前記堆積物の膜厚値に応じて調整して、前記基板載置部に堆積した堆積物を除去する除去工程と、を有する半導体装置の製造方法が提供される。
According to yet another aspect of the invention,
A substrate processing step for processing a substrate in a processing chamber provided with a plurality of regions, and at least a reactive gas is supplied into the processing chamber and is deposited on a substrate mounting portion provided in the processing chamber in the substrate processing step. When removing the deposited deposit, the supply flow rate of the reactive gas and the supply flow rate of the inert gas supplied to the plurality of regions are respectively in accordance with the film thickness value of the deposit deposited on the substrate platform. There is provided a method for manufacturing a semiconductor device, the method comprising adjusting and removing a deposit deposited on the substrate mounting portion.
 本発明の更に他の態様によれば、基板を処理する複数の領域が設けられた少なくとも1つの処理室を備える基板処理装置で実行されるプログラムをコンピュータ読み取り可能に記録した記録媒体であって、前記処理室内に、少なくとも反応性ガスを供給する際、前記複数の領域に供給する前記反応性ガスの供給流量及び不活性ガスの供給流量をそれぞれ前記処理室に設けられた基板載置部に堆積した前記堆積物の膜厚に応じて調整して、前記基板載置部に堆積した堆積物を除去する手順と、を有するプログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。 According to still another aspect of the present invention, there is provided a recording medium in which a program executed by a substrate processing apparatus including at least one processing chamber provided with a plurality of regions for processing a substrate is recorded in a computer-readable manner, When supplying at least a reactive gas into the processing chamber, the supply flow rate of the reactive gas and the supply flow rate of the inert gas supplied to the plurality of regions are respectively deposited on the substrate mounting portion provided in the processing chamber. There is provided a computer-readable recording medium recording a program having a procedure of adjusting the film thickness of the deposit to remove the deposit deposited on the substrate platform.
 本発明の更に他の態様によれば、基板を処理する少なくとも1つの処理室を備える基板処理装置の制御方法であって、前記処理室内に設けられ、前記基板を載置する基板載置部と、前記基板の処理によって少なくとも前記基板載置部に堆積した堆積物を除去する反応性ガスを前記複数の領域に供給する反応性ガス供給部と、前記複数の領域に不活性ガスを供給する不活性ガス供給部と、少なくとも前記反応性ガス供給部及び前記不活性ガス供給部を制御する制御部と、を有し、前記反応性ガスを前記複数の領域に供給し、前記堆積物を除去する際、前記複数の領域に供給する前記反応性ガスの供給流量及び前記不活性ガスの供給流量をそれぞれ前記基板載置部に堆積した前記堆積物の膜厚値に応じて調整する基板処理装置の制御方法が提供される。 According to still another aspect of the present invention, there is provided a method for controlling a substrate processing apparatus including at least one processing chamber for processing a substrate, the substrate mounting portion being provided in the processing chamber and mounting the substrate. A reactive gas supply unit that supplies the plurality of regions with a reactive gas that removes at least deposits deposited on the substrate mounting unit by processing the substrate; and an inert gas that supplies inert gas to the plurality of regions. An active gas supply unit; and a control unit that controls at least the reactive gas supply unit and the inert gas supply unit, and supplies the reactive gas to the plurality of regions to remove the deposits. A substrate processing apparatus that adjusts a supply flow rate of the reactive gas and a supply flow rate of the inert gas supplied to the plurality of regions according to a film thickness value of the deposit deposited on the substrate mounting unit, respectively. Provided by the control method It is.
 本発明に係る基板処理装置、基板処理装置の制御方法、クリーニング方法及び半導体装置の製造方法並びに記録媒体によれば、処理室内を構成する部品に損傷を生じさせないように、処理室内の各構成部材に付着した堆積物を除去することができる。 According to the substrate processing apparatus, the control method of the substrate processing apparatus, the cleaning method, the manufacturing method of the semiconductor device, and the recording medium according to the present invention, each component in the processing chamber is provided so as not to cause damage to the components configuring the processing chamber. The deposit adhering to can be removed.
本発明の一実施形態に係る基板処理装置の概略構成図である。It is a schematic block diagram of the substrate processing apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る処理室が備える反応容器の概略斜視図である。It is a schematic perspective view of the reaction container with which the processing chamber concerning one embodiment of the present invention is provided. 本発明の一実施形態に係る処理室の縦断面概略図である。It is a longitudinal section schematic diagram of a processing room concerning one embodiment of the present invention. 本発明の一実施形態に係るガス供給部の概略説明図である。It is a schematic explanatory drawing of the gas supply part which concerns on one Embodiment of this invention. 本発明の一実施形態に係る基板処理工程を示すフロー図でる。It is a flowchart which shows the substrate processing process which concerns on one Embodiment of this invention. 本発明の一実施形態で好適に用いられる基板処理装置の制御手段の概略構成図である。It is a schematic block diagram of the control means of the substrate processing apparatus used suitably by one Embodiment of this invention. 本発明の一実施形態に係る基板処理装置の制御手段の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the control means of the substrate processing apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る制御手段によって表示される操作画面の一例を示す図であり、(a)はプロセスレシピの編集画面の一例を示し、(b)は堆積比率テーブルの編集画面の一例を示す。It is a figure which shows an example of the operation screen displayed by the control means which concerns on one Embodiment of this invention, (a) shows an example of the edit screen of a process recipe, (b) is an example of the edit screen of a deposition ratio table Indicates. 本発明の一実施形態に係る制御手段によって表示される操作画面の一例を示す図であり、(a)はクリーニングレシピの編集画面の一例を示し、(b)はエッチング比率テーブルの編集画面の一例を示す。It is a figure which shows an example of the operation screen displayed by the control means which concerns on one Embodiment of this invention, (a) shows an example of the edit screen of a cleaning recipe, (b) is an example of the edit screen of an etching ratio table Indicates. 本発明の一実施形態に係る制御手段が実行する累積膜厚データの更新処理のフロー図である。It is a flowchart of the update process of the accumulated film thickness data which the control means which concerns on one Embodiment of this invention performs. 本発明の一実施形態に係る制御手段が実行する累積膜厚データの更新処理のフロー図である。It is a flowchart of the update process of the accumulated film thickness data which the control means which concerns on one Embodiment of this invention performs. (a)は、本発明の一実施形態に係る制御手段によって累積膜厚データが更新される様子の一例を説明する図であり、(b)は、本発明の一実施形態に係る制御手段によって累積膜厚テーブルの内容をグラフ化した図である。(A) is a figure explaining an example of a mode that accumulated film thickness data is updated by the control means which concerns on one Embodiment of this invention, (b) is by the control means which concerns on one Embodiment of this invention. It is the figure which made the content of the cumulative film thickness table into a graph. 本発明の一実施形態に係る制御手段によって累積膜厚データが更新される様子の一例を説明する図である。It is a figure explaining an example of a mode that accumulated film thickness data is updated by the control means which concerns on one Embodiment of this invention. 本発明の一実施形態に係る制御手段によって累積膜厚データが更新される様子の一例を説明する図である。It is a figure explaining an example of a mode that accumulated film thickness data is updated by the control means which concerns on one Embodiment of this invention. 本発明の一実施形態に係る制御手段によって累積膜厚データが更新される様子の一例を説明する図である。It is a figure explaining an example of a mode that accumulated film thickness data is updated by the control means which concerns on one Embodiment of this invention. 本発明の一実施形態に係る制御手段によって累積膜厚データが更新される様子の一例を説明する図である。It is a figure explaining an example of a mode that accumulated film thickness data is updated by the control means which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る制御手段が実行する累積膜厚データの更新処理のフロー図である。It is a flowchart of the update process of the accumulated film thickness data which the control means which concerns on other embodiment of this invention performs. 本発明の一実施形態に係る制御手段によって累積膜厚データが更新される様子の一例を説明する図である。It is a figure explaining an example of a mode that accumulated film thickness data is updated by the control means which concerns on one Embodiment of this invention.
<発明者等が得た知見>  まず、本発明の実施形態の説明に先立ち、発明者等が得た知見について説明する。 <Knowledge obtained by the inventors> First, knowledge obtained by the inventors will be described prior to the description of the embodiment of the present invention.
 基板に薄膜を形成する処理を行う多枚葉式の基板処理装置として、例えば、基板を処理する処理室と、複数の基板を載置し、回転自在に構成された基板載置部と、基板載置部の回転方向に沿って第1の処理領域、第1のパージ領域、第2の処理領域、第2のパージ領域が交互に配列されるように、処理室内を仕切る仕切部と、を備える基板処理装置が提案されている。このような基板処理装置は、第1の処理領域に第1の原料ガスを供給するとともに、第2の処理領域に第2の原料ガスを供給し、第1のパージ領域及び第2のパージ領域に不活性ガスを供給するように構成されている。そして、基板載置部を回転させて、基板載置部上の基板が、第1の処理領域、第1のパージ領域、第2の処理領域、第2のパージ領域をこの順に通過することにより、基板への原料ガスの供給及び不活性ガスの供給を交互に行い、基板上に薄膜を形成するように構成されている。 As a multi-wafer type substrate processing apparatus that performs a process of forming a thin film on a substrate, for example, a processing chamber for processing a substrate, a substrate mounting unit that is configured to freely rotate a plurality of substrates, and a substrate A partition unit that partitions the processing chamber so that the first processing region, the first purge region, the second processing region, and the second purge region are alternately arranged along the rotation direction of the mounting unit; A substrate processing apparatus provided has been proposed. Such a substrate processing apparatus supplies the first source gas to the first processing region and also supplies the second source gas to the second processing region, and the first purge region and the second purge region. It is comprised so that an inert gas may be supplied to. Then, by rotating the substrate platform, the substrate on the substrate platform passes through the first processing region, the first purge region, the second processing region, and the second purge region in this order. The thin film is formed on the substrate by alternately supplying the source gas and the inert gas to the substrate.
 このような多枚葉式の基板処理装置によって、基板上に薄膜を形成する際に、処理室を構成する構成部材(サセプタの表面、仕切部の側面等を構成する部材)であって基板表面以外の部分、例えば処理室の内壁や、仕切部の側面、基板載置部としてのサセプタの表面等に薄膜を含む堆積物が付着してしまう場合がある。かかる堆積物は、基板上に薄膜を形成する処理が実施される度に累積的に付着する。そして、堆積物は、所定の厚さ以上になると剥離、落下し、処理室内に異物が発生する要因となる。そのため、堆積物の膜厚が所定の値に到達する毎に、処理室内の各部品(サセプタ、仕切部等)に堆積した堆積物を除去するクリーニングを行う必要があった。 When a thin film is formed on a substrate by such a multi-wafer type substrate processing apparatus, it is a constituent member constituting the processing chamber (a member constituting the surface of the susceptor, the side surface of the partition portion, etc.) and the substrate surface Deposits including a thin film may adhere to other parts, for example, the inner wall of the processing chamber, the side surfaces of the partition part, the surface of the susceptor as the substrate mounting part, and the like. Such deposits are cumulatively deposited each time a process for forming a thin film on the substrate is performed. Then, the deposit is peeled off and dropped when the thickness exceeds a predetermined thickness, which becomes a factor in generating foreign matter in the processing chamber. Therefore, every time the film thickness of the deposit reaches a predetermined value, it is necessary to perform cleaning to remove the deposit deposited on each component (susceptor, partition, etc.) in the processing chamber.
 ところで、加熱部を包含するサセプタは、高温になりやすいため、処理室の内壁等に比べて堆積物が付着しやすい。すなわち、サセプタ上の堆積物の膜厚は、処理室の内壁の堆積物の膜厚よりも大きくなりやすい。また、原料ガスが供給される第1の処理領域や第2の処理領域を構成する仕切部の側面は、不活性ガスが供給される第1のパージ領域や第2のパージ領域と比べて堆積物が付着しやすい。すなわち、第1の処理領域や第2の処理領域に面する仕切部に付着する堆積物の膜厚は、第1のパージ領域や第2のパージ領域に面する仕切部に付着する堆積物の膜厚よりも大きくなりやすい。このように、処理室内の各部品に堆積する堆積物の膜厚は、処理室内で均一になることは殆どない。 By the way, since the susceptor including the heating unit is likely to become high temperature, deposits are more likely to adhere to the inner wall of the processing chamber. That is, the thickness of the deposit on the susceptor tends to be larger than the thickness of the deposit on the inner wall of the processing chamber. Further, the side surfaces of the partition portions constituting the first processing region and the second processing region to which the source gas is supplied are deposited as compared with the first purge region and the second purge region to which the inert gas is supplied. Objects are easy to adhere. That is, the film thickness of the deposit adhering to the partition portion facing the first processing region and the second processing region is the same as that of the deposit adhering to the partition portion facing the first purge region and the second purge region. It tends to be larger than the film thickness. Thus, the film thickness of the deposit deposited on each component in the processing chamber is hardly uniform in the processing chamber.
このため、サセプタ上の堆積物の膜厚に基づいて処理室内を一様に例えばドライクリーニング法によりエッチングすると、処理室内でオーバーエッチングが発生してしまう。すなわち、堆積物の膜厚が小さい第1のパージ領域や第2のパージ領域を構成する仕切部の側面や、処理室の内壁等では、仕切部や処理室の内壁等がクリーニングガスによって浸食されて破損し、例えば、処理室内の金属部材が腐食されて金属汚染が生じることがあった。 For this reason, if the processing chamber is uniformly etched by, for example, the dry cleaning method based on the thickness of the deposit on the susceptor, over-etching occurs in the processing chamber. That is, the partition wall and the inner wall of the processing chamber are eroded by the cleaning gas on the side surfaces of the partition portions constituting the first purge region and the second purge region where the deposit thickness is small and the inner walls of the processing chambers. For example, the metal member in the processing chamber may be corroded to cause metal contamination.
 このように、サセプタ等の処理室内の所定の一箇所に付着した堆積物の膜厚値のみに基づいてクリーニングガスの供給流量等が調整されると、処理室内を構成する部品(仕切部等)に損傷を生じさせる場合があった。 As described above, when the cleaning gas supply flow rate or the like is adjusted based only on the film thickness value of the deposit attached to a predetermined location in the processing chamber such as a susceptor, the components (partitions and the like) constituting the processing chamber May cause damage.
 本発明は、発明者等が得たかかる知見に基づいてなされたものである。以下に、本発明の一実施形態について図面を参照しながら説明する。 The present invention has been made based on such knowledge obtained by the inventors. Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
<本発明の一実施形態>(1)基板処理装置の構成  まず、本実施形態に係る基板処理装置10の構成について、主に図1を参照しながら説明する。図1は、本実施形態に係る基板処理装置10の概略構成図である。なお、本実施形態に係る基板処理装置10は、一度に複数枚の基板としてのウエハ200を処理する多枚葉式の装置として構成されている。なお、本実施形態に係る基板処理装置10では、ウエハ200を搬送するキャリアとして、FOUP(Front Opening Unified Pod。以下、ポッドという。)が使用されている。本実施形態にかかる基板処理装置10の搬送装置は、真空側と大気側とに分かれている。本明細書中における「真空」とは工業的真空を意味する。なお、以下の説明において、前後左右は図1を基準とする。すなわち、図1が示されている紙面に対して、前は紙面の下、後ろは紙面の上、左右は紙面の左右とする。 <One Embodiment of the Present Invention> (1) Configuration of Substrate Processing Apparatus First, the configuration of a substrate processing apparatus 10 according to the present embodiment will be described with reference mainly to FIG. FIG. 1 is a schematic configuration diagram of a substrate processing apparatus 10 according to the present embodiment. The substrate processing apparatus 10 according to the present embodiment is configured as a multi-leaf type apparatus that processes a plurality of wafers 200 as a substrate at a time. In the substrate processing apparatus 10 according to the present embodiment, a FOUP (Front Opening Unified Pod, hereinafter referred to as a pod) is used as a carrier for transporting the wafer 200. The transfer apparatus of the substrate processing apparatus 10 according to the present embodiment is divided into a vacuum side and an atmosphere side. In this specification, “vacuum” means an industrial vacuum. In the following description, front, rear, left and right are based on FIG. That is, with respect to the paper surface shown in FIG. 1, the front is below the paper surface, the back is above the paper surface, and the left and right are the left and right of the paper surface.
(真空側の構成)  基板処理装置10は、内部を真空状態などの大気圧未満の圧力(例えば100Pa)に減圧可能な第1搬送室としての搬送室TM(Transfer Module)を備えている。搬送室TMの筐体は、平面視が五角形で、上下両端が閉塞した箱形状に形成されている。 (Structure on the vacuum side) The substrate processing apparatus 10 includes a transfer chamber TM (Transfer Module) as a first transfer chamber capable of reducing the pressure to a pressure lower than atmospheric pressure (for example, 100 Pa) such as a vacuum state. The housing of the transfer chamber TM has a pentagonal shape in plan view and is formed in a box shape with both upper and lower ends closed.
 搬送室TMの筐体を構成する五枚の側壁のうち、前側に位置する一枚の側壁には、ゲートバルブを介して、予備室としてのロードロック室LM(Load Lock Module)1,LM2が搬送室TMと連通可能にそれぞれ設けられている。 Among the five side walls constituting the casing of the transfer chamber TM, one side wall located on the front side is provided with load lock chambers LM (Load Lock Module) 1 and LM2 as spare chambers via a gate valve. Each is provided so as to be able to communicate with the transfer chamber TM.
 搬送室TMの筐体を構成する他の三枚の側壁のうち、後ろ側に位置する二枚の側壁には、ゲートバルブを介して、第1処理室としてのプロセスチャンバPM(Process Module)1,第2処理室としてのプロセスチャンバPM2が搬送室TMと連通可能にそれぞれ設けられている。プロセスチャンバPM1,PM2には、後述するガス供給部250、排気部等が設けられている。プロセスチャンバPM1,PM2には、ウエハ200を載置する基板載置部としてのサセプタST1,ST2がそれぞれ設けられている。また、プロセスチャンバPM1,PM2は、後述するように、1つの反応容器203内に複数の処理領域等が形成されており、基板載置部としてのサセプタST1を回転させて、基板であるウエハ200が複数の処理領域等を順番に通過することにより、ウエハ200への原料ガス等の供給を順番に行い、ウエハ200上へ薄膜を形成する処理や、ウエハ200表面を酸化、窒化、炭化等する処理や、ウエハ200表面をエッチングする処理等の各種基板処理を実施するように構成されている。 Among the other three side walls constituting the casing of the transfer chamber TM, two side walls located on the rear side are connected to a process chamber PM (Process Module) 1 as a first processing chamber via a gate valve. The process chamber PM2 as the second processing chamber is provided so as to be able to communicate with the transfer chamber TM. The process chambers PM1 and PM2 are provided with a gas supply unit 250 and an exhaust unit, which will be described later. The process chambers PM1 and PM2 are provided with susceptors ST1 and ST2 as substrate placement portions on which the wafer 200 is placed. As will be described later, in the process chambers PM1 and PM2, a plurality of processing regions and the like are formed in one reaction vessel 203, and a susceptor ST1 serving as a substrate mounting portion is rotated to rotate a wafer 200 as a substrate. Passes through a plurality of processing regions in order, so that a source gas or the like is sequentially supplied to the wafer 200 to form a thin film on the wafer 200, or the surface of the wafer 200 is oxidized, nitrided, carbonized, or the like. Various substrate processes such as a process and a process of etching the surface of the wafer 200 are performed.
 搬送室TM内には、第1搬送機構としての搬送ロボットVRが設けられている。搬送ロボットVRは、第1予備室としてのロードロック室LM1,第2予備室としてのロードロック室LM2とプロセスチャンバPM1,PM2との間で、ウエハ200を搬送可能に構成されている。搬送ロボットVRは、搬送室TMの気密性を維持しつつ昇降可能に構成されている。搬送ロボットVRは、例えば基板保持部としての2本のアームを有し、2枚のウエハ200を搬送可能に構成されている。搬送ロボットVRのアームは、水平方向に伸縮でき、係る水平面内で回転移動できるように構成されている。また、搬送室TM内であって、ロードロック室LM1,LM2のゲートバルブ、プロセスチャンバPM1,PM2のゲートバルブのそれぞれの近傍には、ウエハ200の有無を検知する基板検知部としてのウエハ有無センサが設けられている。 In the transfer chamber TM, a transfer robot VR as a first transfer mechanism is provided. The transfer robot VR is configured to be able to transfer the wafer 200 between the load lock chamber LM1 as a first auxiliary chamber and the load lock chamber LM2 as a second auxiliary chamber and the process chambers PM1 and PM2. The transfer robot VR is configured to be movable up and down while maintaining the airtightness of the transfer chamber TM. The transfer robot VR has, for example, two arms as substrate holding units and is configured to be able to transfer two wafers 200. The arm of the transfer robot VR can be expanded and contracted in the horizontal direction, and is configured to rotate and move within the horizontal plane. Further, in the transfer chamber TM, in the vicinity of the gate valves of the load lock chambers LM1 and LM2 and the gate valves of the process chambers PM1 and PM2, a wafer presence / absence sensor as a substrate detection unit for detecting the presence / absence of the wafer 200 is provided. Is provided.
 ロードロック室LM1,LM2は、搬送室TM内へ搬入する又は搬送室TM内から搬出されたウエハ200を一時的に収容する予備室として機能する。ロードロック室LM1,LM2内には、ウエハ200を一時的に支持する基板支持部としてのバッファステージがそれぞれ設けられている。バッファステージは、複数枚(例えば2枚)のウエハ200を保持する多段型スロットとしてそれぞれ構成されていてもよい。 The load lock chambers LM1 and LM2 function as spare chambers for temporarily storing the wafers 200 loaded into the transfer chamber TM or unloaded from the transfer chamber TM. In the load lock chambers LM1 and LM2, buffer stages as substrate support portions for temporarily supporting the wafer 200 are provided. Each of the buffer stages may be configured as a multistage slot that holds a plurality of (for example, two) wafers 200.
 また、ロードロック室LM1,LM2は、内部を真空状態などの大気圧未満の圧力(負圧)に減圧可能なロードロックチャンバ構造に構成されている。すなわち、ロードロック室LM1,LM2は、その内部をそれぞれ真空排気可能に構成されている。また、ロードロック室LM1,LM2の前側には、ゲートバルブを介して、第2搬送室としての搬送室EFEMが設けられている。従って、搬送室EFEM側のゲートバルブを閉じてロードロック室LM1,LM2内部を真空排気した後、搬送室TM側のゲートバルブを開けることで、搬送室TMの真空状態を保持しつつ、ロードロック室LM1,LM2と搬送室TMとの間でウエハ200を搬送可能に構成されている。 Further, the load lock chambers LM1 and LM2 are configured in a load lock chamber structure capable of reducing the pressure to a pressure (negative pressure) less than atmospheric pressure such as a vacuum state. That is, the load lock chambers LM1 and LM2 are configured so that the inside thereof can be evacuated. In addition, a transfer chamber EFEM as a second transfer chamber is provided on the front side of the load lock chambers LM1 and LM2 via a gate valve. Therefore, after the gate valve on the transfer chamber EFEM side is closed and the load lock chambers LM1 and LM2 are evacuated, the gate valve on the transfer chamber TM side is opened, thereby maintaining the vacuum state of the transfer chamber TM and the load lock. The wafer 200 is configured to be transferred between the chambers LM1, LM2 and the transfer chamber TM.
(大気側の構成)  基板処理装置10の大気側には、略大気圧下で用いられる、第2搬送室としての搬送室EFEM(Equipment Front End Module)が設けられている。すなわち、ロードロック室LM1,LM2の前側には、ゲートバルブを介して、搬送室EFEMが設けられている。なお、搬送室EFEMは、ロードロック室LM1,LM2と連通可能に設けられている。 (Configuration on the atmosphere side) A transfer chamber EFEM (Equipment Front End Module) as a second transfer chamber is provided on the atmosphere side of the substrate processing apparatus 10 and is used at a substantially atmospheric pressure. That is, the transfer chamber EFEM is provided on the front side of the load lock chambers LM1 and LM2 via the gate valve. The transfer chamber EFEM is provided so as to communicate with the load lock chambers LM1, LM2.
 搬送室EFEM内には、ウエハ200を搬送する第2搬送機構として、搬送ロボットARが例えば1台設けられている。搬送ロボットARは、ロードロック室LM1,LM2と後述するロードポートLP1~LP3との間でウエハ200の搬送を相互に行なうように構成されている。搬送ロボットARは、昇降可能に構成されているとともに、左右方向に往復移動されるように構成されている。搬送ロボットARは、例えば2本のアームを有し、2枚のウエハを搬送可能に構成されている。また、搬送室EFEMのゲートバルブの近傍には、ウエハ200の有無を検知する基板検知部としてのウエハ有無センサが設けられている。 In the transfer chamber EFEM, for example, one transfer robot AR is provided as a second transfer mechanism for transferring the wafer 200. The transfer robot AR is configured to mutually transfer the wafer 200 between the load lock chambers LM1 and LM2 and load ports LP1 to LP3 described later. The transfer robot AR is configured to be movable up and down and configured to reciprocate in the left-right direction. The transfer robot AR has, for example, two arms and is configured to transfer two wafers. In addition, a wafer presence sensor as a substrate detection unit for detecting the presence or absence of the wafer 200 is provided in the vicinity of the gate valve of the transfer chamber EFEM.
 また、搬送室EFEM内には、ウエハ200の位置補正を行う装置として、ウエハ200の結晶方向や位置合わせ等をウエハ200のノッチを用いて行うノッチ合わせ装置が設けられている。なお、ノッチ合わせ装置の代わりに、オリフラ(Orientation Flat)合わせ装置が設けられていてもよい。また、搬送室EFEMには、搬送室EFEMの内部にクリーンエアを供給するクリーンエアユニットが設けられている。 Also, in the transfer chamber EFEM, a notch alignment device that performs the crystal orientation and alignment of the wafer 200 using the notch of the wafer 200 is provided as a device for correcting the position of the wafer 200. Instead of the notch aligning device, an orientation flat aligning device may be provided. The transfer chamber EFEM is provided with a clean air unit that supplies clean air into the transfer chamber EFEM.
 搬送室EFEMの筐体の前側には、ウエハ200を搬送室EFEM内外に搬送する基板搬送口が設けられている。基板搬送口を挟んで、搬送室EFEMの外側には、キャリア載置台(キャリア載置部)としてのロードポート(I/Oステージ)LP1,LP2,LP3が設けられている。 On the front side of the housing of the transfer chamber EFEM, a substrate transfer port for transferring the wafer 200 into and out of the transfer chamber EFEM is provided. Load ports (I / O stages) LP1, LP2, LP3 as carrier mounting tables (carrier mounting units) are provided outside the transfer chamber EFEM across the substrate transfer port.
 各ロードポートLP1~LP3は、各ロードポートLP1~LP3上に、複数枚(例えば25枚)のウエハ200を収納する基板収納容器としてのキャリアカセットCA1~CA3をそれぞれ載置するように構成されている。各キャリアカセットCA1~CA3にはそれぞれ、キャリアカセットCA1~CA3を識別する例えばバーコード等のキャリアIDが付されている。そして、各ロードポートLP1~LP3は、キャリアカセットCA1~CA3が載置されると、キャリアカセットCA1~CA3に付されたキャリアIDを読み取って記憶するよう構成されている。 Each of the load ports LP1 to LP3 is configured to place carrier cassettes CA1 to CA3 as substrate storage containers for storing a plurality of (for example, 25) wafers 200 on the load ports LP1 to LP3, respectively. Yes. Each of the carrier cassettes CA1 to CA3 is assigned a carrier ID such as a barcode for identifying the carrier cassettes CA1 to CA3. Each of the load ports LP1 to LP3 is configured to read and store the carrier IDs assigned to the carrier cassettes CA1 to CA3 when the carrier cassettes CA1 to CA3 are placed.
 主に、搬送室TM、ロードロック室LM1,LM2及び搬送室EFEMにより、本実施形態に係る基板処理装置10の搬送装置が構成される。 Mainly, the transfer chamber TM, the load lock chambers LM1 and LM2, and the transfer chamber EFEM constitute a transfer device of the substrate processing apparatus 10 according to the present embodiment.
 基板処理装置10の搬送装置の各構成には、後述する制御部280が電気的に接続されている。そして、上述した各構成の動作を、それぞれ制御するように構成されている。 A control unit 280 described later is electrically connected to each component of the transfer device of the substrate processing apparatus 10. And it is comprised so that operation | movement of each structure mentioned above may be controlled, respectively.
(ウエハの搬送動作)  次に、本実施形態に係る基板処理装置10内におけるウエハ200の搬送動作を説明する。なお、基板処理装置10の各搬送機構の各構成の動作は、後述する制御部280によって制御される。以下の動作は、例えば搬送レシピに基づいて実施される。搬送レシピは、基板処理装置10内のウエハ200の搬送に用いられ、基板の処理を行う基板処理レシピと併用されて基板処理工程を実現する。 (Wafer Transfer Operation) Next, the wafer 200 transfer operation in the substrate processing apparatus 10 according to the present embodiment will be described. The operation of each component of each transport mechanism of the substrate processing apparatus 10 is controlled by the control unit 280 described later. The following operations are performed based on, for example, a transport recipe. The transfer recipe is used to transfer the wafer 200 in the substrate processing apparatus 10 and is used in combination with a substrate processing recipe for processing a substrate to realize a substrate processing process.
 まず、例えば25枚のウエハ200を収納したキャリアカセットCA1,CA2、及び空のキャリアカセットCA3をロードポートLP1上にそれぞれ載置し、キャリアカセットCA1~CA3のそれぞれに付されたキャリアIDを読み取る。そして、基板搬送口及びキャリアカセットCA1又はキャリアカセットCA2のウエハ出入口を開放する。 First, for example, carrier cassettes CA1 and CA2 containing 25 wafers 200 and an empty carrier cassette CA3 are mounted on the load port LP1, respectively, and the carrier IDs attached to the carrier cassettes CA1 to CA3 are read. Then, the substrate transfer port and the wafer entrance / exit of the carrier cassette CA1 or the carrier cassette CA2 are opened.
 キャリアカセットCA1又はキャリアカセットCA2のウエハ出入口を開放すると、搬送室EFEM内に設置されている搬送ロボットARは、キャリアカセットCA1又はキャリアカセットCA2からウエハ200を1枚ピックアップして、例えばロードロック室LM1にウエハ200を搬入する。この搬送ロボットARによるウエハ200の搬送作業中は、ロードロック室LM1と搬送室TMとの間のゲートバルブが閉じられており、搬送室TM内の減圧雰囲気が維持されている。搬送ロボットARによるロードロック室LM1内へのウエハ200の搬送が完了すると、排気装置によってロードロック室LM1内を負圧になるよう排気する。 When the wafer entrance / exit of the carrier cassette CA1 or the carrier cassette CA2 is opened, the transfer robot AR installed in the transfer chamber EFEM picks up one wafer 200 from the carrier cassette CA1 or the carrier cassette CA2, for example, the load lock chamber LM1. Then, the wafer 200 is loaded. During the transfer operation of the wafer 200 by the transfer robot AR, the gate valve between the load lock chamber LM1 and the transfer chamber TM is closed, and the decompressed atmosphere in the transfer chamber TM is maintained. When the transfer of the wafer 200 into the load lock chamber LM1 by the transfer robot AR is completed, the inside of the load lock chamber LM1 is exhausted to a negative pressure by the exhaust device.
 以降、搬送ロボットARは、上述の動作を繰り返す。但し、ロードロック室LM1内が負圧状態の場合、搬送ロボットARは、ロードロック室LM1内へのウエハ200の搬入を実行せず、ロードロック室LM1の直前位置で停止して待機する。なお、搬送ロボットARは、ロードロック室LM2内にウエハ200を搬入するように構成されていてもよい。 Thereafter, the transfer robot AR repeats the above-described operation. However, when the inside of the load lock chamber LM1 is in a negative pressure state, the transfer robot AR does not carry the wafer 200 into the load lock chamber LM1, but stops and waits at a position immediately before the load lock chamber LM1. The transfer robot AR may be configured to load the wafer 200 into the load lock chamber LM2.
 ロードロック室LM1内が予め設定された圧力値(例えば100Pa)に減圧されると、ロードロック室LM1と搬送室TMとの間のゲートバルブが開けられる。続いて、搬送室TM内に設けられた搬送ロボットVRは、ロードロック室LM1からウエハ200をピックアップして、搬送室TM内に搬入する。 When the pressure inside the load lock chamber LM1 is reduced to a preset pressure value (for example, 100 Pa), the gate valve between the load lock chamber LM1 and the transfer chamber TM is opened. Subsequently, the transfer robot VR provided in the transfer chamber TM picks up the wafer 200 from the load lock chamber LM1 and loads it into the transfer chamber TM.
 搬送ロボットVRがロードロック室LM1からウエハ200をピックアップした後、ロードロック室LM1と搬送室TMとの間のゲートバルブが閉じられる。そして、ロードロック室LM1内が大気圧に復帰させられ、ロードロック室LM1内に次のウエハ200を搬入するための準備が行われる。それと並行して、所定の圧力(例えば100Pa)にある例えばプロセスチャンバPM1と搬送室TMとの間のゲートバルブを開け、搬送ロボットVRによって、ウエハ200をプロセスチャンバPM1内に搬入する。この動作をプロセスチャンバPM1内にウエハ200が任意の枚数(例えば5枚)搬入されるまで繰り返す。プロセスチャンバPM1内への任意の枚数(例えば5枚)のウエハ200の搬入が完了し、プロセスチャンバPM1と搬送室TMとの間のゲートバルブが閉じられた後、プロセスチャンバPM1内で、ウエハ200に所定の処理が施される。 After the transfer robot VR picks up the wafer 200 from the load lock chamber LM1, the gate valve between the load lock chamber LM1 and the transfer chamber TM is closed. Then, the inside of the load lock chamber LM1 is returned to the atmospheric pressure, and preparations for carrying the next wafer 200 into the load lock chamber LM1 are made. At the same time, for example, a gate valve between the process chamber PM1 and the transfer chamber TM at a predetermined pressure (for example, 100 Pa) is opened, and the wafer 200 is transferred into the process chamber PM1 by the transfer robot VR. This operation is repeated until an arbitrary number (for example, five) of wafers 200 is loaded into the process chamber PM1. After carrying in an arbitrary number (for example, five) of wafers 200 into the process chamber PM1 and closing the gate valve between the process chamber PM1 and the transfer chamber TM, the wafers 200 in the process chamber PM1. A predetermined process is performed.
 プロセスチャンバPM1において所定の処理が終了すると、プロセスチャンバPM1と搬送室TMとの間のゲートバルブを開け、搬送ロボットVRによって、処理済みのウエハ200をプロセスチャンバPM1内から搬送室TMへ搬出する。ウエハ200を搬出した後、プロセスチャンバPM1と搬送室TMとの間のゲートバルブを閉じる。 When the predetermined processing is completed in the process chamber PM1, the gate valve between the process chamber PM1 and the transfer chamber TM is opened, and the processed wafer 200 is unloaded from the process chamber PM1 to the transfer chamber TM by the transfer robot VR. After unloading the wafer 200, the gate valve between the process chamber PM1 and the transfer chamber TM is closed.
 続いて、搬送室TMとロードロック室LM2との間のゲートバルブを開け、搬送ロボットVRによって、プロセスチャンバPM1から搬出したウエハ200を、ロードロック室LM2内へ搬入する。なお、ロードロック室LM2は、排気装置によって、予め設定された圧力値に減圧されている。そして、搬送室TMとロードロック室LM2との間のゲートバルブを閉じた後、例えばロードロック室LM2に接続された不活性ガス供給部から不活性ガスが導入され、ロードロック室LM2内の圧力が大気圧に復帰させられる。 Subsequently, the gate valve between the transfer chamber TM and the load lock chamber LM2 is opened, and the wafer 200 transferred from the process chamber PM1 is transferred into the load lock chamber LM2 by the transfer robot VR. Note that the load lock chamber LM2 is decompressed to a preset pressure value by the exhaust device. Then, after closing the gate valve between the transfer chamber TM and the load lock chamber LM2, for example, an inert gas is introduced from an inert gas supply unit connected to the load lock chamber LM2, and the pressure in the load lock chamber LM2 is increased. Is returned to atmospheric pressure.
 ロードロック室LM2内の圧力が大気圧に復帰させられると、ロードロック室LM2と搬送室EFEMとの間のゲートバルブを開ける。続いて、搬送ロボットARによって、処理済みのウエハ200をロードロック室LM2内から搬送室EFEM内へ搬出した後、ロードロック室LM2と搬送室EFEMとの間のゲートバルブを閉じる。その後、搬送ロボット124は、搬送室121の基板搬送口134を通して、処理済みのウエハ200を例えば空のキャリアカセットCA3に収納する。ここで、処理済みのウエハ200は、キャリアカセットCA3に収納せずにウエハ200を搬出してきた元のキャリアカセットCA1又はキャリアカセットCA2に戻してもよい。 When the pressure in the load lock chamber LM2 is returned to atmospheric pressure, the gate valve between the load lock chamber LM2 and the transfer chamber EFEM is opened. Subsequently, after the processed wafer 200 is unloaded from the load lock chamber LM2 into the transfer chamber EFEM by the transfer robot AR, the gate valve between the load lock chamber LM2 and the transfer chamber EFEM is closed. Thereafter, the transfer robot 124 stores the processed wafer 200 in, for example, an empty carrier cassette CA3 through the substrate transfer port 134 of the transfer chamber 121. Here, the processed wafer 200 may be returned to the original carrier cassette CA1 or carrier cassette CA2 from which the wafer 200 was unloaded without being stored in the carrier cassette CA3.
 前述の工程によってキャリアカセットCA1又はキャリアカセットCA2内の全てのウエハ200に所定の処理が施され、処理済みの25枚のウエハ200のすべてが所定のキャリアカセットCA3へ収納されると、基板搬送口134が閉じられる。その後、キャリアカセットCA3は、ロードポートLP3上から次の工程へ、搬送装置によって搬送される。以上の動作が繰り返されることにより、ウエハ200が25枚ずつ順次処理されていく。 When the predetermined process is performed on all the wafers 200 in the carrier cassette CA1 or the carrier cassette CA2 by the above-described process, and all the 25 processed wafers 200 are stored in the predetermined carrier cassette CA3, the substrate transfer port 134 is closed. Thereafter, the carrier cassette CA3 is transported from the load port LP3 to the next process by the transport device. By repeating the above operation, 25 wafers 200 are sequentially processed.
(2)プロセスチャンバの構成  続いて、本実施形態に係る第1処理室としてのプロセスチャンバPM1の構成について、主に図2~図4を用いて説明する。図2は、本実施形態に係る処理室が備える反応容器の概略斜視図である。図3は、本実施形態に係る処理室の縦断面概略図である。図4は、本実施形態に係るガス供給部の概略説明図である。なお、プロセスチャンバPM2については、プロセスチャンバPM1と同様に構成されているため、説明を省略する。 (2) Configuration of Process Chamber Next, the configuration of the process chamber PM1 as the first processing chamber according to the present embodiment will be described mainly with reference to FIGS. FIG. 2 is a schematic perspective view of a reaction vessel provided in the processing chamber according to the present embodiment. FIG. 3 is a schematic vertical sectional view of the processing chamber according to the present embodiment. FIG. 4 is a schematic explanatory diagram of a gas supply unit according to the present embodiment. The process chamber PM2 is configured in the same manner as the process chamber PM1, and thus the description thereof is omitted.
(反応容器)  図2及び図3に示すように、第1処理室としてのプロセスチャンバPM1は、円筒状の気密容器である反応容器203を備えている。反応容器203内には、ウエハ200の処理空間が形成されている。反応容器203内の処理空間の上側、即ち天井側には、中心部から放射状に延びる仕切板205が設けられている。仕切板205は、反応容器203内の処理空間を、複数の処理領域に仕切るように構成されている。具体的には、本実施形態では、反応容器203内を、第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b、第2のパージ領域204bに仕切るように構成されている。 (Reaction vessel) As shown in FIGS. 2 and 3, the process chamber PM1 as the first processing chamber includes a reaction vessel 203 which is a cylindrical airtight vessel. A processing space for the wafer 200 is formed in the reaction vessel 203. A partition plate 205 extending radially from the center is provided above the processing space in the reaction vessel 203, that is, on the ceiling side. The partition plate 205 is configured to partition the processing space in the reaction vessel 203 into a plurality of processing regions. Specifically, in the present embodiment, the reaction vessel 203 is configured to be partitioned into a first processing region 201a, a first purge region 204a, a second processing region 201b, and a second purge region 204b. Yes.
 第1の処理領域201a内には第1の原料ガスが供給され、第2の処理領域201b内には第2の原料ガスが供給され、第1のパージ領域204a内及び第2のパージ領域204b内には、不活性ガスが供給されるように構成されている。そのため、サセプタST1を回転させることで、ウエハ200上には、第1の原料ガス、不活性ガス、第2の原料ガス、不活性ガスがこの順に交互に供給されることとなる。なお、サセプタST1及びガス供給部250の構成については後述する。 A first source gas is supplied into the first processing region 201a, a second source gas is supplied into the second processing region 201b, and the first purge region 204a and the second purge region 204b are supplied. Inside, it is comprised so that an inert gas may be supplied. Therefore, by rotating the susceptor ST1, the first source gas, the inert gas, the second source gas, and the inert gas are alternately supplied onto the wafer 200 in this order. The configurations of the susceptor ST1 and the gas supply unit 250 will be described later.
 仕切板205の端部と反応容器203の側壁との間には、所定の幅の隙間が設けられており、この隙間をガスが通過できるように構成されている。第1のパージ領域204a内及び第2のパージ領域204b内や上述の隙間から第1の処理領域201a内及び第2の処理領域201b内に向けて不活性ガスを噴出させるようにすることで、第1のパージ領域204a内及び第2のパージ領域204b内への第1原料ガス及び第2の原料ガスの侵入を抑制することができるように構成されている。これにより、第1の原料ガス及び第2の原料ガスの反応(及びこれによる異物の生成)を防止することができる。 A gap having a predetermined width is provided between the end of the partition plate 205 and the side wall of the reaction vessel 203, and the gas can pass through the gap. By injecting an inert gas into the first processing region 201a and the second processing region 201b from the first purge region 204a and the second purge region 204b and the above-described gap, Intrusion of the first source gas and the second source gas into the first purge region 204a and the second purge region 204b can be suppressed. Thereby, reaction (and the production | generation of the foreign material by this) of 1st source gas and 2nd source gas can be prevented.
 なお、本実施形態では、各仕切板205の間の角度をそれぞれ90度としたが、本発明はこれに限定されるものではない。すなわち、ウエハ200への各種ガスの供給時間等を考慮して、例えば第2の処理領域201bを形成する2枚の仕切板205の間の角度を大きくしたりする等、適宜変更してもよい。 In the present embodiment, the angle between the partition plates 205 is 90 degrees, but the present invention is not limited to this. That is, in consideration of the supply time of various gases to the wafer 200, the angle may be changed as appropriate, for example, by increasing the angle between the two partition plates 205 forming the second processing region 201b. .
(サセプタ)  仕切板205の下側、すなわち反応容器203内の底側中央には、基板載置部としてのサセプタST1が設けられている。サセプタST1は、反応容器203の中心に回転軸の中心を有し、回転自在に構成されている。サセプタST1は、ウエハ200の金属汚染を低減することができるように、例えば、窒化アルミニウム(AlN)、セラミックス、石英等の非金属材料で形成されている。なお、サセプタST1は、反応容器203とは電気的に絶縁されている。 (Susceptor) サ A susceptor ST1 as a substrate mounting portion is provided below the partition plate 205, that is, at the bottom center in the reaction vessel 203. The susceptor ST1 has a center of a rotation shaft at the center of the reaction vessel 203 and is configured to be rotatable. The susceptor ST1 is formed of a non-metallic material such as aluminum nitride (AlN), ceramics, or quartz so that the metal contamination of the wafer 200 can be reduced. The susceptor ST1 is electrically insulated from the reaction vessel 203.
 サセプタST1は、反応容器203内にて、複数枚(本実施形態では例えば5枚)のウエハ200を同一面上に、かつ同一円周上に並べて支持するように構成されている。ここで、同一面上とは、完全な同一面に限られるものではなく、サセプタST1を上面から見たときに、図2に示すように、複数枚のウエハ200が互いに重ならないように並べられていればよい。 The susceptor ST1 is configured to support a plurality of (for example, five in this embodiment) wafers 200 in the reaction vessel 203 side by side on the same surface and on the same circumference. Here, the term “on the same plane” is not limited to a completely identical plane. When the susceptor ST1 is viewed from above, a plurality of wafers 200 are arranged so as not to overlap each other as shown in FIG. It only has to be.
 なお、サセプタST1表面におけるウエハ200の載置位置には、円形状の凹部216(図1参照)を設けてもよい。この凹部216は、その直径がウエハ200の直径よりもわずかに大きくなるように構成するとよい。この凹部216内にウエハ200を載置することにより、ウエハ200の位置決めを容易に行うことができ、また、サセプタST1の回転に伴う遠心力によりウエハ200がサセプタST1から飛び出してしまう場合等で発生する位置ズレを防止できる。 Note that a circular recess 216 (see FIG. 1) may be provided at the mounting position of the wafer 200 on the surface of the susceptor ST1. The recess 216 may be configured so that its diameter is slightly larger than the diameter of the wafer 200. By placing the wafer 200 in the recess 216, the wafer 200 can be easily positioned, and also occurs when the wafer 200 jumps out of the susceptor ST1 due to the centrifugal force accompanying the rotation of the susceptor ST1. Can be prevented from being displaced.
 サセプタST1には、サセプタST1を昇降させる昇降機構268が設けられている。サセプタST1には、貫通孔が複数設けられている。また、反応容器203の底面には、反応容器203内へのウエハ200の搬入・搬出時に、ウエハ200を突き上げて、ウエハ200の裏面を支持するウエハ突き上げピンが複数設けられている。貫通孔及びウエハ突き上げピンは、ウエハ突き上げピンが上昇させられた時、又は昇降機構268によりサセプタST1が下降させられた時に、ウエハ突き上げピンがサセプタST1とは非接触な状態で貫通孔を突き抜けるように、互いに配置されている。  The susceptor ST1 is provided with a lifting mechanism 268 that lifts and lowers the susceptor ST1. The susceptor ST1 has a plurality of through holes. In addition, a plurality of wafer push-up pins that push up the wafer 200 and support the back surface of the wafer 200 when the wafer 200 is loaded into and unloaded from the reaction vessel 203 are provided on the bottom surface of the reaction vessel 203. When the wafer push-up pin is raised or when the susceptor ST1 is lowered by the elevating mechanism 268, the wafer push-up pin and the wafer push-up pin pass through the through-hole in a state that is not in contact with the susceptor ST1. Are arranged with each other. *
 昇降機構268には、サセプタST1を回転させる回転機構267が設けられている。回転機構267の回転軸は、サセプタST1に接続されており、回転機構267を作動させることでサセプタST1を回転させることができるように構成されている。回転機構267には、後述する制御部280が、カップリング部266を介して接続されている。カップリング部266は、回転側と固定側との間を金属ブラシ等により電気的に接続するスリップリング機構として構成されている。これにより、サセプタST1の回転が妨げられないように構成されている。制御部280は、サセプタST1を所定の速度で所定時間回転させるように、回転機構267への供給電力を制御するように構成されている。上述したように、サセプタST1を回転させることにより、サセプタST1上に載置されたウエハ200は、第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b及び第2のパージ領域204bの間を移動することとなる。 The elevating mechanism 268 is provided with a rotating mechanism 267 that rotates the susceptor ST1. The rotation shaft of the rotation mechanism 267 is connected to the susceptor ST1, and the susceptor ST1 can be rotated by operating the rotation mechanism 267. A control unit 280 described later is connected to the rotation mechanism 267 via a coupling unit 266. The coupling portion 266 is configured as a slip ring mechanism that electrically connects the rotating side and the fixed side with a metal brush or the like. Thereby, it is comprised so that rotation of susceptor ST1 may not be prevented. The control unit 280 is configured to control the power supplied to the rotation mechanism 267 so that the susceptor ST1 is rotated at a predetermined speed for a predetermined time. As described above, by rotating the susceptor ST1, the wafer 200 placed on the susceptor ST1 causes the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge. It moves between the areas 204b.
(加熱部)  サセプタST1の内部には、加熱部としてのヒータ218が一体的に埋め込まれており、ウエハ200を加熱できるように構成されている。ヒータ218に電力が供給されると、ウエハ200表面が所定温度(例えば室温~1000℃程度)にまで加熱される。なお、ヒータ218は、サセプタST1に載置されたそれぞれのウエハ200を個別に加熱するように、同一面上に複数(例えば5つ)設けてもよい。 (Heating section) ヒ ー タ A heater 218 as a heating section is integrally embedded in the susceptor ST1, and the wafer 200 can be heated. When power is supplied to the heater 218, the surface of the wafer 200 is heated to a predetermined temperature (eg, room temperature to about 1000 ° C.). Note that a plurality (for example, five) of heaters 218 may be provided on the same surface so as to individually heat the respective wafers 200 placed on the susceptor ST1.
 サセプタST1には温度センサ274が設けられている。ヒータ218及び温度センサ274には、電力供給線222を介して、温度調整器223、電力調整器224及びヒータ電源225が電気的に接続されている。温度センサ274により検出された温度情報に基づいて、ヒータ218への供給電力が制御されるように構成されている。 The susceptor ST1 is provided with a temperature sensor 274. A temperature regulator 223, a power regulator 224, and a heater power source 225 are electrically connected to the heater 218 and the temperature sensor 274 via a power supply line 222. Based on the temperature information detected by the temperature sensor 274, the power supplied to the heater 218 is controlled.
(ガス供給部)  図2及び図3に示すように、第1の処理領域201aの反応容器203の上側には、開口251aが開設されている。開口251aには、第1の処理領域201a内へ第1の原料ガスを供給する第1の原料ガス供給部251が設けられている。すなわち、開口251aには、第1の原料ガス供給管232aの下流端が気密に接続されている。図4(a)に示すように、第1の原料ガス供給管232aの上流側には、上流方向から順に、第1の原料ガス供給源233a、流量制御器(流量制御部)であるマスフローコントローラ(MFC)234a、及び開閉弁であるバルブ235aが設けられている。 (Gas supply unit) As shown in FIGS. 2 and 3, an opening 251a is formed above the reaction vessel 203 in the first processing region 201a. The opening 251a is provided with a first source gas supply unit 251 that supplies the first source gas into the first processing region 201a. That is, the downstream end of the first source gas supply pipe 232a is airtightly connected to the opening 251a. As shown in FIG. 4A, on the upstream side of the first source gas supply pipe 232a, in order from the upstream direction, a first source gas supply source 233a, a mass flow controller that is a flow rate controller (flow rate control unit). (MFC) 234a and a valve 235a which is an on-off valve are provided.
 第1の原料ガス供給管232aからは、第1の原料ガスとして、例えば、シリコン含有ガスが、マスフローコントローラ234a、バルブ235a、及び開口251aを介して、第1の処理領域201a内に供給される。シリコン含有ガスとしては、例えばトリシリルアミン((SiHN、略称:TSA)ガス等を用いることができる。なお、第1の原料ガスは、常温常圧で固体、液体、及び気体のいずれであっても良いが、ここでは気体として説明する。第1の原料ガスが常温常圧で液体の場合は、第1の原料ガス供給源233aとマスフローコントローラ234aとの間に、気化器を設ければよい。 From the first source gas supply pipe 232a, for example, a silicon-containing gas is supplied as the first source gas into the first processing region 201a via the mass flow controller 234a, the valve 235a, and the opening 251a. . As the silicon-containing gas, for example, trisilylamine ((SiH 3 ) 3 N, abbreviation: TSA) gas or the like can be used. Note that the first source gas may be any of solid, liquid, and gas at normal temperature and pressure, but will be described as a gas here. In the case where the first source gas is liquid at normal temperature and pressure, a vaporizer may be provided between the first source gas supply source 233a and the mass flow controller 234a.
 第1の原料ガス供給管232aのバルブ235aよりも下流側には、第1の不活性ガス供給管232bの下流端が接続されている。第1の不活性ガス供給管232bの上流側には、上流方向から順に、第1の不活性ガス供給源233b、流量制御器(流量制御部)であるマスフローコントローラ(MFC)234b、及び開閉弁であるバルブ235bが設けられている。第1の不活性ガス供給管232bからは、不活性ガスとして、例えばNガスが、マスフローコントローラ234b、バルブ235b、第1の原料ガス供給管232a、及び開口251aを介して、第1の処理領域201a内に供給される。 A downstream end of the first inert gas supply pipe 232b is connected to the downstream side of the valve 235a of the first source gas supply pipe 232a. On the upstream side of the first inert gas supply pipe 232b, in order from the upstream direction, a first inert gas supply source 233b, a mass flow controller (MFC) 234b that is a flow rate controller (flow rate control unit), and an on-off valve A valve 235b is provided. From the first inert gas supply pipe 232b, for example, N 2 gas is supplied as an inert gas through the mass flow controller 234b, the valve 235b, the first source gas supply pipe 232a, and the opening 251a. It is supplied into the area 201a.
 図2及び図3に示すように、第2の処理領域201bの反応容器203の上側には、開口251bが開設されている。開口251bには、第2の処理領域201b内へ第2の原料ガスを供給する第2の原料ガス供給部253が設けられている。すなわち、開口251bには、第2の原料ガス供給管232cの下流端が気密に接続されている。図4(b)に示すように、第2の原料ガス供給管232cの上流側には、上流方向から順に、第2の原料ガス供給源233c、流量制御器(流量制御部)であるマスフローコントローラ(MFC)234c、及び開閉弁であるバルブ235cが設けられている。 As shown in FIGS. 2 and 3, an opening 251b is formed on the upper side of the reaction vessel 203 in the second processing region 201b. The opening 251b is provided with a second source gas supply unit 253 that supplies a second source gas into the second processing region 201b. That is, the downstream end of the second source gas supply pipe 232c is airtightly connected to the opening 251b. As shown in FIG. 4 (b), on the upstream side of the second source gas supply pipe 232c, a mass flow controller that is a second source gas supply source 233c and a flow rate controller (flow rate control unit) in order from the upstream direction. (MFC) 234c and a valve 235c which is an on-off valve are provided.
 第2の原料ガス供給管232cからは、第2の原料ガスとして、例えば、酸素含有ガスである酸素(O)ガスが、マスフローコントローラ234c、バルブ235c、及び開口252bを介して、第2の処理領域201b内に供給される。第2の原料ガスである酸素ガスは、例えばリモートプラズマユニット等によりプラズマ状態とされ、ウエハ200に供給される。なお、第2の原料ガスである酸素ガスは、ヒータ218の温度及び反応容器203内の圧力を所定の範囲に調整し、熱で活性化させてもよい。なお、酸素含有ガスとしては、オゾン(O)ガスや水蒸気(HO)を用いてもよい。 From the second source gas supply pipe 232c, for example, oxygen (O 2 ) gas, which is an oxygen-containing gas, is supplied as the second source gas via the mass flow controller 234c, the valve 235c, and the opening 252b. It is supplied into the processing area 201b. The oxygen gas that is the second source gas is brought into a plasma state by, for example, a remote plasma unit and supplied to the wafer 200. Note that the oxygen gas that is the second source gas may be activated by adjusting the temperature of the heater 218 and the pressure in the reaction vessel 203 within a predetermined range. Note that ozone (O 3 ) gas or water vapor (H 2 O) may be used as the oxygen-containing gas.
 第2の原料ガス供給管232cのバルブ235cよりも下流側には、第2の不活性ガス供給管232dの下流端が接続されている。第2の不活性ガス供給管232dの上流側には、上流方向から順に、第2の不活性ガス供給源233d、流量制御器(流量制御部)であるマスフローコントローラ(MFC)234d、及び開閉弁であるバルブ235dが設けられている。第2の不活性ガス供給管232dからは、不活性ガスとして、例えばNガスが、マスフローコントローラ234d、バルブ235d、第2の原料ガス供給管232c、及び開口251bを介して、第2の処理領域201b内に供給される。 A downstream end of the second inert gas supply pipe 232d is connected to the downstream side of the valve 235c of the second source gas supply pipe 232c. On the upstream side of the second inert gas supply pipe 232d, in order from the upstream direction, a second inert gas supply source 233d, a mass flow controller (MFC) 234d as a flow rate controller (flow rate control unit), and an on-off valve A valve 235d is provided. From the second inert gas supply pipe 232d, for example, N 2 gas is supplied as an inert gas via the mass flow controller 234d, the valve 235d, the second source gas supply pipe 232c, and the opening 251b. It is supplied into the area 201b.
 主に、第2の原料ガス供給管232b、マスフローコントローラ234b及びバルブ235bにより、第2の原料ガス供給部253が構成される。なお、第2の原料ガス供給源233bを第2の原料ガス供給部253に含めて考えてもよい。また、主に、第2の不活性ガス供給管232d、マスフローコントローラ234d及びバルブ235dにより、第2の不活性ガス供給部254が構成される。なお、第2の不活性ガス供給源233dや第2の原料ガス供給管232cを第2の不活性ガス供給部254に含めて考えてもよい。 The second source gas supply unit 253 is mainly configured by the second source gas supply pipe 232b, the mass flow controller 234b, and the valve 235b. Note that the second source gas supply source 233b may be included in the second source gas supply unit 253. In addition, a second inert gas supply unit 254 is mainly configured by the second inert gas supply pipe 232d, the mass flow controller 234d, and the valve 235d. Note that the second inert gas supply source 233d and the second source gas supply pipe 232c may be included in the second inert gas supply unit 254.
 図2及び図3に示すように、第1のパージ領域204aの反応容器203の上側には、開口が開設されている。この開口には、第1のパージ領域204a内へ不活性ガスを供給する第3の不活性ガス供給部255が設けられている。すなわち、第1のパージ領域204aの上側の反応容器203に開設された開口には、第3の不活性ガス供給管232eの下流端が気密に接続されている。図4(c)に示すように、第3の不活性ガス供給管232eの上流側には、上流方向から順に、第3の不活性ガス供給源233e、流量制御器(流量制御部)であるマスフローコントローラ(MFC)234e、及び開閉弁であるバルブ235eが設けられている。 As shown in FIGS. 2 and 3, an opening is opened on the upper side of the reaction vessel 203 in the first purge region 204a. The opening is provided with a third inert gas supply unit 255 that supplies an inert gas into the first purge region 204a. That is, the downstream end of the third inert gas supply pipe 232e is airtightly connected to the opening formed in the reaction vessel 203 on the upper side of the first purge region 204a. As shown in FIG. 4C, on the upstream side of the third inert gas supply pipe 232e, there are a third inert gas supply source 233e and a flow rate controller (flow rate control unit) in order from the upstream direction. A mass flow controller (MFC) 234e and a valve 235e which is an on-off valve are provided.
 主に、第3の不活性ガス供給管232e、マスフローコントローラ234e及びバルブ235eにより、第3の不活性ガス供給部255が構成される。なお、第3の不活性ガス供給源233eを第3の不活性ガス供給部255に含めて考えてもよい。 The third inert gas supply unit 255 is mainly configured by the third inert gas supply pipe 232e, the mass flow controller 234e, and the valve 235e. The third inert gas supply source 233e may be included in the third inert gas supply unit 255.
 図2及び図3に示すように、第2のパージ領域204bの反応容器203の上側には、開口が開設されている。この開口には、第2のパージ領域204b内へ不活性ガスを供給する第4の不活性ガス供給部256が設けられている。すなわち、第2のパージ領域204bの上側の反応容器203に開設された開口には、第4の不活性ガス供給管232fの下流端が気密に接続されている。図4(d)に示すように、第4の不活性ガス供給管232fの上流側には、上流方向から順に、第4の不活性ガス供給源233f、流量制御器(流量制御部)であるマスフローコントローラ(MFC)234f、及び開閉弁であるバルブ235fが設けられている。 As shown in FIGS. 2 and 3, an opening is opened above the reaction vessel 203 in the second purge region 204b. A fourth inert gas supply unit 256 that supplies an inert gas into the second purge region 204b is provided in the opening. That is, the downstream end of the fourth inert gas supply pipe 232f is airtightly connected to the opening formed in the reaction vessel 203 on the upper side of the second purge region 204b. As shown in FIG. 4D, on the upstream side of the fourth inert gas supply pipe 232f, there are a fourth inert gas supply source 233f and a flow rate controller (flow rate control unit) sequentially from the upstream direction. A mass flow controller (MFC) 234f and a valve 235f which is an on-off valve are provided.
 主に、第4の不活性ガス供給管232f、マスフローコントローラ234f及びバルブ235fにより、第4の不活性ガス供給部256が構成される。なお、第4の不活性ガス供給源233fを第4の不活性ガス供給部256に含めて考えてもよい。 The fourth inert gas supply unit 256 is mainly configured by the fourth inert gas supply pipe 232f, the mass flow controller 234f, and the valve 235f. Note that the fourth inert gas supply source 233f may be included in the fourth inert gas supply unit 256.
 図2及び図3に示すように、仕切板205の交差部(中心部)には、仕切板205の交差部を縦方向に貫通する開口209が開設されている。開口209には、第1の処理領域201a、第2の処理領域201b、第1のパージ領域204a、及び第2のパージ領域204bの各領域(以下、「反応容器203内の各領域」とも言う。)に分配するように、クリーニングガスとしての反応性ガスを供給する反応性ガス供給部257が設けられている。すなわち、開口209には、反応性ガス供給管232gの下流端が気密に接続されている。図4(e)に示すように、反応性ガス供給管232gの上流側には、上流方向から順に、反応性ガス供給源233g、流量制御器(流量制御部)であるマスフローコントローラ(MFC)234g、及び開閉弁であるバルブ235gが設けられている。 As shown in FIGS. 2 and 3, an opening 209 that penetrates the intersecting portion of the partition plate 205 in the vertical direction is formed at the intersecting portion (center portion) of the partition plate 205. In the opening 209, each region of the first processing region 201a, the second processing region 201b, the first purge region 204a, and the second purge region 204b (hereinafter also referred to as “each region in the reaction vessel 203”). .) Is provided with a reactive gas supply unit 257 for supplying a reactive gas as a cleaning gas. That is, the downstream end of the reactive gas supply pipe 232g is airtightly connected to the opening 209. As shown in FIG. 4E, on the upstream side of the reactive gas supply pipe 232g, in order from the upstream direction, the reactive gas supply source 233g, a mass flow controller (MFC) 234g which is a flow rate controller (flow rate control unit). , And a valve 235g which is an on-off valve is provided.
 反応性ガス供給管232gからは、反応性ガスとして、例えば、フッ素含有ガスや塩素含有ガス等が、マスフローコントローラ234g、バルブ235g、及び開口209を介して、反応容器203内の各領域に供給される。フッ素含有ガスとしては、例えば、三フッ化窒素(NF)ガス、フッ素(F)ガス、三フッ化塩素(ClF)ガス等を用いることができる。また、塩素含有ガスとしては、例えば、塩化水素(HCl)ガス、塩素(Cl)ガス、ジクロロシラン(SiHCl)、ジクロロエチレン(DCE)等を用いることができる。 From the reactive gas supply pipe 232g, for example, fluorine-containing gas or chlorine-containing gas is supplied as reactive gas to each region in the reaction vessel 203 via the mass flow controller 234g, the valve 235g, and the opening 209. The As the fluorine-containing gas, for example, nitrogen trifluoride (NF 3 ) gas, fluorine (F 2 ) gas, chlorine trifluoride (ClF 3 ) gas, or the like can be used. As the chlorine-containing gas, for example, hydrogen chloride (HCl) gas, chlorine (Cl 2 ) gas, dichlorosilane (SiH 2 Cl 2 ), dichloroethylene (DCE), or the like can be used.
 主に、反応性ガス供給管232g、マスフローコントローラ234g及びバルブ235gにより、反応性ガス供給部257が構成される。なお、反応性ガス供給源233gを反応性ガス供給部257に含めて考えてもよい。 The reactive gas supply unit 257 is mainly configured by the reactive gas supply pipe 232g, the mass flow controller 234g, and the valve 235g. Note that the reactive gas supply source 233g may be included in the reactive gas supply unit 257.
 主に、第1の原料ガス供給管232a、マスフローコントローラ234a及びバルブ235aにより、第1の原料ガス供給部251が構成される。なお、第1の原料ガス供給源233aを第1の原料ガス供給部251に含めて考えてもよい。また、主に第1の不活性ガス供給管232b、マスフローコントローラ234b及びバルブ235bにより、第1の不活性ガス供給部252が構成される。なお、第1の不活性ガス供給源233bや第1の原料ガス供給管232aを第1の不活性ガス供給部252に含めて考えてもよい。 The first source gas supply unit 251 is mainly configured by the first source gas supply pipe 232a, the mass flow controller 234a, and the valve 235a. The first source gas supply source 233a may be included in the first source gas supply unit 251. Further, a first inert gas supply unit 252 is mainly configured by the first inert gas supply pipe 232b, the mass flow controller 234b, and the valve 235b. The first inert gas supply source 233b and the first source gas supply pipe 232a may be included in the first inert gas supply unit 252.
 そして、主に、第1の原料ガス供給部251及び第2の原料ガス供給部253により、原料ガス供給部が構成される。また、主に、第1の不活性ガス供給部252、第2の不活性ガス供給部254、第3の不活性ガス供給部255及び第4の不活性ガス供給部256により、不活性ガス供給部が構成される。また、主に、原料ガス供給部、不活性ガス供給部及び反応性ガス供給部257により、ガス供給部250が構成される。 The source gas supply unit is mainly configured by the first source gas supply unit 251 and the second source gas supply unit 253. Further, the inert gas supply is mainly performed by the first inert gas supply unit 252, the second inert gas supply unit 254, the third inert gas supply unit 255, and the fourth inert gas supply unit 256. The part is composed. Further, the gas supply unit 250 is mainly configured by the source gas supply unit, the inert gas supply unit, and the reactive gas supply unit 257.
(排気部)  反応容器203には、処理領域201a,201b内及びパージ領域204a,204b内の雰囲気を排気する排気管231が設けられている。排気管231には、反応容器203内(処理領域201a,201b内及びパージ領域204a,204b内)の雰囲気を排出する際に流量を調整する流量調整バルブ245、及び圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ243を介して、真空排気装置としての真空ポンプ246が接続されており、反応容器203内の圧力が所定の圧力(真空度)となるよう真空排気し得るように構成されている。なお、APCバルブ243は、弁を開閉して反応容器203内の真空排気・真空排気停止ができ、更に弁開度を調節して圧力調整可能となっている開閉弁である。主に、排気管231、APCバルブ243、及び流量調整バルブ245により排気部が構成される。なお、真空ポンプ246を排気部に含めて考えてもよい。 (Exhaust part) The reaction vessel 203 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing regions 201a and 201b and the purge regions 204a and 204b. The exhaust pipe 231 includes a flow rate adjusting valve 245 for adjusting the flow rate when the atmosphere in the reaction vessel 203 (in the processing regions 201a and 201b and the purge regions 204a and 204b) is discharged, and a pressure regulator (pressure adjusting unit). A vacuum pump 246 as an evacuation device is connected via an APC (Auto Pressure Controller) valve 243 as a evacuator so that the pressure in the reaction vessel 203 becomes a predetermined pressure (degree of vacuum). It is configured. The APC valve 243 is an open / close valve that can open and close the valve to stop evacuation and evacuation in the reaction vessel 203, and further adjust the valve opening to adjust the pressure. An exhaust section is mainly configured by the exhaust pipe 231, the APC valve 243, and the flow rate adjustment valve 245. The vacuum pump 246 may be included in the exhaust part.
(制御部)  基板処理装置10には、制御手段としての制御部(コントローラ)280が電気的に接続されている。制御部280は、ヒータ218、マスフローコントローラ234a~234g、バルブ235a~235g、APCバルブ243、真空ポンプ246等をそれぞれ制御するように構成されている。制御部280の構成や動作については、後述する。 (Control Unit) A control unit (controller) 280 as control means is electrically connected to the substrate processing apparatus 10. The control unit 280 is configured to control the heater 218, the mass flow controllers 234a to 234g, the valves 235a to 235g, the APC valve 243, the vacuum pump 246, and the like. The configuration and operation of the control unit 280 will be described later.
(3)基板処理工程  続いて、本実施形態にかかる半導体製造工程の一工程として、上述した反応容器203を備えるプロセスチャンバPM1を用いて実施される基板処理工程について、主に図5を用いて説明する。図5は、本実施形態に係る基板処理工程を示すフロー図である。係る基板処理工程は、ウエハ200に所定の処理を施すプロセスレシピに基づいて繰り返し実行される。また、プロセスレシピには複数のステップが含まれることがある。なお、以下の説明において、基板処理装置10のプロセスチャンバPM1を構成する各部の動作は制御部280により制御される。 (3) Substrate Processing Step Next, as one step of the semiconductor manufacturing process according to the present embodiment, a substrate processing step performed using the process chamber PM1 including the reaction vessel 203 described above will be mainly described with reference to FIG. explain. FIG. 5 is a flowchart showing a substrate processing process according to this embodiment. Such a substrate processing step is repeatedly executed based on a process recipe for performing a predetermined process on the wafer 200. In addition, a process recipe may include a plurality of steps. In the following description, the operation of each part constituting the process chamber PM1 of the substrate processing apparatus 10 is controlled by the control unit 280.
 ここでは、原料ガスとして、シリコン含有ガスであるトリシリルアミン(TSA)を用い、反応ガスとして、酸素含有ガスである酸素ガスを用い、ウエハ200上に絶縁膜としてシリコン酸化膜(SiO膜。以下、SiO膜という)を形成する例について説明する。 Here, trisilylamine (TSA), which is a silicon-containing gas, is used as the source gas, oxygen gas, which is an oxygen-containing gas, is used as the reaction gas, and a silicon oxide film (SiO 2 film, which is an insulating film) on the wafer 200. Hereinafter, an example of forming an SiO film will be described.
(基板搬入・載置工程(S10))  まず、ウエハ200の搬送位置まで、ウエハ突き上げピンを上昇させ、サセプタST1の貫通孔にウエハ突き上げピンを貫通させる。その結果、ウエハ突き上げピンが、サセプタST1の表面よりも所定の高さ分だけ突出した状態となる。続いて、プロセスチャンバPM1と搬送室TMとの間のゲートバルブを開き、搬送ロボットVRを用いて、反応容器203内に所定枚数(例えば5枚)のウエハ200を搬入する。そして、サセプタST1の回転軸を中心として、各ウエハ200が重ならないように、サセプタST1の同一面上に載置する。これにより、ウエハ200は、サセプタST1の表面から突出したウエハ突き上げピン上に水平姿勢で支持される。 (Substrate Loading / Placing Step (S10)) First, the wafer push-up pin is raised to the transfer position of the wafer 200, and the wafer push-up pin is passed through the through hole of the susceptor ST1. As a result, the wafer push-up pins are projected from the surface of the susceptor ST1 by a predetermined height. Subsequently, the gate valve between the process chamber PM1 and the transfer chamber TM is opened, and a predetermined number (for example, five) of wafers 200 is loaded into the reaction vessel 203 using the transfer robot VR. Then, the wafers 200 are placed on the same surface of the susceptor ST1 so that the wafers 200 do not overlap with each other about the rotation axis of the susceptor ST1. Thereby, the wafer 200 is supported in a horizontal posture on the wafer push-up pins protruding from the surface of the susceptor ST1.
 反応容器203内にウエハ200を搬入したら、搬送ロボットVRを反応容器203外へ退避させ、プロセスチャンバPM1と搬送室TMとの間のゲートバルブを閉じて反応容器203内を密閉する。その後、ウエハ突き上げピンを下降させて、第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b、第2のパージ領域204bの各底面のサセプタ217上にウエハ200を載置する。 When the wafer 200 is loaded into the reaction vessel 203, the transfer robot VR is moved out of the reaction vessel 203, and the gate valve between the process chamber PM1 and the transfer chamber TM is closed to seal the reaction vessel 203 inside. Thereafter, the wafer push-up pins are lowered to place the wafer 200 on the susceptors 217 on the bottom surfaces of the first processing area 201a, the first purge area 204a, the second processing area 201b, and the second purge area 204b. To do.
 なお、ウエハ200を反応容器203内に搬入する際には、排気部により反応容器203内を排気しつつ、不活性ガス供給部から、反応容器203内にパージガスとしてのNガスを供給するとよい。すなわち、真空ポンプ246を作動させ、APCバルブ243を開けて反応容器203内を排気しつつ、例えば第1の不活性ガス供給部252のバルブ235aを開けて反応容器203内にNガスを供給するとよい。これにより、処理領域201a,201b内へのパーティクルの侵入や、ウエハ200上へのパーティクルの付着を抑制することが可能となる。ここで、第1の不活性ガス供給部252から不活性ガスを供給する場合に限らず、第1~第4の不活性ガス供給部252,254,255,256の少なくともいずれかから不活性ガスを供給すればよい。 When the wafer 200 is carried into the reaction vessel 203, N 2 gas as a purge gas may be supplied from the inert gas supply unit into the reaction vessel 203 while the reaction vessel 203 is exhausted by the exhaust unit. . That is, the vacuum pump 246 is operated to open the APC valve 243 to evacuate the inside of the reaction vessel 203. For example, the valve 235a of the first inert gas supply unit 252 is opened to supply N 2 gas into the reaction vessel 203. Good. Thereby, it is possible to suppress the intrusion of particles into the processing regions 201 a and 201 b and the adhesion of particles onto the wafer 200. Here, the inert gas is not limited to the case where the inert gas is supplied from the first inert gas supply unit 252, and the inert gas is supplied from at least one of the first to fourth inert gas supply units 252, 254, 255, and 256. Can be supplied.
(温度・圧力調整工程(S20))  続いて、サセプタST1の内部に埋め込まれたヒータ218に電力を供給し、ウエハ200の表面が所定の温度(例えば200℃以上であって400℃以下)となるように加熱する。この際、ヒータ218の温度は、温度センサ274により検出された温度情報に基づいてヒータ218への供給電力を制御することによって調整される。 (Temperature / Pressure Adjustment Step (S20)) Next, power is supplied to the heater 218 embedded in the susceptor ST1, and the surface of the wafer 200 has a predetermined temperature (for example, 200 ° C. or more and 400 ° C. or less). Heat to At this time, the temperature of the heater 218 is adjusted by controlling the power supplied to the heater 218 based on the temperature information detected by the temperature sensor 274.
 また、反応容器203内が所望の圧力(例えば0.1Pa~300Pa、好ましくは20Pa~40Pa)となるように、反応容器203内を真空ポンプ246によって真空排気する。この際、反応容器203内の圧力は圧力センサで測定され、この測定された圧力情報に基づきAPCバルブ243の開度をフィードバック制御する。 The inside of the reaction vessel 203 is evacuated by a vacuum pump 246 so that the inside of the reaction vessel 203 has a desired pressure (for example, 0.1 Pa to 300 Pa, preferably 20 Pa to 40 Pa). At this time, the pressure in the reaction vessel 203 is measured by a pressure sensor, and the opening degree of the APC valve 243 is feedback-controlled based on the measured pressure information.
 また、ウエハ200を加熱しつつ、回転機構267を作動して、サセプタST1の回転を開始する。この際、サセプタST1の回転速度は制御部280によって制御される。サセプタST1の回転速度は例えば1回転/秒である。なお、サセプタST1は、後述する成膜工程(S30)が終了するまでの間は、常に回転させた状態とする。サセプタST1を回転させることにより、ウエハ200は、第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b、第2のパージ領域204bの順に移動を開始し、各領域をウエハ200が通過することになる。 Further, while the wafer 200 is heated, the rotation mechanism 267 is operated to start the rotation of the susceptor ST1. At this time, the rotation speed of the susceptor ST1 is controlled by the control unit 280. The rotation speed of the susceptor ST1 is, for example, 1 rotation / second. The susceptor ST1 is always rotated until the film forming step (S30) described later is completed. By rotating the susceptor ST1, the wafer 200 starts moving in the order of the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region 204b, and each region is moved to the wafer. 200 will pass.
(成膜工程(S30))  次に、第1の処理領域201a内に第1の原料ガスとしてのTSAガスを供給し、第2の処理領域201b内に第2の原料ガスとしての酸素ガスを供給することによりウエハ200上にSiO膜を成膜する工程を行う。なお、以下の説明では、TSAガスの供給、酸素ガスの供給、及び不活性ガスの供給を併行して行う。 (Film Formation Step (S30)) Next, TSA gas as the first source gas is supplied into the first processing region 201a, and oxygen gas as the second source gas is supplied into the second processing region 201b. By supplying, a step of forming a SiO film on the wafer 200 is performed. In the following description, the TSA gas supply, the oxygen gas supply, and the inert gas supply are performed in parallel.
 ウエハ200を加熱して所望とする温度に達し、サセプタST1が所望とする回転速度に到達したら、少なくともバルブ235a,235c,235e及び235fを開け、第1の原料ガス、第2の原料ガス及び不活性ガスの処理領域201a,201b及びパージ領域204a,204bへの供給を開始する。すなわち、バルブ235aを開けて第1の処理領域201a内にTSAガスの供給を開始し、バルブ235cを開けて第2の処理領域201b内に酸素ガスを供給を開始し、バルブ235eを開けて第1のパージ領域204a内に不活性ガスであるNガスの供給を開始するとともに、バルブ235fを開けて第2のパージ領域204b内に不活性ガスであるNガスの供給を開始する。このとき、少なくともAPCバルブ243を適正に調整して反応容器203内の圧力を、例えば10Pa~1000Paの範囲内の圧力とする。このときヒータ218の温度は、ウエハ200の温度が、例えば200℃~400℃の範囲内の温度となるような温度に設定する。 When the wafer 200 is heated to reach a desired temperature and the susceptor ST1 reaches a desired rotation speed, at least the valves 235a, 235c, 235e, and 235f are opened, and the first source gas, the second source gas, and the non-source gas are discharged. Supply of the active gas to the processing regions 201a and 201b and the purge regions 204a and 204b is started. That is, the valve 235a is opened to start supplying TSA gas into the first processing region 201a, the valve 235c is opened to start supplying oxygen gas into the second processing region 201b, and the valve 235e is opened to open the first gas. starts the supply of the N 2 gas is an inert gas into the first purge region 204a, starts supplying N 2 gas is an inert gas to the second purge region 204b by opening the valve 235f. At this time, at least the APC valve 243 is appropriately adjusted so that the pressure in the reaction vessel 203 is, for example, a pressure in the range of 10 Pa to 1000 Pa. At this time, the temperature of the heater 218 is set to such a temperature that the temperature of the wafer 200 becomes a temperature in the range of 200 ° C. to 400 ° C., for example.
 すなわち、バルブ235aを開け、第1の原料ガス供給管232aから開口251aを介して第1の処理領域201a内にTSAガスを供給しつつ、排気管231から排気する。このとき、TSAガスの流量が所定の流量となるように、マスフローコントローラ234aを調整する。なお、マスフローコントローラ234aで制御するTSAガスの供給流量は、例えば100sccm~5000sccmの範囲内の流量とする。 That is, the valve 235a is opened, and the exhaust gas is exhausted from the exhaust pipe 231 while supplying the TSA gas from the first source gas supply pipe 232a to the first processing region 201a through the opening 251a. At this time, the mass flow controller 234a is adjusted so that the flow rate of the TSA gas becomes a predetermined flow rate. Note that the TSA gas supply flow rate controlled by the mass flow controller 234a is, for example, a flow rate in the range of 100 sccm to 5000 sccm.
 TSAガスを第1の処理領域201a内に供給する際には、バルブ235bを開け、第1の不活性ガス供給管232bからキャリアガス或いは希釈ガスとしてのNガスを第1の処理領域201a内に供給するとよい。これにより、第1の処理領域201a内へのTSAガスの供給を促進させることができる。 When supplying the TSA gas into the first processing region 201a, the valve 235b is opened, and N 2 gas as a carrier gas or a dilution gas is supplied from the first inert gas supply pipe 232b into the first processing region 201a. It is good to supply to. Thereby, supply of TSA gas into the 1st processing field 201a can be promoted.
 また、バルブ235aを開けると共に、さらにバルブ235cを開け、第2の原料ガス供給管232cから開口252bを介して第2の処理領域201b内に酸素ガスを供給しつつ、排気管231から排気する。このとき、酸素ガスの流量が所定の流量となるように、マスフローコントローラ234cを調整する。なお、マスフローコントローラ234cで制御する酸素ガスの供給流量は、例えば1000sccm~10000sccmの範囲内の流量とする。なお、酸素ガスは、第2の処理領域201bに供給される前に、例えばリモートプラズマユニット等によりプラズマ状態とされている。 Further, the valve 235a is opened, and the valve 235c is further opened, and the exhaust gas is exhausted from the exhaust pipe 231 while oxygen gas is supplied from the second source gas supply pipe 232c into the second processing region 201b through the opening 252b. At this time, the mass flow controller 234c is adjusted so that the flow rate of the oxygen gas becomes a predetermined flow rate. Note that the supply flow rate of the oxygen gas controlled by the mass flow controller 234c is, for example, a flow rate in the range of 1000 sccm to 10,000 sccm. The oxygen gas is brought into a plasma state by, for example, a remote plasma unit before being supplied to the second processing region 201b.
 酸素ガスを第2の処理領域201b内に供給する際には、バルブ235dを開け、第2の不活性ガス供給管232dからキャリアガス或いは希釈ガスとしてのNガスを第2の処理領域201b内に供給するとよい。これにより、第2の処理領域201b内への酸素ガスの供給を促進することができる。 When supplying oxygen gas into the second processing region 201b, the valve 235d is opened, and N 2 gas as a carrier gas or a dilution gas is supplied from the second inert gas supply pipe 232d into the second processing region 201b. It is good to supply to. Thereby, supply of oxygen gas into the 2nd processing field 201b can be promoted.
 また、バルブ235a及びバルブ235cを開けると共に、さらにバルブ235e及び235fを開け、パージガスとしての不活性ガスであるNガスを、第3の不活性ガス供給管232e、第4の不活性ガス供給管232fから、第1のパージ領域204a及び第2のパージ領域204bにそれぞれ供給しつつ、排気管231から排気する。このとき、Nガスの流量が所定の流量となるように、マスフローコントローラ234e及び234fをそれぞれ調整する。なお、仕切板205の端部と反応容器203の側壁との間には、隙間が設けられている。第1のパージ領域204a内及び第2のパージ領域204b内や上述の隙間から、第1の処理領域201a内及び第2の処理領域201b内に向けて不活性ガスを噴出させることで、第1のパージ領域204a内及び第2のパージ領域204b内への第1の原料ガスや第2の原料ガスの侵入を抑制できる。 Further, the valves 235a and 235c are opened, and the valves 235e and 235f are further opened, and N 2 gas, which is an inert gas as a purge gas, is supplied to the third inert gas supply pipe 232e and the fourth inert gas supply pipe. The gas is exhausted from the exhaust pipe 231 while being supplied from 232f to the first purge region 204a and the second purge region 204b. At this time, the mass flow controllers 234e and 234f are respectively adjusted so that the flow rate of the N 2 gas becomes a predetermined flow rate. A gap is provided between the end of the partition plate 205 and the side wall of the reaction vessel 203. By injecting an inert gas into the first processing region 201a and the second processing region 201b from the first purge region 204a, the second purge region 204b, and the gaps described above, the first Intrusion of the first source gas and the second source gas into the purge region 204a and the second purge region 204b can be suppressed.
 上述したように、サセプタST1を回転させることにより、ウエハ200は、第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b、第2のパージ領域204bの順に移動を繰り返す。そのため、ウエハ200には、TSAガスの供給、Nガスの供給(パージ)、プラズマ状態とされた酸素ガスの供給、Nガスの供給(パージ)を1サイクルとして、このサイクルが所定回数実施されることになる。 As described above, by rotating the susceptor ST1, the wafer 200 repeatedly moves in the order of the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region 204b. Therefore, TSA gas supply, N 2 gas supply (purge), plasma oxygen gas supply, and N 2 gas supply (purge) are performed on wafer 200 as one cycle, and this cycle is performed a predetermined number of times. Will be.
 まず、第1の処理領域201aを通過したウエハ200表面にTSAガスが供給され、ウエハ200上にシリコン含有層が形成される。 First, TSA gas is supplied to the surface of the wafer 200 that has passed through the first processing region 201 a, and a silicon-containing layer is formed on the wafer 200.
 次に、シリコン含有層が形成されたウエハ200が第1のパージ領域204aを通過する。このとき、ウエハ200に不活性ガスであるNガスが供給される。 Next, the wafer 200 on which the silicon-containing layer is formed passes through the first purge region 204a. At this time, N 2 gas which is an inert gas is supplied to the wafer 200.
 次に、第2の処理領域201bを通過したウエハ200に酸素ガスが供給され、ウエハ200上にシリコン酸化層(SiO層)が形成される。すなわち、酸素ガスは、第1の処理領域201aでウエハ200上に形成されたシリコン含有層の一部と反応する。これにより、シリコン含有層は酸化されて、シリコン及び酸素を含むSiO層へと改質される。 Next, oxygen gas is supplied to the wafer 200 that has passed through the second processing region 201b, and a silicon oxide layer (SiO layer) is formed on the wafer 200. That is, the oxygen gas reacts with a part of the silicon-containing layer formed on the wafer 200 in the first processing region 201a. As a result, the silicon-containing layer is oxidized and modified into a SiO layer containing silicon and oxygen.
 そして、第2の処理領域201bでSiO層が形成されたウエハ200が第2のパージ領域204bを通過する。このとき、ウエハ200に不活性ガスであるNガスが供給される。 Then, the wafer 200 on which the SiO layer is formed in the second processing region 201b passes through the second purge region 204b. At this time, N 2 gas which is an inert gas is supplied to the wafer 200.
 このように、サセプタST1の1回転を1サイクルとし、すなわち第1の処理領域201a、第1のパージ領域204a、第2の処理領域201b及び第2のパージ領域204bのウエハ200の通過を1サイクルとし、このサイクルを少なくとも1回以上行うことにより、ウエハ200上に所定膜厚のSiO膜を成膜することができる。 In this way, one rotation of the susceptor ST1 is defined as one cycle, that is, one cycle is the passage of the wafer 200 through the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region 204b. By performing this cycle at least once, a SiO film having a predetermined thickness can be formed on the wafer 200.
 ウエハ200上に所望の膜厚のSiO膜が形成された後、少なくともバルブ234a及びバルブ235cを閉じ、TSAガス及び酸素ガスの第1の処理領域201a及び第2の処理領域201bへの供給を停止し、成膜工程(S30)を終了する。 After the SiO film having a desired thickness is formed on the wafer 200, at least the valve 234a and the valve 235c are closed, and the supply of the TSA gas and the oxygen gas to the first processing region 201a and the second processing region 201b is stopped. Then, the film forming step (S30) is completed.
 なお、上述の基板搬入・載置工程(S10)~成膜工程(S30)において、ウエハ200の温度、反応容器203内の圧力、各ガスの流量、処理時間等の条件等は、改質対象の膜の材料や膜厚等によって任意に調整する。 It should be noted that the conditions such as the temperature of the wafer 200, the pressure in the reaction vessel 203, the flow rate of each gas, the processing time, etc. in the substrate loading / mounting step (S10) to the film forming step (S30) are subject to modification. It is arbitrarily adjusted depending on the material and film thickness of the film.
(圧力調整・基板搬出工程(S40))  成膜工程(S30)が終了したら、APCバルブ243の開度を調整して反応容器203内の圧力を所定の圧力にする(圧力調整)。そして、ウエハ突き上げピンを上昇させ、サセプタST1の表面から突出させたウエハ突き上げピン上にウエハ200を支持する。このとき、ウエハ200はヒータ218の影響を受けない程度の高さに支持する。その後、プロセスチャンバPM1と搬送室TMとの間のゲートバルブを開け、搬送ロボットVRを用いてウエハ200をプロセスチャンバPM1の外(反応容器203の外)へ搬出する。 (Pressure Adjustment / Substrate Unloading Step (S40)) し た ら After the film formation step (S30) is completed, the opening of the APC valve 243 is adjusted to set the pressure in the reaction vessel 203 to a predetermined pressure (pressure adjustment). Then, the wafer push-up pins are raised, and the wafer 200 is supported on the wafer push-up pins protruded from the surface of the susceptor ST1. At this time, the wafer 200 is supported at a height that is not affected by the heater 218. Thereafter, the gate valve between the process chamber PM1 and the transfer chamber TM is opened, and the wafer 200 is unloaded from the process chamber PM1 (outside the reaction vessel 203) using the transfer robot VR.
(累積膜厚値更新工程(S50))  成膜工程(S30)が終了した後、後述する制御部280が有する累積膜厚値更新機能285によって、上述の成膜工程(S30)によってサセプタST1及び反応容器203内の各領域に面する仕切部のそれぞれに堆積する膜厚値を、サセプタST1及び反応容器203内の領域毎にそれぞれ算出する。そして算出した膜厚値を、サセプタST1及び反応容器203内の各領域に面する仕切部の堆積物の累積膜厚値にそれぞれ加算し、累積膜厚値をそれぞれ更新する。なお、加算する膜厚値の算出方法については後述する。 (Cumulative film thickness value update step (S50)) 後 After the film formation step (S30) is completed, the above described film formation step (S30) causes the susceptor ST1 and the susceptor ST1 by the cumulative film thickness value update function 285 of the control unit 280 described later. A film thickness value deposited on each partition portion facing each region in the reaction vessel 203 is calculated for each region in the susceptor ST1 and the reaction vessel 203. Then, the calculated film thickness value is added to the accumulated film thickness value of the deposits of the partition portions facing the respective regions in the susceptor ST1 and the reaction vessel 203, and the accumulated film thickness value is updated. In addition, the calculation method of the film thickness value to add is mentioned later.
(クリーニング工程(S60))  累積膜厚値更新工程(S50)を終了した後、累積膜厚値が所定の値を超えたら、上述の成膜工程(S30)で反応容器203内の各領域に面する仕切部やサセプタST1に付着(堆積)したパーティクルや、反応容器203内で生成された副生成物等からなる堆積物をエッチングして除去するクリーニング工程(S60)を実施する。本実施形態に係るクリーニング工程(S60)は、堆積物の膜厚値が最も小さい領域(最小膜厚領域)から順番に堆積物を除去していく(堆積物の膜厚値を0(ゼロ)にする)。ここで、クリーニング工程は、サセプタST1の累積膜厚値を基準に所定の閾値を超えたら実行するのが好ましい。なぜなら、反応容器203内の各領域に面する仕切部やサセプタST1のうち、サセプタST1は、ヒータを包含しているため最も累積膜厚値が高くなるからである。但し、これに限らず、堆積物の膜厚値が最も小さい領域(最小膜厚領域)に面する仕切部に付着した堆積物の膜厚値を基準に閾値を設定してもよいのは言うまでもない。 (Cleaning step (S60)) After the accumulated film thickness value updating step (S50) is finished, if the accumulated film thickness value exceeds a predetermined value, the above-described film formation step (S30) is performed in each region in the reaction vessel 203. A cleaning process (S60) is performed to etch away particles deposited on (deposit on) the facing partition and the susceptor ST1 and by-products generated in the reaction vessel 203. In the cleaning step (S60) according to the present embodiment, the deposits are sequentially removed from the region where the film thickness value of the deposit is the smallest (minimum film thickness region) (the film thickness value of the deposit is 0 (zero)). ). Here, the cleaning process is preferably executed when a predetermined threshold value is exceeded based on the accumulated film thickness value of the susceptor ST1. This is because the susceptor ST1 has the highest cumulative film thickness because the susceptor ST1 includes a heater among the partitions and susceptors ST1 facing each region in the reaction vessel 203. However, the present invention is not limited to this, and it goes without saying that the threshold value may be set based on the film thickness value of the deposit adhering to the partition facing the region where the film thickness value is the smallest (minimum film thickness region). Yes.
[反応性ガス供給時間算出工程(S61)]  まず、サセプタST1又は反応容器203内の各領域のうち、最も堆積物の膜厚値の小さい領域(最少膜厚領域)の膜厚値に基づいて、後述するように反応性ガスの供給時間を算出する。なお、最小膜厚領域の膜厚値は0(ゼロ)ではないものとする。また、反応性ガスの供給時間は、サセプタST1又は反応容器203内の各領域でそれぞれ算出してもよいのは言うまでもない。詳細は後述するが、各領域に供給する反応性ガス及び不活性ガスの供給流量をそれぞれ調整するように構成すれば、サセプタST1又は反応容器203内の各領域に面する仕切部に堆積される堆積物の膜厚値がそれぞれ異なるため、各領域でそれぞれ算出された供給時間が異なった場合に、最も堆積物の膜厚値の大きい領域(最大膜厚領域)に供給する反応性ガスの供給時間に合わせることができる。 [Reactive Gas Supply Time Calculation Step (S61)] First, based on the film thickness value of the region where the film thickness value of the deposit is the smallest (minimum film thickness region) among the regions in the susceptor ST1 or the reaction vessel 203. The reactive gas supply time is calculated as described later. Note that the film thickness value in the minimum film thickness region is not 0 (zero). Needless to say, the supply time of the reactive gas may be calculated for each region in the susceptor ST1 or the reaction vessel 203, respectively. Although details will be described later, if the supply flow rates of the reactive gas and the inert gas supplied to each region are adjusted, the susceptor ST1 or the reaction vessel 203 is deposited on the partition facing each region. Reactive gas supply to the region with the largest deposit film thickness value (maximum film thickness region) when the supply time calculated for each region differs because the deposit thickness values are different Can be timed.
[クリーニングガス供給工程(S62)]  続いて、サセプタST1の内部に埋め込まれたヒータ218に電力を供給し、反応容器203内が所定の温度となるように加熱する。この際、ヒータ218の温度は、温度センサ274により検出された温度情報に基づいてヒータ218への供給電力を制御することによって調整される。 [Cleaning Gas Supply Step (S62)] Next, power is supplied to the heater 218 embedded in the susceptor ST1, and the reaction vessel 203 is heated to a predetermined temperature. At this time, the temperature of the heater 218 is adjusted by controlling the power supplied to the heater 218 based on the temperature information detected by the temperature sensor 274.
 また、反応容器203内が所望の圧力(例えば0.1Pa~300Pa、好ましくは20Pa~40Pa)となるように、反応容器203内を真空ポンプ246によって真空排気する。この際、反応容器203内の圧力は圧力センサで測定され、この測定された圧力情報に基づきAPCバルブ243の開度をフィードバック制御する。 The inside of the reaction vessel 203 is evacuated by a vacuum pump 246 so that the inside of the reaction vessel 203 has a desired pressure (for example, 0.1 Pa to 300 Pa, preferably 20 Pa to 40 Pa). At this time, the pressure in the reaction vessel 203 is measured by a pressure sensor, and the opening degree of the APC valve 243 is feedback-controlled based on the measured pressure information.
 また、反応容器203内を加熱しつつ、回転機構267を作動して、サセプタST1の回転を開始させる。この際、サセプタST1の回転速度はコントローラ221によって制御される。サセプタST1の回転速度は例えば1回転/秒である。なお、サセプタST1は、クリーニングガス供給工程(S62)が終了するまでの間は、回転させた状態とするとよい。更に、サセプタST1には、ダミー基板が載置されているとよい。 Also, while rotating the inside of the reaction vessel 203, the rotation mechanism 267 is operated to start the rotation of the susceptor ST1. At this time, the rotation speed of the susceptor ST1 is controlled by the controller 221. The rotation speed of the susceptor ST1 is, for example, 1 rotation / second. The susceptor ST1 is preferably rotated until the cleaning gas supply step (S62) is completed. Further, a dummy substrate may be placed on the susceptor ST1.
 反応容器203内を加熱して所望とする温度に達したら、第1のクリーニングガス供給部253又は第2のクリーニングガス供給部254の少なくともいずれかから反応容器203内に、クリーニングガスとしての三フッ化窒素(NF)ガスの供給を開始する。このとき、APCバルブ243を適正に調整して、反応容器203内の圧力を例えば10Pa~1000Paの範囲内の圧力とするとよい。 When the inside of the reaction vessel 203 is heated and reaches a desired temperature, at least one of the first cleaning gas supply unit 253 and the second cleaning gas supply unit 254 enters the reaction vessel 203 with three gases as cleaning gas. Supply of nitrogen fluoride (NF 3 ) gas is started. At this time, the APC valve 243 is appropriately adjusted so that the pressure in the reaction vessel 203 is, for example, a pressure in the range of 10 Pa to 1000 Pa.
 反応容器203内が、所望の圧力、所望の温度に達したら、反応性ガス供給部257から反応容器203内の各領域へのクリーニングガスとしての反応性ガスの供給を開始する。すなわち、バルブ235gを開け、反応性ガス供給管232gから、マスフローコントローラ234gで流量制御しながら、第1の処理領域201a、第2の処理領域201b、第1のパージ領域204a又は第2のパージ領域204bの少なくともいずれかに反応性ガスを供給する。反応性ガスとしては、例えば三フッ化窒素(NF)を用い、反応性ガス供給部257から供給される反応性ガスは、例えばリモートプラズマ機構により予めプラズマ状態として反応容器203内へ供給する。なお、マスフローコントローラ234gで制御する反応性ガスの供給流量は、例えば100sccm~5000sccmの範囲内の流量とするとよい。 When the inside of the reaction vessel 203 reaches a desired pressure and a desired temperature, supply of a reactive gas as a cleaning gas from the reactive gas supply unit 257 to each region in the reaction vessel 203 is started. That is, the valve 235g is opened, and the first processing region 201a, the second processing region 201b, the first purge region 204a, or the second purge region is controlled from the reactive gas supply pipe 232g by the mass flow controller 234g. Reactive gas is supplied to at least one of 204b. For example, nitrogen trifluoride (NF 3 ) is used as the reactive gas, and the reactive gas supplied from the reactive gas supply unit 257 is supplied into the reaction vessel 203 in a plasma state in advance by, for example, a remote plasma mechanism. The supply flow rate of the reactive gas controlled by the mass flow controller 234g is preferably a flow rate in the range of 100 sccm to 5000 sccm, for example.
 反応性ガス供給部257から反応容器203内の各領域に少なくとも反応性ガスを供給する際、反応容器203内の各領域に面する仕切部の堆積物の膜厚値に基づいて、各領域に供給する反応性ガス及び不活性ガスの供給流量をそれぞれ調整する。すなわち、膜厚値が0(ゼロ)の領域(例えば堆積物の除去が終了した領域)には、反応性ガスが供給されないように、不活性ガスを供給する。例えば、第1のパージ領域204aの堆積物の膜厚値が0(ゼロ)の場合、第1のパージ領域204aには反応性ガスが供給されないように、バルブ235eを開け、マスフローコントローラ234fで流量制御しながら不活性ガス(例えばNガス)を第1のパージ領域204aに供給する。このように、反応性ガス(クリーニングガス)により堆積物の膜厚値が0(ゼロ)の領域に供給するガスを反応性ガスから不活性ガスに切り替える。 When supplying at least the reactive gas from the reactive gas supply unit 257 to each region in the reaction vessel 203, each region is determined based on the film thickness value of the deposit in the partition facing each region in the reaction vessel 203. The supply flow rates of the reactive gas and the inert gas to be supplied are adjusted. That is, an inert gas is supplied to a region where the film thickness value is 0 (for example, a region where the removal of deposits has been completed) so that the reactive gas is not supplied. For example, when the film thickness value of the deposit in the first purge region 204a is 0 (zero), the valve 235e is opened so that the reactive gas is not supplied to the first purge region 204a, and the flow rate is controlled by the mass flow controller 234f. An inert gas (eg, N 2 gas) is supplied to the first purge region 204a while being controlled. In this way, the gas supplied to the region where the film thickness value of the deposit is 0 (zero) by the reactive gas (cleaning gas) is switched from the reactive gas to the inert gas.
 算出した反応ガスの供給時間が経過したら、少なくともバルブ235gを閉じ、反応性ガスの反応容器203内の各領域への供給を停止する。そして、APCバルブ243の開度を調整して反応容器203内の圧力を所定の圧力にする。尚、上述のように各領域に供給するガスを反応性ガスから不活性ガスに切り替えるようにしてもよい。このように、反応性ガス(クリーニングガス)により堆積物の膜厚値が0(ゼロ)の領域に反応性ガスを供給しないようにする。ここで、堆積物の膜厚値が0(ゼロ)の領域に供給する不活性ガスの供給流量を他の領域に供給する不活性ガスの供給流量及び反応性ガスの供給流量よりも多くするように構成してもよい。 When the calculated reaction gas supply time has elapsed, at least the valve 235 g is closed, and the supply of the reactive gas to each region in the reaction vessel 203 is stopped. Then, the opening of the APC valve 243 is adjusted to set the pressure in the reaction vessel 203 to a predetermined pressure. Note that the gas supplied to each region may be switched from a reactive gas to an inert gas as described above. In this way, the reactive gas is prevented from being supplied to the region where the film thickness value of the deposit is 0 (zero) by the reactive gas (cleaning gas). Here, the supply flow rate of the inert gas supplied to the region where the film thickness value of the deposit is 0 (zero) is made larger than the supply flow rate of the inert gas and the supply flow rate of the reactive gas supplied to the other regions. You may comprise.
(累積膜厚値更新工程(S70))  クリーニング工程(S60)が終了した後、後述する制御部280が有する累積膜厚値更新機能285によって、上述のクリーニング工程(S60)によってサセプタST1及び反応容器203内の各領域に面する仕切部からエッチングされて除去される堆積物の膜厚値を、サセプタST1及び反応容器203内の領域に面する仕切部毎に算出する。そして、算出した膜厚値を、サセプタST1及び反応容器203内の各領域に面する仕切部の堆積物の累積膜厚値からそれぞれ減算し、累積膜厚値をそれぞれ更新する。なお、減算する膜厚値の算出方法については後述する。 (Cumulative film thickness update process (S70)) After the cleaning process (S60) is completed, the susceptor ST1 and the reaction container are processed by the above-described cleaning process (S60) by the cumulative film thickness update function 285 of the control unit 280 described later. The film thickness value of the deposit removed by etching from the partition portion facing each region in 203 is calculated for each partition portion facing the region in susceptor ST1 and reaction vessel 203. Then, the calculated film thickness value is subtracted from the accumulated film thickness value of the deposits of the partition portions facing the respective regions in the susceptor ST1 and the reaction vessel 203, and the accumulated film thickness value is updated. A method for calculating the film thickness value to be subtracted will be described later.
 上述のクリーニング工程(S60)及び累積膜厚値更新工程(S70)は、反応容器203内の各領域のうち、最小膜厚領域から順番に堆積物を除去し(堆積物の膜厚値を0(ゼロ)にし)、サセプタST1及び反応容器203内の全ての領域に面する仕切部の膜厚値が0になるまで、繰り返し行われる。サセプタST1及び反応容器203内の全ての領域に面する仕切部の膜厚値が0になったら、本実施形態に係る基板処理工程を終了する。 In the above-described cleaning step (S60) and cumulative film thickness value updating step (S70), the deposits are sequentially removed from the minimum film thickness region among the regions in the reaction vessel 203 (the film thickness value of the deposit is set to 0). This is repeated until the film thickness values of the partitions facing all the regions in the susceptor ST1 and the reaction vessel 203 become zero. When the film thickness values of the partition portions facing all regions in the susceptor ST1 and the reaction vessel 203 become 0, the substrate processing process according to the present embodiment is finished.
(4)制御手段の構成  次に、基板処理装置10を制御する制御手段としての制御部280について、主に図6を用いて説明する。図6は、本実施形態で好適に用いられる基板処理装置の制御部280の概略構成図である。なお、プロセスチャンバPM2については、プロセスチャンバPM1と同様に構成されているため、説明を省略する。 (4) Configuration of Control Unit Next, the control unit 280 as a control unit that controls the substrate processing apparatus 10 will be described mainly with reference to FIG. FIG. 6 is a schematic configuration diagram of the control unit 280 of the substrate processing apparatus suitably used in the present embodiment. The process chamber PM2 is configured in the same manner as the process chamber PM1, and thus the description thereof is omitted.
 図6に示すように、制御部280は、操作部コントローラ236と、操作部コントローラ236に接続されるスイッチングハブ(SW Hub)239hと、スイッチングハブ239hに接続される搬送制御部としての搬送コントローラ239tと、スイッチングハブ239hに接続される処理制御部としてのプロセスチャンバコントローラ239pと、を備えている。搬送コントローラ239t及びプロセスチャンバコントローラ239pは、スイッチングハブ239hを介して、例えばLAN等の通信ネットワーク20により、操作部コントローラ236に電気的に(データ交換可能なように)接続されている。また、操作部コントローラ236には、スイッチングハブ239hを介して、搬送室TMが備える搬送ロボットVRと、搬送室EFEMが備える搬送ロボットARとを制御するロボットコントローラ11が、通信ネットワーク20により接続されている。また、操作部コントローラ236には、スイッチングハブ239hを介して、顧客のホストコンピュータ237uに接続されている。 As shown in FIG. 6, the control unit 280 includes an operation unit controller 236, a switching hub (SW Hub) 239h connected to the operation unit controller 236, and a transport controller 239t as a transport control unit connected to the switching hub 239h. And a process chamber controller 239p as a processing control unit connected to the switching hub 239h. The transfer controller 239t and the process chamber controller 239p are electrically connected to the operation unit controller 236 via the switching hub 239h via the communication network 20 such as a LAN (so that data can be exchanged). In addition, a robot controller 11 that controls the transfer robot VR included in the transfer chamber TM and the transfer robot AR included in the transfer chamber EFEM is connected to the operation unit controller 236 via the communication network 20 via the switching hub 239h. Yes. The operation unit controller 236 is connected to a customer's host computer 237u via a switching hub 239h.
 制御手段としての制御部280は、基板処理装置10の内部に設けられ、搬送コントローラ239t、プロセスチャンバコントローラ239pを備えることで、基板処理装置10の各部を制御するよう構成されている。なお、搬送コントローラ239tとプロセスチャンバコントローラ239pとは、基板処理装置10外に設けられていても良い。 The control unit 280 as a control unit is provided inside the substrate processing apparatus 10 and is configured to control each unit of the substrate processing apparatus 10 by including a transfer controller 239t and a process chamber controller 239p. Note that the transfer controller 239t and the process chamber controller 239p may be provided outside the substrate processing apparatus 10.
(操作部コントローラ)  操作部コントローラ236は、例えば中央処理装置(CPU)等からなる。操作部コントローラ236は、操作員とのインタフェースであり、例えば入出力部や表示部等を含む操作端末236sを介して操作員による操作を受け付けるよう構成されている。すなわち、操作端末236sには、入出力部として、例えばマウス、キーボード等が接続されている。また、操作端末236sには、例えばディスプレイ等の表示部が接続されている。操作端末236sは、例えば、タッチパネル等の操作入力受付画面や、サセプタST1及び反応容器203内の各領域内の堆積物の累積膜厚値が記載された累積膜厚データ等を表示させるように構成されている。 (Operation Unit Controller) 操作 The operation unit controller 236 includes, for example, a central processing unit (CPU). The operation unit controller 236 is an interface with an operator, and is configured to accept an operation by the operator via an operation terminal 236s including an input / output unit, a display unit, and the like. That is, for example, a mouse, a keyboard, and the like are connected to the operation terminal 236s as an input / output unit. In addition, a display unit such as a display is connected to the operation terminal 236s. The operation terminal 236s is configured to display, for example, an operation input reception screen such as a touch panel, accumulated film thickness data in which accumulated film thickness values of deposits in each region in the susceptor ST1 and the reaction vessel 203 are described, and the like. Has been.
 操作部コントローラ236は、例えばフラッシュメモリ、HDD(Hard Disk Drive)、CD-ROM等で構成される記憶装置等の記憶部236mを備えている。記憶部236m内には、基板処理装置100の動作を制御する制御プログラムや、例えばウエハ200上に薄膜を形成する処理の手順や条件などが記載されたプロセスレシピ、処理室PM1内の堆積物を除去するクリーニング処理の手順や条件などが記載されたクリーニングレシピ、ウエハ200の搬送手順や条件などが記載された搬送レシピ等を含むレシピ、及びこれらのレシピを実行する際に使用される各種パラメータが、読み出し可能に格納されている。 The operation unit controller 236 includes a storage unit 236m such as a storage device including a flash memory, an HDD (Hard Disk Drive), a CD-ROM, and the like. In the storage unit 236m, a control program for controlling the operation of the substrate processing apparatus 100, a process recipe in which, for example, processing procedures and conditions for forming a thin film on the wafer 200, and deposits in the processing chamber PM1 are stored. A cleaning recipe that describes the procedure and conditions of the cleaning process to be removed, a recipe that includes a transfer recipe that describes the transfer procedure and conditions of the wafer 200, and various parameters that are used when executing these recipes. , Stored in a readable manner.
 また、プロセスレシピには、堆積レートが設定されている。堆積レートとは、プロセスチャンバPM1内に原料ガスを供給してウエハ200上に薄膜を形成する成膜処理を実施することによって、例えば単位時間当たりにサセプタST1上に堆積する堆積物のレートである。サセプタST1上に堆積する堆積物の膜厚値は、堆積レートに原料ガスの供給時間を乗じることで算出される。例えば、堆積レートの設定値が10nm/分であり、原料ガスの供給時間が1分である成膜処理を実行すると、サセプタST1上に堆積する堆積物の膜厚値は10nmとなる。なお、堆積レートの単位時間の単位は分に限らず、例えば秒などであってもよい。 Also, a deposition rate is set in the process recipe. The deposition rate is a rate of deposits deposited on the susceptor ST1 per unit time, for example, by performing a film forming process in which a raw material gas is supplied into the process chamber PM1 to form a thin film on the wafer 200. . The film thickness value of the deposit deposited on the susceptor ST1 is calculated by multiplying the deposition rate by the supply time of the source gas. For example, when a film forming process in which the set value of the deposition rate is 10 nm / min and the supply time of the source gas is 1 minute is performed, the film thickness value of the deposit deposited on the susceptor ST1 is 10 nm. The unit of the deposition rate unit time is not limited to minutes, and may be, for example, seconds.
 また、クリーニングレシピには、エッチングレートが設定されている。エッチングレートとは、プロセスチャンバPM1内に反応性ガス(クリーニングガス)を供給して、プロセスチャンバPM1内の堆積物を除去する処理(除去処理)を実施することによって、例えば単位時間当たりにサセプタST1上から除去される堆積物のレートである。サセプタST1上から除去される堆積物の膜厚値は、エッチングレートに反応性ガスの供給時間を乗じることで算出される。例えば、エッチングレートの設定値が10nm/分であり、反応性ガスの供給時間が1分である除去処理を実行すると、サセプタST1上からエッチングされる堆積物の膜厚値は10nmとなる。なお、エッチングレートの時間の単位は分に限らず、例えば秒などであってもよい。 Also, the etching rate is set in the cleaning recipe. The etching rate refers to, for example, a susceptor ST1 per unit time by supplying a reactive gas (cleaning gas) into the process chamber PM1 and performing a process (removal process) for removing deposits in the process chamber PM1. The rate of deposits removed from above. The film thickness value of the deposit removed from the susceptor ST1 is calculated by multiplying the etching rate by the supply time of the reactive gas. For example, when a removal process in which the set value of the etching rate is 10 nm / min and the supply time of the reactive gas is 1 minute is executed, the film thickness value of the deposit etched from above the susceptor ST1 becomes 10 nm. The unit of the etching rate time is not limited to minutes, and may be, for example, seconds.
 また、記憶部236m内には、堆積比率テーブルファイルや、エッチング比率テーブルファイルが読み出し可能に格納されている。堆積比率テーブルファイルは、プロセスレシピに関連付けられている。記憶部236m内に複数の堆積比率テーブルが格納されている場合、例えばプロセスレシピの各ステップの設定の際に、堆積比率テーブル番号を指定することで、使用する堆積比率テーブルファイルを指定するように構成されている。また、エッチング比率テーブルファイルは、クリーニングレシピに関連付けられている。記憶部236m内に複数のエッチング比率テーブルが格納されている場合、例えばクリーニングレシピの各ステップの設定の際に、エッチング比率テーブル番号を指定することで、使用するエッチング比率テーブルファイルを指定するように構成されている。 In the storage unit 236m, a deposition ratio table file and an etching ratio table file are stored so as to be readable. The deposition ratio table file is associated with the process recipe. When a plurality of deposition ratio tables are stored in the storage unit 236m, for example, when setting each step of the process recipe, the deposition ratio table file to be used is specified by specifying the deposition ratio table number. It is configured. The etching ratio table file is associated with the cleaning recipe. When a plurality of etching ratio tables are stored in the storage unit 236m, for example, when setting each step of the cleaning recipe, by specifying an etching ratio table number, an etching ratio table file to be used is specified. It is configured.
 ここで、堆積比率テーブルとは、サセプタST1及び反応容器203内の各領域のそれぞれの堆積比率が記載されたテーブルである。堆積比率とは、堆積比率テーブルが関連付けられたプロセスレシピを実行した場合にサセプタST1及び反応容器203内の各領域に面する仕切部205の表面に堆積する堆積物の膜厚値の、プロセスレシピ内に設定された堆積レートに対する比率である。また、エッチング比率テーブルとは、サセプタST1及び反応容器203内の各領域のそれぞれのエッチング比率が記載されたテーブルである。エッチング比率とは、エッチング比率テーブルが関連付けられたクリーニングレシピを実行した場合にサセプタST1及び反応容器203内の各領域のそれぞれから除去される堆積物の膜厚値の、クリーニングレシピ内に設定されたエッチングレートに対する比率である。 Here, the deposition ratio table is a table in which the deposition ratio of each region in the susceptor ST1 and the reaction vessel 203 is described. The deposition ratio is a process recipe of a film thickness value of deposits deposited on the surface of the partition 205 that faces each region in the susceptor ST1 and the reaction vessel 203 when the process recipe associated with the deposition ratio table is executed. It is the ratio to the deposition rate set within. The etching ratio table is a table in which the etching ratios of the respective regions in the susceptor ST1 and the reaction vessel 203 are described. The etching ratio is set in the cleaning recipe of the film thickness value of the deposit removed from each of the regions in the susceptor ST1 and the reaction vessel 203 when the cleaning recipe associated with the etching ratio table is executed. It is a ratio to the etching rate.
 尚、操作部コントローラ236は、専用のコンピュータとして構成されている場合に限らず、汎用のコンピュータとして構成されていてもよい。この場合、上述のプログラムを格納した外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)を用意し、かかる外部記憶装置を用いて汎用のコンピュータにプログラムをインストールすること等により、プロセスチャンバコントローラ239pや搬送コントローラ239tを構成することができる。なお、コンピュータにプログラムを供給するための手段は、上述の外部記憶装置を介して供給する場合に限らない。例えば、インターネットや専用回線等の通信手段を用い、上述の外部記憶装置を介さずにプログラムを供給するようにしてもよい。なお、記憶部236mとしての記憶装置や外部記憶装置は、コンピュータ読み取り可能な記録媒体として構成される。以下、これらを総称して、単に記録媒体ともいう。なお、本明細書において記録媒体という言葉を用いた場合は、記憶装置単体のみを含む場合、外部記憶装置単体のみを含む場合、または、その両方を含む場合がある。 The operation unit controller 236 is not limited to being configured as a dedicated computer, but may be configured as a general-purpose computer. In this case, an external storage device storing the above-described program (for example, a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD or DVD, a magneto-optical disk such as an MO, a semiconductor memory such as a USB memory or a memory card) ) And installing the program in a general-purpose computer using such an external storage device, the process chamber controller 239p and the transfer controller 239t can be configured. Note that the means for supplying the program to the computer is not limited to supplying the program via the external storage device described above. For example, the program may be supplied using communication means such as the Internet or a dedicated line without using the external storage device described above. Note that the storage device or the external storage device as the storage unit 236m is configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium. Note that when the term “recording medium” is used in this specification, it may include only a single storage device, only a single external storage device, or both.
(搬送コントローラ)  搬送コントローラ239tは、主にウエハ200の搬送制御を行うよう構成されている。搬送コントローラ239tは、例えば中央処理装置(CPU)等からなる。搬送コントローラ239tには、DeviceNet等のデジタル信号回線30を通じて、原料ガスや反応性ガスの供給や排気用バルブのオン/オフを制御するバルブデジタルI/O13、各種スイッチ(SW)等のオン/オフを制御するSWデジタルI/O14が、シーケンサ12を介してそれぞれ接続されている。すなわち、搬送コントローラ239tは、例えば搬送ロボットVR、搬送ロボットAR、サセプタST1、回転機構267、昇降機構268等に接続されている。搬送コントローラ239tは、例えば操作部コントローラ236を介して操作員により作成又は編集された搬送レシピの内容に基づいて、ウエハ200を搬送する際の制御データ(制御指示)を、搬送ロボットVR、搬送ロボットAR、サセプタST1、回転機構267、昇降機構268等に対して出力し、ウエハ200の搬送動作を制御するように構成されている。 (Transfer Controller) 搬 送 The transfer controller 239t is mainly configured to control transfer of the wafer 200. The transport controller 239t is composed of, for example, a central processing unit (CPU). The transport controller 239t is connected to a digital signal line 30 such as DeviceNet, and the on / off of the valve digital I / O 13 for controlling the supply of the source gas and the reactive gas and the on / off of the exhaust valve, and various switches (SW). SW digital I / Os 14 are connected to each other via the sequencer 12. That is, the transport controller 239t is connected to, for example, the transport robot VR, the transport robot AR, the susceptor ST1, the rotation mechanism 267, the lifting mechanism 268, and the like. The transfer controller 239t, for example, transmits control data (control instruction) when transferring the wafer 200 based on the contents of the transfer recipe created or edited by the operator via the operation unit controller 236, the transfer robot VR, the transfer robot It is configured to output to the AR, the susceptor ST1, the rotation mechanism 267, the lifting mechanism 268, etc., and to control the transfer operation of the wafer 200.
 また、搬送コントローラ239tには、ロードポートLP1~LP3に載置されたキャリアカセットCA1~CA3を識別するキャリアIDを示すバーコード1,2,3・・・等が記憶される記憶部16が、例えばシリアル回線40を通じて接続されている。 Further, the transport controller 239t has a storage unit 16 in which barcodes 1, 2, 3,... Indicating carrier IDs for identifying the carrier cassettes CA1 to CA3 mounted on the load ports LP1 to LP3 are stored. For example, it is connected through a serial line 40.
(プロセスチャンバコントローラ)  プロセスチャンバコントローラ239pは、プロセスチャンバPM1内でのウエハ200の処理を制御するよう構成されている。プロセスチャンバコントローラ239pは、例えば中央処理装置(CPU)等からなる。また、プロセスチャンバコントローラ239pは、例えばフラッシュメモリ、HDD(Hard Disk Drive)、CD-ROM等で構成される記憶装置を備えている。記憶装置内には、制御プログラムや、例えば処理室PM1内のサセプタST1及び各領域のそれぞれに堆積している堆積物の膜厚値(以下、累積膜厚データともいう。)が読み出し可能に格納されている。 (Process Chamber Controller) The process chamber controller 239p is configured to control processing of the wafer 200 in the process chamber PM1. The process chamber controller 239p is composed of, for example, a central processing unit (CPU). The process chamber controller 239p includes a storage device such as a flash memory, an HDD (Hard Disk Drive), a CD-ROM, or the like. In the storage device, the control program and, for example, the susceptor ST1 in the processing chamber PM1 and the film thickness value of deposits deposited in each region (hereinafter also referred to as accumulated film thickness data) are stored in a readable manner. Has been.
 プロセスチャンバコントローラ239pには、DeviceNet等のデジタル信号回線30を通じて、原料ガスや反応性ガスの供給や排気用バルブのオン/オフを制御するバルブデジタルI/O13、各種スイッチ(SW)等のオン/オフを制御するSWデジタルI/O14が、シーケンサ12を介してそれぞれ接続されている。プロセスチャンバコントローラ239pは、例えば操作部コントローラ236を介して操作員により作成又は編集されたプロセスレシピの内容に基づいて、ウエハ200を処理する際の制御データ(制御指示)を、圧力コントローラ15や、バルブ235a~235g,243、各種スイッチ、マスフローコントローラ234a~234g、ヒータ218等に対して出力し、プロセスチャンバPM1内におけるウエハ200の処理の制御を行うように構成されている。 The process chamber controller 239p is connected to a digital signal line 30 such as DeviceNet to supply a source gas and a reactive gas and to control on / off of a valve for exhaust, on / off of various switches (SW) and the like. SW digital I / Os 14 for controlling the turn-off are connected to each other via the sequencer 12. The process chamber controller 239p, for example, the control data (control instruction) when processing the wafer 200 based on the content of the process recipe created or edited by the operator via the operation unit controller 236, the pressure controller 15, Outputs to valves 235a to 235g, 243, various switches, mass flow controllers 234a to 234g, heater 218, etc. are configured to control the processing of wafer 200 in process chamber PM1.
 圧力コントローラ15は、例えばシリアル回線40を介して、プロセスチャンバコントローラ239pに接続されている。圧力コントローラ15には、プロセスチャンバPM1内の圧力を制御する圧力センサ、APCバルブ243及び真空ポンプ246等が接続されている。圧力コントローラ15は、圧力センサにより検知された圧力値に基づいて、プロセスチャンバPM1内の圧力が所定のタイミングにて所定の圧力となるように、APCバルブ243及び真空ポンプ246を制御するように構成されている。  The pressure controller 15 is connected to the process chamber controller 239p via the serial line 40, for example. The pressure controller 15 is connected to a pressure sensor for controlling the pressure in the process chamber PM1, an APC valve 243, a vacuum pump 246, and the like. The pressure controller 15 is configured to control the APC valve 243 and the vacuum pump 246 so that the pressure in the process chamber PM1 becomes a predetermined pressure at a predetermined timing based on the pressure value detected by the pressure sensor. Has been. *
(5)制御手段の機能構成  続いて、制御手段としての制御部280の機能構成について、主に図7を用いて説明する。図7は、本実施形態に係る制御部280の機能構成を示すブロック図である。なお、プロセスチャンバPM2については、プロセスチャンバPM1と同様に構成されているため、説明を省略する。 (5) Functional Configuration of Control Unit Next, the functional configuration of the control unit 280 as the control unit will be described mainly with reference to FIG. FIG. 7 is a block diagram illustrating a functional configuration of the control unit 280 according to the present embodiment. The process chamber PM2 is configured in the same manner as the process chamber PM1, and thus the description thereof is omitted.
 図7に示すように、操作部コントローラ236は、記憶部236mとしての記憶装置内に保管されているプログラムを読み出して実行することで、レシピ開始機能281、レシピ編集機能282、累積膜厚表示機能283等を実現させるように構成されている。また、プロセスチャンバコントローラ239pは、記憶部236m内に保管されているプログラムを読み出して実行することで、レシピ実行機能284、累積膜厚値更新機能285等を実現させるように構成されている。尚、予め、操作部コントローラ236内のプロセスレシピがダウンロードされ、プロセスチャンバコントローラ239pが備える記憶装置内に格納されていることはいうまでもない。 As shown in FIG. 7, the operation unit controller 236 reads and executes a program stored in the storage device as the storage unit 236m, thereby executing a recipe start function 281, a recipe editing function 282, and a cumulative film thickness display function. 283 and the like are realized. The process chamber controller 239p is configured to realize a recipe execution function 284, an accumulated film thickness value update function 285, and the like by reading and executing a program stored in the storage unit 236m. Needless to say, the process recipe in the operation unit controller 236 is downloaded in advance and stored in a storage device included in the process chamber controller 239p.
(レシピ開始機能)  レシピ開始機能281は、例えば操作員がレシピ名称を入力欄に入力することで、入出力部からレシピ特定情報の入力を受け付ける。レシピ開始機能281は、入出力部からのレシピ特定情報の入力を受け付けると、レシピの実行開始の指示を後述のプロセスチャンバコントローラ239pが有するレシピ実行機能284に送信する。 (Recipe start function) レ シ ピ The recipe start function 281 receives input of recipe specifying information from the input / output unit, for example, when the operator inputs a recipe name in the input field. When the recipe start function 281 receives input of recipe specifying information from the input / output unit, the recipe start function 281 transmits an instruction to start executing the recipe to the recipe execution function 284 of the process chamber controller 239p described later.
(レシピ編集機能)  レシピ編集機能282は、例えばプロセスレシピやクリーニングレシピを特定するレシピ特定情報、堆積比率テーブルやエッチング比率テーブルを特定するテーブル特定情報等を入力する入力欄等を表示部に表示する。レシピ編集機能282は、例えば操作員が、レシピ名称やテーブル名称を入力欄に入力することで、入出力部からレシピ特定情報やテーブル特定情報の入力を受け付ける。レシピ編集機能282は、入出力部からのレシピ特定情報やテーブル特定情報の入力を受け付けると、記憶部236m内からレシピ特定情報により特定されるプロセスレシピやクリーニングレシピ、又はテーブル特定情報により特定される堆積比率テーブルや、エッチング比率テーブルを読み出す。レシピ編集機能282は、記憶部236m内から読み出したプロセスレシピの編集画面や、クリーニングレシピの編集画面、堆積比率テーブルの編集画面、エッチング比率テーブルの編集画面を表示部に表示する。なお、レシピ編集機能282は、入出力部から複数のレシピ特定情報やテーブル特定情報の入力を受け付けた場合、複数の編集画面を操作端末236sが備える表示部に表示してもよい。 (Recipe editing function) レ シ ピ The recipe editing function 282 displays, for example, input fields for inputting recipe specifying information for specifying a process recipe and a cleaning recipe, table specifying information for specifying a deposition ratio table and an etching ratio table, and the like on the display unit. . The recipe editing function 282 accepts input of recipe specifying information and table specifying information from the input / output unit, for example, when an operator inputs a recipe name and a table name in an input field. When the recipe editing function 282 receives input of recipe specifying information or table specifying information from the input / output unit, the recipe editing function 282 is specified by the process recipe or cleaning recipe specified by the recipe specifying information from the storage unit 236m, or table specifying information. The deposition ratio table and the etching ratio table are read out. The recipe editing function 282 displays a process recipe editing screen, a cleaning recipe editing screen, a deposition rate table editing screen, and an etching rate table editing screen read from the storage unit 236m on the display unit. Note that the recipe editing function 282 may display a plurality of editing screens on a display unit included in the operation terminal 236s when receiving input of a plurality of recipe specifying information and table specifying information from the input / output unit.
 ここで、操作端末236sの表示部(操作画面)に表示される編集画面の一例を図8及び図9に示す。図8は、本実施形態に係る制御部280によって表示される操作画面の一例を示す図であり、(a)はプロセスレシピの編集画面の一例を示し、(b)は堆積比率テーブルの編集画面の一例を示す。図9は、本実施形態に係る制御部280によって表示される操作画面の一例を示す図であり、(a)はクリーニングレシピの編集画面の一例を示し、(b)はエッチング比率テーブルの編集画面の一例を示す。なお、プロセスチャンバPM2については、プロセスチャンバPM1と同様に構成されているため、説明を省略する。すなわち、例えば図8(a)に示すように、プロセスレシピの編集画面には、プロセスレシピのファイル名称や、堆積レートの設定値、プロセスレシピに関連する堆積比率テーブル番号(堆積比率テーブル名称)等を入力する入力欄等が表示される。また、例えば図8(b)に示すように、堆積比率テーブルの編集画面には、堆積比率テーブル番号や、サセプタST1及び反応容器203内の各領域のそれぞれの堆積比率等を入力する入力欄等が表示される。また、例えば図9(a)に示すように、クリーニングレシピの編集画面には、クリーニングレシピのファイル名称や、エッチングレートの設定値、クリーニングレシピに関連するエッチング比率テーブル番号(エッチング比率テーブル名称)等を入力する入力欄等が表示される。また、例えば図9(b)に示すように、エッチング比率テーブルの編集画面には、エッチング比率テーブル番号や、サセプタST1及び反応容器203内の各領域のそれぞれのエッチング比率等を入力する入力欄や、最小膜厚領域を指定するチェックボックス等が表示される。 Here, an example of the edit screen displayed on the display unit (operation screen) of the operation terminal 236s is shown in FIGS. FIG. 8 is a diagram illustrating an example of an operation screen displayed by the control unit 280 according to the present embodiment. FIG. 8A illustrates an example of a process recipe editing screen, and FIG. 8B illustrates a deposition ratio table editing screen. An example is shown. FIG. 9 is a diagram illustrating an example of an operation screen displayed by the control unit 280 according to the present embodiment. FIG. 9A illustrates an example of a cleaning recipe editing screen. FIG. 9B illustrates an etching ratio table editing screen. An example is shown. The process chamber PM2 is configured in the same manner as the process chamber PM1, and thus the description thereof is omitted. That is, for example, as shown in FIG. 8A, the process recipe file name, the deposition rate setting value, the deposition ratio table number (deposition ratio table name) associated with the process recipe, etc. An input field for inputting is displayed. Further, for example, as shown in FIG. 8B, on the edit screen of the deposition ratio table, an input field for inputting the deposition ratio table number, the deposition ratio of each region in the susceptor ST1 and the reaction vessel 203, and the like. Is displayed. Also, for example, as shown in FIG. 9A, the cleaning recipe editing screen includes a cleaning recipe file name, an etching rate setting value, an etching ratio table number (etching ratio table name) related to the cleaning recipe, and the like. An input field for inputting is displayed. Further, for example, as shown in FIG. 9B, the etching ratio table edit screen has an input field for inputting the etching ratio table number, the etching ratio of each region in the susceptor ST1 and the reaction vessel 203, and the like. A check box for designating the minimum film thickness area is displayed.
 また、図8(a)に示すプロセスレシピ編集画面や、図9(a)に示すクリーニングレシピの編集画面には、例えば、成膜処理やクリーニング処理の処理温度、原料ガスや、反応性ガス、不活性ガス等の供給流量、バルブの開閉、プロセスチャンバPM1内の圧力、機構動作、高周波(RF)出力などの設定値や、モニタ値との偏差アラームの監視方法などの設定を入力する入力欄等が表示されてもよい。 Further, the process recipe editing screen shown in FIG. 8A and the cleaning recipe editing screen shown in FIG. 9A include, for example, a film forming process and a processing temperature of the cleaning process, a source gas, a reactive gas, Input fields for entering settings such as the supply flow rate of inert gas, valve opening and closing, pressure in the process chamber PM1, mechanism operation, radio frequency (RF) output, and monitoring method for deviation alarm from monitor value Etc. may be displayed.
 レシピ編集機能282は、例えば操作員が、堆積レートやエッチングレート、堆積比率やエッチング比率等の設定値を所定の入力欄に入力することで、入出力部から設定値の更新情報を受け付ける。レシピ編集機能282は、入出力部から設定値の更新情報を受け付けると、プロセスレシピ、クリーニングレシピ、堆積比率テーブル、エッチング比率テーブルの設定値を更新して、更新したプロセスレシピ、クリーニングレシピ、堆積比率テーブル、エッチング比率テーブルを記憶部236m内に読み出し可能に格納する。 The recipe editing function 282 receives update information of the set value from the input / output unit, for example, when an operator inputs set values such as a deposition rate, an etching rate, a deposition rate, and an etching rate in a predetermined input field. When the recipe editing function 282 receives update information of setting values from the input / output unit, the recipe editing function 282 updates the setting values of the process recipe, cleaning recipe, deposition rate table, and etching rate table, and updates the updated process recipe, cleaning recipe, and deposition rate. The table and the etching ratio table are stored in the storage unit 236m so as to be readable.
 ここで、上述のプロセスチャンバPM1において、第1の処理領域201aや第2の処理領域201bは、第1のパージ領域204aや第2のパージ領域204bに比べて、これらの領域に面する仕切部に堆積する堆積物が多くなるため、堆積物の膜厚値が大きくなる。また、第1の原料ガスとして例えばプリカーサと呼ばれるTSAガスが供給される第1の処理領域201aは、第2の原料ガスとして例えば酸素(O)ガスが供給される第2の処理領域201bと比べて、この領域に面する仕切部に堆積する堆積物の量が多くなる。また、第1のパージ領域204a、第2のパージ領域204bにはそれぞれ、上述のように不活性ガスとして例えば窒素(N)ガスが供給されるが、サセプタST1の回転方向により、第1のパージ領域204aに堆積する堆積物の量と、第2のパージ領域204bに堆積する堆積物の量とが異なることがある。 Here, in the process chamber PM1 described above, the first processing region 201a and the second processing region 201b are separated from the first purge region 204a and the second purge region 204b by the partition portions facing these regions. As the amount of deposits deposited on the substrate increases, the film thickness value of the deposits increases. In addition, the first processing region 201a to which a TSA gas called a precursor, for example, is supplied as the first source gas is a second processing region 201b to which, for example, oxygen (O 2 ) gas is supplied as the second source gas. In comparison, the amount of deposits deposited on the partition facing this region increases. Further, as described above, for example, nitrogen (N 2 ) gas is supplied to each of the first purge region 204a and the second purge region 204b as an inert gas. The amount of deposits deposited in the purge region 204a may be different from the amount of deposits deposited in the second purge region 204b.
 従って、レシピ編集機能282は、サセプタST1及び反応容器203内の領域毎に、堆積比率やエッチング比率の設定値を編集して更新できるように構成されている。具体的には、例えば図8(b)に示すように、例えば操作員が、サセプタST1の堆積比率の設定値を100%、第1の処理領域201aの堆積比率の設定値を80%、第2の処理領域201bの堆積比率の設定値を60%、第1のパージ領域204aの堆積比率の設定値を30%、第2のパージ領域204bの堆積比率の設定値を40%と所定の入力欄に入力することで、サセプタST1及び反応容器203内の領域毎に堆積比率の設定値を編集できる。また、例えば図9(b)に示すように、例えば操作員が、サセプタST1のエッチング比率の設定値を100%とし、第1の処理領域201aのエッチング比率の設定値を50%、第2の処理領域201bのエッチング比率の設定値を50%、第1のパージ領域204aのエッチング比率の設定値を50%、第2のパージ領域204bのエッチング比率の設定値を50%と所定の入力欄に入力することで、サセプタST1及び反応容器203内の領域毎にエッチング比率の設定値を編集できる。なお、堆積比率又はエッチング比率は、サセプタST1の回転速度や回転方向、原料ガスや反応性ガスの種類、成膜温度やエッチング温度、圧力等を考慮して適宜設定できる。また、堆積比率又はエッチング比率は、例えば、実験結果や経験値により適宜設定してもよい。 Therefore, the recipe editing function 282 is configured to edit and update the set values of the deposition rate and the etching rate for each region in the susceptor ST1 and the reaction vessel 203. Specifically, for example, as shown in FIG. 8B, for example, an operator sets the setting value of the deposition ratio of the susceptor ST1 to 100%, sets the setting value of the deposition ratio of the first processing region 201a to 80%, The predetermined input is 60% for the deposition ratio setting value of the second processing region 201b, 30% for the first purge region 204a, and 40% for the second purge region 204b. By inputting in the column, the set value of the deposition ratio can be edited for each region in the susceptor ST1 and the reaction vessel 203. For example, as shown in FIG. 9B, the operator sets the etching ratio setting value of the susceptor ST1 to 100%, sets the etching ratio setting value of the first processing region 201a to 50%, In the predetermined input field, the etching ratio setting value of the processing area 201b is 50%, the etching ratio setting value of the first purge area 204a is 50%, and the etching ratio setting value of the second purge area 204b is 50%. By inputting, the set value of the etching ratio can be edited for each region in the susceptor ST1 and the reaction vessel 203. The deposition ratio or etching ratio can be appropriately set in consideration of the rotation speed and rotation direction of the susceptor ST1, the type of source gas and reactive gas, the film formation temperature, the etching temperature, the pressure, and the like. Further, the deposition ratio or the etching ratio may be appropriately set according to, for example, experimental results or experience values.
(累積膜厚表示機能)  累積膜厚表示機能283は、例えば、後述するプロセスチャンバコントローラ239pが有する累積膜厚値更新機能285によって更新された累積膜厚データを、プロセスチャンバコントローラ239pから受信する。累積膜厚表示機能283は、受信した累積膜厚データを操作端末236sが備える表示部に表示する。 (Cumulative Film Thickness Display Function) 累積 The cumulative film thickness display function 283 receives, for example, cumulative film thickness data updated by a cumulative film thickness value update function 285 included in the process chamber controller 239p described later from the process chamber controller 239p. The cumulative film thickness display function 283 displays the received cumulative film thickness data on the display unit provided in the operation terminal 236s.
(レシピ実行機能)  レシピ実行機能284は、上述のレシピ開始機能281からレシピの実行開始の指示を受け付けると、入出力部が受け付けたレシピ特定情報により特定されるプロセスレシピ又はクリーニングレシピの送信要求を操作部コントローラ236に出す。レシピ実行機能284は、レシピ特定情報により特定されるプロセスレシピ又はクリーニングレシピを操作部コントローラ236から受信して取得し、例えばプロセスチャンバコントローラ239pが備える記憶装置内に保管する。 (Recipe execution function) レ シ ピ When the recipe execution function 284 receives an instruction to start executing a recipe from the above-described recipe start function 281, the recipe execution function 284 sends a process recipe or cleaning recipe transmission request specified by the recipe specification information received by the input / output unit. Output to the operation unit controller 236. The recipe execution function 284 receives and acquires the process recipe or cleaning recipe specified by the recipe specifying information from the operation unit controller 236, and stores it in, for example, a storage device included in the process chamber controller 239p.
 また、レシピ実行機能284は、取得したプロセスレシピ又はクリーニングレシピに堆積比率テーブルファイル又はエッチング比率テーブルファイルが関連付けられている場合には、関連する堆積比率テーブルファイル又はエッチング比率テーブルファイルの送信要求を操作部コントローラ236に出す。レシピ実行機能284は、操作部コントローラ236から、堆積比率テーブルファイル又はエッチング比率テーブルファイルを自動で受信して取得し、例えばプロセスチャンバコントローラ239pが備える記憶装置内に保管する。レシピ実行機能284は、エッチング比率テーブルファイルを取得したら、エッチング比率テーブルファイル取得情報を後述の累積膜厚値更新機能285に送信する。 In addition, the recipe execution function 284 operates a transmission request for a related deposition ratio table file or etching ratio table file when a deposition ratio table file or an etching ratio table file is associated with the acquired process recipe or cleaning recipe. To the controller 236. The recipe execution function 284 automatically receives and acquires the deposition ratio table file or the etching ratio table file from the operation unit controller 236, and stores it in, for example, a storage device provided in the process chamber controller 239p. After acquiring the etching ratio table file, the recipe execution function 284 transmits the etching ratio table file acquisition information to the cumulative film thickness value update function 285 described later.
 レシピ実行機能284は、操作部コントローラ236から取得したプロセスレシピの内容を読み出し、プロセスレシピの内容に沿うようにバルブデジタルI/O13やSWデジタルI/O14を制御し、プロセスレシピを実行する。レシピ実行機能284は、プロセスレシピの実行を終了すると、プロセスレシピの実行終了の情報を後述の累積膜厚値更新機能285に送信する。 The recipe execution function 284 reads the contents of the process recipe acquired from the operation unit controller 236, controls the valve digital I / O 13 and the SW digital I / O 14 so as to follow the contents of the process recipe, and executes the process recipe. When the recipe execution function 284 finishes executing the process recipe, the recipe execution function 284 transmits information on the completion of the process recipe execution to the cumulative film thickness value update function 285 described later.
[反応性ガス供給時間算出]  レシピ実行機能284は、エッチング比率テーブルファイルの取得情報を受信すると、プロセスチャンバコントローラ239pが備える記憶装置内に保管されている累積膜厚データを読み出す。レシピ実行機能284は、読み出した累積膜厚データを操作端末236sが備える表示部に表示する。累積膜厚値更新機能285は、操作端末236sが備える表示部に、エッチング比率テーブル番号(エッチング比率テーブルの名称)を入力する入力欄等を表示する。 [Reactive Gas Supply Time Calculation] レ シ ピ Recipe execution function 284, when receiving the acquisition information of the etching ratio table file, reads the accumulated film thickness data stored in the storage device provided in process chamber controller 239p. The recipe execution function 284 displays the read accumulated film thickness data on the display unit provided in the operation terminal 236s. The cumulative film thickness value update function 285 displays an input field or the like for inputting an etching ratio table number (name of the etching ratio table) on the display unit provided in the operation terminal 236s.
 レシピ実行機能284は、例えば操作員がエッチング比率テーブル番号を入力欄に入力することで、入出力部から、エッチング比率テーブル特定情報の入力を受け付ける。レシピ実行機能284は、エッチング比率テーブル特定情報の入力を受け付けると、記憶部236m内に保管されているエッチング比率テーブルファイルから、エッチング比率テーブル特定情報により特定されるエッチング比率テーブルを読み出す。レシピ実行機能284は、読み出したエッチング比率テーブルを例えば図9(b)に示すように操作端末236sが備える表示部に表示する。 The recipe execution function 284 accepts the input of the etching ratio table specifying information from the input / output unit, for example, when the operator inputs the etching ratio table number in the input field. When receiving the input of the etching ratio table specifying information, the recipe execution function 284 reads the etching ratio table specified by the etching ratio table specifying information from the etching ratio table file stored in the storage unit 236m. The recipe execution function 284 displays the read etching ratio table on the display unit provided in the operation terminal 236s as shown in FIG. 9B, for example.
 レシピ実行機能284は、例えば操作員が操作端末236sを備える表示部に表示された累積膜厚データを確認し、最小膜厚領域のチェックボックスにチェックを入れることで、入出力部から、最小膜厚領域を特定する最小膜厚領域特定情報の入力を受け付ける。レシピ実行機能284は、最小膜厚領域特定情報の入力を受け付けると、累積膜厚データに記載された最小膜厚領域の膜厚値(累積膜厚値)及びエッチング比率と、記憶部236m内に保管されているクリーニングレシピに記載されているエッチングレートとを読み出して取得する。 The recipe execution function 284, for example, allows the operator to check the accumulated film thickness data displayed on the display unit provided with the operation terminal 236s and check the minimum film thickness area check box to input the minimum film thickness from the input / output unit. The input of the minimum film thickness area specifying information for specifying the thickness area is received. When the recipe execution function 284 receives input of the minimum film thickness region specifying information, the film thickness value (cumulative film thickness value) and the etching ratio of the minimum film thickness region described in the cumulative film thickness data, and the storage unit 236m The etching rate described in the stored cleaning recipe is read and acquired.
 そして、レシピ実行機能284は、取得した最小膜厚領域の膜厚値を、エッチングレートと最小膜厚領域のエッチング比率との積で除して(最小膜厚領域の累積膜厚値/(エッチングレート×最小膜厚領域のエッチング比率)を計算して)、反応性ガス供給時間を算出する。 Then, the recipe execution function 284 divides the acquired film thickness value of the minimum film thickness region by the product of the etching rate and the etching ratio of the minimum film thickness region (the cumulative film thickness value of the minimum film thickness region / (etching). (Rate × Etching ratio of minimum film thickness region))) to calculate the reactive gas supply time.
 ここで、反応性ガス供給時間の算出の具体例として、図9(b)を用いて説明する。図9(b)では、最小膜厚領域として例えば第1のパージ領域204aが指定されている。また、エッチング比率テーブルに記載された第1のパージ領域204aのエッチング比率は50%である。なお、累積膜厚データに記載された第1のパージ領域204aの膜厚値(累積膜厚値)は100nmであり、エッチングレートは10nm/分である。このとき、レシピ実行機能284は、第1のパージ領域204aの累積膜厚値を、エッチングレートと第1のパージ領域204aのエッチング比率との積で除して反応性ガス供給時間を算出する。すなわち、レシピ実行機能284により算出される反応性ガス供給時間は、100nm÷(10nm/分×50%)=20分となる。 Here, a specific example of the calculation of the reactive gas supply time will be described with reference to FIG. In FIG. 9B, for example, the first purge region 204a is designated as the minimum film thickness region. Further, the etching ratio of the first purge region 204a described in the etching ratio table is 50%. The film thickness value (cumulative film thickness value) of the first purge region 204a described in the cumulative film thickness data is 100 nm, and the etching rate is 10 nm / min. At this time, the recipe execution function 284 calculates the reactive gas supply time by dividing the cumulative film thickness value of the first purge region 204a by the product of the etching rate and the etching ratio of the first purge region 204a. That is, the reactive gas supply time calculated by the recipe execution function 284 is 100 nm ÷ (10 nm / min × 50%) = 20 minutes.
 レシピ実行機能284は、反応性ガス供給時間の算出が終了すると、操作部コントローラ236から取得したクリーニングレシピの内容を読み出し、クリーニングレシピの内容及び算出した反応性ガス供給時間に沿うようにバルブデジタルI/O13やSWデジタルI/O14を制御し、クリーニングレシピを実行する。 When the calculation of the reactive gas supply time is completed, the recipe execution function 284 reads the content of the cleaning recipe acquired from the operation unit controller 236, and adjusts the valve digital I so as to follow the content of the cleaning recipe and the calculated reactive gas supply time. / O13 and SW digital I / O14 are controlled to execute a cleaning recipe.
 レシピ実行機能284は、クリーニングレシピの実行を終了すると、算出した反応性ガス供給時間を後述の累積膜厚値更新機能285に送信する。 When the execution of the cleaning recipe is completed, the recipe execution function 284 transmits the calculated reactive gas supply time to the cumulative film thickness value update function 285 described later.
 なお、プロセスレシピやクリーニングレシピ内に複数の処理ステップ(例えば成膜ステップやエッチングステップ)が含まれている場合、レシピ実行機能284は、一の処理ステップが終了すると、一の処理ステップの実行終了の情報を後述の累積膜厚値更新機能285に送信する。そして、レシピ実行機能284は、後述の累積膜厚値更新機能285から累積膜厚データ更新終了の情報を受信すると、プロセスレシピ内又はクリーニングレシピ内の他の処理ステップがある場合は、その処理ステップの内容を読み出し、読み出した処理ステップを実行し、処理ステップの実行終了の情報を後述の累積膜厚値更新機能285に送信する。レシピ実行機能284は、プロセスレシピ内又はクリーニングレシピ内の全ての処理ステップの実行が終了するまで、この動作を繰り返す。 In addition, when a plurality of processing steps (for example, a film forming step and an etching step) are included in the process recipe and the cleaning recipe, the recipe execution function 284 terminates execution of one processing step when one processing step ends. Is transmitted to the cumulative film thickness update function 285 described later. When the recipe execution function 284 receives information on the completion of the update of the accumulated film thickness data from the later-described accumulated film thickness value update function 285, if there is another process step in the process recipe or the cleaning recipe, the process step Is read, the read processing step is executed, and information on the end of execution of the processing step is transmitted to the cumulative film thickness value update function 285 described later. The recipe execution function 284 repeats this operation until execution of all processing steps in the process recipe or the cleaning recipe is completed.
(累積膜厚値更新機能)  累積膜厚値更新機能285は、以下のように、累積膜厚値加算機能と累積膜厚値減算機能とを備えている。 (Cumulative film thickness value update function) 累積 The cumulative film thickness value update function 285 includes a cumulative film thickness value addition function and a cumulative film thickness value subtraction function as follows.
[累積膜厚値加算機能]  累積膜厚値更新機能285は、レシピ実行機能284からプロセスレシピの実行終了の情報を受け取ると、記憶部236m内に保管されているプロセスレシピに記載されている堆積レートを読み出す。累積膜厚値更新機能285は、プロセスレシピに記載されている原料ガス供給時間を読み出す。累積膜厚値更新機能285は、堆積レートに原料ガス供給時間を乗じて基準加算膜厚値を算出する。 [Cumulative film thickness value addition function] 累積 When the cumulative film thickness value update function 285 receives information on the completion of process recipe execution from the recipe execution function 284, the accumulation described in the process recipe stored in the storage unit 236m. Read rate. The cumulative film thickness update function 285 reads the source gas supply time described in the process recipe. The cumulative film thickness value update function 285 calculates a reference additional film thickness value by multiplying the deposition rate by the source gas supply time.
 累積膜厚値更新機能285は、プロセスレシピに記載されている堆積比率テーブル番号を読み出す。累積膜厚値更新機能285は、プロセスチャンバコントローラ239pが備える記憶装置内に保管されている堆積比率テーブルファイルの中から、読み出した堆積比率テーブル番号と一致する堆積比率テーブルを読み出す。累積膜厚値更新機能285は、上述のように算出した基準加算膜厚値に、堆積比率テーブルに記載された堆積比率をそれぞれ乗じることで、サセプタST1及び反応容器203内の各領域のそれぞれの加算膜厚値を算出する。 The cumulative film thickness value update function 285 reads the deposition ratio table number described in the process recipe. The cumulative film thickness value update function 285 reads a deposition ratio table that matches the read deposition ratio table number from the deposition ratio table file stored in the storage device included in the process chamber controller 239p. The cumulative film thickness value update function 285 multiplies the reference added film thickness value calculated as described above by the deposition ratio described in the deposition ratio table, respectively, so that each of the regions in the susceptor ST1 and the reaction vessel 203 can be used. The added film thickness value is calculated.
 累積膜厚値更新機能285は、プロセスチャンバコントローラ239pが備える記憶装置内に保管されている累積膜厚データを読み出す。累積膜厚値更新機能285は、読み出した累積膜厚データに記載されたそれぞれの累積膜厚値に、算出した加算膜厚値をそれぞれ加算して、累積膜厚データを更新する。すなわち、累積膜厚値更新機能285は、読み出した累積膜厚データに記載されているサセプタST1及び反応容器203内の各領域のそれぞれの累積膜厚値に、算出した加算膜厚値をそれぞれ加算して累積膜厚データを更新する。そして、累積膜厚値更新機能285は、更新した累積膜厚データを上述の累積膜厚表示機能283に送信する。 The cumulative film thickness update function 285 reads the cumulative film thickness data stored in the storage device provided in the process chamber controller 239p. The accumulated film thickness value update function 285 adds the calculated added film thickness value to each accumulated film thickness value described in the read accumulated film thickness data, and updates the accumulated film thickness data. That is, the cumulative film thickness value update function 285 adds the calculated additional film thickness values to the cumulative film thickness values of the respective regions in the susceptor ST1 and the reaction vessel 203 described in the read cumulative film thickness data. The accumulated film thickness data is updated. Then, the cumulative film thickness value update function 285 transmits the updated cumulative film thickness data to the cumulative film thickness display function 283 described above.
[累積膜厚値減算機能]  累積膜厚値更新機能285は、レシピ実行機能284から反応性ガス供給時間を受信すると、記憶部236m内に保管されているクリーニングレシピに記載されているエッチングレートを読み出す。累積膜厚値更新機能285は、エッチングレートに反応性ガス供給時間を乗じて基準減算膜厚値を算出する。 [Cumulative film thickness subtraction function] 累積 When the cumulative film thickness update function 285 receives the reactive gas supply time from the recipe execution function 284, the cumulative film thickness update function 285 calculates the etching rate described in the cleaning recipe stored in the storage unit 236m. read out. The cumulative film thickness update function 285 calculates a reference subtracted film thickness by multiplying the etching rate by the reactive gas supply time.
 累積膜厚値更新機能285は、クリーニングレシピに記載されているエッチング比率テーブル番号を読み出す。累積膜厚値更新機能285は、プロセスチャンバコントローラ239pが備える記憶装置内に保管されているエッチング比率テーブルファイルの中から、読み出したエッチング比率テーブル番号と一致するエッチング比率テーブルを読み出す。累積膜厚値更新機能285は、プロセスチャンバコントローラ239pが備える記憶装置内に保管されている累積膜厚データを読み出す。累積膜厚値更新機能285は、上述のように算出した基準減算膜厚値に、エッチング比率テーブルに記載されたエッチング比率をそれぞれ乗じることで、サセプタST1及び反応容器203内の各領域のそれぞれの減算膜厚値を算出する。 The cumulative film thickness value update function 285 reads the etching ratio table number described in the cleaning recipe. The cumulative film thickness update function 285 reads an etching ratio table that matches the read etching ratio table number from the etching ratio table file stored in the storage device provided in the process chamber controller 239p. The cumulative film thickness update function 285 reads the cumulative film thickness data stored in the storage device provided in the process chamber controller 239p. The cumulative film thickness value update function 285 multiplies the reference subtracted film thickness value calculated as described above by the etching ratio described in the etching ratio table, so that each of the regions in the susceptor ST1 and the reaction vessel 203 has the respective values. Subtract film thickness value is calculated.
 累積膜厚値更新機能285は、プロセスチャンバコントローラ239pが備える記憶装置内に保管されている累積膜厚データを読み出す。累積膜厚値更新機能285は、読み出した累積膜厚データに記載されたそれぞれの累積膜厚値から算出した減算膜厚値をそれぞれ減算して、累積膜厚データを更新する。すなわち、累積膜厚値更新機能285は、読み出した累積膜厚データに記載されているサセプタST1及び反応容器203内の各領域のそれぞれの累積膜厚値から、算出した減算膜厚値をそれぞれ減算して累積膜厚データを更新する。そして、累積膜厚値更新機能285は、更新した累積膜厚データを上述の累積膜厚表示機能283に送信する。 The cumulative film thickness update function 285 reads the cumulative film thickness data stored in the storage device provided in the process chamber controller 239p. The cumulative film thickness value update function 285 updates the cumulative film thickness data by subtracting the subtracted film thickness values calculated from the respective cumulative film thickness values described in the read cumulative film thickness data. That is, the cumulative film thickness value update function 285 subtracts the calculated subtracted film thickness value from the cumulative film thickness value of each region in the susceptor ST1 and the reaction vessel 203 described in the read cumulative film thickness data. The accumulated film thickness data is updated. Then, the cumulative film thickness value update function 285 transmits the updated cumulative film thickness data to the cumulative film thickness display function 283 described above.
 なお、プロセスレシピ内やクリーニングレシピ内に複数の処理ステップが含まれている場合、累積膜厚値更新機能285は、累積膜厚データの更新が終了したら、更新した累積膜厚データを累積膜厚表示機能283に送信するとともに、レシピ実行機能284に累積膜厚データ更新終了の情報を送信する。 When a plurality of processing steps are included in the process recipe or the cleaning recipe, the accumulated film thickness value update function 285, when the update of the accumulated film thickness data is completed, uses the updated accumulated film thickness data as the accumulated film thickness data. The information is transmitted to the display function 283, and information on the end of updating the accumulated film thickness data is transmitted to the recipe execution function 284.
(6)制御手段の動作  次に、本実施形態に係る制御部280の動作について、主に図10及び図11を用いて説明する。かかる動作は、半導体装置の製造工程の一工程として行われる。ここでは、プロセスレシピ内及びクリーニングレシピ内にそれぞれ、複数の処理ステップが含まれている場合について説明する。図10及び図11は、本実施形態に係る制御部280が実行する累積膜厚データの更新処理のフロー図である。 (6) Operation of Control Unit Next, the operation of the control unit 280 according to the present embodiment will be described mainly using FIG. 10 and FIG. Such an operation is performed as one step of the manufacturing process of the semiconductor device. Here, a case where a plurality of processing steps are included in each of the process recipe and the cleaning recipe will be described. 10 and 11 are flowcharts of the cumulative film thickness data update process executed by the control unit 280 according to the present embodiment.
(累積膜厚加算処理)[プロセスレシピ実行工程]  図10に示すように、入出力部がプロセスレシピを特定するレシピ特定情報の入力を受け付けると、レシピ開始機能281が、レシピ実行機能284に、レシピの実行開始の指示を送信する。レシピ実行機能284がレシピの実行開始の指示を受信すると、レシピ実行機能284は、操作部コントローラ236が備える記憶部236m内からレシピ特定情報により特定されるプロセスレシピを受信して取得する。 (Cumulative film thickness addition process) [Process Recipe Execution Step] As shown in FIG. 10, when the input / output unit receives an input of recipe specifying information for specifying a process recipe, the recipe start function 281 causes the recipe execution function 284 to Send instructions to start recipe execution. When the recipe execution function 284 receives an instruction to start executing the recipe, the recipe execution function 284 receives and acquires the process recipe specified by the recipe specifying information from the storage unit 236m included in the operation unit controller 236.
 レシピ実行機能284は、取得したプロセスレシピを読み出し、プロセスレシピに関連付けられている堆積比率テーブルファイルがあるか否かを判定する。プロセスレシピに関連付けられた堆積比率テーブルファイルがある場合は、その堆積比率テーブルファイルを操作部コントローラ236が備える記憶部236m内から自動で受信して取得する。 The recipe execution function 284 reads the acquired process recipe and determines whether there is a deposition ratio table file associated with the process recipe. When there is a deposition ratio table file associated with the process recipe, the deposition ratio table file is automatically received and acquired from the storage unit 236m provided in the operation unit controller 236.
 そして、レシピ実行機能284は、プロセスレシピに含まれる一の処理ステップの内容に沿うように、マスフローコントローラ234a~234gや、バルブ235a~235g、ヒータ218、APCバルブ243等を制御して処理ステップを実行する。レシピ実行機能284は、処理ステップの実行を終了すると、プロセスチャンバコントローラ239pが備える累積膜厚値更新機能285に、処理ステップの実行終了の情報を送信する。 The recipe execution function 284 controls the mass flow controllers 234a to 234g, the valves 235a to 235g, the heater 218, the APC valve 243 and the like so as to follow the contents of one processing step included in the process recipe. Execute. When the execution of the processing step is completed, the recipe execution function 284 transmits information on the end of execution of the processing step to the cumulative film thickness value update function 285 provided in the process chamber controller 239p.
[累積膜厚値加算工程]  累積膜厚値更新機能285が処理ステップの実行終了の情報を受信すると、累積膜厚値更新機能285は、プロセスレシピ(実行した処理ステップ)に記載されている堆積レートを読み出し、読み出した堆積レートが0(ゼロ)よりも大きいか否かを判定する。 [Cumulative film thickness value addition process] When the cumulative film thickness value update function 285 receives information on the end of execution of the processing step, the cumulative film thickness value update function 285 displays the deposition described in the process recipe (executed processing step). The rate is read, and it is determined whether or not the read deposition rate is greater than 0 (zero).
 累積膜厚値更新機能285は、堆積レートが0よりも大きいと判定した場合、プロセスレシピ(実行した処理ステップ)に記載されている原料ガス供給時間を読み出す。そして、累積膜厚値更新機能285は、読み出した堆積レートに原料ガス供給時間を乗じてサセプタST1上に堆積する堆積物の膜厚値(基準加算膜厚値)(A)を算出する。 The cumulative film thickness update function 285 reads the raw material gas supply time described in the process recipe (executed processing step) when it is determined that the deposition rate is greater than zero. The accumulated film thickness value update function 285 calculates the film thickness value (reference added film thickness value) (A) of the deposit deposited on the susceptor ST1 by multiplying the read deposition rate by the source gas supply time.
 なお、累積膜厚値更新機能285は、堆積レートが0であると判定した場合、レシピ実行機能284に累積膜厚データ更新終了の情報を送信し、レシピ実行機能284がプロセスレシピ内の全ての処理ステップがあるか否かを判定する。 If the cumulative film thickness value update function 285 determines that the deposition rate is 0, the cumulative film thickness data update completion information is transmitted to the recipe execution function 284, and the recipe execution function 284 transmits all information in the process recipe. It is determined whether there is a processing step.
 累積膜厚値更新機能285は、実行した処理ステップ(プロセスレシピ)に記載されている堆積比率テーブル番号が0であるか否かを判定する。なお、ここでは、堆積比率テーブル番号が0である(堆積比率テーブル番号=0)とは、プロセスレシピに堆積比率テーブルが関連付けられていないことを意味する。 The cumulative film thickness value update function 285 determines whether or not the deposition ratio table number described in the executed processing step (process recipe) is zero. Here, the deposition ratio table number being 0 (deposition ratio table number = 0) means that the deposition ratio table is not associated with the process recipe.
 累積膜厚値更新機能285は、堆積比率テーブル番号が0であると判定した場合、算出した基準加算膜厚値(A)を、サセプタST1及び反応容器203内の各領域のそれぞれの累積膜厚値にそれぞれ加算する加算膜厚値(B)とする。 When the accumulated film thickness value update function 285 determines that the deposition ratio table number is 0, the accumulated reference film thickness value (A) is used for the accumulated film thickness of each region in the susceptor ST1 and the reaction vessel 203. The added film thickness value (B) is added to each value.
 累積膜厚値更新機能285は、堆積比率テーブル番号が0ではないと判定した場合、実行した処理ステップ(プロセスレシピ)に記載されている堆積比率テーブル番号と一致する堆積比率テーブルを、堆積比率テーブルファイルから読み出す。累積膜厚値更新機能285は、読み出した堆積比率テーブルを参照して、サセプタST1及び反応容器203内の各領域のそれぞれの堆積比率を取得する。そして、累積膜厚値更新機能285は、上述の基準加算膜厚値(A)に、それぞれの堆積比率を乗じて、サセプタST1及び反応容器203内の各領域のそれぞれの加算膜厚値(B)を算出する。 When the accumulated film thickness value update function 285 determines that the deposition ratio table number is not 0, the deposition ratio table that matches the deposition ratio table number described in the executed processing step (process recipe) is displayed. Read from file. The cumulative film thickness value update function 285 refers to the read deposition ratio table and acquires the deposition ratio of each region in the susceptor ST1 and the reaction vessel 203. Then, the cumulative film thickness value update function 285 multiplies the above-mentioned reference additional film thickness value (A) by the respective deposition ratios, and adds the respective additional film thickness values (B of each region in the susceptor ST1 and the reaction vessel 203). ) Is calculated.
 そして、累積膜厚値更新機能285は、プロセスチャンバコントローラ239pの記憶装置内から、サセプタST1及び反応容器203内の各領域のそれぞれの累積膜厚値を記載した累積膜厚データを読み出す。累積膜厚値更新機能285は、読み出した累積膜厚データに記載されているサセプタST1及び反応容器203内の各領域それぞれの累積膜厚値に、算出した加算膜厚値(B)をそれぞれ加算して累積膜厚データを更新する。 Then, the cumulative film thickness value update function 285 reads cumulative film thickness data describing the cumulative film thickness values of the respective regions in the susceptor ST1 and the reaction vessel 203 from the storage device of the process chamber controller 239p. The accumulated film thickness value update function 285 adds the calculated added film thickness value (B) to the accumulated film thickness value of each region in the susceptor ST1 and the reaction vessel 203 described in the read accumulated film thickness data. The accumulated film thickness data is updated.
 累積膜厚値更新機能285は、累積膜厚テーブルの更新が終了したら、更新した累積膜厚テーブルを操作部コントローラ236が備える累積膜厚表示機能283に送信する。累積膜厚表示機能283は、受信した累積膜厚テーブルを操作端末236sが備える表示部に表示する。また、累積膜厚値更新機能285は、レシピ実行機能284に累積膜厚データ更新終了の情報を送信する。 When the update of the cumulative film thickness table is completed, the cumulative film thickness update function 285 transmits the updated cumulative film thickness table to the cumulative film thickness display function 283 provided in the operation unit controller 236. The cumulative film thickness display function 283 displays the received cumulative film thickness table on the display unit provided in the operation terminal 236s. Further, the cumulative film thickness value update function 285 transmits information on the completion of the cumulative film thickness data update to the recipe execution function 284.
 レシピ実行機能284は、累積膜厚値更新機能285から累積膜厚データ更新終了の情報を送信したら、プロセスレシピ内に含まれるすべての処理ステップを実行したか否かを判定する。レシピ実行機能284がプロセスレシピ内に含まれるすべての処理ステップを実行していないと判定した場合、レシピ実行機能284は、上述のプロセスレシピ実行処理及び累積膜厚値加算処理を、プロセスレシピ内に含まれるすべての処理ステップの実行が終了するまで繰り返し行う。 The recipe execution function 284 determines whether or not all the processing steps included in the process recipe have been executed when the cumulative film thickness data update end information is transmitted from the cumulative film thickness update function 285. When it is determined that the recipe execution function 284 has not executed all the processing steps included in the process recipe, the recipe execution function 284 performs the above-described process recipe execution process and cumulative film thickness value addition process in the process recipe. Repeat until all included processing steps have been executed.
(累積膜厚加算処理)[反応性ガス供給時間算出工程]  また、図11に示すように、入出力部がクリーニングレシピを特定するレシピ特定情報の入力を受け付けると、レシピ開始機能281が、レシピ実行機能284に、レシピの実行開始の指示を送信する。レシピ実行機能284がレシピの実行開始の指示を受信すると、レシピ実行機能284は、操作部コントローラ236が備える記憶部236m内からレシピ特定情報により特定されるクリーニングレシピを受信して取得する。 (Cumulative film thickness addition process) [Reactive gas supply time calculation step] ま た Also, as shown in FIG. 11, when the input / output unit receives input of recipe specifying information for specifying a cleaning recipe, the recipe start function 281 displays the recipe. An instruction to start executing the recipe is transmitted to the execution function 284. When the recipe execution function 284 receives an instruction to start executing the recipe, the recipe execution function 284 receives and acquires the cleaning recipe specified by the recipe specifying information from the storage unit 236m included in the operation unit controller 236.
 レシピ実行機能284は、取得したクリーニングレシピを読み出し、クリーニングレシピに関連付けられているエッチング比率テーブルファイルがあるか否かを判定する。クリーニングレシピに関連付けられたエッチング比率テーブルファイルがある場合は、そのエッチング比率テーブルファイルを操作部コントローラ236が備える記憶部236m内から自動で受信して取得する。 The recipe execution function 284 reads the acquired cleaning recipe and determines whether there is an etching ratio table file associated with the cleaning recipe. If there is an etching ratio table file associated with the cleaning recipe, the etching ratio table file is automatically received and acquired from the storage unit 236m included in the operation unit controller 236.
 そして、レシピ実行機能284は、クリーニングレシピ(実行する処理ステップ)に記載されているエッチングレートを読み出し、読み出したエッチングレートが0(ゼロ)であるか否かを判定する。 Then, the recipe execution function 284 reads the etching rate described in the cleaning recipe (processing step to be executed), and determines whether or not the read etching rate is 0 (zero).
 レシピ実行機能284は、エッチングレートが0であると判定した場合、クリーニングレシピの実行を終了する。 If the recipe execution function 284 determines that the etching rate is 0, the recipe execution function 284 ends the execution of the cleaning recipe.
 レシピ実行機能284は、エッチングレートが0ではないと判定した場合、プロセスチャンバコントローラ239pが備える記憶装置内に保管されている累積膜厚データを読み出し、読み出した累積膜厚データを操作端末236sが備える表示部に表示する。そして、入出力部がエッチング比率テーブルを特定するエッチング比率テーブル特定情報の入力を受け付けると、レシピ実行機能284は、記憶部236m内に保管されているエッチング比率テーブルファイルから、エッチング比率テーブル特定情報により特定されるエッチング比率テーブルを読み出し、操作端末236sが備える表示部に表示する。 When the recipe execution function 284 determines that the etching rate is not 0, the recipe terminal reads out the accumulated film thickness data stored in the storage device included in the process chamber controller 239p, and the operation terminal 236s includes the read accumulated film thickness data. Display on the display. When the input / output unit receives the input of the etching rate table specifying information for specifying the etching rate table, the recipe execution function 284 uses the etching rate table specifying information from the etching rate table file stored in the storage unit 236m. The specified etching ratio table is read and displayed on the display unit provided in the operation terminal 236s.
 また、入出力部が最小膜厚領域特定情報の入力を受け付けると、レシピ実行機能284は、最小膜厚領域特定情報により特定される領域の、累積膜厚データに記載された累積膜厚値及びエッチング比率テーブルに記載されたエッチング比率を読み出す。レシピ実行機能284は、最小膜厚領域の累積膜厚値を、エッチングレートとエッチング比率との積で除することで、反応性ガス供給時間を算出する。 In addition, when the input / output unit receives input of the minimum film thickness region specifying information, the recipe execution function 284 displays the cumulative film thickness value described in the cumulative film thickness data of the region specified by the minimum film thickness region specifying information and The etching ratio described in the etching ratio table is read out. The recipe execution function 284 calculates the reactive gas supply time by dividing the accumulated film thickness value in the minimum film thickness region by the product of the etching rate and the etching ratio.
[クリーニングレシピ実行工程]  レシピ実行機能284は、算出した反応性ガス供給時間が0であるか否かを判定する。レシピ実行機能284が算出した反応性ガス供給時間が0ではないと判定した場合、レシピ実行機能284は、取得したクリーニングレシピに含まれる一の処理ステップの内容及び算出した反応性ガス供給時間に沿うように、マスフローコントローラ234a~234gや、バルブ235a~235g、ヒータ218、APCバルブ243等を制御して処理ステップを実行する。レシピ実行機能284は、処理ステップの実行を終了すると、プロセスチャンバコントローラ239pが備える累積膜厚値更新機能285に、処理ステップの実行終了の情報及び反応性ガス供給時間の情報を送信する。 [Cleaning Recipe Execution Step] レ シ ピ The recipe execution function 284 determines whether or not the calculated reactive gas supply time is zero. When it is determined that the reactive gas supply time calculated by the recipe execution function 284 is not 0, the recipe execution function 284 follows the content of one processing step included in the acquired cleaning recipe and the calculated reactive gas supply time. As described above, the processing steps are executed by controlling the mass flow controllers 234a to 234g, the valves 235a to 235g, the heater 218, the APC valve 243, and the like. When the execution of the processing step is completed, the recipe execution function 284 transmits information on the completion of the execution of the processing step and information on the reactive gas supply time to the cumulative film thickness value update function 285 provided in the process chamber controller 239p.
[累積膜厚値減算工程]  累積膜厚値更新機能285は、レシピ実行機能284から処理ステップの実行終了の情報及び反応性ガス供給時間の情報を受信すると、累積膜厚値更新機能285は、クリーニングレシピ(実行した処理ステップ)に記載されているエッチングレートを読み出し、読み出したエッチングレートに受信した反応性ガス供給時間を乗じてサセプタST1上からエッチングして除去される堆積物の膜厚値(基準減算膜厚値)(C)を算出する。 [Cumulative film thickness value subtraction process] 累積 When the cumulative film thickness value update function 285 receives the information on the completion of the processing step and the reactive gas supply time from the recipe execution function 284, the cumulative film thickness value update function 285 Read the etching rate described in the cleaning recipe (executed processing step), multiply the read etching rate by the received reactive gas supply time, and the thickness value of the deposit removed by etching from above the susceptor ST1 ( Reference subtracted film thickness value (C) is calculated.
 累積膜厚値更新機能285は、実行した処理ステップ(クリーニングレシピ)に記載されているエッチング比率テーブル番号が0であるか否かを判定する。なお、ここでは、エッチング比率テーブル番号が0である(エッチング比率テーブル番号=0)とは、クリーニングレシピにエッチング比率テーブルが関連付けられていないことを意味する。 The accumulated film thickness value update function 285 determines whether or not the etching ratio table number described in the executed process step (cleaning recipe) is zero. Here, the etching ratio table number of 0 (etching ratio table number = 0) means that no etching ratio table is associated with the cleaning recipe.
 累積膜厚値更新機能285がエッチング比率テーブル番号が0であると判定した場合、累積膜厚値更新機能285は、算出した基準減算膜厚値(C)を、サセプタST1及び反応容器203内の各領域のそれぞれの累積膜厚値からそれぞれ減算する減算膜厚値(D)とする。 When the cumulative film thickness update function 285 determines that the etching ratio table number is 0, the cumulative film thickness update function 285 uses the calculated reference subtracted film thickness value (C) in the susceptor ST1 and the reaction vessel 203. A subtracted film thickness value (D) to be subtracted from each accumulated film thickness value in each region.
 累積膜厚値更新機能285はエッチング比率テーブル番号が0ではないと判定した場合、累積膜厚値更新機能285は、実行した処理ステップ(クリーニングレシピ)に記載されているエッチング比率テーブル番号と一致するエッチング比率テーブルを、エッチング比率テーブルファイルから読み出す。累積膜厚値更新機能285は、読み出したエッチング比率テーブルを参照して、サセプタST1及び反応容器203内の各領域のそれぞれのエッチング比率を取得する。そして、累積膜厚値更新機能285は、上述の基準減算膜厚値(C)に、それぞれのエッチング比率を乗じて、サセプタST1及び反応容器203内の各領域のそれぞれの減算膜厚値(D)を算出する。 When the cumulative film thickness update function 285 determines that the etching ratio table number is not 0, the cumulative film thickness update function 285 matches the etching ratio table number described in the executed processing step (cleaning recipe). The etching ratio table is read from the etching ratio table file. The cumulative film thickness update function 285 refers to the read etching ratio table and acquires the etching ratios of the respective regions in the susceptor ST1 and the reaction vessel 203. Then, the cumulative film thickness value update function 285 multiplies the above-mentioned reference subtracted film thickness value (C) by the respective etching ratios to obtain the respective subtracted film thickness values (D ) Is calculated.
 そして、累積膜厚値更新機能285は、プロセスチャンバコントローラ239pの記憶装置内から、サセプタST1及び反応容器203内の各領域のそれぞれの累積膜厚値を記載した累積膜厚データを読み出す。累積膜厚値更新機能285は、読み出した累積膜厚データに記載されているサセプタST1及び反応容器203内の各領域のそれぞれの累積膜厚値から、算出した減算膜厚値(D)をそれぞれ減算して累積膜厚データを更新する。 Then, the cumulative film thickness value update function 285 reads cumulative film thickness data describing the cumulative film thickness values of the respective regions in the susceptor ST1 and the reaction vessel 203 from the storage device of the process chamber controller 239p. The accumulated film thickness value update function 285 calculates subtracted film thickness values (D) calculated from the accumulated film thickness values of the respective regions in the susceptor ST1 and the reaction vessel 203 described in the read accumulated film thickness data. The accumulated film thickness data is updated by subtraction.
 累積膜厚値更新機能285は、累積膜厚テーブルの更新が終了したら、更新した累積膜厚テーブルを操作部コントローラ236が備える累積膜厚表示機能283に送信する。累積膜厚表示機能283は、受信した累積膜厚テーブルを操作端末236sが備える表示部に表示する。また、累積膜厚値更新機能285は、レシピ実行機能284に累積膜厚データ更新終了の情報を送信する。 When the update of the cumulative film thickness table is completed, the cumulative film thickness update function 285 transmits the updated cumulative film thickness table to the cumulative film thickness display function 283 provided in the operation unit controller 236. The cumulative film thickness display function 283 displays the received cumulative film thickness table on the display unit provided in the operation terminal 236s. Further, the cumulative film thickness value update function 285 transmits information on the completion of the cumulative film thickness data update to the recipe execution function 284.
 レシピ実行機能284は、累積膜厚値更新機能285から累積膜厚データ更新終了の情報を受信したら、クリーニングレシピ内に含まれるすべての処理ステップを実行したか否かを判定する。レシピ実行機能284がクリーニングレシピ内に含まれるすべての処理ステップを実行していないと判定した場合、レシピ実行機能284は、反応性ガス供給時間算出処理、クリーニングレシピ実行処理及び累積膜厚値減算処理を、クリーニングレシピ内に含まれるすべての処理ステップの実行が終了するまで繰り返し行う。 When the recipe execution function 284 receives the information about the completion of the cumulative film thickness data update from the cumulative film thickness update function 285, the recipe execution function 284 determines whether all the processing steps included in the cleaning recipe have been executed. When it is determined that the recipe execution function 284 has not executed all the processing steps included in the cleaning recipe, the recipe execution function 284 performs a reactive gas supply time calculation process, a cleaning recipe execution process, and a cumulative film thickness value subtraction process. Is repeated until the execution of all the processing steps included in the cleaning recipe is completed.
[実施例]  ここで、累積膜厚値更新機能285によって加算膜厚値を算出し、累積膜厚データを更新する一例を、主に図12を用いて説明する。図12(a)は累積膜厚値更新機能285が加算膜厚値を算出して、累積膜厚テーブルを更新する様子の一例を説明する図であり、図12(b)は、累積膜厚値更新機能285によって更新された累積膜厚テーブルに記載されたサセプタ及び各領域の累積膜厚値をグラフ化した図である。 [Example] Here, an example in which the added film thickness value is calculated by the cumulative film thickness value update function 285 and the cumulative film thickness data is updated will be mainly described with reference to FIG. FIG. 12A is a diagram for explaining an example of how the cumulative film thickness update function 285 calculates the added film thickness value and updates the cumulative film thickness table, and FIG. It is the figure which graphed the susceptor described in the cumulative film thickness table updated by the value update function 285, and the cumulative film thickness value of each area | region.
 図12に示すように、例えば、レシピ実行機能284によって、ウエハ200上に薄膜を形成する(成膜を行う)プロセスレシピが実行されたとする。このプロセスレシピには、堆積レートが10nm/min、原料ガス供給時間が1分と記載されている。また、プロセスレシピには、堆積比率テーブル番号が「1」の堆積比率テーブルが関連付けられている。この堆積比率テーブルには、第1の処理領域201aの堆積比率が80%、第2の処理領域201bの堆積比率が60%、第1のパージ領域204aの堆積比率が30%、第2のパージ領域204bの堆積比率が40%、サセプタST1の堆積比率が100%と記載されている。従って、累積膜厚値更新機能285によって算出される加算膜厚値は、第1の処理領域201aに面する仕切板205が8nm、第2の処理領域201bに面する仕切板205が6nm、第1のパージ領域204aに面する仕切板205が3nm、第2のパージ領域204bに面する仕切板205が4nm、サセプタST1が10nmである。そして、このプロセスレシピを例えば1000回実行した場合、第1の処理領域201aに面する仕切板205の累積膜厚は8μm、第2の処理領域201bに面する仕切板205の累積膜厚は6μm、第1のパージ領域204aに面する仕切板205の累積膜厚は3μm、第2のパージ領域204bに面する仕切板205の累積膜厚は4μm、サセプタST1の累積膜厚は10μmになる。 12, for example, it is assumed that a process recipe for forming a thin film (forming a film) on the wafer 200 is executed by the recipe execution function 284. This process recipe describes a deposition rate of 10 nm / min and a source gas supply time of 1 minute. The process recipe is associated with a deposition ratio table having a deposition ratio table number “1”. In this deposition ratio table, the deposition ratio of the first processing area 201a is 80%, the deposition ratio of the second processing area 201b is 60%, the deposition ratio of the first purge area 204a is 30%, and the second purge area It is described that the deposition ratio of the region 204b is 40% and the deposition ratio of the susceptor ST1 is 100%. Accordingly, the additional film thickness value calculated by the cumulative film thickness value update function 285 is 8 nm for the partition plate 205 facing the first processing region 201a, 6 nm for the partition plate 205 facing the second processing region 201b, The partition plate 205 facing the first purge region 204a is 3 nm, the partition plate 205 facing the second purge region 204b is 4 nm, and the susceptor ST1 is 10 nm. When this process recipe is executed 1000 times, for example, the cumulative film thickness of the partition plate 205 facing the first processing region 201a is 8 μm, and the cumulative film thickness of the partition plate 205 facing the second processing region 201b is 6 μm. The cumulative film thickness of the partition plate 205 facing the first purge region 204a is 3 μm, the cumulative film thickness of the partition plate 205 facing the second purge region 204b is 4 μm, and the cumulative film thickness of the susceptor ST1 is 10 μm.
 また、累積膜厚値更新機能285によって減算膜厚値を算出し、累積膜厚データを更新する一例を、主に図13~図16を用いて説明する。図13~図16はそれぞれ、累積膜厚値更新機能285が減算膜厚値を算出し、累積膜厚テーブルを更新する様子を示す図である。 Further, an example of calculating the subtracted film thickness value by the cumulative film thickness value update function 285 and updating the cumulative film thickness data will be described mainly with reference to FIGS. FIGS. 13 to 16 are diagrams showing how the cumulative film thickness update function 285 calculates the subtracted film thickness and updates the cumulative film thickness table.
 本実施例では、レシピ実行機能284によって、プロセスチャンバPM1内に堆積した堆積物をエッチングして除去するクリーニングレシピとして、4つの処理ステップを有するクリーニングレシピが実行される場合について説明する。なお、1番目の処理ステップをエッチングステップ1(図13)、2番目の処理ステップをエッチングステップ2(図14)、3番目の処理ステップをエッチングステップ3(図15)、4番目の処理ステップをエッチングステップ4(図16)とする。すなわち、本実施例では、サセプタST1及び反応容器203内の各領域のうち、堆積物の膜厚が小さい領域(堆積物の膜厚が小さい箇所)から順番に堆積物を除去していき、図12に示す累積膜厚値からサセプタST1及び反応容器203内の各領域の堆積物を除去する場合について説明する。 In this embodiment, a description will be given of a case where a cleaning recipe having four processing steps is executed as a cleaning recipe for etching and removing deposits accumulated in the process chamber PM1 by the recipe execution function 284. The first processing step is etching step 1 (FIG. 13), the second processing step is etching step 2 (FIG. 14), the third processing step is etching step 3 (FIG. 15), and the fourth processing step is performed. Let it be etching step 4 (FIG. 16). That is, in the present embodiment, the deposits are sequentially removed from the regions in the susceptor ST1 and the reaction vessel 203 where the deposit thickness is small (the portion where the deposit thickness is small). A case where the deposits in the respective regions in the susceptor ST1 and the reaction vessel 203 are removed from the accumulated film thickness value shown in FIG.
 まず、図13に示すように、レシピ実行機能284によって、エッチングステップ1のレシピが実行される。このエッチングステップ1のレシピには、エッチングレートが200nm/minと記載されている。また、このレシピには、エッチング比率テーブル番号が「1」のエッチング比率テーブルが関連付けられている。このエッチング比率テーブルには、第1の処理領域201a、第2の処理領域201b、第1のパージ領域204a及び第2のパージ領域204bのエッチング比率がそれぞれ50%、サセプタST1のエッチング比率が100%と記載されている。また、最小膜厚領域として、第1のパージ領域204aが指定されている。 First, as shown in FIG. 13, the recipe of the etching step 1 is executed by the recipe execution function 284. In the recipe of this etching step 1, the etching rate is described as 200 nm / min. In addition, an etching ratio table having an etching ratio table number “1” is associated with this recipe. In the etching ratio table, the etching ratios of the first processing region 201a, the second processing region 201b, the first purge region 204a, and the second purge region 204b are 50%, and the etching rate of the susceptor ST1 is 100%. It is described. The first purge region 204a is designated as the minimum film thickness region.
 従って、レシピ実行機能284は、第1のパージ領域204aの累積膜厚値及びエッチング比率を基に、エッチングステップ1での反応性ガス供給時間を算出する。すなわち、レシピ実行機能284によって算出される反応性ガス供給時間は、第1のパージ領域204aの累積膜厚値/(エッチングレート×第1のパージ領域204aの堆積比率)=3(μm)/(200(nm/min)×50(%))で30分となる。 Therefore, the recipe execution function 284 calculates the reactive gas supply time in the etching step 1 based on the accumulated film thickness value and the etching ratio in the first purge region 204a. That is, the reactive gas supply time calculated by the recipe execution function 284 is the cumulative film thickness value of the first purge region 204a / (etching rate × deposition ratio of the first purge region 204a) = 3 (μm) / ( 200 (nm / min) × 50 (%)) and 30 minutes.
 レシピ実行機能284は、算出した反応性ガス供給時間に基づき、クリーニングレシピを実行する。すなわち、エッチングステップ1では、図4に示すバルブ235a~235fを閉め、バルブ235gを開け、各領域に反応性ガスを30分間供給する。このとき、サセプタST1は回転させる。これにより、サセプタST1、第1の処理領域201aに面する仕切板205、第2の処理領域201bに面する仕切板205、第1のパージ領域204aに面する仕切板205及び第2のパージ領域204bに面する仕切板205がそれぞれエッチングされる。なお、第1の処理領域201a、第2の処理領域201b、第1のパージ領域204a及び第2のパージ領域204bにそれぞれ面する仕切板205のエッチング速度はそれぞれ同一である。 The recipe execution function 284 executes a cleaning recipe based on the calculated reactive gas supply time. That is, in the etching step 1, the valves 235a to 235f shown in FIG. 4 are closed, the valve 235g is opened, and a reactive gas is supplied to each region for 30 minutes. At this time, the susceptor ST1 is rotated. Accordingly, the susceptor ST1, the partition plate 205 facing the first processing region 201a, the partition plate 205 facing the second processing region 201b, the partition plate 205 facing the first purge region 204a, and the second purge region. Each of the partition plates 205 facing 204b is etched. Note that the etching rates of the partition plates 205 facing the first processing region 201a, the second processing region 201b, the first purge region 204a, and the second purge region 204b are the same.
 エッチングステップ1のレシピの実行終了後、累積膜厚値更新機能285によって算出される基準減算膜厚値は、エッチングレート×反応性ガス供給時間=200nm/min×30分で6μmとなる。エッチング比率テーブルを参照して、累積膜厚値更新機能285によって算出される第1の処理領域201a、第2の処理領域201b、第1のパージ領域204a及び第2のパージ領域204bの減算膜厚値はそれぞれ3μm、サセプタST1の減算膜厚値は6μmとなる。 After the execution of the recipe in etching step 1, the reference subtracted film thickness value calculated by the cumulative film thickness value update function 285 is 6 μm when the etching rate × reactive gas supply time = 200 nm / min × 30 minutes. With reference to the etching ratio table, the subtracted film thicknesses of the first processing region 201a, the second processing region 201b, the first purge region 204a, and the second purge region 204b calculated by the cumulative film thickness value update function 285. Each value is 3 μm, and the subtracted film thickness value of the susceptor ST1 is 6 μm.
 累積膜厚値更新機能285は、図12(b)に示す累積膜厚データから算出した各減算膜厚値をそれぞれ減算して、図13に示すように累積膜厚データを更新する。その結果、各領域の累積膜厚値(残膜厚値)は、第1の処理領域201aが5μm、第2の処理領域201bが3μm、第1のパージ領域204aが0μm、第2のパージ領域204bが1μm、サセプタST1が4μmとなる。 The cumulative film thickness value update function 285 subtracts each subtracted film thickness value calculated from the cumulative film thickness data shown in FIG. 12B, and updates the cumulative film thickness data as shown in FIG. As a result, the accumulated film thickness value (remaining film thickness value) of each region is 5 μm for the first processing region 201a, 3 μm for the second processing region 201b, 0 μm for the first purge region 204a, and the second purge region. 204b is 1 μm, and the susceptor ST1 is 4 μm.
 なお、上述したように、サセプタST1は、加熱部としてのヒータ218を内包する。このため、サセプタST1の温度は、第1の処理領域201a、第2の処理領域201b、第1のパージ領域204a、第2のパージ領域204b内のそれぞれの温度(各領域を構成する反応容器203の内壁や天井、仕切板205の側面等の温度)と比べて高くなることが多い。従って、本実施例(図13)では、サセプタST1のエッチング比率は、各領域の2倍とした。 Note that, as described above, the susceptor ST1 includes the heater 218 as a heating unit. For this reason, the temperature of the susceptor ST1 is the temperature in each of the first processing region 201a, the second processing region 201b, the first purge region 204a, and the second purge region 204b (reaction vessel 203 constituting each region). The temperature of the inner wall and ceiling of the wall, the temperature of the side surface of the partition plate 205, and the like is often high. Therefore, in this embodiment (FIG. 13), the etching ratio of the susceptor ST1 is set to double that of each region.
 エッチングステップ1のレシピの実行が終了した後、図14に示すように、レシピ実行機能284によって、エッチングステップ2のレシピが実行される。このエッチングステップ2のレシピには、エッチングレートが200nm/minと記載されている。また、このレシピには、エッチング比率テーブル番号が「2」のエッチング比率テーブルが関連付けられている。このエッチング比率テーブルには、第1の処理領域201a、第2の処理領域201b及び第2のパージ領域204bのエッチング比率がそれぞれ50%、第1のパージ領域204aのエッチング比率が0%と記載されている。また、サセプタST1のエッチング比率は75%と記載されている。これは、サセプタST1は回転されるため、サセプタST1が第1のパージ領域204aを通過する間は、サセプタST1上の堆積物はエッチングされないためである。また、最小膜厚領域として、第2のパージ領域204bが指定されている。 After the execution of the recipe of etching step 1 is completed, the recipe of etching step 2 is executed by the recipe execution function 284 as shown in FIG. In the recipe of this etching step 2, the etching rate is described as 200 nm / min. In addition, an etching ratio table with an etching ratio table number “2” is associated with this recipe. In this etching ratio table, the etching ratio of the first processing area 201a, the second processing area 201b, and the second purge area 204b is 50%, and the etching ratio of the first purge area 204a is 0%. ing. Further, the etching rate of the susceptor ST1 is described as 75%. This is because, since the susceptor ST1 is rotated, the deposit on the susceptor ST1 is not etched while the susceptor ST1 passes through the first purge region 204a. Further, the second purge region 204b is designated as the minimum film thickness region.
 従って、レシピ実行機能284は、第2のパージ領域204bの累積膜厚値及びエッチング比率を基に、エッチングステップ2での反応性ガス供給時間を算出する。すなわち、レシピ実行機能284によって算出される反応性ガス供給時間は、第2のパージ領域204bの累積膜厚値/(エッチングレート×第2のパージ領域204bの堆積比率)=1(μm)/(200(nm/min)×50(%))で10分となる。 Therefore, the recipe execution function 284 calculates the reactive gas supply time in the etching step 2 based on the accumulated film thickness value and the etching ratio in the second purge region 204b. That is, the reactive gas supply time calculated by the recipe execution function 284 is the cumulative film thickness value of the second purge region 204b / (etching rate × deposition ratio of the second purge region 204b) = 1 (μm) / ( 200 (nm / min) × 50 (%)) and 10 minutes.
 レシピ実行機能284は、算出した反応性ガス供給時間に基づき、クリーニングレシピを実行する。すなわち、エッチングステップ2では、図4に示すバルブ235a~235d,235fを閉め、バルブ235gを開けて反応性ガスを10分間供給する。このとき、第1のパージ領域204aには反応性ガスが供給されないように、バルブ235gを開けるとともに、バルブ235eを開け、第1のパージ領域204aに不活性ガスを供給する。また、サセプタST1は回転させる。これにより、サセプタST1、第1の処理領域201aに面する仕切板205、第2の処理領域201bに面する仕切板205及び第2のパージ領域204bに面する仕切板205にそれぞれ堆積された堆積物がそれぞれエッチングされる。 The recipe execution function 284 executes a cleaning recipe based on the calculated reactive gas supply time. That is, in the etching step 2, the valves 235a to 235d and 235f shown in FIG. 4 are closed, the valve 235g is opened, and the reactive gas is supplied for 10 minutes. At this time, the valve 235g is opened and the valve 235e is opened so that the reactive gas is not supplied to the first purge region 204a, and the inert gas is supplied to the first purge region 204a. Further, the susceptor ST1 is rotated. Thus, the deposits deposited on the susceptor ST1, the partition plate 205 facing the first processing region 201a, the partition plate 205 facing the second processing region 201b, and the partition plate 205 facing the second purge region 204b, respectively. Each object is etched.
 エッチングステップ2のレシピの実行終了後、累積膜厚値更新機能285によって算出される基準減算膜厚値は、エッチングレート×反応性ガス供給時間=200nm/min×10分で2μmとなる。エッチング比率テーブルを参照して、累積膜厚値更新機能285によって算出される第1の処理領域201a、第2の処理領域201b及び第2のパージ領域204bの減算膜厚値はそれぞれ1μm、第1のパージ領域204aの減算膜厚値は0μmサセプタST1の減算膜厚値は1.5μmとなる。 After the execution of the recipe in the etching step 2, the reference subtracted film thickness value calculated by the cumulative film thickness value update function 285 is 2 μm when the etching rate × reactive gas supply time = 200 nm / min × 10 minutes. With reference to the etching ratio table, the subtracted film thickness values of the first processing region 201a, the second processing region 201b, and the second purge region 204b calculated by the cumulative film thickness value update function 285 are 1 μm and first, respectively. The subtracted film thickness value of the purge region 204a is 0 μm, and the subtracted film thickness value of the susceptor ST1 is 1.5 μm.
 累積膜厚値更新機能285は、図13に示す累積膜厚データから算出した各減算膜厚値をそれぞれ減算して、図14に示すように累積膜厚データを更新する。その結果、各領域の累積膜厚値(残膜厚値)は、第1の処理領域201aが4μm、第2の処理領域201bが2μm、第1のパージ領域204aが0μm、第2のパージ領域204bが0μm、サセプタST1が2.5μmとなる。 The accumulated film thickness value update function 285 subtracts each subtracted film thickness value calculated from the accumulated film thickness data shown in FIG. 13, and updates the accumulated film thickness data as shown in FIG. As a result, the accumulated film thickness value (remaining film thickness value) of each region is 4 μm for the first processing region 201a, 2 μm for the second processing region 201b, 0 μm for the first purge region 204a, and the second purge region. 204b is 0 μm, and the susceptor ST1 is 2.5 μm.
 エッチングステップ2のレシピの実行が終了した後、図15に示すように、レシピ実行機能284によって、エッチングステップ3のレシピが実行される。エッチングステップ3のレシピには、エッチングレートが200nm/minと記載されている。また、このレシピには、エッチング比率テーブル番号が「3」のエッチング比率テーブルが関連付けられている。このエッチング比率テーブルには、第1の処理領域201a及び第2の処理領域201bのエッチング比率がそれぞれ50%、第1のパージ領域204a及び第2のパージ領域204bのエッチング比率がそれぞれ0%と記載されている。また、サセプタST1のエッチング比率は50%と記載されている。これは、サセプタST1は回転されるため、サセプタST1が第1のパージ領域204a及び第2のパージ領域204bを通過する間は、サセプタST1上の堆積物はエッチングされないためである。また、最小膜厚領域として、第2の処理領域201bが指定されている。 After the execution of the recipe in the etching step 2 is completed, the recipe in the etching step 3 is executed by the recipe execution function 284 as shown in FIG. In the recipe of the etching step 3, the etching rate is described as 200 nm / min. In addition, an etching ratio table having an etching ratio table number “3” is associated with this recipe. In this etching ratio table, the etching ratio of the first processing area 201a and the second processing area 201b is 50%, and the etching ratio of the first purge area 204a and the second purge area 204b is 0%, respectively. Has been. Further, the etching rate of the susceptor ST1 is described as 50%. This is because, since the susceptor ST1 is rotated, deposits on the susceptor ST1 are not etched while the susceptor ST1 passes through the first purge region 204a and the second purge region 204b. Further, the second processing area 201b is designated as the minimum film thickness area.
 従って、レシピ実行機能284は、第2の処理領域201bの累積膜厚値及びエッチング比率を基に、エッチングステップ3での反応性ガス供給時間を算出する。すなわち、レシピ実行機能284によって算出される反応性ガス供給時間は、第2の処理領域201bの累積膜厚値/(エッチングレート×第2の処理領域201bの堆積比率)=2(μm)/(200(nm/min)×50(%))で20分となる。 Therefore, the recipe execution function 284 calculates the reactive gas supply time in the etching step 3 based on the accumulated film thickness value and the etching ratio of the second processing region 201b. That is, the reactive gas supply time calculated by the recipe execution function 284 is the cumulative film thickness value of the second processing region 201b / (etching rate × deposition ratio of the second processing region 201b) = 2 (μm) / ( 200 (nm / min) × 50 (%)) and 20 minutes.
 レシピ実行機能284は、算出した反応性ガス供給時間に基づき、クリーニングレシピを実行する。すなわち、エッチングステップ3では、図4に示すバルブ235a~235dを閉め、バルブ235gを開けて反応性ガスを20分間供給する。このとき、第1のパージ領域204a及び第2のパージ領域204bには、反応性ガスが供給されないように、バルブ235gを開けるとともに、バルブ235e及びバルブ235fを開け、第1のパージ領域204a及び第2のパージ領域に不活性ガスを供給する。また、サセプタST1は回転させる。これにより、サセプタST1、第1の処理領域201aに面する仕切板205及び第2の処理領域201bに面する仕切板205にそれぞれ堆積した堆積物がエッチングされる。 The recipe execution function 284 executes a cleaning recipe based on the calculated reactive gas supply time. That is, in the etching step 3, the valves 235a to 235d shown in FIG. 4 are closed, the valve 235g is opened, and the reactive gas is supplied for 20 minutes. At this time, the valve 235g is opened and the valve 235e and the valve 235f are opened so that the reactive gas is not supplied to the first purge region 204a and the second purge region 204b, and the first purge region 204a and the second purge region 204b are opened. An inert gas is supplied to the second purge region. Further, the susceptor ST1 is rotated. Thus, the deposits deposited on the susceptor ST1, the partition plate 205 facing the first processing region 201a, and the partition plate 205 facing the second processing region 201b are etched.
 エッチングステップ3のレシピの実行終了後、累積膜厚値更新機能285によって算出される基準減算膜厚値は、エッチングレート×反応性ガス供給時間=200nm/min×20分で4μmとなる。エッチング比率テーブルを参照して、累積膜厚値更新機能285によって算出される第1の処理領域201a、第2の処理領域201b及びサセプタST1の減算膜厚値はそれぞれ2μm、第1のパージ領域204a及び第2のパージ領域204bの減算膜厚値はそれぞれ0μmとなる。 After the execution of the recipe in etching step 3, the reference subtracted film thickness value calculated by the cumulative film thickness value update function 285 is 4 μm when the etching rate × reactive gas supply time = 200 nm / min × 20 minutes. With reference to the etching ratio table, the subtracted film thickness values of the first processing region 201a, the second processing region 201b, and the susceptor ST1 calculated by the cumulative film thickness value update function 285 are 2 μm and the first purge region 204a, respectively. The subtracted film thickness values of the second purge region 204b are each 0 μm.
 累積膜厚値更新機能285は、図14に示す累積膜厚データから算出した各減算膜厚値をそれぞれ減算して、図15に示すように累積膜厚データを更新する。その結果、各領域の累積膜厚値(残膜厚値)は、第1の処理領域201aが2μm、第2の処理領域201bが0μm、第1のパージ領域204aが0μm、第2のパージ領域204bが0μm、サセプタST1が0.5μmとなる。 The cumulative film thickness value update function 285 subtracts each subtracted film thickness value calculated from the cumulative film thickness data shown in FIG. 14 and updates the cumulative film thickness data as shown in FIG. As a result, the accumulated film thickness value (remaining film thickness value) of each region is 2 μm for the first processing region 201a, 0 μm for the second processing region 201b, 0 μm for the first purge region 204a, and the second purge region. 204b is 0 μm, and the susceptor ST1 is 0.5 μm.
 エッチングステップ3のレシピの実行が終了した後、図16に示すように、レシピ実行機能284によって、エッチングステップ4のレシピが実行される。エッチングステップ4のレシピには、エッチングレートが200nm/minと記載されている。また、このレシピには、エッチング比率テーブル番号が「4」のエッチング比率テーブルが関連付けられている。このエッチング比率テーブルには、第1の処理領域201aのエッチング比率が50%、第2の処理領域201b、第1のパージ領域204a及び第2のパージ領域204bのエッチング比率がそれぞれ0%と記載されている。また、サセプタST1のエッチング比率は25%と記載されている。これは、サセプタST1は回転されるため、サセプタST1が第2の処理領域201b、第1のパージ領域204a及び第2のパージ領域204bを通過する間は、サセプタST1上の堆積物はエッチングされないためである。また、最小膜厚領域として、第1の処理領域201aが指定されている。 After the execution of the recipe in the etching step 3 is completed, the recipe in the etching step 4 is executed by the recipe execution function 284 as shown in FIG. In the recipe of the etching step 4, the etching rate is described as 200 nm / min. In addition, an etching ratio table having an etching ratio table number “4” is associated with this recipe. In this etching ratio table, the etching ratio of the first processing region 201a is 50%, and the etching ratios of the second processing region 201b, the first purge region 204a, and the second purge region 204b are each 0%. ing. Further, the etching rate of the susceptor ST1 is described as 25%. This is because, since the susceptor ST1 is rotated, deposits on the susceptor ST1 are not etched while the susceptor ST1 passes through the second processing region 201b, the first purge region 204a, and the second purge region 204b. It is. Further, the first processing area 201a is designated as the minimum film thickness area.
 従って、レシピ実行機能284は、第1の処理領域201aの累積膜厚値及びエッチング比率を基に、エッチングステップ4での反応性ガス供給時間を算出する。すなわち、レシピ実行機能284によって算出される反応性ガス供給時間は、第1の処理領域201aの累積膜厚値/(エッチングレート×第1の処理領域201aの堆積比率)=2(μm)/(200(nm/min)×50(%))で20分となる。 Therefore, the recipe execution function 284 calculates the reactive gas supply time in the etching step 4 based on the accumulated film thickness value and the etching ratio of the first processing region 201a. That is, the reactive gas supply time calculated by the recipe execution function 284 is the cumulative film thickness value of the first processing region 201a / (etching rate × deposition ratio of the first processing region 201a) = 2 (μm) / ( 200 (nm / min) × 50 (%)) and 20 minutes.
 レシピ実行機能284は、算出した反応性ガス供給時間に基づき、クリーニングレシピを実行する。すなわち、エッチングステップ4では、図4に示すバルブ235a~235cを閉め、バルブ235gを開けて反応性ガスを20分間供給する。このとき、第2の処理領域201b、第1のパージ領域204a及び第2のパージ領域204bには、反応性ガスが供給されないように、バルブ235gを開けるとともに、バルブ235d、バルブ235e及びバルブ235fを開け、第2の処理領域201b、第1のパージ領域204a及び第2のパージ領域204bに不活性ガスを供給する。また、サセプタST1は回転させる。これにより、サセプタST1及び第1の処理領域201aに面する仕切板205に堆積された堆積物がそれぞれエッチングされる。 The recipe execution function 284 executes a cleaning recipe based on the calculated reactive gas supply time. That is, in the etching step 4, the valves 235a to 235c shown in FIG. 4 are closed, the valve 235g is opened, and the reactive gas is supplied for 20 minutes. At this time, the valve 235g is opened and the valve 235d, the valve 235e, and the valve 235f are set so that the reactive gas is not supplied to the second processing region 201b, the first purge region 204a, and the second purge region 204b. The inert gas is supplied to the second processing region 201b, the first purge region 204a, and the second purge region 204b. Further, the susceptor ST1 is rotated. Thereby, the deposits deposited on the partition plate 205 facing the susceptor ST1 and the first processing region 201a are respectively etched.
 エッチングステップ4のレシピの実行終了後、累積膜厚値更新機能285によって算出される基準減算膜厚値は、エッチングレート×反応性ガス供給時間=200nm/min×20分で4μmとなる。エッチング比率テーブルを参照して、累積膜厚値更新機能285によって算出される第1の処理領域201aの減算膜厚値は2μm、第2の処理領域201b、第1のパージ領域204a及び第2のパージ領域204bの減算膜厚値はそれぞれ0μm、サセプタST1の減算膜厚値は1μmとなる。 After the execution of the recipe in etching step 4, the reference subtracted film thickness value calculated by the cumulative film thickness value update function 285 is 4 μm when the etching rate × reactive gas supply time = 200 nm / min × 20 minutes. With reference to the etching ratio table, the subtracted film thickness value of the first processing region 201a calculated by the cumulative film thickness value update function 285 is 2 μm, the second processing region 201b, the first purge region 204a, and the second The subtracted film thickness value of the purge region 204b is 0 μm, and the subtracted film thickness value of the susceptor ST1 is 1 μm.
 累積膜厚値更新機能285は、図15に示す累積膜厚データから算出した各減算膜厚値をそれぞれ減算して、図16に示すように累積膜厚データを更新する。その結果、各領域の累積膜厚値(残膜厚値)は、第1の処理領域201aが0μm、第2の処理領域201bが0μm、第1のパージ領域204aが0μm、第2のパージ領域204bが0μm、サセプタST1が0μmとなる。 The cumulative film thickness value update function 285 subtracts each subtracted film thickness value calculated from the cumulative film thickness data shown in FIG. 15, and updates the cumulative film thickness data as shown in FIG. As a result, the accumulated film thickness value (remaining film thickness value) of each region is 0 μm for the first processing region 201a, 0 μm for the second processing region 201b, 0 μm for the first purge region 204a, and the second purge region. 204b is 0 μm, and susceptor ST1 is 0 μm.
 なお、本実施例では、サセプタST1は0.5μmオーバーエッチングされることになる。この際は、例えば、クリーニングレシピの処理温度、反応性ガスの供給流量、圧力などの処理条件を変更することで、ドメインとサセプタとのエッチング比率のを50:100から50:95等にチューニング可能である。その結果、サセプタST1に発生するオーバーエッチング量を極めて小さい値に補正することができる。 In this embodiment, the susceptor ST1 is overetched by 0.5 μm. In this case, for example, the etching ratio between the domain and the susceptor can be tuned from 50: 100 to 50:95 by changing the processing conditions such as the processing temperature of the cleaning recipe, the supply flow rate of the reactive gas, and the pressure. It is. As a result, the amount of overetching generated in the susceptor ST1 can be corrected to an extremely small value.
(7)本実施形態に係る効果  本実施形態によれば、以下に示す1つまたは複数の効果を奏する。 (7) Effects according to the present embodiment According to the present embodiment, the following one or more effects are achieved.
(a)本実施形態によれば、反応容器203内の各領域(すなわち第1の処理領域201a、第2の処理領域201b、第1のパージ領域204a及び第2のパージ領域204b)に分配するように反応性ガスを供給する反応性ガス供給部を備えている。また、第1の処理領域201a内に不活性ガスを供給する第1の不活性ガス供給部252、第2の処理領域201b内に不活性ガスを供給する第2の不活性ガス供給部254、第1のパージ領域204a内に不活性ガスを供給する第3の不活性ガス供給部255、第2のパージ領域204b内に不活性ガスを供給する第4の不活性ガス供給部256を備えている。そして、反応容器203内の各領域に反応性ガスを供給する際、反応容器203内の各領域に面する仕切板205のそれぞれの堆積物の膜厚値に応じて、反応容器203内の各領域に供給される不活性ガスの供給流量をそれぞれ調整している。すなわち、例えば第1のパージ領域204aに面する仕切板205の堆積物の膜厚値が0(ゼロ)である場合、第1のパージ領域204a内には反応性ガスが供給されないように、第1のパージ領域204a内に供給される不活性ガスの供給量を調整している。これにより、反応容器203内の各部品でオーバーエッチングが発生することを抑制でき、プロセスチャンバPM1内の各部品に生じる損傷を低減できる。 (A) According to the present embodiment, distribution is performed to each region in the reaction vessel 203 (that is, the first processing region 201a, the second processing region 201b, the first purge region 204a, and the second purge region 204b). Thus, a reactive gas supply unit for supplying the reactive gas is provided. In addition, a first inert gas supply unit 252 that supplies an inert gas into the first processing region 201a, a second inert gas supply unit 254 that supplies an inert gas into the second processing region 201b, A third inert gas supply unit 255 that supplies an inert gas into the first purge region 204a and a fourth inert gas supply unit 256 that supplies an inert gas into the second purge region 204b are provided. Yes. And when supplying reactive gas to each area | region in the reaction container 203, according to the film thickness value of each deposit of the partition plate 205 which faces each area | region in the reaction container 203, each in the reaction container 203 The supply flow rate of the inert gas supplied to the region is adjusted. That is, for example, when the film thickness value of the deposit on the partition plate 205 facing the first purge region 204a is 0 (zero), the reactive gas is not supplied into the first purge region 204a. The supply amount of the inert gas supplied into one purge region 204a is adjusted. Thereby, it can suppress that overetching generate | occur | produces in each component in the reaction container 203, and the damage which arises in each component in process chamber PM1 can be reduced.
(b)本実施形態によれば、サセプタST1及び反応容器203内の各領域のうち、堆積物の膜厚値が小さい領域から順番に堆積物を除去している。すなわち、最小膜厚領域から順番に堆積物の膜厚値が0(ゼロ)になるように、堆積物を除去する処理を行っている。これにより、反応容器203内の各部品でオーバーエッチングが発生することをより抑制できる。 (B) According to the present embodiment, the deposits are sequentially removed from the regions in the susceptor ST1 and the reaction vessel 203 in the order of the thickness of the deposits. That is, the deposit is removed so that the thickness value of the deposit becomes 0 (zero) in order from the minimum thickness region. Thereby, it can suppress more that overetching generate | occur | produces in each component in the reaction container 203. FIG.
(c)本実施形態によれば、制御部280は、サセプタST1又は反応容器203内の各領域の内、最小膜厚領域の膜厚値を、エッチングレートと最小膜厚領域のエッチング比率との積で除して反応性ガスの供給時間を算出している。これにより、反応容器203内の各部品でオーバーエッチングが発生することをより抑制できる。 (C) According to the present embodiment, the control unit 280 determines the thickness value of the minimum film thickness region of each region in the susceptor ST1 or the reaction vessel 203 as the etching rate and the etching ratio of the minimum film thickness region. The reactive gas supply time is calculated by dividing by the product. Thereby, it can suppress more that overetching generate | occur | produces in each component in the reaction container 203. FIG.
(d)本実施形態によれば、反応性ガス供給部257から反応容器203内の各領域に反応性ガスを供給する際、堆積物が堆積していない領域には反応性ガスが供給されないように、不活性ガスの供給流量を調整している。すなわち、堆積物の除去が終了した領域(堆積物の累積膜厚値が0(ゼロ)である領域)には、不活性ガス供給部から不活性ガスを供給し、反応性ガスが供給されないようにしている。これにより、堆積物が堆積していない領域でオーバーエッチングが発生することを抑制できる。従って、反応容器203内の各部品でオーバーエッチングが発生することをより抑制できる。 (D) According to this embodiment, when the reactive gas is supplied from the reactive gas supply unit 257 to each region in the reaction vessel 203, the reactive gas is not supplied to the region where the deposit is not deposited. In addition, the supply flow rate of the inert gas is adjusted. That is, the inert gas is supplied from the inert gas supply unit to the region where the deposit removal is completed (the region where the accumulated film thickness value of the deposit is 0 (zero)), and the reactive gas is not supplied. I have to. Thereby, it can suppress that overetching generate | occur | produces in the area | region where the deposit is not deposited. Therefore, it is possible to further suppress the occurrence of overetching in each component in the reaction vessel 203.
(e)本実施形態によれば、サセプタST1及び反応容器203内の各領域に面する仕切板205の少なくともいずれかの堆積物の累積膜厚値が、他の箇所の堆積物の累積膜厚値と異なっている。このようにサセプタST1及び反応容器203内の各領域で堆積物の膜厚値が異なっていても、反応容器203内の各部品でオーバーエッチングを発生させることなく、ドライクリーニング法でクリーニングを行うことができる。従って、従来のウェットクリーニング法によるクリーニングの場合と比べて、装置の稼働効率を向上させることができる。 (E) According to the present embodiment, the cumulative film thickness value of at least one deposit on the partition plate 205 facing each region in the susceptor ST1 and the reaction vessel 203 is equal to the cumulative film thickness of the deposit in other locations. It is different from the value. Thus, even if the film thickness values of the deposits are different in each region in the susceptor ST1 and the reaction vessel 203, cleaning is performed by the dry cleaning method without causing overetching in each component in the reaction vessel 203. Can do. Therefore, the operating efficiency of the apparatus can be improved as compared with the case of cleaning by the conventional wet cleaning method.
(f)本実施形態によれば、制御部280は、堆積物が堆積する堆積レートに、原料ガス供給部から供給される原料ガスの供給時間を乗じることで、サセプタST1に堆積する堆積物の膜厚値を算出している。また、制御部280は、サセプタST1に堆積する堆積物の膜厚値に所定の堆積比率を乗じることで、反応容器203内の各領域に面する仕切板205に堆積する堆積物の膜厚値をそれぞれ算出している。また、制御部280は、堆積物を除去するエッチングレートに反応性ガスの供給時間を乗じることで、サセプタST1から除去される堆積物の膜厚値を算出している。また、制御部280は、サセプタST1から除去される堆積物の膜厚値に所定のエッチング比率を乗じることで、反応容器203内の各領域に面する仕切板205から除去される堆積物の膜厚値をそれぞれ算出している。これにより、サセプタST1及び反応容器203内の各領域に面する仕切板205の累積膜厚をより確実に管理できる。従って、反応容器203内の各部品でオーバーエッチングが発生することをより抑制できる。 (F) According to the present embodiment, the control unit 280 multiplies the deposition rate at which deposits are deposited by the supply time of the source gas supplied from the source gas supply unit, so that the deposits deposited on the susceptor ST1 The film thickness value is calculated. In addition, the control unit 280 multiplies the film thickness value of the deposit deposited on the susceptor ST1 by a predetermined deposition ratio, so that the film thickness value of the deposit deposited on the partition plate 205 facing each region in the reaction vessel 203 is obtained. Are calculated respectively. Further, the control unit 280 calculates the thickness value of the deposit removed from the susceptor ST1 by multiplying the etching rate for removing the deposit by the supply time of the reactive gas. Further, the control unit 280 multiplies the film thickness value of the deposit removed from the susceptor ST1 by a predetermined etching ratio, thereby removing the deposit film removed from the partition plate 205 facing each region in the reaction vessel 203. Each thickness value is calculated. Thereby, the cumulative film thickness of the partition plate 205 facing each region in the susceptor ST1 and the reaction vessel 203 can be managed more reliably. Therefore, it is possible to further suppress the occurrence of overetching in each component in the reaction vessel 203.
(g)本実施形態によれば、サセプタST1及び反応容器203内の各領域の堆積比率をそれぞれ記載した堆積比率テーブル、サセプタST1及び反応容器203内の各領域のエッチング比率を記載したエッチング比率テーブルが、制御部280が備える記憶部236m内に読み出し可能に保管されている。そして、プロセスレシピ又はクリーニングレシピで、例えば堆積比率テーブル番号又はエッチング比率テーブル番号を指定することで、プロセスレシピ又はクリーニングレシピに堆積比率テーブル又はエッチング比率テーブルが関連付けられている。これにより、堆積比率テーブルやエッチング比率テーブルを、複数のプロセスレシピやクリーニングレシピで共用することができる。すなわち、一つの堆積比率テーブル又はエッチング比率テーブルを、異なるプロセスレシピやクリーニングレシピから関連付けることができる。 (G) According to the present embodiment, the deposition ratio table describing the deposition ratio of each region in the susceptor ST1 and the reaction vessel 203, and the etching ratio table describing the etching ratio of each region in the susceptor ST1 and the reaction vessel 203, respectively. Is stored in the storage unit 236m included in the control unit 280 so as to be readable. Then, by specifying, for example, a deposition ratio table number or an etching ratio table number in the process recipe or the cleaning recipe, the deposition ratio table or the etching ratio table is associated with the process recipe or the cleaning recipe. Thereby, the deposition ratio table and the etching ratio table can be shared by a plurality of process recipes and cleaning recipes. That is, one deposition ratio table or etching ratio table can be associated from different process recipes and cleaning recipes.
<本発明の他の実施形態>  以上、本発明の実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。 <Other Embodiments of the Present Invention> The embodiments of the present invention have been specifically described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. is there.
 上述の実施形態では、レシピ実行機能284は、最小膜厚領域特定情報により特定された領域の膜厚値に基づいて反応性ガス供給時間を算出したが、これに限定されるものではない。すなわち、例えば、レシピ実行機能284は、サセプタST1及び反応容器203内の各領域に面する仕切板205の膜厚値に基づいてそれぞれ反応性ガス供給時間を算出し、算出した反応性ガス供給時間の内、最短供給時間に基づいて反応性ガス供給部257を制御するように構成されていてもよい。 In the above-described embodiment, the recipe execution function 284 calculates the reactive gas supply time based on the film thickness value of the region specified by the minimum film thickness region specifying information, but is not limited to this. That is, for example, the recipe execution function 284 calculates the reactive gas supply time based on the film thickness values of the partition plate 205 facing each region in the susceptor ST1 and the reaction vessel 203, and the calculated reactive gas supply time. The reactive gas supply unit 257 may be controlled based on the shortest supply time.
 また、上述の実施形態では、制御部280が反応容器203内の各領域のうち、最小膜厚領域に基づいて反応性ガス供給時間を算出し、最小膜厚領域から順番に膜厚値を0(ゼロ)にしていき、サセプタST1及び反応容器203内の各領域の堆積物を除去する場合について説明したが、これに限定されるものではない。すなわち、例えば、制御部280は、最大膜厚領域に基づいて反応性ガス供給時間を算出し、サセプタST1及び反応容器203内の各領域にそれぞれ堆積した堆積物の膜厚値に応じて、反応容器203内の各領域で反応性ガスの濃度を調整し、サセプタST1及び反応容器203内の各領域の堆積物を除去するようにしてもよい。具体的には、反応性ガスを供給する際、サセプタST1及び反応容器203内の各領域の堆積物の膜厚値に応じて、反応容器203内に供給する不活性ガスの流量を調整して、サセプタST1及び反応容器203内の各領域から堆積物を除去するようにしてもよい。以下、本実施形態に係る制御部280が最大膜厚領域に基づいて反応性ガス供給時間を算出し、累積膜厚データを更新する場合の一例を、主に図17及び図18を参照して説明する。 In the above-described embodiment, the control unit 280 calculates the reactive gas supply time based on the minimum film thickness region among the regions in the reaction vessel 203, and sets the film thickness value to 0 in order from the minimum film thickness region. Although the case where the deposits in each region in the susceptor ST1 and the reaction vessel 203 are removed has been described as (zero), the present invention is not limited to this. That is, for example, the control unit 280 calculates the reactive gas supply time based on the maximum film thickness region, and reacts according to the film thickness values of the deposits deposited in each region in the susceptor ST1 and the reaction vessel 203, respectively. The concentration of the reactive gas may be adjusted in each region in the container 203, and the deposits in each region in the susceptor ST1 and the reaction container 203 may be removed. Specifically, when the reactive gas is supplied, the flow rate of the inert gas supplied into the reaction vessel 203 is adjusted according to the film thickness values of the deposits in each region in the susceptor ST1 and the reaction vessel 203. The deposits may be removed from each region in the susceptor ST1 and the reaction vessel 203. Hereinafter, an example of the case where the control unit 280 according to the present embodiment calculates the reactive gas supply time based on the maximum film thickness region and updates the accumulated film thickness data will be described with reference mainly to FIGS. 17 and 18. explain.
 図17に示すように、レシピ実行機能284が、クリーニングレシピの実行開始の指示を受信すると、レシピ実行機能284は、操作部コントローラ236が備える記憶部236m内からレシピ特定情報により特定されるクリーニングレシピを受信して取得し、クリーニングレシピ(実行する処理ステップ)に記載されているエッチングレートを読み出し、読み出したエッチングレートが0(ゼロ)であるか否かを判定する。 As shown in FIG. 17, when the recipe execution function 284 receives an instruction to start execution of a cleaning recipe, the recipe execution function 284 reads the cleaning recipe specified by the recipe specifying information from the storage unit 236m included in the operation unit controller 236. Is received, the etching rate described in the cleaning recipe (processing step to be executed) is read, and it is determined whether or not the read etching rate is 0 (zero).
 レシピ実行機能284がエッチングレートが0であると判定した場合、レシピ実行機能284は、クリーニングレシピの実行を終了する。 When the recipe execution function 284 determines that the etching rate is 0, the recipe execution function 284 ends the cleaning recipe.
 レシピ実行機能284がエッチングレートが0ではないと判定した場合、レシピ実行機能284は、プロセスチャンバコントローラ239pが備える記憶装置内に保管されている累積膜厚データを読み出し、読み出した累積膜厚データを操作端末236sが備える表示部に表示する。そして、入出力部がサセプタST1又は反応容器203内の各領域のうち、最も大きい膜厚を有する領域(最大膜厚領域)を特定する最大膜厚領域特定情報の入力を受け付けると、レシピ実行機能284は、最大膜厚領域特定情報により特定される領域の、累積膜厚データに記載された累積膜厚値を読み出す。レシピ実行機能284は、最大膜厚領域の累積膜厚値を、エッチングレートで除することで、反応性ガス供給時間を算出する。 When the recipe execution function 284 determines that the etching rate is not 0, the recipe execution function 284 reads the accumulated film thickness data stored in the storage device included in the process chamber controller 239p, and the read accumulated film thickness data is read out. The information is displayed on a display unit included in the operation terminal 236s. When the input / output unit receives input of maximum film thickness region specifying information for specifying a region having the largest film thickness (maximum film thickness region) among the regions in the susceptor ST1 or the reaction vessel 203, the recipe execution function Reference numeral 284 reads out the cumulative film thickness value described in the cumulative film thickness data of the area specified by the maximum film thickness area specifying information. The recipe execution function 284 calculates the reactive gas supply time by dividing the accumulated film thickness value in the maximum film thickness region by the etching rate.
 次に、レシピ実行機能284は、最大膜厚領域以外の領域の累積膜厚値をそれぞれ取得し、取得した累積膜厚値を、算出した反応性ガス供給時間とエッチングレートとの積で除することで、最大膜厚領域以外の領域のエッチング比率を算出する。すなわち、レシピ実行機能284は、最大膜厚領域のエッチング比率を100%とした場合の、最大膜厚領域以外の領域のエッチング比率を算出し、エッチング比率テーブルを作成する。 Next, the recipe execution function 284 obtains cumulative film thickness values in regions other than the maximum film thickness region, and divides the obtained cumulative film thickness value by the product of the calculated reactive gas supply time and the etching rate. Thus, the etching ratio of the region other than the maximum film thickness region is calculated. That is, the recipe execution function 284 calculates the etching ratio of the area other than the maximum film thickness area when the etching ratio of the maximum film thickness area is 100%, and creates an etching ratio table.
 レシピ実行機能284は、反応性ガスを反応容器203内の各領域に供給する際、作成したエッチング比率テーブルの内容に沿うように、不活性ガス供給部をそれぞれ制御する。すなわち、レシピ実行機能284は、作成したエッチング比率テーブルの内容に沿うように、マスフローコントローラ234c~234fをそれぞれ制御することで、第1の処理領域201a、第2の処理領域201b、第1のパージ領域204a、第1のパージ領域204bに供給する不活性ガスの流量を調整する。例えば、レシピ実行機能284は、エッチング比率の低い第1のパージ領域204aや第2のパージ領域204bでは、第1のパージ領域204a内又は第2のパージ領域204b内での反応性ガスの濃度が低くなるように、不活性ガスの供給流量を多くするように、不活性ガス供給部を制御する。 The recipe execution function 284 controls the inert gas supply unit so as to follow the contents of the created etching ratio table when the reactive gas is supplied to each region in the reaction vessel 203. That is, the recipe execution function 284 controls the mass flow controllers 234c to 234f so as to follow the contents of the created etching ratio table, respectively, so that the first processing area 201a, the second processing area 201b, and the first purge are performed. The flow rate of the inert gas supplied to the region 204a and the first purge region 204b is adjusted. For example, the recipe execution function 284 indicates that in the first purge region 204a and the second purge region 204b having a low etching ratio, the concentration of the reactive gas in the first purge region 204a or the second purge region 204b is low. The inert gas supply unit is controlled so as to increase the supply flow rate of the inert gas so as to decrease.
 また、レシピ実行機能284は、取得したクリーニングレシピの内容及び算出した反応性ガス供給時間に沿うように、マスフローコントローラ234a~234gや、バルブ235a~235g、ヒータ218、APCバルブ243等を制御して処理ステップを実行する。 The recipe execution function 284 controls the mass flow controllers 234a to 234g, the valves 235a to 235g, the heater 218, the APC valve 243, and the like so as to follow the contents of the acquired cleaning recipe and the calculated reactive gas supply time. Perform processing steps.
 レシピ実行機能284は、処理ステップの実行を終了すると、累積膜厚値更新機能285に、反応性ガス供給時間の情報と、エッチング比率テーブルの情報と、をそれぞれ送信する。累積膜厚値更新機能285は、レシピ実行機能284から反応性ガス供給時間の情報及びエッチング比率テーブルの情報を受信すると、累積膜厚値更新機能285は、取得したエッチング比率テーブルを参照して、サセプタST1及び反応容器203内の各領域の減算膜厚値を算出する。すなわち、累積膜厚値更新機能285は、反応性ガス供給時間とエッチングレートとエッチング比率とをそれぞれ乗じて、サセプタST1及び反応容器203内の各領域の減算膜厚値をそれぞれ算出する。 When the execution of the processing step is finished, the recipe execution function 284 transmits information on the reactive gas supply time and information on the etching ratio table to the cumulative film thickness value update function 285, respectively. When the cumulative film thickness update function 285 receives the reactive gas supply time information and the etching ratio table information from the recipe execution function 284, the cumulative film thickness update function 285 refers to the acquired etching ratio table, Subtracted film thickness values of the respective regions in the susceptor ST1 and the reaction vessel 203 are calculated. That is, the cumulative film thickness value update function 285 calculates the subtracted film thickness values of the respective regions in the susceptor ST1 and the reaction vessel 203 by multiplying the reactive gas supply time, the etching rate, and the etching ratio, respectively.
 そして、累積膜厚値更新機能285は、プロセスチャンバコントローラ239pの記憶装置内から、サセプタST1及び反応容器203内の各領域のそれぞれの累積膜厚値を記載した累積膜厚データを読み出す。累積膜厚値更新機能285は、読み出した累積膜厚データに記載されているサセプタST1及び反応容器203内の各領域それぞれの累積膜厚値から、算出した減算膜厚値(D)をそれぞれ減算して累積膜厚データを更新する。なお、本実施形態においては、クリーニングレシピが正常終了した場合、累積膜厚値更新機能285によって更新された累積膜厚データに記載のサセプタST1及び反応容器203内の各領域の累積膜厚値は、0(ゼロ)になる。 Then, the cumulative film thickness value update function 285 reads cumulative film thickness data describing the cumulative film thickness values of the respective regions in the susceptor ST1 and the reaction vessel 203 from the storage device of the process chamber controller 239p. The accumulated film thickness value update function 285 subtracts the calculated subtracted film thickness value (D) from the accumulated film thickness value of each region in the susceptor ST1 and the reaction vessel 203 described in the read accumulated film thickness data. The accumulated film thickness data is updated. In the present embodiment, when the cleaning recipe is normally completed, the cumulative film thickness value of each region in the susceptor ST1 and the reaction container 203 described in the cumulative film thickness data updated by the cumulative film thickness value update function 285 is , 0 (zero).
 ここで、レシピ実行機能284によって最大膜厚領域から反応性ガス供給時間を算出し、累積膜厚データを更新する一例を、主に図18を用いて説明する。なお、本例では、図12に示すサセプタST1及び反応容器203内の各領域の累積膜厚値から、サセプタST1及び反応容器203内の各領域の堆積物を除去する場合について説明する。累積膜厚データから反応性ガス供給時間を算出し、累積膜厚データを更新する様子を例を示す。 Here, an example of calculating the reactive gas supply time from the maximum film thickness region by the recipe execution function 284 and updating the accumulated film thickness data will be mainly described with reference to FIG. In this example, a case will be described in which deposits in each region in the susceptor ST1 and the reaction vessel 203 are removed from the accumulated film thickness values in each region in the susceptor ST1 and the reaction vessel 203 shown in FIG. An example of how the reactive gas supply time is calculated from the accumulated film thickness data and the accumulated film thickness data is updated will be described.
 レシピ実行機能284によって、エッチングステップ1のレシピが実行されるとする。このエッチングステップ1のレシピには、エッチングレートが150nm/minと記載されている。レシピ実行機能284は、図12に示す累積膜厚データを参照し、サセプタST1及び反応容器203内の各領域のうち、最大膜厚領域であるサセプタST1の累積膜厚値を取得する。そして、レシピ実行機能284は、サセプタST1の累積膜厚値をエッチングレートで除して反応性ガスの供給時間を算出する。すなわち、レシピ実行機能284によって算出される反応性ガス供給時間は、サセプタST1の累積膜厚値/エッチングレート=10(μm)/150(nm/min)で66.6分となる。 Suppose that the recipe of etching step 1 is executed by the recipe execution function 284. In the recipe of the etching step 1, the etching rate is described as 150 nm / min. The recipe execution function 284 refers to the accumulated film thickness data shown in FIG. 12 and acquires the accumulated film thickness value of the susceptor ST1 which is the maximum film thickness area among the areas in the susceptor ST1 and the reaction vessel 203. Then, the recipe execution function 284 calculates the supply time of the reactive gas by dividing the cumulative film thickness value of the susceptor ST1 by the etching rate. That is, the reactive gas supply time calculated by the recipe execution function 284 is 66.6 minutes when the cumulative film thickness value of the susceptor ST1 / etching rate = 10 (μm) / 150 (nm / min).
 レシピ実行機能284は、算出した反応性ガス供給時間に基づき、図12に示す最大膜厚領域以外の領域(すなわち、第1の処理領域201a、第2の処理領域201b、第1のパージ領域204a、第2のパージ領域204b)のエッチング比率を算出し、エッチング比率テーブルを作成する。レシピ実行機能284によって算出される各領域のエッチング比率は、第1の処理領域201aは80%、第2の処理領域201bは60%、第1のパージ領域204aは30%、第2のパージ領域204bは40%である。 Based on the calculated reactive gas supply time, the recipe execution function 284 is a region other than the maximum film thickness region shown in FIG. 12 (that is, the first processing region 201a, the second processing region 201b, the first purge region 204a). The etching ratio of the second purge region 204b) is calculated, and an etching ratio table is created. The etching ratio of each region calculated by the recipe execution function 284 is 80% for the first processing region 201a, 60% for the second processing region 201b, 30% for the first purge region 204a, and the second purge region. 204b is 40%.
 レシピ実行機能284は、算出した反応性ガス供給時間に基づき、バルブ235gを開けて反応容器203内の各領域へのクリーニングガスの供給を開始し、クリーニングレシピの実行を開始する。このとき、レシピ実行機能284は、作成したエッチング比率テーブルの内容に沿うように、不活性ガス供給部をそれぞれ制御する。すなわち、レシピ実行機能284は、マスフローコントローラ234c~234fをそれぞれ制御することで、第1の処理領域201aのエッチング比率が80%、第2の処理領域201bのエッチング比率が60%、第1のパージ領域204aのエッチング比率が30%、第1のパージ領域204bのエッチング比率が40%になるように、反応容器203内の各領域に供給する不活性ガスの流量を調整する。 The recipe execution function 284 opens the valve 235g based on the calculated reactive gas supply time, starts supplying cleaning gas to each region in the reaction vessel 203, and starts executing the cleaning recipe. At this time, the recipe execution function 284 controls the inert gas supply unit so as to follow the contents of the created etching ratio table. That is, the recipe execution function 284 controls the mass flow controllers 234c to 234f, respectively, so that the etching rate of the first processing region 201a is 80%, the etching rate of the second processing region 201b is 60%, and the first purge is performed. The flow rate of the inert gas supplied to each region in the reaction vessel 203 is adjusted so that the etching rate of the region 204a is 30% and the etching rate of the first purge region 204b is 40%.
 エッチングステップ1のレシピの実行終了後、累積膜厚値更新機能285によって算出される第1の処理領域201aの減算膜厚値は8μm、第2の処理領域201bの減算膜厚値は6μm、第1のパージ領域204aの減算膜厚値は3μm、第2のパージ領域204bの減算膜厚値は4μm、サセプタST1の減算膜厚値は10μmとなる。累積膜厚値更新機能285は、図12に示す累積膜厚データから算出した各減算膜厚値をそれぞれ減算して、図18に示すように累積膜厚データを更新する。その結果、各領域の累積膜厚値(残膜厚値)は、サセプタST1及び反応容器203内の各領域で0μmとなる。 After the execution of the recipe in etching step 1, the subtracted film thickness value of the first processing region 201a calculated by the cumulative film thickness value update function 285 is 8 μm, the subtracted film thickness value of the second processing region 201b is 6 μm, The subtracted film thickness value of the first purge region 204a is 3 μm, the subtracted film thickness value of the second purge region 204b is 4 μm, and the subtracted film thickness value of the susceptor ST1 is 10 μm. The cumulative film thickness value update function 285 subtracts each subtracted film thickness value calculated from the cumulative film thickness data shown in FIG. 12, and updates the cumulative film thickness data as shown in FIG. As a result, the accumulated film thickness value (remaining film thickness value) in each region is 0 μm in each region in the susceptor ST1 and the reaction vessel 203.
 このように、サセプタST1又は反応容器203内の各領域の最大膜厚領域の膜厚値に基づいて反応性ガス供給時間を算出し、サセプタST1及び反応容器203内の各領域に面する仕切板205の膜厚値に基づいて、サセプタST1及び反応容器203内の各領域内に供給される不活性ガスの流量を調整し、反応性ガスの濃度を調整することで、サセプタST1及び反応容器203内の各領域に面する仕切板205から堆積物を除去するようにしてもよい。これによっても、オーバーエッチングの発生を抑制でき、反応容器203内の各部材が受ける損傷を抑制できる。 Thus, the reactive gas supply time is calculated based on the film thickness value of the maximum film thickness region of each region in the susceptor ST1 or the reaction vessel 203, and the partition plate facing each region in the susceptor ST1 and the reaction vessel 203. Based on the film thickness value 205, the flow rate of the inert gas supplied into each region in the susceptor ST1 and the reaction vessel 203 is adjusted, and the concentration of the reactive gas is adjusted, so that the susceptor ST1 and the reaction vessel 203 are adjusted. You may make it remove a deposit from the partition plate 205 which faces each area | region inside. Also by this, generation | occurrence | production of overetching can be suppressed and the damage which each member in the reaction container 203 receives can be suppressed.
 また、上述の実施形態では、プロセスレシピやクリーニングレシピが正常に終了した場合について説明したが、これに限定されるものではない。すなわち、なんらかのトラブルにより、プロセスレシピやクリーニングレシピが異常終了した場合であっても、上述の実施形態を適用できる。クリーニングレシピが異常終了した場合について、上述の図13を例に説明する。 In the above-described embodiment, the case where the process recipe and the cleaning recipe are normally completed has been described. However, the present invention is not limited to this. In other words, even if the process recipe or the cleaning recipe ends abnormally due to some trouble, the above-described embodiment can be applied. A case where the cleaning recipe ends abnormally will be described with reference to FIG.
 上述したように、図13に示すエッチングステップ1では、レシピ実行機能284によって算出された反応性ガス供給時間は30分である。しかしながら、反応性ガスの供給を始めて10分後に異常終了した場合、レシピ実行機能284は、レシピの異常終了の情報及びレシピの実行時間を累積膜厚値更新機能285に送信する。累積膜厚値更新機能285は、レシピ実行機能284からレシピの異常終了の情報及びレシピの実行時間を受信すると、レシピの実行時間にエッチングレートを乗じて基準減算膜厚値を算出する。そして、累積膜厚値更新機能285は、基準減算膜厚値に、サセプタST1及び反応容器203内の各領域のエッチング比率をそれぞれ乗じて、サセプタST1及び反応容器203内の各領域の減算膜厚値をそれぞれ算出する。本実施例では、基準減算膜厚値は2μmとなり、サセプタST1の減算膜厚値は2μm、反応容器203内の各領域の減算膜厚値はそれぞれ1μmとなる。そして、累積膜厚値更新機能284は、図12に示す累積膜厚データから、算出した各減算膜厚値をそれぞれ減算して累積膜厚データを更新する。なお、更新後のそれぞれ累積膜厚値(残膜厚値)は、サセプタST1の累積膜厚値が8μm、第1の処理領域201aが7μm、第2の処理領域201bが5μm、第1のパージ領域204aが2μm、第2のパージ領域204bが3μmとなる。 As described above, in the etching step 1 shown in FIG. 13, the reactive gas supply time calculated by the recipe execution function 284 is 30 minutes. However, when the supply of the reactive gas is terminated abnormally 10 minutes after starting the supply of the reactive gas, the recipe execution function 284 transmits information on the abnormal end of the recipe and the execution time of the recipe to the cumulative film thickness value update function 285. When the cumulative film thickness update function 285 receives information on the abnormal end of the recipe and the execution time of the recipe from the recipe execution function 284, the cumulative film thickness value update function 285 calculates the reference subtracted film thickness value by multiplying the execution time of the recipe by the etching rate. The cumulative film thickness value update function 285 multiplies the reference subtracted film thickness value by the etching ratio of each region in the susceptor ST1 and the reaction vessel 203, and subtracts the film thickness in each region in the susceptor ST1 and the reaction vessel 203. Each value is calculated. In this embodiment, the reference subtracted film thickness value is 2 μm, the subtracted film thickness value of the susceptor ST1 is 2 μm, and the subtracted film thickness value of each region in the reaction vessel 203 is 1 μm. Then, the cumulative film thickness value update function 284 updates the cumulative film thickness data by subtracting each calculated subtracted film thickness value from the cumulative film thickness data shown in FIG. The updated accumulated film thickness values (remaining film thickness values) are 8 μm for the susceptor ST1, 8 μm for the first processing region 201a, 5 μm for the second processing region 201b, and the first purge. The region 204a is 2 μm, and the second purge region 204b is 3 μm.
 累積膜厚値更新機能285は、累積膜厚データの更新が終了したら、レシピ実行機能284に累積膜厚データ更新終了の情報を送信する。レシピ実行機能284は、累積膜厚値更新機能285から累積膜厚データ更新終了の情報を受信したら、更新後の最小膜厚領域の累積膜厚に基づいて、反応性ガス供給時間を算出し、続きのレシピを行うようにすればよい。 When the cumulative film thickness value update function 285 finishes updating the cumulative film thickness data, the cumulative film thickness data update function 285 transmits information on the completion of the cumulative film thickness data update to the recipe execution function 284. The recipe execution function 284 calculates the reactive gas supply time based on the updated accumulated film thickness in the minimum film thickness region when receiving the information about the completion of the accumulated film thickness data update from the accumulated film thickness update function 285, You can do the following recipe.
 このように、プロセスレシピやクリーニングレシピが異常終了した場合であっても、累積膜厚値更新機能285は、異常終了した時点までのサセプタST1及び反応容器203内の各領域の加算膜厚値又は減算膜厚値を算出することができる。従って、累積膜厚データに記載される累積膜厚値を適切に管理することができる。その結果、予期せぬオーバーエッチングの発生を抑制できる。 As described above, even when the process recipe or the cleaning recipe ends abnormally, the cumulative film thickness value update function 285 does not add the film thickness values of the respective regions in the susceptor ST1 and the reaction vessel 203 until the abnormal end. A subtracted film thickness value can be calculated. Therefore, the cumulative film thickness value described in the cumulative film thickness data can be managed appropriately. As a result, the occurrence of unexpected overetching can be suppressed.
 上述の実施形態では、1つ以上の堆積比率テーブルを堆積比率テーブルファイルに格納し、また1つ以上のエッチング比率テーブルをエッチング比率テーブルファイルに格納し、レシピ実行機能284が、操作部コントローラ236が備える記憶部236mから、堆積比率テーブルファイル又はエッチング比率テーブルファイルで、堆積比率テーブルやエッチング比率テーブルを取得する場合について説明したが、これに限定されるものではない。すなわち、例えば操作部コントローラ236が備える記憶部236mに、堆積比率テーブルやエッチング比率テーブル単位で保管し、レシピ実行機能284は、堆積比率テーブルを指定する情報やエッチング比率テーブルを指定する情報を受け付けることで、記憶部236mから堆積比率テーブル又はエッチング比率テーブルを取得するように構成されていてもよい。このとき、レシピ実行機能284は、プロセスレシピ又はクリーニングレシピに関連する堆積比率テーブル又はエッチング比率テーブルが複数ある場合は、全ての堆積比率テーブル又はエッチング比率テーブルを操作部コントローラ236から取得するように構成されている。 In the above-described embodiment, one or more deposition ratio tables are stored in the deposition ratio table file, and one or more etching ratio tables are stored in the etching ratio table file. The recipe execution function 284 is operated by the operation unit controller 236. Although the case where the deposition ratio table or the etching ratio table file is acquired from the storage unit 236m provided using the deposition ratio table file or the etching ratio table file has been described, the present invention is not limited to this. That is, for example, the storage unit 236m included in the operation unit controller 236 stores the information in units of the deposition rate table and the etching rate table, and the recipe execution function 284 receives information specifying the deposition rate table and information specifying the etching rate table. Thus, the deposition ratio table or the etching ratio table may be acquired from the storage unit 236m. At this time, the recipe execution function 284 is configured to acquire all the deposition ratio tables or etching ratio tables from the operation unit controller 236 when there are a plurality of deposition ratio tables or etching ratio tables related to the process recipe or the cleaning recipe. Has been.
 上述の実施形態では、堆積レートはサセプタST1上に堆積する堆積物のレートとしたが、これに限定されるものではない。すなわち、例えば第1の処理領域201a等に堆積する堆積物のレートであってもよい。また、エッチングレートも同様に、サセプタST1からエッチングされる堆積物のレートに限定されるものではなく、例えば第1の処理領域201a等から除去される堆積物のレートであってもよい。 In the above-described embodiment, the deposition rate is the rate of deposits deposited on the susceptor ST1, but is not limited thereto. That is, for example, the rate of deposits deposited in the first processing region 201a or the like may be used. Similarly, the etching rate is not limited to the rate of deposits etched from the susceptor ST1, and may be, for example, the rate of deposits removed from the first processing region 201a or the like.
 また、本発明は、酸化膜や窒化膜、金属膜等の種々の膜を形成する成膜処理を行う場合に適用できるほか、拡散処理、アニール処理、酸化処理、窒化処理、リソグラフィ処理等の他の基板処理を行う場合にも適用できる。また、本発明は、薄膜形成装置の他、エッチング装置、アニール処理装置、酸化処理装置、窒化処理装置、露光装置、塗布装置、モールド装置、現像装置、ダイシング装置、ワイヤボンディング装置、乾燥装置、加熱装置、検査装置等の他の基板処理装置にも適用できる。また、本発明は、これらの装置が混在していてもよい。また、本発明では、縦型の基板処理装置100に限らず、横型の基板処理装置や、枚葉式の各種基板処理装置であってもよく、これらの装置が混在していてもよい。 Further, the present invention can be applied to the case where a film forming process for forming various films such as an oxide film, a nitride film, and a metal film is performed, as well as a diffusion process, an annealing process, an oxidation process, a nitriding process, a lithography process, The present invention can also be applied when performing the substrate processing. In addition to the thin film forming apparatus, the present invention includes an etching apparatus, an annealing apparatus, an oxidation apparatus, a nitriding apparatus, an exposure apparatus, a coating apparatus, a molding apparatus, a developing apparatus, a dicing apparatus, a wire bonding apparatus, a drying apparatus, and a heating apparatus. The present invention can also be applied to other substrate processing apparatuses such as apparatuses and inspection apparatuses. In the present invention, these devices may be mixed. In the present invention, not only the vertical substrate processing apparatus 100 but also a horizontal substrate processing apparatus and various single-wafer type substrate processing apparatuses may be used, and these apparatuses may be mixed.
 また、本発明は、本実施形態に係る基板処理装置10のような半導体ウエハを処理する半導体製造装置等に限らず、ガラス基板を処理するLCD(Liquid Crystal Display)製造装置等の基板処理装置にも適用できる。  Further, the present invention is not limited to a semiconductor manufacturing apparatus that processes a semiconductor wafer such as the substrate processing apparatus 10 according to the present embodiment, but also to a substrate processing apparatus such as an LCD (Liquid Crystal Display) manufacturing apparatus that processes a glass substrate. Is also applicable. *
<本発明の好ましい態様>  以下に、本発明の好ましい態様について付記する。 <Preferred Aspects of the Present Invention> 好 ま し い Hereinafter, preferred aspects of the present invention will be described.
[付記1]  本発明の一態様によれば、
 基板を処理する少なくとも1つの処理室を備える基板処理装置であって、
 前記処理室内に設けられ、基板を載置する基板載置部と、
 前記処理室内を複数の領域に仕切る仕切部と、
 前記基板の処理によって前記基板載置部及び前記仕切部に堆積した堆積物を除去する反応性ガスを前記領域に供給する反応性ガス供給部と、
 前記領域に不活性ガスを供給する不活性ガス供給部と、
 少なくとも前記反応性ガスを前記領域に供給し、前記堆積物を除去する際、前記領域に供給する前記反応性ガスの供給流量及び前記不活性ガスの供給流量をそれぞれ前記基板載置部及び前記仕切部に堆積した前記堆積物の膜厚値に応じて調整するように、少なくとも前記反応性ガス供給部及び前記不活性ガス供給部を制御する制御部と、を備える基板処理装置が提供される。
[Supplementary Note 1] According to one aspect of the present invention,
A substrate processing apparatus comprising at least one processing chamber for processing a substrate,
A substrate mounting portion provided in the processing chamber for mounting a substrate;
A partition for partitioning the processing chamber into a plurality of regions;
A reactive gas supply unit that supplies the region with a reactive gas that removes deposits deposited on the substrate placement unit and the partition unit by processing the substrate;
An inert gas supply unit for supplying an inert gas to the region;
When at least the reactive gas is supplied to the region and the deposit is removed, the supply flow rate of the reactive gas and the supply flow rate of the inert gas supplied to the region are respectively set to the substrate mounting portion and the partition. There is provided a substrate processing apparatus comprising: a control unit that controls at least the reactive gas supply unit and the inert gas supply unit so as to adjust according to a film thickness value of the deposit deposited on the unit.
[付記2]  付記1の基板処理装置であって、好ましくは、
 前記制御部は、
 前記基板載置部又は前記複数の領域の内、前記堆積物の膜厚値が最も小さい領域に基づいて反応性ガスの供給時間を算出する処理と、前記反応性ガスを供給する際、前記堆積物が堆積していない前記領域には反応性ガスが供給されないように、不活性ガスの供給流量を調整する処理と、を所定回数繰り返すことで、前記基板載置部及び前記複数の領域に堆積された前記堆積物を除去する。
[Appendix 2] The substrate processing apparatus of Appendix 1, preferably,
The controller is
The process of calculating the supply time of the reactive gas based on the region where the film thickness value of the deposit is the smallest among the substrate mounting portion or the plurality of regions, and the deposition when supplying the reactive gas The process of adjusting the supply flow rate of the inert gas is repeated a predetermined number of times so that the reactive gas is not supplied to the region where the object is not deposited, and the region is deposited on the substrate platform and the plurality of regions. The deposited deposit is removed.
[付記3]  付記1の基板処理装置であって、好ましくは、
 前記制御部は、
 前記基板載置部及び前記複数の領域に面する仕切部のそれぞれの前記堆積物の膜厚値に基づいて反応性ガスの供給時間をそれぞれ算出する処理と、算出した前記反応性ガスの供給時間に基づいて、前記反応性ガスを供給する際、前記堆積物の除去が終了した前記基板載置部及び前記領域には、前記反応性ガスが供給されないように不活性ガスを供給し、前記堆積物の除去が終了していない前記基板載置部及び前記領域には、前記反応性ガスを供給するように、前記反応性ガス及び前記不活性ガスの供給流量を調整する処理と、を所定回数繰り返すことで、前記基板載置部及び前記複数の領域に面する仕切部に堆積された前記堆積物を除去する。
[Appendix 3] The substrate processing apparatus of Appendix 1, preferably,
The controller is
A process of calculating a supply time of the reactive gas based on the film thickness value of each of the deposits of the substrate placement unit and the partition unit facing the plurality of regions, and the calculated supply time of the reactive gas When the reactive gas is supplied, an inert gas is supplied so that the reactive gas is not supplied to the substrate platform and the region where the removal of the deposit is completed, and the deposition is performed. A process of adjusting a supply flow rate of the reactive gas and the inert gas so as to supply the reactive gas to the substrate platform and the region where removal of an object has not been completed a predetermined number of times. By repeating, the deposits deposited on the substrate placement unit and the partition unit facing the plurality of regions are removed.
[付記4]  付記1の基板処理装置であって、好ましくは、
 前記制御部は、
 前記基板載置部及び前記複数の領域に面する仕切部のそれぞれに堆積した堆積物の膜厚値に応じて前記領域内での反応性ガスの濃度が調整されるように、前記領域に供給される不活性ガスの供給流量をそれぞれ調整する。
[Appendix 4] The substrate processing apparatus of Appendix 1, preferably,
The controller is
Supplied to the region so that the concentration of the reactive gas in the region is adjusted according to the film thickness value of the deposit deposited on each of the substrate placement unit and the partition unit facing the plurality of regions The inert gas supply flow rate is adjusted.
[付記5]  付記4の基板処理装置であって、好ましくは、
 前記制御部は、
 前記基板載置部又は前記複数の領域の内、前記堆積物の膜厚値が最も大きい領域に基づいて反応性ガスの供給時間を算出し、前記基板載置部及び前記複数の領域のエッチング比率をそれぞれ算出する。
[Supplementary Note 5] The substrate processing apparatus of Supplementary Note 4, preferably,
The controller is
Reactive gas supply time is calculated based on the substrate mounting portion or the region having the largest film thickness value of the deposit in the plurality of regions, and the etching ratio of the substrate mounting portion and the plurality of regions Are calculated respectively.
[付記6]  付記1ないし5のいずれかの基板処理装置であって、好ましくは、
 前記基板載置部及び前記各領域に面する仕切部の少なくともいずれかの前記堆積物の膜厚値が、他の箇所の前記堆積物の膜厚値と異なる。
[Appendix 6] The substrate processing apparatus according to any one of Appendixes 1 to 5, preferably,
The film thickness value of the deposit in at least one of the substrate placement unit and the partition unit facing each region is different from the film thickness value of the deposit in other places.
[付記7]  付記1ないし6のいずれかの基板処理装置であって、好ましくは、
 前記基板に原料ガスを供給する原料ガス供給部を備え、
 前記制御部は、
 前記基板載置部に前記堆積物が堆積する堆積レートに、前記原料ガス供給部から供給される原料ガスの供給時間を乗じることで、前記基板載置部に堆積する堆積物の膜厚値を算出する。
[Appendix 7] The substrate processing apparatus according to any one of Appendixes 1 to 6, preferably,
A source gas supply unit for supplying source gas to the substrate;
The controller is
By multiplying the deposition rate at which the deposit is deposited on the substrate platform by the supply time of the source gas supplied from the source gas supply unit, the film thickness value of the deposit deposited on the substrate platform is obtained. calculate.
[付記8]  付記7の基板処理装置であって、好ましくは、
 前記制御部は、
 前記基板載置部に堆積する前記堆積物の膜厚値に所定の堆積比率を乗じることで、前記領域に面する仕切部に堆積する堆積物の膜厚値をそれぞれ算出する。
[Supplementary Note 8] The substrate processing apparatus of Supplementary Note 7, preferably,
The controller is
The film thickness value of the deposit deposited on the partition facing the region is calculated by multiplying the film thickness value of the deposit deposited on the substrate mounting portion by a predetermined deposition ratio.
[付記9]  付記1ないし8のいずれかの基板処理装置であって、好ましくは、
 前記制御部は、
 前記堆積物を除去するエッチングレートに前記反応性ガスの供給時間を乗じることで、前記基板載置部から除去される堆積物の膜厚値を算出する。
[Supplementary Note 9] The substrate processing apparatus according to any one of Supplementary notes 1 to 8, preferably,
The controller is
The film thickness value of the deposit removed from the substrate mounting portion is calculated by multiplying the etching rate for removing the deposit by the supply time of the reactive gas.
[付記10]  付記9の基板処理装置であって、好ましくは、
 前記制御部は、
 前記基板載置部から除去される前記堆積物の膜厚値に所定のエッチング比率を乗じることで、前記領域に面する仕切部から除去される堆積物の膜厚値をそれぞれ算出する。
[Appendix 10] The substrate processing apparatus of Appendix 9, preferably,
The controller is
The film thickness value of the deposit removed from the partition facing the region is calculated by multiplying the film thickness value of the deposit removed from the substrate mounting portion by a predetermined etching ratio.
[付記11]  付記1ないし10のいずれかの基板処理装置であって、好ましくは、
 前記反応性ガス供給部は、前記仕切部の中心部から前記各仕切る仕切部に堆積した堆積物を除去するクリーニングガスである。
[Appendix 11] The substrate processing apparatus according to any one of Appendixes 1 to 10, preferably,
The reactive gas supply unit is a cleaning gas that removes deposits deposited on the partitioning portions from the center of the partitioning portion.
[付記13]  付記1ないし12のいずれかの基板処理装置であって、好ましくは、
 前記クリーニングガスは、フッ素含有ガス、塩素含有ガス、あるいはフッ素含有ガス又は塩素含有ガスと不活性ガスとを混合した混合ガスである。
[Supplementary Note 13] The substrate processing apparatus according to any one of Supplementary notes 1 to 12, preferably,
The cleaning gas is a fluorine-containing gas, a chlorine-containing gas, or a mixed gas in which a fluorine-containing gas or a chlorine-containing gas and an inert gas are mixed.
[付記14]  付記1ないし13のいずれかの基板処理装置であって、好ましくは、
 前記制御部は、少なくとも、プロセスレシピ、クリーニングレシピ、堆積比率テーブル、エッチング比率テーブルが格納される記憶部と、少なくとも前記基板載置部及び前記複数の領域に面する仕切部のそれぞれの前記堆積物の前記累積膜厚値を表示する表示部と、を備えるコンピュータとして構成されている。
[Appendix 14] The substrate processing apparatus according to any one of Appendixes 1 to 13, preferably,
The control unit includes at least a process recipe, a cleaning recipe, a deposition ratio table, a storage unit storing an etching ratio table, and at least the deposits of the substrate placement unit and the partition unit facing the plurality of regions. And a display unit for displaying the accumulated film thickness value.
[付記15]  本発明の他の態様によれば、
 基板を処理する少なくとも1つの処理室を備える基板処理装置で実行されるクリーニング方法あって、仕切部によって複数の領域に仕切られた前記処理室内に、少なくとも反応性ガスを供給する際、前記領域に供給する前記反応性ガスの供給流量及び不活性ガスの供給流量をそれぞれ前記処理室に設けられた基板載置部及び前記仕切部に堆積した前記堆積物の膜厚値に応じて調整して、前記基板載置部に堆積した堆積物、及び前記仕切部に堆積した堆積物をそれぞれ除去する除去工程を有するクリーニング方法が提供される。
[Supplementary Note 15] According to another aspect of the present invention,
A cleaning method executed in a substrate processing apparatus including at least one processing chamber for processing a substrate, wherein at least a reactive gas is supplied into the processing chamber partitioned into a plurality of regions by a partitioning portion. The supply flow rate of the reactive gas and the supply flow rate of the inert gas to be supplied are adjusted according to the film thickness value of the deposit deposited on the substrate mounting portion and the partition portion provided in the processing chamber, respectively. There is provided a cleaning method including a removing step of removing deposits deposited on the substrate mounting portion and deposits deposited on the partition portion.
[付記16]  本発明の更に他の態様によれば、
 処理室内で基板を処理する基板処理工程と、
 仕切部によって複数の領域に仕切られた前記処理室内に、少なくとも反応性ガスを供給し、前記基板処理工程において前記処理室に設けられた基板載置部及び前記仕切部に堆積された堆積物を除去する際、前記領域に供給する前記反応性ガスの供給流量及び不活性ガスの供給流量をそれぞれ前記基板載置部及び前記仕切部に堆積した前記堆積物の膜厚値に応じて調整して、前記基板載置部に堆積した堆積物、及び前記仕切部に堆積した堆積物を除去する除去工程と、を有する半導体装置の製造方法が提供される。
[Supplementary Note 16] According to still another aspect of the present invention,
A substrate processing step for processing the substrate in the processing chamber;
At least a reactive gas is supplied into the processing chamber partitioned into a plurality of regions by the partitioning unit, and a substrate placement unit provided in the processing chamber in the substrate processing step and a deposit deposited on the partitioning unit When removing, the supply flow rate of the reactive gas supplied to the region and the supply flow rate of the inert gas are adjusted according to the film thickness values of the deposits deposited on the substrate mounting portion and the partition portion, respectively. There is provided a method for manufacturing a semiconductor device, comprising: a deposit deposited on the substrate mounting portion; and a removing step of removing the deposit deposited on the partition portion.
[付記17]  付記16の半導体装置の製造方法であって、好ましくは、
 前記除去工程は、前記基板載置部又は前記各領域に面する前記仕切部に堆積した堆積物の累積膜厚値が所定の値を超えた場合に実施される。
[Supplementary Note 17] The method of manufacturing a semiconductor device according to Supplementary Note 16, preferably,
The removing step is performed when the accumulated film thickness value of the deposit deposited on the substrate placement unit or the partition unit facing each region exceeds a predetermined value.
[付記18]  本発明の更に他の態様によれば、基板を処理する少なくとも1つの処理室を備える基板処理装置で実行されるプログラムをコンピュータ読み取り可能に記録した記録媒体であって、
 仕切部によって複数の領域に仕切られた前記処理室内に、少なくとも反応性ガスを供給し、前記処理室に設けられた基板載置部及び前記仕切部に堆積された堆積物を除去する際、前記領域に供給する前記反応性ガスの供給流量及び不活性ガスの供給流量をそれぞれ前記基板載置部及び前記仕切部に堆積した前記堆積物の膜厚に応じて調整して、前記処理室内に設けられた基板を載置する基板載置部に堆積した堆積物、及び前記各領域に堆積した堆積物を除去する手順と、をコンピュータに実行させるプログラムが提供される。
[Supplementary Note 18] According to still another aspect of the present invention, there is provided a recording medium in which a program executed by a substrate processing apparatus including at least one processing chamber for processing a substrate is recorded in a computer-readable manner,
When at least a reactive gas is supplied into the processing chamber partitioned into a plurality of regions by the partitioning portion and the deposits deposited on the substrate mounting portion and the partitioning portion provided in the processing chamber are removed, The reactive gas supply flow rate and the inert gas supply flow rate supplied to the region are adjusted in accordance with the film thickness of the deposit deposited on the substrate mounting portion and the partition portion, respectively, and provided in the processing chamber. There is provided a program for causing a computer to execute a deposit deposited on a substrate platform on which the substrate is placed and a procedure for removing the deposit deposited on each of the regions.
[付記19]  本発明の更に他の態様によれば、基板を処理する少なくとも1つの処理室を備える基板処理装置で実行されるプログラムをコンピュータ読み取り可能に記録した記録媒体であって、仕切部によって複数の領域に仕切られた前記処理室内に、少なくとも反応性ガスを供給し、前記処理室に設けられた基板載置部及び前記仕切部に堆積された堆積物を除去する際、前記領域に供給する前記反応性ガスの供給流量及び不活性ガスの供給流量をそれぞれ前記基板載置部及び前記仕切部に堆積した前記堆積物の膜厚に応じて調整して、前記処理室内に設けられた基板を載置する基板載置部に堆積した堆積物、及び前記各領域に堆積した堆積物を除去する手順と、を有するプログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。 [Supplementary Note 19] According to still another aspect of the present invention, there is provided a recording medium in which a program executed by a substrate processing apparatus including at least one processing chamber for processing a substrate is recorded so as to be readable by a computer. At least a reactive gas is supplied into the processing chamber partitioned into a plurality of regions, and the substrate placement unit provided in the processing chamber and the deposits accumulated in the partitioning portion are removed and supplied to the region. The substrate provided in the processing chamber by adjusting the supply flow rate of the reactive gas and the supply flow rate of the inert gas according to the film thickness of the deposit deposited on the substrate mounting portion and the partition portion, respectively. There is provided a computer-readable recording medium recording a program having deposits deposited on a substrate platform on which the program is placed and a procedure for removing deposits deposited in each of the regions. It is.
[付記20]  本発明の更に他の態様によれば、
 基板を載置する基板載置部が設けられ、仕切部によって複数の領域に仕切られた処理室内に、原料ガス供給部から前記領域内に原料ガスを供給して基板を処理する手順と、
 前記基板を処理することで前記基板載置部に堆積した堆積物の堆積レートに、前記原料ガス供給部から供給される原料ガスの供給時間を乗じることで、前記基板載置部に堆積する堆積物の膜厚値である基準加算膜厚値を算出する手順と、
 前記基準加算膜厚値に、所定の堆積比率を乗じることで、前記領域毎にそれぞれ堆積する堆積物の膜厚値である加算膜厚値をそれぞれ算出する手順と、を有する累積膜厚管理プログラムが提供される。
[Supplementary Note 20] According to still another aspect of the present invention,
A procedure for processing a substrate by supplying a source gas into the region from a source gas supply unit into a processing chamber provided with a substrate mounting unit for mounting a substrate and partitioned into a plurality of regions by a partition unit;
Deposition deposited on the substrate platform by multiplying a deposition rate of deposits deposited on the substrate platform by processing the substrate by a supply time of a source gas supplied from the source gas supply unit A procedure for calculating a reference added film thickness value which is a film thickness value of an object;
A cumulative film thickness management program comprising: a step of multiplying the reference additional film thickness value by a predetermined deposition ratio to calculate an additional film thickness value that is a film thickness value of a deposit deposited for each region. Is provided.
[付記21]  本発明の更に他の態様によれば、
 仕切部によって複数の領域に仕切られた処理室内の各領域及び前記処理室内に設けられた基板を載置する基板載置部のうち、前記各領域に面する前記仕切部及び前記基板載置部に堆積した堆積物の膜厚値が最も小さい箇所(最小膜厚領域)の堆積物の膜厚値を、前記基板載置部から除去される堆積物のエッチングレートと前記最小膜厚領域の所定のエッチング比率との積で除して、反応性ガス供給時間を算出する手順と、
 前記反応性ガス供給時間に基づいて、反応性ガス供給部から前記各領域内に反応性ガスを供給して、前記基板載置部及び前記各領域に面する前記仕切部の前記堆積物を除去する手順と、
 前記エッチングレートに、前記反応性ガス供給時間を乗じることで、前記基板載置部から除去される堆積物の膜厚値である基準減算膜厚値を算出する手順と、
 前記基準減算膜厚値に、所定のエッチング比率を乗じることで、前記各領域に面する前記仕切部からそれぞれ除去される堆積物の膜厚値である減算膜厚値をそれぞれ算出する手順と、を有する累積膜厚管理プログラムが提供される。
[Supplementary Note 21] According to still another aspect of the present invention,
Out of each region in the processing chamber partitioned into a plurality of regions by the partitioning unit and a substrate mounting unit for mounting the substrate provided in the processing chamber, the partitioning unit and the substrate mounting unit facing each region The film thickness value of the deposit at the place where the film thickness value of the deposited material is the smallest (minimum film thickness region) is set to the etching rate of the deposit removed from the substrate mounting portion and the predetermined minimum film thickness region. Dividing by the product of the etching ratio of, and calculating the reactive gas supply time,
Based on the reactive gas supply time, a reactive gas is supplied from the reactive gas supply unit into each region, and the deposits on the substrate mounting unit and the partition unit facing each region are removed. And the steps to
A procedure for calculating a reference subtracted film thickness value that is a film thickness value of the deposit removed from the substrate mounting portion by multiplying the etching rate by the reactive gas supply time;
A procedure for calculating a subtracted film thickness value, which is a film thickness value of a deposit removed from the partition portion facing each region, by multiplying the reference subtracted film thickness value by a predetermined etching ratio, A cumulative film thickness management program is provided.
[付記22]  本発明の更に他の態様によれば、
 仕切部によって複数の領域に仕切られた処理室内の各領域に面する前記仕切部及び前記処理室内に設けられた基板を載置する基板載置部のそれぞれに堆積した堆積物の膜厚値を、前記基板載置部から除去される堆積物のエッチングレートと所定のエッチング比率との積でそれぞれ除して反応性ガス供給時間をそれぞれ算出する手順と、
 前記反応性ガス供給時間の内の最短時間に基づいて、前記各領域内に反応性ガスを供給して、前記基板載置部及び前記仕切部の前記堆積物を除去する手順と、
 前記エッチングレートに、前記反応性ガス供給時間を乗じることで、前記基板載置部から除去される堆積物の膜厚値である基準減算膜厚値を算出する手順と、
 前記基準減算膜厚値に、所定のエッチング比率を乗じることで、前記仕切部からそれぞれ除去される堆積物の膜厚値である減算膜厚値をそれぞれ算出する手順と、を有する累積膜厚管理プログラムが提供される。
[Supplementary Note 22] According to still another aspect of the present invention,
The thickness values of deposits deposited on each of the partition unit facing each region in the processing chamber divided into a plurality of regions by the partition unit and the substrate mounting unit on which the substrate provided in the processing chamber is mounted , A procedure for respectively calculating the reactive gas supply time by dividing by the product of the etching rate of the deposit removed from the substrate mounting portion and a predetermined etching ratio,
A procedure of supplying a reactive gas into each of the regions based on the shortest time among the reactive gas supply times to remove the deposits on the substrate platform and the partition;
A procedure for calculating a reference subtracted film thickness value that is a film thickness value of the deposit removed from the substrate mounting portion by multiplying the etching rate by the reactive gas supply time;
A cumulative film thickness management comprising: calculating a subtracted film thickness value, which is a film thickness value of each deposit removed from the partition portion, by multiplying the reference subtracted film thickness value by a predetermined etching ratio. A program is provided.
[付記23]  本発明の更に他の態様によれば、
 仕切部によって複数の領域に仕切られた処理室内の各領域及び前記処理室内に設けられた基板を載置する基板載置部のうち、前記各領域に面する前記仕切部及び前記基板載置部に堆積した堆積物の膜厚値が最も大きい箇所の堆積物の膜厚値を、前記基板載置部から除去される堆積物のエッチングレートで除して、反応性ガス供給時間を算出する手順と、
 前記基板載置部及び前記仕切部の前記堆積物の膜厚値を、前記反応性ガス供給時間及び前記エッチングレートの積でそれぞれ除して、前記基板載置部及び前記各領域のエッチング比率を算出する手順と、
 反応性ガス供給部から前記各領域内に反応性ガスを供給する際、前記エッチング比率に基づいて、前記各領域に供給する不活性ガスの供給量をそれぞれ調整して、前記各領域内の反応性ガスの濃度をそれぞれ調整して、前記基板載置部及び前記仕切部の前記堆積物を除去する手順と、
 前記反応性ガス供給時間と、前記エッチングレートと、前記基板載置部及び前記各領域に面する前記仕切部の前記エッチング比率をそれぞれ乗じることで、前記基板載置部及び前記仕切部からそれぞれ除去される堆積物の膜厚値である減算膜厚値をそれぞれ算出する手順と、を有する累積膜厚管理プログラムが提供される。
[Supplementary Note 23] According to still another aspect of the present invention,
Out of each region in the processing chamber partitioned into a plurality of regions by the partitioning unit and a substrate mounting unit for mounting the substrate provided in the processing chamber, the partitioning unit and the substrate mounting unit facing each region A procedure for calculating the reactive gas supply time by dividing the film thickness value of the deposit at the place where the film thickness value of the deposited material is the largest by the etching rate of the deposit removed from the substrate mounting portion When,
The film thickness value of the deposit on the substrate platform and the partition is divided by the product of the reactive gas supply time and the etching rate, respectively, and the etching rate of the substrate platform and each region is calculated. The procedure to calculate,
When the reactive gas is supplied from the reactive gas supply unit into each region, the amount of the inert gas supplied to each region is adjusted based on the etching ratio, and the reaction in each region is performed. Adjusting the concentration of the reactive gas, respectively, and removing the deposits on the substrate mounting part and the partition part;
By removing the reactive gas supply time, the etching rate, and the etching ratio of the partition portion facing the substrate mounting portion and the regions, respectively, the substrate is removed from the substrate mounting portion and the partition portion, respectively. And a cumulative film thickness management program having a procedure for calculating a subtracted film thickness value, which is a film thickness value of the deposited material.
[付記24] 本発明の更に他の態様によれば、基板を処理する少なくとも1つの処理室を備える基板処理装置の制御方法であって、 前記処理室内に設けられ、前記基板を載置する基板載置部と、 前記処理室内を複数の領域に仕切る仕切部と、 前記基板の処理によって前記基板載置部及び前記仕切部に堆積した堆積物を除去する反応性ガスを前記領域に供給する反応性ガス供給部と、 前記領域に不活性ガスを供給する不活性ガス供給部と、 少なくとも前記反応性ガス供給部及び前記不活性ガス供給部を制御する制御部と、を有し少なくとも前記反応性ガスを前記領域に供給し、前記堆積物を除去する際、前記領域に供給する前記反応性ガスの供給流量及び前記不活性ガスの供給流量をそれぞれ前記基板載置部及び前記仕切部に堆積した前記堆積物の膜厚値に応じて調整する基板処理装置の制御方法が提供される。 [Supplementary Note 24] According to still another aspect of the present invention, there is provided a method for controlling a substrate processing apparatus including at least one processing chamber for processing a substrate, the substrate being provided in the processing chamber and mounting the substrate A reaction unit that supplies a reactive gas to the region to remove the deposits deposited on the substrate placement unit and the partition unit by processing the substrate; A reactive gas supply unit; an inert gas supply unit that supplies an inert gas to the region; and a control unit that controls at least the reactive gas supply unit and the inert gas supply unit. When the gas is supplied to the region and the deposit is removed, the reactive gas supply flow rate and the inert gas supply flow rate supplied to the region are deposited on the substrate mounting portion and the partition portion, respectively. Control method of a substrate processing apparatus for adjusting in response to the film thickness value of the deposit was is provided.
[付記25] 更に、前記基板載置部を回転する回転機構を備え、好ましくは、前記堆積物を除去する際、前記回転機構により前記基板載置部を回転する付記24の基板処理装置の制御方法が提供される。 [Supplementary Note 25] The substrate processing apparatus according to Supplementary Note 24, further comprising a rotation mechanism that rotates the substrate platform, and preferably, when the deposit is removed, the substrate platform is rotated by the rotation mechanism. A method is provided.
[付記26] 更に、前記基板を前記基板載置部に搬送する搬送機構を備え、好ましくは、前記搬送機構により前記基板のうち製品基板ではない疑似基板(ダミー基板)を前記基板載置部に載置した後、前記堆積物を除去するように構成されている付記24の基板処理装置の制御方法が提供される。 [Supplementary Note 26] Further, a transport mechanism for transporting the substrate to the substrate platform is preferably provided. Preferably, a pseudo substrate (dummy substrate) that is not a product substrate among the substrates is transferred to the substrate platform by the transport mechanism. The method for controlling a substrate processing apparatus according to appendix 24, which is configured to remove the deposit after being placed, is provided.
[付記27]  本発明の更に他の態様によれば、基板を処理する複数の領域が設けられた少なくとも1つの処理室を備える基板処理装置であって、前記処理室内に設けられ、前記基板を載置する基板載置部と、前記基板の処理によって少なくとも前記基板載置部に堆積した堆積物を除去する反応性ガスを前記複数の領域に供給する反応性ガス供給部と、前記複数の領域に不活性ガスを供給する不活性ガス供給部と、前記反応性ガスを前記複数の領域に供給し、前記堆積物を除去する際、前記複数の領域に供給する前記反応性ガスの供給流量及び前記不活性ガスの供給流量をそれぞれ前記基板載置部に堆積した前記堆積物の膜厚値に応じて調整するように、少なくとも前記反応性ガス供給部及び前記不活性ガス供給部を制御する制御部と、を備える基板処理装置が提供される。 [Supplementary Note 27] According to still another aspect of the present invention, there is provided a substrate processing apparatus including at least one processing chamber provided with a plurality of regions for processing a substrate, the substrate processing apparatus being provided in the processing chamber, A substrate placement section to be placed; a reactive gas supply section for supplying a reactive gas for removing at least deposits deposited on the substrate placement section by processing of the substrate; and the plurality of areas. An inert gas supply unit that supplies an inert gas to the plurality of regions, and a supply flow rate of the reactive gas that is supplied to the plurality of regions when the reactive gas is supplied to the plurality of regions and the deposit is removed. Control for controlling at least the reactive gas supply unit and the inert gas supply unit so that the supply flow rate of the inert gas is adjusted according to the film thickness value of the deposit deposited on the substrate mounting unit. And the Obtaining a substrate processing apparatus is provided.
[付記28]  本発明の更に他の態様によれば、基板を処理する複数の領域が設けられた少なくとも1つの処理室を備える基板処理装置で実行されるクリーニング方法あって、前記処理室内に、少なくとも反応性ガスを供給する際、前記複数の領域に供給する前記反応性ガスの供給流量及び不活性ガスの供給流量をそれぞれ前記処理室に設けられた基板載置部に堆積した前記堆積物の膜厚値に応じて調整して、前記基板載置部に堆積した堆積物を除去する除去工程を有する基板処理装置のクリーニング方法が提供される。 [Supplementary Note 28] According to still another aspect of the present invention, there is a cleaning method executed in a substrate processing apparatus including at least one processing chamber provided with a plurality of regions for processing a substrate. At least when the reactive gas is supplied, the reactive gas supply flow rate and the inert gas supply flow rate supplied to the plurality of regions are respectively set on the substrate placement portion provided in the processing chamber. There is provided a cleaning method for a substrate processing apparatus, which includes a removing step of removing deposits deposited on the substrate mounting portion by adjusting according to a film thickness value.
[付記29]  本発明の更に他の態様によれば、複数の領域が設けられた処理室内で基板を処理する基板処理工程と、
 前記処理室内に、少なくとも反応性ガスを供給し、前記基板処理工程において前記処理室に設けられた基板載置部に堆積された堆積物を除去する際、前記複数の領域に供給する前記反応性ガスの供給流量及び不活性ガスの供給流量をそれぞれ前記基板載置部に堆積した前記堆積物の膜厚値に応じて調整して、前記基板載置部に堆積した堆積物を除去する除去工程と、を有する半導体装置の製造方法が提供される。
[Supplementary Note 29] According to still another aspect of the present invention, a substrate processing step of processing a substrate in a processing chamber provided with a plurality of regions;
At least reactive gas is supplied into the processing chamber, and the reactive material is supplied to the plurality of regions when removing deposits deposited on a substrate mounting portion provided in the processing chamber in the substrate processing step. A removal step of adjusting the gas supply flow rate and the inert gas supply flow rate according to the film thickness value of the deposit deposited on the substrate platform, respectively, to remove the deposit deposited on the substrate platform. A method for manufacturing a semiconductor device is provided.
[付記30]本発明の更に他の態様によれば、基板を処理する複数の領域が設けられた少なくとも1つの処理室を備える基板処理装置で実行されるプログラムをコンピュータ読み取り可能に記録した記録媒体であって、前記処理室内に、少なくとも反応性ガスを供給する際、前記複数の領域に供給する前記反応性ガスの供給流量及び不活性ガスの供給流量をそれぞれ前記処理室に設けられた基板載置部に堆積した前記堆積物の膜厚に応じて調整して、前記基板載置部に堆積した堆積物を除去する手順と、を有するプログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。 [Supplementary Note 30] According to still another aspect of the present invention, a computer-readable recording medium recording a program executed in a substrate processing apparatus including at least one processing chamber provided with a plurality of regions for processing a substrate. When at least reactive gas is supplied into the processing chamber, the reactive gas supply flow rate and the inert gas supply flow rate supplied to the plurality of regions are respectively mounted on the substrate provided in the processing chamber. There is provided a computer-readable recording medium having recorded thereon a program having a procedure of adjusting the film thickness of the deposit deposited on the placement unit to remove the deposit deposited on the substrate placement unit .
[付記31]付記27の基板処理装置において、好ましくは、前記制御部は、前記基板載置部を含む前記複数の領域に面する前記処理室を構成する構成部材のうち、前記堆積物の膜厚値が最も小さい構成部材に基づいて反応性ガスの供給時間を算出する工程と、前記供給時間経過後、前記構成部材に面する領域に供給するガスを、前記反応性ガスから不活性ガスに切替える工程と、を所定回数繰り返すことで、前記構成部材に堆積した前記堆積物を除去する。 [Supplementary Note 31] In the substrate processing apparatus of Supplementary Note 27, preferably, the control unit includes the deposit film among the constituent members constituting the processing chamber facing the plurality of regions including the substrate mounting unit. The step of calculating the supply time of the reactive gas based on the constituent member having the smallest thickness value, and the gas supplied to the region facing the constituent member after the supply time elapses from the reactive gas to the inert gas. By repeating the switching step a predetermined number of times, the deposit deposited on the constituent member is removed.
[付記32]付記27の基板処理装置において、好ましくは、前記制御部は、 前記基板載置部を含む前記複数の領域に面する前記処理室を構成する構成部材のそれぞれの前記堆積物の膜厚値に基づいて反応性ガスの供給時間をそれぞれ算出する工程と、算出した前記反応性ガスの供給時間に基づいて前記反応性ガスを供給する際、前記堆積物の除去が終了した前記構成部材に面する領域には、前記反応性ガスが供給されないように不活性ガスを供給し、前記堆積物の除去が終了していない前記構成部材に面する領域には、前記反応性ガスを供給するように、前記反応性ガス及び前記不活性ガスの供給流量を調整して、前記構成部材に堆積された前記堆積物を除去する工程と、を有する。 [Supplementary Note 32] In the substrate processing apparatus of Supplementary Note 27, preferably, the control unit is configured to form the deposit film of each of the constituent members constituting the processing chamber facing the plurality of regions including the substrate mounting unit. The step of calculating the supply time of the reactive gas based on the thickness value, and the constituent member after the removal of the deposit is completed when the reactive gas is supplied based on the calculated supply time of the reactive gas An inert gas is supplied to the region facing the substrate so that the reactive gas is not supplied, and the reactive gas is supplied to a region facing the component member where removal of the deposit is not completed And adjusting the supply flow rates of the reactive gas and the inert gas to remove the deposits deposited on the constituent members.
[付記33]付記27の基板処理装置において、好ましくは、
 前記制御部は、 前記複数の領域に面する構成部材のそれぞれに堆積した堆積物の膜厚値に応じて前記領域内での反応性ガスの濃度が調整されるように、前記複数の領域に供給される不活性ガスの供給流量をそれぞれ調整する。
[Appendix 33] In the substrate processing apparatus of Appendix 27, preferably
The control unit may adjust the concentration of the reactive gas in the region according to the film thickness value of the deposit deposited on each of the components facing the region. The supply flow rate of the inert gas to be supplied is adjusted.
[付記34]付記33の基板処理装置において、好ましくは、前記制御部は、 前記複数の領域の内、前記堆積物の膜厚値が最も大きい構成部材が面する領域に基づいて反応性ガスの供給時間を算出し、前記複数の領域のエッチング比率をそれぞれ算出する。 [Supplementary Note 34] In the substrate processing apparatus of Supplementary Note 33, preferably, the control unit is configured to control the reactive gas based on a region facing a constituent member having a largest film thickness value of the deposit among the plurality of regions. A supply time is calculated, and an etching ratio of each of the plurality of regions is calculated.
[付記35]更に、好ましくは、前記基板に原料ガスを供給する原料ガス供給部を備え、前記制御部は、
 前記基板載置部に堆積する前記堆積物の膜厚値に所定の堆積比率を乗じることで、前記領域に面する構成部材に堆積する堆積物の膜厚値をそれぞれ算出する付記27の基板処理装置が提供される。
[Supplementary Note 35] Furthermore, preferably, a source gas supply unit that supplies source gas to the substrate is provided, and the control unit includes:
Item 27. The substrate processing according to appendix 27, wherein the film thickness value of the deposit deposited on the component facing the region is calculated by multiplying the film thickness value of the deposit deposited on the substrate platform by a predetermined deposition ratio. An apparatus is provided.
[付記36]付記35の基板処理装置において、好ましくは、前記制御部は、
 前記堆積物を除去する除去比率に前記反応性ガスの供給時間を乗じることで、前記基板載置部から除去される堆積物の膜厚値を算出する。
[Appendix 36] In the substrate processing apparatus of Appendix 35, preferably, the control unit includes:
The film thickness value of the deposit removed from the substrate mounting portion is calculated by multiplying the removal ratio for removing the deposit by the supply time of the reactive gas.
[付記37]本発明の更に他の態様によれば、基板を処理する少なくとも1つの処理室を備える基板処理装置の制御方法であって、 前記処理室内に設けられ、前記基板を載置する基板載置部と、前記基板の処理によって少なくとも前記基板載置部に堆積した堆積物を除去する反応性ガスを前記複数の領域に供給する反応性ガス供給部と、前記複数の領域に不活性ガスを供給する不活性ガス供給部と、少なくとも前記反応性ガス供給部及び前記不活性ガス供給部を制御する制御部と、を有し、前記反応性ガスを前記複数の領域に供給し、前記堆積物を除去する際、前記複数の領域に供給する前記反応性ガスの供給流量及び前記不活性ガスの供給流量をそれぞれ前記基板載置部に堆積した前記堆積物の膜厚値に応じて調整する基板処理装置の制御方法が提供される。 [Appendix 37] According to still another aspect of the present invention, there is provided a method for controlling a substrate processing apparatus including at least one processing chamber for processing a substrate, the substrate being provided in the processing chamber and mounting the substrate A mounting unit; a reactive gas supply unit that supplies a reactive gas that removes at least deposits deposited on the substrate mounting unit by processing the substrate; and an inert gas that is supplied to the plurality of regions. An inert gas supply unit that supplies at least the reactive gas supply unit and a control unit that controls the inert gas supply unit, and supplies the reactive gas to the plurality of regions. When removing an object, the supply flow rate of the reactive gas and the supply flow rate of the inert gas supplied to the plurality of regions are adjusted in accordance with the film thickness value of the deposit deposited on the substrate platform, respectively. Control of substrate processing equipment A method is provided.
基板の処理を行う処理室を備え、特に、この処理室を構成する部材に堆積した堆積物を除去する基板処理装置に適用できる。 The present invention can be applied to a substrate processing apparatus that includes a processing chamber for processing a substrate and removes deposits deposited on members constituting the processing chamber.
この出願は、2013年3月13日に出願された日本出願特願2013-050559を基礎として優先権の利益を主張するものであり、その開示の全てを引用によってここに取り込む。 This application claims the benefit of priority based on Japanese Patent Application No. 2013-0505559 filed on Mar. 13, 2013, the entire disclosure of which is incorporated herein by reference.
 10        基板処理装置  PM1,PM2   プロセスチャンバ(処理室)  ST1,ST2   サセプタ(基板載置部)  205       仕切板(仕切部)  257       反応性ガス供給部  254~256   不活性ガス供給部  280       制御部 10: Substrate processing equipment PM1, PM2, Process chamber (processing room) ST1, ST2, Susceptor (substrate mounting part) 205 205, Partition plate (partition part) 257, Reactive gas supply part 254-256 Inert gas control part

Claims (11)

  1.  基板を処理する複数の領域が設けられた少なくとも1つの処理室を備える基板処理装置であって、
     前記処理室内に設けられ、前記基板を載置する基板載置部と、
     前記基板の処理によって少なくとも前記基板載置部に堆積した堆積物を除去する反応性ガスを前記複数の領域に供給する反応性ガス供給部と、
     前記複数の領域に不活性ガスを供給する不活性ガス供給部と、
     前記反応性ガスを前記複数の領域に供給し、前記堆積物を除去する際、前記複数の領域に供給する前記反応性ガスの供給流量及び前記不活性ガスの供給流量をそれぞれ前記基板載置部に堆積した前記堆積物の膜厚値に応じて調整するように、少なくとも前記反応性ガス供給部及び前記不活性ガス供給部を制御する制御部と、を備える基板処理装置。
    A substrate processing apparatus comprising at least one processing chamber provided with a plurality of regions for processing a substrate,
    A substrate mounting portion provided in the processing chamber for mounting the substrate;
    A reactive gas supply unit that supplies, to the plurality of regions, a reactive gas that removes at least deposits deposited on the substrate mounting unit by processing the substrate;
    An inert gas supply unit for supplying an inert gas to the plurality of regions;
    When the reactive gas is supplied to the plurality of regions and the deposit is removed, the supply flow rate of the reactive gas and the supply flow rate of the inert gas supplied to the plurality of regions are respectively set to the substrate mounting unit. A substrate processing apparatus comprising: a control unit that controls at least the reactive gas supply unit and the inert gas supply unit so as to adjust according to a film thickness value of the deposit deposited on the substrate.
  2.  基板を処理する複数の領域が設けられた少なくとも1つの処理室を備える基板処理装置で実行されるクリーニング方法あって、前記処理室内に、少なくとも反応性ガスを供給する際、前記複数の領域に供給する前記反応性ガスの供給流量及び不活性ガスの供給流量をそれぞれ前記処理室に設けられた基板載置部に堆積した前記堆積物の膜厚値に応じて調整して、前記基板載置部に堆積した堆積物を除去する除去工程を有する基板処理装置のクリーニング方法。 A cleaning method executed by a substrate processing apparatus including at least one processing chamber provided with a plurality of regions for processing a substrate, wherein at least a reactive gas is supplied into the processing chamber, the supply to the plurality of regions Adjusting the supply flow rate of the reactive gas and the supply flow rate of the inert gas according to the film thickness value of the deposit deposited on the substrate mounting portion provided in the processing chamber, respectively. A method for cleaning a substrate processing apparatus, comprising a removing step of removing deposits deposited on the substrate.
  3.  複数の領域が設けられた処理室内で基板を処理する基板処理工程と、
     前記処理室内に、少なくとも反応性ガスを供給し、前記基板処理工程において前記処理室に設けられた基板載置部に堆積された堆積物を除去する際、前記複数の領域に供給する前記反応性ガスの供給流量及び不活性ガスの供給流量をそれぞれ前記基板載置部に堆積した前記堆積物の膜厚値に応じて調整して、前記基板載置部に堆積した堆積物を除去する除去工程と、を有する半導体装置の製造方法。
    A substrate processing step of processing a substrate in a processing chamber provided with a plurality of regions;
    At least reactive gas is supplied into the processing chamber, and the reactive material is supplied to the plurality of regions when removing deposits deposited on a substrate mounting portion provided in the processing chamber in the substrate processing step. A removal step of adjusting the gas supply flow rate and the inert gas supply flow rate according to the film thickness value of the deposit deposited on the substrate platform, respectively, to remove the deposit deposited on the substrate platform. A method for manufacturing a semiconductor device.
  4. 基板を処理する複数の領域が設けられた少なくとも1つの処理室を備える基板処理装置で実行されるプログラムをコンピュータ読み取り可能に記録した記録媒体であって、前記処理室内に、少なくとも反応性ガスを供給する際、前記複数の領域に供給する前記反応性ガスの供給流量及び不活性ガスの供給流量をそれぞれ前記処理室に設けられた基板載置部に堆積した前記堆積物の膜厚に応じて調整して、前記基板載置部に堆積した堆積物を除去する手順と、を有するプログラムを記録したコンピュータ読み取り可能な記録媒体。 A recording medium in which a program executed by a substrate processing apparatus including at least one processing chamber provided with a plurality of regions for processing a substrate is recorded in a computer-readable manner, and at least a reactive gas is supplied into the processing chamber In this case, the reactive gas supply flow rate and the inert gas supply flow rate supplied to the plurality of regions are adjusted according to the film thickness of the deposit deposited on the substrate mounting portion provided in the processing chamber, respectively. And a computer-readable recording medium having recorded thereon a program having a procedure of removing deposits deposited on the substrate mounting portion.
  5. 前記制御部は、前記基板載置部を含む前記複数の領域に面する前記処理室を構成する構成部材のうち、前記堆積物の膜厚値が最も小さい構成部材に基づいて反応性ガスの供給時間を算出する工程と、前記供給時間経過後、前記構成部材に面する領域に供給するガスを、前記反応性ガスから不活性ガスに切替える工程と、を所定回数繰り返すことで、前記構成部材に堆積した前記堆積物を除去する請求項1記載の基板処理装置。 The control unit supplies reactive gas based on a constituent member having the smallest film thickness value of the deposit among constituent members constituting the processing chamber facing the plurality of regions including the substrate placement unit. The process of calculating the time and the process of switching the gas supplied to the region facing the structural member from the reactive gas to the inert gas after the supply time has passed are repeated a predetermined number of times. The substrate processing apparatus according to claim 1, wherein the deposited deposit is removed.
  6. 前記制御部は、 前記基板載置部を含む前記複数の領域に面する前記処理室を構成する構成部材のそれぞれの前記堆積物の膜厚値に基づいて反応性ガスの供給時間をそれぞれ算出する工程と、算出した前記反応性ガスの供給時間に基づいて前記反応性ガスを供給する際、前記堆積物の除去が終了した前記構成部材に面する領域には、前記反応性ガスが供給されないように不活性ガスを供給し、前記堆積物の除去が終了していない前記構成部材に面する領域には、前記反応性ガスを供給するように、前記反応性ガス及び前記不活性ガスの供給流量を調整して、前記構成部材に堆積された前記堆積物を除去する工程と、を有する請求項1記載の基板処理装置。 The control unit calculates a supply time of the reactive gas based on a film thickness value of each deposit of each of the constituent members constituting the processing chamber facing the plurality of regions including the substrate mounting unit. When the reactive gas is supplied based on the process and the calculated supply time of the reactive gas, the reactive gas is not supplied to the region facing the component member after the removal of the deposit is completed. The reactive gas and the inert gas supply flow rate so as to supply the reactive gas to the region facing the component member where the inert gas is supplied to the component member and the removal of the deposit is not completed. The substrate processing apparatus according to claim 1, further comprising a step of removing the deposits deposited on the constituent members by adjusting.
  7.  前記制御部は、 前記複数の領域に面する構成部材のそれぞれに堆積した堆積物の膜厚値に応じて前記領域内での反応性ガスの濃度が調整されるように、前記複数の領域に供給される不活性ガスの供給流量をそれぞれ調整する請求項1記載の基板処理装置。 The control unit controls the plurality of regions so that the concentration of the reactive gas in the region is adjusted according to the film thickness value of the deposit deposited on each of the constituent members facing the plurality of regions. The substrate processing apparatus according to claim 1, wherein a supply flow rate of the supplied inert gas is adjusted.
  8. 前記制御部は、 前記複数の領域の内、前記堆積物の膜厚値が最も大きい構成部材が面する領域に基づいて反応性ガスの供給時間を算出し、前記複数の領域のエッチング比率をそれぞれ算出する請求項7記載の基板処理装置。 The control unit calculates a supply time of the reactive gas based on a region facing a constituent member having the largest film thickness value of the deposit among the plurality of regions, and sets an etching ratio of each of the plurality of regions. The substrate processing apparatus according to claim 7 to calculate.
  9.  前記基板に原料ガスを供給する原料ガス供給部を備え、前記制御部は、
     前記基板載置部に堆積する前記堆積物の膜厚値に所定の堆積比率を乗じることで、前記領域に面する構成部材に堆積する堆積物の膜厚値をそれぞれ算出する請求項1記載の基板処理装置。
    A source gas supply unit configured to supply a source gas to the substrate;
    The film thickness value of the deposit deposited on the component facing the region is calculated by multiplying the film thickness value of the deposit deposited on the substrate platform by a predetermined deposition ratio, respectively. Substrate processing equipment.
  10. 前記制御部は、
     前記堆積物を除去する除去比率に前記反応性ガスの供給時間を乗じることで、前記基板載置部から除去される堆積物の膜厚値を算出する請求項9記載の基板処理装置。
    The controller is
    The substrate processing apparatus according to claim 9, wherein a film thickness value of the deposit removed from the substrate mounting unit is calculated by multiplying a removal ratio for removing the deposit by a supply time of the reactive gas.
  11. 基板を処理する少なくとも1つの処理室を備える基板処理装置の制御方法であって、 前記処理室内に設けられ、前記基板を載置する基板載置部と、 前記基板の処理によって少なくとも前記基板載置部に堆積した堆積物を除去する反応性ガスを前記複数の領域に供給する反応性ガス供給部と、 前記複数の領域に不活性ガスを供給する不活性ガス供給部と、 少なくとも前記反応性ガス供給部及び前記不活性ガス供給部を制御する制御部と、を有し前記反応性ガスを前記複数の領域に供給し、前記堆積物を除去する際、前記複数の領域に供給する前記反応性ガスの供給流量及び前記不活性ガスの供給流量をそれぞれ前記基板載置部に堆積した前記堆積物の膜厚値に応じて調整する基板処理装置の制御方法。  A method for controlling a substrate processing apparatus including at least one processing chamber for processing a substrate, the substrate mounting portion being provided in the processing chamber and mounting the substrate, and at least the substrate mounting by processing the substrate A reactive gas supply unit that supplies the plurality of regions with a reactive gas that removes deposits deposited on the unit, an inert gas supply unit that supplies an inert gas to the plurality of regions, and at least the reactive gas A control unit that controls the supply unit and the inert gas supply unit, and supplies the reactive gas to the plurality of regions and supplies the plurality of regions to the plurality of regions when removing the deposits. A control method for a substrate processing apparatus, wherein a gas supply flow rate and an inert gas supply flow rate are adjusted in accordance with a film thickness value of the deposit deposited on the substrate platform.
PCT/JP2014/055998 2013-03-13 2014-03-07 Substrate processing device, method for controlling substrate processing device, cleaning method, method for manufacturing semiconductor device, and recording medium WO2014142031A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015505443A JP6290177B2 (en) 2013-03-13 2014-03-07 Substrate processing apparatus, substrate processing apparatus cleaning method, semiconductor device manufacturing method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013050559 2013-03-13
JP2013-050559 2013-03-13

Publications (1)

Publication Number Publication Date
WO2014142031A1 true WO2014142031A1 (en) 2014-09-18

Family

ID=51536691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055998 WO2014142031A1 (en) 2013-03-13 2014-03-07 Substrate processing device, method for controlling substrate processing device, cleaning method, method for manufacturing semiconductor device, and recording medium

Country Status (2)

Country Link
JP (1) JP6290177B2 (en)
WO (1) WO2014142031A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160122873A1 (en) * 2014-10-29 2016-05-05 Tokyo Electron Limited Film forming apparatus and shower head
JP2019071359A (en) * 2017-10-10 2019-05-09 東京エレクトロン株式会社 Method for processing workpiece
US10697059B2 (en) 2017-09-15 2020-06-30 Lam Research Corporation Thickness compensation by modulation of number of deposition cycles as a function of chamber accumulation for wafer to wafer film thickness matching
JP2020172690A (en) * 2019-04-11 2020-10-22 東京エレクトロン株式会社 Treatment apparatus and treatment method
JP2021061349A (en) * 2019-10-08 2021-04-15 東京エレクトロン株式会社 Control device, processing device, and control method
JP2021086959A (en) * 2019-11-28 2021-06-03 東京エレクトロン株式会社 Recipe creation method for cleaning and cleaning method
WO2024043151A1 (en) * 2022-08-25 2024-02-29 東京エレクトロン株式会社 Plasma treatment method and plasma treatment system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283147A (en) * 1994-04-15 1995-10-27 Toshiba Corp Thin film forming method
JPH08330243A (en) * 1995-05-30 1996-12-13 Anelva Corp Plasma cleaning method, and area protector for arrangement
JPH10176272A (en) * 1996-10-15 1998-06-30 Kokusai Electric Co Ltd Cleaning method and cleaning device
JP2006319041A (en) * 2005-05-11 2006-11-24 Tokyo Electron Ltd Plasma cleaning method and method for forming film
WO2007108401A1 (en) * 2006-03-20 2007-09-27 Hitachi Kokusai Electric Inc. Semiconductor device manufacturing method and substrate processing apparatus
WO2007116768A1 (en) * 2006-03-27 2007-10-18 Hitachi Kokusai Electric Inc. Semiconductor device manufacturing method and substrate processing apparatus
JP2008218877A (en) * 2007-03-07 2008-09-18 Hitachi Kokusai Electric Inc Substrate treatment device and method of manufacturing semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283147A (en) * 1994-04-15 1995-10-27 Toshiba Corp Thin film forming method
JPH08330243A (en) * 1995-05-30 1996-12-13 Anelva Corp Plasma cleaning method, and area protector for arrangement
JPH10176272A (en) * 1996-10-15 1998-06-30 Kokusai Electric Co Ltd Cleaning method and cleaning device
JP2006319041A (en) * 2005-05-11 2006-11-24 Tokyo Electron Ltd Plasma cleaning method and method for forming film
WO2007108401A1 (en) * 2006-03-20 2007-09-27 Hitachi Kokusai Electric Inc. Semiconductor device manufacturing method and substrate processing apparatus
WO2007116768A1 (en) * 2006-03-27 2007-10-18 Hitachi Kokusai Electric Inc. Semiconductor device manufacturing method and substrate processing apparatus
JP2008218877A (en) * 2007-03-07 2008-09-18 Hitachi Kokusai Electric Inc Substrate treatment device and method of manufacturing semiconductor device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10844489B2 (en) 2014-10-29 2020-11-24 Tokyo Electron Limited Film forming apparatus and shower head
CN105568255A (en) * 2014-10-29 2016-05-11 东京毅力科创株式会社 Film forming apparatus and shower head
JP2016092026A (en) * 2014-10-29 2016-05-23 東京エレクトロン株式会社 Deposition device and shower head
US20160122873A1 (en) * 2014-10-29 2016-05-05 Tokyo Electron Limited Film forming apparatus and shower head
US11286560B2 (en) 2017-09-15 2022-03-29 Lam Research Corporation Thickness compensation by modulation of number of deposition cycles as a function of chamber accumulation for wafer to wafer film thickness matching
US10697059B2 (en) 2017-09-15 2020-06-30 Lam Research Corporation Thickness compensation by modulation of number of deposition cycles as a function of chamber accumulation for wafer to wafer film thickness matching
JP2019071359A (en) * 2017-10-10 2019-05-09 東京エレクトロン株式会社 Method for processing workpiece
JP2020172690A (en) * 2019-04-11 2020-10-22 東京エレクトロン株式会社 Treatment apparatus and treatment method
JP7454915B2 (en) 2019-04-11 2024-03-25 東京エレクトロン株式会社 Processing equipment and processing method
JP2021061349A (en) * 2019-10-08 2021-04-15 東京エレクトロン株式会社 Control device, processing device, and control method
JP7236975B2 (en) 2019-10-08 2023-03-10 東京エレクトロン株式会社 Control device, processing device and control method
JP2021086959A (en) * 2019-11-28 2021-06-03 東京エレクトロン株式会社 Recipe creation method for cleaning and cleaning method
WO2024043151A1 (en) * 2022-08-25 2024-02-29 東京エレクトロン株式会社 Plasma treatment method and plasma treatment system

Also Published As

Publication number Publication date
JP6290177B2 (en) 2018-03-07
JPWO2014142031A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6290177B2 (en) Substrate processing apparatus, substrate processing apparatus cleaning method, semiconductor device manufacturing method, and program
US20220415660A1 (en) Processing apparatus
US9028648B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
JP6084202B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and substrate processing method
US20170271176A1 (en) Substrate processing apparatus
JP5800969B1 (en) Substrate processing apparatus, semiconductor device manufacturing method, program, and recording medium
US10546761B2 (en) Substrate processing apparatus
US20090124083A1 (en) Film formation apparatus and method for using same
JP6095172B2 (en) Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
JP2015178644A (en) Substrate processing device, semiconductor device manufacturing method, program, and recording medium
US20120108077A1 (en) Substrate processing apparatus and semiconductor device manufacturing method
KR20130033336A (en) Method of manufacturing semiconductor device and substrate processing apparatus
JP2017017154A (en) Substrate transport device and substrate transport method
JP6549765B2 (en) Processing method
US7470637B2 (en) Film formation apparatus and method of using the same
US20190194803A1 (en) Susceptor cleaning method
WO2013141159A1 (en) Substrate processing device, method for manufacturing semiconductor device, and method for processing substrate
US20220254629A1 (en) Deposition method
KR101078316B1 (en) Apparatus for forming a layer on a wafer and method of cleaning a process chamber of the apparatus
JP5885870B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, program, and recording medium
WO2016052333A1 (en) Board processing device, semiconductor device making method, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14765522

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505443

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14765522

Country of ref document: EP

Kind code of ref document: A1