WO2014141719A1 - バイナリー発電システム - Google Patents

バイナリー発電システム Download PDF

Info

Publication number
WO2014141719A1
WO2014141719A1 PCT/JP2014/001468 JP2014001468W WO2014141719A1 WO 2014141719 A1 WO2014141719 A1 WO 2014141719A1 JP 2014001468 W JP2014001468 W JP 2014001468W WO 2014141719 A1 WO2014141719 A1 WO 2014141719A1
Authority
WO
WIPO (PCT)
Prior art keywords
point medium
boiling point
low
low boiling
heat exchanger
Prior art date
Application number
PCT/JP2014/001468
Other languages
English (en)
French (fr)
Inventor
三島 俊一
英人 木村
康之 池上
Original Assignee
メタウォーター株式会社
国立大学法人佐賀大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013053748A external-priority patent/JP5531250B1/ja
Priority claimed from JP2014027696A external-priority patent/JP6057219B2/ja
Application filed by メタウォーター株式会社, 国立大学法人佐賀大学 filed Critical メタウォーター株式会社
Publication of WO2014141719A1 publication Critical patent/WO2014141719A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • F01K25/065Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids with an absorption fluid remaining at least partly in the liquid state, e.g. water for ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants

Definitions

  • the present invention relates to a binary power generation system using steam of a low boiling point medium as a working fluid.
  • a binary power generation system that generates power by heating a low-boiling medium having a boiling point lower than that of water such as ammonia and rotating a turbine impeller of a turbine generator using generated steam.
  • a conventional binary power generation system using a turbine generator includes an evaporator that heats and vaporizes a liquid low-boiling-point medium, a turbine that converts the kinetic energy of steam of the low-boiling-point medium into rotational energy of a rotating shaft, and a low-boiling point
  • the low boiling point medium is circulated in a closed loop including a condenser for condensing the vapor of the medium and a medium feed pump for sending the liquid low boiling point medium to the evaporator.
  • the rotational energy obtained by the turbine is converted into electric energy by the generator of the turbine generator.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2011-174652 proposes a binary power generation system that uses a high-temperature gas or high-temperature wastewater generated in an incinerator for incinerating sludge and waste as a heat source.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2011-174652
  • the low boiling point medium is heated.
  • the low-boiling point medium is evaporated by performing heat exchange between the smoke-washed wastewater having a temperature lower than that of the high-temperature air and the low-boiling point medium.
  • the steam superheater provided in the rear stage, heat exchange is performed between the high-temperature air and the steam (working fluid) of the low-boiling point medium, so that the waste heat can be used effectively while the high-temperature working fluid is used. Power generation efficiency is improved.
  • the low boiling point medium is efficiently heated using two kinds of heat sources having different temperatures, and the impeller of the turbine generator is generated using a high temperature working fluid. Therefore, the power generation efficiency can be improved as compared with the case where the low boiling point medium is heated using only one kind of heat source.
  • the working fluid steam of the low boiling point medium
  • the turbine generator impeller is rotated using a high-temperature working fluid, and the turbine generator impeller is rotated.
  • the temperature of the working fluid is also relatively high.
  • an object of the present invention made in view of such circumstances is to provide a binary power generation system that can improve the utilization efficiency of heat energy as a whole binary power generation system and improve the power generation efficiency.
  • the present inventors have intensively studied for the purpose of solving the above problems. And in the binary power generation system using two types of heat sources having different temperatures, the present inventors heat the working fluid using the thermal energy of the working fluid after rotating the impeller of the turbine generator. Inspired by. Furthermore, the present inventors have conducted intensive studies, and in a binary power generation system using two types of heat sources, the working fluid after rotating the impeller of the turbine generator is hot, and therefore before passing through the evaporator. When it was used for heating the working fluid, it was found that the working fluid (low boiling point medium) could not be efficiently heated in the evaporator using a low-temperature heat source, and the present invention was completed.
  • An object of the present invention is to advantageously solve the above-mentioned problems, and a binary power generation system according to the present invention is a binary power generation system that uses steam of a low boiling point medium as a working fluid, and heats the low boiling point medium.
  • the steam superheater for heating the vapor of the low boiling point medium, and the kinetic energy of the vapor of the low boiling point medium passing through the steam superheater is converted into the rotational energy of the rotating shaft
  • a condenser that condenses the vapor of the low-boiling-point medium in which a part of the kinetic energy is converted into the rotational energy of the rotating shaft in the turbine, and in which the low-boiling-point medium is circulated inside
  • the low-boiling-point medium after passing through the evaporator and before flowing into the steam superheater, and after passing through the turbine and before Wherein prior to entering the condenser characterized by further comprising a first heat exchanger for exchanging heat between the low-boiling medium.
  • the heat energy of the low-boiling-point medium after rotating the rotating shaft of the turbine can be effectively used to improve the utilization efficiency of the heat energy as the entire binary power generation system.
  • the object to be heat exchanged with the low boiling point medium after rotating the rotating shaft of the turbine is the low boiling point medium after passing through the evaporator, it can be used for heating the low boiling point medium in the evaporator. Even if the heat source to be used is a low-temperature heat source, the low-boiling point medium in the evaporator can be efficiently heated.
  • the temperature of the low-boiling medium steam after passing through the steam superheater is higher than the temperature of the low-boiling medium after rotating the rotating shaft of the turbine, so the low temperature after rotating the rotating shaft of the turbine is low.
  • the target for heat exchange with the boiling point medium is the low boiling point medium before flowing into the steam superheater.
  • the binary power generation system of the present invention includes the low boiling point medium after passing through the first heat exchanger and before flowing into the condenser, and after passing through the condenser and the evaporation. It is preferable to further have a second heat exchanger that exchanges heat with the low boiling point medium before flowing into the vessel.
  • the second heat exchanger that heat-transfers the thermal energy of the low boiling point medium that has passed through the first heat exchanger to the low boiling point medium before flowing into the evaporator is provided.
  • the heat energy of the low-boiling-point medium that has passed through the first heat exchanger can be effectively used to further improve the heat energy utilization efficiency of the binary power generation system as a whole.
  • the binary power generation system of the present invention passes through the condenser and the heater that heats the low-boiling-point medium before flowing into the second heat exchanger, and the first heat exchanger.
  • a first temperature sensor for measuring the temperature of the low boiling point medium before flowing into the second heat exchanger, and after passing through the heater and flowing into the second heat exchanger
  • a second temperature sensor for measuring the temperature of the low boiling point medium before, a bypass channel for allowing the low boiling point medium passed through the heater to flow into the evaporator without passing through the second heat exchanger, and Switching means for switching a flow path through which the low-boiling-point medium after passing through the heater flows between the bypass flow path and the flow path to the second heat exchanger, and the first and second temperature sensors
  • a control device for controlling the switching means based on the measured temperature value of the control device, the control device When the temperature measurement value of the first temperature sensor is higher than the temperature measurement value of the second temperature sensor, the temperature measurement value of the first temperature sensor is switched to the flow path to
  • a control device that switches to the bypass flow path when the temperature is not more than the measured temperature value of the second temperature sensor.
  • the latter temperature is better. Only when the temperature is high, an evaporator or a steam superheater is transferred by transferring heat from a low boiling point medium passing through the first heat exchanger to a low boiling point medium passing through the heater (ie, using a second heat exchanger). Even when a temperature change occurs in the heat source used in the above, it is possible to further improve the utilization efficiency of the thermal energy as the entire binary power generation system.
  • the first heat exchanger passes through the evaporator, and the low boiling point before flowing into the separator disposed between the evaporator and the steam superheater.
  • the medium is installed at a position where heat can be exchanged between the medium and the low boiling point medium after passing through the turbine and before flowing into the condenser. In this way, the low-boiling point medium before flowing into the separator and the low-boiling point medium after passing through the turbine and before flowing into the condenser are separated in the separator. The amount of low boiling point medium vapor can be increased.
  • the binary power generation system of the present invention it is possible to improve the heat energy utilization efficiency of the binary power generation system as a whole and improve the power generation efficiency.
  • the binary power generation system of the present invention power generation is performed using the vapor of the low boiling point medium as the working fluid.
  • the binary power generation system of the present invention is not particularly limited, and may be a carina cycle type binary power generation system using a mixture of water and ammonia as a low boiling point medium.
  • the binary power generation system of the present invention may be a Rankine cycle type binary power generation system that uses a simple substance such as ammonia, butane, or pentane as a low boiling point medium.
  • FIG. 1 shows a schematic configuration of an example of a binary power generation system according to the present invention.
  • the binary power generation system 10 is a carina cycle type binary power generation system.
  • the binary power generation system 10 has a turbine generator composed of a turbine T and a generator 11.
  • the binary power generation system 10 preferably further includes a second heat exchanger 7, a first temperature sensor 12, a second temperature sensor 13, a switching unit 14, and a bypass channel 17. Further, the binary power generation system 10 may include a third heat exchanger 20.
  • the low boiling point medium tank 1 is a tank for storing a liquid low boiling point medium. Then, the low boiling point medium in the low boiling point medium tank 1 (in the binary power generation system 10 of this example, a mixture of water and ammonia) is sent to the evaporator 3 via the heater 2 by the medium feed pump P1. It is done.
  • the heater 2 performs heat exchange between the low-temperature low-boiling medium and the high-temperature evaporation residual liquid separated in the separator 4 described in detail later, before the low-boiling medium flows into the evaporator 3. It is an apparatus for preheating a low boiling point medium. In the heater 2, the thermal energy of the evaporation residual liquid is effectively used for preheating the low boiling point medium.
  • the low boiling point medium preheated by the heater 2 is further heated in the evaporator 3, and at least a part thereof becomes steam.
  • the low boiling point medium is heated, and a mixed fluid of the low boiling point medium vapor mainly composed of ammonia vapor and the evaporation residual liquid mostly composed of water is generated.
  • the low-boiling point medium is heated using a fluid having a first temperature (for example, warm water) as a heat source.
  • the first temperature can be, for example, 50 ° C. to 100 ° C.
  • a heat source usually used in binary power generation such as hot waste water from an incinerator, exhaust gas from a heating furnace, hot spring water, steam, or the like may be used. it can.
  • Separator 4 is a device that gas-liquid-separates the mixed fluid of low-boiling-point medium vapor and evaporation residual liquid that has flowed out of evaporator 3 into low-boiling-point medium vapor and evaporation residual liquid. Then, the low boiling point medium vapor separated by the separator 4 is sent to the steam superheater 5. Further, the evaporation residual liquid passes through the evaporation residual liquid flow path 16 and is sent to the absorber 8 through the heater 2.
  • a known gas-liquid separator such as a mist separator or a cyclone can be used.
  • the steam superheater 5 is a device for further heating the low boiling point medium vapor separated by the separator 4 and improving the power generation efficiency of the binary power generation system 10.
  • the low boiling point separated by the separator 4 using a fluid (for example, warm air) having a second temperature higher than the first temperature that is the temperature of the heat source (fluid) used in the evaporator 3. Heat the medium vapor.
  • the second temperature can be, for example, 100 ° C. to 400 ° C.
  • exhaust gas such as an incinerator, warm air heated by it, a vapor
  • the turbine T is a device that converts the kinetic energy of the low-boiling-point medium vapor flowing out of the steam superheater 5 into the rotational energy of the rotating shaft.
  • the rotating shaft of the turbine T is connected to the generator 11, and the rotational energy obtained by the turbine T is converted into electric energy in the generator 11.
  • the temperature of the low boiling point medium vapor after passing through the turbine T can be, for example, 100 ° C. to 300 ° C.
  • the first heat exchanger 6 condenses after passing through the evaporator 3 and before flowing into the steam superheater 5 and after passing through the turbine T and after passing through the turbine T. Heat exchange is performed with the low boiling point medium (including low boiling point medium vapor) before flowing into the vessel 9. Most of the low boiling point medium after passing through the turbine T and before flowing into the condenser 9 (before flowing into the absorber 8 in the binary power generation system 10 in this example) is in a vapor state. Compared with the low-boiling-point medium steam that has flowed out of the superheater 5, a part of the kinetic energy of the low-boiling-point medium steam is converted into rotational energy of the rotating shaft in the turbine T, so that part of the thermal energy is lost.
  • the first heat exchanger 6 heat-transfers the thermal energy of the low boiling point medium to the low boiling point medium after passing through the evaporator 3 and before flowing into the steam superheater 5. Accordingly, the thermal energy of the low boiling point medium after passing through the turbine T and before flowing into the condenser 9 can be effectively used to improve the utilization efficiency of the thermal energy of the binary power generation system 10 as a whole. it can.
  • the temperature of the first temperature fluid used as the heat source in the evaporator 3 is the temperature of the low boiling point medium (third temperature) after passing through the turbine T and before flowing into the first heat exchanger 6.
  • the temperature of the low boiling point medium before flowing into the evaporator 3 becomes the first temperature. May be higher than 1 temperature. In that case, the evaporator 3 cannot heat the low-boiling point medium using the fluid at the first temperature as a heat source (that is, it cannot effectively use the heat energy of the fluid at the first temperature).
  • the first heat exchanger 6 passes through the evaporator 3 and the low boiling point medium before flowing into the steam superheater 5 and the low boiling point after passing through the turbine T and before flowing into the condenser 9. It is necessary to be able to exchange heat with the medium.
  • the first heat exchanger 6 includes a low boiling point medium before passing through the evaporator 3 and flowing into the separator 4, and a low boiling point medium after passing through the turbine T and before flowing into the condenser 9. It is preferable to install at a position where heat can be exchanged between the two.
  • the second heat exchanger 7 flows into the evaporator 3 after passing through the first heat exchanger 6 and before flowing into the condenser 9 and after passing through the condenser 9. Heat exchange is performed with the previous low boiling point medium.
  • the second heat exchanger 7 has passed through the heater 2 and the low boiling point medium after passing through the first heat exchanger 6 and before flowing into the absorber 8. After that, heat exchange was performed with the low boiling point medium before flowing into the evaporator 3.
  • the thermal energy which the low boiling-point medium which passed through the 1st heat exchanger 6 is used effectively, and the utilization efficiency of the heat energy as the binary power generation system 10 whole is further increased. Can be improved.
  • the absorber 8 rotates the rotating shaft of the turbine T, and mixes the low boiling point vapor after passing through the first heat exchanger 6 and the second heat exchanger 7 and the evaporation residual liquid separated by the separator 4. In this apparatus, a part of the low-boiling-point medium vapor is absorbed by the evaporation residual liquid.
  • a known gas-liquid mixing device such as a line mixer or a spray tower can be used.
  • the third heat exchanger 20 flows into the heater 2 after passing through the absorber 8 and before flowing into the condenser 9 and after being sent from the medium feed pump P1. Heat exchange with the previous low boiling point medium.
  • the temperature of the low boiling point medium after passing through the absorber 8 and before flowing into the condenser 9 is basically increased although there is a slight temperature increase due to the compression action by the medium liquid feeding pump P1. It is higher than the temperature of the low boiling point medium after being sent out from the liquid pump P1 and before flowing into the heater 2. For this reason, it is not indispensable to provide a valve or the like in the third heat exchanger flow path 19 and perform control similar to flow path change control related to the second heat exchanger described later.
  • the binary power generation system 10 can be configured so that the low boiling point medium sent from P1 always passes through the third heat exchanger 20.
  • the condenser 9 is a device that cools the mixed fluid of the low-boiling-point medium vapor flowing out from the absorber 8 and the evaporation residual liquid, and condenses the low-boiling-point medium vapor. Then, after the low-boiling point medium vapor obtained by condensing the low-boiling point medium vapor in the condenser 9 (the mixture of the low-boiling point medium vapor condensate and the evaporation residual liquid) is stored in the low-boiling point medium tank 1, The liquid is again sent to the evaporator 3 by the medium feed pump P1.
  • the temperature of the low boiling point medium before flowing into the evaporator 3 can be raised when the temperature is higher than the temperature (fifth temperature) of the low boiling point medium after flowing into the evaporator 3 later.
  • the fourth temperature is the fifth temperature. It can be lower than the temperature.
  • the binary power generation system 10 includes a first temperature sensor 12, a second temperature sensor 13, a switching unit 14, and a bypass channel described below. 17 is preferably provided.
  • the first temperature sensor 12 is configured to measure the temperature of the low boiling point medium after passing through the first heat exchanger 6 and before flowing into the second heat exchanger 7.
  • the second temperature sensor 13 is configured to measure the temperature of the low boiling point medium after passing through the heater 2 and before flowing into the second heat exchanger 7.
  • the switching means 14 includes a first switching valve 14A and a second switching valve 14B.
  • 14 A of 1st switching valves are arrange
  • FIG. Specifically, the first switching valve 14 ⁇ / b> A is on the circulation system 15 at the rear stage of the heater 2, and is a second heat exchange for supplying a low boiling point medium flowing through the circulation system 15 to the second heat exchanger 7.
  • the second heat exchanger flow path 18 is provided upstream of the position where the heat exchanger flow path 18 joins the circulation system 15.
  • the second switching valve 14 ⁇ / b> B is provided on the second heat exchanger flow path 18 subsequent to the position where the second heat exchanger flow path 18 branches from the circulation system 15. That is, the first switching valve 14 ⁇ / b> A is arranged so that, when opened, the low boiling point medium that has passed through the heater 2 can flow into the evaporator 3 through the circulation system 15 without passing through the second heat exchanger 7.
  • the second switching valve 14B is arranged so that the low boiling point medium that has passed through the heater 2 can flow into the second heat exchanger 7 when opened.
  • the binary power generation system 10 preferably further includes a control device (not shown) that controls the operation of the binary power generation system 10 using the first temperature sensor 12, the second temperature sensor 13, and the switching unit 14.
  • the operation of the binary power generation system 10 mainly refers to a change in the flow path of the low boiling point medium in the binary power generation system 10.
  • control by the control device will be described.
  • a control device controls the switching unit 14 based on the temperature measurement values of the first temperature sensor 12 and the second temperature sensor 13. Specifically, the control device, when the temperature measurement value (fourth temperature) of the first temperature sensor 12 is higher than the temperature measurement value (fifth temperature) of the second temperature sensor 13, the flow path of the low boiling point medium. Is switched to the second heat exchanger flow path 18 to the second heat exchanger 7, and the temperature measurement value (fourth temperature) of the first temperature sensor 12 is equal to or lower than the temperature measurement value (fifth temperature) of the second temperature sensor 13. In this case, the flow path of the low boiling point medium is switched to the bypass flow path 17.
  • the temperature of the hot water used as the heat source in the evaporator 3 (first temperature) is constant and the temperature of the hot air used as the heat source in the steam superheater 5 (second temperature) decreases.
  • the measured temperature value of the first temperature sensor 12 may decrease and become lower than the measured temperature value of the second temperature sensor 13.
  • the low boiling point medium that has passed through the heater 2 flows into the second heat exchanger 7, the low boiling point medium that has passed through the turbine T passes through the low boiling point medium supplied to the evaporator 3.
  • heat transfer in the opposite direction occurs.
  • the control device opens the first switching valve 14A, closes the second switching valve 14B, 2 Control is performed so that the low boiling point medium flows into the evaporator 3 without passing through the heat exchanger 7. Conversely, when the measured temperature value of the first temperature sensor 12 is higher than the measured temperature value of the second temperature sensor 13, the control device closes the first switching valve 14 ⁇ / b> A and opens the second switching valve 14 ⁇ / b> B. 2 Control is performed so that the low boiling point medium flows into the heat exchanger 7.
  • the binary power generation system of the present invention has been described above using an example.
  • the binary power generation system of the present invention is not limited to the above example, and the binary power generation system of the present invention may be appropriately modified. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

 本発明のバイナリー発電システム(10)は、低沸点媒体を加熱して低沸点媒体の蒸気を得る蒸発器(3)と、低沸点媒体の蒸気を加熱する蒸気過熱器(5)と、該蒸気過熱器(5)を経た低沸点媒体の蒸気の運動エネルギーを回転軸の回転エネルギーに変換するタービン(T)と、タービン(T)を経た低沸点媒体の蒸気を凝縮させる凝縮器(9)とを備え、且つ、内部で低沸点媒体を循環させる閉ループ状の循環系統を有し、蒸発器(3)を通過した後であって蒸気過熱器(5)に流入する前の低沸点媒体と、タービン(T)を通過した後であって凝縮器(9)に流入する前の低沸点媒体との間で熱交換を行う第1熱交換器(6)を更に有する。

Description

バイナリー発電システム
 本発明は、低沸点媒体の蒸気を作動流体として用いるバイナリー発電システムに関するものである。
 従来、アンモニア等の水よりも沸点が低い低沸点媒体を加熱し、発生した蒸気を用いてタービン発電機のタービンの羽根車を回転させることにより発電するバイナリー発電システムが知られている。タービン発電機を用いた従来のバイナリー発電システムは、液状の低沸点媒体を加熱して気化させる蒸発器と、低沸点媒体の蒸気の運動エネルギーを回転軸の回転エネルギーに変換するタービンと、低沸点媒体の蒸気を凝縮させる凝縮器と、液状の低沸点媒体を蒸発器に送る媒体送液ポンプとを備える閉ループ内で低沸点媒体を循環させる。このようにして、従来のバイナリー発電システムでは、タービンで得た回転エネルギーがタービン発電機の発電機で電気エネルギーに変換される。
 ここで、このようなバイナリー発電システムにおいては、低沸点媒体を加熱して蒸発させるための熱源として廃熱などを有効利用し、発電効率を向上することが求められている。
 そこで、例えば特許文献1(特開2011-174652号公報)では、汚泥やごみを焼却する焼却炉で生じる高温の気体や高温の排水を熱源として用いたバイナリー発電システムが提案されている。この特許文献1に記載の発電システムでは、下水処理システムが備える焼却炉からの排ガスによって加熱された高温空気と、排ガスを洗浄した後に下水処理システムから排出される洗煙排水とを熱源として使用し、低沸点媒体を加熱している。具体的には、特許文献1の発電システムでは、蒸発器において、高温空気よりも温度が低い洗煙排水と低沸点媒体との間で熱交換を行って低沸点媒体を蒸発させると共に、蒸発器の後段側に設けられた蒸気過熱器において、高温空気と低沸点媒体の蒸気(作動流体)との間で熱交換を行うことにより、廃熱を有効利用しつつ、高温の作動流体を用いて発電効率を向上させている。
特開2011-174652号公報
 上記特許文献1に係る発電システム(バイナリー発電システム)によれば、温度の異なる2種類の熱源を用いて低沸点媒体を効率的に加熱し、高温の作動流体を用いてタービン発電機の羽根車を回転させることができるので、1種類の熱源のみを用いて低沸点媒体を加熱した場合と比較して、発電効率を向上させることができる。
 ここで、バイナリー発電システムでは、タービン発電機の羽根車を回転させた後の作動流体(低沸点媒体の蒸気)は、凝縮器において冷却され、凝縮される。しかし、温度の異なる2種類の熱源を用いた上記従来のバイナリー発電システムでは、高温の作動流体を用いてタービン発電機の羽根車を回転させており、タービン発電機の羽根車を回転させた後の作動流体の温度も比較的高い。
 そのため、温度の異なる2種類の熱源を用いた上記従来のバイナリー発電システムでは、2種類の熱の利用効率は良好であるものの、タービン発電機の羽根車を回転させた後の作動流体が有する熱エネルギーを有効利用できておらず、バイナリー発電システム全体としての熱エネルギーの利用効率に関しては、改善の余地があった。
 したがって、かかる事情に鑑みてなされた本発明の目的は、バイナリー発電システム全体としての熱エネルギーの利用効率を改善し、発電効率を向上させることができる、バイナリー発電システムを提供することにある。
 本発明者らは、上記課題を解決することを目的として、鋭意検討を行った。そして、本発明者らは、温度の異なる2種類の熱源を用いたバイナリー発電システムにおいて、タービン発電機の羽根車を回転させた後の作動流体の熱エネルギーを利用して作動流体を加熱することに着想した。更に、本発明者らは鋭意検討を重ね、2種類の熱源を用いたバイナリー発電システムでは、タービン発電機の羽根車を回転させた後の作動流体が高温であるため、蒸発器を通過させる前の作動流体の加熱に使用した場合には、低温の熱源を用いた蒸発器における作動流体(低沸点媒体)の加熱を効率的に行うことができなくなることを見出し、本発明を完成させた。
 この発明は、上記課題を有利に解決することを目的とするものであり、本発明のバイナリー発電システムは、低沸点媒体の蒸気を作動流体として用いるバイナリー発電システムであって、低沸点媒体を加熱して低沸点媒体の蒸気を得る蒸発器と、前記低沸点媒体の蒸気を加熱する蒸気過熱器と、該蒸気過熱器を経た前記低沸点媒体の蒸気の運動エネルギーを回転軸の回転エネルギーに変換するタービンと、前記タービンにおいて運動エネルギーの一部を前記回転軸の回転エネルギーに変換した前記低沸点媒体の蒸気を凝縮させる凝縮器とを備え、且つ、内部で前記低沸点媒体を循環させる閉ループ状の循環系統を有し、前記蒸発器を通過した後であって前記蒸気過熱器に流入する前の前記低沸点媒体と、前記タービンを通過した後であって前記凝縮器に流入する前の前記低沸点媒体との間で熱交換を行う第1熱交換器を更に有することを特徴とする。
 このように、蒸発器を通過した後であって蒸気過熱器に流入する前の低沸点媒体と、タービンの回転軸を回転させた後の低沸点媒体との間で熱交換を行うことにより、タービンの回転軸を回転させた後の低沸点媒体が有する熱エネルギーを有効利用して、バイナリー発電システム全体としての熱エネルギーの利用効率を改善することができる。また、タービンの回転軸を回転させた後の低沸点媒体との間で熱交換を行う対象を、蒸発器を通過した後の低沸点媒体とすれば、蒸発器における低沸点媒体の加熱に使用する熱源が低温の熱源であったとしても、蒸発器における低沸点媒体の加熱を効率的に行うことができる。因みに、蒸気過熱器を通過した後の低沸点媒体の蒸気の温度は、タービンの回転軸を回転させた後の低沸点媒体の温度よりも高いので、タービンの回転軸を回転させた後の低沸点媒体との間で熱交換を行う対象は、蒸気過熱器に流入する前の低沸点媒体とする。
 ここで、本発明のバイナリー発電システムは、前記第1熱交換器を通過した後であって前記凝縮器に流入する前の前記低沸点媒体と、前記凝縮器を通過した後であって前記蒸発器に流入する前の前記低沸点媒体との間で熱交換を行う第2熱交換器を更に有することが好ましい。
 このように、第1熱交換器に加えて、さらに第1熱交換器を経た低沸点媒体が有する熱エネルギーを蒸発器流入前の低沸点媒体に熱移動させる第2熱交換器を備えることで、第1熱交換器を経た低沸点媒体の有する熱エネルギーを有効利用して、バイナリー発電システム全体としての熱エネルギーの利用効率を一層向上させることができる。
 また、本発明のバイナリー発電システムは、前記凝縮器を通過した後であって前記第2熱交換器に流入する前の前記低沸点媒体を加熱する加熱器と、前記第1熱交換器を通過した後であって前記第2熱交換器に流入する前の前記低沸点媒体の温度を測定する第1温度センサと、前記加熱器を通過した後であって前記第2熱交換器に流入する前の前記低沸点媒体の温度を測定する第2温度センサと、前記加熱器を経た前記低沸点媒体を、前記第2熱交換器を経ずに前記蒸発器に流入させる迂回流路と、前記加熱器を通過した後の前記低沸点媒体が流れる流路を、前記迂回流路と、前記第2熱交換器への流路との間で切り替える切替手段と、前記第1及び第2温度センサの測温値に基づいて前記切替手段を制御する制御装置であって、該制御装置は、前記第1温度センサの測温値が前記第2温度センサの測温値よりも高い場合に、前記第2熱交換器への流路に切り替え、前記第1温度センサの測温値が前記第2温度センサの測温値以下の場合に、前記迂回流路に切り替える、制御装置と、を備えることが好ましい。
 このように、第1及び第2温度センサを設けて加熱器を経た低沸点媒体の温度と、第1熱交換器を通った低沸点媒体の温度とを比較して、後者の温度の方が高い場合にのみ、第1熱交換器を通った低沸点媒体から加熱器を通った低沸点媒体に熱移動させる(即ち、第2熱交換器を使用する)ことで、蒸発器や蒸気過熱器で使用する熱源に温度変化が生じた場合であっても、バイナリー発電システム全体としての熱エネルギーの利用効率を一層向上させることができる。
 また、本発明のバイナリー発電システムにおいて、前記第1熱交換器は、前記蒸発器を通過し、前記蒸発器と前記蒸気過熱器との間に配置された分離器に流入する前の前記低沸点媒体と、前記タービンを通過した後であって、前記凝縮器に流入する前の前記低沸点媒体と、の間で熱交換可能な位置に設置されたことが好ましい。
 このように、分離器に流入する前の低沸点媒体と、タービンを通過した後であって、凝縮器に流入する前の低沸点媒体との間で熱交換することによって、分離器において分離される低沸点媒体蒸気の量を増加させることができる。
 本発明のバイナリー発電システムによれば、バイナリー発電システム全体としての熱エネルギーの利用効率を改善し、発電効率を向上させることができる。
本発明に従う代表的なバイナリー発電システムの概略構成を示す説明図である。
 以下、本発明の実施の形態を、図面に基づき詳細に説明する。
 ここで、本発明のバイナリー発電システムでは、低沸点媒体の蒸気を作動流体として用いて発電を行う。本発明のバイナリー発電システムは、特に限定されることなく、水とアンモニアとの混合物を低沸点媒体として用いるカリーナサイクル方式のバイナリー発電システムでありうる。なお、本発明のバイナリー発電システムは、アンモニア、ブタン、ペンタン等の単体を低沸点媒体として用いるランキンサイクル方式のバイナリー発電システムであってもよい。
<バイナリー発電システム>
 図1に、本発明に従うバイナリー発電システムの一例の概略構成を示す。このバイナリー発電システム10は、カリーナサイクル方式のバイナリー発電システムである。
 バイナリー発電システム10は、タービンTと発電機11とからなるタービン発電機を有している。そして、バイナリー発電システム10では、低沸点媒体タンク1と、媒体送液ポンプP1と、再生熱交換器として機能する加熱器2と、蒸発器3と、分離器4と、蒸気過熱器5と、タービンTと、第1熱交換器6と、吸収器8と、凝縮器9とを備える閉ループ状の循環系統15内で低沸点媒体を循環させることにより、タービン発電機を用いて発電を行う。バイナリー発電システム10は、更に、第2熱交換器7、第1温度センサ12、第2温度センサ13、切替手段14及び迂回流路17を備えることが好ましい。また、バイナリー発電システム10は、第3熱交換器20を備えても良い。
 ここで、低沸点媒体タンク1は、液状の低沸点媒体を貯留するタンクである。そして、低沸点媒体タンク1中の低沸点媒体(この一例のバイナリー発電システム10では、水とアンモニアとの混合物)は、媒体送液ポンプP1により、加熱器2を介して蒸発器3へと送られる。
 加熱器2は、低温の低沸点媒体と、後に詳細に説明する分離器4において分離された高温の蒸発残液との間で熱交換を行い、低沸点媒体が蒸発器3へと流入する前に低沸点媒体を予加熱する装置である。この加熱器2では、蒸発残液の有する熱エネルギーが低沸点媒体の予加熱に有効利用される。
 そして、加熱器2で予加熱された低沸点媒体は、蒸発器3において更に加熱され、少なくとも一部が蒸気となる。具体的には、蒸発器3では、低沸点媒体が加熱され、大部分がアンモニア蒸気よりなる低沸点媒体蒸気と、大部分が水よりなる蒸発残液との混合流体が生成する。ここで、蒸発器3では、例えば、第1温度の流体(例えば、温水)を熱源として用いて低沸点媒体を加熱する。第1温度は、例えば50℃~100℃でありうる。なお、蒸発器3において低沸点媒体を加熱する際の熱源としては、焼却炉等からの温排水、加熱炉の排気ガス、温泉水、蒸気などのバイナリー発電において通常用いられる熱源を使用することができる。
 分離器4は、蒸発器3から流出した低沸点媒体蒸気と蒸発残液との混合流体を、低沸点媒体蒸気と、蒸発残液とに気液分離する装置である。そして、分離器4で分離された低沸点媒体蒸気は、蒸気過熱器5へと送られる。また、蒸発残液は、蒸発残液流路16を通り、加熱器2を経て吸収器8へと送られる。なお、分離器4としては、ミストセパレーターやサイクロンなどの既知の気液分離装置を用いることができる。
 蒸気過熱器5は、分離器4で分離された低沸点媒体蒸気を更に加熱し、バイナリー発電システム10の発電効率を向上させるための装置である。蒸気過熱器5では、蒸発器3において使用した熱源(流体)の温度である第1温度よりも高い第2温度の流体(例えば、温空気)を用いて、分離器4で分離された低沸点媒体蒸気を加熱する。第2温度は、例えば、100℃~400℃でありうる。なお、蒸気過熱器5において低沸点媒体蒸気を加熱する際の熱源としては、焼却炉等の排ガスやそれによって加熱された温空気、蒸気、及び温泉蒸気、又は太陽熱などを使用することができる。
 タービンTは、蒸気過熱器5から流出した低沸点媒体蒸気の運動エネルギーを回転軸の回転エネルギーに変換する装置である。そして、タービンTの回転軸は発電機11に接続されており、タービンTで得た回転エネルギーは、発電機11において電気エネルギーに変換される。タービンTを通過した後の低沸点媒体蒸気の温度は、例えば、100℃~300℃でありうる。
 第1熱交換器6は、蒸発器3を通過した後であって蒸気過熱器5に流入する前の低沸点媒体(低沸点媒体蒸気を含む)と、タービンTを通過した後であって凝縮器9に流入する前の低沸点媒体(低沸点媒体蒸気を含む)との間で熱交換を行う。タービンTを通過した後であって凝縮器9に流入する前(この一例のバイナリー発電システム10では、吸収器8に流入する前)の低沸点媒体は、その大部分が蒸気状態であり、蒸気過熱器5から流出した低沸点媒体蒸気と比較して、タービンTにおいて低沸点媒体蒸気の運動エネルギーの一部が回転軸の回転エネルギーに変換されたことにより熱エネルギーの一部を失ってはいるものの、未だ高温である。そこで、第1熱交換器6は、かかる低沸点媒体が有する熱エネルギーを、蒸発器3を通過した後であって蒸気過熱器5に流入する前の低沸点媒体に熱移動させる。これにより、タービンTを通過した後であって凝縮器9に流入する前の低沸点媒体が有する熱エネルギーを有効利用して、バイナリー発電システム10全体としての熱エネルギーの利用効率を改善することができる。
 ここで、蒸発器3において熱源として用いた第1温度の流体の温度は、タービンTを通過した後であって第1熱交換器6に流入する前の低沸点媒体の温度(第3温度)よりも通常低い。よって、仮に、蒸発器3に流入する前の低沸点媒体と第3温度の低沸点媒体との間で熱交換させてしまうと、蒸発器3に流入する前の低沸点媒体の温度が、第1温度よりも高くなることがある。そして、その場合には、蒸発器3は、第1温度の流体を熱源として低沸点媒体を加熱することができない(即ち、第1温度の流体の熱エネルギーを有効利用することができない)。したがって、第1熱交換器6は、蒸発器3を通過し、蒸気過熱器5に流入する前の低沸点媒体と、タービンTを通過した後であって凝縮器9に流入する前の低沸点媒体との間で熱交換が可能に構成される必要がある。
 なお、第1熱交換器6は、蒸発器3を通過し分離器4に流入する前の低沸点媒体と、タービンTを通過した後であって凝縮器9に流入する前の低沸点媒体との間で熱交換が可能な位置に設置することが好ましい。分離器4を通過した後であって蒸気過熱器5に流入する前の低沸点媒体と、タービンTを通過した後であって凝縮器9に流入する前の低沸点媒体との間で熱交換を行う位置に第1熱交換器6を設置した場合と比較し、分離器4において分離される低沸点媒体蒸気の量を増加させることができるからである。そして、その結果、発電機11における発電量を大きくすることができると共に、例えば蒸発器3において用いている熱源の温度が経時変化した場合であっても安定的に発電することができるからである。
 なお、第3温度は、前述した第1温度と第2温度の差が大きいほど第1温度よりも高温になり易く、特に、第1温度と第2温度との差が100℃以上の場合には、上述した熱交換の実施による熱エネルギーの利用効率の改善が著しい。
 第2熱交換器7は、第1熱交換器6を通過した後であって凝縮器9に流入する前の低沸点媒体と、凝縮器9を通過した後であって蒸発器3に流入する前の低沸点媒体との間で熱交換を行う。図1に示すバイナリー発電システム10では、第2熱交換器7は、第1熱交換器6を通過した後であって吸収器8に流入する前の低沸点媒体と、加熱器2を通過した後であって、蒸発器3に流入する前の低沸点媒体との間で熱交換を行うように構成した。このように、第2熱交換器7を備えることで、第1熱交換器6を経た低沸点媒体の有する熱エネルギーを有効利用して、バイナリー発電システム10全体としての熱エネルギーの利用効率を一層向上させることができる。
 吸収器8は、タービンTの回転軸を回転させ、第1熱交換器6及び第2熱交換器7を通過した後の低沸点媒体蒸気と、分離器4で分離した蒸発残液とを混合し、低沸点媒体蒸気の一部を蒸発残液に吸収させる装置である。なお、吸収器8としては、ラインミキサーやスプレー塔等の既知の気液混合装置を用いることができる。
 第3熱交換器20は、吸収器8を通過した後であって凝縮器9に流入する前の低沸点媒体と、媒体送液ポンプP1から送出された後であって加熱器2に流入する前の低沸点媒体との間で熱交換する。なお、バイナリー発電システム10において、第3熱交換器を設けることは必須ではない。また、吸収器8を通過した後であって凝縮器9に流入する前の低沸点媒体の温度は、媒体送液ポンプP1による圧縮作用により若干の温度上昇はあるものの、基本的に、媒体送液ポンプP1から送出された後であって加熱器2に流入する前の低沸点媒体の温度よりも高い。このため、第3熱交換器流路19には弁等を設けて、後述する第2熱交換器に関連した流路変更制御に類似した制御を実施することは必須ではなく、媒体送液ポンプP1から送出された低沸点媒体は、常に第3熱交換器20を通過するように、バイナリー発電システム10を構成することができる。
 凝縮器9は、吸収器8から流出した低沸点媒体蒸気と蒸発残液との混合流体を冷却し、低沸点媒体蒸気を凝縮させる装置である。そして、凝縮器9において低沸点媒体蒸気を凝縮させて得られる液状の低沸点媒体(低沸点媒体蒸気の凝縮物と蒸発残液との混合物)は、低沸点媒体タンク1に貯留された後、媒体送液ポンプP1により再び蒸発器3へと送られる。
 ここで、第2熱交換器7は、第1熱交換器6を通過した後であって凝縮器9に流入する前の低沸点媒体の温度(第4温度)が、加熱器2を通過した後であって、蒸発器3に流入する前の低沸点媒体の温度(第5温度)よりも高い場合に、蒸発器3に流入する前の低沸点媒体の温度を上昇させることができる。しかし、蒸発器3で使用する熱源の温度(第1温度)や、蒸気過熱器5で使用する熱源の温度(第2温度)が経時的に変化する場合などには、第4温度が第5温度よりも低くなることがあり得る。そして、第4温度が第5温度よりも低くなった場合には、第2熱交換器7を使用すると、蒸発器3に流入する前の低沸点媒体が冷却されることになり、バイナリー発電システム10全体としての熱エネルギーの利用効率が低下することになる。
 そこで、第4温度が第5温度よりも低くなることがあり得る場合には、バイナリー発電システム10は、以下に説明する第1温度センサ12、第2温度センサ13、切替手段14及び迂回流路17を備えることが好ましい。
 第1温度センサ12は、第1熱交換器6を通過した後であって第2熱交換器7に流入する前の低沸点媒体の温度を測定するように構成される。また、第2温度センサ13は、加熱器2を通過した後であって第2熱交換器7に流入する前の低沸点媒体の温度を測定するように構成される。
 切替手段14は、第1切替弁14A及び第2切替弁14Bにより構成される。第1切替弁14Aは、加熱器2を経た低沸点媒体を、第2熱交換器7を経ずに前記蒸発器3に流入させる迂回流路17上に配置されている。具体的には、第1切替弁14Aは、加熱器2の後段の循環系統15上であって、循環系統15を流れる低沸点媒体を第2熱交換器7に供給するための第2熱交換器流路18が分岐する位置より後段であって、第2熱交換器流路18が循環系統15と合流する位置より前段に設けられる。また、第2切替弁14Bは、循環系統15から第2熱交換器流路18が分岐する位置より後段の第2熱交換器流路18上に設けられる。即ち、第1切替弁14Aは、開いたときに、加熱器2を通過した低沸点媒体が第2熱交換器7を通ることなく循環系統15を通って蒸発器3へ流入可能なように配置され、第2切替弁14Bは、開いたときに、加熱器2を通過した低沸点媒体が第2熱交換器7に流入可能なように配置される。
 ここで、バイナリー発電システム10は、第1温度センサ12及び第2温度センサ13、並びに切替手段14を用いて、バイナリー発電システム10の動作を制御する図示しない制御装置を更に備えることが好ましい。ここでいう、バイナリー発電システム10の動作とは、主として、バイナリー発電システム10における低沸点媒体の流路の変更を指す。以下、制御装置による制御について説明する。
<バイナリー発電システムの動作>
 図示しない制御装置は、第1温度センサ12及び第2温度センサ13の測温値に基づいて切替手段14を制御する。具体的には、制御装置は、第1温度センサ12の測温値(第4温度)が第2温度センサ13の測温値(第5温度)よりも高い場合に、低沸点媒体の流路を第2熱交換器7への第2熱交換器流路18に切り替え、第1温度センサ12の測温値(第4温度)が第2温度センサ13の測温値(第5温度)以下の場合に、低沸点媒体の流路を迂回流路17に切り替える。このようにバイナリー発電システム10内における低沸点媒体の流路を変更することで、蒸発器3や蒸気過熱器5で使用する熱源(すなわち、温水や温空気)に温度変化が生じた場合であっても、バイナリー発電システムを安定的に駆動させ、バイナリー発電システム全体としての熱エネルギーの利用効率を一層向上させることができる。
 具体的には、蒸発器3において熱源として使用される温水の温度(第1温度)が一定であり、蒸気過熱器5において熱源として使用される温空気の温度(第2温度)が低下した場合には、第1温度センサ12の測温値が低下し、第2温度センサ13の測温値よりも低くなることが起こりうる。このような場合に、加熱器2を経た低沸点媒体を第2熱交換器7に流入させてしまうと、蒸発器3に供給される低沸点媒体にタービンTを通過した後の低沸点媒体が有する熱エネルギーを熱移動させるという本来の目的が達成できないばかりでなく、逆方向の熱移動が生じてしまう。すると、加熱器2で加熱した低沸点媒体から熱エネルギーが失われることとなり、バイナリー発電システム10においてエネルギーロスが生じる。したがって、制御装置は、第1温度センサ12の測温値が第2温度センサ13の測温値よりも低い場合には、第1切替弁14Aを開き、第2切替弁14Bを閉じて、第2熱交換器7を通過させることなく、低沸点媒体を蒸発器3に流入させるように制御する。逆に、制御装置は、第1温度センサ12の測温値が第2温度センサ13の測温値よりも高い場合には、第1切替弁14Aを閉じ、第2切替弁14Bを開いて第2熱交換器7に低沸点媒体を流入させように制御する。
 以上、一例を用いて本発明のバイナリー発電システムについて説明したが、本発明のバイナリー発電システムは、上記一例に限定されることはなく、本発明のバイナリー発電システムには、適宜変更を加えることができる。
 本発明によれば、システム全体としての熱エネルギーの利用効率を改善し、発電効率を向上させることができるバイナリー発電システムを提供することができる。

Claims (4)

  1.  低沸点媒体の蒸気を作動流体として用いるバイナリー発電システムであって、
     低沸点媒体を加熱して低沸点媒体の蒸気を得る蒸発器と、前記低沸点媒体の蒸気を加熱する蒸気過熱器と、該蒸気過熱器を経た前記低沸点媒体の蒸気の運動エネルギーを回転軸の回転エネルギーに変換するタービンと、前記タービンにおいて運動エネルギーの一部を前記回転軸の回転エネルギーに変換した前記低沸点媒体の蒸気を凝縮させる凝縮器とを備え、且つ、内部で前記低沸点媒体を循環させる閉ループ状の循環系統を有し、
     前記蒸発器を通過した後であって前記蒸気過熱器に流入する前の前記低沸点媒体と、前記タービンを通過した後であって前記凝縮器に流入する前の前記低沸点媒体との間で熱交換を行う第1熱交換器を更に有することを特徴とする、バイナリー発電システム。
  2.  前記第1熱交換器を通過した後であって前記凝縮器に流入する前の前記低沸点媒体と、前記凝縮器を通過した後であって前記蒸発器に流入する前の前記低沸点媒体との間で熱交換を行う第2熱交換器を更に有することを特徴とする、請求項1に記載のバイナリー発電システム。
  3.  前記凝縮器を通過した後であって前記第2熱交換器に流入する前の前記低沸点媒体を加熱する加熱器と、
     前記第1熱交換器を通過した後であって前記第2熱交換器に流入する前の前記低沸点媒体の温度を測定する第1温度センサと、
     前記加熱器を通過した後であって前記第2熱交換器に流入する前の前記低沸点媒体の温度を測定する第2温度センサと、
     前記加熱器を経た前記低沸点媒体を、前記第2熱交換器を経ずに前記蒸発器に流入させる迂回流路と、
     前記加熱器を通過した後の前記低沸点媒体が流れる流路を、前記迂回流路と、前記第2熱交換器への流路との間で切り替える切替手段と、
     前記第1及び第2温度センサの測温値に基づいて前記切替手段を制御する制御装置であって、該制御装置は、前記第1温度センサの測温値が前記第2温度センサの測温値よりも高い場合に、前記第2熱交換器への流路に切り替え、前記第1温度センサの測温値が前記第2温度センサの測温値以下の場合に、前記迂回流路に切り替える、制御装置と、
     を備えることを特徴とする、請求項2に記載のバイナリー発電システム。
  4.  前記第1熱交換器は、前記蒸発器を通過し、前記蒸発器と前記蒸気過熱器との間に配置された分離器に流入する前の前記低沸点媒体と、前記タービンを通過した後であって、前記凝縮器に流入する前の前記低沸点媒体と、の間で熱交換可能な位置に設置された、ことを特徴とする、請求項1~3の何れか一項に記載のバイナリー発電システム。
PCT/JP2014/001468 2013-03-15 2014-03-14 バイナリー発電システム WO2014141719A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013053748A JP5531250B1 (ja) 2013-03-15 2013-03-15 バイナリー発電システム
JP2013-053748 2013-03-15
JP2014-027696 2014-02-17
JP2014027696A JP6057219B2 (ja) 2014-02-17 2014-02-17 バイナリー発電システム

Publications (1)

Publication Number Publication Date
WO2014141719A1 true WO2014141719A1 (ja) 2014-09-18

Family

ID=51536397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001468 WO2014141719A1 (ja) 2013-03-15 2014-03-14 バイナリー発電システム

Country Status (1)

Country Link
WO (1) WO2014141719A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115111804A (zh) * 2021-03-18 2022-09-27 国家电投集团科学技术研究院有限公司 冷热电联供系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372950A (en) * 1976-12-10 1978-06-28 Sulzer Ag Method of operation open type gas turbine associated with steam circulatory circuit
JPS57165611A (en) * 1981-03-06 1982-10-12 Air Prod & Chem Method of and apparatus for recovering energy by vaporization of liquified natural gas
JPH02245405A (ja) * 1989-01-11 1990-10-01 Alexander I Kalina 地熱流体からの熱を電力に変換する方法及び装置
JP2007500810A (ja) * 2003-07-31 2007-01-18 シーメンス アクチエンゲゼルシヤフト ガスタービン設備の効率向上を図る方法とガスタービン設備
JP2011085025A (ja) * 2009-10-13 2011-04-28 Toyota Industries Corp 廃熱回生システム
WO2011105064A1 (ja) * 2010-02-24 2011-09-01 メタウォーター株式会社 排熱発電方法及び排熱発電システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372950A (en) * 1976-12-10 1978-06-28 Sulzer Ag Method of operation open type gas turbine associated with steam circulatory circuit
JPS57165611A (en) * 1981-03-06 1982-10-12 Air Prod & Chem Method of and apparatus for recovering energy by vaporization of liquified natural gas
JPH02245405A (ja) * 1989-01-11 1990-10-01 Alexander I Kalina 地熱流体からの熱を電力に変換する方法及び装置
JP2007500810A (ja) * 2003-07-31 2007-01-18 シーメンス アクチエンゲゼルシヤフト ガスタービン設備の効率向上を図る方法とガスタービン設備
JP2011085025A (ja) * 2009-10-13 2011-04-28 Toyota Industries Corp 廃熱回生システム
WO2011105064A1 (ja) * 2010-02-24 2011-09-01 メタウォーター株式会社 排熱発電方法及び排熱発電システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115111804A (zh) * 2021-03-18 2022-09-27 国家电投集团科学技术研究院有限公司 冷热电联供系统
CN115111804B (zh) * 2021-03-18 2024-01-19 国家电投集团科学技术研究院有限公司 冷热电联供系统

Similar Documents

Publication Publication Date Title
CN102084093B (zh) 用于使热动力循环系统运行的方法以及热动力循环系统
RU2502880C2 (ru) Органический цикл ренкина прямого нагрева
CN107250511B (zh) 吸气冷却方法、执行该方法的吸气冷却装置、具备该装置的废热回收设备及燃气涡轮成套设备
KR101135686B1 (ko) Orc시스템 유량계 제어방법
JP5812955B2 (ja) 発電給熱装置
JP2012149541A (ja) 排熱回収発電装置および船舶
JPWO2017169594A1 (ja) ガスタービンプラント、及びその運転方法
US20160156083A1 (en) System for generating power from fuel cell waste heat
KR20110079446A (ko) Orc시스템 펌프 제어방법
JP5531250B1 (ja) バイナリー発電システム
US20100060005A1 (en) Power generation system using low grade solar energy
KR20110079448A (ko) Orc시스템
WO2014141719A1 (ja) バイナリー発電システム
KR101481010B1 (ko) 해양온도차발전 시스템 및 그 작동방법
JP6057219B2 (ja) バイナリー発電システム
KR20180046435A (ko) 발전장치
JP5799853B2 (ja) バイナリ発電システム
CN110220177A (zh) 太阳能光热发电熔盐蒸汽发生系统的水侧系统及运行方法
JP2014153026A (ja) 吸収式ヒートポンプ装置
CN108138600A (zh) 运行燃气和蒸汽联合发电站的方法以及燃气和蒸汽联合发电站
WO2015012345A1 (ja) ボイラ用給水予熱システム及びボイラ用給水予熱方法
KR101461828B1 (ko) 열에너지를 전환하는 장치
KR101289187B1 (ko) 열에너지를 전환하는 장치
KR101304727B1 (ko) 열에너지를 전환하는 장치
US11802058B2 (en) Distributed energy source system utilizing waste heat deeply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14765603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14765603

Country of ref document: EP

Kind code of ref document: A1