WO2014141550A1 - Capacitive pressure sensor and input device - Google Patents

Capacitive pressure sensor and input device Download PDF

Info

Publication number
WO2014141550A1
WO2014141550A1 PCT/JP2013/082700 JP2013082700W WO2014141550A1 WO 2014141550 A1 WO2014141550 A1 WO 2014141550A1 JP 2013082700 W JP2013082700 W JP 2013082700W WO 2014141550 A1 WO2014141550 A1 WO 2014141550A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric layer
pressure sensor
region
center
abundance ratio
Prior art date
Application number
PCT/JP2013/082700
Other languages
French (fr)
Japanese (ja)
Inventor
井上 勝之
敏明 奥野
古村 由幸
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to CN201380074229.3A priority Critical patent/CN105008880B/en
Priority to KR1020157022136A priority patent/KR101818315B1/en
Publication of WO2014141550A1 publication Critical patent/WO2014141550A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0073Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a semiconductive diaphragm
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/965Switches controlled by moving an element forming part of the switch
    • H03K17/975Switches controlled by moving an element forming part of the switch using a capacitive movable element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K2017/9602Touch switches characterised by the type or shape of the sensing electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/960755Constructional details of capacitive touch and proximity switches

Definitions

  • the present invention relates to a capacitive pressure sensor and an input device. Specifically, the present invention relates to a touch-mode capacitive pressure sensor in which a diaphragm bent by pressure contacts a dielectric layer to detect pressure. The present invention also relates to an input device using the pressure sensor.
  • a conductive diaphragm (movable electrode) and a fixed electrode are opposed to each other with a gap therebetween, and a change in capacitance between the diaphragm bent by pressure and the fixed electrode.
  • the pressure is detected from.
  • this pressure sensor is a micro device manufactured by MEMS technology using a glass substrate or a silicon substrate, the diaphragm may be destroyed if a large pressure is applied to the diaphragm and it bends greatly.
  • a pressure sensor has been proposed. This pressure sensor is sometimes called a touch mode capacitive pressure sensor.
  • FIG. 1A is a cross-sectional view showing a pressure sensor 11 described in Non-Patent Document 1.
  • a fixed electrode 13 made of a metal thin film is formed on the upper surface of a glass substrate 12.
  • the fixed electrode 13 has a disk shape as shown in FIG.
  • a dielectric film 14 is formed on the upper surface of the glass substrate 12 from above the fixed electrode 13.
  • An electrode pad 16 is provided on the upper surface of the dielectric film 14.
  • a through hole 15 is opened in the dielectric film 14, and an electrode pad 16 is connected to the fixed electrode 13 through the through hole 15.
  • a silicon substrate 17 is laminated on the upper surface of the dielectric film 14.
  • a recess 18 is provided on the upper surface of the silicon substrate 17, and a recess 19 is provided on the lower surface of the silicon substrate 17.
  • a thin film diaphragm 20 is formed between the recess 18 and the recess 19.
  • the diaphragm 20 is provided at a position overlapping the fixed electrode 13.
  • the lower surface of the silicon substrate 17 is a P + layer 21 doped with B (boron) at a high concentration, thereby imparting conductivity to the diaphragm 20 and using the diaphragm 20 as a movable electrode.
  • a gap 22 of several ⁇ m is formed by the recess 19 between the lower surface of the diaphragm 20 and the upper surface of the dielectric film 14.
  • FIG. 2 is a diagram showing the relationship between the pressure and capacitance of the pressure sensor 11 (pressure-capacitance characteristics), and is described in Non-Patent Document 1.
  • the diaphragm 20 bends according to the applied pressure and contacts the dielectric film 14 at a certain pressure.
  • a section (non-contact area) where the pressure is from 0 to Pa on the horizontal axis in FIG. 2 is an area where the diaphragm 20 is not in contact with the dielectric film 14.
  • the section from the pressure Pa to Pb contact start region is a region from when the diaphragm 20 contacts the dielectric film 14 until it reliably contacts with a certain area.
  • the section (saturation region) where the pressure is from Pc to Pd is a region where almost the entire surface of the diaphragm 20 is in contact with the dielectric film 14 and the contact area hardly increases even when the pressure increases.
  • the capacitance C between the diaphragm 20 and the dielectric film 14 can be expressed by the following formula 1.
  • C Co + ⁇ ⁇ (S / d) (Formula 1)
  • S the contact area between the diaphragm 20 and the dielectric film 14
  • d the thickness of the dielectric film 14
  • the dielectric constant of the dielectric film 14
  • Co is a capacitance in a non-contact region.
  • FIG. 7 is a diagram showing the relationship between the ideal curve and the output characteristics of the pressure sensor.
  • the horizontal axis in FIG. 7 indicates the magnitude of the load (pressing force) that presses the diaphragm.
  • the vertical axis in FIG. 7 indicates the rate of change (output ratio) of the capacitance between the diaphragm and the fixed electrode.
  • FIG. 8 is an enlarged view of the X section of FIG.
  • a curve ⁇ represents an ideal curve
  • a curve ⁇ represents output characteristics of a conventional example. Comparing the ideal curve ⁇ with the conventional curve ⁇ , both curves have almost the same capacitance change rate in the rising region (contact start region) when a small load is applied and in the saturation region when a large load is applied. Have However, in the middle region (operation region) of the load, the difference in output characteristics between the capacitance change rate of the conventional example and the ideal curve is large.
  • this pressure sensor there is a flaw between the strength of the pressure detected by the pressure sensor and the operator's pressing feeling, and it is impossible to detect even a change in the pressing feeling of the operator.
  • a touch pad is configured by arranging a large number of minute pressure sensors, it is difficult to detect a change in writing pressure when a character or a figure is drawn with a finger.
  • Patent Document 1 by providing a gap in the fixed electrode, the area increase rate of the fixed electrode increases according to the distance from the center of the fixed electrode (therefore, the fixed electrode existence ratio also increases monotonously. .)
  • a pressure sensor is disclosed. However, this pressure sensor is intended to improve the linearity of the amount of change in capacitance with respect to the amount of change in pressure. With the pressure sensor of Patent Document 1, it is possible to obtain characteristics close to the ideal curve described above. Can not.
  • the present invention has been made in view of the technical background as described above, and an object of the present invention is to provide a pressure having a detection characteristic or an output characteristic that fits a person's pressing feeling when pressing the pressure sensor. It is to provide a sensor. Moreover, it is providing the input device using the said pressure sensor.
  • a capacitance type pressure sensor includes a fixed electrode, a dielectric layer formed above the fixed electrode, and a conductive diaphragm formed above the dielectric layer with a gap therebetween.
  • the dielectric layer has an abundance ratio of the dielectric layer on a circumference centered on the center of the opposing region in a facing region facing the diaphragm, depending on a distance from the center of the facing region. It is characterized by doing.
  • the abundance ratio of the dielectric layer is a value obtained by dividing the volume of the dielectric layer on the annular zone around the center of the opposing region by the area of the annular zone.
  • the abundance ratio of the dielectric layer on the circumference centered on the center of the opposing region of the dielectric layer is adjusted according to the distance from the center of the opposing region.
  • the output characteristic can be brought close to an ideal curve. Therefore, it is possible to adjust the detection characteristic or output characteristic of the pressure sensor so as to fit the human pressing feeling.
  • the abundance ratio of the dielectric layer in the middle between the central portion and the outer peripheral portion of the facing region is the abundance ratio of the dielectric layer in the central portion of the facing region. It is characterized by being smaller than.
  • the change rate of the electrostatic capacitance is larger than the ideal curve in the intermediate region between the rising region and the saturated region.
  • the abundance ratio of the dielectric layer in the middle between the central portion and the outer peripheral portion of the opposing region is smaller than the abundance ratio of the dielectric layer in the central portion of the opposing region. Output can be reduced, and the output characteristics can be made closer to an ideal curve.
  • the output in the saturation region of the output characteristics also decreases accordingly, and the output may be smaller than the ideal curve.
  • the saturation region of the output characteristics The value at can be increased to approach the ideal curve again.
  • the abundance ratio of the dielectric layer in the outer peripheral portion of the opposing region is made smaller than the abundance ratio of the dielectric layer in the central portion of the opposing region, the value in the saturation region of the output characteristics will increase. It can be prevented from being too much.
  • an opening is provided in the dielectric layer in the facing region, and a ratio of the opening is changed according to a distance from a center of the facing region. It is characterized in that the abundance ratio of the dielectric layer is changed.
  • the abundance ratio of the dielectric layer can be changed by opening the dielectric layer.
  • the openings of the dielectric layer are formed radially from the center of the facing region. By forming the openings radially, it is possible to prevent the dielectric layer or the openings from being biased in a specific direction.
  • the thickness of the dielectric layer may be changed in the facing region according to the distance from the center of the facing region.
  • the facing region is divided into a plurality of sections according to the distance from the center, and the abundance ratio of the dielectric layer is made constant in each section. It is characterized by that. According to such an embodiment, design can be facilitated because the abundance ratio of the dielectric layer may be adjusted for each section.
  • the input device according to the present invention is characterized in that a plurality of capacitive pressure sensors according to the present invention are arranged. Since the input device of the present invention uses the capacitive pressure sensor according to the present invention, it is possible to detect the pressing position and the pressing force. Moreover, it is possible to detect a change in writing pressure when a character or figure is drawn with a finger or the like.
  • the means for solving the above-described problems in the present invention has a feature in which the above-described constituent elements are appropriately combined, and the present invention enables many variations by combining such constituent elements. .
  • FIG. 1A is a schematic cross-sectional view showing a pressure sensor according to a conventional example.
  • FIG. 1B is a plan view showing a fixed electrode formed on the upper surface of the glass substrate in the pressure sensor of FIG.
  • FIG. 2 is a diagram showing the relationship between pressure and capacitance in the conventional pressure sensor shown in FIG.
  • FIG. 3A is a plan view showing the pressure sensor according to the first embodiment of the present invention.
  • FIG. 3B is a plan view showing a dielectric layer formed on the upper surface of the fixed electrode in the pressure sensor shown in FIG.
  • FIG. 4 is a cross-sectional view of the pressure sensor shown in FIG. FIG.
  • FIG. 5 is a diagram showing the relationship between the radial distance from the center of the diaphragm and the abundance ratio of the dielectric layer in the dielectric film of FIG.
  • FIG. 6 is a diagram for explaining the definition of the abundance ratio of the dielectric layer.
  • FIG. 7 is a diagram showing the relationship (output characteristics) between the load (pressing force) applied to the diaphragm and the capacitance change rate between the diaphragm and the fixed electrode.
  • FIG. 8 is an enlarged view of the X section of FIG.
  • FIG. 9 is a diagram showing the ratio of deviation from the ideal curve in the conventional example and the embodiment of the present invention.
  • FIG. 10 is a plan view showing a modification of the pressure sensor according to Embodiment 1 of the present invention.
  • FIG. 11 is a cross-sectional view of a pressure sensor according to Embodiment 2 of the present invention.
  • FIG. 12 is a cross-sectional view of an input device according to Embodiment 3 of the present invention
  • FIG. 3A is a plan view of the pressure sensor 31.
  • FIG. 3B is a plan view of the state in which the upper substrate 35 a is removed from the pressure sensor 31 of FIG. 3A, and shows the dielectric layer 33 formed on the upper surface of the fixed electrode 32.
  • FIG. 4 is a cross-sectional view of the pressure sensor 31.
  • a dielectric layer 33 is formed on a fixed electrode 32 made of a conductive material such as a low-resistance silicon substrate or a metal film.
  • the dielectric layer 33 is made of a dielectric material such as SiO 2 (thermal oxide film), SiN, or TEOS.
  • a recess 33a (circular recess) is provided in the center of the upper surface of the dielectric layer 33. That is, the thickness of the dielectric layer 33 is thick outside the recess 33a, and the thickness of the dielectric layer 33 is thin inside the recess 33a.
  • the dielectric layer 33 in the recess 33a has a certain thickness.
  • a thin film upper substrate 35a made of a conductive material such as a low resistance silicon substrate is formed on the upper surface of the dielectric layer 33.
  • the upper substrate 35a covers the upper surface of the recess 33a, and an air gap 34 (air gap) is formed between the lower surface of the upper substrate 35a and the recess bottom surface of the dielectric layer 33 by the recess 33a.
  • a pressure-sensitive diaphragm 35 is formed by a region of the upper substrate 35a that is horizontally stretched above the air gap 34.
  • the dielectric layer 33 located on the bottom surface in the recess 33 a is a facing region facing the diaphragm 35.
  • the dielectric layer 33 is provided with a vent line 36 (air passage) to ensure air permeability between the air gap 34 and the outside.
  • the vent line 36 is a narrow groove having a width of about 30 ⁇ m, and is bent or meandering so that foreign matters such as dust and dirt do not easily enter the air gap 34.
  • the dielectric layer 33 has a plurality of sections (here, three sections) along the radial direction from the center of the counter area (center of the counter area) in the counter area in the recess 33a.
  • Sections I, II, and III Sections I, II, and III).
  • Section I is a circular area located at the center of the opposing area.
  • a dielectric layer 33 is formed on the entire surface of the section I.
  • Section III is an annular region located on the outer periphery of the opposing region. In the section III, a plurality of openings 39 are provided radially and at equal intervals.
  • Section II is an annular region located in the middle between the central portion and the outer peripheral portion of the opposing region.
  • a plurality of openings 39 are provided radially and at equal intervals.
  • the fixed electrode 32 is exposed in each opening 39 provided in the dielectric layer 33.
  • a region with a dot pattern is a region where the dielectric layer 33 is formed.
  • the white area in FIG. 3B is an area where the fixed electrode 32 is exposed.
  • FIG. 5 is a diagram showing the abundance ratio of the dielectric layer 33 in the facing region.
  • the horizontal axis in FIG. 5 indicates the radius (radial distance) measured from the center of the opposing region (or diaphragm 35) of the dielectric layer 33. However, the distance on the horizontal axis in FIG. 5 is expressed as a ratio with the radius from the center to the outer periphery of the facing region being 100.
  • the vertical axis in FIG. 5 represents the abundance ratio of the dielectric layer 33.
  • the abundance ratio of the dielectric layer 33 at the position of the radius r centering on the center C (center) of the opposing region is V / (2 ⁇ r ⁇ ⁇ r) Defined by Here, as shown in FIG.
  • the symbol V indicates a dielectric layer 33 existing on the annular zone when the annular zone having the radius r and the width ⁇ r around the center C (center) of the opposing region is considered.
  • Represents the volume of. 2 ⁇ r ⁇ ⁇ r is the area of the annular zone.
  • ⁇ r is set to a sufficiently small value. Therefore, the larger the area of the dielectric layer 33 existing on the annular zone (the smaller the area of the opening 39), the greater the abundance ratio of the dielectric layer 33. Further, the larger the thickness of the dielectric layer 33 existing on the annular zone, the larger the abundance ratio of the dielectric layer 33.
  • the existence ratio of the dielectric layer 33 in the section I is assumed to be 100 (%), and the ratio is displayed.
  • section II has an opening 39
  • the abundance ratio of dielectric layer 33 in section II is smaller than the abundance ratio of dielectric layer 33 in section I as shown in FIG. Since the ratio of the opening 39 is smaller in the section III than in the section II, the abundance ratio of the dielectric layer 33 in the section III is larger than the abundance ratio of the dielectric layer 33 in the section II, and the dielectric ratio in the section I is It is smaller than the abundance ratio of the body layer 33.
  • An annular upper electrode 37 made of a metal material is provided on the upper surface of the upper substrate 35a so as to surround the diaphragm 35. Electrode pads 40 are provided at the corners of the upper substrate 35a. The upper surface electrode 37 and the electrode pad 40 are connected by the wiring part 42. The upper surface electrode 37, the wiring portion 42, and the electrode pad 40 are simultaneously formed by a two-layer metal thin film of a base layer Ti (thickness 1000 mm) / surface layer Au (thickness 3000 mm). A lower surface electrode 38 is provided on the lower surface of the fixed electrode 32. The bottom electrode 38 is also made of a two-layered metal thin film of base layer Ti (thickness 1000 mm) / surface layer Au (thickness 3000 mm).
  • a region outside the upper surface electrode 37 on the upper surface of the upper substrate 35a is covered with a protective film 41 made of a resin such as polyimide or an insulating film such as SiO 2 or SiN.
  • the protective film 41 is removed in the vicinity of the electrode pad 40, and the electrode pad 40 is exposed from the protective film 41.
  • FIG. 7 is a diagram showing the rate of change of capacitance.
  • FIG. 7 shows an ideal curve (target capacitance change rate) ( ⁇ ), a capacitance change rate ( ⁇ ) in a conventional pressure sensor, and a static value in a pressure sensor according to an embodiment of the present invention.
  • the rate of change in capacitance ( ⁇ ) is shown.
  • FIG. 8 is an enlarged view of the X section of FIG. 7 in the horizontal axis direction.
  • the capacitance change rate ⁇ C / Co shown on the vertical axis in FIG. 7 is defined as follows.
  • the capacitance between the diaphragm deflected by the load and the fixed electrode is C, and the capacitance between the diaphragm and the fixed electrode when the diaphragm is not bent is Co.
  • the pressure strength felt at the fingertip is not necessarily proportional to the magnitude of the load. I don't feel the difference in size.
  • the ideal curve represents a feeling of pressing when the person presses the pressure sensor (how to feel the pressing strength) as an output of the pressure sensor.
  • the dielectric layer is formed on the entire surface as in the conventional example.
  • the output characteristic of the conventional example has a value larger than the ideal curve. Therefore, in the embodiment of the present invention, the existence ratio of the dielectric layer is reduced in the region corresponding to the operation region (section II), thereby reducing the output characteristics and approaching the ideal curve.
  • the deviation from the ideal curve is small even in the output characteristics of the conventional example.
  • the value of the output characteristic is lowered by reducing the existence ratio of the dielectric layer in the section II. Therefore, in the embodiment of the present invention, in the region corresponding to the saturation region (section III), the abundance ratio of the dielectric layer is made larger than in section II, thereby increasing the output characteristics in section III and not deviating from the ideal curve. I am doing so.
  • FIG. 9 shows the ratio of deviation from the ideal curve in the conventional example and the embodiment of the present invention.
  • the electrostatic capacity in the ideal curve at a certain load is Cr and the electrostatic capacity in the conventional example is Cc
  • the maximum value [%] of 100 ⁇ (Cc-Cr) / Cr is the ideal curve in the conventional example. It is called the ratio of deviation.
  • the electrostatic capacity in an ideal curve at a certain load is Cr
  • the electrostatic capacity of the embodiment of the present invention is Cp
  • the maximum value [%] of 100 ⁇ (Cp ⁇ Cr) / Cr is the present invention.
  • the ratio of deviation from the ideal curve of the embodiment is called the ratio of deviation from the ideal curve of the embodiment.
  • the rate of deviation from the ideal curve is about 6.6%, whereas in the embodiment of the present invention, the rate of deviation from the ideal curve is 2.0%. It is getting smaller. Therefore, according to the embodiment of the present invention, the detection characteristic or the output characteristic of the pressure sensor can be adjusted to fit a human pressing feeling.
  • the upper surface electrode 37 may not be annular, and a plurality of arc-shaped upper surface electrodes 37 may be provided (not shown). Further, the upper surface electrode 37 may not be provided. This is because the upper substrate 35a has conductivity, and therefore it is only necessary to provide the electrode pad 40 at least at one location on the upper substrate 35a outside the area of the diaphragm 35 as shown in FIG.
  • FIG. 11 is a cross-sectional view of a pressure sensor 51 according to Embodiment 2 of the present invention.
  • the opening 39 is not provided in the dielectric layer 33, but the thickness of the dielectric layer 33 is changed according to the radius (distance) from the center of the opposing region. Thereby, the abundance ratio of the dielectric layer 33 is changed according to the radius from the center of the opposing region.
  • the facing region is divided into three sections I, II, and III, and the thickness of the dielectric layer 33 in the section II is made thinner than the thickness of the dielectric layer 33 in the section I.
  • the thickness of the dielectric layer 33 in the section III is larger than the thickness of the dielectric layer 33 in the section II and is smaller than the thickness of the dielectric layer 33 in the section I. Even in such an embodiment, the same effects as those of the first embodiment can be achieved.
  • the opposing region is divided into three sections and the pattern of the dielectric layer 33 or the existence ratio of the dielectric layer 33 is changed.
  • the opposing area is divided into four or more sections. The pattern of the layer 33 or the existence ratio of the dielectric layer 33 may be changed.
  • FIG. 12 is a cross-sectional view showing the structure of a plate-type input device 61, for example, a touch panel, according to Embodiment 3 of the present invention.
  • the input device 61 includes a large number of pressure sensors 31 (sensor units) according to the first embodiment arranged in an array (for example, a rectangular shape or a honeycomb shape).
  • Each pressure sensor 31 is electrically independent, and the pressure applied to each pressure sensor 31 can be detected independently. According to such an input device 61, it is possible to detect a point pressed by a pressing body such as a touch panel, and it is also possible to detect a pressing strength (a magnitude of pressure) of each point.

Abstract

A dielectric layer (33) is formed on the top surface of a fixed electrode (32). By causing the top surface of the dielectric layer (33) to recede downwards, a recess (33a) is formed in the top surface of the dielectric layer (33). An upper substrate (35a) is layered on the top surface of the dielectric layer (33) so as to cover the recess (33a). From a part of the upper substrate (35a), specifically a region positioned above the recess (33a), a conductive diaphragm (35) having a thin film shape is formed. In the region of the dielectric layer (33) opposite of the diaphragm (35), the ratio of where the dielectric layer is present on the circular perimeter centered on said opposite region varies according to the distance from the center of the opposite region.

Description

静電容量型圧力センサ及び入力装置Capacitance type pressure sensor and input device
 本発明は、静電容量型圧力センサ及び入力装置に関する。具体的には、本発明は、圧力で撓んだダイアフラムが誘電体層に接触して圧力を検知するタッチモードの静電容量型圧力センサに関する。また、当該圧力センサを利用した入力装置に関する。 The present invention relates to a capacitive pressure sensor and an input device. Specifically, the present invention relates to a touch-mode capacitive pressure sensor in which a diaphragm bent by pressure contacts a dielectric layer to detect pressure. The present invention also relates to an input device using the pressure sensor.
 一般的な静電容量型圧力センサでは、導電性のダイアフラム(可動電極)と固定電極がギャップを隔てて対向しており、圧力で撓んだダイアフラムと固定電極との間の静電容量の変化から圧力を検出している。この圧力センサが、ガラス基板やシリコン基板を用いてMEMS技術で製造されるマイクロデバイスである場合には、ダイアフラムに大きな圧力が加わって大きく撓むと、ダイアフラムが破壊するおそれがある。 In a general capacitive pressure sensor, a conductive diaphragm (movable electrode) and a fixed electrode are opposed to each other with a gap therebetween, and a change in capacitance between the diaphragm bent by pressure and the fixed electrode. The pressure is detected from. When this pressure sensor is a micro device manufactured by MEMS technology using a glass substrate or a silicon substrate, the diaphragm may be destroyed if a large pressure is applied to the diaphragm and it bends greatly.
 そのため、固定電極の表面に誘電体層を設けておき、圧力によって撓んだダイアフラムが誘電体層に接触し、その接触面積の変化によってダイアフラムと固定電極との間の静電容量が変化するようにした圧力センサが提案されている。この圧力センサは、タッチモード静電容量型圧力センサと呼ばれることがある。 For this reason, a dielectric layer is provided on the surface of the fixed electrode so that the diaphragm bent by pressure comes into contact with the dielectric layer, and the capacitance between the diaphragm and the fixed electrode changes as the contact area changes. A pressure sensor has been proposed. This pressure sensor is sometimes called a touch mode capacitive pressure sensor.
 タッチモード静電容量型圧力センサとしては、たとえば非特許文献1に記載されたものがある。図1(A)は非特許文献1に記載された圧力センサ11を示す断面図である。この圧力センサ11では、ガラス基板12の上面に金属薄膜からなる固定電極13を形成している。固定電極13は、図1(B)に示すように、円板状となっている。ガラス基板12の上面には、固定電極13の上から誘電体膜14を形成している。誘電体膜14の上面には、電極パッド16を設けている。誘電体膜14にはスルーホール15を開口してあり、スルーホール15を通して固定電極13に電極パッド16を接続している。誘電体膜14の上面にシリコン基板17を積層している。シリコン基板17の上面に窪み18を設けるとともに、シリコン基板17の下面にリセス19を設け、窪み18とリセス19の間に薄膜状のダイアフラム20を形成している。ダイアフラム20は、固定電極13と重なり合う位置に設けている。シリコン基板17の下面は、B(ホウ素)が高濃度にドーピングされたP層21となっており、それによってダイアフラム20に導電性を付与していてダイアフラム20を可動電極としている。ダイアフラム20の下面と誘電体膜14の上面の間には、リセス19によって数μmのギャップ22が生じている。 An example of the touch mode capacitive pressure sensor is described in Non-Patent Document 1. FIG. 1A is a cross-sectional view showing a pressure sensor 11 described in Non-Patent Document 1. FIG. In this pressure sensor 11, a fixed electrode 13 made of a metal thin film is formed on the upper surface of a glass substrate 12. The fixed electrode 13 has a disk shape as shown in FIG. A dielectric film 14 is formed on the upper surface of the glass substrate 12 from above the fixed electrode 13. An electrode pad 16 is provided on the upper surface of the dielectric film 14. A through hole 15 is opened in the dielectric film 14, and an electrode pad 16 is connected to the fixed electrode 13 through the through hole 15. A silicon substrate 17 is laminated on the upper surface of the dielectric film 14. A recess 18 is provided on the upper surface of the silicon substrate 17, and a recess 19 is provided on the lower surface of the silicon substrate 17. A thin film diaphragm 20 is formed between the recess 18 and the recess 19. The diaphragm 20 is provided at a position overlapping the fixed electrode 13. The lower surface of the silicon substrate 17 is a P + layer 21 doped with B (boron) at a high concentration, thereby imparting conductivity to the diaphragm 20 and using the diaphragm 20 as a movable electrode. A gap 22 of several μm is formed by the recess 19 between the lower surface of the diaphragm 20 and the upper surface of the dielectric film 14.
 図2は、圧力センサ11の圧力と静電容量との関係(圧力-容量特性)を示す図であって、非特許文献1に記載されたものである。圧力センサ11のダイアフラム20に圧力が加わると、ダイアフラム20はその印加圧力に応じて撓み、ある圧力で誘電体膜14に接触する。図2の横軸において圧力が0からPaまでの区間(未接触領域)は、ダイアフラム20が誘電体膜14に接触していない領域である。圧力がPaからPbまでの区間(接触開始領域)は、ダイアフラム20が誘電体膜14に接触してからある程度の面積で確実に接触するまでの領域である。圧力がPbからPcまでの区間(動作領域)では、圧力の増加に伴ってダイアフラム20が誘電体膜14に接触している部分の面積が、次第に増加している。圧力がPcからPdまでの区間(飽和領域)は、ダイアフラム20のほぼ全面が誘電体膜14に接触していて、圧力が増加してもほとんど接触面積が増えない領域である。 FIG. 2 is a diagram showing the relationship between the pressure and capacitance of the pressure sensor 11 (pressure-capacitance characteristics), and is described in Non-Patent Document 1. When pressure is applied to the diaphragm 20 of the pressure sensor 11, the diaphragm 20 bends according to the applied pressure and contacts the dielectric film 14 at a certain pressure. A section (non-contact area) where the pressure is from 0 to Pa on the horizontal axis in FIG. 2 is an area where the diaphragm 20 is not in contact with the dielectric film 14. The section from the pressure Pa to Pb (contact start region) is a region from when the diaphragm 20 contacts the dielectric film 14 until it reliably contacts with a certain area. In a section (operation region) where the pressure is from Pb to Pc, the area of the portion where the diaphragm 20 is in contact with the dielectric film 14 gradually increases as the pressure increases. The section (saturation region) where the pressure is from Pc to Pd is a region where almost the entire surface of the diaphragm 20 is in contact with the dielectric film 14 and the contact area hardly increases even when the pressure increases.
 図2の圧力-容量特性によれば、圧力が増加するとき、ダイアフラム20が接触していない未接触領域では静電容量の変化は小さいが、接触開始領域になると次第に静電容量の変化率(増加速度)が大きくなる。動作領域では線形性は良くなるものの静電容量の変化率は次第に減少し、飽和領域になると静電容量はほとんど増加しなくなる。 According to the pressure-capacitance characteristics of FIG. 2, when the pressure increases, the change in capacitance is small in the non-contact region where the diaphragm 20 is not in contact, but gradually changes in the capacitance change rate ( (Increase rate) increases. Although the linearity is improved in the operation region, the rate of change of the capacitance gradually decreases, and the capacitance hardly increases in the saturation region.
 このタッチモードの圧力センサ11では、ダイアフラム20と誘電体膜14の間における静電容量Cは、つぎの数式1で表せる。
   C=Co+ε・(S/d)   …(数式1)
ただし、ダイアフラム20と誘電体膜14との接触面積をS、誘電体膜14の厚さをd、誘電体膜14の誘電率をεで表している。Coは未接触領域での静電容量である。圧力が大きくなるとき、誘電体膜14の厚さdと誘電率εは変化せず、ダイアフラム20の接触面積Sが増大するので、数式1によれば、このとき圧力センサ11の静電容量Cが増加することが分かる。
In the pressure sensor 11 in the touch mode, the capacitance C between the diaphragm 20 and the dielectric film 14 can be expressed by the following formula 1.
C = Co + ε · (S / d) (Formula 1)
However, the contact area between the diaphragm 20 and the dielectric film 14 is represented by S, the thickness of the dielectric film 14 is represented by d, and the dielectric constant of the dielectric film 14 is represented by ε. Co is a capacitance in a non-contact region. When the pressure increases, the thickness d and the dielectric constant ε of the dielectric film 14 do not change, and the contact area S of the diaphragm 20 increases. According to Equation 1, the capacitance C of the pressure sensor 11 at this time It can be seen that increases.
 しかし、この圧力センサの場合には、押圧力と出力との関係を示す出力特性が、圧力センサを押圧するときの理想的な押圧感を示す理想曲線を精度よく再現できない。図7は、理想曲線と圧力センサの出力特性との関係を表した図である。図7の横軸は、ダイアフラムを押す荷重(押圧力)の大きさを示す。図7の縦軸は、ダイアフラムと固定電極の間の静電容量の変化率(出力比)を示す。 However, in the case of this pressure sensor, the output characteristic indicating the relationship between the pressing force and the output cannot accurately reproduce an ideal curve indicating an ideal pressing feeling when pressing the pressure sensor. FIG. 7 is a diagram showing the relationship between the ideal curve and the output characteristics of the pressure sensor. The horizontal axis in FIG. 7 indicates the magnitude of the load (pressing force) that presses the diaphragm. The vertical axis in FIG. 7 indicates the rate of change (output ratio) of the capacitance between the diaphragm and the fixed electrode.
 図8は、図7のX区間を拡大した図である。図7において曲線αは理想曲線を表し、曲線βは従来例の出力特性を表す。理想曲線αと従来例の曲線βを比較すると、両曲線は小さな荷重が加わっているときの立ち上がり領域(接触開始領域)と大きな荷重が加わっているときの飽和領域ではほぼ等しい静電容量変化率を有する。しかし、荷重の中間域(動作領域)では、従来例の静電容量変化率と理想曲線との出力特性の乖離が大きい。この圧力センサでは、圧力センサで検出している圧力の強さと操作者の押圧感との間に齟齬があり、操作者の押圧感の変化まで検知することはできない。特に、微小な圧力センサを多数配列してタッチパッドを構成する場合には、指で文字や図形を描かれたときの筆圧の変化を検知することは困難である。 FIG. 8 is an enlarged view of the X section of FIG. In FIG. 7, a curve α represents an ideal curve, and a curve β represents output characteristics of a conventional example. Comparing the ideal curve α with the conventional curve β, both curves have almost the same capacitance change rate in the rising region (contact start region) when a small load is applied and in the saturation region when a large load is applied. Have However, in the middle region (operation region) of the load, the difference in output characteristics between the capacitance change rate of the conventional example and the ideal curve is large. In this pressure sensor, there is a flaw between the strength of the pressure detected by the pressure sensor and the operator's pressing feeling, and it is impossible to detect even a change in the pressing feeling of the operator. In particular, when a touch pad is configured by arranging a large number of minute pressure sensors, it is difficult to detect a change in writing pressure when a character or a figure is drawn with a finger.
 したがって、人が圧力センサを押圧するときの押圧感にフィットした検知特性又は出力特性を有する圧力センサの開発が求められている。 Therefore, there is a demand for the development of a pressure sensor having detection characteristics or output characteristics that fits the feeling of pressing when a person presses the pressure sensor.
 特許文献1には、固定電極に空隙部を設けることによって、固定電極の中心からの距離に応じて固定電極の面積増加率が大きくなる(したがって、固定電極の存在比率も単調に増加している。)ようにした圧力センサが開示されている。しかし、この圧力センサは、圧力の変化量に対する静電容量変化量の線形性を改善することを目的としたものであり、特許文献1の圧力センサでは上記の理想曲線に近い特性を得ることはできない。 In Patent Document 1, by providing a gap in the fixed electrode, the area increase rate of the fixed electrode increases according to the distance from the center of the fixed electrode (therefore, the fixed electrode existence ratio also increases monotonously. .) A pressure sensor is disclosed. However, this pressure sensor is intended to improve the linearity of the amount of change in capacitance with respect to the amount of change in pressure. With the pressure sensor of Patent Document 1, it is possible to obtain characteristics close to the ideal curve described above. Can not.
特開2006-200980号公報JP 2006-200990 A
 本発明は、上記のような技術的背景に鑑みててなされたものであり、その目的とするところは、圧力センサを押圧するときの人の押圧感にフィットした検知特性又は出力特性を有する圧力センサを提供することにある。また、当該圧力センサを用いた入力装置を提供することにある。 The present invention has been made in view of the technical background as described above, and an object of the present invention is to provide a pressure having a detection characteristic or an output characteristic that fits a person's pressing feeling when pressing the pressure sensor. It is to provide a sensor. Moreover, it is providing the input device using the said pressure sensor.
 本発明に係る静電容量型圧力センサは、固定電極と、前記固定電極の上方に形成された誘電体層と、前記誘電体層の上方に空隙を隔てて形成された導電性のダイアフラムとを備え、前記誘電体層の、前記ダイアフラムと対向する対向領域において、前記対向領域の中央を中心とする円周上における誘電体層の存在比率が、前記対向領域の中央からの距離に応じて変化することを特徴としている。ここで、誘電体層の存在比率とは、対向領域の中央を中心とする輪帯上にある誘電体層の体積を当該輪帯の面積で割った値である。 A capacitance type pressure sensor according to the present invention includes a fixed electrode, a dielectric layer formed above the fixed electrode, and a conductive diaphragm formed above the dielectric layer with a gap therebetween. And the dielectric layer has an abundance ratio of the dielectric layer on a circumference centered on the center of the opposing region in a facing region facing the diaphragm, depending on a distance from the center of the facing region. It is characterized by doing. Here, the abundance ratio of the dielectric layer is a value obtained by dividing the volume of the dielectric layer on the annular zone around the center of the opposing region by the area of the annular zone.
 本発明の静電容量型圧力センサによれば、誘電体層の対向領域の中央を中心とする円周上における誘電体層の存在比率を、対向領域の中央からの距離に応じて調整することにより、出力特性を理想曲線に近づけることができる。よって、圧力センサの検知特性又は出力特性を人の押圧感にフィットするように調整することができる。 According to the capacitive pressure sensor of the present invention, the abundance ratio of the dielectric layer on the circumference centered on the center of the opposing region of the dielectric layer is adjusted according to the distance from the center of the opposing region. As a result, the output characteristic can be brought close to an ideal curve. Therefore, it is possible to adjust the detection characteristic or output characteristic of the pressure sensor so as to fit the human pressing feeling.
 本発明に係る静電容量型圧力センサのある実施態様は、前記対向領域の中央部と外周部との中間における誘電体層の存在比率が、前記対向領域の中央部における誘電体層の存在比率よりも小さいことを特徴としている。対向領域の全面に均一に誘電体を設けている従来例の場合には、圧力センサの出力特性は立ち上がり領域と飽和領域との中間域では静電容量の変化率が理想曲線よりも大きくなる。これに対し、この実施態様では、対向領域の中央部と外周部との中間における誘電体層の存在比率を対向領域の中央部における誘電体層の存在比率よりも小さくしているので、中間域の出力を小さくすることができ、出力特性を理想曲線に近づけることができる。 In an embodiment of the capacitive pressure sensor according to the present invention, the abundance ratio of the dielectric layer in the middle between the central portion and the outer peripheral portion of the facing region is the abundance ratio of the dielectric layer in the central portion of the facing region. It is characterized by being smaller than. In the case of the conventional example in which the dielectric is uniformly provided on the entire surface of the opposing region, the change rate of the electrostatic capacitance is larger than the ideal curve in the intermediate region between the rising region and the saturated region. On the other hand, in this embodiment, the abundance ratio of the dielectric layer in the middle between the central portion and the outer peripheral portion of the opposing region is smaller than the abundance ratio of the dielectric layer in the central portion of the opposing region. Output can be reduced, and the output characteristics can be made closer to an ideal curve.
 しかし、対向領域の中央部と外周部との中間における誘電体層の存在比率を小さくすると、それに伴って出力特性の飽和領域における出力も下がってしまい、理想曲線よりも出力が小さくなるおそれがある。その場合には、前記対向領域の外周部における誘電体層の存在比率が、前記対向領域の中央部と外周部との中間における誘電体層の存在比率よりも大きくすれば、出力特性の飽和領域における値を大きくして再び理想曲線に近づけることができる。 However, if the ratio of the dielectric layer existing between the central portion and the outer peripheral portion of the opposing region is reduced, the output in the saturation region of the output characteristics also decreases accordingly, and the output may be smaller than the ideal curve. . In that case, if the abundance ratio of the dielectric layer in the outer peripheral portion of the opposing region is larger than the abundance ratio of the dielectric layer in the middle between the central portion and the outer peripheral portion of the opposing region, the saturation region of the output characteristics The value at can be increased to approach the ideal curve again.
 また、前記対向領域の外周部における誘電体層の存在比率が、前記対向領域の中央部における誘電体層の存在比率よりも小さくなるようにしておけば、出力特性の飽和領域における値が大きくなりすぎるのを防ぐことができる。 Also, if the abundance ratio of the dielectric layer in the outer peripheral portion of the opposing region is made smaller than the abundance ratio of the dielectric layer in the central portion of the opposing region, the value in the saturation region of the output characteristics will increase. It can be prevented from being too much.
 本発明に係る静電容量型圧力センサの別な実施態様は、前記対向領域において前記誘電体層に開口を設け、前記対向領域の中央からの距離に応じて前記開口の比率を変化させることにより誘電体層の存在比率を変化させたことを特徴としている。かかる実施態様によれば、たとえば対向領域に一定厚みの誘電体層を形成した後に、誘電体層に開口をあけることにより誘電体層の存在比率を変化させることができる。この場合、前記誘電体層の開口は、前記対向領域の中央を中心として放射状に形成することが好ましい。開口を放射状に形成することにより、誘電体層又は開口が特定の方向に偏るのを防ぐことができる。 In another embodiment of the capacitive pressure sensor according to the present invention, an opening is provided in the dielectric layer in the facing region, and a ratio of the opening is changed according to a distance from a center of the facing region. It is characterized in that the abundance ratio of the dielectric layer is changed. According to this embodiment, for example, after the dielectric layer having a constant thickness is formed in the facing region, the abundance ratio of the dielectric layer can be changed by opening the dielectric layer. In this case, it is preferable that the openings of the dielectric layer are formed radially from the center of the facing region. By forming the openings radially, it is possible to prevent the dielectric layer or the openings from being biased in a specific direction.
 また、誘電体層の存在比率を変化させるには、前記対向領域において、前記対向領域の中央からの距離に応じて前記誘電体層の厚みを変化させてもよい。 Further, in order to change the abundance ratio of the dielectric layer, the thickness of the dielectric layer may be changed in the facing region according to the distance from the center of the facing region.
 本発明に係る静電容量型圧力センサのさらに別な実施態様は、前記対向領域をその中央からの距離に応じて複数の区間に区分し、各区間において誘電体層の存在比率を一定にしたことを特徴としている。かかる実施態様によれば、各区間ごとに誘電体層の存在比率を調整すればよいので、設計が容易になる。 In still another embodiment of the capacitive pressure sensor according to the present invention, the facing region is divided into a plurality of sections according to the distance from the center, and the abundance ratio of the dielectric layer is made constant in each section. It is characterized by that. According to such an embodiment, design can be facilitated because the abundance ratio of the dielectric layer may be adjusted for each section.
 本発明に係る入力装置は、本発明に係る静電容量型圧力センサを複数個配列させたことを特徴としている。本発明の入力装置は、本発明に係る静電容量型圧力センサを用いているので、押圧位置と押圧力を検出することができる。しかも、指などで文字や図形を描かれたときの筆圧の変化を検知することも可能になる。 The input device according to the present invention is characterized in that a plurality of capacitive pressure sensors according to the present invention are arranged. Since the input device of the present invention uses the capacitive pressure sensor according to the present invention, it is possible to detect the pressing position and the pressing force. Moreover, it is possible to detect a change in writing pressure when a character or figure is drawn with a finger or the like.
 なお、本発明における前記課題を解決するための手段は、以上説明した構成要素を適宜組み合せた特徴を有するものであり、本発明はかかる構成要素の組合せによる多くのバリエーションを可能とするものである。 The means for solving the above-described problems in the present invention has a feature in which the above-described constituent elements are appropriately combined, and the present invention enables many variations by combining such constituent elements. .
図1(A)は、従来例による圧力センサを示す概略断面図である。図1(B)は、図1(A)の圧力センサにおいて、ガラス基板の上面に形成された固定電極を示す平面図である。FIG. 1A is a schematic cross-sectional view showing a pressure sensor according to a conventional example. FIG. 1B is a plan view showing a fixed electrode formed on the upper surface of the glass substrate in the pressure sensor of FIG. 図2は、図1(A)に示す従来例の圧力センサにおける圧力と静電容量との関係を示す図である。FIG. 2 is a diagram showing the relationship between pressure and capacitance in the conventional pressure sensor shown in FIG. 図3(A)は、本発明の実施形態1による圧力センサを示す平面図である。図3(B)は、図3(A)に示す圧力センサにおいて、固定電極の上面に形成された誘電体層を示す平面図である。FIG. 3A is a plan view showing the pressure sensor according to the first embodiment of the present invention. FIG. 3B is a plan view showing a dielectric layer formed on the upper surface of the fixed electrode in the pressure sensor shown in FIG. 図4は、図3(A)に示す圧力センサの断面図である。FIG. 4 is a cross-sectional view of the pressure sensor shown in FIG. 図5は、図3(B)の誘電体膜における、ダイアフラムの中心から図った半径方向の距離と、誘電体層の存在比率との関係を示す図である。FIG. 5 is a diagram showing the relationship between the radial distance from the center of the diaphragm and the abundance ratio of the dielectric layer in the dielectric film of FIG. 図6は、誘電体層の存在比率の定義を説明する図である。FIG. 6 is a diagram for explaining the definition of the abundance ratio of the dielectric layer. 図7は、ダイアフラムに加える荷重(押圧力)と、ダイアフラムと固定電極の間の静電容量変化率との関係(出力特性)を示す図である。FIG. 7 is a diagram showing the relationship (output characteristics) between the load (pressing force) applied to the diaphragm and the capacitance change rate between the diaphragm and the fixed electrode. 図8は、図7のX区間を拡大した図である。FIG. 8 is an enlarged view of the X section of FIG. 図9は、従来例と本発明の実施形態における理想曲線からのずれの割合を示す図である。FIG. 9 is a diagram showing the ratio of deviation from the ideal curve in the conventional example and the embodiment of the present invention. 図10は、本発明の実施形態1による圧力センサの変形例を示す平面図である。FIG. 10 is a plan view showing a modification of the pressure sensor according to Embodiment 1 of the present invention. 図11は、本発明の実施形態2による圧力センサの断面図である。FIG. 11 is a cross-sectional view of a pressure sensor according to Embodiment 2 of the present invention. 図12は、本発明の実施形態3による入力装置の断面図である。FIG. 12 is a cross-sectional view of an input device according to Embodiment 3 of the present invention.
 31、51   圧力センサ
 32   固定電極
 33   誘電体層
 33a   リセス
 34   エアギャップ
 35   ダイアフラム
 37   上面電極
 39   開口
 40   電極パッド
 41   保護膜
 61   入力装置
31, 51 Pressure sensor 32 Fixed electrode 33 Dielectric layer 33a Recess 34 Air gap 35 Diaphragm 37 Upper surface electrode 39 Opening 40 Electrode pad 41 Protective film 61 Input device
 以下、添付図面を参照しながら本発明の好適な実施形態を説明する。但し、本発明は以下の実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲において種々設計変更することができる。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, the present invention is not limited to the following embodiments, and various design changes can be made without departing from the gist of the present invention.
(実施形態1)
 図3及び図4を参照して本発明の実施形態1による圧力センサ31の構造を説明する。図3(A)は、圧力センサ31の平面図である。図3(B)は、図3(A)の圧力センサ31から上基板35aを除いた状態の平面図であって、固定電極32の上面に形成された誘電体層33を表す。図4は、圧力センサ31の断面図である。
(Embodiment 1)
The structure of the pressure sensor 31 according to the first embodiment of the present invention will be described with reference to FIGS. 3 and 4. FIG. 3A is a plan view of the pressure sensor 31. FIG. 3B is a plan view of the state in which the upper substrate 35 a is removed from the pressure sensor 31 of FIG. 3A, and shows the dielectric layer 33 formed on the upper surface of the fixed electrode 32. FIG. 4 is a cross-sectional view of the pressure sensor 31.
 圧力センサ31にあっては、図4に示すように、低抵抗シリコン基板や金属膜などの導電性材料からなる固定電極32の上に誘電体層33を形成している。誘電体層33は、SiO(熱酸化膜)、SiN、TEOSなどの誘電体材料からなる。誘電体層33の上面中央部には、リセス33a(円形の凹部)を凹設している。すなわち、リセス33aの外側では誘電体層33の厚みが厚く、リセス33a内においては誘電体層33の厚みが薄くなっている。リセス33a内の誘電体層33は、一定の厚みを有している。 In the pressure sensor 31, as shown in FIG. 4, a dielectric layer 33 is formed on a fixed electrode 32 made of a conductive material such as a low-resistance silicon substrate or a metal film. The dielectric layer 33 is made of a dielectric material such as SiO 2 (thermal oxide film), SiN, or TEOS. A recess 33a (circular recess) is provided in the center of the upper surface of the dielectric layer 33. That is, the thickness of the dielectric layer 33 is thick outside the recess 33a, and the thickness of the dielectric layer 33 is thin inside the recess 33a. The dielectric layer 33 in the recess 33a has a certain thickness.
 誘電体層33の上面には、低抵抗シリコン基板などの導電性材料からなる薄膜状の上基板35aを形成している。上基板35aは、リセス33aの上面を覆っており、リセス33aによって上基板35aの下面と誘電体層33のリセス底面との間にエアギャップ34(空隙)を形成している。こうして、上基板35aのうちエアギャップ34の上方で水平に張られた領域により、感圧用のダイアフラム35を形成している。リセス33a内の底面に位置する誘電体層33は、ダイアフラム35と対向する対向領域となっている。 On the upper surface of the dielectric layer 33, a thin film upper substrate 35a made of a conductive material such as a low resistance silicon substrate is formed. The upper substrate 35a covers the upper surface of the recess 33a, and an air gap 34 (air gap) is formed between the lower surface of the upper substrate 35a and the recess bottom surface of the dielectric layer 33 by the recess 33a. Thus, a pressure-sensitive diaphragm 35 is formed by a region of the upper substrate 35a that is horizontally stretched above the air gap 34. The dielectric layer 33 located on the bottom surface in the recess 33 a is a facing region facing the diaphragm 35.
 誘電体層33には、エアギャップ34と外部との間の通気性を確保するためにベントライン36(通気路)を設けている。ベントライン36は、幅が30μm程度の細い溝であって、塵や埃などの異物がエアギャップ34内に侵入しにくいように屈曲または蛇行している。 The dielectric layer 33 is provided with a vent line 36 (air passage) to ensure air permeability between the air gap 34 and the outside. The vent line 36 is a narrow groove having a width of about 30 μm, and is bent or meandering so that foreign matters such as dust and dirt do not easily enter the air gap 34.
 図3(B)に示すように、誘電体層33は、リセス33a内の対向領域においては、対向領域の中央(対向領域の中心)から半径方向に沿って複数の区間(ここでは、3つの区間I、II、IIIとする。)に区分されている。区間Iは、対向領域の中央部に位置する円形の領域である。区間Iの全面には、誘電体層33が形成されている。区間IIIは、対向領域の外周部に位置する環状の領域である。区間IIIには、複数の開口39が放射状に、かつ、等間隔に設けられている。区間IIは、対向領域の中央部と外周部との中間に位置する環状の領域である。区間IIには、複数の開口39が放射状に、かつ、等間隔に設けられている。誘電体層33に設けた各開口39には、固定電極32が露出している。図3(B)においてドット柄を付した領域は、誘電体層33の形成された領域である。図3(B)における白地の領域は、固定電極32の露出した領域である。 As shown in FIG. 3 (B), the dielectric layer 33 has a plurality of sections (here, three sections) along the radial direction from the center of the counter area (center of the counter area) in the counter area in the recess 33a. Sections I, II, and III). Section I is a circular area located at the center of the opposing area. A dielectric layer 33 is formed on the entire surface of the section I. Section III is an annular region located on the outer periphery of the opposing region. In the section III, a plurality of openings 39 are provided radially and at equal intervals. Section II is an annular region located in the middle between the central portion and the outer peripheral portion of the opposing region. In the section II, a plurality of openings 39 are provided radially and at equal intervals. The fixed electrode 32 is exposed in each opening 39 provided in the dielectric layer 33. In FIG. 3B, a region with a dot pattern is a region where the dielectric layer 33 is formed. The white area in FIG. 3B is an area where the fixed electrode 32 is exposed.
 図5は、対向領域における誘電体層33の存在比率を示す図である。図5の横軸は、誘電体層33の対向領域(あるいは、ダイアフラム35)の中心から測った半径(半径方向の距離)を示す。ただし、図5の横軸の距離は、対向領域の中心から外周までの半径を100とし、その割合で表している。図5の縦軸は、誘電体層33の存在比率を表す。対向領域の中心C(中央)を中心とする半径rの位置における誘電体層33の存在比率は、
   V/(2πr・δr)
で定義される。ここで、記号Vは、図6に示すように、対向領域の中心C(中央)を中心とする半径r、幅δrの輪帯を考えたとき、その輪帯上に存在する誘電体層33の体積を表す。2πr・δrは輪帯の面積である。δrは十分に小さな値とする。したがって、輪帯上に存在する誘電体層33の面積が大きいほど(開口39の面積が小さいほど)、誘電体層33の存在比率が大きくなる。また、輪帯上に存在する誘電体層33の厚みが大きいほど、誘電体層33の存在比率が大きくなる。ただし、図5の縦軸では、区間Iにおける誘電体層33の存在比率を100(%)として、その比で表示している。
FIG. 5 is a diagram showing the abundance ratio of the dielectric layer 33 in the facing region. The horizontal axis in FIG. 5 indicates the radius (radial distance) measured from the center of the opposing region (or diaphragm 35) of the dielectric layer 33. However, the distance on the horizontal axis in FIG. 5 is expressed as a ratio with the radius from the center to the outer periphery of the facing region being 100. The vertical axis in FIG. 5 represents the abundance ratio of the dielectric layer 33. The abundance ratio of the dielectric layer 33 at the position of the radius r centering on the center C (center) of the opposing region is
V / (2πr · δr)
Defined by Here, as shown in FIG. 6, the symbol V indicates a dielectric layer 33 existing on the annular zone when the annular zone having the radius r and the width δr around the center C (center) of the opposing region is considered. Represents the volume of. 2πr · δr is the area of the annular zone. δr is set to a sufficiently small value. Therefore, the larger the area of the dielectric layer 33 existing on the annular zone (the smaller the area of the opening 39), the greater the abundance ratio of the dielectric layer 33. Further, the larger the thickness of the dielectric layer 33 existing on the annular zone, the larger the abundance ratio of the dielectric layer 33. However, on the vertical axis in FIG. 5, the existence ratio of the dielectric layer 33 in the section I is assumed to be 100 (%), and the ratio is displayed.
 区間IIは開口39を有しているので、図5に示すように、区間IIにおける誘電体層33の存在比率は、区間Iにおける誘電体層33の存在比率よりも小さくなっている。区間IIIでは区間IIよりも開口39の割合が少なくなっているので、区間IIIにおける誘電体層33の存在比率は、区間IIにおける誘電体層33の存在比率よりも大きく、かつ、区間Iにおける誘電体層33の存在比率よりも小さくなっている。 Since section II has an opening 39, the abundance ratio of dielectric layer 33 in section II is smaller than the abundance ratio of dielectric layer 33 in section I as shown in FIG. Since the ratio of the opening 39 is smaller in the section III than in the section II, the abundance ratio of the dielectric layer 33 in the section III is larger than the abundance ratio of the dielectric layer 33 in the section II, and the dielectric ratio in the section I is It is smaller than the abundance ratio of the body layer 33.
 上基板35aの上面には、ダイアフラム35を囲むようにして、金属材料による環状の上面電極37を設けている。上基板35aのコーナー部には電極パッド40を設けている。上面電極37と電極パッド40は、配線部42によって接続されている。上面電極37、配線部42及び電極パッド40は、下地層Ti(厚み1000Å)/表面層Au(厚み3000Å)の2層金属薄膜によって同時に作製している。固定電極32の下面には、下面電極38を設けている。下面電極38も、下地層Ti(厚み1000Å)/表面層Au(厚み3000Å)の2層金属薄膜によって作製している。 An annular upper electrode 37 made of a metal material is provided on the upper surface of the upper substrate 35a so as to surround the diaphragm 35. Electrode pads 40 are provided at the corners of the upper substrate 35a. The upper surface electrode 37 and the electrode pad 40 are connected by the wiring part 42. The upper surface electrode 37, the wiring portion 42, and the electrode pad 40 are simultaneously formed by a two-layer metal thin film of a base layer Ti (thickness 1000 mm) / surface layer Au (thickness 3000 mm). A lower surface electrode 38 is provided on the lower surface of the fixed electrode 32. The bottom electrode 38 is also made of a two-layered metal thin film of base layer Ti (thickness 1000 mm) / surface layer Au (thickness 3000 mm).
 上基板35aの上面のうち上面電極37よりも外側の領域は、ポリイミドなどの樹脂やSiO、SiNなどの絶縁膜からなる保護膜41によって覆われている。しかし、電極パッド40の付近では保護膜41を除いてあり、電極パッド40が保護膜41から露出している。 A region outside the upper surface electrode 37 on the upper surface of the upper substrate 35a is covered with a protective film 41 made of a resin such as polyimide or an insulating film such as SiO 2 or SiN. However, the protective film 41 is removed in the vicinity of the electrode pad 40, and the electrode pad 40 is exposed from the protective film 41.
 図7は、静電容量の変化率を示す図である。図7には、理想曲線(目標とする静電容量の変化率)(α)と、従来例の圧力センサにおける静電容量の変化率(β)と、本発明の実施態による圧力センサにおける静電容量の変化率(γ)とを示す。図8は、図7のX区間を横軸方向に拡大して示した図である。 FIG. 7 is a diagram showing the rate of change of capacitance. FIG. 7 shows an ideal curve (target capacitance change rate) (α), a capacitance change rate (β) in a conventional pressure sensor, and a static value in a pressure sensor according to an embodiment of the present invention. The rate of change in capacitance (γ) is shown. FIG. 8 is an enlarged view of the X section of FIG. 7 in the horizontal axis direction.
 図7の縦軸に示す静電容量の変化率ΔC/Coは、つぎのように定義する。荷重によって撓んだダイアフラムと固定電極の間の静電容量をCとし、ダイアフラムが撓んでいないときのダイアフラムと固定電極の間の静電容量をCoとする。静電容量の変化率ΔC/Coは、静電容量Coに対する、静電容量の変化ΔC=C-Coの比であって、
   ΔC/Co=(C-Co)/Co
で表される。
The capacitance change rate ΔC / Co shown on the vertical axis in FIG. 7 is defined as follows. The capacitance between the diaphragm deflected by the load and the fixed electrode is C, and the capacitance between the diaphragm and the fixed electrode when the diaphragm is not bent is Co. The capacitance change rate ΔC / Co is the ratio of the capacitance change ΔC = C−Co to the capacitance Co,
ΔC / Co = (C-Co) / Co
It is represented by
 人が対象物を押さえるときには、たとえば指先に感じる押圧強さは必ずしも荷重の大きさに比例するものではなく、荷重が小さい範囲では押圧強さの変化を敏感に感じるが、荷重が大きくなると荷重の大きさの違いはあまり感じなくなる。理想曲線とは、人が圧力センサを押圧するときの押圧感(押圧強さの感じ方)を圧力センサの出力として表現したものである。 When a person presses an object, for example, the pressure strength felt at the fingertip is not necessarily proportional to the magnitude of the load. I don't feel the difference in size. The ideal curve represents a feeling of pressing when the person presses the pressure sensor (how to feel the pressing strength) as an output of the pressure sensor.
 図7の静電容量変化率がほぼゼロに近い領域は、ダイアフラムが誘電体層(誘電体膜)に接触しない状態で撓んでいる領域(未接触領域)と、静電容量変化率が急速に立ち上がっている領域(接触開始領域)とである。この未接触領域と接触開始領域では、従来例の出力特性と理想曲線との差は小さい。したがって、本発明の実施形態においても、接触開始領域に相当する領域(区間I)では、従来例と同じく全面に誘電体層を形成している。 In the region where the capacitance change rate in FIG. 7 is almost zero, the region in which the diaphragm is bent without contacting the dielectric layer (dielectric film) (non-contact region) and the capacitance change rate are rapidly increased. It is the area (contact start area) that stands up. In the non-contact area and the contact start area, the difference between the output characteristics of the conventional example and the ideal curve is small. Accordingly, also in the embodiment of the present invention, in the region corresponding to the contact start region (section I), the dielectric layer is formed on the entire surface as in the conventional example.
 これに対し、ダイアフラムが誘電体層に接触する面積が次第に大きくなってゆく領域(動作領域)では、従来例の出力特性は理想曲線よりも大きな値となっている。したがって、本発明の実施形態では、動作領域に相当する領域(区間II)において誘電体層の存在比率を小さくし、それによって出力特性を小さくし、理想曲線に近づけている。 On the other hand, in the region where the area where the diaphragm contacts the dielectric layer is gradually increased (operation region), the output characteristic of the conventional example has a value larger than the ideal curve. Therefore, in the embodiment of the present invention, the existence ratio of the dielectric layer is reduced in the region corresponding to the operation region (section II), thereby reducing the output characteristics and approaching the ideal curve.
 ダイアフラムの大部分が誘電体層に接触してしまい、荷重が大きくなっても接触面積がほとんど変化しなくなった領域(飽和領域)では、従来例の出力特性でも理想曲線からのずれは小さい。しかし、本発明の実施形態では、区間IIにおける誘電体層の存在比率を小さくして出力特性の値を下げている。そのため、本発明の実施形態では、飽和領域に相当する領域(区間III)において誘電体層の存在比率を区間IIよりも大きくし、それによって区間IIIにおける出力特性を大きくし、理想曲線から離れないようにしている。 ¡In the region where the contact area hardly changes even when the load increases (saturation region) because most of the diaphragm is in contact with the dielectric layer, the deviation from the ideal curve is small even in the output characteristics of the conventional example. However, in the embodiment of the present invention, the value of the output characteristic is lowered by reducing the existence ratio of the dielectric layer in the section II. Therefore, in the embodiment of the present invention, in the region corresponding to the saturation region (section III), the abundance ratio of the dielectric layer is made larger than in section II, thereby increasing the output characteristics in section III and not deviating from the ideal curve. I am doing so.
 この結果、本発明の実施形態によれば、理想曲線に近い出力特性を得ることが可能になる。図9は、従来例と本発明の実施形態における理想曲線からのずれの割合を示す。ここで、ある荷重のときの理想曲線における静電容量をCr、従来例の静電容量をCcとするとき、100×(Cc-Cr)/Crの最大値[%]を従来例の理想曲線からのずれの割合という。同様に、ある荷重のときの理想曲線における静電容量をCr、本発明の実施形態の静電容量をCpとするとき、100×(Cp-Cr)/Crの最大値[%]を本発明の実施形態の理想曲線からのずれの割合という。図9から分かるように、従来例の場合には理想曲線からのずれの割合は約6.6%であるのに対し、本発明の実施形態では理想曲線からのずれの割合は2.0%にまで小さくなっている。よって、本発明の実施形態によれば、圧力センサの検知特性又は出力特性を人の押圧感にフィットするように調整できる。 As a result, according to the embodiment of the present invention, output characteristics close to an ideal curve can be obtained. FIG. 9 shows the ratio of deviation from the ideal curve in the conventional example and the embodiment of the present invention. Here, when the electrostatic capacity in the ideal curve at a certain load is Cr and the electrostatic capacity in the conventional example is Cc, the maximum value [%] of 100 × (Cc-Cr) / Cr is the ideal curve in the conventional example. It is called the ratio of deviation. Similarly, when the electrostatic capacity in an ideal curve at a certain load is Cr, and the electrostatic capacity of the embodiment of the present invention is Cp, the maximum value [%] of 100 × (Cp−Cr) / Cr is the present invention. This is called the ratio of deviation from the ideal curve of the embodiment. As can be seen from FIG. 9, in the case of the conventional example, the rate of deviation from the ideal curve is about 6.6%, whereas in the embodiment of the present invention, the rate of deviation from the ideal curve is 2.0%. It is getting smaller. Therefore, according to the embodiment of the present invention, the detection characteristic or the output characteristic of the pressure sensor can be adjusted to fit a human pressing feeling.
 上面電極37は円環状でなくてもよく、円弧状をした複数個の上面電極37が設けられていてもよい(図示せず)。また、上面電極37は設けなくてもよい。上基板35aが導電性を有しているので、図10に示すように、ダイアフラム35の領域外において上基板35aの少なくとも1箇所に電極パッド40を設けるだけでもよいからである。 The upper surface electrode 37 may not be annular, and a plurality of arc-shaped upper surface electrodes 37 may be provided (not shown). Further, the upper surface electrode 37 may not be provided. This is because the upper substrate 35a has conductivity, and therefore it is only necessary to provide the electrode pad 40 at least at one location on the upper substrate 35a outside the area of the diaphragm 35 as shown in FIG.
(実施形態2)
 図11は、本発明の実施形態2による圧力センサ51の断面図である。
この圧力センサ51では、誘電体層33に開口39を設けるのでなく、対向領域の中心からの半径(距離)に応じて誘電体層33の厚みを変化させている。それによって対向領域の中心からの半径に応じて誘電体層33の存在比率を変化させている。特に、図11の場合では、対向領域を3つの区間I、II、IIIに区分し、区間IIにおける誘電体層33の厚みを区間Iにおける誘電体層33の厚みよりも薄くしている。さらに、区間IIIにおける誘電体層33の厚みを、区間IIにおける誘電体層33の厚みよりも厚く、かつ、区間Iにおける誘電体層33の厚みよりも薄くしている。このような実施形態でも、実施形態1と同様な作用効果を奏することができる。
(Embodiment 2)
FIG. 11 is a cross-sectional view of a pressure sensor 51 according to Embodiment 2 of the present invention.
In this pressure sensor 51, the opening 39 is not provided in the dielectric layer 33, but the thickness of the dielectric layer 33 is changed according to the radius (distance) from the center of the opposing region. Thereby, the abundance ratio of the dielectric layer 33 is changed according to the radius from the center of the opposing region. In particular, in the case of FIG. 11, the facing region is divided into three sections I, II, and III, and the thickness of the dielectric layer 33 in the section II is made thinner than the thickness of the dielectric layer 33 in the section I. Further, the thickness of the dielectric layer 33 in the section III is larger than the thickness of the dielectric layer 33 in the section II and is smaller than the thickness of the dielectric layer 33 in the section I. Even in such an embodiment, the same effects as those of the first embodiment can be achieved.
 上記各実施形態においては、対向領域を3つの区間に区分して誘電体層33のパターン、あるいは誘電体層33の存在比率を変化させていたが、4つ以上の区間に区分して誘電体層33のパターン、あるいは誘電体層33の存在比率を変化させてもよい。 In each of the above embodiments, the opposing region is divided into three sections and the pattern of the dielectric layer 33 or the existence ratio of the dielectric layer 33 is changed. However, the opposing area is divided into four or more sections. The pattern of the layer 33 or the existence ratio of the dielectric layer 33 may be changed.
(実施形態3)
 図12は、本発明の実施形態3によるプレート型の入力装置61、たとえばタッチパネルの構造を示す断面図である。この入力装置61は、上記実施形態1に係る多数の圧力センサ31(センサ部)をアレイ状(例えば、矩形状やハニカム状)に配列したものである。各圧力センサ31は電気的に独立しており、各圧力センサ31に加わった圧力を個々に独立して検出することができる。このような入力装置61によれば、タッチパネルのように押圧体で押圧された点を検出できるとともに、各点の押圧強さ(圧力の大きさ)も検出できる。
(Embodiment 3)
FIG. 12 is a cross-sectional view showing the structure of a plate-type input device 61, for example, a touch panel, according to Embodiment 3 of the present invention. The input device 61 includes a large number of pressure sensors 31 (sensor units) according to the first embodiment arranged in an array (for example, a rectangular shape or a honeycomb shape). Each pressure sensor 31 is electrically independent, and the pressure applied to each pressure sensor 31 can be detected independently. According to such an input device 61, it is possible to detect a point pressed by a pressing body such as a touch panel, and it is also possible to detect a pressing strength (a magnitude of pressure) of each point.

Claims (9)

  1.  固定電極と、
     前記固定電極の上方に形成された誘電体層と、
     前記誘電体層の上方に空隙を隔てて形成された導電性のダイアフラムと、
    を備え、
     前記誘電体層の、前記ダイアフラムと対向する対向領域において、前記対向領域の中央を中心とする円周上における誘電体層の存在比率が、前記対向領域の中央からの距離に応じて変化することを特徴とする静電容量型圧力センサ。
    A fixed electrode;
    A dielectric layer formed above the fixed electrode;
    A conductive diaphragm formed above the dielectric layer with a gap therebetween;
    With
    In the facing region of the dielectric layer facing the diaphragm, the abundance ratio of the dielectric layer on the circumference centered on the center of the facing region changes according to the distance from the center of the facing region. Capacitance type pressure sensor.
  2.  前記対向領域の中央部と外周部との中間における誘電体層の存在比率が、前記対向領域の中央部における誘電体層の存在比率よりも小さいことを特徴とする、請求項1に記載の静電容量型圧力センサ。 2. The static electricity according to claim 1, wherein an abundance ratio of the dielectric layer in the middle between the central portion and the outer peripheral portion of the opposing region is smaller than an abundance ratio of the dielectric layer in the central portion of the opposing region. Capacitive pressure sensor.
  3.  前記対向領域の外周部における誘電体層の存在比率が、前記対向領域の中央部と外周部との中間における誘電体層の存在比率よりも大きいことを特徴とする、請求項2に記載の静電容量型圧力センサ。 3. The static electricity according to claim 2, wherein an abundance ratio of the dielectric layer in an outer peripheral portion of the facing region is larger than an abundance ratio of the dielectric layer in the middle between the central portion and the outer peripheral portion of the facing region. Capacitive pressure sensor.
  4.  前記対向領域の外周部における誘電体層の存在比率が、前記対向領域の中央部における誘電体層の存在比率よりも小さいことを特徴とする、請求項3に記載の静電容量型圧力センサ。 4. The capacitance type pressure sensor according to claim 3, wherein an abundance ratio of the dielectric layer in an outer peripheral portion of the facing area is smaller than an abundance ratio of the dielectric layer in a central portion of the facing area.
  5.  前記対向領域において前記誘電体層に開口を設け、
     前記対向領域の中央からの距離に応じて前記開口の比率を変化させることにより誘電体層の存在比率を変化させたことを特徴とする、請求項1に記載の静電容量型圧力センサ。
    Providing an opening in the dielectric layer in the facing region;
    The capacitance type pressure sensor according to claim 1, wherein the presence ratio of the dielectric layer is changed by changing the ratio of the openings according to the distance from the center of the facing region.
  6.  前記誘電体層の開口を、前記対向領域の中央を中心として放射状に形成したことを特徴とする、請求項5に記載の静電容量型圧力センサ。 6. The capacitive pressure sensor according to claim 5, wherein the openings of the dielectric layer are formed radially with the center of the opposing region as a center.
  7.  前記対向領域において、前記対向領域の中央からの距離に応じて前記誘電体層の厚みを変化させることにより誘電体層の存在比率を変化させたことを特徴とする、請求項1に記載の静電容量型圧力センサ。 The static ratio according to claim 1, wherein the abundance ratio of the dielectric layer is changed by changing a thickness of the dielectric layer according to a distance from a center of the opposing region in the opposing region. Capacitive pressure sensor.
  8.  前記対向領域をその中央からの距離に応じて複数の区間に区分し、各区間において誘電体層の存在比率を一定にしたことを特徴とする、請求項1に記載の静電容量型圧力センサ。 The capacitive pressure sensor according to claim 1, wherein the facing region is divided into a plurality of sections according to a distance from a center thereof, and the existence ratio of the dielectric layer is made constant in each section. .
  9.  請求項1に記載した静電容量型圧力センサを複数個配列させたことを特徴とする入力装置。 An input device in which a plurality of the capacitive pressure sensors according to claim 1 are arranged.
PCT/JP2013/082700 2013-03-11 2013-12-05 Capacitive pressure sensor and input device WO2014141550A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380074229.3A CN105008880B (en) 2013-03-11 2013-12-05 Capacitance type pressure sensor and input unit
KR1020157022136A KR101818315B1 (en) 2013-03-11 2013-12-05 Capacitive pressure sensor and input device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-048531 2013-03-11
JP2013048531A JP5974939B2 (en) 2013-03-11 2013-03-11 Capacitance type pressure sensor and input device

Publications (1)

Publication Number Publication Date
WO2014141550A1 true WO2014141550A1 (en) 2014-09-18

Family

ID=51536236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082700 WO2014141550A1 (en) 2013-03-11 2013-12-05 Capacitive pressure sensor and input device

Country Status (4)

Country Link
JP (1) JP5974939B2 (en)
KR (1) KR101818315B1 (en)
CN (1) CN105008880B (en)
WO (1) WO2014141550A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114502936A (en) * 2019-10-15 2022-05-13 松下知识产权经营株式会社 Load sensor
CN114502936B (en) * 2019-10-15 2024-04-26 松下知识产权经营株式会社 Load sensor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017214857A1 (en) * 2016-06-14 2017-12-21 深圳市汇顶科技股份有限公司 Portable electronic equipment and pressure measuring device and method for same
KR102522033B1 (en) 2016-07-06 2023-04-18 삼성디스플레이 주식회사 Display device
JP2020046177A (en) 2016-12-20 2020-03-26 株式会社村田製作所 Pressure sensor element and pressure sensor module provided with it
JP6922798B2 (en) * 2018-03-15 2021-08-18 オムロン株式会社 Capacitive pressure sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233877A (en) * 2004-02-23 2005-09-02 Alps Electric Co Ltd Pressure sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951174A (en) * 1988-12-30 1990-08-21 United Technologies Corporation Capacitive pressure sensor with third encircling plate
JP2003139628A (en) * 2002-07-02 2003-05-14 Nitta Ind Corp Capacity-type sensor
JP2005321257A (en) * 2004-05-07 2005-11-17 Alps Electric Co Ltd Capacitance type pressure sensor
JP2007101222A (en) * 2005-09-30 2007-04-19 Seiko Epson Corp Pressure sensor
US7345867B2 (en) * 2005-11-18 2008-03-18 Alps Electric Co., Ltd Capacitive pressure sensor and method of manufacturing the same
DE102009001924A1 (en) * 2009-03-27 2010-09-30 Robert Bosch Gmbh pressure sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233877A (en) * 2004-02-23 2005-09-02 Alps Electric Co Ltd Pressure sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114502936A (en) * 2019-10-15 2022-05-13 松下知识产权经营株式会社 Load sensor
CN114502936B (en) * 2019-10-15 2024-04-26 松下知识产权经营株式会社 Load sensor

Also Published As

Publication number Publication date
JP2014174060A (en) 2014-09-22
CN105008880B (en) 2017-07-14
KR20150108875A (en) 2015-09-30
CN105008880A (en) 2015-10-28
KR101818315B1 (en) 2018-01-12
JP5974939B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
JP5974938B2 (en) Capacitance type pressure sensor and input device
JP5737148B2 (en) Capacitive pressure sensor, method for manufacturing the same, and input device
CN104515640B (en) Capacitive MEMS (micro-electromechanical system) pressure sensor
WO2014141550A1 (en) Capacitive pressure sensor and input device
JP6331447B2 (en) Capacitance type pressure sensor and input device
JP6325639B1 (en) Pressure sensor
CN107621715B (en) Display panel and display device
US10024738B2 (en) Capacitive micro-electro-mechanical force sensor and corresponding force sensing method
KR20120101312A (en) Input device with membrane pressure sensor and proximity sensor.
CN105867693A (en) Touch display panel and touch display device
US10671201B2 (en) Touch substrate, touch display panel and display device
KR102152210B1 (en) Force Touch
US9725300B2 (en) Capacitive MEMS-sensor element having bond pads for the electrical contacting of the measuring capacitor electrodes
CN107167948A (en) Display panel and display device
CN106775100A (en) Touch-control display panel and the touch control display apparatus comprising it
JP6127625B2 (en) Capacitance type pressure sensor and input device
JP2006200980A (en) Capacitance type pressure sensor and capacitance type actuator
CN207114067U (en) A kind of sensitive ceramic capacitive pressure sensors of anti-medium
CN108021293B (en) Touch panel, sensing method thereof and display device
WO2021192442A1 (en) Load sensor and operation input device
US20140247400A1 (en) Touch screen panel
TWM526122U (en) Three-dimensinal sensing touch display
CN105466610A (en) Pressure sensor and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157022136

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877956

Country of ref document: EP

Kind code of ref document: A1