WO2014141345A1 - Motor drive device and electric device using same - Google Patents

Motor drive device and electric device using same Download PDF

Info

Publication number
WO2014141345A1
WO2014141345A1 PCT/JP2013/007535 JP2013007535W WO2014141345A1 WO 2014141345 A1 WO2014141345 A1 WO 2014141345A1 JP 2013007535 W JP2013007535 W JP 2013007535W WO 2014141345 A1 WO2014141345 A1 WO 2014141345A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
pwm
duty
carrier frequency
brushless
Prior art date
Application number
PCT/JP2013/007535
Other languages
French (fr)
Japanese (ja)
Inventor
田中 秀尚
義典 竹岡
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380074298.4A priority Critical patent/CN105027419B/en
Publication of WO2014141345A1 publication Critical patent/WO2014141345A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the present invention relates to a motor driving device for driving a brushless DC motor and an electric device using the motor driving device.
  • FIG. 7 is a block diagram including a first conventional motor driving device.
  • the first conventional motor driving device performs rectangular wave driving of speed feedback control by pulse width modulation (hereinafter referred to as PWM) control so that the driving speed matches the target speed.
  • PWM pulse width modulation
  • the first conventional motor drive device will be described with reference to FIG.
  • AC power generated in the AC power supply 201 is converted into DC power by the rectifying and smoothing unit 202.
  • the converted DC power is input to the inverter 203.
  • the inverter 203 is configured by connecting six switching elements 203a to 203f in a three-phase bridge connection.
  • the inverter 203 converts the input DC power into AC power having a predetermined frequency and outputs the AC power to the brushless DC motor 204.
  • the position detection unit 205 acquires the zero-cross position that appears at the output terminal of the non-conducting winding phase inverter 203 as information on the induced voltage generated by the rotation of the brushless DC motor 204. Based on this information, the position detection unit 205 detects the relative position of the rotor 204a of the brushless DC motor 204.
  • the speed estimation unit 206 calculates the rotation speed of the brushless DC motor 204 based on the signal detected by the position detection unit 205.
  • the waveform generation unit 207 calculates a PWM duty on width according to the rotation speed calculated by the speed estimation unit 206, and determines a phase to be supplied to the inverter 203 based on the signal detected by the position detection unit 205.
  • the drive unit 208 drives the switching elements 203a to 203f of the inverter 203 based on the signal from the waveform generation unit 207.
  • the first conventional motor driving device can realize a motor driving device that drives while arbitrarily changing the speed of the brushless DC motor.
  • FIG. 8 is a block diagram including a second conventional motor driving device.
  • a second conventional motor driving device will be described with reference to FIG.
  • the second conventional motor driving device uses a small-capacity smoothing capacitor.
  • the AC power generated in the AC power supply 301 is rectified to DC power by the rectifier diodes 302a to 302d of the rectifying and smoothing unit 302.
  • the DC power rectified by the rectifying diodes 302a to 302d of the rectifying / smoothing unit 302 is smoothed by the smoothing capacitor 302e.
  • the smoothed DC power is input to the inverter 303 in a state including a large ripple component.
  • the inverter 303 is configured by connecting six switching elements 303a to 303f in a three-phase bridge.
  • the inverter 303 converts the input DC voltage including the ripple into AC having a predetermined frequency and outputs the AC voltage to the brushless DC motor 304.
  • the position detection unit 305 acquires information on the induced voltage generated by the rotation of the brushless DC motor 304 based on the voltage of the output terminal of the inverter 303. Based on this information, the position detection unit 305 detects the relative position of the rotor 304a of the brushless DC motor 304. Further, in the voltage including a large ripple output from the rectifying / smoothing unit 302, it is difficult for the position detecting unit 305 to accurately detect the relative position when the voltage is low. Therefore, based on the position information of the position detecting unit 305.
  • the position estimation unit 306 estimates the relative position.
  • the switching unit 308 uses the output voltage of the rectifying / smoothing unit 302 detected by the position estimating unit 306 as a position detection signal.
  • the waveform generator 309 determines the energized phase and the PWM duty width. Based on the signal generated by the waveform generation unit 309, the drive unit 310 drives the switching elements 303a to 303f of the inverter 303.
  • the second conventional motor driving device can drive the brushless DC motor while arbitrarily changing the speed of the DC bus voltage including a large ripple than the first conventional motor driving device.
  • an inexpensive and small motor drive device can be realized.
  • the first and second conventional motor driving devices have the following problems.
  • FIG. 9 is a state diagram showing the output terminal voltage of the inverter of the conventional motor drive device.
  • the solid line indicates the waveform of the output terminal voltage
  • the alternate long and short dash line indicates the reference voltage that is 1 ⁇ 2 of the inverter input voltage.
  • Each switching element is active high, and the upper element is turned on when the PWM signal is high.
  • the waveform shown in FIG. 9 is a U-phase terminal voltage waveform.
  • the V-phase and W-phase terminal voltage waveforms are ⁇ 120 degrees out of phase from the U-phase terminal voltage waveforms.
  • a section a in FIG. 9 is a section in which the U-phase lower arm switching element 203b is turned on, and the terminal voltage is connected to the rectified and smoothed output GND through the switching element.
  • a section c in FIG. 9 is a section in which the U-phase upper arm switching element 203a is on. The upper switching element is repeatedly turned on / off at a constant timing by PWM control. When the switching element 203a is turned on, the upper switching element is connected to the plus side of the rectified and smoothed output. Connected to the side. Therefore, the terminal voltage in the section c has a waveform in which high and low with the PWM output superimposed are changed.
  • spike voltages X and Y generated in the section b and the section d in FIG. 9 appear when the winding current flows through the circulating current diodes 203g and 203h by turning off the switching elements 203b and 203a, respectively. While these diodes are conducting, the terminal voltage is high and low, and the induced voltage cannot be detected.
  • the position detector 205 compares the induced voltage that appears when both the upper and lower switching elements are off with the reference voltage, and detects the timing at which the magnitude relationship changes as a position signal. That is, in the section b and the section d where the induced voltage appears, in the PWM on section after the spike voltages X and Y converge, the position detection unit 205 has a point A where the magnitude relationship between the inverter output terminal voltage and the reference voltage is reversed. And B are detected.
  • the reference voltage that the position detection unit 205 compares with the terminal voltage includes 1 ⁇ 2 of the inverter input voltage, a virtual neutral point potential of the motor winding connected to each output terminal voltage of the inverter via a resistor, and the like. Generally used.
  • the accuracy of position detection depends on the PWM carrier frequency and the PWM on period.
  • the PWM duty is low, such as at startup or when the load is low, or when the PWM carrier frequency is low, so the delay in position detection timing increases.
  • the driving speed of the brushless DC motor is calculated and the winding to be energized is switched.
  • This delay in position detection causes an increase in current distortion and an increase in loss due to driving in the lag phase. Problems such as vibration and noise increase due to speed fluctuations occur.
  • the ratio of the position error with respect to the rotation angle of the brushless DC motor becomes large and the influence increases when driving at high speed.
  • the second conventional motor drive device a DC voltage including a large ripple is input to the inverter 303. For this reason, even if the brushless DC motor is in a stable driving state, a slight speed fluctuation occurs due to the influence of the input voltage. In a section where the DC input voltage of the inverter 303 is higher than the average voltage, the applied torque is higher than the load torque, and the brushless DC motor is in an accelerated state. At this time, the applied voltage of the brushless DC motor changes with a lag phase with respect to the induced voltage phase.
  • the electric power supplied to the motor in a section where the voltage is high is large, and the peak current increases.
  • the second conventional motor driving device requires PWM control at a high carrier frequency.
  • FIG. 10 is a state diagram showing an enlarged waveform near the position detection timing of the output terminal voltage of the conventional inverter.
  • FIG. 10 shows the terminal voltage state in the vicinity of the position detection timing B in FIG. 9 in detail.
  • the solid line indicates the U-phase terminal voltage
  • the broken line indicates the induced voltage due to the rotation of the brushless DC motor
  • the alternate long and short dash line indicates the reference voltage.
  • the lower rectangular waveform indicates a PWM output, and each switching element is active high, so that each switching element is turned on in the PWM high interval.
  • the first conventional motor driving device that inputs a stable DC voltage that does not include ripples.
  • the waveform will be described.
  • the position detection signal detects the timing at which the magnitude relationship between the inverter output terminal voltage and the reference voltage is changed as the zero cross of the induced voltage in the section b and the section d in FIG. Therefore, the ideal position detection point (that is, the zero cross point of the induced voltage) is the intersection of the induced voltage and the reference voltage, that is, point B in FIG. However, high-frequency noise is superimposed on the terminal voltage waveform, and the timing at which the magnitude relationship between the terminal voltage and the reference voltage first changes due to the influence of the noise is point B1. Accordingly, since the position detection unit 305 detects the position detection point as B1, an error from the normal position occurs.
  • this noise component is generated by resonance due to the winding inductance, stray capacitance, etc. of the motor, the resonance frequency is lowered and the noise frequency is reduced especially in motors that have achieved higher efficiency by increasing the number of windings of the stator winding. Lower. Therefore, in a high-efficiency motor with an increased number of stator windings, the period of high-frequency noise becomes long, so that the position detection sampling prohibition section after PWM on needs to be lengthened in order to suppress erroneous position detection due to noise. .
  • the above-described sampling prohibition section is the PWM minimum ON width in the sensorless drive
  • the PWM minimum duty increases as the PWM carrier frequency increases. Therefore, the minimum duty is limited, and the minimum speed and the minimum load are restricted.
  • the voltage is gradually increased (that is, the duty is gradually increased) from a low voltage (that is, a small duty width), and a smooth startup is performed.
  • a high duty that secures the minimum duty width is given from the time of start-up, there are problems such as start-up failure due to excessive voltage, demagnetization of the brushless DC motor rotor permanent magnet due to overcurrent, and overcurrent.
  • the present invention solves the conventional problem and ensures stable driving performance regardless of the inverter input voltage by detecting the position of the brushless DC motor with certainty. Accordingly, an object of the present invention is to put into practical use a motor drive device having an extremely small smoothing capacitor capacity, and to reduce the size, weight, and cost of the motor drive device.
  • a motor driving device of the present invention includes a rectifying / smoothing circuit that rectifies input alternating current into direct current, and an inverter that converts direct current output from the rectifying / smoothing circuit into arbitrary three-phase alternating current and drives a brushless DC motor.
  • the motor drive device of the present invention includes a position detection unit that detects the rotational position of the brushless DC motor, and a speed estimation unit that estimates the drive speed of the brushless DC motor from the signal from the position detection unit.
  • the motor drive device of the present invention turns on the carrier frequency by making the on-duty and the carrier frequency constant from the driving speed by pulse width modulation, and when the on-duty is a predetermined value or less, the PWM minimum pulse width is constant.
  • the drive waveform of the inverter by superimposing the on-duty and the carrier frequency set by the PWM setting unit on the rotation position and the driving speed so that the duty is reduced below the carrier frequency exceeding the predetermined value. Has a waveform generation unit for generating.
  • the motor driving device of the present invention can ensure the minimum necessary PWM ON width even in a state where the PWM duty is small immediately after startup or at a low speed / low load. Accordingly, it is possible to always reliably detect the position of the brushless DC motor.
  • the smoothing capacitor capacitance can be made extremely small and a large ripple can be applied to the inverter input voltage. Even when it is included, the rotational position of the brushless DC motor can be reliably detected, and stable driving is possible.
  • the motor drive device of the present invention can perform stable drive by reliable position detection regardless of the state of the input voltage, and the capacitance of the smoothing capacitor can be made extremely small, resulting in small size, light weight and low cost.
  • a motor drive device that achieves the above can be realized.
  • FIG. 1 is a block diagram including a motor drive device according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart of the drive sequence of the motor drive device according to Embodiment 1 of the present invention.
  • FIG. 3 is a state diagram showing an enlarged waveform near the position detection timing of the output terminal voltage of the inverter according to the first embodiment of the present invention.
  • FIG. 4A is a state diagram showing an input voltage waveform of the inverter according to Embodiment 1 of the present invention.
  • FIG. 4B is a state diagram showing an input voltage waveform of the inverter according to Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart for setting the PWM carrier frequency in the sensorless control (step 6) of FIG. FIG.
  • FIG. 6 is a block diagram of the refrigerator in the second embodiment of the present invention.
  • FIG. 7 is a block diagram including a first conventional motor driving device.
  • FIG. 8 is a block diagram including a second conventional motor driving device.
  • FIG. 9 is a state diagram showing the output terminal voltage of the inverter of the conventional motor drive device.
  • FIG. 10 is a state diagram showing an enlarged waveform near the position detection timing of the output terminal voltage of the conventional inverter.
  • FIG. 1 is a block diagram including a motor drive device 22 according to Embodiment 1 of the present invention.
  • an AC power source 1 is a general commercial power source, and is a 50 or 60 Hz power source with an effective value of 100 V in Japan.
  • the motor driving device 22 is connected to the AC power source 1 and drives the brushless DC motor 4.
  • the motor drive device 22 will be described with reference to FIG.
  • the rectifying / smoothing circuit 2 is a circuit that rectifies and smoothes AC power generated in the AC power source 1 into DC power, and includes four bridge-connected rectifier diodes 2a to 2d, a smoothing capacitor 2e, and a reactor 2f. Is done.
  • the output of the rectifying / smoothing circuit 2 is input to the inverter 3.
  • the smoothing capacitor 2e and the reactor 2f constitute a smoothing unit 2g and are set so that the resonance frequency is higher than 40 times the AC power supply frequency. As a result, the current due to the resonance frequency falls outside the range of the power supply harmonic regulation, and the harmonic current can be reduced. Further, by setting the smoothing capacitor 2e to such a value, the bus voltage includes a large pulsation (ripple component) such that the maximum voltage becomes twice or more than the minimum voltage. And since the electric current which flows into the smoothing capacitor 2e from the alternating current power supply 1 also becomes a current close
  • the reactor 2f may be inserted either before or after the rectifier diodes 2a to 2d because it may be inserted between the AC power supply 1 and the smoothing capacitor 2e. Furthermore, when the common mode filter which comprises a high frequency removal part is provided in the circuit, the reactor 2f considers the synthetic
  • the inverter 3 converts the DC power from the rectifying / smoothing circuit 2 containing a large ripple component in a cycle twice the power cycle of the AC power source 1 into AC power.
  • the inverter 3 is configured by connecting six switching elements 3a to 3f in a three-phase bridge.
  • the six return current diodes 3g to 3l are connected to the switching elements 3a to 3f in the reverse direction.
  • the brushless DC motor 4 includes a rotor 4a having a permanent magnet and a stator 4b having a three-phase winding.
  • the brushless DC motor 4 rotates the rotor 4a when the three-phase alternating current generated by the inverter 3 flows in the three-phase winding of the stator 4b.
  • the position detection unit 5 acquires the terminal voltage of the brushless DC motor 4. That is, the magnetic pole relative position of the rotor 4a of the brushless DC motor 4 is detected. Specifically, the position detector 5 detects the relative rotational position of the rotor 4a based on the induced voltage generated in the three-phase winding of the stator 4b. As another position detection method, there is a method of estimating the magnetic pole position by performing vector calculation on the detection result of the motor current (phase current or bus current).
  • the voltage detector 6 detects the voltage across the smoothing capacitor 2e, which is the voltage between the DC buses.
  • the speed estimation unit 7 estimates the driving speed of the brushless DC motor from the position information detected by the position detection unit 5. However, when the voltage detected by the voltage detection unit 6 is equal to or lower than the threshold, the speed estimation is stopped, and after the first position detection performed by the position detection unit 5 after the bus voltage becomes equal to or higher than the threshold again, the speed estimation is performed. To resume.
  • the threshold value for stopping the speed estimation is a value of the bus voltage at which the position detection by the position detection unit 5 becomes unstable, and is determined in advance by the system.
  • the position information of the position detection unit 5 becomes unstable when the bus voltage is below a predetermined voltage. Therefore, the switching unit 8 selects and outputs the position information of the position estimation unit 9 instead of the position information of the position detection unit 5 when the detected value of the bus voltage detected by the voltage detection unit 6 is equal to or less than the threshold value. When the voltage value detected by the voltage detection unit 6 exceeds the threshold value, the switching unit 8 selects and outputs the position information of the position detection unit 5 again.
  • the position estimation unit 9 estimates and outputs the position of the rotor 4 a of the brushless DC motor 4 from the position information output from the switching unit 8 and the speed estimated by the speed estimation unit 7. For example, when the control cycle is 100 ⁇ s, when the position from the switching unit 8 is 60 degrees in electrical angle and the speed estimated by the speed estimation unit 7 is 50 r / s, the brushless DC motor 4 has four poles. Since the current frequency is 100 Hz which is twice the speed, the position information of 63.6 deg is output by adding 60 deg to the phase in which the current of 100 Hz advances during 100 ⁇ sec.
  • the PWM setting unit 10 sets the carrier frequency in PWM and the duty of high / low output.
  • the PWM pulse frequency is adjusted so that the PWM pulse width is kept constant and the required duty is secured.
  • the duty cycle is adjusted by increasing or decreasing the PWM ON width at a preset frequency.
  • the waveform generation unit 11 determines the energization winding, energization period, and timing of the brushless DC motor based on the position information from the switching unit 8 and the speed information from the speed estimation unit 7, and the PWM carrier set by the PWM setting unit 10. And the drive waveform of the inverter 3 is generated by superimposing the duty.
  • the waveform generation unit 11 uses the bus voltage detected by the voltage detection unit 6 to perform waveform control so that the advance angle becomes large when the voltage drops.
  • the drive unit 12 outputs a drive signal for turning on / off the switching elements 3a to 3f of the inverter 3 based on the waveform signal output from the waveform generation unit 11. As a result, the switching element is turned on and driven in the brushless DC motor so as to energize an appropriate winding according to the rotor position.
  • the rectifying / smoothing circuit 13 includes a rectifying unit 13a and a smoothing unit 13b.
  • the rectifying / smoothing circuit 13 absorbs the voltage when the brushless DC motor is regenerated, or when the input voltage of the inverter 3, that is, the output voltage of the rectifying / smoothing circuit 2 rises due to LC resonance of the rectifying / smoothing circuit 2. Further, since the voltage of the smoothing unit 13b is stable in the vicinity of the peak voltage of the AC power supply 1 at normal times, the smoothing unit 13b is connected to the motor driving device and peripheral devices from both ends of the smoothing unit 13b. It is also possible to use as an input of a switching power supply (not shown) for generating.
  • FIG. 2 is a flowchart of the drive sequence of the motor drive device 22 according to the first embodiment of the present invention.
  • the PWM setting unit 10 sets the initial PWM carrier frequency and the initial value as initial values.
  • PWM on-duty is set (step 2).
  • the initial carrier frequency is 1 kHz and the initial duty is 5%.
  • the PWM carrier frequency as an initial value is set to a value that can ensure a predetermined PWM minimum ON width in the PWM ON section (that is, the section in which the switching element is turned ON) in the starting duty determined by the starting torque of the device. For example, when the PWM minimum ON width is 50 ⁇ s and the initial duty at startup is 5%, the carrier frequency is set to 1 kHz or less.
  • the waveform generation unit 11 can stably stop the stator position at a specified position on the winding of the specific phase as a positioning waveform, and energize the inverter 3 for a relatively long time (for example, 1 second). Then, a waveform for driving the switching element is generated (step 3). Then, the signal is output to the drive unit 12, and the switching element is energized (for example, if the W-phase winding is energized from the U-phase winding, the switching elements 3e and 3b are turned on for 1 second).
  • the waveform generator 11 After the rotor position is determined to be a predetermined position by the positioning control, the waveform generator 11 performs a forced synchronous operation for switching the energized phase at a predetermined frequency as the synchronous pull-in control to forcibly rotate the rotor (step 4). This forced synchronous operation is continued until the zero cross point of the induced voltage generated in the stator winding is input to the position detector 5 as a position signal (step 5).
  • FIG. 3 is a state diagram showing an enlarged waveform near the position detection timing of the output terminal voltage of the inverter 3 according to the first embodiment of the present invention.
  • FIG. 3 shows the vicinity of the zero cross point (point B in FIG. 9) of the induced voltage generated by driving the brushless DC motor at the output terminal voltage of the arbitrary phase of the inverter 3.
  • the switching elements above and below the phase of the waveform shown in FIG. 3 are off (specifically, when the U-phase terminal voltage is indicated, both switching elements 3a and 3b are off).
  • a section t in which the PWM output is high is a section in which the switching element of the other phase is turned on by PWM control.
  • the position detection unit 5 detects the point where the magnitude relationship between the output terminal voltage of the inverter and the reference voltage (1/2 of the inverter input voltage in the present embodiment) changes, so that the brushless DC motor.
  • the zero cross point (point B in FIG. 3) of the induced voltage generated with the rotation of is recognized as a position signal.
  • the position detection unit may erroneously detect the position signal as point B1.
  • the start of sampling for position detection suppresses erroneous detection of noise as a position signal by delaying (interval C) until the superimposed noise component converges to some extent.
  • the PWM minimum ON width of the PWM ON section sets the section C from the PWM rising edge to the start of position detection sampling.
  • the position detection unit 5 can acquire an accurate position detection signal by setting the sampling prohibition period for position detection.
  • the speed estimation unit 7 detects the speed of the brushless DC motor 4, and the PWM setting unit 10 increases or decreases the PMW duty based on the deviation between the drive speed and the target speed.
  • the waveform generation unit 11 sets the energization period (that is, the commutation cycle) and the energization pattern (that is, which switching element is turned on) based on the driving speed, and superimposes the PWM waveform by the PWM setting unit 10.
  • the signal is output to the drive unit 12 and the brushless DC motor 4 is driven by the inverter 3. In this way, the brushless DC motor 4 is driven at the target speed by speed feedback control that performs PWM duty adjustment based on the deviation between the drive speed and the target speed.
  • the switching unit 8 is not based on the position detection unit 5
  • the magnetic pole position estimated by the position estimator 9 is selected as position information.
  • sensorless driving by speed feedback control is performed based on the position information by the position detection unit 5 or the position information by the estimated magnetic pole position by the position estimation unit 9. (Step 6).
  • the delay time of the position detection sampling (section C in FIG. 3) is the PWM minimum ON width.
  • the PWM minimum ON width is set by the frequency of the noise component superimposed at the PWM rising timing of the inverter output terminal voltage, and does not depend on the PWM carrier frequency. Therefore, the higher the carrier frequency, the larger the PWM on-duty for ensuring the PWM minimum on-width.
  • the duty is equivalent to 5% at a carrier frequency of 1 kHz, but equivalent to 40% at 8 kHz.
  • the minimum duty at a carrier frequency of 8 kHz is 40%.
  • the PWM minimum pulse width 50 ⁇ sec is required for noise component removal (PWM minimum ON width)
  • the starting duty is set to 5%
  • the PWM carrier frequency is set to 1 kHz.
  • the first carrier frequency for example, 1 kHz
  • the second carrier frequency for example, 8 kHz
  • the PWM duty increases with acceleration, and the PWM pulse width can be secured at the second carrier frequency (specifically, the PWM duty is 40% for the 1 kHz carrier). After the timing, consider the case of driving at the second carrier frequency.
  • the rectifying / smoothing circuit 2 includes a smoothing capacitor 2e and a reactor 2f, and has a frequency at which LC resonance occurs.
  • the switching frequency that is, PWM carrier frequency
  • 4A and 4B are state diagrams showing input voltage waveforms of the inverter 3 according to Embodiment 1 of the present invention.
  • 4A and 4B show input voltage waveforms of the inverter 3 when 50 Hz and 220 V are input to the AC power supply 1.
  • FIG. 4A shows an input voltage waveform when a PWM carrier frequency close to the resonance frequency of the rectifying and smoothing circuit 2 is used.
  • the input voltage waveform of the inverter 3 is originally a waveform close to the full-wave rectification waveform of the AC power supply having a large ripple when a capacitor having a very small capacitance is used. However, a high frequency component due to large LC resonance is superimposed on the waveform of FIG. 4A.
  • the input voltage of the inverter 3 (that is, the output voltage of the rectifying / smoothing circuit 2) has a maximum value of about 310V, but the peak value increases by 50V or more due to LC resonance. .
  • the resonance of the input voltage of the inverter 3 is not determined only by the smoothing capacitor 2e and the reactor 2f but is influenced by the power source impedance of the AC power source 1.
  • the resonance frequency is lower than the resonance frequency of the smoothing capacitor 2e and the reactor 2f. It becomes. Therefore, the PWM carrier frequency is higher than the resonance frequency of the smoothing capacitor 2e and the reactor 2f.
  • FIG. 4B shows an input voltage waveform of the inverter 3 when a PWM carrier frequency of about twice the LC resonance frequency is used.
  • the superposition of the high frequency component by PWM switching can be confirmed a little.
  • it shows a waveform close to the full-wave rectified waveform of the AC power supply without a significant increase in peak voltage.
  • the PWM carrier frequency is gradually increased while the PWM minimum pulse width is secured while increasing to a certain duty.
  • the PWM duty is increased.
  • FIG. 5 is a flowchart for setting the PWM carrier frequency in the sensorless control (step 6) of FIG.
  • step 11 it is determined whether or not the current driving speed of the brushless DC motor matches the target speed, that is, whether or not the PWM duty needs to be adjusted by speed feedback control. If the drive speed matches the target speed, the process exits this flowchart. If not coincident with the target speed, the process proceeds to step 12 to increase or decrease the PWM duty.
  • the PWM waveform at this time is a value set at that time.
  • the PWM carrier frequency and the PWM on-duty that are initially set in FIG. 2 are set to 1 kHz and 5% in this embodiment.
  • step 13 it is determined whether the increased or decreased PWM duty has reached a prescribed duty width.
  • the specified duty is set as a duty that can secure the PWM minimum pulse width at the carrier frequency in normal driving other than at the time of startup.
  • the delay time from the PWM rising edge to the start of position detection sampling, that is, the PWM minimum pulse width is set to 50 ⁇ sec.
  • 40% is set, and it is confirmed whether the PWM on-duty is 40% or more.
  • step 13 if the PWM on-duty has not reached the specified duty, the carrier frequency is calculated in step 15.
  • the carrier frequency is set such that the duty is changed by increasing or decreasing the carrier frequency while keeping the PWM pulse width constant at the PWM minimum pulse width.
  • the initial PWM is started with a duty of 5% and a PWM carrier frequency of 1 kHz, and the duty by speed feedback is increased to accelerate to the target speed.
  • the pulse width is not changed, but the carrier frequency calculated based on the following equation is applied.
  • (Carrier frequency) (Newly set duty) / (PWM minimum pulse width) That is, when the duty is 7%, it is driven with a carrier frequency of 1.4 kHz and a pulse width of 50 ⁇ sec.
  • the carrier frequency is reduced to a carrier frequency of 8 kHz or less, which is lower than the carrier frequency exceeding 8 kHz when the PWM on-duty exceeds 40%.
  • the duty adjustment is performed by adjusting the carrier frequency.
  • the resonance frequency is always equal to the PWM carrier frequency regardless of the value of the resonance frequency, and abnormal oscillation and voltage increase of the inverter input voltage due to LC resonance can be suppressed.
  • step 16 a PWM waveform based on the PWM carrier frequency and the duty width set in step 14 or step 15 is generated by the PWM setting unit 10, and the process exits the flowchart of FIG.
  • the energization period that is, the commutation cycle
  • the energization pattern that is, which switching element is turned on
  • the PWM setting unit 10 is superimposed and output to the drive unit 12.
  • the inverter 3 energizes the switching element, and drives the brushless DC motor 4 by sensorless driving by speed feedback control.
  • the motor drive device 22 converts the input alternating current into direct current, the rectifying / smoothing circuit 2, converts the direct current output from the rectifying / smoothing circuit 2 into three-phase alternating current, and performs brushless DC And an inverter 3 for driving the motor 4.
  • the motor drive device 22 includes a position detection unit 5 that detects the rotational position of the brushless DC motor 4, and a speed estimation unit 7 that estimates the drive speed of the brushless DC motor 4 from the signal from the position detection unit 5.
  • the motor drive device 22 includes a PWM setting unit 10 that sets the on-duty and the carrier frequency from the driving speed by pulse width modulation.
  • the PWM setting unit 10 sets the PWM minimum pulse width to be constant and sets the carrier frequency to be lower than the carrier frequency at which the on-duty exceeds the predetermined value.
  • the motor drive device 22 includes a waveform generation unit 11 that generates a drive waveform of the inverter 3 by superimposing the on-duty and the carrier frequency set by the PWM setting unit on the rotation position and the drive speed.
  • the PWM setting unit 10 of the motor drive device 22 of the present embodiment sets the PWM minimum pulse width to 50 ⁇ sec and the carrier frequency set by the PWM setting unit to 8 kHz or less. .
  • the position detection unit 5 performs reliable position detection, and the brushless DC motor 4 is driven stably.
  • the rectifying / smoothing circuit 2 of the present embodiment includes a smoothing capacitor 2e and a reactor 2f, and is set to a resonance frequency higher than 40 times the frequency of the AC power supply.
  • the rectifying / smoothing circuit 2 of the present embodiment includes a smoothing capacitor 2e and a reactor 2f, and the carrier frequency set by the PWM setting unit is higher than the resonance frequency of the capacitor and the reactor. Thereby, the influence of the inductance component of the power source impedance can be reduced.
  • the on-duty in the pulse width modulation in the predetermined period from the start of the brushless DC motor 4 is the carrier set by the PWM setting unit while keeping the PWM minimum pulse width constant. It is set by changing the frequency. As a result, even when the on-duty of the pulse width modulation is low, the PWM on-width can be secured wide and the magnetic pole position of the brushless DC motor rotor can be reliably detected, so that stable start-up performance can be ensured. it can.
  • the carrier frequency of pulse width modulation is not fixed, it is possible to prevent the resonance frequency caused by the capacitor, the reactor, and the power source impedance component from always matching the carrier frequency of pulse width modulation. Accordingly, abnormal oscillation and overvoltage of the inverter input due to LC resonance can be prevented, so that the reliability of the motor driving device can be improved.
  • FIG. 6 is a block diagram of the refrigerator 21 according to Embodiment 2 of the present invention.
  • the refrigerator 21 of the present embodiment uses the motor driving device 22 of the first embodiment.
  • a reciprocating compressor 17 is used.
  • the rotational motion by the rotor 4a of the brushless DC motor 4 is converted into reciprocating motion by a crankshaft (not shown).
  • a piston (not shown) connected to the crankshaft reciprocates in a cylinder (not shown) to suck, compress, and circulate the refrigerant.
  • the reciprocating compressor 17 As a compression method (mechanism method) of the compressor, an arbitrary method such as a rotary type or a scroll type is used, but in this embodiment, a reciprocating type is used.
  • the reciprocating compressor 17 has a large inertia and a small drive speed fluctuation even with an inverter input voltage in which the bus voltage fluctuates. Therefore, the reciprocating compressor 17 can be said to be one of the applications that are very suitable for a motor driving device in which the capacitance of the smoothing capacitor is extremely small and the bus voltage includes a large ripple.
  • the compressor 17 constitutes a refrigeration cycle in which the refrigerant passes through the condenser 18, the decompressor 19, and the evaporator 20 in this order and returns to the compressor 17 again.
  • the condenser 18 dissipates heat and the evaporator 20 absorbs heat, so that cooling and heating can be performed.
  • this refrigeration cycle is used for the refrigerator 21, and the evaporator 20 cools the inside of the refrigerator 21.
  • a smoothing capacitor and a reactor are large, and a large space is required to be incorporated into the system.
  • the smoothing capacitor having a capacitance of about 400 ⁇ F can be reduced to several ⁇ F, and the volume of the motor driving device can be reduced to 1/3 or less.
  • a reactor of about several millimeters H can be covered with the inductance component of the filter, which enables a significant reduction in size and cost.
  • the installation space for the motor drive device is small and easy.
  • the motor drive device 22 of the present embodiment can be made very small, restrictions on installation space are eased, and it becomes easy to replace the conventional motor drive device with a motor drive device capable of variable speed drive. .
  • a cooling system efficiency can be improved and a refrigerator with low power consumption can be implement
  • the motor drive device of the present invention reduces the capacity of the smoothing capacitor, reduces the size, and enables stable and smooth driving. Thereby, it can apply to the drive of the compressor not only in a refrigerator and an air blower but in a vending machine, a showcase, a heat pump water heater, and a heat pump washer / dryer. Furthermore, it is possible to provide electric equipment using a brushless DC motor, such as a washing machine, a vacuum cleaner, and a pump, which can contribute to downsizing of the equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

A motor drive device (22) includes: a rectifying and smoothing circuit (2) for rectifying the inputted AC current to DC current; and an inverter (3) for converting DC current output from the smoothing circuit (2) to three-phase AC current and driving a brushless DC motor (4). The motor drive device (22) further includes: a position detector (5) for detecting the rotational position of the brushless DC motor (4); and a speed estimation unit (7) for estimating the driving speed of the brushless DC motor (4) from a signal detected by the position detector (5). The motor drive device (22) still further includes: a PWM setting unit (10) for setting the on-duty and carrier frequency using pulse width modulation on the basis of the driving speed such that the carrier frequency is reduced to lower than the carrier frequency having an on-duty greater than a prescribed value by maintaining a constant PMW minimum pulse width when the on-duty is lower than a prescribed value; and a waveform generation unit (11) for generating a driving waveform for the inverter (3) by superimposing the on-duty and the carrier frequency set by the PWM setting unit onto the rotational position and the driving speed.

Description

モータ駆動装置およびそれを用いた電気機器Motor drive device and electric device using the same
 本発明は、ブラシレスDCモータを駆動するモータ駆動装置およびそれを用いた電気機器に関する。 The present invention relates to a motor driving device for driving a brushless DC motor and an electric device using the motor driving device.
 図7は、第一の従来のモータ駆動装置を含むブロック図である。 FIG. 7 is a block diagram including a first conventional motor driving device.
 第一の従来のモータ駆動装置は、駆動速度を目標速度と一致させるように、パルス幅変調(Pulse Width Modulation、以降PWM)制御による速度フィードバック制御の矩形波駆動を行う。 The first conventional motor driving device performs rectangular wave driving of speed feedback control by pulse width modulation (hereinafter referred to as PWM) control so that the driving speed matches the target speed.
 図7を用いて、第一の従来のモータ駆動装置を説明する。 The first conventional motor drive device will be described with reference to FIG.
 交流電源201において発生された交流電力は、整流平滑部202によって、直流電力に変換される。変換された直流電力は、インバータ203に入力される。インバータ203は、6個のスイッチング素子203a~203fを3相ブリッジ接続することにより、構成される。インバータ203は、入力された直流電力を所定の周波数の交流電力に変換し、ブラシレスDCモータ204に出力する。 AC power generated in the AC power supply 201 is converted into DC power by the rectifying and smoothing unit 202. The converted DC power is input to the inverter 203. The inverter 203 is configured by connecting six switching elements 203a to 203f in a three-phase bridge connection. The inverter 203 converts the input DC power into AC power having a predetermined frequency and outputs the AC power to the brushless DC motor 204.
 位置検出部205は、非通電巻線相のインバータ203の出力端子に現れるゼロクロス位置を、ブラシレスDCモータ204の回転により発生する誘起電圧の情報として、取得する。この情報を基に、位置検出部205は、ブラシレスDCモータ204の回転子204aの相対位置を検出する。速度推定部206は、位置検出部205が検出した信号を基に、ブラシレスDCモータ204の回転速度を計算する。波形生成部207は、速度推定部206が計算した回転速度に従って、PWMデューティオン幅を計算し、位置検出部205が検出した信号を基に、インバータ203に通電する相を決定する。ドライブ部208は、波形生成部207からの信号を基に、インバータ203のスイッチング素子203a~203fの駆動を行う。 The position detection unit 205 acquires the zero-cross position that appears at the output terminal of the non-conducting winding phase inverter 203 as information on the induced voltage generated by the rotation of the brushless DC motor 204. Based on this information, the position detection unit 205 detects the relative position of the rotor 204a of the brushless DC motor 204. The speed estimation unit 206 calculates the rotation speed of the brushless DC motor 204 based on the signal detected by the position detection unit 205. The waveform generation unit 207 calculates a PWM duty on width according to the rotation speed calculated by the speed estimation unit 206, and determines a phase to be supplied to the inverter 203 based on the signal detected by the position detection unit 205. The drive unit 208 drives the switching elements 203a to 203f of the inverter 203 based on the signal from the waveform generation unit 207.
 上記第一の従来のモータ駆動装置によって、ブラシレスDCモータの速度を任意に変更しながら駆動するモータ駆動装置を実現できる。 The first conventional motor driving device can realize a motor driving device that drives while arbitrarily changing the speed of the brushless DC motor.
 また、第二の従来のモータ駆動装置は、例えば特許文献1に開示されるように、平滑用コンデンサの容量を小さくし、母線電圧に大きなリプル成分を含みながら駆動する。図8は、第二の従来のモータ駆動装置を含むブロック図である。 Also, the second conventional motor drive device is driven while reducing the capacity of the smoothing capacitor and including a large ripple component in the bus voltage as disclosed in, for example, Patent Document 1. FIG. 8 is a block diagram including a second conventional motor driving device.
 図8を用いて、第二の従来のモータ駆動装置を説明する。第二の従来のモータ駆動装置は、小容量平滑コンデンサを用いる。 A second conventional motor driving device will be described with reference to FIG. The second conventional motor driving device uses a small-capacity smoothing capacitor.
 図8において、交流電源301において発生された交流電力は、整流平滑部302の整流ダイオード302a~302dによって、直流電力に整流される。整流平滑部302の整流ダイオード302a~302dによって整流された直流電力は、平滑コンデンサ302eによって平滑される。しかし、平滑コンデンサ302eの静電容量が小さいため、平滑された直流電力は、大きなリプル成分を含んだ状態で、インバータ303に入力される。インバータ303は、6個のスイッチング素子303a~303fを3相ブリッジ接続することにより構成される。インバータ303は、入力されたリプルを含んだ直流電圧を所定の周波数の交流に変換し、ブラシレスDCモータ304に出力する。 In FIG. 8, the AC power generated in the AC power supply 301 is rectified to DC power by the rectifier diodes 302a to 302d of the rectifying and smoothing unit 302. The DC power rectified by the rectifying diodes 302a to 302d of the rectifying / smoothing unit 302 is smoothed by the smoothing capacitor 302e. However, since the capacitance of the smoothing capacitor 302e is small, the smoothed DC power is input to the inverter 303 in a state including a large ripple component. The inverter 303 is configured by connecting six switching elements 303a to 303f in a three-phase bridge. The inverter 303 converts the input DC voltage including the ripple into AC having a predetermined frequency and outputs the AC voltage to the brushless DC motor 304.
 位置検出部305は、インバータ303の出力端子の電圧に基づき、ブラシレスDCモータ304の回転により発生する誘起電圧の情報を取得する。この情報を基に、位置検出部305は、ブラシレスDCモータ304の回転子304aの相対位置を検出する。また、整流平滑部302が出力する大きなリプルを含んだ電圧において、電圧が低いときには位置検出部305が正確に相対位置を検出することが困難になるため、位置検出部305の位置情報を基に位置推定部306が、相対位置を推定する。そして、電圧検出部307によって検出された整流平滑部302の出力電圧が所定値以下の場合は、切換部308によって、位置推定部306で検出された整流平滑部302の出力電圧を位置検出信号として選択し、波形生成部309が通電相とPWMデューティ幅を決定する。波形生成部309によって生成された信号を基に、ドライブ部310がインバータ303のスイッチング素子303a~303fを駆動する。 The position detection unit 305 acquires information on the induced voltage generated by the rotation of the brushless DC motor 304 based on the voltage of the output terminal of the inverter 303. Based on this information, the position detection unit 305 detects the relative position of the rotor 304a of the brushless DC motor 304. Further, in the voltage including a large ripple output from the rectifying / smoothing unit 302, it is difficult for the position detecting unit 305 to accurately detect the relative position when the voltage is low. Therefore, based on the position information of the position detecting unit 305. The position estimation unit 306 estimates the relative position. When the output voltage of the rectifying / smoothing unit 302 detected by the voltage detecting unit 307 is equal to or lower than a predetermined value, the switching unit 308 uses the output voltage of the rectifying / smoothing unit 302 detected by the position estimating unit 306 as a position detection signal. The waveform generator 309 determines the energized phase and the PWM duty width. Based on the signal generated by the waveform generation unit 309, the drive unit 310 drives the switching elements 303a to 303f of the inverter 303.
 上記第二の従来のモータ駆動装置によって、大きなリプルを含んだ直流母線電圧であっても、ブラシレスDCモータの速度を任意に変更しながら駆動することができ、第一の従来のモータ駆動装置よりも安価で小型のモータ駆動装置を実現できる。 The second conventional motor driving device can drive the brushless DC motor while arbitrarily changing the speed of the DC bus voltage including a large ripple than the first conventional motor driving device. In addition, an inexpensive and small motor drive device can be realized.
 しかしながら、上記第一および第二の従来のモータ駆動装置は、下記の課題を有する。 However, the first and second conventional motor driving devices have the following problems.
 まず、第一の従来のモータ駆動装置の課題を説明する。 First, the problem of the first conventional motor drive device will be described.
 図9は、従来のモータ駆動装置のインバータの出力端子電圧を示す状態図である。図9においては、実線が出力端子電圧の波形を示し、一点鎖線がインバータ入力電圧の1/2である基準電圧を示している。なお、各スイッチング素子はアクティブハイとして、PWM信号がハイの時、上側素子はオンする。また、図9に示す波形はU相の端子電圧波形である。V相およびW相の端子電圧波形はU相の端子電圧波形から±120度位相がずれたものとなっている。 FIG. 9 is a state diagram showing the output terminal voltage of the inverter of the conventional motor drive device. In FIG. 9, the solid line indicates the waveform of the output terminal voltage, and the alternate long and short dash line indicates the reference voltage that is ½ of the inverter input voltage. Each switching element is active high, and the upper element is turned on when the PWM signal is high. The waveform shown in FIG. 9 is a U-phase terminal voltage waveform. The V-phase and W-phase terminal voltage waveforms are ± 120 degrees out of phase from the U-phase terminal voltage waveforms.
 図7において、インバータ203の出力端子電圧波形と基準電圧が位置検出部205に出力される。図9の区間aは、U相下アームスイッチング素子203bがオンしている区間であり、端子電圧はスイッチング素子を介して、整流平滑出力のGNDに接続される。図9の区間cは、U相上アームスイッチング素子203aがオンしている区間である。上側スイッチング素子は、PWM制御により一定タイミングでオン/オフを繰り返し、スイッチング素子203aのオン時は整流平滑出力のプラス側に接続され、オフ時は還流電流用ダイオード203hの導通により整流平滑出力のGND側に接続される。従って区間cでの端子電圧は、PWM出力が重畳されたハイとローが変化する波形となる。 7, the output terminal voltage waveform of the inverter 203 and the reference voltage are output to the position detection unit 205. A section a in FIG. 9 is a section in which the U-phase lower arm switching element 203b is turned on, and the terminal voltage is connected to the rectified and smoothed output GND through the switching element. A section c in FIG. 9 is a section in which the U-phase upper arm switching element 203a is on. The upper switching element is repeatedly turned on / off at a constant timing by PWM control. When the switching element 203a is turned on, the upper switching element is connected to the plus side of the rectified and smoothed output. Connected to the side. Therefore, the terminal voltage in the section c has a waveform in which high and low with the PWM output superimposed are changed.
 図9の区間bおよび区間dは、U相上下両アームのスイッチング素子はオフ状態にあり、この時、ブラシレスDCモータの回転により発生する誘起電圧が現れる。また、他の相のPWMスイッチングにより、PWM出力が重畳された波形となるため、誘起電圧が確認できるのは、PWM出力がオン時のみとなる。 In section b and section d of FIG. 9, the switching elements of the U-phase upper and lower arms are in the OFF state, and an induced voltage generated by the rotation of the brushless DC motor appears at this time. In addition, since the PWM output has a waveform superimposed by the PWM switching of the other phase, the induced voltage can be confirmed only when the PWM output is on.
 また、図9の区間bおよび区間dに発生するスパイク電圧XおよびYは、それぞれスイッチング素子203b、203aのオフにより、巻線電流が還流電流用ダイオード203g、203hを介して流れるときに、現れる。これらのダイオードが導通する期間は、端子電圧はハイおよびローとなり、誘起電圧の検出は出来ない。 Further, spike voltages X and Y generated in the section b and the section d in FIG. 9 appear when the winding current flows through the circulating current diodes 203g and 203h by turning off the switching elements 203b and 203a, respectively. While these diodes are conducting, the terminal voltage is high and low, and the induced voltage cannot be detected.
 位置検出部205は、上下両方のスイッチング素子がオフの時現れる誘起電圧を、基準電圧と比較して、その大小関係が変化するタイミングを位置信号として検出する。即ち、誘起電圧が現れる区間bおよび区間dにおいて、スパイク電圧XおよびYが収束した後のPWMオン区間に、位置検出部205は、インバータ出力端子電圧と基準電圧との大小関係が反転するポイントAおよびBを検出する。 The position detector 205 compares the induced voltage that appears when both the upper and lower switching elements are off with the reference voltage, and detects the timing at which the magnitude relationship changes as a position signal. That is, in the section b and the section d where the induced voltage appears, in the PWM on section after the spike voltages X and Y converge, the position detection unit 205 has a point A where the magnitude relationship between the inverter output terminal voltage and the reference voltage is reversed. And B are detected.
 なお、位置検出部205が端子電圧と比較する基準電圧には、インバータ入力電圧の1/2や、インバータの各出力端子電圧に抵抗を介して接続したモータ巻線の仮想中性点電位等が、一般的に用いられる。 Note that the reference voltage that the position detection unit 205 compares with the terminal voltage includes ½ of the inverter input voltage, a virtual neutral point potential of the motor winding connected to each output terminal voltage of the inverter via a resistor, and the like. Generally used.
 この様な上記の位置検出方式では、位置検出の精度は、PWMキャリア周波数およびPWMオン期間に依存されることになる。つまり、起動時や低負荷時などのPWMデューティが低い駆動状態、またPWMキャリア周波数が低い場合、位置検出のサンプリングが出来ないPWMオフ区間が増えるので、位置検出タイミングの遅れが大きくなる。そして、位置検出タイミングを基に、ブラシレスDCモータの駆動速度の演算や、通電する巻線の切り替えを行うため、この位置検出の遅れは、遅れ位相での駆動による電流歪の増加や損失の増加、速度変動による振動および騒音の増加などの課題が発生する。特に高速駆動時程、ブラシレスDCモータの回転角に対する位置誤差の割合が大きく影響も増大する。 In such a position detection method as described above, the accuracy of position detection depends on the PWM carrier frequency and the PWM on period. In other words, when the PWM duty is low, such as at startup or when the load is low, or when the PWM carrier frequency is low, the number of PWM off intervals during which position detection cannot be sampled increases, so the delay in position detection timing increases. Based on the position detection timing, the driving speed of the brushless DC motor is calculated and the winding to be energized is switched. This delay in position detection causes an increase in current distortion and an increase in loss due to driving in the lag phase. Problems such as vibration and noise increase due to speed fluctuations occur. In particular, the ratio of the position error with respect to the rotation angle of the brushless DC motor becomes large and the influence increases when driving at high speed.
 従って、ブラシレスDCモータの安定駆動には、ある程度高いPWMキャリア周波数を用いて、PWMオフ区間による位置検出遅れを抑制することが求められる。 Therefore, stable driving of a brushless DC motor is required to suppress a position detection delay due to a PWM OFF section by using a somewhat high PWM carrier frequency.
 次に第二の従来のモータ駆動装置の課題を説明する。 Next, the problem of the second conventional motor driving device will be described.
 第二の従来のモータ駆動装置では、大きなリプルを含む直流電圧をインバータ303に入力する。このため、ブラシレスDCモータは安定駆動状態であっても、入力電圧による影響で若干の速度変動が生じている。インバータ303の直流入力電圧が平均電圧より高い区間では、負荷トルクに対して印加トルクが高く、ブラシレスDCモータは加速状態になる。このときブラシレスDCモータの印加電圧は、誘起電圧位相に対して遅れ位相で推移している。 In the second conventional motor drive device, a DC voltage including a large ripple is input to the inverter 303. For this reason, even if the brushless DC motor is in a stable driving state, a slight speed fluctuation occurs due to the influence of the input voltage. In a section where the DC input voltage of the inverter 303 is higher than the average voltage, the applied torque is higher than the load torque, and the brushless DC motor is in an accelerated state. At this time, the applied voltage of the brushless DC motor changes with a lag phase with respect to the induced voltage phase.
 さらに、先述した低いキャリア周波数でのPWM制御では、PWMオフ区間による位置検出の遅れが加わると、第一の従来のモータ駆動装置より、大きな遅れ位相状態が発生する。 Furthermore, in the above-described PWM control at a low carrier frequency, when a delay in position detection due to the PWM off interval is added, a larger delayed phase state is generated than in the first conventional motor drive device.
 また、インバータ入力電圧に大きなリプルが含まれる構成では、電圧が高い区間でのモータに供給する電力が大きく、ピーク電流が増大する。 Also, in a configuration in which a large ripple is included in the inverter input voltage, the electric power supplied to the motor in a section where the voltage is high is large, and the peak current increases.
 従って、第二の従来のモータ駆動装置では、平滑された直流電圧が入力された場合より、大きなピーク電流が流れ、遅れ位相による電流増加が加わることになり、過電流停止の発生や過電流による減磁発生の可能性が高まる。さらに、遅れ位相による駆動は、損失増加や駆動トルク低下の原因にもなる。 Therefore, in the second conventional motor drive device, a larger peak current flows than when a smoothed DC voltage is input, and an increase in current due to a delay phase is added, resulting in occurrence of an overcurrent stop or overcurrent. Increased possibility of demagnetization. Furthermore, driving with a lag phase can cause an increase in loss and a decrease in driving torque.
 従って、第二の従来のモータ駆動装置では、高いキャリア周波数でのPWM制御が必要となる。 Therefore, the second conventional motor driving device requires PWM control at a high carrier frequency.
 しかしながら、高いキャリア周波数によるPWM制御を行う場合も下記に示す課題を有している。 However, even when PWM control with a high carrier frequency is performed, there are the following problems.
 図10は、従来におけるインバータの出力端子電圧の位置検出タイミング付近での拡大波形を示す状態図である。 FIG. 10 is a state diagram showing an enlarged waveform near the position detection timing of the output terminal voltage of the conventional inverter.
 図10は図9における位置検出タイミングB付近の端子電圧状態を詳細に示している。 FIG. 10 shows the terminal voltage state in the vicinity of the position detection timing B in FIG. 9 in detail.
 図10において、実線はU相の端子電圧、破線はブラシレスDCモータの回転による誘起電圧、一点鎖線は基準電圧を示している。また図10において、下段の矩形波形はPWM出力を示し、各スイッチング素子はアクティブハイとしているので、各スイッチング素子はPWMハイの区間でオンすることになる。 In FIG. 10, the solid line indicates the U-phase terminal voltage, the broken line indicates the induced voltage due to the rotation of the brushless DC motor, and the alternate long and short dash line indicates the reference voltage. In FIG. 10, the lower rectangular waveform indicates a PWM output, and each switching element is active high, so that each switching element is turned on in the PWM high interval.
 なお、本課題は第一および第二の従来のモータ駆動装置の共通の課題であるが、説明を簡単にするため、リプルの含まない安定した直流電圧を入力する第一の従来のモータ駆動装置の波形で説明する。 Although this subject is a common subject of the first and second conventional motor driving devices, for the sake of simplicity, the first conventional motor driving device that inputs a stable DC voltage that does not include ripples. The waveform will be described.
 図10に示す端子電圧波形から、PWMオン時に誘起電圧が端子電圧に現れるが、PWMオン直後に高周波のノイズ成分が重畳していることがわかる。 From the terminal voltage waveform shown in FIG. 10, it can be seen that an induced voltage appears in the terminal voltage when PWM is on, but a high-frequency noise component is superimposed immediately after PWM is on.
 位置検出信号は、図9における区間bおよび区間dで、PWMオン中において、インバータ出力端子電圧と基準電圧との大小関係が変化したタイミングを、誘起電圧のゼロクロスとして検出する。従って、理想的な位置検出ポイント(即ち誘起電圧のゼロクロスポイント)は、図10において、誘起電圧と基準電圧との交点、即ちB点である。しかし、端子電圧波形には、高周波ノイズが重畳しており、そのノイズの影響により、端子電圧と基準電圧との大小関係が最初に変化するタイミングはB1点である。従って、位置検出部305は、位置検出ポイントをB1として検出するので、正規位置との誤差が発生する。 The position detection signal detects the timing at which the magnitude relationship between the inverter output terminal voltage and the reference voltage is changed as the zero cross of the induced voltage in the section b and the section d in FIG. Therefore, the ideal position detection point (that is, the zero cross point of the induced voltage) is the intersection of the induced voltage and the reference voltage, that is, point B in FIG. However, high-frequency noise is superimposed on the terminal voltage waveform, and the timing at which the magnitude relationship between the terminal voltage and the reference voltage first changes due to the influence of the noise is point B1. Accordingly, since the position detection unit 305 detects the position detection point as B1, an error from the normal position occurs.
 通電するブラシレスDCモータ巻線の切り替えは、位置検出タイミングに基づくため、この位置検出タイミングの誤差は転流タイミングのズレとなり、ブラシレスDCモータの安定運転性能や効率等への悪影響を及ぼすことになる。 Since the switching of the brushless DC motor winding to be energized is based on the position detection timing, this error in the position detection timing will cause a shift in the commutation timing, which will adversely affect the stable operation performance and efficiency of the brushless DC motor. .
 このノイズ検出による位置検出誤差を抑制するために、PWMオン直後からノイズ成分の振幅が収束する一定期間が経過した時に、位置検出サンプリングを開始する方法が用いられる(図10の区間Dが位置検出サンプリング禁止区間)。 In order to suppress this position detection error due to noise detection, a method is used in which position detection sampling is started when a certain period of time during which the amplitude of the noise component converges immediately after PWM is turned on (section D in FIG. 10 is position detection). Sampling prohibited section).
 このノイズ成分は、モータの巻線インダクタンスや浮遊容量等による共振で発生するため、特に固定子巻線の巻き数を増やして高効率化を図ったモータでは、共振周波数が低くなり、ノイズ周波数が低くなる。従って、固定子巻線を増やした高効率モータでは、高周波ノイズの周期が長くなるため、ノイズによる位置誤検出を抑制するために、PWMオン後の位置検出のサンプリング禁止区間を長くする必要がある。 Since this noise component is generated by resonance due to the winding inductance, stray capacitance, etc. of the motor, the resonance frequency is lowered and the noise frequency is reduced especially in motors that have achieved higher efficiency by increasing the number of windings of the stator winding. Lower. Therefore, in a high-efficiency motor with an increased number of stator windings, the period of high-frequency noise becomes long, so that the position detection sampling prohibition section after PWM on needs to be lengthened in order to suppress erroneous position detection due to noise. .
 しかしながら、上述のサンプリング禁止区間は、センサレス駆動におけるPWM最低オン幅であるため、PWMキャリア周波数が高ければ、PWM最低デューティが大きくなる。従って、最低デューティが制限されることになり、最低速度や最低負荷が、制約されることになる。さらに、ブラシレスDCモータの起動時は、低い電圧(即ち小さいデューティ幅)から徐々に電圧を上昇(即ち徐々にデューティを上昇)させて、スムーズな立ち上げを行う。しかし、起動時から最低デューティ幅を確保した高いデューティを与えた場合、過度な電圧による起動不良や、過電流、過電流に伴うブラシレスDCモータ回転子永久磁石の減磁などの課題を有する。 However, since the above-described sampling prohibition section is the PWM minimum ON width in the sensorless drive, the PWM minimum duty increases as the PWM carrier frequency increases. Therefore, the minimum duty is limited, and the minimum speed and the minimum load are restricted. Further, when the brushless DC motor is started, the voltage is gradually increased (that is, the duty is gradually increased) from a low voltage (that is, a small duty width), and a smooth startup is performed. However, when a high duty that secures the minimum duty width is given from the time of start-up, there are problems such as start-up failure due to excessive voltage, demagnetization of the brushless DC motor rotor permanent magnet due to overcurrent, and overcurrent.
特開2005-198376号公報JP 2005-198376 A
 本発明は、従来の課題を解決するもので、ブラシレスDCモータの確実な位置検出することによって、インバータ入力電圧によらず安定した駆動性能を確保する。これにより、本発明は、平滑コンデンサ容量を極端に小さくしたモータ駆動装置を実用化し、モータ駆動装置の小型・軽量・低コスト化を図ることを目的とする。 The present invention solves the conventional problem and ensures stable driving performance regardless of the inverter input voltage by detecting the position of the brushless DC motor with certainty. Accordingly, an object of the present invention is to put into practical use a motor drive device having an extremely small smoothing capacitor capacity, and to reduce the size, weight, and cost of the motor drive device.
 本発明のモータ駆動装置は、入力された交流を直流に整流する整流平滑回路と、整流平滑回路から出力される直流を任意の三相交流に変換し、ブラシレスDCモータを駆動するインバータとを有する。また、本発明のモータ駆動装置は、ブラシレスDCモータの回転位置を検出する位置検出部と、位置検出部による信号から、ブラシレスDCモータの駆動速度を推定する速度推定部とを有する。さらに、本発明のモータ駆動装置は、駆動速度から、パルス幅変調によって、オンデューティとキャリア周波数を、オンデューティが所定値以下の場合には、PWM最低パルス幅を一定にして、キャリア周波数をオンデューティが所定値を超えるキャリア周波数よりも減少させるように、設定するPWM設定部と、回転位置と駆動速度に、オンデューティとPWM設定部で設定されたキャリア周波数を重畳して、インバータの駆動波形を生成する波形生成部を有する。 A motor driving device of the present invention includes a rectifying / smoothing circuit that rectifies input alternating current into direct current, and an inverter that converts direct current output from the rectifying / smoothing circuit into arbitrary three-phase alternating current and drives a brushless DC motor. . In addition, the motor drive device of the present invention includes a position detection unit that detects the rotational position of the brushless DC motor, and a speed estimation unit that estimates the drive speed of the brushless DC motor from the signal from the position detection unit. Furthermore, the motor drive device of the present invention turns on the carrier frequency by making the on-duty and the carrier frequency constant from the driving speed by pulse width modulation, and when the on-duty is a predetermined value or less, the PWM minimum pulse width is constant. The drive waveform of the inverter by superimposing the on-duty and the carrier frequency set by the PWM setting unit on the rotation position and the driving speed so that the duty is reduced below the carrier frequency exceeding the predetermined value. Has a waveform generation unit for generating.
 これにより、本発明のモータ駆動装置は、起動直後や低速・低負荷時などでPWMデューティが小さい状態においても、必要最小限のPWMオン幅を確保することができる。従って、常に確実なブラシレスDCモータの位置検出が可能である。 Thereby, the motor driving device of the present invention can ensure the minimum necessary PWM ON width even in a state where the PWM duty is small immediately after startup or at a low speed / low load. Accordingly, it is possible to always reliably detect the position of the brushless DC motor.
 また、整流平滑回路のコンデンサとリアクタによる共振周波数を、交流電源の周波数の40倍より高くなる様に設定することで、平滑コンデンサ静電容量を極端に小さくして、インバータ入力電圧に大きなリプルを含む場合でも、確実にブラシレスDCモータの回転位置を検出することができ、安定した駆動が可能となる。 In addition, by setting the resonance frequency of the capacitor and reactor of the rectifying and smoothing circuit to be higher than 40 times the frequency of the AC power supply, the smoothing capacitor capacitance can be made extremely small and a large ripple can be applied to the inverter input voltage. Even when it is included, the rotational position of the brushless DC motor can be reliably detected, and stable driving is possible.
 本発明のモータ駆動装置は、入力電圧の状態によらず、確実な位置検出による安定した駆動をすることができ、平滑コンデンサの静電容量を極端に小さくして、小型・軽量・低コスト化を図るモータ駆動装置を実現できる。 The motor drive device of the present invention can perform stable drive by reliable position detection regardless of the state of the input voltage, and the capacitance of the smoothing capacitor can be made extremely small, resulting in small size, light weight and low cost. A motor drive device that achieves the above can be realized.
図1は、本発明の実施の形態1におけるモータ駆動装置を含むブロック図である。FIG. 1 is a block diagram including a motor drive device according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1におけるモータ駆動装置の駆動シーケンスのフローチャートである。FIG. 2 is a flowchart of the drive sequence of the motor drive device according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態1におけるインバータの出力端子電圧の位置検出タイミング付近での拡大波形を示す状態図である。FIG. 3 is a state diagram showing an enlarged waveform near the position detection timing of the output terminal voltage of the inverter according to the first embodiment of the present invention. 図4Aは、本発明の実施の形態1におけるインバータの入力電圧波形を示す状態図である。FIG. 4A is a state diagram showing an input voltage waveform of the inverter according to Embodiment 1 of the present invention. 図4Bは、本発明の実施の形態1おけるインバータの入力電圧波形を示す状態図である。FIG. 4B is a state diagram showing an input voltage waveform of the inverter according to Embodiment 1 of the present invention. 図5は、図2のセンサレス制御(step6)におけるPWMキャリア周波数を設定するフローチャートである。FIG. 5 is a flowchart for setting the PWM carrier frequency in the sensorless control (step 6) of FIG. 図6は、本発明の実施の形態2における冷蔵庫のブロック図である。FIG. 6 is a block diagram of the refrigerator in the second embodiment of the present invention. 図7は、第一の従来のモータ駆動装置を含むブロック図である。FIG. 7 is a block diagram including a first conventional motor driving device. 図8は、第二の従来のモータ駆動装置を含むブロック図である。FIG. 8 is a block diagram including a second conventional motor driving device. 図9は、従来のモータ駆動装置のインバータの出力端子電圧を示す状態図である。FIG. 9 is a state diagram showing the output terminal voltage of the inverter of the conventional motor drive device. 図10は、従来におけるインバータの出力端子電圧の位置検出タイミング付近での拡大波形を示す状態図である。FIG. 10 is a state diagram showing an enlarged waveform near the position detection timing of the output terminal voltage of the conventional inverter.
 以下、本発明の実施の形態について図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるわけでは無い。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited by this embodiment.
 (実施の形態1)
 図1は、本発明の実施の形態1におけるモータ駆動装置22を含むブロック図である。
(Embodiment 1)
FIG. 1 is a block diagram including a motor drive device 22 according to Embodiment 1 of the present invention.
 図1において、交流電源1は一般的な商用電源で、日本においては実効値100Vの50または60Hzの電源である。モータ駆動装置22は、交流電源1に接続され、ブラシレスDCモータ4を駆動する。以下、図1を用いて、モータ駆動装置22について説明する。 In FIG. 1, an AC power source 1 is a general commercial power source, and is a 50 or 60 Hz power source with an effective value of 100 V in Japan. The motor driving device 22 is connected to the AC power source 1 and drives the brushless DC motor 4. Hereinafter, the motor drive device 22 will be described with reference to FIG.
 整流平滑回路2は、交流電源1において発生された交流電力を直流電力に整流平滑する回路であり、ブリッジ接続された4個の整流ダイオード2a~2dと、平滑コンデンサ2eと、リアクタ2fとから構成される。整流平滑回路2の出力はインバータ3に入力される。 The rectifying / smoothing circuit 2 is a circuit that rectifies and smoothes AC power generated in the AC power source 1 into DC power, and includes four bridge-connected rectifier diodes 2a to 2d, a smoothing capacitor 2e, and a reactor 2f. Is done. The output of the rectifying / smoothing circuit 2 is input to the inverter 3.
 また、平滑コンデンサ2eとリアクタ2fは、平滑部2gを構成し、共振周波数が交流電源周波数の40倍より高い周波数になるように設定される。これによって、共振周波数による電流は電源高調波規制の範囲外となり、高調波電流を低減することができる。また、平滑コンデンサ2eをこのような値とすることで、母線電圧は、最大時の電圧が最小時の電圧の2倍以上となる様な大きな脈動(リプル成分)を含む。そして、交流電源1から平滑コンデンサ2eに流れる電流も、交流電源1の周波数成分に近い電流となるため、高調波電流を低減することができる。 Further, the smoothing capacitor 2e and the reactor 2f constitute a smoothing unit 2g and are set so that the resonance frequency is higher than 40 times the AC power supply frequency. As a result, the current due to the resonance frequency falls outside the range of the power supply harmonic regulation, and the harmonic current can be reduced. Further, by setting the smoothing capacitor 2e to such a value, the bus voltage includes a large pulsation (ripple component) such that the maximum voltage becomes twice or more than the minimum voltage. And since the electric current which flows into the smoothing capacitor 2e from the alternating current power supply 1 also becomes a current close | similar to the frequency component of the alternating current power supply 1, a harmonic current can be reduced.
 なお、リアクタ2fは、交流電源1と平滑コンデンサ2eの間に挿入すればよいので、整流ダイオード2a~2dの前後どちらに挿入しても構わない。更にリアクタ2fは、高周波除去部を構成するコモンモードフィルタを回路に設けた場合、高周波除去部のリアクタンス成分との合成成分を考慮する。 Note that the reactor 2f may be inserted either before or after the rectifier diodes 2a to 2d because it may be inserted between the AC power supply 1 and the smoothing capacitor 2e. Furthermore, when the common mode filter which comprises a high frequency removal part is provided in the circuit, the reactor 2f considers the synthetic | combination component with the reactance component of a high frequency removal part.
 インバータ3は、交流電源1の電源周期の2倍周期で大きなリプル成分を含んだ、整流平滑回路2からの直流電力を、交流電力に変換する。インバータ3は、6個のスイッチング素子3a~3fを3相ブリッジ接続して構成される。また、6個の還流電流用ダイオード3g~3lは、各スイッチング素子3a~3fに、逆方向に接続される。 The inverter 3 converts the DC power from the rectifying / smoothing circuit 2 containing a large ripple component in a cycle twice the power cycle of the AC power source 1 into AC power. The inverter 3 is configured by connecting six switching elements 3a to 3f in a three-phase bridge. The six return current diodes 3g to 3l are connected to the switching elements 3a to 3f in the reverse direction.
 ブラシレスDCモータ4は、永久磁石を有する回転子4aと、3相巻線を有する固定子4bとから構成される。ブラシレスDCモータ4は、インバータ3により作られた3相交流電流が固定子4bの3相巻線に流れることにより、回転子4aを回転させる。 The brushless DC motor 4 includes a rotor 4a having a permanent magnet and a stator 4b having a three-phase winding. The brushless DC motor 4 rotates the rotor 4a when the three-phase alternating current generated by the inverter 3 flows in the three-phase winding of the stator 4b.
 位置検出部5は、ブラシレスDCモータ4の端子電圧を取得する。つまり、ブラシレスDCモータ4の回転子4aの磁極相対位置を検出する。具体的には、位置検出部5は、固定子4bの3相巻線に発生する誘起電圧に基づいて、回転子4aの相対的な回転位置を検出している。なお、別の位置検出方法としては、モータ電流(相電流または母線電流)の検出結果に対して、ベクトル演算を行って、磁極位置の推定を行う方法が挙げられる。 The position detection unit 5 acquires the terminal voltage of the brushless DC motor 4. That is, the magnetic pole relative position of the rotor 4a of the brushless DC motor 4 is detected. Specifically, the position detector 5 detects the relative rotational position of the rotor 4a based on the induced voltage generated in the three-phase winding of the stator 4b. As another position detection method, there is a method of estimating the magnetic pole position by performing vector calculation on the detection result of the motor current (phase current or bus current).
 電圧検出部6は、直流母線間の電圧である、平滑コンデンサ2eの両端電圧を検出する。 The voltage detector 6 detects the voltage across the smoothing capacitor 2e, which is the voltage between the DC buses.
 速度推定部7は、位置検出部5で検出された位置情報から、ブラシレスDCモータの駆動速度を推定する。ただし、電圧検出部6で検出された電圧が閾値以下のときは速度推定を停止し、母線電圧が再び閾値以上となったのちに、位置検出部5が行う最初の位置検出後から、速度推定を再開する。速度推定を停止する閾値とは、位置検出部5での位置検出が不安定となる母線電圧の値であり、システムによって予め決定しておく。 The speed estimation unit 7 estimates the driving speed of the brushless DC motor from the position information detected by the position detection unit 5. However, when the voltage detected by the voltage detection unit 6 is equal to or lower than the threshold, the speed estimation is stopped, and after the first position detection performed by the position detection unit 5 after the bus voltage becomes equal to or higher than the threshold again, the speed estimation is performed. To resume. The threshold value for stopping the speed estimation is a value of the bus voltage at which the position detection by the position detection unit 5 becomes unstable, and is determined in advance by the system.
 位置検出部5の位置情報は、母線電圧が所定電圧以下になると不安定となる。従って、切換部8は、電圧検出部6で検出した母線電圧の検出値が閾値以下となった場合、位置検出部5の位置情報ではなく、位置推定部9の位置情報を選択し出力する。電圧検出部6で検出した電圧値が閾値を超えた場合は、切換部8は再び位置検出部5の位置情報を選択し出力する。 The position information of the position detection unit 5 becomes unstable when the bus voltage is below a predetermined voltage. Therefore, the switching unit 8 selects and outputs the position information of the position estimation unit 9 instead of the position information of the position detection unit 5 when the detected value of the bus voltage detected by the voltage detection unit 6 is equal to or less than the threshold value. When the voltage value detected by the voltage detection unit 6 exceeds the threshold value, the switching unit 8 selects and outputs the position information of the position detection unit 5 again.
 位置推定部9は、切換部8から出力される位置情報と速度推定部7で推定した速度から、ブラシレスDCモータ4の回転子4aの位置を推定し出力する。例えば、制御周期100μ秒であった場合、切換部8からの位置が電気角で60degで、速度推定部7で推定した速度が50r/sであった場合、ブラシレスDCモータ4は4極としており、電流周波数は速度の2倍の100Hzとなるので、60degに100Hzの電流が100μ秒の間に進む位相を加算したもの、すなわち63.6degという位置情報を出力する。 The position estimation unit 9 estimates and outputs the position of the rotor 4 a of the brushless DC motor 4 from the position information output from the switching unit 8 and the speed estimated by the speed estimation unit 7. For example, when the control cycle is 100 μs, when the position from the switching unit 8 is 60 degrees in electrical angle and the speed estimated by the speed estimation unit 7 is 50 r / s, the brushless DC motor 4 has four poles. Since the current frequency is 100 Hz which is twice the speed, the position information of 63.6 deg is output by adding 60 deg to the phase in which the current of 100 Hz advances during 100 μsec.
 PWM設定部10は、PWMにおけるキャリア周波数、および、ハイ/ロー出力のデューティの設定をする。 The PWM setting unit 10 sets the carrier frequency in PWM and the duty of high / low output.
 具体的には、デューティが、あらかじめ設定した最低デューティ以下では、PWMパルス幅を一定に保ち、必要とするデューティを確保する様に、PWMキャリア周波数を調整する。デューティが、最低デューティより大きい時は、あらかじめ設定した周波数でPWMオン幅を増減することにより、デューティ調整を行う。 Specifically, when the duty is equal to or less than the preset minimum duty, the PWM pulse frequency is adjusted so that the PWM pulse width is kept constant and the required duty is secured. When the duty is larger than the minimum duty, the duty cycle is adjusted by increasing or decreasing the PWM ON width at a preset frequency.
 波形生成部11は、切換部8からの位置情報と速度推定部7からの速度情報により、ブラシレスDCモータの通電巻線、通電期間、およびタイミングを決定し、PWM設定部10により設定したPWMキャリアおよびデューティを重畳して、インバータ3の駆動波形を生成する。 The waveform generation unit 11 determines the energization winding, energization period, and timing of the brushless DC motor based on the position information from the switching unit 8 and the speed information from the speed estimation unit 7, and the PWM carrier set by the PWM setting unit 10. And the drive waveform of the inverter 3 is generated by superimposing the duty.
 また、波形生成部11は、電圧検出部6が検出した母線電圧を利用し、電圧の落ち込み時には進角が大きくなるように、波形制御を行う。 Further, the waveform generation unit 11 uses the bus voltage detected by the voltage detection unit 6 to perform waveform control so that the advance angle becomes large when the voltage drops.
 ドライブ部12は、波形生成部11から出力された波形信号に基づき、インバータ3のスイッチング素子3a~3fをオン/オフする駆動信号を出力する。これにより、ブラシレスDCモータには、回転子位置に応じた適切な巻線を通電するように、当該のスイッチング素子がオンされ駆動される。 The drive unit 12 outputs a drive signal for turning on / off the switching elements 3a to 3f of the inverter 3 based on the waveform signal output from the waveform generation unit 11. As a result, the switching element is turned on and driven in the brushless DC motor so as to energize an appropriate winding according to the rotor position.
 整流平滑回路13は、整流部13aと平滑部13bにより構成される。整流平滑回路13は、ブラシレスDCモータの回生発生時や、整流平滑回路2のLC共振等により、インバータ3の入力電圧、即ち整流平滑回路2の出力電圧の上昇時、その電圧を吸収する。また、通常時、平滑部13bの電圧は、交流電源1のピーク電圧近辺に安定しているため、平滑部13bを、平滑部13bの両端から、モータ駆動装置や周辺デバイス等への制御用電源を生成するためのスイッチング電源(図示せず)の入力として用いることも可能である。 The rectifying / smoothing circuit 13 includes a rectifying unit 13a and a smoothing unit 13b. The rectifying / smoothing circuit 13 absorbs the voltage when the brushless DC motor is regenerated, or when the input voltage of the inverter 3, that is, the output voltage of the rectifying / smoothing circuit 2 rises due to LC resonance of the rectifying / smoothing circuit 2. Further, since the voltage of the smoothing unit 13b is stable in the vicinity of the peak voltage of the AC power supply 1 at normal times, the smoothing unit 13b is connected to the motor driving device and peripheral devices from both ends of the smoothing unit 13b. It is also possible to use as an input of a switching power supply (not shown) for generating.
 以上の様に構成されたモータ駆動装置について、その動作を説明する。 The operation of the motor driving apparatus configured as described above will be described.
 図2は、本発明の実施の形態1におけるモータ駆動装置22の駆動シーケンスのフローチャートである。図2において、ブラシレスDCモータ4が停止状態にあり、駆動信号として目標速度が設定(即ちモータ駆動が指示)された時(step1)、PWM設定部10は、初期値として初期PWMキャリア周波数と初期PWMオンデューティを設定する(step2)。例えば、初期キャリア周波数1kHz、初期デューティ5%とする。初期値としてのPWMキャリア周波数は、機器の起動トルクで決まる起動デューティにおいて、PWMオン区間(即ちスイッチング素子をオンさせる区間)が所定のPWM最低オン幅を確保できる値に、設定する。例えば、PWM最低オン幅が50μ秒で、起動時の初期デューティが5%である場合、キャリア周波数は1kHz以下に設定する。 FIG. 2 is a flowchart of the drive sequence of the motor drive device 22 according to the first embodiment of the present invention. In FIG. 2, when the brushless DC motor 4 is in a stopped state and a target speed is set as a drive signal (ie, motor drive is instructed) (step 1), the PWM setting unit 10 sets the initial PWM carrier frequency and the initial value as initial values. PWM on-duty is set (step 2). For example, the initial carrier frequency is 1 kHz and the initial duty is 5%. The PWM carrier frequency as an initial value is set to a value that can ensure a predetermined PWM minimum ON width in the PWM ON section (that is, the section in which the switching element is turned ON) in the starting duty determined by the starting torque of the device. For example, when the PWM minimum ON width is 50 μs and the initial duty at startup is 5%, the carrier frequency is set to 1 kHz or less.
 初期値が入力された時、波形生成部11は、位置決め波形として特定相の巻線に固定子位置が規定の位置で安定して制止でき、比較的長い時間(例えば1秒間)インバータ3の通電し、スイッチング素子を駆動する波形を生成する(step3)。そして、ドライブ部12に出力し、当該のスイッチング素子を通電(例えばW相巻線からU相巻線に通電するのであれば、スイッチング素子3eと3bを1秒間オン)する。 When the initial value is input, the waveform generation unit 11 can stably stop the stator position at a specified position on the winding of the specific phase as a positioning waveform, and energize the inverter 3 for a relatively long time (for example, 1 second). Then, a waveform for driving the switching element is generated (step 3). Then, the signal is output to the drive unit 12, and the switching element is energized (for example, if the W-phase winding is energized from the U-phase winding, the switching elements 3e and 3b are turned on for 1 second).
 位置決め制御により、回転子位置が所定の位置に定まった後、波形生成部11は、同期引き込み制御として、所定の周波数で通電相を切換える強制同期運転を行い、回転子を強制的に回転させる(step4)。この強制同期運転は、位置検出部5に位置信号として、固定子巻線に発生する誘起電圧のゼロクロスポイントが入力されるまで続ける(step5)。 After the rotor position is determined to be a predetermined position by the positioning control, the waveform generator 11 performs a forced synchronous operation for switching the energized phase at a predetermined frequency as the synchronous pull-in control to forcibly rotate the rotor ( step 4). This forced synchronous operation is continued until the zero cross point of the induced voltage generated in the stator winding is input to the position detector 5 as a position signal (step 5).
 ここで、PWMオン区間の最低幅について、図3を用いて説明する。 Here, the minimum width of the PWM ON section will be described with reference to FIG.
 図3は、本発明の実施の形態1におけるインバータ3の出力端子電圧の位置検出タイミング付近での拡大波形を示す状態図である。 FIG. 3 is a state diagram showing an enlarged waveform near the position detection timing of the output terminal voltage of the inverter 3 according to the first embodiment of the present invention.
 図3はインバータ3の任意の相の出力端子電圧で、ブラシレスDCモータの駆動により発生する、誘起電圧のゼロクロスポイント(図9におけるB点)付近を示している。図3に示す波形の当該相の上下のスイッチング素子はオフ(具体的には、U相端子電圧を示している場合は、スイッチング素子3aおよび3bともオフ)している。PWM出力がハイの区間tは、PWM制御により、他相のスイッチング素子がオンしている区間である。 FIG. 3 shows the vicinity of the zero cross point (point B in FIG. 9) of the induced voltage generated by driving the brushless DC motor at the output terminal voltage of the arbitrary phase of the inverter 3. The switching elements above and below the phase of the waveform shown in FIG. 3 are off (specifically, when the U-phase terminal voltage is indicated, both switching elements 3a and 3b are off). A section t in which the PWM output is high is a section in which the switching element of the other phase is turned on by PWM control.
 位置検出部5は、先述したように、インバータの出力端子電圧と基準電圧(本実施の形態ではインバータ入力電圧の1/2)との大小関係が変化するポイントを検出することで、ブラシレスDCモータの回転に伴い発生する、誘起電圧のゼロクロスポイント(図3におけるB点)を、位置信号として認識する。しかしながら、PWMオン直後には、誘起電圧に高周波のノイズ成分が重畳し、位置検出部は、位置信号をB1点として誤検出する可能性がある。 As described above, the position detection unit 5 detects the point where the magnitude relationship between the output terminal voltage of the inverter and the reference voltage (1/2 of the inverter input voltage in the present embodiment) changes, so that the brushless DC motor. The zero cross point (point B in FIG. 3) of the induced voltage generated with the rotation of is recognized as a position signal. However, immediately after the PWM is turned on, a high-frequency noise component is superimposed on the induced voltage, and the position detection unit may erroneously detect the position signal as point B1.
 従って、位置検出のサンプリング開始は、重畳されたノイズ成分がある程度まで収束するまで遅延(区間C)させることで、ノイズを位置信号として誤検出することを、抑制する。このようにPWMのオン区間のPWM最低オン幅は、PWM立ち上がりから位置検出サンプリング開始までの区間Cを、設定する。 Therefore, the start of sampling for position detection suppresses erroneous detection of noise as a position signal by delaying (interval C) until the superimposed noise component converges to some extent. Thus, the PWM minimum ON width of the PWM ON section sets the section C from the PWM rising edge to the start of position detection sampling.
 上記の様に、位置検出のサンプリング禁止期間を設定することで、位置検出部5は正確な位置検出信号を取得できる。 As described above, the position detection unit 5 can acquire an accurate position detection signal by setting the sampling prohibition period for position detection.
 以降は、位置信号を基に、速度推定部7はブラシレスDCモータ4の速度を検出し、PWM設定部10は、駆動速度と目標速度の偏差に基づき、PMWデューティを増減する。そして、波形生成部11は、駆動速度に基づき、各相の通電期間(即ち転流周期)と通電パターン(即ちどのスイッチング素子をオンさせるか)を設定し、PWM設定部10によるPWM波形を重畳した上で、ドライブ部12に出力し、インバータ3でブラシレスDCモータ4を駆動する。このように、駆動速度と目標速度の偏差によるPWMデューティ調整を行う、速度フィードバック制御で、ブラシレスDCモータ4を目標速度で駆動する。 Thereafter, based on the position signal, the speed estimation unit 7 detects the speed of the brushless DC motor 4, and the PWM setting unit 10 increases or decreases the PMW duty based on the deviation between the drive speed and the target speed. Then, the waveform generation unit 11 sets the energization period (that is, the commutation cycle) and the energization pattern (that is, which switching element is turned on) based on the driving speed, and superimposes the PWM waveform by the PWM setting unit 10. After that, the signal is output to the drive unit 12 and the brushless DC motor 4 is driven by the inverter 3. In this way, the brushless DC motor 4 is driven at the target speed by speed feedback control that performs PWM duty adjustment based on the deviation between the drive speed and the target speed.
 なお、インバータ3の入力電圧に大きなリプルが含まれ、電圧検出部6がインバータ3の入力電圧が所定電圧より低い区間を検出したときは、切換部8は、位置検出部5によるものではなく、速度推定部7によるブラシレスDCモータの駆動速度を基に、位置推定部9で推定した磁極位置を、位置情報として選択する。このように、位置検出部5により位置信号を取得した後は、位置検出部5による位置情報、または位置推定部9による推定磁極位置による位置情報を基にして、速度フィードバック制御によるセンサレス駆動を行う(step6)。 When the input voltage of the inverter 3 includes a large ripple, and the voltage detection unit 6 detects a section where the input voltage of the inverter 3 is lower than the predetermined voltage, the switching unit 8 is not based on the position detection unit 5, Based on the driving speed of the brushless DC motor by the speed estimator 7, the magnetic pole position estimated by the position estimator 9 is selected as position information. As described above, after the position signal is acquired by the position detection unit 5, sensorless driving by speed feedback control is performed based on the position information by the position detection unit 5 or the position information by the estimated magnetic pole position by the position estimation unit 9. (Step 6).
 次に、キャリア周波数の設定について、説明する。先述したように、位置検出サンプリングの遅延時間(図3における区間C)が、PWM最低オン幅となる。PWM最低オン幅は、インバータ出力端子電圧のPWM立上りタイミングで重畳しているノイズ成分の周波数により設定され、PWMキャリア周波数に依存しない。従って、キャリア周波数が高いほど、PWM最低オン幅を確保する為のPWMオンデューティは大きくなる。具体的には、PWM最低オン幅に50μ秒確保するとき、キャリア周波数1kHzではデューティ5%相当であるが、8kHzでは40%相当となる。つまり、キャリア周波数8kHzでの最低デューティは40%となり、この最低デューティでブラシレスDCモータを起動すると、必要以上の電圧印加に伴う過電流停止や、大電流による回転子永久磁石の減磁等を発生させる懸念がある。 Next, the setting of the carrier frequency will be described. As described above, the delay time of the position detection sampling (section C in FIG. 3) is the PWM minimum ON width. The PWM minimum ON width is set by the frequency of the noise component superimposed at the PWM rising timing of the inverter output terminal voltage, and does not depend on the PWM carrier frequency. Therefore, the higher the carrier frequency, the larger the PWM on-duty for ensuring the PWM minimum on-width. Specifically, when 50 μsec is secured for the PWM minimum ON width, the duty is equivalent to 5% at a carrier frequency of 1 kHz, but equivalent to 40% at 8 kHz. In other words, the minimum duty at a carrier frequency of 8 kHz is 40%. When a brushless DC motor is started at this minimum duty, an overcurrent stop due to an excessive voltage application or a demagnetization of the rotor permanent magnet due to a large current occurs. There is a concern.
 従って、起動時は、起動デューティとPWM最低パルス幅に応じたPWMキャリア周波数を与える必要がある。本実施の形態では、ノイズ成分除去に50μ秒必要(PWM最低オン幅)として、起動デューティを5%とし、PWMキャリア周波数を1kHzに設定する。これにより、起動時のPWM最低パルス幅50μ秒を確保し、位置検出部での確実な位置検出と、適切な起動デューティにより、脱調停止等なく、ブラシレスDCモータを安定して起動できる。 Therefore, at startup, it is necessary to give a PWM carrier frequency according to the startup duty and the PWM minimum pulse width. In the present embodiment, 50 μsec is required for noise component removal (PWM minimum ON width), the starting duty is set to 5%, and the PWM carrier frequency is set to 1 kHz. As a result, the PWM minimum pulse width of 50 μs at startup is secured, and the brushless DC motor can be stably started without step-out stop or the like by reliable position detection by the position detection unit and an appropriate start-up duty.
 ここで、低デューティ時のPWMキャリア周波数として第1のキャリア周波数(例えば1kHz)、通常のPWMキャリア周波数として第2のキャリア周波数(例えば8kHz)を用いる場合を考える。 Here, consider a case where the first carrier frequency (for example, 1 kHz) is used as the PWM carrier frequency at the time of low duty, and the second carrier frequency (for example, 8 kHz) is used as the normal PWM carrier frequency.
 ブラシレスDCモータを第1のキャリア周波数で起動時し、加速に伴いPWMデューティが上昇し、第2のキャリア周波数でPWMパルス幅が確保できる(具体的には、1kHzキャリアでPWMデューティが40%を超える)タイミング以降は、第2のキャリア周波数で駆動する場合を考える。 When the brushless DC motor is started at the first carrier frequency, the PWM duty increases with acceleration, and the PWM pulse width can be secured at the second carrier frequency (specifically, the PWM duty is 40% for the 1 kHz carrier). After the timing, consider the case of driving at the second carrier frequency.
 整流平滑回路2は、平滑コンデンサ2eとリアクタ2fを有し、これらによるLC共振を発生する周波数を有しており、インバータ3によるスイッチング周波数(即ちPWMキャリア周波数)がLC共振周波数に近い場合、LC共振により、インバータ入力電圧に大きな電圧振幅が発生する。 The rectifying / smoothing circuit 2 includes a smoothing capacitor 2e and a reactor 2f, and has a frequency at which LC resonance occurs. When the switching frequency (that is, PWM carrier frequency) by the inverter 3 is close to the LC resonance frequency, the LC A large voltage amplitude is generated in the inverter input voltage due to resonance.
 図4Aと図4Bは、本発明の実施の形態1におけるインバータ3の入力電圧波形を示す状態図である。 4A and 4B are state diagrams showing input voltage waveforms of the inverter 3 according to Embodiment 1 of the present invention.
 図4Aと図4Bは、交流電源1に50Hz、220Vを入力したときのインバータ3の入力電圧波形を示している。 4A and 4B show input voltage waveforms of the inverter 3 when 50 Hz and 220 V are input to the AC power supply 1.
 図4Aは、整流平滑回路2の共振周波数に近いPWMキャリア周波数を用いた場合の、入力電圧波形を示している。インバータ3の入力電圧波形は、本来なら、静電容量が非常に小さいコンデンサを使用した場合、リプルの大きい交流電源の全波整流波形に近い波形が観測される。しかし、図4Aの波形には、大きなLC共振による高周波成分が重畳されている。さらに、交流電源は220Vの場合、インバータ3の入力電圧(すなわち整流平滑回路2の出力電圧)は最大値310V程度となるが、LC共振により、ピーク値は50V以上も上昇していることがわかる。 FIG. 4A shows an input voltage waveform when a PWM carrier frequency close to the resonance frequency of the rectifying and smoothing circuit 2 is used. The input voltage waveform of the inverter 3 is originally a waveform close to the full-wave rectification waveform of the AC power supply having a large ripple when a capacitor having a very small capacitance is used. However, a high frequency component due to large LC resonance is superimposed on the waveform of FIG. 4A. Further, when the AC power supply is 220V, the input voltage of the inverter 3 (that is, the output voltage of the rectifying / smoothing circuit 2) has a maximum value of about 310V, but the peak value increases by 50V or more due to LC resonance. .
 このLC共振による電圧ピーク値の上昇は、最悪の場合、部品定格超過により、回路の破損等を起こすことが危惧される。従って、PWMキャリア周波数は、LC共振周波数から離れた周波数に設定する必要がある。しかしながら、インバータ3の入力電圧の共振は、平滑コンデンサ2eとリアクタ2fのみで決まるのではなく、交流電源1の電源インピーダンスによる影響を受ける。特に新興国等では、引き込み配線が長く、電源インピーダンスのインダクタンス成分が非常に大きい電源環境等が考えられ、そのインダクタンス成分を考慮すると、共振周波数は、平滑コンデンサ2eとリアクタ2fによる共振周波数より低い周波数となる。従って、PWMキャリア周波数は、平滑コンデンサ2eとリアクタ2fによる共振周波数より高い周波数を用いる。 上昇 In the worst case, the rise in the voltage peak value due to LC resonance may cause circuit damage due to excessive component ratings. Therefore, it is necessary to set the PWM carrier frequency to a frequency away from the LC resonance frequency. However, the resonance of the input voltage of the inverter 3 is not determined only by the smoothing capacitor 2e and the reactor 2f but is influenced by the power source impedance of the AC power source 1. Particularly in emerging countries, a power supply environment with a long lead-in wiring and a very large inductance component of the power source impedance is considered, and considering the inductance component, the resonance frequency is lower than the resonance frequency of the smoothing capacitor 2e and the reactor 2f. It becomes. Therefore, the PWM carrier frequency is higher than the resonance frequency of the smoothing capacitor 2e and the reactor 2f.
 図4Bは、LC共振周波数に対して、2倍程度のPWMキャリア周波数を用いた場合のインバータ3の入力電圧波形を示している。図4Bでは、PWMスイッチングによる高周波成分の重畳は若干確認できる。しかし、ピーク電圧の大幅な上昇もなく、交流電源の全波整流波形に近い波形を示している。 FIG. 4B shows an input voltage waveform of the inverter 3 when a PWM carrier frequency of about twice the LC resonance frequency is used. In FIG. 4B, the superposition of the high frequency component by PWM switching can be confirmed a little. However, it shows a waveform close to the full-wave rectified waveform of the AC power supply without a significant increase in peak voltage.
 一方で前述した様に、PWM最低オン幅を設ける必要があることから、PWMデューティが低い起動時においては、比較的低いキャリア周波数を用いる必要がある。さらに、電源インピーダンスの値は使用する交流電源により異なるため、電源インピーダンスを含めた共振周波数を避けて、キャリア周波数を設定することは、非現実的である。 On the other hand, as described above, since it is necessary to provide the PWM minimum ON width, it is necessary to use a relatively low carrier frequency at the start-up time when the PWM duty is low. Furthermore, since the value of the power supply impedance varies depending on the AC power supply used, it is impractical to set the carrier frequency while avoiding the resonance frequency including the power supply impedance.
 従って、本実施の形態においては、ブラシレスDCモータが起動して加速する際に、一定のデューティまで上昇する間は、PWM最低パルス幅を確保しつつ、PWMキャリア周波数を徐々に高くしていくことで、PWMデューティを上げる。 Therefore, in the present embodiment, when the brushless DC motor is started and accelerated, the PWM carrier frequency is gradually increased while the PWM minimum pulse width is secured while increasing to a certain duty. The PWM duty is increased.
 図5は、図2のセンサレス制御(step6)におけるPWMキャリア周波数を設定するフローチャートである。 FIG. 5 is a flowchart for setting the PWM carrier frequency in the sensorless control (step 6) of FIG.
 図5を用いて、その動作を詳細に説明する。 The operation will be described in detail with reference to FIG.
 まず、step11では、現在のブラシレスDCモータの駆動速度が目標速度と一致したかどうか、即ち速度フィードバック制御によりPWMデューティの調整が必要かどうかを判断する。駆動速度と目標速度が一致しているのであれば、本フローチャートを抜ける。目標速度と一致していないのであれば、step12に進みPWMデューティの増減を行う。 First, in step 11, it is determined whether or not the current driving speed of the brushless DC motor matches the target speed, that is, whether or not the PWM duty needs to be adjusted by speed feedback control. If the drive speed matches the target speed, the process exits this flowchart. If not coincident with the target speed, the process proceeds to step 12 to increase or decrease the PWM duty.
 この時のPWM波形は、その時設定されている値であり、例えば起動直後では、図2において初期設定されたPWMキャリア周波数、PWMオンデューティであり、本実施の形態では1kHz、5%としている。 The PWM waveform at this time is a value set at that time. For example, immediately after startup, the PWM carrier frequency and the PWM on-duty that are initially set in FIG. 2 are set to 1 kHz and 5% in this embodiment.
 次にstep13に進み、増減したPWMデューティが規定のデューティ幅に到達したか否かを判断する。 Next, proceeding to step 13, it is determined whether the increased or decreased PWM duty has reached a prescribed duty width.
 ここで、規定デューティの設定方法について説明する。規定デューティとは、起動時以外の通常駆動におけるキャリア周波数において、PWM最低パルス幅を確保できるデューティとして設定されたものである。本実施の形態では、通常駆動時のキャリア周波数に8kHzを用いるとして、ノイズによる位置誤差検出抑制のために設定する、PWM立ち上がりから位置検出サンプリング開始までの遅延時間、即ちPWM最低パルス幅を50μ秒とする。この時、規定デューティは、
(規定デューティ)=(PWM最低パルス幅)×(通常時のキャリア周波数)
で求められる。本実施の形態では40%と設定し、PWMオンデューティが40%以上か否かを確認する。step13で規定のデューティ(即ち、本実施の形態では40%)に達している場合は、step14に進み、使用するキャリア周波数を、規定値として設定した通常駆動におけるキャリア周波数(即ち本実施の形態では8kHz)として設定する。
Here, a method for setting the specified duty will be described. The specified duty is set as a duty that can secure the PWM minimum pulse width at the carrier frequency in normal driving other than at the time of startup. In this embodiment, assuming that 8 kHz is used as the carrier frequency during normal driving, the delay time from the PWM rising edge to the start of position detection sampling, that is, the PWM minimum pulse width is set to 50 μsec. And At this time, the specified duty is
(Specified duty) = (PWM minimum pulse width) x (normal carrier frequency)
Is required. In this embodiment, 40% is set, and it is confirmed whether the PWM on-duty is 40% or more. When the specified duty is reached in step 13 (that is, 40% in the present embodiment), the process proceeds to step 14, and the carrier frequency to be used is set as the specified value in the normal driving (that is, in the present embodiment). 8 kHz).
 また、step13において、PWMオンデューティが規定のデューティに達していない場合は、step15でキャリア周波数を演算する。 In step 13, if the PWM on-duty has not reached the specified duty, the carrier frequency is calculated in step 15.
 キャリア周波数の設定は、PWMパルス幅をPWM最低パルス幅一定として、キャリア周波数を増減することで、デューティを変更するように演算される。例えば本実施の形態では、初期PWMはデューティ5%、PWMキャリア周波数1kHzで起動し、速度フィードバックによるデューティを増加して目標速度まで加速していく。step12において、デューティを2%増加して7%となったとき、パルス幅を変更するのではなく、下式に基づき計算したキャリア周波数を適用する。
(キャリア周波数)=(新たに設定したデューティ)÷(PWM最低パルス幅)
即ちデューティ7%ではキャリア周波数1.4kHz、パルス幅50μsecで駆動する。
The carrier frequency is set such that the duty is changed by increasing or decreasing the carrier frequency while keeping the PWM pulse width constant at the PWM minimum pulse width. For example, in this embodiment, the initial PWM is started with a duty of 5% and a PWM carrier frequency of 1 kHz, and the duty by speed feedback is increased to accelerate to the target speed. In step 12, when the duty is increased by 2% to 7%, the pulse width is not changed, but the carrier frequency calculated based on the following equation is applied.
(Carrier frequency) = (Newly set duty) / (PWM minimum pulse width)
That is, when the duty is 7%, it is driven with a carrier frequency of 1.4 kHz and a pulse width of 50 μsec.
 また、別の例では、PWMオンデューティが40%以下の場合、PWMオンデューティが40%を超えるときの8kHz超のキャリア周波数よりも低い、8kHz以下のキャリア周波数に減少させる。 In another example, when the PWM on-duty is 40% or less, the carrier frequency is reduced to a carrier frequency of 8 kHz or less, which is lower than the carrier frequency exceeding 8 kHz when the PWM on-duty exceeds 40%.
 このようにPWMオンデューティが規定のデューティ幅に到達するまでは、デューティ調整はキャリア周波数を調整することにより行われる。これにより、共振周波数がどのような値であっても、PWMキャリア周波数と常に一致することを避けることが出来、LC共振によるインバータ入力電圧の異常な発振と電圧上昇を抑制できる。なお、場合よってはキャリア周波数の変化段階で、電源インピーダンスと一致するタイミングがあるが、可変PWM周期により一致する期間が短いこと、さらに平滑部13bによるピーク電圧の吸収によって、インバータ入力電圧が上昇することはない。 Thus, until the PWM on-duty reaches the specified duty width, the duty adjustment is performed by adjusting the carrier frequency. As a result, it can be avoided that the resonance frequency is always equal to the PWM carrier frequency regardless of the value of the resonance frequency, and abnormal oscillation and voltage increase of the inverter input voltage due to LC resonance can be suppressed. In some cases, there is a timing that coincides with the power source impedance at the stage of changing the carrier frequency, but the inverter input voltage rises due to the short period of coincidence due to the variable PWM period and the absorption of the peak voltage by the smoothing unit 13b. There is nothing.
 そしてstep16では、step14またはstep15で設定したPWMキャリア周波数とデューティ幅によるPWM波形を、PWM設定部10で生成し、図5のフローチャートを抜ける。そして、速度推定部7で検出したブラシレスDCモータの駆動速度から生成した各相巻線の通電期間(即ち転流周期)と、通電パターン(即ちどのスイッチング素子をオンさせるか)と、PWM設定部10によるPWM波形を重畳し、ドライブ部12に出力する。このことにより、インバータ3は当該のスイッチング素子を通電し、ブラシレスDCモータ4を、速度フィードバック制御によるセンサレス駆動で駆動する。 In step 16, a PWM waveform based on the PWM carrier frequency and the duty width set in step 14 or step 15 is generated by the PWM setting unit 10, and the process exits the flowchart of FIG. The energization period (that is, the commutation cycle) of each phase winding generated from the driving speed of the brushless DC motor detected by the speed estimation unit 7, the energization pattern (that is, which switching element is turned on), and the PWM setting unit 10 is superimposed and output to the drive unit 12. As a result, the inverter 3 energizes the switching element, and drives the brushless DC motor 4 by sensorless driving by speed feedback control.
 以上の様に、本実施の形態のモータ駆動装置22は、入力された交流を直流に整流する整流平滑回路2と、整流平滑回路2から出力される直流を三相交流に変換し、ブラシレスDCモータ4を駆動するインバータ3とを有する。また、モータ駆動装置22は、ブラシレスDCモータ4の回転位置を検出する位置検出部5と、位置検出部5による信号から、ブラシレスDCモータ4の駆動速度を推定する速度推定部7とを有する。また、モータ駆動装置22は、駆動速度から、パルス幅変調によって、オンデューティとキャリア周波数を設定するPWM設定部10を有する。PWM設定部10は、オンデューティが所定値以下の場合には、PWM最低パルス幅を一定にするとともに、キャリア周波数を、オンデューティが所定値を超えるキャリア周波数よりも減少させるように、設定する。さらに、モータ駆動装置22は、回転位置と駆動速度に、オンデューティとPWM設定部で設定されたキャリア周波数を重畳して、インバータ3の駆動波形として生成する波形生成部11を有する。これにより、ブラシレスDCモータ4の起動時や負荷状態が非常に低い時など、パルス幅変調のPWMオンデューティが非常に小さい状態でも、確実にブラシレスDCモータ4の回転位置を検出できる。従って、起動時や低速低負荷時も、非常に安定した駆動性能を発揮することができる。 As described above, the motor drive device 22 according to the present embodiment converts the input alternating current into direct current, the rectifying / smoothing circuit 2, converts the direct current output from the rectifying / smoothing circuit 2 into three-phase alternating current, and performs brushless DC And an inverter 3 for driving the motor 4. The motor drive device 22 includes a position detection unit 5 that detects the rotational position of the brushless DC motor 4, and a speed estimation unit 7 that estimates the drive speed of the brushless DC motor 4 from the signal from the position detection unit 5. In addition, the motor drive device 22 includes a PWM setting unit 10 that sets the on-duty and the carrier frequency from the driving speed by pulse width modulation. When the on-duty is less than or equal to a predetermined value, the PWM setting unit 10 sets the PWM minimum pulse width to be constant and sets the carrier frequency to be lower than the carrier frequency at which the on-duty exceeds the predetermined value. Furthermore, the motor drive device 22 includes a waveform generation unit 11 that generates a drive waveform of the inverter 3 by superimposing the on-duty and the carrier frequency set by the PWM setting unit on the rotation position and the drive speed. As a result, the rotational position of the brushless DC motor 4 can be reliably detected even when the PWM on-duty of pulse width modulation is very small, such as when the brushless DC motor 4 is started up or when the load state is very low. Therefore, a very stable driving performance can be exhibited even at the time of start-up and at low speed and low load.
 また、本実施の形態のモータ駆動装置22のPWM設定部10は、オンデューティが40%以下の場合、PWM最低パルス幅を50μ秒とし、PWM設定部で設定されたキャリア周波数を8kHz以下とする。これにより、位置検出部5で、確実な位置検出が行われ、ブラシレスDCモータ4が安定して駆動される。 In addition, when the on-duty is 40% or less, the PWM setting unit 10 of the motor drive device 22 of the present embodiment sets the PWM minimum pulse width to 50 μsec and the carrier frequency set by the PWM setting unit to 8 kHz or less. . Thereby, the position detection unit 5 performs reliable position detection, and the brushless DC motor 4 is driven stably.
 また、本実施の形態の整流平滑回路2は、平滑コンデンサ2eとリアクタ2fを含み、交流電源の周波数の40倍より高い共振周波数に設定する。これにより、平滑コンデンサの静電容量を極端に小さくして、インバータ入力電圧に大きなリプルを含む場合でも、確実にブラシレスDCモータの回転位置を検出することができ、安定した駆動が可能となる。従って、平滑コンデンサおよびリアクタの小型化を図ることが出来、小型・軽量・低コストのモータ駆動装置を実現することができる。 The rectifying / smoothing circuit 2 of the present embodiment includes a smoothing capacitor 2e and a reactor 2f, and is set to a resonance frequency higher than 40 times the frequency of the AC power supply. Thereby, even when the electrostatic capacitance of the smoothing capacitor is extremely reduced and the inverter input voltage includes a large ripple, the rotational position of the brushless DC motor can be reliably detected, and stable driving is possible. Therefore, it is possible to reduce the size of the smoothing capacitor and the reactor, and it is possible to realize a small, light, and low-cost motor driving device.
 また、本実施の形態の整流平滑回路2は、平滑コンデンサ2eとリアクタ2fを含み、PWM設定部で設定されたキャリア周波数は、コンデンサとリアクタの共振周波数より高い周波数である。これにより、電源インピーダンスのインダクタンス成分の影響を少なくすることができる。 The rectifying / smoothing circuit 2 of the present embodiment includes a smoothing capacitor 2e and a reactor 2f, and the carrier frequency set by the PWM setting unit is higher than the resonance frequency of the capacitor and the reactor. Thereby, the influence of the inductance component of the power source impedance can be reduced.
 また、本実施の形態のモータ駆動装置22は、ブラシレスDCモータ4の起動から所定の期間でのパルス幅変調におけるオンデューティは、PWM最低パルス幅を一定にして、PWM設定部で設定されたキャリア周波数を変えることで設定される。これにより、特にパルス幅変調のオンデューティが低い起動時においても、PWMオン幅を広く確保し、ブラシレスDCモータの回転子の磁極位置を確実に検出できるので、安定した起動性能を確保することができる。 Further, in the motor drive device 22 of the present embodiment, the on-duty in the pulse width modulation in the predetermined period from the start of the brushless DC motor 4 is the carrier set by the PWM setting unit while keeping the PWM minimum pulse width constant. It is set by changing the frequency. As a result, even when the on-duty of the pulse width modulation is low, the PWM on-width can be secured wide and the magnetic pole position of the brushless DC motor rotor can be reliably detected, so that stable start-up performance can be ensured. it can.
 さらにパルス幅変調のキャリア周波数が一定に固定されないので、コンデンサとリアクタおよび電源インピーダンス成分による共振周波数とパルス幅変調のキャリア周波数とが常に一致することを防ぐことができる。従って、LC共振に伴うインバータ入力の異常発振や過電圧を防止できるため、モータ駆動装置の信頼性を向上することができる。 Furthermore, since the carrier frequency of pulse width modulation is not fixed, it is possible to prevent the resonance frequency caused by the capacitor, the reactor, and the power source impedance component from always matching the carrier frequency of pulse width modulation. Accordingly, abnormal oscillation and overvoltage of the inverter input due to LC resonance can be prevented, so that the reliability of the motor driving device can be improved.
 (実施の形態2)
 図6は、本発明の実施の形態2における冷蔵庫21のブロック図である。
(Embodiment 2)
FIG. 6 is a block diagram of the refrigerator 21 according to Embodiment 2 of the present invention.
 図6において、図1と同じ構成要素については同じ符号を付しており、それらの詳細な説明は省略する。 6, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施の形態の冷蔵庫21は、実施の形態1のモータ駆動装置22を用いている。 The refrigerator 21 of the present embodiment uses the motor driving device 22 of the first embodiment.
 本実施の形態においては、レシプロ型の圧縮機17が用いられる。 In this embodiment, a reciprocating compressor 17 is used.
 圧縮機17において、ブラシレスDCモータ4の回転子4aによる回転運動は、クランクシャフト(図示せず)により往復運動に変換される。クランクシャフトに接続されたピストン(図示せず)は、シリンダ(図示せず)内を往復運動することにより、冷媒を吸入、圧縮し、そして循環させる。 In the compressor 17, the rotational motion by the rotor 4a of the brushless DC motor 4 is converted into reciprocating motion by a crankshaft (not shown). A piston (not shown) connected to the crankshaft reciprocates in a cylinder (not shown) to suck, compress, and circulate the refrigerant.
 圧縮機の圧縮方式(機構方式)には、ロータリー型やスクロール型など、任意の方式が用いられるが、本実施の形態では、レシプロ型としている。レシプロ型の圧縮機17は、イナーシャが大きく、母線電圧が変動するインバータ入力電圧であっても、駆動速度変動が小さい。従って、レシプロ型の圧縮機17は、平滑コンデンサの静電容量が極めて小さく、母線電圧に大きなリプルを含むモータ駆動装置にとって、非常に適した用途の一つといえる。 As a compression method (mechanism method) of the compressor, an arbitrary method such as a rotary type or a scroll type is used, but in this embodiment, a reciprocating type is used. The reciprocating compressor 17 has a large inertia and a small drive speed fluctuation even with an inverter input voltage in which the bus voltage fluctuates. Therefore, the reciprocating compressor 17 can be said to be one of the applications that are very suitable for a motor driving device in which the capacitance of the smoothing capacitor is extremely small and the bus voltage includes a large ripple.
 さらに、圧縮機17は、冷媒が凝縮器18、減圧器19、蒸発器20を順に通って、再び圧縮機17に戻るような、冷凍サイクルを構成する。この冷凍サイクルは、凝縮器18では放熱を、蒸発器20では吸熱を行うので、冷却や加熱を行うことができる。さらに、本実施の形態では、この冷凍サイクルを冷蔵庫21に用い、蒸発器20は冷蔵庫21の庫内を冷却する。 Furthermore, the compressor 17 constitutes a refrigeration cycle in which the refrigerant passes through the condenser 18, the decompressor 19, and the evaporator 20 in this order and returns to the compressor 17 again. In this refrigeration cycle, the condenser 18 dissipates heat and the evaporator 20 absorbs heat, so that cooling and heating can be performed. Furthermore, in this Embodiment, this refrigeration cycle is used for the refrigerator 21, and the evaporator 20 cools the inside of the refrigerator 21.
 従来の冷蔵庫に用いられるモータ駆動装置では、平滑コンデンサやリアクタが大きくなり、システムに組み込むには、大きなスペースが必要であった。しかしながら、本実施の形態では、平滑コンデンサの静電容量が400μF程度必要であったものを、数μFに低減することが可能となり、モータ駆動装置の体積を1/3以下に低減できる。また、冷蔵庫21のように、比較的低負荷で駆動する用途であれば、数ミリH程度のリアクタを、フィルタのインダクタンス成分で賄うことが可能となり、大幅なサイズダウンと低コスト化が可能となる。 In a motor drive device used in a conventional refrigerator, a smoothing capacitor and a reactor are large, and a large space is required to be incorporated into the system. However, in the present embodiment, the smoothing capacitor having a capacitance of about 400 μF can be reduced to several μF, and the volume of the motor driving device can be reduced to 1/3 or less. In addition, if the application is driven with a relatively low load, such as the refrigerator 21, a reactor of about several millimeters H can be covered with the inductance component of the filter, which enables a significant reduction in size and cost. Become.
 また、これまでは、インダクションモータ等を使用して、一定速で駆動するコンプレッサ制御の冷蔵庫に、可変速度駆動が可能なモータ駆動装置を適用するには、モータ駆動装置の設置スペースが狭く、容易に組み込むことができなかった。しかしながら、本実施の形態のモータ駆動装置22は非常に小型化できるため、設置スペースの制約が緩和され、従来のモータ駆動装置を、可変速度駆動が可能なモータ駆動装置に置き換えることが容易になる。これにより、冷蔵庫21の負荷状態に応じた最適な駆動速度で庫内を冷却できるので、冷却システム効率を向上させることができ、低消費電力の冷蔵庫を実現することができる。 In addition, to apply a motor drive device that can be driven at a variable speed to a compressor-controlled refrigerator that is driven at a constant speed using an induction motor or the like, the installation space for the motor drive device is small and easy. Could not be incorporated into. However, since the motor drive device 22 of the present embodiment can be made very small, restrictions on installation space are eased, and it becomes easy to replace the conventional motor drive device with a motor drive device capable of variable speed drive. . Thereby, since the inside of a store | warehouse | chamber can be cooled with the optimal drive speed according to the load state of the refrigerator 21, a cooling system efficiency can be improved and a refrigerator with low power consumption can be implement | achieved.
 本発明のモータ駆動装置は、平滑コンデンサを小容量化し、小型化し、かつ安定して滑らかな駆動を可能にする。これにより、冷蔵庫や送風機のみならず、自動販売機やショーケース、ヒートポンプ給湯器、ヒートポンプ洗濯乾燥機、における圧縮機の駆動に適用できる。さらに、洗濯機や、掃除機、ポンプなどのような、ブラシレスDCモータを用いる電気機器の提供も可能であり、機器の小型化にも貢献できる。 The motor drive device of the present invention reduces the capacity of the smoothing capacitor, reduces the size, and enables stable and smooth driving. Thereby, it can apply to the drive of the compressor not only in a refrigerator and an air blower but in a vending machine, a showcase, a heat pump water heater, and a heat pump washer / dryer. Furthermore, it is possible to provide electric equipment using a brushless DC motor, such as a washing machine, a vacuum cleaner, and a pump, which can contribute to downsizing of the equipment.
 1  交流電源
 2  整流平滑回路
 2a,2b,2c,2d  整流ダイオード
 2e  平滑コンデンサ
 2f  リアクタ
 2g  平滑部
 3  インバータ
 3a,3b,3c,3d,3e,3f  スイッチング素子
 3g,3h,3i,3j,3k,3l  還流電流用ダイオード
 4  ブラシレスDCモータ
 4a  回転子
 4b  固定子
 5  位置検出部
 6  電圧検出部
 7  速度推定部
 8  切換部
 9  位置推定部
 10  PWM設定部
 11  波形生成部
 12  ドライブ部
 13  整流平滑回路
 13a  整流部
 13b  平滑部
 17  圧縮機
 18  凝縮器
 19  減圧器
 20  蒸発器
 21  冷蔵庫
 22  モータ駆動装置
DESCRIPTION OF SYMBOLS 1 AC power supply 2 Rectification smoothing circuit 2a, 2b, 2c, 2d Rectifier diode 2e Smoothing capacitor 2f Reactor 2g Smoothing part 3 Inverter 3a, 3b, 3c, 3d, 3e, 3f Switching element 3g, 3h, 3i, 3j, 3k, 3l Reflux current diode 4 Brushless DC motor 4a Rotor 4b Stator 5 Position detection unit 6 Voltage detection unit 7 Speed estimation unit 8 Switching unit 9 Position estimation unit 10 PWM setting unit 11 Waveform generation unit 12 Drive unit 13 Rectification smoothing circuit 13a Rectification Section 13b Smoothing section 17 Compressor 18 Condenser 19 Decompressor 20 Evaporator 21 Refrigerator 22 Motor drive device

Claims (6)

  1.  入力された交流を直流に整流する整流平滑回路と、
     前記整流平滑回路から出力される直流を三相交流に変換し、ブラシレスDCモータを駆動するインバータと、
     前記ブラシレスDCモータの回転位置を検出する位置検出部と、
     前記位置検出部による信号から、前記ブラシレスDCモータの駆動速度を推定する速度推定部と、
     前記駆動速度から、パルス幅変調によって、オンデューティとキャリア周波数を、前記オンデューティが所定値以下の場合には、PWM最低パルス幅を一定にして、前記キャリア周波数を前記オンデューティが所定値を超えるキャリア周波数よりも減少させるように、設定するPWM設定部と、
     前記回転位置と前記駆動速度に、前記オンデューティと前記PWM設定部で設定された前記キャリア周波数を重畳して、前記インバータの駆動波形を生成する波形生成部とを有するモータ駆動装置。
    A rectifying / smoothing circuit that rectifies input alternating current into direct current;
    An inverter for converting a direct current output from the rectifying and smoothing circuit into a three-phase alternating current and driving a brushless DC motor;
    A position detector for detecting the rotational position of the brushless DC motor;
    A speed estimation unit that estimates a driving speed of the brushless DC motor from a signal from the position detection unit;
    Based on the driving speed, the on-duty and the carrier frequency are adjusted by pulse width modulation. When the on-duty is less than or equal to a predetermined value, the PWM minimum pulse width is made constant and the on-duty exceeds the predetermined value. A PWM setting unit to be set so as to reduce the carrier frequency,
    A motor drive device comprising: a waveform generation unit that generates a drive waveform of the inverter by superimposing the on-duty and the carrier frequency set by the PWM setting unit on the rotation position and the drive speed.
  2. 前記PWM設定部は、前記オンデューティが40%以下の場合、前記PWM最低パルス幅を50μ秒とし、前記PWM設定部で設定された前記キャリア周波数を8kHz以下とする請求項1に記載のモータ駆動装置。 2. The motor drive according to claim 1, wherein when the on-duty is 40% or less, the PWM setting unit sets the PWM minimum pulse width to 50 μs and sets the carrier frequency set by the PWM setting unit to 8 kHz or less. apparatus.
  3. 前記整流平滑回路は、コンデンサとリアクタを含み、前記交流電源の周波数の40倍より高い共振周波数に設定する請求項1に記載のモータ駆動装置。 The motor driving apparatus according to claim 1, wherein the rectifying and smoothing circuit includes a capacitor and a reactor, and is set to a resonance frequency higher than 40 times the frequency of the AC power supply.
  4. 前記整流平滑回路は、コンデンサとリアクタを含み、前記PWM設定部で設定された前記キャリア周波数は、前記コンデンサと前記リアクタの共振周波数より高い周波数である請求項1に記載のモータ駆動装置。 The motor driving apparatus according to claim 1, wherein the rectifying and smoothing circuit includes a capacitor and a reactor, and the carrier frequency set by the PWM setting unit is higher than a resonance frequency of the capacitor and the reactor.
  5. 前記ブラシレスDCモータの起動から所定の期間までのオンデューティは、前記PWM最低パルス幅を一定にして、前記PWM設定部で設定された前記キャリア周波数を変えることで設定される請求項3に記載のモータ駆動装置。 The on-duty from the start of the brushless DC motor to a predetermined period is set by changing the carrier frequency set by the PWM setting unit while keeping the PWM minimum pulse width constant. Motor drive device.
  6. 請求項1から請求項5のいずれかに記載のモータ駆動装置を用いた電気機器。 An electric device using the motor drive device according to any one of claims 1 to 5.
PCT/JP2013/007535 2013-03-15 2013-12-24 Motor drive device and electric device using same WO2014141345A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380074298.4A CN105027419B (en) 2013-03-15 2013-12-24 Motor drive and use its electric equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013052852A JP6134905B2 (en) 2013-03-15 2013-03-15 MOTOR DRIVE DEVICE AND ELECTRIC DEVICE USING THE SAME
JP2013-052852 2013-03-15

Publications (1)

Publication Number Publication Date
WO2014141345A1 true WO2014141345A1 (en) 2014-09-18

Family

ID=51536048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007535 WO2014141345A1 (en) 2013-03-15 2013-12-24 Motor drive device and electric device using same

Country Status (3)

Country Link
JP (1) JP6134905B2 (en)
CN (1) CN105027419B (en)
WO (1) WO2014141345A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017135798A (en) * 2016-01-26 2017-08-03 株式会社富士通ゼネラル Air conditioner
CN110375464A (en) * 2019-07-10 2019-10-25 河北中凯智境新能源股份有限公司 A kind of geothermal heat pump based on Internet of Things control
CN113098333A (en) * 2021-04-01 2021-07-09 东风汽车集团股份有限公司 Control method of air conditioner servo motor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101902885B1 (en) * 2017-02-03 2018-10-01 엘지전자 주식회사 Motor driving apparatus and electric vehicle including the same
WO2019020185A1 (en) * 2017-07-27 2019-01-31 Vacon Oy Motor drive adaptation
KR102518178B1 (en) * 2018-02-21 2023-04-07 현대자동차주식회사 System and method for controlling inverter driving motor
CN111886791A (en) * 2018-05-22 2020-11-03 松下知识产权经营株式会社 Motor driving device and refrigerator using the same
JP2021019417A (en) * 2019-07-19 2021-02-15 パナソニックIpマネジメント株式会社 Motor drive device, refrigerator using the same, and refrigeration cycle device
JP7229424B2 (en) * 2020-03-11 2023-02-27 三菱電機株式会社 Motor drive controllers, air conditioners, water heaters, refrigerators
CN111416565B (en) * 2020-03-27 2023-07-04 四川长虹精密电子科技有限公司 Variable carrier frequency motor control device and method
JP7309070B2 (en) * 2020-06-22 2023-07-14 三菱電機株式会社 power converter
CN114537226B (en) * 2022-03-07 2023-11-07 臻驱科技(上海)有限公司 Power assembly circuit of electric automobile and power battery heating method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000316294A (en) * 1999-04-27 2000-11-14 Hitachi Ltd Dc brushless motor drive and air conditioner using the same
JP2012222842A (en) * 2011-04-04 2012-11-12 Panasonic Corp Motor drive device and electric appliance using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000041389A (en) * 1998-07-22 2000-02-08 Kokusan Denki Co Ltd Electric motor control method and controller thereof
JP5502605B2 (en) * 2010-06-09 2014-05-28 本田技研工業株式会社 Motor control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000316294A (en) * 1999-04-27 2000-11-14 Hitachi Ltd Dc brushless motor drive and air conditioner using the same
JP2012222842A (en) * 2011-04-04 2012-11-12 Panasonic Corp Motor drive device and electric appliance using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017135798A (en) * 2016-01-26 2017-08-03 株式会社富士通ゼネラル Air conditioner
CN110375464A (en) * 2019-07-10 2019-10-25 河北中凯智境新能源股份有限公司 A kind of geothermal heat pump based on Internet of Things control
CN113098333A (en) * 2021-04-01 2021-07-09 东风汽车集团股份有限公司 Control method of air conditioner servo motor
CN113098333B (en) * 2021-04-01 2022-03-29 东风汽车集团股份有限公司 Control method of air conditioner servo motor

Also Published As

Publication number Publication date
JP6134905B2 (en) 2017-05-31
CN105027419A (en) 2015-11-04
JP2014180149A (en) 2014-09-25
CN105027419B (en) 2018-06-01

Similar Documents

Publication Publication Date Title
JP6134905B2 (en) MOTOR DRIVE DEVICE AND ELECTRIC DEVICE USING THE SAME
US10637377B2 (en) Motor driving device, as well as refrigerator and device for operating compressor in which said motor driving device is used
JP5195444B2 (en) Brushless DC motor driving apparatus, refrigerator and air conditioner using the same
WO2004084400A1 (en) Method of driving brushless dc motor and device therefor
JP6127275B2 (en) Motor drive device and refrigerator using the same
JP2004282911A (en) Driving method and driver of dc brushless motor
JP2008160950A (en) Motor driver and refrigerator possessing it
WO2012137399A1 (en) Motor drive device and electric appliance using same
JP2010226842A (en) Control method and control apparatus for brushless dc motor
JP2010187522A (en) Method and device for driving motor, and electric equipment using the same
JP5521405B2 (en) Motor drive device and electric apparatus using the same
JP2010252480A (en) Motor drive and refrigerator using the same
JP2008005639A (en) Method and device for driving brushless dc motor
JP2008172880A (en) Method and device for driving brushless dc motor
CN111034011B (en) Motor driving device and refrigerator using the same
JP6450939B2 (en) Motor drive device, compressor drive device using the same, refrigeration device, and refrigerator
JP2004328912A (en) Drive method for brushless dc motor and device therefor
JP2012161219A (en) Control unit for brushless dc motor
JP6383940B2 (en) Motor drive device
JP6970871B2 (en) Motor drive device and refrigerator using it
US20160056746A1 (en) Apparatus for driving srm and controlling method thereof
JP7108812B2 (en) Motor drive device and refrigerator using the same
JP2005094875A (en) Method and apparatus for driving brushless dc motor
JP5927412B2 (en) MOTOR DRIVE DEVICE AND ELECTRIC DEVICE USING THE SAME
JP2015089142A (en) Motor driver and electrical apparatus using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380074298.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13878079

Country of ref document: EP

Kind code of ref document: A1