WO2014141926A1 - Method for continuously producing gypsum slurry - Google Patents

Method for continuously producing gypsum slurry Download PDF

Info

Publication number
WO2014141926A1
WO2014141926A1 PCT/JP2014/055309 JP2014055309W WO2014141926A1 WO 2014141926 A1 WO2014141926 A1 WO 2014141926A1 JP 2014055309 W JP2014055309 W JP 2014055309W WO 2014141926 A1 WO2014141926 A1 WO 2014141926A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
gypsum
supply port
temperature
wall
Prior art date
Application number
PCT/JP2014/055309
Other languages
French (fr)
Japanese (ja)
Inventor
晋吾 平中
多賀 玄治
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013049788A external-priority patent/JP2016104673A/en
Priority claimed from JP2013051149A external-priority patent/JP2016104674A/en
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2014141926A1 publication Critical patent/WO2014141926A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/08Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions using driven mechanical means affecting the mixing
    • B28C5/10Mixing in containers not actuated to effect the mixing
    • B28C5/12Mixing in containers not actuated to effect the mixing with stirrers sweeping through the materials, e.g. with incorporated feeding or discharging means or with oscillating stirrers
    • B28C5/16Mixing in containers not actuated to effect the mixing with stirrers sweeping through the materials, e.g. with incorporated feeding or discharging means or with oscillating stirrers the stirrers having motion about a vertical or steeply inclined axis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • C01F11/466Conversion of one form of calcium sulfate to another
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B11/00Calcium sulfate cements
    • C04B11/26Calcium sulfate cements strating from chemical gypsum; starting from phosphogypsum or from waste, e.g. purification products of smoke
    • C04B11/262Calcium sulfate cements strating from chemical gypsum; starting from phosphogypsum or from waste, e.g. purification products of smoke waste gypsum other than phosphogypsum

Definitions

  • the subject of the present invention is that when a half-water gypsum powder is continuously added and mixed with water to form a slurry, the growth of scale adhered to the inner wall of the slurry generation tank is prevented, and a gypsum slurry is stably generated. It is to provide a way to do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

In the present invention, hemihydrate gypsum powder is continuously introduced into a slurry-generating tank and is mixed with water to form a slurry of gypsum. At a position higher than the liquid surface at the inner wall of the generating tank or the supply opening for the hemihydrate gypsum powder, scales grow and problems such as the occlusion of the supply opening arise. Said problems are pronounced when the particle size of the hemihydrate gypsum powder is small. The portion 50-500 mm from the tip of the supply opening for the hemihydrate gypsum powder or the portion that is at or above the liquid surface at the inner wall of the generating tank is heated to at least 40°C, and preferably at least 50°C. As a result, condensation at the supply opening and the like is prevented, preventing scale growth.

Description

石膏スラリーの連続的な製造方法Continuous production method of gypsum slurry
 本発明は、半水石膏を原料として、石膏スラリーを製造する方法に関する。 The present invention relates to a method for producing a gypsum slurry using hemihydrate gypsum as a raw material.
 廃石膏の主たるソースである石膏ボード廃材の発生量は、年間約150万tであり、このうち、約50万tは生産時や家屋等の新築内装工事の端材であり、石膏ボードメーカーがリサイクルを行っている。しかし、残りの約100万tは、家屋等の建造物の改装・解体工事で排出されるものであり、リサイクルされずに埋立処分されている。ここで、埋立てられた石膏が雨水と接触すると硫化水素を発生するおそれがあるため、石膏の埋立ては、管理型の埋立地に行わなければならず、廃棄コストが問題である。更に、石膏ボード廃材の発生量は年々増加する傾向にあり、埋立地の不足、環境負荷の点から、廃石膏の有効な処理方法が求められている。 The amount of waste gypsum board waste, the main source of waste gypsum, is about 1.5 million tons per year, of which about 500,000 tons are scraps of new interior construction during production and houses. We are recycling. However, the remaining 1 million tons are discharged by renovation and demolition work of buildings such as houses, and are disposed of without being recycled. Here, when landfilled gypsum comes into contact with rainwater, hydrogen sulfide may be generated. Therefore, landfilling of gypsum must be performed in a management-type landfill, and disposal cost is a problem. Furthermore, the amount of gypsum board waste generated tends to increase year by year, and an effective treatment method for waste gypsum is required in view of the shortage of landfill and the environmental burden.
 このような処理方法の一つとして石膏ボード廃材由来の石膏を焼成により半水石膏とし、さらに全累積細孔容積が1mL/g以下となるように粉砕した後、二水石膏種晶が存在する水性媒体中で溶解して再析出させる再生方法が提案されている(例えば、特許文献1参照)。 As one of such treatment methods, gypsum derived from gypsum board waste material is calcined to make hemihydrate gypsum, and further pulverized so that the total cumulative pore volume is 1 mL / g or less, and then dihydrate gypsum seed crystals exist. A regeneration method for dissolving and reprecipitating in an aqueous medium has been proposed (see, for example, Patent Document 1).
 当該方法を採用する場合、生産性を向上させるために、バッチ式ではなく、連続式で行う、即ち、半水石膏の粉末を水性媒体に連続的に投入し、水と混合して二水石膏のスラリーを生成する方法が有利である。 When adopting this method, in order to improve productivity, it is carried out not continuously but batchwise, i.e., hemihydrate gypsum powder is continuously added to an aqueous medium and mixed with water to obtain dihydrate gypsum. A method of producing a slurry of is advantageous.
特開2010-013304号公報JP 2010-013304 A 特開平10-286553号公報Japanese Patent Laid-Open No. 10-286553 特開2000-254531号公報Japanese Patent Laid-Open No. 2000-245331
 しかしながら、半水石膏粉末を連続的に供給し、スラリー化しようとする場合、スラリー生成槽から気化した水分が半水石膏の供給口付近で凝結し、この水分と半水石膏粉末が反応してスケールが成長し、供給口を塞ぐという問題があった。同様に、スラリー生成槽から気化した水分が生成槽の内壁で凝結し、内壁にスケールが成長するという問題があった。この問題は、半水石膏粉末の粒度が小さいとき顕著であった。 However, when half-water gypsum powder is continuously supplied to make a slurry, the water vaporized from the slurry generation tank condenses near the half-water gypsum supply port, and this moisture reacts with the half-water gypsum powder. There was a problem that the scale grew and blocked the supply port. Similarly, there is a problem that the water vaporized from the slurry generation tank condenses on the inner wall of the generation tank and the scale grows on the inner wall. This problem was remarkable when the particle size of the hemihydrate gypsum powder was small.
 従って本発明の課題は、半水石膏粉末を連続的に投入し、水と混合してスラリー化する場合、半水石膏粉末の供給口に付着したスケールの成長を防止し、スラリー生成槽に安定的に半水石膏粉末を供給する方法を提供することにある。 Therefore, the object of the present invention is to prevent the growth of scale adhering to the supply port of the hemihydrate gypsum powder and stabilize it in the slurry generation tank when the hemihydrate gypsum powder is continuously charged and mixed with water to form a slurry. Another object of the present invention is to provide a method for supplying hemihydrate gypsum powder.
 また本発明の課題は、半水石膏粉末を連続的に投入し、水と混合してスラリー化する場合、スラリー生成槽の内壁に付着したスケールの成長を防止し、安定的に石膏スラリーを生成する方法を提供することにある。 Moreover, the subject of the present invention is that when a half-water gypsum powder is continuously added and mixed with water to form a slurry, the growth of scale adhered to the inner wall of the slurry generation tank is prevented, and a gypsum slurry is stably generated. It is to provide a way to do.
課題を解決する手段Means to solve the problem
 発明者は、供給口へのあるいは生成槽内壁への水分付着を防止すれば、スケールの発生も防止できるとの観点から、さらに検討を進め、本発明を完成した。 The inventor has further studied from the viewpoint that the generation of scale can be prevented by preventing moisture from adhering to the supply port or the inner wall of the production tank, and the present invention has been completed.
 本発明では、スラリー生成槽に、液面より高い位置に供給口のある供給管を通して半水石膏粉末を連続的に供給して水と混合し、石膏スラリーを連続的に製造する方法において、
 前記供給口部分を40℃以上に加熱して半水石膏を連続供給することを特徴とする。
In the present invention, in a method for continuously producing a gypsum slurry by continuously supplying a half-water gypsum powder to a slurry generation tank through a supply pipe having a supply port at a position higher than the liquid level and mixing with water.
The supply port portion is heated to 40 ° C. or higher and hemihydrate gypsum is continuously supplied.
 本発明によれば、半水石膏粉末の供給口に付着した二水石膏のスケールは成長することはなく、安定的に二水石膏のスラリーを生成することができ、特にスケールが供給口を塞ぐことがないので、石膏スラリーを連続的に製造できる。 According to the present invention, the dihydrate gypsum scale attached to the supply port of the hemihydrate gypsum powder does not grow and can stably produce a slurry of dihydrate gypsum, and in particular, the scale blocks the supply port. As a result, the gypsum slurry can be continuously produced.
 また本発明では、スラリー生成槽に、液面より高い位置に供給口のある供給管を通して半水石膏粉末を連続的に供給して水と混合し、石膏スラリーを連続的に製造する方法において、スラリー生成槽の内壁のうち、液面以上の部分を40℃以上に加熱してスラリー生成を行うことにより、石膏スラリーを連続的に製造する。なお液面以上の部分を内壁の最上部まで加熱する必要はない。 Further, in the present invention, in the method for continuously producing the gypsum slurry, the slurry generation tank is continuously supplied with the half-water gypsum powder through the supply pipe having the supply port at a position higher than the liquid level and mixed with water. A portion of the inner wall of the slurry generation tank above the liquid level is heated to 40 ° C. or higher to generate slurry, thereby producing gypsum slurry continuously. It is not necessary to heat the portion above the liquid level to the top of the inner wall.
 本発明によれば、スラリー生成槽の内壁に付着した二水石膏のスケールは成長することはなく、安定的に二水石膏のスラリーを生成することができる。 According to the present invention, the dihydrate gypsum scale attached to the inner wall of the slurry production tank does not grow, and the dihydrate gypsum slurry can be produced stably.
 発明者の知見によると、水蒸気と半水石膏との反応はほとんど生じず、結露により生じた液相の水と半水石膏との反応が、スケール成長の主な原因である。従って、スラリーの液温以上に、供給口あるいは生成槽の内壁を加熱すれば、スケールの成長を効果的に防止できる。特に供給口の先端部あるいは生成槽の内壁を、液温+5℃以上で液温+30℃以下、より好ましくは液温+10℃以上で液温+25℃以下の温度に加熱すると、比較的低い加熱温度で、効果的にスラリーの成長を防止できる。  According to the inventor's knowledge, there is almost no reaction between water vapor and hemihydrate gypsum, and the reaction between liquid phase water and hemihydrate gypsum generated by condensation is the main cause of scale growth. Therefore, if the supply port or the inner wall of the production tank is heated to a temperature higher than the liquid temperature of the slurry, scale growth can be effectively prevented. In particular, when the tip of the supply port or the inner wall of the production tank is heated to a liquid temperature of + 5 ° C. or higher and a liquid temperature of + 30 ° C. or lower, more preferably a liquid temperature of + 10 ° C. or higher and a liquid temperature of + 25 ° C. or lower, a relatively low heating temperature Thus, the growth of the slurry can be effectively prevented. *
 好ましくは、前記供給口から、半水石膏粉末を投入し、供給口の先端部に第1のヒータを、スラリー生成槽の外壁で液面以上の部分に第2のヒータを設けると共に、供給口の先端部の外壁よりも、スラリー生成槽の外壁を、より高い温度に加熱する。供給口に接触するのは、空気や水蒸気等の気体と、加熱された半水石膏粉末であり、供給口からの熱の持ち出しは少ない。これに対して生成槽での液面の上部は、スラリーに熱が奪われるため、昇温しにくい。そこで供給口の先端部の外壁よりも、スラリー生成槽の外壁を、より高い温度に加熱すると、供給口の先端部でもスラリー生成槽の内壁でも、スケールの成長を効果的に防止できる。 Preferably, hemihydrate gypsum powder is charged from the supply port, the first heater is provided at the tip of the supply port, the second heater is provided at the outer wall of the slurry generation tank above the liquid level, and the supply port The outer wall of the slurry generation tank is heated to a higher temperature than the outer wall of the front end portion. A gas such as air or water vapor and heated hemihydrate gypsum powder are in contact with the supply port, and heat is not taken out from the supply port. On the other hand, the temperature of the upper part of the liquid level in the production tank is difficult to raise because heat is taken away by the slurry. Therefore, when the outer wall of the slurry generation tank is heated to a higher temperature than the outer wall of the front end of the supply port, scale growth can be effectively prevented at both the front end of the supply port and the inner wall of the slurry generation tank.
第1の実施例での反応装置を示す概略図Schematic showing the reactor in the first embodiment 第2の実施例での反応装置を示す概略図Schematic showing the reactor in the second embodiment 最適実施例での反応装置を示す概略図Schematic showing the reactor in the optimal embodiment
発明を実施するため形態Mode for carrying out the invention
 本発明では、半水石膏粉末を水と混合し、石膏のスラリーを形成させる。当該半水石膏粉末は特に限定されるものではないが、石膏ボードなどから得られる廃石膏を粉砕・焼成して半水石膏としたものが好ましい。 In the present invention, hemihydrate gypsum powder is mixed with water to form a gypsum slurry. Although the said hemihydrate gypsum powder is not specifically limited, The waste water gypsum obtained from gypsum board etc. is grind | pulverized and baked and the thing made into hemihydrate gypsum is preferable.
 具体的には、該廃石膏は、石膏ボードの生産工程および建築現場の施行工程で発生する端材、残材からなる石膏ボード廃材、改装・解体工事で建築廃材として発生する石膏ボード廃材から得られる。 Specifically, the waste gypsum is obtained from the gypsum board production process and the scraps generated in the construction site enforcement process, gypsum board waste made of residual material, and gypsum board waste generated as renovation and demolition work. It is done.
 上記廃石膏は、適当な粒径に破砕され、且つボード原紙が取り除かれたものであることが好ましい。上記破砕工程およびボード原紙の分離工程は、それぞれ、公知の方法によって行うことができる。例えばボード原紙の分離工程は、特許文献2、特許文献3等に記載された方法によることができる。 It is preferable that the waste gypsum is crushed to an appropriate particle size and the board base paper is removed. The crushing step and the board base paper separating step can be performed by known methods, respectively. For example, the board base paper separation step can be performed by a method described in Patent Literature 2, Patent Literature 3, and the like.
 粉砕後の廃石膏の粒径は、特に制限されるものではないが、機械的に運搬する際の容易さから、平均粒径として0.5~50mmであることが好ましく、1~20mmであることがより好ましい。この廃石膏の平均粒径は、ふるい分けにより測定することができる。なおこの明細書において、~は上限と下限を含むものとする。 The particle size of the waste gypsum after pulverization is not particularly limited, but the average particle size is preferably 0.5 to 50 mm, and preferably 1 to 20 mm, for ease of mechanical transportation. It is more preferable. The average particle size of the waste gypsum can be measured by sieving. In this specification, “˜” includes an upper limit and a lower limit.
 当該廃石膏から本発明の原料となる半水石膏を得るためには、120~200℃で30~60分程度加熱すればよい。加熱は、適宜の装置により行うことができ、例えば熱風乾燥器、伝導電熱乾燥機等を使用することができる。 In order to obtain hemihydrate gypsum as a raw material of the present invention from the waste gypsum, it may be heated at 120 to 200 ° C. for about 30 to 60 minutes. Heating can be performed by an appropriate apparatus, and for example, a hot air dryer, a conductive electric heat dryer, or the like can be used.
 さらに得られた半水石膏を本発明における原料とするには、得られた半水石膏をさらに粉砕して微粉末とすることが好ましい。上記粉砕工程においては、粉砕した後の石膏の全累積細孔容積を、1mL/g以下、好ましくは0.5~1mL/gとなるように制御することが好ましい。この全累積細孔容積は、細孔径1nm~1mmの範囲の細孔について水銀ポロシメータによって測定した累積細孔容積である。全累積細孔容積が上記の範囲にある限り、粉砕後の粒径は問わないが、上記の全累積細孔容積の要請を満たせば、その体積平均粒径は例えば0.5~30μm、更には1~20μmとなる。 Further, in order to use the obtained hemihydrate gypsum as a raw material in the present invention, the obtained hemihydrate gypsum is preferably further pulverized into a fine powder. In the pulverization step, it is preferable to control the total accumulated pore volume of gypsum after pulverization to 1 mL / g or less, preferably 0.5 to 1 mL / g. This total cumulative pore volume is the cumulative pore volume measured with a mercury porosimeter for pores having a pore diameter in the range of 1 nm to 1 mm. As long as the total cumulative pore volume is in the above range, the particle size after pulverization is not limited. However, if the total cumulative pore volume requirement is satisfied, the volume average particle size is, for example, 0.5 to 30 μm, Is 1 to 20 μm.
 この粉砕工程は、適宜の装置を用いて行うことができ、例えばピンミル、ボールミル、ビーズミル等の装置を使用することができる。 This pulverization step can be performed using an appropriate apparatus, and for example, an apparatus such as a pin mill, a ball mill, or a bead mill can be used.
 本発明においては、反応を連続的に行うため、スラリー生成槽に連続的に上記半水石膏粉末を供給し、生成したスラリーを連続的にスラリー生成槽から取り出す(図1参照)。原料の供給速度及びスラリーの取り出し速度は、スラリーを生成するのに適当な滞留時間になるように適宜調製すればよい。 In the present invention, in order to perform the reaction continuously, the above-mentioned hemihydrate gypsum powder is continuously supplied to the slurry generation tank, and the generated slurry is continuously taken out from the slurry generation tank (see FIG. 1). What is necessary is just to adjust suitably the supply speed | rate of a raw material, and the taking-out speed | rate of a slurry so that it may become a residence time suitable for producing | generating a slurry.
 本発明においては、上記原料となる半水石膏粉末は、液面より高い位置に供給口のある供給管を通じ、スラリー生成槽に連続的に供給される。当該スラリー生成槽内で半水石膏粉末は水と混合し、石膏スラリーとなる。 In the present invention, the hemihydrate gypsum powder as the raw material is continuously supplied to the slurry generation tank through a supply pipe having a supply port at a position higher than the liquid level. The hemihydrate gypsum powder is mixed with water in the slurry production tank to form a gypsum slurry.
 本発明における特徴は、上記半水石膏粉末供給管の供給口を、40℃以上に加熱する点にある。室温程度では水蒸気による結露が供給口に発生し、これがスケール成長の原因となる。好ましくは50℃以上、より好ましくは60℃以上である。さらに、液温(スラリー温度)が室温を超える場合、例えば40~60℃である場合には、該液温以上にすることが好ましく、より好ましくは液温+5℃以上の温度、特に好ましくは液温+10℃以上の温度である。 The feature of the present invention is that the supply port of the above-mentioned hemihydrate gypsum powder supply pipe is heated to 40 ° C. or higher. At room temperature, condensation due to water vapor occurs at the supply port, which causes scale growth. Preferably it is 50 degreeC or more, More preferably, it is 60 degreeC or more. Further, when the liquid temperature (slurry temperature) exceeds room temperature, for example, 40 to 60 ° C., it is preferable to set the liquid temperature or higher, more preferably the liquid temperature + 5 ° C. or higher, particularly preferably the liquid temperature. It is a temperature + 10 ° C. or higher.
 また本発明における特徴は、スラリー生成槽の内、少なくとも液面以上を40℃以上に加熱する点にある。室温程度では水蒸気による結露がスラリー生成槽内壁面に発生し、これがスケール成長の原因となる。好ましくは50℃以上、より好ましくは60℃以上である。こちらも液温が室温を超える場合には、該液温以上にすることが好ましく、より好ましくは液温+5℃以上の温度、特に好ましくは液温+10℃以上の温度である。 The feature of the present invention is that at least the liquid surface of the slurry production tank is heated to 40 ° C. or higher. At about room temperature, condensation due to water vapor occurs on the inner wall surface of the slurry generation tank, which causes scale growth. Preferably it is 50 degreeC or more, More preferably, it is 60 degreeC or more. When the liquid temperature exceeds room temperature, it is preferable to set the liquid temperature or higher, more preferably the liquid temperature + 5 ° C. or higher, and particularly preferably the liquid temperature + 10 ° C. or higher.
 一方、加熱温度を高くするに従い、スケール成長の防止効果は大きくなるが、120℃以上では効果は変わらない。つまり、この温度以上では、付着した二水石膏スケールが焼成され、半水石膏になるためスケールの成長は完全に防止できる。高温になるほど熱源の費用が大きくなることを考慮すると、100℃以下が好ましく、80℃以下が好ましい。上限温度を液温との関係でみた場合、液温+30℃以下の温度でよく、さらには液温+25℃以下の温度で十分である。 On the other hand, as the heating temperature is increased, the effect of preventing scale growth increases, but the effect does not change at 120 ° C. or higher. That is, above this temperature, the attached dihydrate gypsum scale is baked to become hemihydrate gypsum, so that scale growth can be completely prevented. Considering that the cost of the heat source increases as the temperature increases, the temperature is preferably 100 ° C. or lower, and preferably 80 ° C. or lower. When the upper limit temperature is considered in relation to the liquid temperature, the liquid temperature may be + 30 ° C. or lower, and the liquid temperature + 25 ° C. or lower is sufficient.
 加熱方法は、特に限定されない。電気ヒーター、蒸気による加熱が挙げられる。供給口先端の加熱範囲は、水蒸気の凝結の可能性のある範囲が加熱されていればよく、供給口の形状や材質(熱伝導性)などにより変わるが、一般的には供給口の先端から少なくとも50mm、好ましくは100mm以上、特に好ましくは150mm以上である。一方、そもそも凝結の起こらない範囲まで加熱する必要はなく、一般的には先端から500mmまでの範囲、好ましくは300mmまでの範囲、特に250mmまでの範囲で十分である。 The heating method is not particularly limited. Electric heaters and steam heating can be mentioned. The heating range at the tip of the supply port only needs to be heated within the range where water vapor can condense, and varies depending on the shape and material (thermal conductivity) of the supply port. It is at least 50 mm, preferably 100 mm or more, particularly preferably 150 mm or more. On the other hand, it is not necessary to heat to a range where condensation does not occur in the first place. Generally, a range of up to 500 mm from the tip, preferably up to 300 mm, particularly up to 250 mm is sufficient.
 生成槽内壁の加熱範囲は、少なくとも液面以上であり、好ましくは液面から30cmより上まで、より好ましくは液面から40cmより上まで、特に好ましくは液面から50cmより上までである。一方上限は特に限定されず、側壁の最上端まで加熱してもよい。スラリー生成槽に天井を設ける場合は、これも加熱してよい。なお本発明において加熱範囲とは、ヒーター等により直接加熱される部分に加え、当該直接加熱部分から熱伝導や輻射で二次的に加熱される部分を含む。 The heating range of the inner wall of the generation tank is at least above the liquid level, preferably from the liquid level to above 30 cm, more preferably from the liquid level to above 40 cm, and particularly preferably from the liquid level to above 50 cm. On the other hand, the upper limit is not particularly limited, and the upper end of the side wall may be heated. When providing a ceiling in a slurry production tank, this may also be heated. In the present invention, the heating range includes a portion heated secondarily by heat conduction or radiation from the directly heated portion in addition to a portion directly heated by a heater or the like.
 半水石膏の供給口の位置は、混合する水の液面より上部であれば特に制限されない。すなわち、ロータリーフィーダーで連続排出しながら、図示するようにスラリー生成槽上部から落としても良い。また、スクリューフィーダーで連続排出しながら、スラリー生成槽側壁から落としても良い。 The position of the half water gypsum supply port is not particularly limited as long as it is above the level of the water to be mixed. That is, it may be dropped from the upper part of the slurry generation tank as shown in the figure while continuously discharging with a rotary feeder. Moreover, you may drop from a slurry production tank side wall, discharging continuously with a screw feeder.
 半水石膏の供給口と水面の距離は、特に限定されない。距離が近すぎると水面から飛沫する水滴の付着量が大きくなるため適当でない。距離が長すぎるとスラリー生成槽が大きくなり、無駄な空間が大きくなるため適当でない。半水石膏粉末の粒径や混合する際の撹拌条件によって適宜調整すれば良い。一例として、直径1~2m程度のスラリー生成槽と、供給口径(開口径)が20~30cmの供給管を用いる場合、液面から40~60cmの位置とすればよい。 The distance between the half water gypsum supply port and the water surface is not particularly limited. If the distance is too close, the amount of water droplets splashing from the surface of the water increases, which is not appropriate. If the distance is too long, the slurry generation tank becomes large, and a useless space becomes large. What is necessary is just to adjust suitably with the particle size of hemihydrate gypsum powder, and the stirring conditions at the time of mixing. As an example, when a slurry production tank having a diameter of about 1 to 2 m and a supply pipe having a supply port diameter (opening diameter) of 20 to 30 cm are used, the position may be 40 to 60 cm from the liquid surface.
 半水石膏粉末の供給口の大きさは特に限定されない。小さすぎると、わずかにスケールが成長しただけで供給口が塞がれてしまうため適当でない。一方、大きすぎると供給管内の空間が大きくなり、管内への水蒸気進入の可能性が大きくなるので適当でない。半水石膏粉末の供給速度に合わせて適宜調整すれば良い。一例として、半水石膏粉末の供給速度が3~5t/hであれば、供給口直径が15~30cmとなるようにすればよい。なお無論、供給口の開口部形状は円形に限られるものではない。 The size of the supply port for the hemihydrate gypsum powder is not particularly limited. If it is too small, the scale will grow slightly and the supply port will be blocked, which is not suitable. On the other hand, if it is too large, the space in the supply pipe becomes large and the possibility of water vapor entering the pipe increases, which is not appropriate. What is necessary is just to adjust suitably according to the supply speed | rate of hemihydrate gypsum powder. As an example, if the supply rate of hemihydrate gypsum powder is 3 to 5 t / h, the supply port diameter may be 15 to 30 cm. Of course, the shape of the opening of the supply port is not limited to a circle.
 前述の通り、スラリー生成槽内で舞う粒子は、供給口あるいは生成槽の内壁に水分があると付着し、二水石膏となって強固なスケールとなる。本発明は、供給される半水石膏の平均粒径が20μm以下と小さく、供給口から投入されたときに、スラリー生成槽内で舞う粒子が多い場合に効果を発揮する。 As described above, the particles flying in the slurry generation tank adhere to the supply port or the inner wall of the generation tank and become dihydrated gypsum and become a strong scale. The present invention is effective when the average particle size of the supplied hemihydrate gypsum is as small as 20 μm or less and there are many particles flying in the slurry generation tank when it is introduced from the supply port.
 本発明の製造方法において供給する水は、特に限定されず目的にあわせて選定することができる。硫酸アルカリ水溶液、種結晶を含んだスラリー等でも構わない。加える水の温度は特に限定されないが、通常は室温~90℃程度、好ましくは40~60℃程度である。より高温の場合ほど、後述する水蒸気の発生と凝結が起きやすいため、本発明の効果が顕著に得られる。 The water supplied in the production method of the present invention is not particularly limited and can be selected according to the purpose. An aqueous alkali sulfate solution or a slurry containing seed crystals may be used. The temperature of water to be added is not particularly limited, but is usually about room temperature to 90 ° C, preferably about 40 to 60 ° C. The higher the temperature, the more easily the generation and condensation of water vapor, which will be described later, so that the effects of the present invention are remarkably obtained.
 本発明においては、上記スラリー生成槽で生成したスラリーを連続的に取り出し、これを別途用意された反応槽内に導入することにより、最終的に粒径の大きな二水石膏結晶を得ることができる。反応槽内で二水石膏結晶を安定的に析出させるためには、通常、二水石膏からなる種晶が用いられる。種晶の初期粒径としては、好ましくは10~60μmであり、より好ましくは20~40μmである。種晶の存在割合としては、好ましくは100~400g/Lであり、より好ましくは200~300g/Lである。 In the present invention, by continuously taking out the slurry produced in the slurry production tank and introducing it into a separately prepared reaction tank, a dihydrate gypsum crystal having a large particle size can be finally obtained. . In order to stably precipitate dihydrate gypsum crystals in the reaction vessel, seed crystals composed of dihydrate gypsum are usually used. The initial particle size of the seed crystal is preferably 10 to 60 μm, more preferably 20 to 40 μm. The abundance ratio of the seed crystal is preferably 100 to 400 g / L, more preferably 200 to 300 g / L.
 本発明におけるスラリーの濃度は、好ましくは10~40質量%程度である。従って、スラリー生成槽内の濃度がこの範囲になるよう、半水石膏粉末及び水を供給すればよい。また適度な石膏の析出速度を保つために、反応槽での熟成は、pHは、4~8の範囲で行うことが好ましく、スラリーの温度は、好ましくは90℃以下、より好ましくは50~80℃、反応時間は好ましくは0.2~6時間、より好ましくは0.5~2時間、撹拌する。 The concentration of the slurry in the present invention is preferably about 10 to 40% by mass. Therefore, the half-water gypsum powder and water may be supplied so that the concentration in the slurry generation tank is within this range. In order to maintain an appropriate rate of precipitation of gypsum, the aging in the reaction vessel is preferably carried out at a pH in the range of 4 to 8, and the temperature of the slurry is preferably 90 ° C. or less, more preferably 50 to 80. The mixture is stirred at a temperature of 0 ° C. and a reaction time of preferably 0.2 to 6 hours, more preferably 0.5 to 2 hours.
 以下、本発明を更に具体的に説明するため、実施例を示すが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, examples will be shown to describe the present invention more specifically, but the present invention is not limited to these examples.
 実施例1
 容量1mのスラリー生成槽に、先端から500mmの範囲まで電気ヒーターで覆い80℃に加熱した直径200mm円筒形の供給口から、平均粒径5μmの半水石膏を4t/h、50℃の濃度40%二水石膏スラリーを80m/hで連続供給した。また、スラリー生成槽内の容量が1mに保たれるように、連続的にスラリーを排出した。供給口から水面の距離は500mmであった。反応装置の概略を図1に示す。60時間運転後、半水石膏の供給口を確認したところ、供給口の内壁に厚み5mm程度の半水石膏のスケールが生成していたが、硬いスケールではなく半水石膏の供給は阻害されなかった。
Example 1
From a 200 mm-diameter cylindrical supply port covered with an electric heater in a slurry generation tank with a capacity of 1 m 3 up to a range of 500 mm from the tip and heated to 80 ° C., hemihydrate gypsum with an average particle size of 5 μm is a concentration of 4 t / h, 50 ° C. A 40% dihydrate gypsum slurry was continuously fed at 80 m 3 / h. Further, the slurry was continuously discharged so that the volume in the slurry generation tank was maintained at 1 m 3 . The distance from the supply port to the water surface was 500 mm. An outline of the reaction apparatus is shown in FIG. After the operation for 60 hours, when the supply port for the half-water gypsum was confirmed, a half-water gypsum scale with a thickness of about 5 mm was formed on the inner wall of the supply port, but it was not a hard scale and the supply of the half-water gypsum was not hindered. It was.
 比較例1
 半水石膏の供給口を加熱しない以外は、実施例1と同じ条件で、スラリー生成槽に各原料を連続供給した。5時間運転後、供給口に硬いスケールが生成し、半水石膏の供給ができなくなった。
Comparative Example 1
Each raw material was continuously supplied to the slurry generating tank under the same conditions as in Example 1 except that the supply port of the hemihydrate gypsum was not heated. After 5 hours of operation, a hard scale formed at the supply port, making it impossible to supply hemihydrate gypsum.
 実施例2
 実施例1と同様のスラリー生成槽に対し、液面よりも高い部分を加熱装置により加熱し、スラリー生成槽の内壁への結露を防止した。これによって内壁に厚いスケールが成長することを防止できた。反応装置の概略を図2に示す。
Example 2
For the same slurry generation tank as in Example 1, the portion higher than the liquid level was heated by a heating device to prevent condensation on the inner wall of the slurry generation tank. This prevented the thick scale from growing on the inner wall. An outline of the reaction apparatus is shown in FIG.
 最適実施例
 図3に最適実施例を示し、特に指摘する点以外は、発明を実施するための形態の欄に記載した通りである。2は二水石膏スラリーの生成槽でステンレス製であり、4は半水石膏の供給パイプで同様にステンレス製である。廃石膏ボードから紙を分離し、得られた二水石膏を焼成することにより得られた半水石膏の粉末が、供給パイプ4の先端の供給口6から投入される。半水石膏の投入量は例えば4t/hrで、平均粒径は例えば20μm以下で、温度は焼成のため130℃程度である。
Optimum Embodiment FIG. 3 shows an optimum embodiment. Except as particularly noted, it is as described in the section of the embodiment for carrying out the invention. 2 is a dihydric gypsum slurry production tank made of stainless steel, and 4 is a half-water gypsum supply pipe made of stainless steel. Hemihydrate gypsum powder obtained by separating paper from waste gypsum board and calcining the obtained dihydrate gypsum is fed from the supply port 6 at the tip of the supply pipe 4. The input amount of hemihydrate gypsum is, for example, 4 t / hr, the average particle size is, for example, 20 μm or less, and the temperature is about 130 ° C. for firing.
 8は循環パイプで、二水石膏の種晶を含む水性のスラリー(50℃程度に加熱)が供給される。スラリーは生成槽2の内壁に沿って供給され、二水石膏スラリー10中に循環流を形成する。なお循環パイプ8の向きを利用して循環流を形成する代わりに、図示しない羽根等を二水石膏スラリー10内で回転させても良い。12は二水石膏スラリー10の液面、14は二水石膏スラリー10の排出口で、後続の反応槽でスラリー中の二水石膏を結晶成長させ、一部を循環パイプ8から生成槽2に循環させ、一部を製品として取り出す。16は第1のヒータで、供給パイプ4の供給口6付近を加熱し、18は第2のヒータで、生成槽2の液面12よりも上の部分を加熱する。ヒータ16,18は例えばラバーヒータ、水蒸気等の熱媒体のジャケット等である。 8 is a circulation pipe to which an aqueous slurry (heated to about 50 ° C.) containing dihydrate gypsum seed crystals is supplied. The slurry is supplied along the inner wall of the production tank 2 to form a circulating flow in the dihydrate gypsum slurry 10. Instead of forming the circulation flow using the direction of the circulation pipe 8, a blade or the like (not shown) may be rotated in the dihydrate gypsum slurry 10. 12 is a liquid surface of the dihydrate gypsum slurry 10, and 14 is an outlet of the dihydrate gypsum slurry 10, and the dihydrate gypsum in the slurry is crystal-grown in a subsequent reaction tank, and a part thereof is transferred from the circulation pipe 8 to the production tank 2. Circulate and take a part as a product. Reference numeral 16 denotes a first heater that heats the vicinity of the supply port 6 of the supply pipe 4, and reference numeral 18 denotes a second heater that heats a portion above the liquid level 12 of the generation tank 2. The heaters 16 and 18 are, for example, rubber heaters, jackets of a heat medium such as water vapor, and the like.
 生成槽2等でのサイズ、温度等の例を説明するが、これに限るものではない。液面12から生成槽2の最上部までの距離は80cm、第1のヒータ16の高さh1は20cm、第2のヒータ18の高さh2は60cmとした。また供給口6は、生成槽2の最上部から5cm下方に突き出させた。 Examples of size, temperature, etc. in the generation tank 2 will be described, but the present invention is not limited to this. The distance from the liquid level 12 to the top of the generation tank 2 was 80 cm, the height h1 of the first heater 16 was 20 cm, and the height h2 of the second heater 18 was 60 cm. Further, the supply port 6 was protruded 5 cm downward from the top of the generation tank 2.
 供給パイプ4の外壁で第1のヒータ16により覆われる部分の温度が80℃、生成槽2の外壁で、液面12の直上部での温度が120℃となるように、ヒータ16,18を制御した。供給パイプ4の先端部では放熱は僅かなので、内壁温度の推定値は70℃~90℃であった。液面12の直上部では、スラリー10が生成槽2を冷却するため、ヒータ18の加熱温度を高めても、液面12の直上部での内壁温度の推定値は70~90℃であった。液温よりもパイプ4及び生成槽2の内壁の温度が10℃以上高いと結露は生じず、スケールは成長せず、二水石膏スラリーを休止せずに連続的に製造できた。 The heaters 16, 18 are adjusted so that the temperature of the portion covered by the first heater 16 on the outer wall of the supply pipe 4 is 80 ° C., and the temperature immediately above the liquid level 12 is 120 ° C. on the outer wall of the generation tank 2. Controlled. Since the heat radiation at the tip of the supply pipe 4 is slight, the estimated value of the inner wall temperature was 70 ° C. to 90 ° C. Since the slurry 10 cools the production tank 2 immediately above the liquid level 12, even if the heating temperature of the heater 18 is increased, the estimated value of the inner wall temperature immediately above the liquid level 12 is 70 to 90 ° C. . When the temperature of the pipe 4 and the inner wall of the generation tank 2 was higher than the liquid temperature by 10 ° C. or more, no condensation occurred, the scale did not grow, and the dihydrate gypsum slurry could be continuously produced without pausing.
2     生成槽
4     供給パイプ
6     供給口
8     循環パイプ
10    二水石膏スラリー
12    液面 
14    排出口
16    第1のヒータ
18    第2のヒータ
2 Generation tank 4 Supply pipe 6 Supply port 8 Circulation pipe 10 Dihydrate gypsum slurry 12 Liquid surface
14 Discharge port 16 1st heater 18 2nd heater

Claims (6)

  1.  スラリー生成槽に、液面より高い位置に供給口のある供給管を通して半水石膏粉末を連続的に供給して水と混合し、石膏スラリーを連続的に製造する方法において、
     前記供給口部分を40℃以上に加熱して半水石膏を供給することを特徴とする石膏スラリーの連続的な製造方法。
    In a method for continuously producing a gypsum slurry by continuously supplying hemihydrate gypsum powder to a slurry generation tank through a supply pipe having a supply port at a position higher than the liquid level and mixing with water.
    A method for continuously producing a gypsum slurry, wherein the supply port portion is heated to 40 ° C. or higher to supply hemihydrate gypsum.
  2.  前記供給口部分を、前記スラリー生成槽内の石膏スラリーの液温以上に保つことを特徴とする、請求項1に記載の石膏スラリーの連続的な製造方法。 The continuous production method of gypsum slurry according to claim 1, wherein the supply port portion is maintained at a temperature equal to or higher than a liquid temperature of the gypsum slurry in the slurry generation tank.
  3.  前記スラリー生成槽の内壁で液面以上の部分を加熱して、石膏スラリーの液温以上に保つことを特徴とする、請求項2に記載の石膏スラリーの連続的な製造方法。 The continuous method for producing a gypsum slurry according to claim 2, wherein a portion of the slurry generation tank or higher is heated at the inner wall of the slurry generation tank so as to keep the temperature of the gypsum slurry at or above the liquid temperature.
  4.  前記供給口から、加熱された半水石膏粉末を投入し、
     前記供給口の先端部に第1のヒータを、スラリー生成槽の外壁で液面以上の部分に第2のヒータを設けると共に、
     前記供給口の先端部の外壁よりも、スラリー生成槽の外壁を、より高い温度に加熱することを特徴とする、請求項3に記載の石膏スラリーの連続的な製造方法。
    Heated hemihydrate gypsum powder from the supply port,
    A first heater is provided at the tip of the supply port, and a second heater is provided at the outer wall of the slurry generation tank above the liquid level.
    The method for continuously producing a gypsum slurry according to claim 3, wherein the outer wall of the slurry generation tank is heated to a higher temperature than the outer wall of the tip of the supply port.
  5.  スラリー生成槽に、液面より高い位置に供給口のある供給管を通して半水石膏粉末を連続的に供給して水と混合し、石膏スラリーを連続的に製造する方法において、
     スラリー生成槽の内壁のうち、液面以上の部分を40℃以上に加熱してスラリー生成を行うことを特徴とする石膏スラリーの連続的な製造方法。
    In a method for continuously producing a gypsum slurry by continuously supplying hemihydrate gypsum powder to a slurry generation tank through a supply pipe having a supply port at a position higher than the liquid level and mixing with water.
    A continuous method for producing a gypsum slurry, wherein a portion of the inner wall of a slurry production tank is heated to a temperature of 40 ° C. or higher at a portion above the liquid level.
  6.  半水石膏粉末の平均粒径が20μm以下であることを特徴とする、請求項1~5のいずれかに記載の製造方法。 6. The production method according to claim 1, wherein the average particle diameter of the hemihydrate gypsum powder is 20 μm or less.
PCT/JP2014/055309 2013-03-13 2014-03-03 Method for continuously producing gypsum slurry WO2014141926A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013049788A JP2016104673A (en) 2013-03-13 2013-03-13 Manufacturing method of gypsum slurry using gypsum hemihydrate as raw material
JP2013-049788 2013-03-13
JP2013-051149 2013-03-14
JP2013051149A JP2016104674A (en) 2013-03-14 2013-03-14 Manufacturing method of gypsum dihydrate slurry using gypsum hemihydrate as raw material

Publications (1)

Publication Number Publication Date
WO2014141926A1 true WO2014141926A1 (en) 2014-09-18

Family

ID=51536596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055309 WO2014141926A1 (en) 2013-03-13 2014-03-03 Method for continuously producing gypsum slurry

Country Status (1)

Country Link
WO (1) WO2014141926A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016117617A (en) * 2014-12-22 2016-06-30 株式会社トクヤマ Gypsum dihydrate manufacturing device
JP2016121031A (en) * 2014-12-24 2016-07-07 株式会社トクヤマ Production method and production device of gypsum slurry
CN108821620A (en) * 2018-08-23 2018-11-16 河南绿材节能环保科技有限公司 The continuous producing apparatus of free water rotating crystal method production high strength gypsum
EP3643692A1 (en) 2018-10-23 2020-04-29 Tokuyama Corporation A recycling method of dihydrate gypsum from waste gypsum boards
WO2022264445A1 (en) * 2021-06-16 2022-12-22 株式会社トクヤマ Method and device for mixing gypsum granules derived from waste gypsum board and gypsum slurry
WO2023032232A1 (en) * 2021-09-02 2023-03-09 株式会社トクヤマ Method for crystallizing gypsum

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328429A (en) * 1993-05-26 1994-11-29 Sekisui Chem Co Ltd Raw material supply device of cement material
JPH0967118A (en) * 1995-08-28 1997-03-11 Sumitomo Metal Mining Co Ltd Production of gypsum from sulfuric acid waste liquid
JP2000143239A (en) * 1998-09-08 2000-05-23 Nippon Mining & Metals Co Ltd Production of gypsum
JP2005161300A (en) * 2003-10-02 2005-06-23 Tokuyama Corp Treatment method of waste gypsum board
JP2007203539A (en) * 2006-01-31 2007-08-16 Nippon Oil Corp Melting equipment for sulfur material
JP2012250913A (en) * 2008-07-31 2012-12-20 Yoshino Gypsum Co Ltd Method for reforming dihydrate gypsum, and dihydrate gypsum reformed by the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328429A (en) * 1993-05-26 1994-11-29 Sekisui Chem Co Ltd Raw material supply device of cement material
JPH0967118A (en) * 1995-08-28 1997-03-11 Sumitomo Metal Mining Co Ltd Production of gypsum from sulfuric acid waste liquid
JP2000143239A (en) * 1998-09-08 2000-05-23 Nippon Mining & Metals Co Ltd Production of gypsum
JP2005161300A (en) * 2003-10-02 2005-06-23 Tokuyama Corp Treatment method of waste gypsum board
JP2007203539A (en) * 2006-01-31 2007-08-16 Nippon Oil Corp Melting equipment for sulfur material
JP2012250913A (en) * 2008-07-31 2012-12-20 Yoshino Gypsum Co Ltd Method for reforming dihydrate gypsum, and dihydrate gypsum reformed by the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016117617A (en) * 2014-12-22 2016-06-30 株式会社トクヤマ Gypsum dihydrate manufacturing device
JP2016121031A (en) * 2014-12-24 2016-07-07 株式会社トクヤマ Production method and production device of gypsum slurry
CN108821620A (en) * 2018-08-23 2018-11-16 河南绿材节能环保科技有限公司 The continuous producing apparatus of free water rotating crystal method production high strength gypsum
CN108821620B (en) * 2018-08-23 2024-02-02 湖南金凤凰建材家居集成科技有限公司 Continuous production equipment for producing high-strength gypsum by free water crystal transformation method
EP3643692A1 (en) 2018-10-23 2020-04-29 Tokuyama Corporation A recycling method of dihydrate gypsum from waste gypsum boards
JP2020065965A (en) * 2018-10-23 2020-04-30 株式会社トクヤマ Method for recovering dihydrate gypsum from waste gypsum board
US10947155B2 (en) 2018-10-23 2021-03-16 Tokuyama Corporation Recycling method of dihydrate gypsum from waste gypsum boards
JP7121628B2 (en) 2018-10-23 2022-08-18 株式会社トクヤマ Method for recovering gypsum dihydrate from waste gypsum board
WO2022264445A1 (en) * 2021-06-16 2022-12-22 株式会社トクヤマ Method and device for mixing gypsum granules derived from waste gypsum board and gypsum slurry
WO2023032232A1 (en) * 2021-09-02 2023-03-09 株式会社トクヤマ Method for crystallizing gypsum

Similar Documents

Publication Publication Date Title
WO2014141926A1 (en) Method for continuously producing gypsum slurry
CN104211102B (en) The continuous way method of modifying of dihydrate gypsum
JP5553491B2 (en) How to recycle gypsum from gypsum board waste
Kim et al. Hydroxyapatite crystallization from a highly concentrated phosphate solution using powdered converter slag as a seed material
CA2960999C (en) Method for production of aluminum chloride derivatives
TW201130734A (en) Process for production of polysilicon and tetrachloride
JPWO2006078012A1 (en) Wastewater and sludge treatment equipment
JP3959535B2 (en) Method and apparatus for producing finely divided calcium hydroxide
KR20140143435A (en) Method for producing alumina
JP2016117617A (en) Gypsum dihydrate manufacturing device
ES2704134T3 (en) Procedure to use red mud
CN103086433B (en) Method for preparing sodium dichromate by sodium-based molten salt oxidation continuous carbonization
CN102205971A (en) Method for preparing ammonium illite sheets, alumina silicate sheets, and nano-sized kaolinite
JP4671646B2 (en) Method for producing high-purity calcium carbonate from waste containing calcium
JP2016104673A (en) Manufacturing method of gypsum slurry using gypsum hemihydrate as raw material
CN102746086A (en) Technique and device for coproducing carbide slag cement in a dry-method acetylene process
CN107304064A (en) A kind of preparation method of large-specific surface area nano zinc oxide
JP2016104674A (en) Manufacturing method of gypsum dihydrate slurry using gypsum hemihydrate as raw material
CN108975371A (en) A kind of preparation method of aluminium polychloride
JP2008264763A (en) Decomposition apparatus
JP7121628B2 (en) Method for recovering gypsum dihydrate from waste gypsum board
JP2006290703A (en) Method of recovering fluorine
CN109704379A (en) A method of oxidation calcium product is produced using useless solid carbide slurry
JP6559551B2 (en) Method for producing dihydrate gypsum with reduced fluorine elution
CN108751261A (en) A kind of preparation method of polyaluminum ferric chloride

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14762405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14762405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP